
Analysis of the transaction confirmation process

and fairness in Proof-of-Work blockchains.

Ivan Malakhov

March 15, 2023

2

Abstract

In the last few years, blockchains have gained a great importance as a tech-
nology to implement distributed ledgers. In this thesis, we study blockchains
based on the most important consensus mechanism, namely the Proof-of-Work
(PoW). In these blockchains, there is a tension between users’ operating costs,
i.e., the fees paid to add a transaction to the ledger, and the quality of ser-
vice obtained, namely the transaction confirmation time and the transaction
confirmation probability.

To study the trade-off between operating costs and reliability or confirmation
time, we introduce a set of stochastic models. Technically speaking, the models
that allow the computation of the reliability and performance from the ledger
point view will be in steady-state, i.e., they are able to evaluate the desired
indices in a sufficiently long interval of time. Among these models, we also
study the fairness of PoW in permissioned blockchain.

Another class of models that we introduce are the transient ones that answer
the same questions from the user perspective, i.e., they can be used by the end
users to determine the optimal costs to obtain a certain Quality of Service in
terms of delays and reliability.

Contents

1 Introduction 7
1.1 Description of the problem . 8

1.1.1 Performance and Reliability analysis of the Confirmation
process of transactions . 8

1.1.2 Fairness in blockchain networks 9
1.2 Contributions . 10
1.3 Published papers . 11
1.4 Structure of the thesis . 12

2 Background on blockchain and state of the art 13
2.1 Introduction . 13

2.1.1 Types of blockchains . 13
2.1.2 PoW-driven blockchains 14
2.1.3 Fixed size and fixed capacity blocks 17
2.1.4 Auction and transaction confirmation time 18
2.1.5 Predicting the minimum fee for QoS 18
2.1.6 Transaction dropping policy 20

2.2 Literature review . 21
2.2.1 Fairness in PoW blockchains 21
2.2.2 Transaction confirmation process 23
2.2.3 Blockchain throughput prediction 26

3 Essential elements of stochastic modeling 27
3.1 Markov chains . 27

3.1.1 Discrete-time Markov Chains (DTMC) 27
3.1.2 Continuous-time Markov Chains 34

3.2 Queueing models . 37
3.2.1 Stability and instability of a queueing system 39
3.2.2 M/M/1 queueing system 39

4 Fairness in PoW private blockchains 41
4.1 Introduction . 42

4.1.1 Contribution . 43
4.1.2 Structure of the Chapter 43

3

4 CONTENTS

4.2 The problem statement and window-based control 44
4.2.1 Security vulnerabilities of PoW 44
4.2.2 Fairness issues in permissioned blockchains 45
4.2.3 Algorithm description: window-based control 45

4.3 Stochastic Model for the performance evaluation of the algorithm 46
4.4 Security and performance assessment 49

4.4.1 Double spending and greedy miner attacks 49
4.4.2 Security for a single malicious miner 50
4.4.3 Security analysis for pools of colluded miners 52

4.5 Fairness assessment . 56
4.6 Conclusion . 57

5 Transaction confirmation time: a system perspective 59
5.1 Introduction . 60

5.1.1 Structure of the Chapter 60
5.2 Comparison of fixed block size and fixed block capacity 61

5.2.1 Queueing model for fixed block size 61
5.2.2 Numerical investigation 64

5.3 Dropping policy for fixed block capacity 66
5.3.1 Bulk services and droppings 66
5.3.2 Numerical investigation 69
5.3.3 Description of the simulator 69
5.3.4 Results . 69

5.4 Conclusion . 72

6 Transaction confirmation time: a user’s perspective 75
6.1 Introduction . 76

6.1.1 Contribution . 76
6.1.2 Structure of the Chapter 77

6.2 Problem statement and motivation 77
6.3 The queueing model and its solution 79

6.3.1 Model description and notation 80
6.3.2 Solution of the model . 81
6.3.3 Numerical solution for the mean confirmation time . . . 89
6.3.4 Extension of the model to transactions with arbitrary fee 95

6.4 Numerical evaluation . 96
6.4.1 Impact of the perceived load factor on the expected con-

firmation time . 96
6.4.2 Impact of the initial Mempool state on the expected con-

firmation time . 97
6.4.3 Impact of the transaction fee on the expected confirmation

time . 97
6.4.4 Validation of the model 99
6.4.5 Validation of the prototype of the confirmation time esti-

mator . 102
6.5 Conclusion . 103

CONTENTS 5

7 Workload prediction methods 105
7.1 Introduction . 106
7.2 Background . 106

7.2.1 Background on the ARIMA model 106
7.2.2 Background on the Facebook Prophet model 107

7.3 Evaluation of the accuracy in performance predictions 107
7.3.1 Comparison of time series prediction models 108
7.3.2 Simulations . 112

7.4 Conclusion . 114

8 Reliability in blockchains: droppings 117
8.1 Introduction . 118

8.1.1 Problem statement and practical relevance 118
8.2 A Gambler’s ruin based model to estimate the dropping probability119

8.2.1 Modeling assumptions and notation 119
8.2.2 Model analysis . 120
8.2.3 The case of infinite Mempool 125
8.2.4 A toy example . 126
8.2.5 Computational aspects . 127
8.2.6 The model for transactions offering a general fee 128

8.3 Experiments . 128
8.3.1 Methodology . 128
8.3.2 Heavy load conditions . 130
8.3.3 Moderate load conditions 131
8.3.4 Reliability Analysis as Function of the Mempool state . . 131

8.4 Conclusion . 132

9 Conclusion 135

Chapter 1

Introduction

Blockchains have been attracting more and more attention from the academic
and industrial communities from the perspectives of finance, logistics, secu-
rity and many others [1, 8, 50]. More recently, the quantitative analysis of the
blockchains has also emerged as highly valuable research challenge [28,37,48,62].

The blockchain often refers to the decentralized and distributed peer-to-peer
network that clusters its data into blocks in such a way that the data immutabil-
ity is guaranteed by design. Moreover, the blockchain can stand for the chain
of blocks, i.e., linked objects containing the data in a form of transactions or
simply the technology underlying the network.

The smallest data unit in blockchain is called transaction and generally
consists of information about a sender, a recipient and most importantly data
that should be transferred. Further, a set of transactions forms a block, that in
Bitcoin (BTC), has a maximum size of 1 MB1 and is consolidated, on average,
every 10 minutes. Bitcoin applies difficulty parameter to the new blocks to
maintain network consolidation speed at the same level considering fluctuations
of the network computational power mainly due to the continuous changes in
number of active blockchain users. This implies that the maximum throughput
of such system is fixed.

In this section, to simplify the exposition, we assume that all transactions
have the same size. So transactions are proposed by the end users and are stored
by the miners (who use transactions to form their blocks) in a priority queue
known as Memory Pool or Mempool. Each transaction contains a tip for miners
called “fee” that can be greater or equal to zero. Intuitively, to maximize their
profits miners should form the blocks with the transactions offering the highest
fees. When a transaction is included in a block, we say that it is confirmed, i.e.,
it is permanently stored in the system. The transaction residence time in the
Mempool is called confirmation delay. This delay is crucial in determining the
Quality-of-Service (QoS) of applications based on blockchains.

11 MB stands for the maximum size of the block full of non-SegWit transactions. Section..
gives more thorough description for this type of transactions.

7

8 CHAPTER 1. INTRODUCTION

All blockchain data are stored in a form of the distributed ledger that serves
substantially three main roles: (i) verify the information or procedures that end
users want to store according to a set of network rules, namely blockchain pro-
tocol, (ii) guarantee the immutability of the stored information and (iii) make
the information or procedure publicly available without loss of confidentiality.
Indeed, there exist hundreds if not thousands of blockchain protocols nowadays.
However, in our study, we appeal to the very first as well as highly popular one,
namely Bitcoin blockchain driven by Proof-of-Work (PoW) algorithm. PoW has
been introduced by the seminal paper [61] by the pseudonym Satoshi Nakamoto
with the aim of creating a distributed ledger for economical transactions based
on the Bitcoin cryptocurrency (BTC). What is more, together with Ethereum,
Bitcoin is known to be the biggest and well-known blockchain protocol world-
wide.

This thesis studies the impact of the most popular family of consensus pro-
tocols (those based on PoW) on the performance, reliability and fairness of the
blockchain system. While performance and reliability will be addressed from the
end-user perspective and from the system perspective, the fairness is a property
that concerns miners.

1.1 Description of the problem

1.1.1 Performance and Reliability analysis of the Confir-
mation process of transactions

In order to understand the quantitative dynamics of the transaction conforma-
tions, we need to review the procedure implemented by miners to secure the
blockchain system. Each miner selects from the Mempool a set of transactions
to fill a block, then they check their integrity (e.g., when there is a transfer
of cryptocurrency it verifies that there is not double spending) and finally it
works on a computational problem that requires a large amount of energy in
order to be solved. This latter step is called PoW. The miner that announces
the solution of his/her computational problem first is entitled to add his/her
new block to the blockchain after the other peers have verified the correctness
of the solution. For the successful block consolidation a miner receives a reward
consisting of the sum of the fees of the transactions in the block and a standard
unconditional reward2.

It might be the case where two different blocks were mined at almost the
same time thus provoking fork occurrence, that is the situation when the network
sees multiple valid chains with the same height. However, such forks have
temporary nature are known to be solved once one of the forks become longer
than others in PoW environment.

From the end user’s point of view, an interesting trade-off arises: on the
one hand, they wish to offer the lowest possible fee to reduce the running costs

2According to the BTC developers the latter is going to be removed from the protocol in
2023.

1.1. DESCRIPTION OF THE PROBLEM 9

of their activities, on the other they may have some requirements on the QoS,
e.g., the need to confirm the transactions within the certain time interval. For
example, the transactions may be associated with a trading speculation and
hence must be confirmed as soon as possible, or may be a bid for a certain
auction with a deadline.

Furthermore, in some cases an end user is not interested to know the confir-
mation time of his/her transaction but he/she seeks to know probability whether
the transaction will be eventually confirmed or not (e.g., in the scenario of stor-
ing data in blockchain from the IoT networks). Also this probability depends
on the offered fees since miners tend to drop the cheapest transactions when the
traffic is heavy.

Blockchain systems can be studied as distributed systems by means of for-
mal methods (e.g., [22, 25]). Queueing theory allows us to study the relation
between the holding time in the Mempool, the confirmation probability, the
arrival intensity of the transactions and the fees offered by users. Clearly, when
the holding times increase, the transaction fees that a miner needs to offer to
meet certain quality of service goals also increase. However, while for high fee
transactions consolidated in a few blocks, it is safe to assume that the arrival in-
tensity is time homogeneous, for transactions offering low fees this is unrealistic.
For this reason, it is necessary to have a framework capable of predicting the
fluctuations of the arrival process intensity for long-term analyses. We propose
a solution based on Meta-Prophet to evaluate its accuracy.

1.1.2 Fairness in blockchain networks

So far, we assumed Bitcoin network driven by PoW, where participant are, in
general, unknown and anybody can join the network; such networks are called
public. However, there is another type of networks where users’ identities are
generally known and only a certain authorised set of entities can be present, i.e.,
private blockchains. In the latter case, we observe two types of trust relations:

• Internal: trust among miners of one network

• External: trust between end users and miners.

Traditional PoW is generally unable to handle the internal trust problem. In
fact, some miners could try to gain sufficient computational power in order
to obtain an extra advantage and, in the worst case, to obtain control on the
network. Recall that, in a private blockchain the available computational power
is much lower than in a public one like Bitcoin. Thus, they would then be able
to modify the entire blockchain history. Conversely, blockchain solutions based
on voting (e.g., Proof-of-Stake) are effective in ensuring internal trust as they
rely on votes of the set of miners and not how much computational resources
belong to a certain miner.

Regarding the external trust problem, we have the opposite situation. In
fact, PoW guarantees the expected cost of modifying a confirmed transaction
since the hash power (HP), that is the number of hashes generated over time,

10 CHAPTER 1. INTRODUCTION

used to ensure the immutability of data is publicly known and any change comes
at the cost of spent hash power by design. Voting solutions are unable to provide
the same guarantees. Whenever majority of miners agree on the modification
of an arbitrary block or transaction, they can implement it out at basically no
cost; hence, the end users must trust the consortium as a reliable entity.

Once PoW is used in permissioned blockchains (another term for private
networks), we consider both the internal and external trust problems. How-
ever, the operating costs should be evenly shared among the participants, i.e.,
each miner should invest approximately the same amount of HP to secure the
blockchain. This is the fairness property that we are interested to study. In
general, it is difficult to achieve the fairness in such settings because of the in-
trinsic randomness of the block generation process and the interests of miners
of reducing the energy used to solve the PoW.

To address this problem we propose an algorithm that makes improbable
that consecutive blocks are mined by the same miners. This makes attacks to the
blockchain more difficult to realize. Indeed, while in public blockchains the huge
amount of HP makes the 50% attack (i.e., a group of miners controlling more
than a half of the entire computational power) very unlikely, in permissioned
blockchain this cannot be excluded. For example, the miners can temporarily
hire a massive computational power to modify some transactions stored in the
blockchain, but this would require the consolidation of consecutive blocks that
our protocol does not generally allow. While we mainly study the network
behavior with a single corrupted miner we also devote some attention to the
possibility of collusion of several miners with the aim of attacking the blockchain.

1.2 Contributions

In our work, we study two challenging questions in the area of PoW-driven
blockchains, that are (I) estimation of the optimal transaction confirmation
time and confirmation probability and additionally (II) implementation of fair-
ness and internal trust. While the major contribution is focused on the former
problem considering public-based settings the latter regards research in private-
based PoW networks and is of complementary contribution.

I. We introduce analytical models that study the transaction confirmation
process considering two different perspectives:

• System-driven perspective. In this case, we propose a queueing model to
answer the following question: in a stationary condition, what is the long-
term probability that transactions offering a certain fee are confirmed?
And if they are confirmed, what is their holding time in the Mempool?

• User-driven perspective. We examine the queueing model to answer the
following question: given the state of the Mempool and the intensity of
the workload, what is the expected number of blocks that a transaction
offering a certain fee should wait for its confirmation? As a corner case,

1.3. PUBLISHED PAPERS 11

we introduce a model to derive the transaction dropping probability for
low fee transactions.

To the best of our knowledge, the models that we propose or their solution
techniques are novel in the literature.

Since the intensity of the arrival process can be considered homogeneous
only for relatively short time horizons we additionally support the latter with
complementary research that is dedicated to prediction of the transaction arrival
rate using two different prediction models.

II. We propose an extended PoW algorithm for permissioned networks, which
is based on the use of a sliding window. The main idea is that each miner
maintains a control window of size N that stores the information about the
consolidators of the latest N blocks in the blockchain. The rule is that a miner
m can be present in the window at most once. When a node receives a block from
miner m and m is not present in the window, then it verifies the transactions
and the block hash; and if these are correct, it accepts the new block, otherwise,
the block is rejected.

We study the security of this protocol with respect to the two major security
threats of PoW: the 50% attack and the greedy miner attack. Moreover, we
provide a quantitative Markovian model of the system to study its fairness
intended to reduce the gaps among the available HP of the miners and determine
the optimal configuration according to the design needs.

1.3 Published papers

In this section, we list all the papers we were working on during the period of
the PhD study from 2019 to 2023 in chronological order. At the time of writing
this thesis, two of them are under submission with expected publishing period
in early 2023.

1. Malakhov I., Marin A., Rossi S., Smuseva D., Fair Work Distribution
on Permissioned Blockchains: a Mobile Window Based Approach. IEEE
International Conference on Blockchain, Blockchain 2020 (see Chapter 4)

2. Malakhov I., Gaetan C., Marin A., Rossi S., Workload Prediction in BTC
Blockchain and Application to the Confirmation Time Estimation. Perfor-
mance Engineering and Stochastic Modeling - 17th European Workshop
EPEW 2021 (see Chapter 7)

3. Malakhov I., Marin A., Rossi S., Smuseva D., On the Use of Proof-of-
Work in Permissioned Blockchains: Security and Fairness. IEEE Access
2022 (see Chapter 4)

4. Balsamo S., Malakhov I., Marin A., Mitrani I., Transaction confirma-
tion in proof-of-work blockchains: auctions, delays and droppings. 20th
Mediterranean Communication and Computer Networking Conference,
MedComNet 2022 (see Chapter 5)

12 CHAPTER 1. INTRODUCTION

5. Smuseva D., Malakhov I., Marin A., van Moorsel A., Rossi S.,Verifier’s
Dilemma in Ethereum Blockchain: A Quantitative Analysis. Quantitative
Evaluation of Systems - 19th International Conference, QEST 2022

6. Malakhov I., Marin A., Rossi S., Analysis of the Confirmation Time in
Proof-of-Work Blockchains. Submitted to Future Generation Computer
Systems Volume 139 2023 (see Chapter 6)

7. Malakhov I., Marin A., Menasché D.S., Rossi S., Confirmed or Dropped?
Reliability Analysis of Transactions in Blockchains. Submitted to Pro-
ceedings of the ACM Web Conference 2023 (see Chapter 8)

In all papers, with the exception the forth, Ivan Malakhov is the corresponding
author and made a significant contribution in model definition and accuracy as-
sessment as well as in the implementation tasks and data analysis. In the paper
addressing the problem of Verifier’s Dilemma, he contributed the background
part of the work and discussion of the results.

1.4 Structure of the thesis

The thesis is structured as follows, Chapter 1-3 provide the motivation and
background of the thesis while Chapter 4-8 show our contributions. In par-
ticular, Chapter 2 provides general knowledge about blockchain networks with
the reference to works of other authors. In Chapter 3 we describe the model-
ing techniques that are used to model and analyse the network behavior. Next,
Chapter 4 introduces the sliding window approach to study fairness and security
aspects of the private blockchain network. In Chapter 5 we propose a model to
study the confirmation process from the system perspective that provides the
foundation for the results in the following chapters. Next, in Chapter 6 we intro-
duce the analytical model for determining optimal fee for certain confirmation
delay that is in favor of end users. Chapter 7 complements the previous chapter
by assessing the prediction models for forecasting of persistent arrival rate of
transactions. In Chapter 8 we study the corner case of the confirmation process
in which we focus on estimation of the probability of eventual confirmation for
transactions with relatively low fees. Finally, Chapter 9 concludes the thesis.

Chapter 2

Background on blockchain
and state of the art

2.1 Introduction

The section provides general information about major aspects of blockchain
networks and especially PoW-driven ones. Furthermore, we discuss the research
done in the areas of our interests to compare it with the results we obtained.

2.1.1 Types of blockchains

This section provides information about different kinds of blockchains as classi-
fied by the academic community.

Usually, blockchain networks are divided according to their type of access:

• Public blockchains. They are associated with open access policy and gen-
erally high anonymity among in- and out-side of the network. The most
well-known examples of this class can be Bitcoin1 and Ethereum2.

• Private blockchains. They are characterized with limited access policy
where information about all the participants is known. Such networks can
be met in industry where one or several companies decide to maintain a
secure ledger. For instance, Ethereum Enterprise3 and R3 Corda4.

Another way to distinguish one blockchain from another can be by type of
consensus mechanism. There is a great variety of the consensus tools that can
be applied to the networks (e.g., Proof-of-Work, Proof-of-Stake, Proof-of-Space,

1https://bitcoin.org
2https://ethereum.org
3https://ethereum.org/en/enterprise/private-ethereum
4https://r3.com/products/corda

13

14CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

Proof-of-Authority and others [76]). However, at the moment, the most com-
mon ones remain Proof-of-Work and Proof-of-Stake (PoS). The main difference
between these two is in a way they reach the consensus.

In the PoW blockchain, every change of the global network state is compu-
tationally predetermined, i.e., to consolidate a new block the participant has
to solve the crypto puzzle in order to comply with the norms of a valid hash
for his/her block. Thus, modifications of the data in the past is linked to high
computational demand which is known. The system is considered safe until one
or a coordinated group of miners obtains sufficient amount of computational
power as in case of PoW at least 50% of the whole network power.

On the other hand, PoS is known to have block confirmation once the ma-
jority (two thirds) of the committee votes for this. In fact, PoS was made
after PoW in order to solve the problem of heavy computational work usage.
Nevertheless, it naturally implies that such systems are more vulnerable to the
network attacks as there is literally no cost to create a new block as the newly
formed committee can agree to change the past data and thereby corrupt the
network.

Generally speaking, in Proof-of-Stake networks participants become valida-
tors (analogously to miners in PoW) if they decide to deposit certain amount of
cryptocurrency to the network. Then they are committed to follow the proto-
col by validating new blocks and proposing their own as they can be punished
for not doing so. For instance, in Ethereum, the second after Bitcoin largest
blockchain, the validators are entitled to stake 32 ETH to activate block vali-
dation functionality.5

Since in following chapters we rely on PoW-driven blockchains it is crucial
to provide more thorough information of such mechanism. The following sec-
tion describes the functional details of the blockchains with PoW consensus
mechanism.

2.1.2 PoW-driven blockchains

In this section, we review the salient aspects of Proof-of-Work blockchains that
the thesis considers.

Blockchain networks driven by the Proof-of-Work consensus mechanism are
the most well-known and actively studied class of blockchains. The idea of
PoW was originally introduced in the notorious work of Satoshi Nakomoto [61]
in 2008. One may treat PoW as an ancestor technology of every other blockchain
consensus approach existing nowadays.

In order to describe the algorithm behind the PoW blockchain depicted in
Figure 2.1 let us first introduce a few general concepts that it based on. Firstly,
blockchain networks are decentralized and distributed. Data are stored in such
a way that it is essentially impossible to modify them once they are confirmed,
or, more precisely, it is possible to estimate the cost of any modification that
turns out to be extremely high. Data are organized in transactions and stored in

5https://ethereum.org/en/staking

2.1. INTRODUCTION 15

Figure 2.1: Sketch of PoW with transaction auction.

Candidates for a
new block

Mempool (the highest fee-per-byte
transactions go first)

. . .

Chain of blocks

Block n-2 Block n-1 Block n

- pending
transactions

Figure 2.2: Sketch of the mining process in BTC. Darker colors represent higher
fee-per-byte ratios.

a list of blocks that contain links to a unique predecessor. An attempt to break
the integrity of any block requires to regenerate all the subsequent blocks: PoW
is a mechanism designed to make the consolidation of blocks very expensive in
terms of energy consumption. Currently, the mining in Bitcoin demands 0.56%
of worldwide electrical power production and this value is in continuous growth6.

The process of consolidating a new block is called mining and users who
perform the mining are called miners. The mining process is depicted in Fig-
ure 2.2.

Mining a block basically consists of two phases:

1. Select among the transactions asking for confirmations those to be added
to the new block and validate them. If there are no smart-contracts, the
validation is in general a quick step that verifies if the transaction is valid
(e.g., signatures, no double spending etc.). The pending transactions are
stored in Mempool.

2. Solve a computationally hard problem. Usually, this consists in finding a
certain number (called nonce) to be included in the block such that the

6According to the Cambridge Centre for Alternative Finance https://ccaf.io

16CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

hash of the entire block satisfies certain properties (e.g., it begins with a
certain number of zeros). Since the block contains also the hash of the
previous block, this guarantees the practical immutability of stored data
in large blockchains.

Since it is assumed that each hash is equiprobable given a certain block, and
given that the nonce is a 32-bit integer, we can safely assume that the solution
of the puzzle is a memoryless process. This implies that the number of hashes
computed between two successive blocks is geometrically distributed, and hence
the time is independent and approximately exponentially distributed.

There is a clear incentive mechanism to support miners’ work: for every
mined block, miners earn a fixed reward in cryptocurrency and an additional
reward for every included transaction, e.g., this is true for Bitcoin. The former
is generated by the system itself, the latter is paid as transaction fees by users.

Every user can offer a fee for his/her transaction based on the urgency of its
confirmation. Miners select the transactions to be included in the next block by
choosing the most profitable ones, i.e., those offering the highest fee per Byte.
This creates an interesting dynamics where the arrival order is not important
to determine the confirmation time as in a First-Come-First-Served discipline
(FCFS) while the offered fee is crucial.

The last aspect that is necessary to review is that most blockchains have
a maximum throughput that is determined by two invariant properties: the
maximum block size and the average delay between two consecutive blocks.

Although the former property is easy to be ensured, the estimation of the
expected number of transactions that can fit in a block must be carefully done
taking into account some protocol characteristics, e.g., Segregated Witness (Seg-
Wit) in Bitcoin7. Currently, the vast majority of miners accept the SegWit
transactions as witnessed by the fact that basically all the recent non-empty
blocks contain at least one SegWit transaction. The idea behind this standard
is that part of the transaction data can be stored in a parallel chain and hence
the size of 1 MB per block becomes less restrictive. At the moment, the per-
centage of SegWit transactions is approximately 80%8 and it is expected to be
increased even more as overall trend remains. In determining the distribution
of the transaction size, we considered only the size of the data to be stored in
the block subject to 1 MB limitation, because this is what determines the max-
imum throughput of the blockchain. Coherently, when the miners calculate the
fee-per-byte ratio they use the effective space occupied in the block rather than
the total transaction size. Generally speaking, the implementation of the Seg-
Wit transactions allows the separation of the transactions’ signatures from their
other data. Hence, a 1 MB block completely filled with the SegWit transactions
carries the same information of a 1.7 MB block without them.

Additionally, the delay between two consecutive blocks executions is guaran-
teed because the system sets a relative difficulty of the computational problem

7Bitcoin Improvement Proposal 141: https://github.com/bitcoin/

bips/blob/master/bip-0141.mediawiki
8https://charts.woobull.com/bitcoin-segwit-adoption

2.1. INTRODUCTION 17

Figure 2.3: Empirical probability density function of block occupancy in Bitcoin
network.

that is proportional to the computational power provided by all miners. For ex-
ample, in Bitcoin, an average block occupancy varies and can be approximately
2, 000− 2, 500 transactions and on average block is generated every 10 minutes.
This implies that the maximum throughput can be estimated in about 4 tx/s
that is expected to grow as more transactions will adopt the SegWit standard.

Clearly, in periods of heavy traffic, the auction among the transactions be-
comes more expensive for the users and miners’ revenues are higher. Conversely,
one can experience a short confirmation time even for low transaction fees if the
system load is low. Transactions that stay in the Mempool more than 48 or
72 hours are evicted by miners. This policy is necessary to ensure the stability
of the Mempool occupancy in periods of heavy load. Moreover, eviction also
occurs when the Memepool size exceeds 300 MB9.

2.1.3 Fixed size and fixed capacity blocks

In general, transactions have various sizes. Thus, the number of transactions
that a block with the fixed maximum size can fit is not predetermined and is
random. Figure 2.3 shows the empirical probability density function of block
occupancy. The data were retrieved from the node monitoring the Bitcoin
blockchain at the University Ca’ Foscari and represent the information about
516 full blocks.

It is clear that the distribution quite well fits the bell shape where approxi-
mately 40% of blocks fall within an interval between 2400 and 3000 transactions.

Notice that, when we talk about fixed size we mean, more precisely, fixed
maximum size. Indeed, some blocks may be only partially filled because, at its
consolidation epoch, there were not enough transactions in the Mempool.

9https://bitcoin.org/en/bitcoin-core/

https://bitcoin.org/en/bitcoin-core/

18CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

Alternatively, we say that blocks have fixed capacity if the protocol estab-
lishes a maximum number of transactions per block rather than a maximum
size in Bytes. Although we are unaware of any blockchain operating this way,
most of the models work under the assumption of fixed capacity rather than
fixed size. Thus, we think it is important to investigate the soundness of this
assumption.

2.1.4 Auction and transaction confirmation time

When a new transaction is seen by the miners, it is included into Mempool.
All the pending transactions are still not effective since only those appearing in
the consolidated blocks (i.e., the confirmed ones) can be universally considered
immutable or at least the energy cost for their change can be estimated. The
time between the arrival epoch and the inclusion in a block is called transaction
confirmation time or confirmation delay.

The confirmation delay is usually measured in number of blocks rather than
in seconds. This is coherent with the needs of the blockchain users as witnessed
by the active services of fee prediction. For example, the reactive service im-
plemented in the main software for BTC usage, Bitcoin Core10, is used by the
wide majority of users and implements the “estimatesmartfee” service based on
the user’s historical data. This service returns the expected number of blocks
for confirmation given a certain fee. Analogously, external private services offer
predictions with other methods (e.g., by using Monte Carlo simulation) but al-
ways expressing the confirmation delay in number of blocks. This is explained
by the fact that the meaningful events in the blockchain are those associated
with the transactions in the block. For example, a transaction offering a very
high fee per Byte is almost certain to enter the next available block but it is
still subject to the uncertainty of when that block will be mined. Still, it will
overtake the other transactions in its confirmation and this is what is crucial
for the system.

Users can control the transaction confirmation time by offering a fee that will
be cashed by the miners at its consolidation. Since miners aim to maximise their
profit, they tend to choose the most profitable transactions from the Mempool
to be included in the block. Because of the possible different transaction sizes,
they use the fee-per-Byte ratio (sometimes called fee density) as a metric to
assign priority to the transactions. Thanks to the memoryless property of the
PoW, highly profitable transactions are immediately included in a new block by
evicting the less profitable ones that stay in the Mempool.

2.1.5 Predicting the minimum fee for QoS

Recall that in the BTC blockchain, miners are rewarded in two ways: i) for
each confirmed block, the miner who created it receives a certain amount of
cryptocurrency and ii) for each transaction included in the block, the same
miner receives the fee offered by the user who created that transaction.

10https://bitcoin.org/en/download

https://bitcoin.org/en/download

2.1. INTRODUCTION 19

2021/06/01 2021/06/06 2021/06/12 2021/06/18 2021/06/24 2021/06/30 2021/07/01

4

5

6

7

8

9

10

(a) Transaction fee in USD in the Bitcoin
network. The data are retrieved from
http://www.blockchain.com

2021/06/01 2021/06/06 2021/06/12 2021/06/18 2021/06/24 2021/06/30
0

1

2

3

4

5

6

7 104

(b) Memory Pool size in trans-
actions in the Bitcoin network.
The data are retrieved from
http://www.blockchain.com

2020/11/15 17:40:00 2020/11/16 23:25:00 2020/11/18 05:15:00 2020/11/19 11:05:00 2020/11/20 16:40:00
1

2

3

4

5

6

7

(c) Arrival rate of transactions as a func-
tion of time with step of 10 minutes.
The data are retrieved from the installed
node.

(d) Empirical probability density func-
tion of fee per byte in heavy workload
conditions. The data are retrieved from
the installed node.

Figure 2.4: Blockchain network indicators.

20CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

While the former reward is going to be dismissed in the next years, the latter
plays a crucial role in understanding the QoS of applications that use BTC
blockchain. Indeed, miners aim at maximising their profit and thus choose to
include in the block the transactions with the highest fee.

Transaction fees are known to be subject to high fluctuations as shown by
Figure 2.4a. We may notice that the average fee for a transaction can vary from
around 4.5 to 9 USD in a month. How to decide which fee to offer to have an
expected confirmation delay?

It is important to understand that the answer to this question depends on
several state variables of the blockchain. First, we should consider the Mempool
occupancy (usually called improperly Mempool size), i.e., the backlog of the
transactions that are waiting to be confirmed. Figure 2.4b shows the trace of
the Mempool occupancy in June of 2021. The are several bursts that clearly
affect the decision on the fee to be offered.

However, the most important factor is the transaction arrival process. Recall
that all the transactions arriving after a tagged transaction t offering a fee per
Byte f will overtake t if they offer more than f . Fee per Byte is commonly used
to compare the cost of transactions because these may have different sizes. Since
the block size is fixed and the intergeneration time of blocks is on average 10
minutes the competition among the transactions gets tougher when the traffic
is higher. Figure 2.4d shows the distribution of the fee per Byte offered under
heavy-load conditions as measured by our monitor.

Summarising, the confirmation time of a transaction t arriving at time τ
depends on the following aspects:

• The arrival rate of the transactions after τ and before the confirmation of
t, limited to those whose fees are higher than the fee offered by t

• The state of the Mempool at time τ

• The distribution of fees offered by the other users.

Although the confirmation delay is measured in number of blocks rather than in
seconds, it is well-known that the time between consecutive block consolidations
is approximately exponential with mean of 600 s [17].

Figure 2.4c shows the intensity of the arrival process in a period of time. This
is subject to high variability and exhibits a clear seasonality. Therefore, in any
procedure aimed at predicting the expected confirmation time of transactions,
we must implicitly or explicitly deal with the prediction of the arrival intensity at
the moment in which the transactions is sent to the ledger. Chapter 7 provides
a study of prediction models in order determine such intensity.

2.1.6 Transaction dropping policy

First, recall that the difficulty of the PoW puzzle is dynamically set in such
a way that the average block generation delay remains the same such as 600
seconds in Bitcoin. This property, joint with the maximum block size (1 MB in
Bitcoin), imposes the maximum theoretical throughput for the blockchain.

2.2. LITERATURE REVIEW 21

The Mempool occupancy can grow significantly considering the intrinsic
randomness in the block consolidation process and the fact that for a long period
of time we may observe an intensity of the arrival process significantly higher
than the maximum throughput. To avoid an excessive resource consumption
at miners’ servers, the implementation of the protocol usually puts some limits
on Mempool size. For the standard implementation of Bitcoin protocol this is
300 MB. Moreover, always in Bitcoin, transactions that reside in the Mempool
for more than 2 weeks are dropped. We assess the first mechanism of dropping,
since the latter regards mostly transactions that do not pay any fee and hence
may not be included in blocks even if some space is available.

In addition, whenever it is needed to evict a transaction from the Mempool,
the one with the lowest fee per Byte is chosen and, in case of tie, the oldest one.

2.2 Literature review

This section demonstrates the progress made by the scientific community com-
pared to our works in the areas we are interested in. All the related work is
divided on subsections with respect to the subject of review.

2.2.1 Fairness in PoW blockchains

Since the pioneering work by Nakamoto [61], many research efforts have been de-
voted to the analysis of the security and performance of blockchain systems. For
example, in [17], the authors study how data broadcasting delays may favour
certain types of attacks and unnaturally increase the number of forks. The
importance of the contribution also relies on the network model and its config-
uration, which helps the understanding of blockchain fork occurrences.

Many works study the pros and cons of several consensus mechanisms. The
Byzantine fault tolerance (BFT) based on voting11 or hybrid consensus mech-
anisms are proposed in [76], [44], [9], [49], [66], and [20]. In some cases, BFT
is also suggested for public blockchains. The main advantage of adopting a
non-PoW consensus is the reduction of the power consumption and the greater
transaction throughput. However, these systems cannot be considered to be as
quantitatively secure as PoW-based ones, where the end user can calculate the
cost of a modification of a consolidated transaction.

Particularly, the authors [20] propose a “new generation” hybrid Bitcoin
protocol where the process is separated on leader election and transaction seri-
alization applying better scaling and throughput with a certain level of fairness.
Although it helps to outperform the classical Bitcoin protocol, this protocol
remains vulnerable to the double spending and selfish miner attacks when the
fraction of the Byzantine nodes reaches at least 25%.

11The algorithms in which the block confirmation happens once the majority of authorized
miners (called committee) validates a new block. Hereafter, we refer to this class of algorithms
by simply using the acronym BFT

22CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

In addition, one of the HyperLedger projects, Sawtooth, started supporting
practical BFT (PBFT) as a consensus approach in addition to the initially
utilised Proof-of-Elapsed-time mechanism. However, it is worth noting that the
current versions of Sawtooth with PBFT are still recent implementations and
have some limitations, such as the full peering requirement and lack of open
network enrolment [64].

A comparison between PoW and BFT consolidation policies for permissioned
blockchains was conducted by Vukolić in [75] and [74]. He analyses the issues of
applying such consensus approaches predominantly in the permissioned settings.
Finally, the author confirms that although BFT-based consensus mechanisms
have the advantages of higher transaction rates and low energy consumption,
PoW blockchain networks yield unique security features that we discuss in this
paper.

Fairness is another property that attracts much attention from the commu-
nity. In public networks, fairness is defined as the property that allows a miner
to consolidate a fraction of blocks that is proportional to his fraction of HP in
the long term. Note that this differs from our notion of fairness since we con-
sider permissioned blockchain systems in which rewards for block mining are
usually absent.

For public systems, [65] proposes a PoW-based protocol, namely Fruitchain.
The authors prove that the protocol also achieves quantitatively predictable fair-
ness in the presence of greedy miners. Note that unlike our proposal, Fruitchain
aims to obtain a network in which miners receive rewards that are proportional
to the invested HP. In our case, we want to avoid the possibility that a miner
controls a network by exposing a huge HP. In our sense, fairness means regulat-
ing the used HP of the miners so that they tend to consolidate the same number
of blocks in the long run.

In [30], the authors study the fairness properties of a blockchain and describe
the behavior of two honest miners experiencing different propagation delays.
The main result is that the propagation delay, as well as the HP, impacts the
network fairness. Moreover, in the case of two miners with the same HP, there is
an advantage for the miner who belongs to the stronger cluster of miners. They
demonstrate that as network latency increases, the protocol remains stable.

Fairness is addressed also in [47]. The authors introduce a new blockchain
protocol called DECOR+HOP. It provides fairness among miners by distribut-
ing the block generation rewards among all the miners that originate the same
forks. In this way, the overall fairness of the network is improved, and the
expected number of forks is reduced.

Fairness in permissioned blockchains implementing Proof-of-Stake consol-
idation was investigated in [4]. In this context, fairness is defined in terms
of distribution in the selection mechanism (forming a committee) and reward
mechanism (sharing goods). The authors examine the fairness in synchronous
systems and prove that it is the optimal solution.

With respect to our work, the latter two papers consider a completely dif-
ferent consolidation mechanism, i.e., PoS, while we rely on PoW.

2.2. LITERATURE REVIEW 23

2.2.2 Transaction confirmation process

System perspective

The model evaluation of the blockchain networks gains rather high interest
among scientists. Some authors [19, 37, 48] assess the effect of transaction fees
by applying game-theoretic models. Particularly, [48] demonstrate a game-
theoretic framework where the dynamic of the fees are studied in relation with
the economical interests of the miners. With respect to these contributions, our
modelling efforts have different goals. Indeed, the authors of [19,37,48,52] aims
at studying the impact of the design choices of the blockchain on the dynam-
ics of the fees, while in our case, we want to study the delays and dropping
probabilities experienced by an application using an existing blockchain.

Other authors aim to estimate the confirmation delay of transactions using
queueing theory [7,24,26,39,41]. With respect to these papers, our work makes
the following contributions: (i) the block formation mechanism is more realistic
than [39, 41] since new transactions with high fee per Byte are immediately
included in the candidate block by the miners; (ii) we consider the case of
blockchains with fixed block size rather than fixed capacity; (iii) we consider
the problem of transaction blocking that is ignored by all the mentioned papers
with the exception of [7]. With respect to this, we propose a new way to derive
the dropping probability that is more accurate and simple.

In [51], the authors analyse behavior of the arrival rate of transactions in
Bitcoin network using different prediction models and use the outcomes in order
to estimate the transaction waiting time measured in number of blocks.

In [31], the authors apply the Cramér-Lundberg process for assessment of
the transaction confirmation time. The chosen model is known to require a
constant arrival flow while the paper’s model maintains the stochasticity of the
arrival process.

User perspective

In general, the quantitative analysis of blockchain systems has drawn a lot of
attention from the scientific community (see, e.g., [28,43,62] and the references
therein).

In particular, the estimation of transactions’ confirmation time with queue-
ing theory has been explored in some very recent works [6,24,26,39,41]. In this
section, we focus on those works whose aim is that of studying the confirmation
delay as function of the offered fee. In this context, the advantage of a queueing
theoretical model with respect to other approaches based on prior statistics is
that the former reacts quicker to changes of the arrival process. In fact, predic-
tive models based on historical data recommend increasing the fee to achieve a
certain target expected consolidation time once they record that the previous
fee does fit the requirements.

The major difference between our contribution and those described in [6,
26,39,41] is that we consider a transient analysis instead of a steady-state one.
This has several consequences. The first is that our model takes into account the

24CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

state of the Mempool at the moment in which the transaction is generated. As
we will observe in Chapter 6, this has an important impact on the confirmation
delay and is actually information available to the users that should be used.
The second difference is that the priority queue analysis provided in [6, 39, 41]
requires one to cluster the transactions into few classes based on the offered fee,
while we can handle continuous distributions (e.g., obtained by fitting of real
data) of offered fees per byte.

The works [39, 41] differ from [6] and ours for the consolidation policy. In-
deed, the former two assume that once the miner chooses the transactions to
add to the next block, this will not be changed. Conversely, [6] and our work
considers the fact that miners update their choices upon the arrival of more
profitable transactions. If this happens, the cheapest transaction is removed
from the candidate block and is replaced by the newly, more profitable, arrived
one. Since the mining process is memoryless and the PoW is only marginally
affected by a change in the selection of the set of transactions to consolidate,
this policy is closer to what happens in real systems.

In [68], the authors propose a queueing model at the base of a classifier
for the transactions. The work presents interesting measurements that show an
important insight of the BTC blockchain, especially regarding the characteristic
of dropped transactions. However, the impact of the offered fee per byte of the
confirmation delay is not considered by the model (although it is experimentally
measured for the dropped transactions).

In [26], the authors propose an iterative solution for the stationary distribu-
tion of the embedded Markov chain of a G/GB/1 queue (see Chapter 3 for more
details about queueing models) and validates the analysis with measurements
collected from the Ethereum blockchain. The conditional confirmation delay
from a single transaction perspective is not considered, although the model is
well designed for the overall analysis of the system, e.g., to estimate the expected
size of the Mempool in steady-state.

Another important related work is [48]. This contribution shares with [6,
39, 41] the stationary analysis of the queueing model and the introduction of
the customer priority classes. However, its aim is that of proposing a game
theoretical framework in which the dynamic of the fees are studied in relation
with the economical interests of the miners.

In [31,72], the authors propose to use the process named Cramér-Lundberg
to evaluate the confirmation time of transactions. Similarly to our contribution,
the authors take into account the initial state of the Mempool and assume
a homogeneous Poisson process for the block generation counting. In order
to overcome the computational complexity for the solution of the process in
heavy load, they introduce a diffusion approximation with shifted initial point
in order to avoid a premature hitting of the absorbing state. With respect to
this work, our model maintains the stochastic nature of the transaction arrival
process (while the Cramér-Lundberg model requires a constant arrival flow) and
is solved with an exact method unveiling some new results for the M/MB/1
queueing systems.

For what concerns the queueing theoretical results, several works have stud-

2.2. LITERATURE REVIEW 25

ied the single server queue with batch departures (see, e.g., [16]) but to the
best of our knowledge, this is the first time that the exact solution of the ex-
pected time (in number of completed services) to the absorption in the 0 state
of a M/MB/1 queue starting from an arbitrary state is presented. In [63], the
author performs a discretization similar to ours to study a queue with batch
service. In this case, the batch is formed immediately after the completion of
a service, i.e., similarly to [39, 41], while the system under study requires to
form the batch immediately before the service with all the available transac-
tions in the Mempool. The behavior of the queue becomes quite different, and
no algorithm similar to that of Theorem 8 is given.

Eviction of Mempool transactions

Most of the modeling efforts in [7,39,41,68] have been devoted to the prediction
of transaction confirmation times given a certain offered fee per Byte, while
reliability analysis has remained an open problem.

In the field of performance analysis of blockchains, queueing models have
been widely applied. In [39, 41], the authors investigate the queueing process
underlying the Mempool with attention to the relations between the fee per Byte
offered by a transaction and its expected confirmation time. The resulting model
is queue with a scheduling with strict priorities based of the outcomes of the
auction run by miners. In [7], the authors refine the model by considering a more
accurate block creation policy. All these papers show a good agreement with the
model predictions and the outcomes. The contribution in [68] combines machine
learning and queuing theory to study the confirmation process of transactions.
Specifically, this allows them to study delays in transaction confirmation in
blockchain.

A game theoretical framework of transaction auction process related with
the confirmation delay is proposed in [37].

In [58, 59], the authors study the behavior of Bitcoin in periods of heavy
load, i.e., the moments when the network has more transactions than can be
placed to a block. In particular, they are interested in exploring the unfair be-
haviors of mining pools that may violate the blockchain neutrality and decide to
mine transactions without following the fee per Byte auction outcome. While
this phenomenon is crucial for delay sensitive transactions, it does not signifi-
cantly change the perspective of delay insensitive transactions that are mostly
interested into the confirmation probability rather than their delays.

[36] introduces the study of orphan transactions, i.e., the transactions with
temporal or permanent lack of the parental transaction that they rely on.

In [72], the authors use the time to ruin of the Cramér-Lundberg model to
evaluate the confirmation time in Bitcoin network. With respect to the previous
mentioned papers, this considers a mean time to absorption analysis and hence
the model takes into account the Mempool state at the arrival time of the
transaction. Beside this similarity with our contribution, the Cramér-Lundber
model assumes a constant arrival flow while we adopt a more realistic random
process and our metric of interest is the confirmation probability and not the

26CHAPTER 2. BACKGROUNDON BLOCKCHAIN AND STATE OF THE ART

expected confirmation time. Cramér-Lundber model is also at the base of the
analysis proposed in [46] to estimate the probability that a transaction with a
certain fee is confirmed before a certain number of blocks. The author derives
bounds for this metric and a diffusion approximation for the model.

Finally, and most importantly, we should notice that all models mentioned
so far assume an infinite Mempool size and hence can be used only in condition
of stability, i.e., when the intensity of the arrivals is lower than the service
capacity. This is not always the case for important blockchains like Bitcoin that
can experience long periods of heavy load. To the best of our knowledge, the
model proposed in this paper is the first considering a finite Mempool and hence
capable of studying the heavy load conditions that cause transaction evictions.

2.2.3 Blockchain throughput prediction

Statistical analysis on blockchain and in particular BTC system have been
widely investigated in the recent years. However, most of the research efforts
have been devoted to the prediction of the conversion rate to USD or other
currencies (see, e.g., [21, 60]).

We focus on studying the cost of transaction fees. Most of the previous
works assume a time-homogeneous arrival process, as in [6, 39, 41] which can
be reasonable for expensive transactions that are confirmed within one hour
from their request. However, when the delay is longer, the fluctuations of the
arrival process cause the model with the homogeneity assumption to generate
inaccurate predictions.

In addition, [48] provides a similar contribution by demonstrating the sta-
tionary analysis of the queueing model and the definition of the customer prior-
ity classes. However, the authors focus on a game theoretical framework where
they attempt to find correlations between the fee fluctuations and the miners’
economical incentive.

Another work [79] analyses the transaction fees in the blockchain networks.
However, their research is related to the Ethereum blockchain and particularly
the smart contract transactions.

To the best of our knowledge, this is the first study that aims at predicting
the intensity of the transaction arrival process by using time series analysis and
predicting on the confirmation time based on the offered fee.

Chapter 3

Essential elements of
stochastic modeling

3.1 Markov chains

This chapter describes the modeling methods that we used to study blockchain
networks. In particular, we focus on Markov processes. These have been used
by the community of performance and reliability evaluation to study various
type of systems.

3.1.1 Discrete-time Markov Chains (DTMC)

In general, a set of random variables Xt refers to the stochasic process where
t usually represents the time. Variable t can be an integer or real number, the
former is used for a discrete time process while the latter describes a continuous
process (the following subsection will give information about such processes).

A sequence {Xn}n≥0 of random variables which values belong to a set E
stands for a discrete-time stochastic process with state space E. In this thesis,
we consider the state space to be countable, that is its elements are defined by
i, j, k, . . . For instance, Xn = i can be interpreted as the process X in a moment
of time n is in state i or it visits the state i at time n.

Markov Property Sequences of independent and identically distributed
(i.i.d.) random variables are stochastic processes, but they are not always in-
teresting as stochastic models because their behavior does not depend on the
history of the process. For the sake of variability, some dependence on the past
can be allowed, such as deterministic recursive equations. Discrete-time homo-
geneous Markov chains hold the necessary property, since they can always be
interpreted as the stochastic recurrent equation Xn+1 = f(Xn, Zn+1), where
{Zn}n≥1 is an i.i.d. sequence, not related to the initial state X0.

Probabilistic dependence on the past is carried out only through the past
states, but this bounded amount of memory is sufficient to produce a wide va-

27

28 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

riety of behaviors. Consequently, application of Markov chains applications can
be found in various fields, such as engineering, physics, biology, sociology, and
others, since they perform qualitative and quantitative assessment as well as
valuable information for system design. This subsection provides basic defi-
nitions of homogeneous discrete-time Markov chains and classical examples to
illustrate the theory of the following chapters.

Definition 1. [13, Dfn 1.1 Ch 2][Homogeneous Markov Chain] Let {Xn}n≥0
be a discrete-time stochastic process with countable state space E. If for all
integers n ≥ 0 and all states i0, i1, . . . , in−1, i, j,

P (Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j | Xn = i)
(3.1)

whenever both sides are explicitly introduced, this stochastic process is a Markov
chain process. In addition, it can refer to a homogeneous Markov chain (HMC)
when the right-hand side of 3.1 does not depend on n.

Property 3.1 is the Markov property. The matrix P = {pij}i,j∈E , where

pij = P (Xn+1 = j | Xn = i) ,

is the transition matrix of the HMC. As it consists of probabilities and a tran-
sition from one state i must be to some other arbitrary state (j), it follows
that

pij ≥ 0,
∑
k∈E

pik = 1

for all states i, j. A matrix P that is indexed by E and satisfies the above
properties stands for a stochastic matrix. Notice that since its state space may
be infinite this kind of matrices are generally not considered in linear algebra.
However, the basic operations of addition and multiplication follow the same
formal rules. For example, with A = {aij}i,j∈E and B = {bij}i,j∈E , the product
C = AB is the matrix {cij}i,j∈E , where cij =

∑
k∈E aikbkj . The notation

x = {xi}i∈E formally denotes a column vector, while xT is a row vector, the
transpose of x. Furthermore, y = {yi}i∈E given by yT = xTA is represented by
yi =

∑
k∈E xkaki. The same way, z = {zi}i∈E given by z = Ax is represented

by zI =
∑
k∈E aikzk.

Distribution of an HMC The random variable X0 is called initial state, and
its probability distribution ν,

ν(i) = P (X0 = i) , (3.2)

is the initial distribution. From Bayes’s sequential rule, P (X0 = i0, X1 =
i1, . . . , Xk = ik = P (X0 = i0)P (X1 = i1) | X0 = i0) · · ·P (Xk = ik | Xk−1 =
ik−1, . . . , X0 = i0, and hence, from the perspective of the homogeneous Markov
property and the definition of the transition matrix,

P (X0 = i0, X1 = i1, . . . , Xk = ik) = ν(i0)pi0i1 · · · pik−1ik . (3.3)

3.1. MARKOV CHAINS 29

The data 3.3 for all k ≥ 0, all states i0, i1, . . . , ik, constitute the probability law,
or distribution of the HMC. Thus, we obtain the following result.

Theorem 1. [13, Thm 1.1 Ch 2][Distribution of an HMC] The distribution of
a discrete-time HMC is determined by its initial distribution and its transition
matrix.

The distribution at time n of the chain is vector νn, where

νn(i) = P (Xn = i) (3.4)

From Bayes’s rule of exclusive and exhaustive causes, νn+1(j) =
∑
i∈E νn(i)pij,

that is, in matrix from νTn+1 = νTnP. Iteration of this equality yields

νTn = νT0 Pn . (3.5)

The matrix Pn is called the n-step transition matrix because its general term
is

pij(m) = P (Xn+m = j | Xn = i) . (3.6)

Indeed, using Bayes’s sequential rule and the Markov property, find for the right
side of the last equality ∑

i1,...,im−1∈E
pii1pi1i2 · · · pim−1j ,

and this is the general term of the mth power of P.
The Markov property (3.1) extends to

P (Xn+1 = j1, . . . , Xn+k = jk | Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P (Xn+1 = j1, . . . , Xn+k = jk | Xn = i)

for all i0, . . . , in−1, i, j1, . . . , jk such that both sides of the equality are deter-
mined. Writing

A = {Xn+1 = j1, . . . , Xn+k = jk}, B = {X0 = i0, . . . , Xn−1 = in−1} ,

the last equality reads P (A | Xn = i, B) = P (A | Xn = i), which is consequently
equivalent to

P (A ∩B | Xn = i) = P (A | Xn = i) = P (A | Xn = i)P (B | Xn = i) . (3.7)

In other words, the future at time n and the past at time n are conditionally
independent for the current state Xn = i. This also demonstrates that the
Markov property does not depend on the direction of time.

Notice that we abbreviate P (A | X0 = i) as Pi(A). Since µ is a probability
distribution on E, Pµ(A) =

∑
i∈E µ(i)Pi(A) denotes the probability of A where

the initial state is distributed according to µ.

30 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

First-step analysis

Absorption Probability First-step analysis is a method that allows assess var-
ious aspects of HMC, including probabilities of absorption by a closed set, i.e.,
when

∑
j∈A pij = 1 for all i ∈ A, the set is considered to be closed, and av-

erage times before absorption. We will use these results in Chapter 6 where
we study blockchains from the user’s perspective. This method, which is the
core technique for the majority of computations in Markov chain theory, is well
demonstrated by the following example.

Example 1 (Gambler’s Ruin). Two players A and B play “heads or tails”,
where heads occur with probability p ∈ (0, 1), and the successive outcomes form
an i.i.d. sequence. Let Xn be the fortune in dollars of player A at time n, then
Xn+1 = Xn + Zn+1, where Zn+1 = +1 (resp., −1) with probability p (resp.,
q = 1− p), and {Zn}n≥1 is i.i.d. Assume that A bets $ 1 on heads at each toss,
and B bets $ 1 on tails. The corresponding initial fortunes of A and B are a and
b. The game finishes when a player is ruined, and hence the process {Xn}n≥1 is
a random walk, aside from that it is limited to E = {0, . . . , a, a+1, . . . , a+b = c).
The duration of the game is T , the first time n at which Xn = 0 or c, and the
probability of winning for A is u(a) = P (XT = c | X0 = a).

Instead of calculating just u(a), first-step analysis does

u(i) = P (XT = c | X0 = i)

for all states i ∈ [0, c], and for this, first, it creates a recurrence equation for
u(i), splitting the event “A wins” according to what can appear after the first
step (first toss) and applying the rule of exclusive and exhaustive causes. If
X0 = i ∈ [1, c− 1], then X1 = i+ 1 (resp., X1 = i− 1) with probability p (resp.,
q), and the probability of ruin of B starting with A’s initial fortune i+ 1 (resp.,
i− 1) is u(i+ 1) (resp., u(i− 1)). Hence, for i ∈ [1, c− 1] (see a strict proof at
the end of the example),

u(i) = pu(i+ 1) + qu(i− 1) , (3.8)

with the limiting conditions

u(0) = 0, u(c) = 1 .

The characteristic equation connected to this linear recurrence equation is
pr2 − r + q = 0. It has two distinct roots, r1 = 1 and r2 = 3, if p 6= q, and
a double root, r1 = 1, if p = q = 1

2 . Thus, the general solution is u(i) =
λri1 + µri2 = λ + µ(qp)i when p 6= q, and u(i) = λri1 + µiri1 = λ + µi when

p = q = 1
2 . Considering the limiting conditions, it is possible to calculate the

values of λ and µ. The answer is, for p 6= q,

u(i) =
1− (q/p)i

1− (q/p)c
, (3.9)

3.1. MARKOV CHAINS 31

and for p = q = 1
2 ,

u(i) =
i

c
. (3.10)

If p = q = 1
2 , the probability ν(i) that B wins when the initial fortune of B

is c− i derives by replacing i by c− i in expression (3.10) as follows:

ν(i) =
c− i
c

= 1− i

c
.

Check now that u(i) + ν(i) = 1, implying particularly that the probability that
the game eventually finishes.

Notice that a generaizaiton of the Gambler’s ruin problem will be used in
Chapter 8 to study the probability of the eviction of transactions in blockchains.

A confirmation will be given for using the rule of exclusive and exhaustive
causes when obtaining a recursive equation (3.8). Indeed, the same proof can
be executed for each example of first-step analysis.

Let Y = {Yn}n≥0 represent the Markov chain derived by delaying X =
{Xn}n≥0 by one time unit: Yn = Xn + 1. If X0 ∈ [1, c − 1], the events “X is
absorbed by 0” and “Y is absorbed by 0” are equivalent, and hence

P (X is absorbed by 0, X1 = i± 1, X0 = i)

= P (Y is absorbed by 0, X1 = i± 1, X0 = i) .

As far as {Yn}n≥0 and X0 are independent provided X1, the right-hand side of
the above equality is represented as follows:

P (X0 = i,X1 = i± 1)P (Y is absorbed by 0 | Y0 = i± 1) .

The two chains have the identical transition matrix, and hence in case of sharing
the same initial state, they obtain the same distributions. Thus

P (Y is absorbed by 0 | Y0 = i± 1) = u(i± 1) .

Mean Time to Absorption Example 1 solves essentially the identical problem
as calculating the probability to reach a state before visiting another. First-step
analysis can also be applied to calculate the average time before absorption.

Example 2 (Gambler’s Ruin: Continue). This example extends Example 1.
The mean duration m(i) = E[T | X0 = i] of the game when the starting fortune
of player A is i meets the recurrence equation

m(i) = 1 + pm(i+ 1) + qm(i− 1) (3.11)

for i ∈ [1, c − 1]. Clearly, the coin will be tossed at least once, and then with
probability p (resp., q) the fortune of player A will be i + 1 (resp., i − 1), and
hence m(i+ 1) (resp., m(i−1)) more trials will be necessarily on average before
one of the players ruins. The limiting conditions are

m(0) = 0,m(c) = 0. (3.12)

32 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

By solving (3.11) with the limiting conditions (3.12), interpret (3.11) as −1 =
p(m(i+ 1)−m(i))− q(m(i)−m(i− 1)). Writing

yi = m(i)−m(i− 1) ,

we obtaion, for i ∈ [1, c− 1],

− 1 = pyi+1 − qyi (3.13)

and
m(i) = y1 + y2 + · · ·+ yi . (3.14)

We now solve (3.13) with p = q = 1
2 . From 3.13,

−1 =
1

2
y2 −

1

2
y1

−1 =
1

2
y3 −

1

2
y2

...

−1 =
1

2
yi −

1

2
yi−1 ,

and hence, summarizing,

−(i− 1) =
1

2
yi −

1

2
y1,

that is, for i ∈ [1, c],
yi = y1 − 2(i− 1).

Referencing to the expression (3.14), and seeing that y1 = m(1), we derive

m(i) = im(1)− 2[1 + 2 + . . .+ (i− 1)] = im(1)− i(i− 1) .

The limiting condition m(c) = 0 gives cm(1) = c(c− 1) and hence, finally,

m(i) = i(c− i) . (3.15)

First-step analysis leads to the important conditions in the form of a system
of linear equations. In the example above, it appears that the system in question
has a unique solution, a scenario that persists when the state space is finite, and
not the general case with an infinite state space.

Steady-State

Stationarity We demonstrate the central statement of the stability theory of
discrete-time HMCs.

3.1. MARKOV CHAINS 33

Definition 2. [13, Dfn 5.1 Ch 2][Stationary Distribution] A probability distri-
bution π satisfying

πT = πTP (3.16)

refers to a stationary distribution of the transition matrix P, as well as of the
corresponding HMC.

The global balance equation (3.16) implies that for all states i,

π(i) =
∑
j∈E

π(j)pij . (3.17)

Iteration of 3.16 provides πT = πTPn for all n ≥ 0, and hence, if the initial
distribution ν = π, then νn = π for all n ≥ 0. Henceforth, if a chain begins
with a stationary distribution, it carries the same distribution permanently.
Moreover, we see that

P (Xn = i0, Xn+1 = i1, . . . , Xn+k = ik) = π(i0)pi0i1 . . . pik−1ik (3.18)

is independent on n. Consequently, the chain is stationary. It can be said that
the chain is in a stationary regime, or in equilibrium, or in steady-state. In
summary:

Theorem 2. [13, Thm 5.1 Ch 2][Steady-State] A chain that starts with a
stationary distribution is stationary.

The balance equation πTP = πT , together with the requirement that π be
a probability vector, that is πT1 = 1 (where 1 is a column vector with all its
entries equal to 1), compose when E is finite, |E|+1 equations for |E| unknown
variables. One of the |E| equations in πTP = πT is superfluous given the
constraint πT1 = 1. Clearly, summing up all equalities of πTP = πT yields the
equality πTP1 = πT1, i.e., πT1 = 1.

Below there are demonstrated some basic usage examples of Markov chains:

Example 3 (Two-State Markov Chain). Assume that E = {1, 2} and the tran-
sition matrix as follows

P =

(1 2

1 1− α α
2 β 1− β

)
where α, β ∈ (0, 1). The global balance equations are

π(1) = π(1)(1− α) + π(2)β

π(2) = π(1)α+ π(2)(1− β) .

This is a dependent system which reduces to the single equation π(1)α = π(2)β,
to which must be added π(1) +π(2) = 1 expressing that π is a probability vector.
We have

π(1) =
β

α+ β
, π(2) =

α

α+ β
.

34 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

Example 4 (Symmetric Random Walk). A symmetric random walk on Z can-
not have a stationary distribution. Clearly, the solution of the balance equation

π(i) =
1

2
π(i− 1) +

1

2
π(i+ 1)

for i ≥ 0, with initial data π(0) and π(1), is

π(i) = π(0) + (π(1)− π(0))i .

As π(i) ∈ [0, 1], certainly π(1) − π(0) = 0. Thus, π(i) is a constant, surely
0 since the total mass of n is finite. Hence for all i ≥ 0, and consequently,
considering the global balance equation, for all i, π(i) = 0, a contradiction if we
want π to be a probability distribution.

3.1.2 Continuous-time Markov Chains

Poisson Processes

Point Processes This part introduces random point processes of which the
simplest example is the homogeneous Poisson process. A random point process
is, in general, a countable random collection of points on a real line. In most
engineering and operations research applications, a point of such process is the
time at which an event occurs, for that reason points are usually refers to events.
For example, customers arrivals at a post office or jobs arrivals on a computer’s
CPU are events in point processes. In biology, an event can be the time of
an organism’s birth. In physiology, the excitation time of a neuron can also
be counted as an event. In the general case, point processes on a straight line
appear in stochastic models, where the state of the system changes when some
event occurs. Furthermore, we can use the phrase stochastic systems driven by
point processes, and if the state of the system is discrete, then sometimes it can
be called stochastic discrete-event systems. The main examples are the Poisson
process and Continuous time Markov chains (CTMC).

Definition 3. [13, Dfn 1.1, Ch 8][Random Point Process] A random point
process on the positive half-line is a sequence {Tn}n≥0 of nonnegative random
variables such that, almost surely,

(1) T0 ≡ 0

(2) 0 < T1 < T2 < · · ·

(3) limn↑∞ Tn = +∞.

The normal definition of a random point process is less restrictive. Partic-
ularly, Condition (2) is relaxed in the more general definition, where multiple
points (e.g., simultaneous arrivals) are allowed. When Condition (2) is met, we
refer to a simple point process. In addition, Condition (3) is not mandatory in
the more general definition, where it may happen that P (limn↑∞ Tn <∞) > 0:

3.1. MARKOV CHAINS 35

With positive probability there is an explosion, i.e., an accumulation of events in
finite time. Conditions (2) and (3) fit the special case of homogeneous Poisson
processes that this part focuses on.

The sequence {Sn}n≥1 defined by

Sn = Tn − Tn−1 (3.19)

stands for the interevent sequence, and sometimes, in the appropriate context,
the interarrival sequence. For any interval (a, b] in R+,

N((a, b]) ,
∑
n≥1

1(a,b)(Tn) (3.20)

is an integer-valued random variable counting the events occurring in the time
interval (a, b]. For simplicity, it will be occasionally denoted by N(a, b], omitting
the external parentheses. For t ≥ 0, let

N , N(0, t].

Particularly, N(0) = 0 and N(a, b] = N(b)−N(a). As the interval (0, t] is closed
on the right, the trajectories (or sample paths) t 7→ N(t, ω) are right-continuous
for almost all samples ω ∈ Ω. The sample paths are nondecreasing, have limits
on the left at every time t, and jump one unit upwards at each event of the
point process. The family of random variables N = {N(t)}t≥0 refers to the
counting process of the point process {Tn}n≥1. As the sequence of events can
be recovered from N , the latter can be called the point process.

Counting Process of an Heterogeneous Poisson Process There exist several
equivalent definitions of a Poisson process. The one demonstrated here is the
most practical.

Definition 4. [13, Dfn 1.2, Ch 8][Homogeneous Poisson Process] A point
process N on the positive half-line stands for a homogeneous Poisson process
(HPP) with intensity λ > 0 if

(1) For all times ti, i ∈ [1, k], such that 0 ≤ t1 ≤ · · · ≤ tk, the random variables
N(ti, ti+1], i ∈ [1, k − 1], are independent.

(2) For any interval (a, b] ⊂ R+, N(a, b] is a Poison random variable with mean
λ(b− a).

Henceforth, for all k ≥ 0,

P (N(a, b] = k) = e−λ(b−a)
dλ(b− a)ek

k!

and, particularly,
E[N(a, b]] = λ(b− a) .

So, λ is the average density of points.

36 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

Condition (1) is the property of independence of increments of Poison pro-
cesses. Particularly, it implies that for any interval (a, b], the random variable
N(a, b] is independent of (N(s), s ∈ (0, a]). Consequently, Poisson processes are
sometimes refer to memoryless. However, it is better to state that the incre-
ments of HPP have no memory of the past.

Theorem 3. [13, Thm 1.1, Ch 8][HPPs are i.i.d. Exponentials] The interevent
sequence {Sn}n≥1 of an HPP on the positive half-line with intensity λ > 0 is
i.i.d., with exponential distribution of parameter λ.

The cumulative distribution function (CDF) of an arbitrary intervent time
is hence,

P (Sn ≤ t) = 1− e−λt .
Recall that

E[Sn] = λ−1 ,

i.e., the average number of events per unit of time equals the inverse average
interevent time.

Long-Run Behavior

The limiting behavior of continuous-time HMCs follows from that of discrete-
time HMCs in a usually straightforward manner. We first refer to the ergodic
case and then to the absorbing case.

Ergodic Chains

Theorem 4. [13, Thm 6.1, Ch 8][Long Run Behavior of Ergodic Regular Jump
HMCs] Let {X(t)}t≥0 be an ergodic regular jump HMC with state space E and
transition semigroup {P (t)}t≥0. Then, for all i, j ∈ E,

lim
t→∞

pij(t) = π(j) , (3.21)

where π is the (unique) stationary distribution.

Proof. We use the method of skeletons. Notice that the skeleton {X(n)}n≥0 is
an irreducible recurrent HMC. It is positive recurrent, because it has π for a
stationary distribution. Although the embedded chain might be periodic, the
skeleton {X(n)} is not, since the sojourn times of the continuous-time chain in
a given state i are i.i.d. exponentials, and this removes periodic behavior for the
skeleton. Indeed, two independent continuous-time HMCs with the same tran-
sition semigroup {P(t)}t≥0, but hypothetically different starting distributions,
will converge at a finite integer random time, as their skeletons do. Conse-
quently, the result follows by the same coupling argument as in the discrete
time case.

Theorem 5. [13, Thm 6.2, Ch 8][Ergodic Theorem] Let {X(t)} be ergodic and
let π be its stationary distribution. Then

lim
t↑∞

1

t

∫ t

0

f(X(s))ds =
∑
i∈E

f(i)π(i), Pµ a.s. (3.22)

3.2. QUEUEING MODELS 37

for all initial distributions µ and all f : E → R such that
∑
i∈E |f(i)|π(i) <∞.

All corresponding information about Markovian processes and Markov chains
with thorough explanation can be found in [13].

3.2 Queueing models

In this section, we introduce some basic notations as well as general insights
about queuing models.

In a queueing system, we serve customers or jobs. For instance, in a case of
a blockchain network a transaction in the Mempool is a job to be served, i.e.,
to be consolidated in the following block. If the jobs arrive at time t1, t2, . . . , tj ,
then the times Tj = tj − tj−1 are called inter-arrival times. We usually assume
that Tj are independent random variables that are distributed identically. Thus,
these variables form the arrival process of a model. The most common arrival
process is the Poisson arrival process. In this thesis, we always rely on such
processes. The inter-arrival times of the Poisson process are known to be i.i.d.
exponential random variables.

Applying queueing models, let us answer the following question: How long
does a job need to be served in a system? In general, we do not know the size
of job that is the amount of time it needs to be served in the system. For this
reason, we model the job service times as independent random variable. This
is also called the service time distribution. In addition, when all the jobs are
statistically identical we say that the system has a single class of jobs while if
jobs can be clustered into certain classes in which their elements are statistically
identical, then the system is known to be the multi-class.

In queuing models, we can have one or more instances that serve the jobs
these are usually called servers. In general, we assume the servers to be identical.
Notice that the variability stays in the job size rather than the speed of the
servers. What is more, any queueing system has a maximum number of jobs
that it can contain, i.e., the system capacity. Naturally, when the system is
approaching its saturation point reaching the system capacity and the capacity
is infinite, the service time is no longer guaranteed and become somewhat closer
to infinity.

Another key parameter of the queueing model is the population size. It
refers to the total number of potential jobs that can access the system. Bear
in mind that population size is not quite similar to the system capacity as the
latter defines the maximum number of jobs that can stay in the buffer and the
former refers to the maximum number of jobs that are just willing to enter the
system.

Furthermore, the jobs can be served by the system using various scheduling
policies and the determination of these service disciplines is of importance. It
is distinguished following most used disciplines:

• First Come First Served (FCFS)

• Last Come First Served (LCFS)

38 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

• Processor Sharing (PS)

• Approximation of the round robin discipline

• Shortest Remaining Processing Time (SRPT).

In our models, we use FCFS within a job class as the one reflecting the behavior
inside a blockchain network.

Remark 1 (Kendall notation). The Kendall notation [42] is a fast and ef-
ficient way to describe a queueing system. It has a following base structure
A/SC/m/B/K/SD where:

• A: inter-arrival distribution

• S: service distribution

• C: batch size

• m: number of servers

• B: system capacity

• K: population size

• SD: service discipline.

In turn, few notable abbreviations for A and S can be:

• M for Exponential

• D for Deterministic

• G for General.

Example 5 (Queueing system description). What are the queuing model pa-
rameters provided the following description M/M/3/20/1500/FCFS?

The jobs are entering the system according to Poisson arrival process with
exponential service time distribution supported by three servers. Maximum num-
ber of jobs in the system is 20 while the population size is 1500. At the end, all
the jobs are served with the FCFS discipline.

It worth noting that if the system capacity or population size are not spec-
ified, we assume them to be infinite. In case of scheduling, discipline FCFS is
considered to be default. Thus, M/M/m stands for Poisson arrivals with expo-
nential service time and m servers and batch size 1 working according to the
FCFS service discipline. In addition, M/MB/m would mean that the service
time is exponensially distributed with batches of size B. In Chapter 6 we use
the latter model with m = 1 to study the confirmation time of transactions or
the probability of dropping.

Figure 3.1a illustrates a simple queueing system with m servers where the
jobs arrive with the rate λ and are served with the rate µ. nq defines a number

3.2. QUEUEING MODELS 39

(a) Sketch of a queueing model. (b) Time description for a queueing
model.

Figure 3.1: Queueing system description.

of jobs in the queue and ns is a number of jobs in the service process while their
sum nq + ns = n is a total number of jobs in the system (queue length).

Figure 3.1b shows the time intervals for the queuing model. τ refers to the
inter-arrival time per job so that λ = E[τ]

−1
, s is the service time per job where

µ = E[s]
−1

, w is the waiting time per job, and r stands for the response time
per job such that r = w + s.

3.2.1 Stability and instability of a queueing system

The system is considered to be unstable if the number of jobs in the buffer grows
continuously and further becomes infinite. Otherwise, we say that the system
is stable.

For systems with infinite population and infinite buffer capacity we require
that the arrival rate must be lower than the maximum throughput of such
system:

λ < mµ (3.23)

Generally speaking, the ratio of λ/µ is called the load factor ρ of the queue
and represents the relationship between the arrival rate and the service rate.
Consequently, Equation (3.23) can be rewritten as ρ < 1 providing single server
queue.

We study the scenario of the blockchain queueing model with ρ ≥ 1 in
Chapter 8 to assess the probability of confirmation given its offered fee.

3.2.2 M/M/1 queueing system

M/M/1 is one of the most well-known queueing systems. Recall that it char-
acterises with exponential independent inter-arrival times (Poisson arrivals),
exponential independent service times, single server, infinite buffer, and FCFS
scheduling discipline. The schematic diagram of the process is shown in Fig-
ure 3.2. What is more, CTMC underlying the M/M/1 queue is irreducible and

40 CHAPTER 3. ESSENTIAL ELEMENTS OF STOCHASTIC MODELING

Figure 3.2: State space diagram of M/M/1 queue.

with infinite state space. The ergodicity of the chain is guaranteed if and only
if ρ < 1. In fact, assuming a reference state 0 we obtain{

π(0)λ = π(1)µ

π(n)(λ+ µ) = π(n− 1)λ+ π(n+ 1)µ n > 0 .

From the former equation we can derive π(1) = π(0)λ/µ. And in general we
have:

π(n) = π(0)

(
λ

µ

)n
n ≥ 0 .

Next, to compute π(0) we must impose that
∑∞
n=0 π(n) = 1 so that:

∞∑
n=0

π(0)ρn = π(0)

∞∑
n=0

ρn = π(0)
1

1− ρ . (3.24)

where the geometric series converge if and only if ρ < 1, thus repeating the
stability condition of the queueing system.

Finally, equating the result of (3.24) to 1 we obtain:

π(0)
1

1− ρ = 1 =⇒ π(0) = 1− ρ .

Consequently, in stability the steady-state distribution is seen as follows:

π(n) = (1− ρ)ρn ,

implying that the steady-state probability of observing n jobs in the queue has
a geometric distribution with ratio ρ.

This chapter introduced some basic notions and corresponding examples
of Markovian processess in order to provide a general understanding of tech-
niques that are used in the following chapters. Summarizing, a Markov process
is a stochastic process that meets the Markov property which is often called
“memorylessness”. Thus, prediction of future states of such process can be
done relying on its present state without loss of accuracy compared to real out-
comes of the process. There exist two types of Markov processes (also known
as chains), namely Discrete-time Markov Chains and Continuous-time Markov
Chains. Both types of systems are of high applicability in real-world scenarios
such that engineering, physics, biology and others. In this thesis we apply each
of these techniques to assess the properties of blockchain networks driven by
PoW.

Chapter 4

Fairness in PoW private
blockchains

41

42 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

4.1 Introduction

Most of academic works study permissioned networks considering consensus
methods different from PoW. This is justified by at least two reasons. The
first reason is that some scholars prefer to achieve a consensus with algorithms
that are less computationally demanding with respect to PoW and the ones
with better scalability. The second reason is that in the case of PoW, it would
be relatively easy for one of a group of colluding miners to take control of a
blockchain by increasing the corresponding HP, e.g., by hiring new machines for
a limited amount of time.

However, the motivations for discarding PoW from permissioned networks
are still not obvious. Indeed, consider the most popular family of consensus al-
gorithms for permissioned blockchains, namely Byzantine fault tolerance (BFT).
On the one hand, it protects authorized miners from the malicious behaviors
of a minority of them (internal trust problem). On the other hand, BFT does
not necessarily guarantee the integrity of the data to the end users (the external
trust problem).

Indeed, unlike what occurs in the presence of PoW, whenever there is an
agreement among the voters (analogy of miners in Bitcoin) of the committee,
it is relatively easy for them to change any transaction stored in the blockchain
since all the blocks following that with the modified transaction can be instantly
regenerated upon agreement of the majority of the “miners”.

Example 6. To provide a better understanding, let us consider a case of a
set of companies that maintain a blockchain to store publicly available pollution
level data on a certain region in which they operate. Clearly, there is a first level
of trust that concerns only the companies participating in the consortium. This
can be easily achieved with the voting consensus mechanism. However, at the
same time, citizens need to know that the historical data stored in the chain have
not been changed; and whether they had been changed, a (possibly high) cost has
been paid. BFT does not guarantee this since all companies may be interested in
altering past data. Thus, PoW guarantees transparency for the end users, since
any change in past data will require the computation of the hashes for the block
containing the modified transactions and all the following blocks.

Another argument in favour of PoW is that although the classic PoW is
vulnerable to 50% attacks, the BFT by voting is known to tolerate at most
b(n−1)/3c of malicious nodes in a network with weak synchrony conditions [14].
For some cases in permissioned blockchains, it is easier for an attacker to find
agreement among other miners than to obtain considerable computational re-
sources as it comes at a cost.

Moreover, to maintain agreement among miners, a network with the BFT
consensus mechanism by voting has to use synchronous communications while
a PoW blockchain only relies on the timestamps of executing machines [75].

The protocol we propose gives quantitative guarantees for both internal and
external trust problems.

4.1. INTRODUCTION 43

Another important aspect of traditional PoW in permissioned networks con-
cerns the balancing of work. In such blockchains, miners do not usually receive
a reward for their mining; hence, selfish behavior induces them to reduce the
exposed HP with the aim of reducing the energy costs. As a consequence, a
different mechanism with respect to rewarding must be adopted to even out the
HP used by miners. Notice that this notion of fairness is quite different from
that of permissionless networks, where fairness is defined in such a way that the
proportion of blocks (and hence the proportion of rewards) obtained by a miner
is close to the proportion of his HP [65].

We study the impact of our solution in this regard, showing that an im-
portant positive effect, our modified PoW fairly distributes the computational
efforts among the miners of the consortium.

4.1.1 Contribution

We introduce a simple PoW mining algorithm for permissioned networks which
is based on the use of a sliding window. The main idea is that each miner
maintains a control window of size N that stores the information about the
consolidators of the latest N blocks in the blockchain. The rule is that a miner
m can be present in the window at most once. When a node receives a block
from miner m and m is not present in the window, then it behaves as usual (i.e.,
it verifies the transactions and the hash; and if these are correct, it accepts the
new block). Otherwise, the block is rejected. We will discuss how this approach
addresses the internal and external trust problems.

We study the security of this protocol with respect to the two major security
threats of PoW: the 50% attack, which is particularly dangerous in permissioned
networks; and the greedy miner attack in which a miner aims to consolidate more
blocks than what is expected from the corresponding HP. Moreover, we provide
a quantitative Markovian model of the system to study its fairness, which is
here intended as the capability of reducing the gaps among the available HP of
the miners.

We observe that these results pose an interesting trade-off. In fact, the
total HP of the network is not used because the miners that are present in the
window will stop their work; hence, external trust is quantitatively lower than
that guaranteed by a plain PoW (which is, however, unable to guarantee internal
trust). On the positive side, the HP that is unused, although available, does not
become wasted energy. Thus, larger window sizes ensure a high internal trust by
protecting the system from the collusion of miners; however, on the other hand,
miners reduce the total HP devoted to guarantee the external trust, and vice
versa. The quantitative model that we propose allows us to study this trade-off
and determine the optimal configuration according to the design needs.

4.1.2 Structure of the Chapter

In Section 4.2, we present the window control blockchain protocol. In Sec-
tion 4.3, we describe the Markovian model for the performance evaluation of

44 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

this protocol and give the algorithm for the computation of the relevant indices.
In Section 4.4, we analyse how the window control algorithm reacts to potential
security attacks to permissioned networks. In Section 4.5, we analyse the im-
pact of the window control on the fairness of the blockchain network. Finally,
Section 4.6 concludes this chapter.

4.2 The problem statement and window-based
control

In permissioned networks, we distinguish the problem of trust among the miners
and between the set of miners and public observers. While the latter is intrin-
sically guaranteed by PoW in the sense that even if all the miners agree on
modifying a consolidated transaction they have to spend an amount of energy
that is publicly known, the former problem requires more attention.

4.2.1 Security vulnerabilities of PoW

Here, we give a brief description of the security threats that affect permissioned
blockchain networks:

• 50% attack. A malicious miner can modify consolidated transactions when
it controls at least 50% of the entire computational power of the net-
work [15]. While this attack seems to be very unlikely in public chains
with many miners, such as Bitcoin, in case of a restricted pool of min-
ers, this may turn to be a serious threat to the security of the ledger.
Indeed, it is possible for one or a small subset of the miners to hire a
sufficient amount of computational power so that it can reach the 50%
needed to violate the network security. However, in order to conclude the
attack successfully, the malicious miner must be able to generate a number
of consecutive blocks that coincide with the number of blocks that have
been added after the modified block, plus the corrupted block itself.

• Greedy miner attack. A malicious miner that controls an amount of HP
lower than 50% can consolidate a number of blocks that is still higher than
the proportion of the corresponding HP, and this can be done in the follow-
ing way. Once the attacker mines a sufficient number of blocks to overtake
the main chain, he/she does not immediately show his/her progress. In-
stead, he/she keeps the block unannounced and announces it as soon as
some other miner does so with a new block [71]. Specifically, once the hid-
den fork overtakes the current chain and a new block is announced it then
starts to compete with the latter one and naturally wins the competition
for the longest chain. Although this problem mainly affects permission-
less blockchains in which the rewards per block are expected, such as in
Bitcoin, it may also be a problem in permissioned networks. Indeed, the
creation of “unnatural” chain forks may reduce the amount of total HP

4.2. THE PROBLEM STATEMENT AND WINDOW-BASED CONTROL45

adopted to guarantee the immutability of the blockchain or, alternatively,
may affect the overall system throughput.

4.2.2 Fairness issues in permissioned blockchains

In blockchains, fairness is the property that distributes the efforts required by
the distributed ledger evenly among the miners. However, the application of this
principle is different for permissioned and permissionless blockchains, especially
because the latter have a reward policy to incentivise miners’ efforts.

Indeed, the notion of fairness in permissionless blockchains is usually con-
cerned with the fraction of rewards (or consolidated blocks) that a miner pos-
sessing a certain HP should statistically receive. This problem has been widely
studied in [65] where an entirely new method, called Fruitchain, for consolidat-
ing blocks has been proposed.

In this chapter, since permissioned networks do not usually adopt a reward
mechanism, we propose a different notion of fairness. Ideally, given a certain
level of mining difficulty, fairness is achieved when all the miners invest the same
amount of HP to the life of the ledger. This is quite difficult to realize since
different hardware can be used by miners.

If miners provide different HP, this means that they invest different energy
resources (and hence financial efforts) to run the ledger while they all obtain
the same service.

The trivial solution could consist of developing a round-robin scheme such
that miners consolidate the blocks in turn. However, this solution is ineffective
under our assumptions. In practice, the round-robin scheme would allow a
miner to totally block the mining process either because of a fault or because
of a malicious aim.

4.2.3 Algorithm description: window-based control

In this chapter, we propose a solution to the previously described problems based
on a sliding window control algorithm. In this section, we formally describe the
algorithm; and in Section 4.3, we show its analysis.

Let us denote the set of M miners that are assumed to have their own
identity as K = {m1,m2, . . . ,mM}. This means that miners are not anonymous
and cannot consolidate new blocks under a different identifier, as could happen
in permissionless systems.

Each miner maintains a control window of size N where it stores the identi-
fiers of the latest N blocks’ creators. At any time, in the window, at most one
block of a miner m ∈ K can appear. Upon the announcement of a new mined
block, one of these situations may arise:

• If the consolidator of the new block’s identifier is already present in the
window, then the miners will discard the new block, which is considered
an invalid block.

46 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

• Otherwise, the block is considered valid under the assumption that all the
other conditions are satisfied, e.g., it contains valid transactions and the
PoW is solved correctly. The control window is updated with the new
miner identifier according to a FIFO policy.

One may propose a delay-based solution where every miner has to comply
with certain delay between the proposal of his/her consecutive blocks. However,
it remains non-trivial to secure that the delay is long enough because of the
random nature of the mining process.

It is worth noting that if there are no forks in the blockchain, then all the
miners share the same control window. Otherwise, whenever a fork is solved,
the control window must be updated coherently.

Observe that miners whose blocks would be rejected do not even participate
in PoW competition. As a consequence, the total hash power that is used by
the network is reduced; hence, the electric power consumed by the network also
decreases. In Sections 4.4 and 4.5, we will study how this control mechanism
may affect network behavior in terms of security and fairness.

Notice that the protocol has two limiting cases. The first limiting case occurs
when N = 0, i.e., the window mechanism control does not prevent any miners
from adding new blocks to the chain. In this case, we obtain the standard
PoW-based protocol. The other limiting case occurs when N = M − 1. In this
case, the mining process follows a round-robin policy in which the blocks are
consolidated by the miners in turn. The dimension of the window size allows the
definition of intermediate operating conditions, and we will show that it prevents
a single miner from taking control of the network (even with more than 50%
of the computational power) while it secures the consolidated information with
the well-known properties of the PoW algorithm. This tension between the
need for a large window size to encourage fair involvement of all miners in the
block consolidation process and the need for a small window size to exploit the
PoW properties makes the model presented in Section 4.3 crucial for a correct
parameterization of the protocol and understanding of its security properties.

4.3 Stochastic Model for the performance eval-
uation of the algorithm

In this section, we introduce a stochastic model that is based on CTMCs for the
sliding window control algorithm described in Section 4.2 and most importantly
adopting it to the desired blockchain environment.

The Markov chain underlying the model is ρ-reversible, as described in [54,
56]; hence, this guarantees high numerical tractability. This property allows us
to use it to parameterize the model by setting appropriate window sizes. The
model considers a single window and is subject to the following assumptions:

• Blocks are generated according to a Poisson process whose rate may de-
pend on the state of the sliding window. This assumption is justified by

4.3. STOCHASTICMODEL FOR THE PERFORMANCE EVALUATIONOF THE ALGORITHM47

the following argument. This process is generated by the superposition of
the mining processes of all the miners. Indeed, it is well-known that the
PoW requires the computation of a hash and this operation is memory-
less. Hence, the time to the next block consolidation for miner m can be
assumed to be exponentially distributed with a rate that is proportional
to its hash power and that depends on the difficulty parameter set by the
network. Moreover, since we can assume that the mining processes are
independent, the block generating process is a Poisson process.

• In permissioned blockchains, forks are much rarer than in permissionless
networks; therefore, the analyses that we can perform with our model can
safely ignore the forks. As a consequence, in our analysis, we assume that
there are no forks; hence, all the miners share the same control window.

We denote the window size as N and assume that N < M . At each epoch,
the state of the window is denoted by vector ~x = (x1, x2, . . . , xN), where xi ∈ K.

Moreover, we assume |~x|m =
∑N
i=1 δxi=m be 1 if m is in ~x and 0 otherwise.

Finally, as described above, individual miner block generation is assumed to
occur according to an independent Poisson process with rate λm.

Clearly, the stochastic process X (t) underlying the temporal evolution of ~x
is a homogeneous continuous-time Markov chain with finite state space. The
transition rates of the CTMC infinitesimal generator are as follows: for ~x and
~x′ such that ~x 6= ~x′,

q
(
~x, ~x′

)
=

{
λm if |~x|m = 0 and ~x′ = (m,x1, . . . , xN−1)

0 otherwise.

The state space of X(t) is

S = {~x ∈ KN : |~x|m ≤ 1 for all m ∈ K} .

The stationary distribution of X(t) can be analytically derived following the
lines of [57]. The following theorem provides the exact expression.

Theorem 6. The stationary distribution π(~x) of X(t) is:

π(~x) =
1

G

∏
m∈K

λm|~x|m , (4.1)

where G =
∑
~x∈S

∏
m∈K λm|~x|m.

Briefly speaking, the proof of Theorem 6 applies the definition of ρ-reversibility
considering those CTMCs that are stochastically similar to their reversed pro-
cess modulo a state renaming ρ. All corresponding information can be found
in [55,56,70].

48 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

We are interested in real applications where the number of instances of a
miner in the window are relevant rather than the order in which they appear.

Corollary 1 provides an analytical expression for such an aggregated station-
ary probability.

Corollary 1. Let n = (nm1 , . . . , nmM
) denote an aggregated state with nm ∈

{0, 1} for all m ∈ K, and
∑
m∈K nm = N . Let

SK,N =

{
n :

∑
m∈K

nm = N and nm ∈ {0, 1} ∀m ∈ K
}

be the set of all aggregated states.
The stationary probability of observing the aggregated state n is:

πA(n) =
1

G
N !

∏
m∈K

λmnm .

Hereafter, for a model consisting of a set of miners K and a window size N ,
we denote the normalizing constant as GK,N . Lemma 1 provides the analytical
expression for the stationary probability of finding a miner m in the window.
Note that this is expressed in terms of the ratio of the normalizing constants of
different models.

Lemma 1. The marginal stationary probability of observing one block of miner
m ∈ K in the window is:

πmK,N = Nλm
GKr{m},N−1

GK,N

where GKr{m},N−1 is the normalizing constant corresponding to a model without
miner m and a window of size N − 1.

The next corollary provides the analytical expression for the throughput of
a miner. Note that this is defined as the expected number of mined blocks per
unit of time.

Corollary 2. In the steady state, the throughput for a miner m ∈ K is given
by:

λ∗m = λm
GKr{m},N

GK,N
. (4.2)

According to our window-based control algorithm, miners whose identifier
is present in the window are not joining the mining process. Thus, miner m
does not completely use the corresponding HP. Hence, we define the effective

4.4. SECURITY AND PERFORMANCE ASSESSMENT 49

HP of miner m as the HP, which is on average devoted to the mining process.
Formally, this corresponds exactly to λ∗m under the convention of measuring the
HP in the expected number of consolidated blocks per unit of time.

We can compute the normalizing constant by applying the polynomial con-
volution algorithm presented in [57].

4.4 Security and performance assessment

In this section, we discuss how the window control algorithm reacts to potential
attacks to permissioned networks.

4.4.1 Double spending and greedy miner attacks

From a security perspective, the main advantage of window-based network con-
trol is its resistance to attacks that require the consecutive generation of the
blocks by a subset of malicious miners. We recall that in permissioned net-
works, these attacks are possible because we assume that there is a conflict of
interests among the miners, where one (or a small subset) of the miners may be
interested in changing information that was previously stored in the ledger.

Collusion among malicious miners is possible, and we will consider this pos-
sibility. In our evaluation, we assume that malicious miners may collaborate to
achieve the same aim, even by sharing their HPs. In other words, a miner whose
identifier is present in the window can temporarily transfer its HP to another
malicious colluded miner entitled to generate a new block.

As for single-miner threats, 50% and greedy-miner attacks cannot be con-
ducted with the sliding window algorithm. More precisely, we observe the fol-
lowing:

• As noted in Section 4.2, the 50% attack can be a serious problem for
permissioned networks based on PoW, which is also one of the reasons for
the popularity of BFT in these cases.

The window control algorithm solves the problem as follows: if there is no
collusion among the network miners, then the attacker must produce a cer-
tain number of consecutive blocks to conduct a 50% attack. Whenever the
window size is positive, this is impossible because the other nodes would
reject the proposed fork consisting of consecutive blocks consolidated by
the same miner as invalid.

• For a successful greedy miner attack, the selfish miner needs to (i) produce
blocks faster than other miners and (ii) make the fork accepted by the
others. While the first phase is still doable in a window-controlled network,
the second phase cannot be performed since the malicious miner must
produce a longer chain of blocks than that actually in use to convince the
remaining miners to accept his work. This would require him to mine
consecutive blocks, which is again not allowed.

50 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

Consequently, it is clear that interested malicious miners will try to miti-
gate this crucial restriction in order to compromise the past data stored in a
blockchain. One feasible solution that they could follow is finding the secret
agreement with other miners. Thus, the above vulnerabilities will still occur
in the case of several miners who will agree to cooperate. They will act as a
mining pool in the network without the sliding window with the only difference
that they will try to cheat and deceive others. In addition, if the window size is
not smaller than the pool size, the colluded miners will be able to consecutively
produce blocks as far as the size of the secret pool. Otherwise, if the window
size is smaller than the secret pool size, then its block production is only limited
by the fraction of their cumulative HPs.

4.4.2 Security for a single malicious miner

In this section, we consider the threat caused by a single miner that controls dif-
ferent amounts of HP. Recall that, in practice, this is achievable in permissioned
networks rather easily since the computational power for the mining processes
can be hired by the malicious miner.

From the functional point of view, the fact that the malicious miner (e.g.,
m1) cannot consolidate consecutive blocks for any positive window size allows us
to conclude that the protocol is safe for any fraction of the total HP controlled
by m1. Furthermore, since all miners’ identities are known to the network it is
not possible that the same miner would keep mining just using another address.

The impact of window control on the effective HP of the entire network λ∗T
remains to be assessed. Intuitively, this is the total expected HP of the miners
that are not present in the window. This can be simply obtained by summing
the effective HP of each miner as follows:

λ∗T =
∑
m∈K

λ∗m .

Recall that we measure the HP in terms of the expected number of blocks
consolidated by a single miner in the unit of time under the condition that the
network does not change the difficulty level of the PoW.

Let us consider the scenario in which 20 miners participate in the consolida-
tion process, among which 19 are perfectly balanced, i.e., they expose the same
HP. The remaining miner controls a variable fraction of HP that ranges from
5% to 67%. Formally, the vector of hash rates is the following:

λ =

(
λ1,

100− λ1
19

, . . . ,
100− λ1

19

)
.

Figure 4.1a shows the effective network HP λ∗T as a function of the window
size. Furthermore, the figure shows that there is a negative dependency between
the network effective HP and the window size. On the one hand, larger win-
dow sizes result in a more balanced network; however, on the other hand, we
have slower blockchain growth and this is where the trade-off between resource

4.4. SECURITY AND PERFORMANCE ASSESSMENT 51

balance and performance appears. Note that if the PoW difficulty adapts to
maintain a constant blockchain growth rate, as in the Bitcoin network, then we
would compromise the PoW security by requiring a simpler hash computation.
To clarify this point, let us consider the mostly unbalanced situation with which
that we experimented, i.e., when miner m1 has 67% of the total HP of the net-
work. Clearly, the speed of the other miners is (100−67)/19 = 1.74. If m1 could
know this information, the ideal effective HP would be 1.74 · 20 = 34.74. With
a window size of 1, Figure 4.1a shows that the effective HP is approximately 55.
When moving further, the HP falls first to 44 and then gradually falls to almost
20 with a window size of 10. With even larger window sizes, the effective HP
drops quickly to zero (with a window size of 20).

Figure 4.1b shows the slowdown of the window-based approach with respect
to an ideal situation in which miners can agree to work at the speed of the
slowest miner in a perfectly balanced way. In other words, the protocol reduces
the number of blocks consolidated per unit of time in the attempt to achieve
a fair condition. Since the miners do not explicitly agree on the HP, this is
estimated by the use of the sliding window. In our case, the slowdown of the
network’s effective HP is defined as follows:

D = λ∗T

(
(100− λ∗m1

)

M − 1
M

)−1
.

Figure 4.1b suggests that for large window sizes, the slowdowns of the various
scenarios tend to behave as the case of the fully balanced network. Indeed,
starting from a window size of 10, the slowdown of every other network is very
close to that of the system in which every miner controls 5% of the entire
HP. This is explained by the fact that with a window size of 10, we already
have a very well-balanced network; hence, the effects of window control on
the system are almost indistinguishable from those observable in a perfectly
balanced network.

It may be worth emphasizing the fact that when a miner is present in the
window, he/she stops his/her mining process; therefore, the HP that is actually
used by a node is in general smaller than the available one. Hence, the window
control does not increase the energy wasted by the PoW.

Figures 4.1c and 4.1d show the percentages of nodes consolidated by miner
1 and the others, respectively. Notice that when the window size is 19, we have
the round-robin discipline; hence, all the miners consolidate 5% of the blocks.
We obtain the percentage of consolidated blocks by miner mi as follows:

λ∗mi∑
m∈K λ

∗
m

,

i.e., this is proportional to the effective HP used by a miner. Figures 4.1c
and 4.1d clearly show that small window sizes are sufficient to smooth out the
gap between the HP of m1 and the others. Indeed, larger window sizes have
a strong impact on the effective HP while they give small benefits in terms of
smoothing out the differences in miners’ HPs. This can also be seen in the

52 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

plots of Figures 4.1e and 4.1f. Specifically, note that while large windows have a
negative effect on the effective HP of all miners, this is mostly evident for small
window sizes and the unbalanced node m1. For example, if we consider the case
of one node controlling 67% of the total HP, his effective HP drops to 13 with
a window size of 2.

To conclude, there are two effects of the window, even small windows, on a
malicious miner hiring HP to overtake the other nodes: functionally, it prevents
the mining of consecutive blocks; and quantitatively, it drastically reduces the
imbalance created by this misbehavior.

4.4.3 Security analysis for pools of colluded miners

We analyse the case in which a subset of miners agree on cheating the protocol
by changing a past transaction, resulting in a fork of the blockchain that gains
the consensus of all the other miners.

Let KC be the subset of colluded miners. There are three critical situations
that should be considered:

1) KC is a minority of all the miners

2) KC is a majority of all the miners that controls the minority of the HP

3) KC is a majority of all the miners that controls the majority of the HP.

1) KC is a minority of all the miners.
This scenario is a generalization of that considered in Section 4.4.2. Although

the system is robust to a single malicious miner, the possibility of collusion
complicates the scenario and requires further investigation.

We have to consider two cases:

• |KC | > N . First, we distinguish the network where the number of colluded
miners exceeds the window size. Since the colluded miners can transfer
their HPs among each other and there is always at least one malicious
miner who is not in the window, this case is equivalent to that of the 50%
attack in an ordinary PoW blockchain.

• |KC | ≤ N . First, we observe that the miners in KC are unable to modify
blocks that are more than N − 1 positions back in the chain, regardless of
the percentage of the HP that they control. The blocks in the ledger older
than the window size can be considered unmodifiable and hence safe with
respect to such an attack.

Example 7. As an example, consider the permissioned network with a window
size of N = 5 and 11 miners, 5 of which are colluded and 6 are honest. Now,
assume that a fraction α = 0.6 of the total HP is controlled by the colluding
miners. Therefore, 1 − α = 0.4 is the HP evenly distributed among the honest
party as follows:

1− α
6

.

4.4. SECURITY AND PERFORMANCE ASSESSMENT 53

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

(a) Effective network HP as a function of
the window size.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

(b) Slowdown as a function of the window
size.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Fraction of consolidated blocks of m1

as a function of the window size.

0 2 4 6 8 10 12 14 16 18
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(d) Fraction of consolidated blocks of mi

for mi 6= m1 as a function of the window
size.

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

(e) m1 effective HP as a function of the
window size.

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

(f) mi effective HP for mi 6= m1 as a func-
tion of the window size.

Figure 4.1: Network with one unbalanced node.

54 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

t

t

(a) Unsuccessful attempt to modify the
target block.

t

t

(b) Successful attempt to modify the tar-
get block.

Figure 4.2: Demonstration of attempts to modify the past blocks of the
blockchain of the colluded miner.

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

(a) Effective network HP as a function of
the window size.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

(b) Effective network HP as a function of
the window size.

Figure 4.3: Different network sizes as the size of the window increases

Since the miners in KC can transfer their HPs among each other, the effective
hash power of the malicious pool remains constant regardless of the number of
malicious miners out of the window. Figures 4.2a and 4.2b represent the cases
where at time t the window contains five honest miners and the only remaining
honest miner is available to create a new block. In the first example, we see that
the colluded pool cannot change the past block marked with a cross. In fact, it
is impossible for the malicious pool to create a longer chain than the existing
chain because of the rules of the window. Figure 4.2b shows a successful attempt.
Clearly, the effective HP of malicious miners is 9 times greater than the HP of
the available honest miners. In terms of block creation, this means that by the
time the honest miner has one block created, the miners in KC will potentially
have 9 blocks. However, the window size limits the actions of dishonest miners,
and they can produce at most 5 consecutive blocks. It is clear that to have
success, the colluded pool needs to overtake the honest party by creating the
longest fork. Consequently, since it is impossible for them to produce more than
N consecutive blocks in one row, any attempt to rewrite the blocks deeper or
equal to N is improbable.

2) KC is a majority of all the miners that controls the minority of the HP.
The second case is also worth investigation. We consider that all the honest

miners have the same HP.

4.4. SECURITY AND PERFORMANCE ASSESSMENT 55

Table 4.1: Miners‘ Hash Power

CV m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20

0.0 5.0000

0.2 4.2995 4.1846 6.0697 6.6619 4.3876 4.8923 4.0834 6.1523 4.8272 4.1176 4.3803 5.0134 4.1967 5.0965 4.1019 4.4555 4.3957 4.7517 6.5653 7.3668

0.5 9.3537 5.8357 1.3516 4.4557 2.0109 5.1976 2.4794 6.9398 3.3745 9.0610 3.4126 1.9169 2.4482 6.5069 4.1149 3.6289 8.1012 5.7067 5.3602 8.7433

1.0 11.1778 10.5201 0.2330 2.0742 1.8475 5.6199 0.3436 2.4887 0.4983 1.0483 15.8871 9.4988 0.4223 10.2551 0.3718 1.7351 4.1179 12.2617 8.5821 1.0168

1.5 0.7740 0.2101 0.3400 14.0988 7.6574 0.2508 18.2027 7.0961 0.3520 0.3511 0.1260 0.3471 22.4673 0.2870 6.9146 0.2040 0.2834 0.2387 19.4122 0.3865

We first notice that if the window size is larger than the number of honest
miners, then malicious miners can block the system by simply refraining from
mining any new block. Therefore, henceforth, we assume that

N ≤ |KH | < |KC | ,

where KH denotes the set of honest miners. In this case, the only protection
against an attack is the difficulty experienced by the malicious pool to control
the majority of the effective HP. In fact, recall that, for the sake of conducting
a 50% attack, we need to consider the effective HP.

Suppose now that the colluded miners control the fraction of HP such that
λC < λH , where λH is the HP of the honest pool. Because of the assumption
on the ability of colluded miners to transfer their computational power, we
have λ∗C = λC . Since KC is working on a fork, only the remaining miners in
KH compete to access the window. Therefore, λ∗H < λH . In other words, if the
window size is too large, we can have the countereffect that we reduce the HP of
honest miners too much, allowing malicious miners to succeed in a 50% attack.
This observation emphasizes the importance of the proposed quantitative model
to analyse the security trade-off that we just described.

To visualize the trade-off, we consider a scenario where the network of honest
miners has sizes of 10, 20, 30, 40, and 50. For the sake of simplicity, we assume
that they have the same HP. In addition, the window size is smaller than the
number of colluded miners; thus, their HP coincides with their effective HP.

Figures 4.3a and 4.3b show the honest miner network’s effective HP as a
function of the window size. Consider, for example, a situation with 20 honest
miners with an HP of 100 and 25 colluded miners that control an HP of 70. We
see that the honest pool maintains the control of the majority of the HP for
window sizes up to 3. For larger window sizes, the security of the system can
be compromised.

3) KC is a majority of all the miners that controls the majority of the HP.

In this case, it is impossible to guarantee the security of the ledger. Indeed,
for the same reasons described in the previous case, if N ≥ |KH |, then the
mining process can be blocked, while in the opposite case, the malicious pool
trivially controls the majority of the effective HP and hence can succeed in a
50% attack. Note that in this situation, both PoW and voting-based agreement
algorithms would be vulnerable.

56 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

(a) Effective network hash power as a
function of the window size for different
network coefficients of variation.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) Coefficient of variation of the miner
HP fractions as a function of the window
size for different network coefficients of
variation.

Figure 4.4: Randomly generated scenarios.

0 2 4 6 8 10 12 14 16 18
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(a) Fraction of consolidated blocks of m1

as a function of the window size.

 W0

 W1

 W2

 W3

 W4

 W5

 W6

 W7

 W8
 W9

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) Fraction of the consolidated blocks of
m1 as a function of the fraction of the
consolidated blocks by the others.

Figure 4.5: First scenario with different network sizes.

4.5 Fairness assessment

In this section, we analyse the impact of window control on the fairness of the
blockchain network. Recall that, in this context, by fairness, we mean that every
miner should invest the same amount of HP to secure the ledger. Therefore, we
expect the effective HPs of miners to be closer to each other than their HPs.

Let us consider five scenarios where the HPs of the miners are randomly
generated and shown in Table 1. For each scenario, we show the coefficient of
variation (CV) of the distribution of miners’ HP, where the first corresponds to
the ideal case of a perfectly balanced network.

Figure 4.4a shows the network’s effective HP as a function of the window size.
We notice that, as expected, the window size negatively affects the effective HP,
especially for networks with high dispersion of the miners’ HP. In other words,
if a consortium of miners finds an approximate agreement on the amount of HP
to invest (which is clearly the practical scenario), then window control is able to
smooth out the unavoidable differences caused by the impossibility of achieving

4.6. CONCLUSION 57

a good balance with different hardware and the contingent situation that may
face a server without reducing the effective HP too much.

Figure 4.4b shows the effect of window control on the coefficient of variation
of the effective HPs λ∗m used by miner m with m ∈ K. These plots suggest
that the small window sizes provide the highest benefits in terms of smoothing
out the differences in the effective HPs of the miners. Let us focus on the
scenario in which the coefficient of variation is 1. Note that with a window
size of 2, the effective HP drops by 20% with respect to the maximum, and the
coefficient of variation becomes 0.74. It may seem that the reduction of the HP
is high, but that is not the case. Indeed, recall that even if the miners could
find an agreement of the HP that they should use, we cannot raise the HP of
the slowest, and hence that would become the speed of each individual miner.
In the example, the slowest miner m3 has an HP of 0.233, which would lead to a
total network HP of 4.66, which is much lower than the 80 obtained by window
control. Clearly, there is a trade-off between the usability of the network and
the need for fairness. From another point of view, window control is sufficiently
flexible to allow miners some periods of small activity (or inactivity) without
drastically reducing the effectiveness of the mining process.

Finally, we consider the network consisting of 19 balanced nodes and node
m1 controlling 20% of the HP of the entire network. We aim to show that the
choice of the window size is very robust with respect to the number of miners. In
other words, the effects that we observe with a certain window are very similar
regardless of the number of nodes. This is shown in Figures 4.5a and 4.5b.
Figure 4.5a shows that with a window size of 0, node m1 generates 20% of
the blocks, as expected by its HP. With a window size of 3, this percentage is
almost halved independent of the network size. Figure 4.5b confirms that the
highest benefits in terms of controlling the system fairness are achieved with
small window sizes; and to this aim, it seems useless to exceed a few units.

4.6 Conclusion

In permissioned blockchains, we have to address two levels of security issues.
The first concerns the possible lack of trust among the miners, and the second
is the lack of trust between the end users and the consortium of miners.

In this chapter, we have proposed a step towards the solution of the problems
given by the application of PoW in permissioned blockchains. Indeed, although
PoW is able to quantify the energy effort required to change a consolidated
transaction, it is very weak in guaranteeing trust among miners. The sliding
window control that we introduced does not allow a miner to consolidate two or
more consecutive blocks from the latest N blocks, where N is the window size.
This does not allow a miner to take control of the mining process by reaching
50% of the total HP. Clearly, if this is a remote possibility for public blockchains
such as Bitcoin, for permissioned networks, it represents a high risk. Bear in
mind that while public PoW blockchains often contain numerous amount of
participants and are generally common, like Bitcoin or Ethereum, the private

58 CHAPTER 4. FAIRNESS IN POW PRIVATE BLOCKCHAINS

ones tend to contain much smaller amount of nodes and usually are not open for
everyone as of specificity of such networks that are formed for unique purposes,
e.g., by an association of companies in one area.

Moreover, in permissioned blockchains adopting PoW, it is crucial to balance
the effective HP provided by the miners. The idea behind this is reaching a
certain level of fairness among the miners in terms of energy consumption. This
is not a problem in systems where miners are rewarded for their work, but
smoothing out the differences in the computational power of different miners
in permissioned networks is important to encourage participation in the mining
process.

The sliding window algorithm presented in this chapter contributes to in-
crease the security of PoW in permissioned blockchains and their fairness by
reducing the effective HP used by the system. Indeed, miners whose identi-
fiers are present in the sliding window stop mining new blocks. This aspect
of the algorithm clearly poses a trade-off problem that we addressed with the
quantitative model.

The quantitative analysis that we conducted is based on a Markovian model
and shows that small window sizes are sufficient to smooth out the differences
in the potential HP of a heterogeneous group of miners, thus achieving fairness.
Furthermore, the method is robust to the malfunctioning of some of the nodes
that may be temporarily unavailable or faulty.

Finally, it is worth noting that its implementation requires minor changes
to the existing PoW-based blockchain software and hence represents a viable
solution to the above mentioned problems.

Chapter 5

Transaction confirmation
time: a system perspective

59

60CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

5.1 Introduction

This chapter extends the state of the art of model-driven analyses and predic-
tion of confirmation delays in blockchain systems driven by PoW. The limited
maximum throughput imposed by some invariant properties of blockchains and
the auction among the pending transactions lead to intriguing problems in the
performance assessment of such systems. Particularly, the confirmation delay
depends on the traffic intensity and the offered fees. To study this problem we
will use the most famous blockchain, i.e., Bitcoin. More specifically, we highlight
the following contributions:

• Comparison between fixed block size and fixed block capacity: most block-
chains set a maximum block size (e.g., 1 MB for Bitcoin) and allow for
transactions with variable size. This means that a saturated block may
contain a variable number of transactions. As opposed to this assumption,
almost all models for confirmation delay prediction assume a fixed block
capacity, i.e., a constant maximum number of transactions in the block.
Is this assumption valid? To answer this question, we introduce an exact
model for the analysis of fixed size systems and compare its performance
with the state of the art model with fixed capacity. Our findings show that,
for Bitcoin, the assumption of fixed capacity is a sound simplification of
the real system. This happens because the distribution of the number of
transactions in full blocks is highly concentrated around its mean.

• Another simplifying assumption on the system consists in neglecting the
batch-service style of blockchains and approximate it by a single service
with higher speed. This intuitively corresponds to a “fluidification” of
the service process. However, we notice that this approximation is too
imprecise and leads to heavy underestimations of the confirmation delay.
The model with single service has been previously used for estimating the
probability of transaction dropping in saturated systems (i.e., when the
arrival intensity is higher than the maximum throughput). We introduce
a novel model for the estimation of the dropping probability where the
batch service style is preserved and hence provides a higher accuracy with
respect to the results available at the state of the art.

In addition, all the results of this chapter as well as of following related chapters
are supported with real data-driven numerical evaluation that is introduced in
Section 5.3. The data are retrieved using our own Bitcoin node running the full
copy of the ledger.

5.1.1 Structure of the Chapter

The chapter is structured as follows. Section 5.2 introduces a model for a
queueing system with random batch size that allows us to investigate the va-
lidity of the hypothesis of blocks with fixed capacity rather than fixed size. In
Section 5.3, we propose a new model for estimating the transaction dropping

5.2. COMPARISONOF FIXED BLOCK SIZE AND FIXED BLOCK CAPACITY61

probability given the offered fee. What is more, the model is validated with
a stochastic simulation and we draw some insights of the dropping process in
PoW blockchain. Finally, Section 5.4 proposes some final remarks.

5.2 Comparison of fixed block size and fixed block
capacity

The goal of this section is to investigate the difference in the confirmation delay
between two blockchain systems with fixed capacity and fixed size but identical
maximum throughput.

Recall that, when we assume a fixed block size, this translates into a random
capacity since transactions have different lengths in bytes.

Most models for the analysis of confirmation times, assume fixed block ca-
pacity although, in practice, blocks have a fixed size. The investigation of the
robustness of this simplifying assumption is carried out thanks to two queueing
models that will be parameterised with Bitcoin blockchain data.

The section will first consider the queueing model M/MB/1 with random
batch size and a single class. Bear in mind that the confirmation of the transac-
tions takes place in batches, i.e., the newly generated block contains all the trans-
actions that it can fit. Therefore, the whole process can be seen as M/MB/1
queueing process [32, 45]. Recall that, according to Kendall’s notation, M de-
notes that both the transaction inter-arrival times and the inter-block generation
times are independent and exponentially distributed, B stands for the batch size
that in our case represents the number of transactions that a block can fit, and
1 denotes that the system consolidates one block at a time. Then, following the
reasoning of [7], we extend the analysis to the case of multiple classes of users.
What is more, priority class refers to the set of transactions grouped by its fee
per Byte from highest to lowest..

5.2.1 Queueing model for fixed block size

In this section, we extend the state of the art on blockchain confirmation time
analysis with the introduction of a queueing model with random service batch
size. First, we ignore the priority of the transactions and consider a simple
FCFS discipline, then we will extend the result to cope with priorities.

Consider a FCFS queue where jobs arrive in a Poisson stream with rate λ.
Service instants occur at exponentially distributed intervals with mean 1/µ. At
each service instant, an i.i.d. random batch size is chosen, with K + 1 possible
values. These are, in increasing order, b0 = 0 with probability β0, b1 with
probability β1, . . ., bK with probability βK . If the batch size is bk and there
are n jobs present in the queue, a number of jobs equal to min(bk, n) are served
instantaneously. Choosing a batch size 0 means that even if the queue is non-
empty, no jobs are served at that instant.

62CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

The average batch size, B, is given by

B =

K∑
k=1

bkβk . (5.1)

The queue has a negative trend (is stable) if the following condition is sat-
isfied:

λ < µB . (5.2)

It is clear that this inequality is the necessary and sufficient condition for
ergodicity. However, we shall also provide a formal proof.

For every integer j = 1, 2, . . . , b, where b = bK is the largest possible batch
size, let qj be the probability that the next random batch will have room for at
least j jobs:

qj =

K∑
s=j

βs ; j = 1, 2, . . . , b . (5.3)

We have q1 = 1− β0 and qb = βK .
The sum of all probabilities qj is equal to the average batch size:

b∑
j=1

qj = B . (5.4)

To establish that result, note that qj includes β1 for values of j between 1
and b1; it includes β2 for j between 1 and b2; . . .; qj includes βK for j between 1
and b. Therefore, the left-hand side of (5.4) coincides with the right-hand side
of (5.1).

Let πn be the steady-state probability that the queue is in state n, i.e., there
are n jobs present. Equating the transitions at which the state increases from
n to those at which it decreases to n, we obtain the following set of balance
equations.

λπn = µ
b∑
j=1

qjπn+j ; n = 0, 1, (5.5)

We shall obtain the general solution to this set of equations in geometric
form:

πn = Czn1 , (5.6)

where C and z1 are some positive constants. Substituting (5.6) into (5.5), we
find that the equations are satisfied as long as z is a zero of the following
polynomial of degree b.

P (z) = λ− µ
b∑
j=1

qjz
j . (5.7)

In addition, in order that we may obtain a probability distribution, z1 must be
a positive real number in the interval 0 < z1 < 1.

5.2. COMPARISONOF FIXED BLOCK SIZE AND FIXED BLOCK CAPACITY63

We have P (0) = λ > 0 and P (1) = λ − µB < 0, according to (5.4) and
(5.2). Therefore, P (z) has a real zero, z1, in the interval (0, 1). This provides a
normalizable solution to the set of balance equations and allows us to write

πn = (1− z1)zn1 ; n = 0, 1, (5.8)

In order to complete the proof of ergodicity and demonstrate that (5.8)
represents the unique steady-state distribution of the queue, we must show that
P (z) has no other zeros in the interior of the unit disk. To do that, we shall
introduce another polynomial, R(z), defined as follows:

R(z) = (1− z)P (z) . (5.9)

Using the relations (5.3) and cancelling terms, we can write R(z) explicitly as

R(z) = λ− (λ+ µ)z + µz

b∑
j=0

βjz
j . (5.10)

Definition (5.9) implies that P (z) and R(z) have the same zeros, except that
R(z) has an extra zero at z = 1. We shall prove the following result.

Lemma 2. When the inequality (5.2) is satisfied, the real number z1 appearing
in (5.8) is the only zero of R(z), and hence of P (z), in the interior of the unit
disc.

Proof. We invoke Rouché’s theorem, which states that if two holomorphic func-
tions, φ(z) and ψ(z), satisfy |φ(z)| > |ψ(z)| on a simple closed contour, then
φ(z) and φ(z) + ψ(z) have the same number of zeros inside that contour. Each
zero is counted according to its multiplicity.

We represent R(z) as R(z) = φ(z) + ψ(z), where

φ(z) = −(λ+ µ)z

and

ψ(z) = λ+ µz

b∑
j=0

βjz
j .

The closed contour is the unit circle. When |z| = 1, |φ(z)| = λ + µ. Applying
the triangle inequality to ψ(z), we find

|ψ(z)| ≤ λ+ µ

b∑
j=0

βj = λ+ µ .

Moreover, the inequality is strict everywhere on the contour, except at z = 1,
where it is an equality.

Note that the derivative of R(z) is positive at z = 1. This is because R′(1) =
−P (1) = µB−λ > 0. Hence, we can choose a sufficiently small number, ε, such

64CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

that R(1− ε) < 0. This implies |φ(1− ε)| > |ψ(1− ε)|. Modifying the contour
slightly in the vicinity of z = 1, by making it pass through the point z = 1− ε,
would ensure that the inequality |φ(z)| > |ψ(z)| is strict on the entire modified
contour.

Function φ(z) is linear and has a single zero, z = 0, inside the contour.
Therefore, by Rouché’s theorem, R(z) also has a single zero inside the contour.
That zero must be z1, which completes the proof.

We can extend the result to several priority classes based on the offered fees
following the same reasoning of [7]. Let us number the classes with natural
number 1, 2, 3, . . . ,K, where class i has strict priority on class j if i < j. There-
fore, class 1 is that offering the highest fee per Byte. Let fi be the frequency
of transactions belonging to class i,

∑K
i=1 fi = 1. Thus, the intensity of arrivals

of transactions of class i is λi = λfi, where λ is the total arrival intensity. The
service order among transactions of the same class is FCFS.

We can reason recursively, beginning from the base case i = 1. All the
transactions belonging to class 1 are completely insensitive to the behavior of
classes j > i because of the hard priority between the services. Thus, we can use
Equation 5.8 to derive the stationary distribution of the occupancy of class 1
transactions in the Mempool. The mean of the distribution can be obtained as
L1 = z1/(1− z1). Notice that the equation differs from the celebrated M/M/1
results since z1 6= λ1/Bµ. By Little’s law, we can obtain the expected response
time T1 for class 1 jobs.

Consider now class i, with i > 1 and assume we know the stationary distri-
bution and the expected performance indices of classes 1, . . . , i−1. Class i com-
petes with all the classes with higher priority than its own. Let Λi =

∑i
j=1 λj .

Then, we can use Equation (5.8) with the aggregated arrival intensity Λi and
derive the expected aggregated occupancy Li thanks to the computation of the
associated zi. At this point, we can obtain the expected occupancy Li and
response time Ti of transactions of class i as follows

Li = Li −
i−1∑
j=1

λj
Λi
Lj , Ti =

Li
λi
.

5.2.2 Numerical investigation

Let us consider the model with fixed block size whose capacity distribution is
shown in Table 5.1 and the model with fixed block capacity that corresponds
to the average of this distribution. For both models, we set µ = 1/600, i.e.,
an expected inter-block delay of 10 minutes in Bitcoin. This implies that the
maximum throughput for the two models is the same. Finally, we consider a
very simple model, namely a M/M/1 queueing system, with analogous maximum
throughput.

In Figure 5.1, we show the expected occupancy of the Mempool as function
of the system’s offered load. We can see that the fixed size (green curve) and the

5.2. COMPARISONOF FIXED BLOCK SIZE AND FIXED BLOCK CAPACITY65

Table 5.1: Distribution of the full block capacity in Bitcoin network as measured
between 720489 and 721489 blocks.

Block capacity Probability
150 0.0058
450 0.0058
750 0.0252
1050 0.0213
1350 0.0349
1650 0.0814
1950 0.0930
2250 0.1494
2550 0.1938
2850 0.1996
3150 0.1376
3450 0.0484
3750 0.0019
4050 0.0019

0.0 0.2 0.4 0.6 0.8 1.0
ρ

10−2

10−1

100

101

102

103

104

105

L

Occupancy of the Mempool

Fixed size
Fixed capacity
M/M/1

Figure 5.1: Comparison among different models for the prediction of the con-
firmation delay.

66CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

fixed capacity (yellow curve) tend to overlap each other. Recall that, by Little’s
law, the expected confirmation time is directly proportional to the expected
occupancy.

From the numerical point of view, we find the unique root of R(z) as defined
in (5.10) in (0, 1) thanks to the bisection algorithm. The case of fixed capacity
is solved by using again R(z) as defined in Equation (5.10) with β2374 = 1.

We observe that the models with fixed capacity and fixed size exhibit very
similar performance, while the M/M/1 system has a very different behavior.

We conclude that we can safely interchange a model for a system with fixed
block size and fixed block capacity, but neglecting the batch service policy and
resorting to a M/M/1 approximation can lead to models that are potentially
very inaccurate.

Given these observations, the analysis and validation of the multi-class sce-
nario would be redundant with prior findings of the literature, e.g., [7, 39] that
have already been done for fixed capacity.

5.3 Dropping policy for fixed block capacity

The analysis presented so far shows that, while the assumption on the fixed
capacity of blocks is sound, the replacement of the the batch service with a
single service may lead to an inaccurate evaluation of the system performance.

Motivated by this observation, we extend the state of the art of the models
for the evaluation of the dropping probability of cheap transactions with the
introduction of a model considering batch services. The solution presented here
is simpler and more direct than the one already existing in the literature [7].

5.3.1 Bulk services and droppings

In this section, we study an approximate solution of the problem of transaction
dropping. As we will see in the experiment section, the accuracy is extremely
high and suitable for practical scenarios.

Consider a FCFS queue where jobs arrive at rate λ, service batches of size
B are offered at rate µ, and each waiting job is dropped after an exponential
random time with parameter γ. That queue is always ergodic, as long as γ > 0.

The steady-state probabilities, πn, that there are n jobs in the queue, satisfy
the following equations, balancing the up and down flows across a cut between
states n and n+ 1:

λπn = (n+ 1)γπn+1 + µ

n+B∑
i=n+1

πn+i ; n = 0, 1, (5.11)

Define again the generating function

g(z) =

∞∑
n=0

πnz
n . (5.12)

5.3. DROPPING POLICY FOR FIXED BLOCK CAPACITY 67

Multiplying equation (5.11) by zn and summing, we obtain[
λzB − µ

B−1∑
i=0

zi

]
g(z) = γzBg′(z)− µ

B−1∑
i=0

πiz
i
B−1−i∑
j=0

zj . (5.13)

Thus the steady-state distribution of the queue size is determined by B
unknown probabilities π0, π1, . . ., πB−1. In particular, the average number of
jobs in the queue, L, is given by g′(1) which, according to (5.13), is equal to

L = σ −Bη + η

B−1∑
i=0

(B − i)πi , (5.14)

where σ = λ/γ and η = µ/γ.
The regime that makes dropping necessary is one where λ > Bµ. Moreover,

since miners are reluctant to drop transactions from the Mempool, the dropping
parameter is usually rather small. Under those circumstances, the probabilities
πn tend to increase with n, roughly while λ > Bµ+nγ, and when λ < Bµ+nγ,
they decrease with n. The idea of the proposed numerical solution is to choose
a queue size N which is some multiple of B and also satisfies the inequality
λ < Bµ+Nγ. The value of πN is initially fixed arbitrarily (e.g., πN = 1). For
n > N , the probabilities πn are computed using the recurrences

πn+1 =
λ

Bµ+ (n+ 1)γ
πn . (5.15)

This relies on the observation that when the queue is large, it behaves as if jobs
are served one at a time, at rate Bµ.

For n < N , the probabilities πn are computed by means of backward recur-
rences, so as to satisfy the balance equations (5.11):

πn =
1

λ

[
(n+ 1)γπn+1 + µ

n+B∑
i=n+1

πn+i

]
. (5.16)

Finally, all probabilities πn are normalized so that their sum is 1.
After some experimentation, a good “rule of thumb” for choosing N is to

take the smallest multiple of B which is (a) at least 3B, and (b) produces a
ratio λ/(Bµ+Nγ) no larger than 0.8.

The above algorithm is recapitulated in Figure 5.2.
The numerical solution can, of course, be applied to the higher, non-saturated

priority classes since all job types are treated in a uniform manner. However,
when λ < Bµ, the probabilities πn tend to decay quite quickly. Consequently,
the above algorithm should be modified slightly in order to avoid numerical
distortions.

We saw in Section 5.2 that in the absence of dropping, the state of a stable
queue with bulk services is distributed geometrically, with parameter z which
is the zero of a certain polynomial in the interval (0, 1). That zero exists when

68CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

1. Choose a suitable queue size, e.g. N = Bmax(3, d(σ/(0.8B)− η)e).

2. Set πN = 1.

3. For n = N + 1, N + 2, . . . , compute πn according to (5.15), stopping
when the resulting value becomes negligibly small.

4. For n = N − 1, N − 2, . . . , 0 compute πn according to (5.16).

5. Normalize probabilities by dividing them by their sum.

6. Compute average queue size L according to (5.14).

Figure 5.2: Numerical solution algorithm for the system with transaction drop-
ping.

λ < Bµ. Hence, the queue behaves like an M/M/1 queue where the offered load
λ/Bµ is replaced by z. Alternatively, the bulk services are replaced by single
ones with parameter ν = λ/z. The presence of reneging in such a queue can
only speed up the geometric decay.

We can therefore find a queue size N such that πN ≈ zN (1−z) < ε, for some
sufficiently small ε. That is the value of N that should be chosen in step 1 of
the algorithm. In step 3, the recurrences (5.15) for n > N , should be modified
by replacing the effective service rate Bµ with ν = λ/z:

πn+1 =
λ

ν + (n+ 1)γ
πn . (5.17)

All other steps remain the same.

It remains to study the dropping probability. Given πi, for i ≥ 0, the total
flow abandoning the system for dropping is

∞∑
i=1

πi(iγ) = γL . (5.18)

Thus, the probability of dropping a transaction is given by pdrop = γL/λ, i.e.,
the ratio between the outgoing flow due to dropping and the overall incoming
flow. Indeed, recall that the capacity of the queue is infinite but its occupancy
is finite with probability 1 since the stochastic process underlying the queue is
always ergodic for γ > 0.

Given the study of a single class queue with dropping, the extension to the
multiple class case can be done following the same observations proposed in
Section 5.2.

5.3. DROPPING POLICY FOR FIXED BLOCK CAPACITY 69

Table 5.2: Classes of priorities and frequencies as measured from the confirmed
transactions.

Priority Class Range [S/B] Dist. in high-load
Highest 1 [100,∞) 0.069

2 [60, 100) 0.235... 3 [40, 60) 0.315
4 [20, 40) 0.184

Lowest 5 [0, 20) 0.196

5.3.2 Numerical investigation

In order to test the accuracy of the model, we have measured the distribution
of the fees per Byte offered by the users in the blockchain of bitcoin. This in-
formation is publicly known for confirmed transactions. Thus we have obtained
the distribution shown in Table 5.2 considering 5 priority classes. The unit of
measure S/B stands for Satoshi per Byte where a Satoshi is 10−8 BTC.

In all experiments, we use a block a size B = 2374 and µ−1 = 600 s.

5.3.3 Description of the simulator

Differently from confirmed transactions, dropped transactions do not leave any
trace in the blockchain logs. Thus, the validation of the model must be car-
ried out thanks to a simulation experiment. To this aim, we have developed a
simulation model parameterized according to our measurements in the bitcoin
blockchain (see Table 5.1 and B = 2374) and we have run several tests for
different workload conditions.

For each considered arrival intensity we run 20 independent experiments each
of which consists of 20 millions of events. The first 2 millions are ignored from
the statistics to take into account the warm up of the model. Then, we build
a confidence interval based on a Student-T distribution with 95% of confidence
for the expected occupancy of each class of transactions.

Notice that the simulation experiments are particularly time consuming since
the batch service mechanism competing with the dropping policy creates noisy
estimates especially in the heavily loaded classes, i.e., those with lower priority.
This enhances the importance of a reliable numerical model that can be solved
efficiently as that proposed in Sections 5.2 and 5.3.

5.3.4 Results

In Figure 5.3, we show the expected occupancy for the five classes in heavy load
obtained by using the analytical model and the stochastic simulation. Bear in
mind that the y-axis is in logarithmic scale.

Notice that, without dropping, the stability condition for the queue would
be λ < Bµ = 3.96 tx/s. In these experiments, we begin from λ = 3.5 tx/s and
we reach λ = 6.0 tx/s.

70CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

Class 1 Class 2 Class 3 Class 4 Class 5

103

Ex
pe

ct
ed

 o
cc

up
an

cy

144.384

507.521

1065.67
1401.95

4744.64
Occupancy for =3.5

Simulation
Analytical

(a) λ = 3.5

Class 1 Class 2 Class 3 Class 4 Class 5

103

104

Ex
pe

ct
ed

 o
cc

up
an

cy

165.008

593.205

1495.39

2764.53

20550.6
Occupancy for =4.0

Simulation
Analytical

(b) λ = 4.0

Class 1 Class 2 Class 3 Class 4 Class 5

103

104

105

Ex
pe

ct
ed

 o
cc

up
an

cy

185.63

687.062

2166.87

6730.75

84185.5
Occupancy for =4.5

Simulation
Analytical

(c) λ = 4.5

Class 1 Class 2 Class 3 Class 4 Class 5

103

104

105

Ex
pe

ct
ed

 o
cc

up
an

cy

206.252

791.32

3312.05

22414.7

153564
Occupancy for =5

Simulation
Analytical

(d) λ = 5.0

Class 1 Class 2 Class 3 Class 4 Class 5

103

104

105

Ex
pe

ct
ed

 o
cc

up
an

cy

226.874

908.537

5544.54

73060.9

186947
Occupancy for =5.5

Simulation
Analytical

(e) λ = 5.5

Class 1 Class 2 Class 3 Class 4 Class 5

103

104

105

Ex
pe

ct
ed

 o
cc

up
an

cy

247.494

1041.84

10833

136716
204250

Occupancy for =6.0
Simulation
Analytical

(f) λ = 6.0

Figure 5.3: Expected occupancy per class under different load factors. Dropping
can occur in lowest priority classes.

5.3. DROPPING POLICY FOR FIXED BLOCK CAPACITY 71

3.5 4.0 4.5 5.0 5.5 6.0
 [Tr/s]

0.00340

0.00342

0.00344

0.00346

0.00348

0.00350

0.00352

0.00354

Dr
op

pi
ng

 p
ro

b.

Dropping probability for Class 1

(a) Class 1

3.5 4.0 4.5 5.0 5.5 6.0
 [Tr/s]

0.0036

0.0038

0.0040

0.0042

0.0044

Dr
op

pi
ng

 p
ro

b.

Dropping probability for Class 2

(b) Class 2

3.5 4.0 4.5 5.0 5.5 6.0
 [Tr/s]

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Dr
op

pi
ng

 p
ro

b.

Dropping probability for Class 3

(c) Class 3

3.5 4.0 4.5 5.0 5.5 6.0
 [Tr/s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dr
op

pi
ng

 p
ro

b.

Dropping probability for Class 4

(d) Class 4

3.5 4.0 4.5 5.0 5.5 6.0
 [Tr/s]

0.0

0.2

0.4

0.6

0.8

1.0

Dr
op

pi
ng

 p
ro

b.

Dropping probability for Class 5

(e) Class 5

Figure 5.4: Dropping probability as function of the aggregated arrival rate for
different priority classes.

72CHAPTER 5. TRANSACTION CONFIRMATION TIME: A SYSTEM PERSPECTIVE

The plots of Figure 5.3 show a very good agreement in the expected occu-
pancy per class between the results obtained thanks to the analytical model and
the estimates obtained with the simulation. With the only exception of Class
5 for λ = 6 tx/s, all analytical values fall within the confidence intervals of the
simulations. This observation is quite important because the solution of the
analytical model introduced some approximations that needed to be validated.

With respect to the approximation introduced in [7], the model proposed
here has several advantages: (i) it can be used uniformly for saturated and
non-saturated classes; (ii) the accuracy remains high both if the class is heavily
saturated and if it is lightly saturated, while the experiments presented in [7]
showed a drop in the quality of the approximation for the latter case; (iii)
differently from the model of [7], the model that we present here can study the
dropping policy for all classes, and not just the one with the lowest priority.

From the system perspective, we notice that the progressive increasing of
the traffic intensity only marginally affects Class 1 transactions, while it has a
huge impact on the last two priority classes.

This observation is supported also by the plots of Figure 5.4. We notice that
the dropping probability for the highest priority class is close to 0 independently
of the transaction arrival rate. On the other hand, as the priority of classes
diminishes, we have more probability of transaction droppings since they are the
first to lose jobs. Class 3 is the first for which we start to observe a significant
increase of the dropping probability that passes from 0.5% to 3.4%. For Class
5, from λ = 5.5, we have a probability of dropping close to 1.

Regarding the quality of the approximation for the dropping probabilities,
we observe a very good agreement with the simulation model. For the low-
est priority class, it seems that the model tend to overestimate the dropping
probability for λ > 5.5 tx/s, but this happens in a regime that, although of the-
oretical interest, is practically not very relevant for Class 5 since such a dropping
probability would be too high to be accepted.

5.4 Conclusion

In this chapter, we have studied some queueing models for the analysis of the
average confirmation time and dropping probabilities in PoW blockchain. More
specifically, the experiments have been carried out with data retrieved from the
bitcoin blockchain.

The first model that we have proposed has been compared with two other
models used for the derivation of the transactions’ confirmation time given a
certain offered fee per Byte. Indeed, while we propose a queueing system with
fixed block size (and hence random capacity), in the literature it is usually
assumed a fixed block capacity or even a non-batch service (one transaction
confirmed per service epoch). Our findings show that while the assumption of a
fixed block capacity is robust and gives results that are barely indistinguishable
from those assuming fixed block size, the M/M/1 approximation is inaccurate.

The second model that we propose studies the dropping probabilities in

5.4. CONCLUSION 73

Bitcoin network. With respect to the state of the art, we propose a simpler
solution that showed to be accurate in low, moderate and high loads. The fact
that the same numerical algorithm can be used both for saturated and unsatu-
rated classes greatly simplifies its usage. The validation of this model has been
carried out by resorting to stochastic simulations since the data about dropped
transactions are not present in the blockchain. The accuracy of the model both
in the prediction of the expected occupancy and the dropping probability is
high.

As future work, we plan to extend this approach to other blockchains that
have other restrictions than the maximum block size to control the number of
transactions that can be stored in a block, e.g., Ethereum blockchain.

Chapter 6

Transaction confirmation
time: a user’s perspective

75

76CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

6.1 Introduction

In recent years, the economic system that allows blockchain distributed ledgers
to operate has attracted a lot of attention. In particular, the fees offered by
the users to pay for the services provided by the system have been recognized
as a pivotal aspect of this technology [19, 35, 67]. To make this topic even
more important, we must consider that in few months an important blockchain
like Bitcoin will rely just on users’ fees to support the energy and hardware
costs faced by the miners. This mechanism causes dynamics worthy of scientific
investigation, such as those highlighted in [2, 3, 77].

This chapter proposes a queueing model to answer the following questions:
given the state of the Mempool and the intensity of the workload, what is the
expected number of blocks that a transaction offering a certain fee should wait
for its confirmation?

It is worth noting that the state of the Mempool (including the distribution of
the fee offered by the transactions therein) and the intensity of the arrival process
are publicly available information that may be obtained either by running a BTC
node, or by using one of the many free online services1.

6.1.1 Contribution

This chapter starts from the observation that a transaction x whose fee per byte
ratio is f experiences a waiting time formed by the sum of two delays:

• The system first confirms all the transactions present in the Mempool at
its arrival epoch whose fee per byte is greater or equal to f

• Moreover, other transactions arrive after x but before its confirmation,
and if their fee per byte is higher than f they will be confirmed before x.

In this chapter we study similar to previous chapter M/MB/1 queueing
model. Recall that the transactions are confirmed in batches and each batch
(block) includes as many transactions as minimum between number of non-zero
fee transactions in Mempool and designed block capacity.

Given a tagged transaction x offering f , its consolidation delay, i.e., its
residence time in the Mempool measured in number of consolidated blocks, cor-
responds to the time required by the M/MB/1 queue starting from the initial
state to reach the empty state. The former corresponds to the number of trans-
actions Y + 1 (including the tagged transaction) whose fees are higher than f
found in the Mempool at its arrival epoch. Consequently, the latter refers to
the circumstance when there will be no more transactions that offer higher fee
f ′ : f ′ > f in the Mempool. The system as seen by x is subject to an arrival
process filtered to take into account only the transactions that are more valuable
than f .

1For instance, http://www.blockchain.com

http://www.blockchain.com

6.2. PROBLEM STATEMENT AND MOTIVATION 77

We provide the transient solution of such a system based on the technique of
generating functions. Theorem 8 gives an iterative method for the exact compu-
tation of the expected transaction’s confirmation time given the root of a certain
polynomial that can be easily obtained with a numerical procedure. Although
in this chapter we focus on the first moment of the expected confirmation time,
the analysis that we propose allows also for an approximate computation of fur-
ther moments where the approximation error is bounded thanks to the theory
of residuals in power series.

Finally, we provide an extensive set of experiments with the aim of studying
the impact of the Mempool state and the system’s load factor on the choice of
the fee to offer in order to satisfy certain delay requirements on the transaction
confirmation.

We believe that the results proposed in this chapter are of high importance
for every transaction issuer. Clearly, to optimize the costs it is crucial for them
to know the minimum fee to pay in order to have his/her transactions confirmed
within a certain desirable time, as in case, for example, of speculative exchanges
of the cryptocurrency. Conversely, one may also be keen to know how long the
confirmation delay would be if a certain fee for the transaction is set.

6.1.2 Structure of the Chapter

The chapter is structured as follows. In Section 6.2, we describe our research
problem. Moreover, we show some data analysis of BTC blockchain to motivate
the significance of our queueing model. The model is presented and solved
in Section 6.3. In Section 6.4, we use the results of Section 6.3 to study the
expected confirmation time in Bitcoin. What is more, we validate our model
both with trace-driven and stochastic simulations. Section 6.5 concludes the
chapter.

6.2 Problem statement and motivation

Technically, there is no limit to the fee that blockchain users can offer for their
transactions. However, there exists a natural tension between the need of re-
ducing the operating costs and the confirmation delay that a user accepts to
wait. Indeed, if a transaction includes a payment (obviously in cryptocurrency),
the users expect a short confirmation delay because the high fluctuations of the
cryptocurrency value may affect the economical conditions of the deal. This is
even more evident if the transactions are associated with financial speculation
on trading cryptocurrencies. The problem is enhanced by the fact that the of-
fered fee cannot be changed once the transaction is in the Mempool. However,
in some other cases, the transaction will store in the blockchain some delay tol-
erant data and hence the fee offered can be drastically smaller than that needed
in the previous case.

As a consequence, users need a method to tackle the trade-off between the
cost of processing the transaction and its confirmation delay.

78CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

2
0
2
0
/1

1
/1

5
 1

7

2
0
2
0
/1

1
/1

6
 0

3

2
0
2
0
/1

1
/1

6
 1

3

2
0
2
0
/1

1
/1

6
 2

3

2
0
2
0
/1

1
/1

7
 0

9

2
0
2
0
/1

1
/1

7
 1

9

2
0
2
0
/1

1
/1

8
 0

5

2
0
2
0
/1

1
/1

8
 1

5

2
0
2
0
/1

1
/1

9
 0

1

2
0
2
0
/1

1
/1

9
 1

1

2
0
2
0
/1

1
/1

9
 2

1

2
0
2
0
/1

1
/2

0
 0

7

2
0
2
0
/1

1
/2

0
 1

7

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

40

50

60

70

80

90

100

(a) Arrival rate and fee per byte as func-
tions of the time.

(b) Empirical probability density func-
tion of transaction size.

(c) Empirical probability density function
of fee per byte in moderate workload con-
ditions.

(d) Empirical probability density func-
tion of fee per byte in heavy workload
conditions.

Figure 6.1: Data retrieved from the Bitcoin node.

Nowadays, this problem is only partially covered by built-in methods. Cur-
rent methods of optimal fee determination include Monte Carlo simulations as
well as history-based approaches, e.g., estimatesmartfee that is part of Bitcoin
client functionality2.

Figure 6.1a shows the arrival process intensity at the BTC Mempool and the
expected offered fees between 2020/11/15 to 2020/11/20. The plots are based
on the statistics collected on over 1.5 million transactions seen at our BTC node.

We observe that the arrival process (blue line) in BTC blockchain is subject
to high fluctuations. Moreover, the fee-per-Byte ratios of transactions (orange
line) tends to reflect the behavior of the arrival process with a delay of approxi-
mately 3 hours. This is due to the reactive nature of the current fee estimation
algorithms based on the past statistics to predict the best fee.

In contrast, the prediction queueing model that we propose is proactive, and
reacts as soon as the occupancy of the Mempool or the arrival rate grows.

Figure 6.1b shows the distribution of sizes of pending transactions in the
observed period of time. Most of the size values are located between 100 and
250 bytes which is about 70% of all pending transactions in the Mempool. The
probability of finding the transaction with greater size drops dramatically for

2https://bitcoincore.org/en/doc/0.16.0/rpc/util/estimatesmartfee

https://bitcoincore.org/en/doc/0.16.0/rpc/util/estimatesmartfee

6.3. THE QUEUEING MODEL AND ITS SOLUTION 79

sizes larger than 400 bytes.
Figures 6.1c and 6.1d show empirical probability density function of fee-per-

byte ratios for two periods of time with moderate and heavy workload conditions
respectively. The plots support the intuition that, when the load is moderate,
there is a lower competition for accessing the new blocks, hence the fee-per-Byte
ratio tends to be as small as possible. Indeed, in moderate load, almost 40% of
the transactions offer a fee per Byte just above 0 sat/B.

Conversely, in heavy load conditions (see Figure 6.1d), users offer higher
fees to solicit miners to select their transactions for inclusion in the next blocks.
The majority of the transactions have fee-per-Byte values between 50 and 100
sat/B, with a peak around 85 sat/B.

This chapter proposes a queueing model that, given the traffic intensity, the
distribution of the fee per Byte and the state of the Mempool, predicts the
statistics of the number of blocks required to confirm a transaction offering a
certain fee. Although we will mainly focus on the estimation of the expected
number of blocks for transaction confirmation, the method can be extended to
address the estimation of successive moments. The first moment can be derived
with a finite number of operations given the root of a certain polynomial, while
successive moments require the truncation of a power series and hence can be
used to obtain approximate results.

Remark 2 (The Mempool instances seen by users). Recall that every blockchain
is a peer-to-peer network where information propagates thanks to a controlled
flooding mechanism. A transaction is firstly accounted by a user and then it
is broadcasted to the others. Technically speaking, there is the possibility that
the Mempools seen by the users are not exactly the same. The Bitcoin Network
Monitor3 shows that within 15 seconds at least 90% of the nodes are ready to
announce a newly generated transaction (so they have surely received it before)
and the block propagation delay is within 2 seconds. Thus, these delays are
reasonably small to support our assumption coherently with other works in this
field [6, 31, 39, 41, 48]. Another aspect that we should bear in mind is that the
protocol does not specify which transactions a miner has to select from the Mem-
pool. However, the fact that the most widely used software for mining applies
the greedy approach on the selection of the most profitable transactions supports
our assumption.

6.3 The queueing model and its solution

In this section, we first assume that a transaction arrives at the system offering
the lowest possible fee, i.e., it will be included in a block only when all the other
transactions in the Mempool at its arrival epoch and those that will arrive
during its waiting time are confirmed.

After providing the model description and assumptions, we give a general
solution based on generating function method. This consists in four phases:

3https://www.dsn.kastel.kit.edu/bitcoin/

https://www.dsn.kastel.kit.edu/bitcoin/

80CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

1. Discretization of the continuous time Markov chain into a discrete time
one. Intuitively, this corresponds to the observation of the states of the
system immediately after each block consolidation. This is done in Section
6.3.1.

2. Derivations of the equations describing the system dynamics, i.e., the ex-
pected number of blocks to the confirmation given the initial Mempool
occupancy. This is presented in Section 6.3.2.

3. Solution of the infinite set of equations derived in point 2 by resorting
to the generating function method. This allows us to analytically derive
the average performance indices as carried out in Section 6.3.3 where a
numerical procedure for the computation of the expected confirmation
time of the transactions is presented.

4. Finally, in Section 6.3.4, we extend our results to transactions offering an
arbitrary fee.

6.3.1 Model description and notation

Transactions arrive at the Mempool according to a stationary Poisson process
with intensity λ. The generation of blocks occur at the random times t0, t1, . . .
and we have:

Pr{tn+1 − tn ≤ x} = 1− e−µx , ∀n ≥ 0 , (6.1)

i.e., the time between two consecutive block consolidations is exponentially dis-
tributed with rate µ, e.g., for BTC µ = 6 blocks per hour. Each block contains
at most B transactions and consumes all the possible transactions in the Mem-
pool, i.e., it is generated even if it is not completely full. Such behavior reflects
the the system policy.

For the moment, we assume that all the transactions offer the same fee with
the exception of a tagged transaction that offers less than all the others, i.e., it
will be processed only when there is not any other transaction to be included
in the block. The order of service of the non-tagged transactions is irrelevant.

The service policy adds the transactions to the next batch as soon as they
arrive, if some space is available. In other words, we can imagine that the
system first draws the next block consolidation time and then selects from the
Mempool B transactions (if available) to serve that may include those arrived
between the previous and the current consolidations.

Let η(t) be the number of transactions in the Mempool at time t, with
η(0) = Y , Y ≥ 1 be its occupancy at the tagged transaction arrival, including
the transaction itself.

In order to work in a discrete time setting, let:

ηn , η(tn) ,

i.e., ηn is the number of transactions in the Mempool immediately after the
consolidation of the n-th block after the tagged transaction arrival. So, our time

6.3. THE QUEUEING MODEL AND ITS SOLUTION 81

slot begins immediately after a new block generation and finishes immediately
with the consolidation of the next one. From a queueing theory perpective,
we are taking an arrival-before-service approach for the discretisation of the
system’s time (see, e.g., [45]), thus we have η0 = Y .

The collection of random variables {ηn : n ≥ 0} is a DTMC since it trivially
satisfies the Markov property [69]. Define the probability that the Mempool
will be empty after n steps, given the initial state Y as:

PnY , Pr{State 0 is reached for the first time

in exactly n transitions — η0 = Y} .
We observe that the distribution aj of the number of arrivals between the con-
solidation of two consecutive blocks is given by:

aj = µ

∫ ∞
0

(λt)j

j!
e−(λ+µ)tdt =

µ

λ+ µ

(
λ

λ+ µ

)j
,

i.e., aj , as expected by the memoryless property of the service and arrival pro-

cess, forms a geometric distribution with α , λ/(λ+ µ) and β , 1− α. Hence-
forth, we rewrite aj as:

aj = βαj .

Notice that the probability of receiving strictly less than j transactions in a time
slot is:

1−
∞∑
k=j

ak = 1− αj .

6.3.2 Solution of the model

The main result of this section is Theorem 8 which gives the expected confir-
mation time as function of the model parameters. Its proof is based on a set of
lemmata, the most important of which are presented in this section.

First, we consider the case n = 1. We may easily write P 1
j as:

P 1
j =

{
1− αB−j+1 if j ≤ B
0 if j > B .

(6.2)

Let us consider the case n > 1. The first step analysis of the DTMC allows
us to write the following equations:

Pnj =

∞∑
k=max(1,j−B)

Pn−1k ak−j+B =

∞∑
k=max(1,j−B)

Pn−1k βαk−j+B . (6.3)

For n = 2, we can easily derive P 2
j . In fact, using Equation (6.3), for j ≤ B, we

have:

P 2
j =

∞∑
k=1

P 1
kβα

k−j+B =

B∑
k=1

P 1
kβα

k−j+B = αB+1−j (1− αB(B + 1− αB)
)
.

82CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

For B + 1 ≤ j ≤ 2B, we obtain similarly:

P 2
j = 1− α2B−j+1 (1 + (1− α)(1 + 2B − j)) .

Clearly, for j > 2B, P 2
j = 0.

In general, we rewrite Equation (6.3) for n ≥ 2 as stated by the following
lemma.

Lemma 3. For n ≥ 2, the system of Equations (6.3) can be rewritten as:{
αPnj = Pnj−1 2 ≤ j ≤ B + 1

αPnj = Pnj−1 − βPn−1j−B−1 j > B + 1 .
(6.4)

Proof. Let us consider 2 ≤ j ≤ B. Using Equation (6.2), we obtain:

Pnj =

∞∑
k=1

Pn−1k βαk−j+B =
1

α
Pnj−1 .

Similarly, we have:

PnB+1 =

∞∑
k=1

Pn−1k βαk−B−1+B =
1

α
PnB .

For j > B + 1, we have:

Pnj =

∞∑
k=j−B

Pn−1k βαk−j+B =

∞∑
k=j−B−1

Pn−1k βαk−j+B − β

α
Pn−1j−B−1

=
1

α
Pnj−1 −

β

α
Pn−1j−B−1 .

Under stability condition λ < Bµ, i.e., α < B/(B + 1), the states of the
process are all positive recurrent, i.e., starting from any state j we reach state 0
with probability 1 in a finite expected time. Thus, Pnj , given j, is a probability
distribution and we can introduce its probability generating function:

Pj(w) ,
∞∑
n=1

Pnj w
n ,

where w ∈ C and |w| ≤ 1. We can multiply each equation for Pnj of System (6.4)
by wn and summing up, we obtain for 2 ≤ j ≤ B + 1:

α
(
Pj(w)− P 1

j w
)

= Pj−1(w)− P 1
j−1w . (6.5)

For j > B + 1, we have:

α
(
Pj(w)− P 1

j w
)

= Pj−1(w)− P 1
j−1w − βwPj−B−1(w) . (6.6)

6.3. THE QUEUEING MODEL AND ITS SOLUTION 83

Let us introduce the following generating function [45] for z ∈ C and |z| < 1:

P (z, w) ,
∞∑
j=1

Pj(w)zj ,

and we sum Equations (6.5) and (6.6) multiplied by zj for j ≥ 2. Thus, we
have:

∞∑
j=2

α(Pj(w)−P 1
j w)zj =

∞∑
j=2

(Pj−1(w)−P 1
j−1w)zj−βw

∞∑
j=B+2

Pj−B−1(w)zj .

This can be conveniently rewritten as:

αP (z, w)− αzP1(w)− αw
∞∑
j=1

P 1
j z

j + αwzP 1
1 = zP (z, w)

− wz
∞∑
j=1

P 1
j z

j − βwzB+1P (z, w) . (6.7)

Now, observe that:

∞∑
j=1

P 1
j z

j =

B∑
j=1

(1−αB−j+1)zj =
z
(
α− αB+1(1− z)− z + (1− α)zB+1

)
(1− z)(α− z) , h(z) .

We can simplify Equation (6.7) as:

P (z, w)(α − z + βwzB+1) = (αw − wz)h(z) + αzP1(w) − αwzP 1
1 ,

and obtain the expression for P (z, w):

P (z, w) =
w(α− z)h(z) + αzP1(w)− αwzP 1

1

α− z + βwzB+1
, (6.8)

that depends on the unknown function P1(w).

Lemma 4. The denominator of the right-hand side of Equation (6.8) has only
one zero ξ (that depends on w) in the open unitary disk if the stability condition
α < B/(B + 1) holds, |w| ≤ 1 and α 6= j/(j + 1) for j = 1, . . . , B .

Proof. We consider three cases: |w| < 1, w = 1 and, |w| = 1 ∧ w 6= 1.
Case |w| < 1. We apply Rouché’s theorem to equation z = α + βwzB+1.

Notice that zB+1, with |z| ≤ 1, is analytic in the closed unitary disk and that:

|βwzB+1| < |z − α|
on the the disk perimeter. Thus, the equation has a unique root ξ that lies in
the open unitary disk.

Case w = 1. In this case, we need to prove that the polynomial α− z+ (1−
α)zB+1 has exactly one root inside the unit disk. We resort to Theorem [18, Thm
2.1].

84CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Theorem 7 (Theorem 2.1 in [18]). Let a > b > 0 be real numbers and n > m >
0 be integers. Then, the number of zeros of bzn− azm + a− b strictly inside the
unit disk is m− gcd(m,n) if a/b ≥ n/m and m otherwise.

In our case, we have n = B + 1, m = 1, a = 1 and b = (1 − α), hence the
conditions of the theorem are trivially satisfied. Notice that α < B/B + 1 is
equivalent to (1−α)−1 < B+ 1, which implies are only m = 1 roots in the unit
disk as required.

Now, we consider the case in which |w| = 1, but w 6= 1. We restrict our
analysis to the case B > 2, since B = 1 and B = 2 can be easily considered given
the relatively simple closed-form expressions of the roots of the corresponding
polynomials of second and third degree.

Given a polynomial f(z), let us define f∗(z) as follows:

f∗(z) = znf(1/z) ,

where n is the degree of f and z denotes the conjugate of z. Let f0(z) =
α− z + (1− α)eiθzB+1, then we define the following sequence of polynomial as
in [53, Ch. X]:

fj+1 = a
(j)
0 fj(z)− a(j)n−jf∗j (z) ,

for j = 0, . . . , B, where a
(j)
k denotes the coefficient of the term zk in fj . Notice

that the degree of fj+1 is always strictly lower than that of fj and that, in our

case, a
(j)
k ∈ R for j = 0, . . . , B + 1, hence we can ignore the conjugate on a

(j)
0 .

Let Pk = a
(1)
0 a

(2)
0 · · · a

(k)
0 , with k = 1, . . . , B + 1, then the number of roots

inside the unit disk is given by the number of negative elements in the collection
P1, . . . , PB+1 [53, Thm 42,1].

Lemma 5. Let Ψj,α , (j + 1)α− j for j = 1, 2, . . . Then, we have:

a
(1)
0 = Ψ1,α , a

(1)
1 = −α , a(1)B = (1− α)eiθ

and, for 2 ≤ j < B:

a
(j)
0 = α2j−2

Ψj,α

j−2∏
k=1

Ψ2j−2−k

k,α , (6.9)

a
(j)
1 = −α2j−2

Ψj−1,α

j−2∏
k=1

Ψ2j−2−k

k,α , a
(j)
B+1−j = α2j−2

(1− α)

j−2∏
k=1

Ψ2j−2−k

k,α eiθ

where all the unspecified coefficients are set to 0.

Proof of Lemma 5. For j = 1, we have:

a
(1)
0 = α2 − (1− α)2 = 2α− 1 ,

a
(1)
1 = α(−1) = −α, and α

(1)
B = −(−1(1 − α)eiθ) = (1 − α)eiθ . For j ≥ 2, we

proceed by induction taking the case j = 2 as base. Indeed, we have:

a
(2)
0 = [a

(1)
0]2 − a(1)B a

(1)
B = α(3α− 2) = αΨ2,α ,

6.3. THE QUEUEING MODEL AND ITS SOLUTION 85

as required. The expressions of the two remaining coefficients follow from their
definitions in a similar way.

Consider now j > 2 and let us determine a
(j+1)
0 using the inductive hypoth-

esis. We have:

a
(j+1)
0 = [a

(j)
0]2 − a(j)N−j+1a

(j)
B−j+1

=

[
α2j−2

Ψj,α

j−2∏
k=1

Ψ2j−2−k

k,α

]2
−
[
α2j−2

(1− α)

j−2∏
k=1

Ψ2j−2−k

k,α

]2

=

[
α2j−2

j−2∏
k=1

Ψ2j−2−k

k,α (Ψj,α − 1 + α)

][
α2j−2

j−2∏
k=1

Ψ2j−2−k

k,α (Ψj,α + 1− α)

]
.

Notice that Ψj,α − 1 + α = Ψj+1,α and that Ψj,α − 1 + α = Ψj−1,α, hence we
can write:

a
(j+1)
0 = α2j−1

Ψj+1,αΨj−1,α

j−2∏
k=1

Ψ2j−1−k

k,α = α2j−1

Ψj+1,α

j−1∏
k=1

Ψ2j−1−k

k,α ,

as required.

Let us consider a
(j+1)
1 whose computation is:

a
(j+1)
1 = a

(j)
0 a

(j)
1

=

[
α2j−2

Ψj,α

j−2∏
k=1

Ψ2j−2−k

k,α

][
−α2j−2

Ψj−1,α

j−2∏
k=1

Ψ2j−2−k

k,α

]

= −α2j−1

Ψj,αΨj−1,α

j−2∏
k=1

Ψ2j−1−k

k−1,α

= −α2j−1

Ψj,α

j−1∏
k=1

Ψ2j−1−k

k−1,α ,

as required. Finally, we have:

a
(j+1)
B−j = −a(j)B+1−ja

(j)
1

= −
[
α2j−2

(1− α)

j−2∏
k=1

Ψ2j−2−k

k,α eiθ

][
−α2j−2

Ψj−1,α

j−2∏
k=1

Ψ2j−2−k

k,α

]

= α2j−1

(1− α)Ψj−1,α

j−2∏
k=1

Ψ2j−1−k

k,α eiθ

= α2j−1

(1− α)

j−1∏
k=1

Ψ2j−1−k

k,α eiθ ,

as required. It is easy to notice that all the remaining coefficients are zeros by
construction.

86CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Observe that fB+1(z) is a constant, and the following lemma gives its value.

Lemma 6. For j = B and j = B + 1 we have the following coefficients:

a
(B)
0 = α2B−2

ΨB,α

B−2∏
k=1

Ψ2B−2−k

k,α , (6.10)

a
(B)
1 = α2B−2

B−2∏
k=1

Ψ2B−2−k

k,α

(
(1− α)eiθ −ΨB−1,α

)
, (6.11)

a
(B+1)
0 = 2α2B−1

(1− α)ΨB−1,α(cos θ − 1)

B−2∏
k=1

Ψ2B−1−k

k,α . (6.12)

Proof of Lemma 6. The derivation of Equations (6.10) and (6.12) follows the
same lines of Lemma 5.

For Equation (6.11), we have:

a
(B+1)
0 = [a

(B)
0]2 − [a

(B)
1 a

(B)
1] = α2B−1

Ψ2
B,α

B−2∏
k=1

Ψ2B−1−k

k,α

−
(
α2B−2

B−2∏
k=1

Ψ2B−2−k

k,α ((1− α) cos θ −ΨB−1,α + i(1− α) sin θ)

)

×
(
α2B−2

B−2∏
k=1

Ψ2B−2−k

k,α ((1− α) cos θ −ΨB−1,α − i(1− α) sin θ)

)

= α2B−1

Ψ2
B,α

B−2∏
k=1

Ψ2B−1−k

k,α − α2B−1
B−2∏
k=1

Ψ2B−1−k

k,α

×
(
(1− α)2 cos2 θ + Ψ2

B−1,α − 2ΨB−1,α(1− α) cos θ + (1− α)2 sin2 θ
)
.

By collecting the common factors, we simplify the expression to:

α2B−1
B−2∏
k=1

Ψ2B−1−k

k,α

(
Ψ2
B,α − (1− α)2 −Ψ2

B−1,α + 2ΨB−1,α

× (1− α) cos θ
)

= α2B−1
B−2∏
k=1

Ψ2B−1−k

k,α

×
(
2(1− α)2B − 1 + α2 − (1 + α2 − 2α) + 2ΨB−1,α(1− α) cos θ

)
= 2α2B−1

B−2∏
k=1

Ψ2B−1−k

k,α

(
(1− α)2B − 1 + α+ ΨB−1,α(1− α) cos θ

)
= 2α2B−1

(1− α)ΨB−1,α(cos θ − 1)

B−2∏
k=1

Ψ2B−1−k

k,α ,

as required.

6.3. THE QUEUEING MODEL AND ITS SOLUTION 87

To conclude our proof, we resort to Marden’s theorem [53, Thm 42,1]. Con-
sider the following sequence of products:

Pj =

j∏
k=1

a
(j)
0 , j = 1, . . . , B + 1 .

If they are all different from zeros, the number of roots of f0(z) inside the unit
circle is equal to the number of negative elements in the collection P1, . . . , PB+1.
Assume now that α < B/(B+ 1), with α 6= j/(j+ 1) for all j = 1, . . . B−1. We

begin by noticing that all the coefficients are not null, in particular a
(B+1)
0 is

not null because we are considering w 6= 1, and hence θ 6= 2kπ for all k ∈ Z. In
order to have a unique root of the polynomial inside the unit disk, we must have
that if Pj∗ is the first negative element of the sequence, then either j∗ = B + 1

or a
(j∗+1)
0 < 0 and a

(h)
0 > 0 for all h > j∗ + 1. Assume α < B/(B + 1) and let

us write:(
0,

B

B + 1

)
\
{

j

j + n
, j = 1, 2, . . . , B − 1

}
=

(
0,

1

2

)
∪
(

j

j + 1
,
j + 1

j + 2

)
· · · ∪

(
B − 1

B
,

B

B + 1

)
.

Let Ij be the interval ((j − 1)/j, j/(j + 1)) for 1 ≤ j ≤ B and suppose α ∈ Ij .
Notice that all Ψk,α > 0 if k < j, while the remaining ones are negative.
Therefore, P1, P2, . . . Pj−1 are positive and j∗ = j is the smallest index in the

sequence such that Pj∗ < 0. Suppose j < B observe that a
(j+1)
0 < 0 since

in Equation (6.9) we compute the product of Ψj+1, α which is negative and
all the previous terms excluding Ψj,α while are positive by assumption. Thus
Pj+1 < 0. All the remaining elements of the sequence, i.e., for k > +1 are
positive because they contain the product of two negative Ψs. In fact (6.12)
because cos θ − 1 < 0, ΨB−1,α < 0 and all the remaining factors in the product
are raised at a positive power of 2. Now, assume that j = B and observe that

a
(B)
0 is negative by Equation (6.10). Also a

(B+1)
0 is negative and thus PB < 0

and PB+1 > 0. This concludes the proof.

It is worth noting that Lemma 4 does not follow from an immediate applica-
tion of Rouché theorem as it would be in the domain |w| < 1 and |z| ≤ 1. The
lemma requires us to avoid some values of α. In practice, this is not a problem
given the continuous nature of α, and we will deal with them by resorting to a
continuity argument on the performance indices.

Since, by definition, P (z, w), converges for all the values |w| ≤ 1 and |z| < 1,
ξ must also be a zero of the numerator of Equation (6.8). Thus, we can express
P1(w) as:

P1(w) =
αwξP 1

1 − w(α− ξ)h(ξ)

αξ
.

88CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Let us introduce an auxiliary function:

f(ξ) ,
αwξP 1

1 − w(α− ξ)h(ξ)

αξ
, (6.13)

where w = (ξ − α)/(βξB+1). By Lagrange’s theorem [78], we can rewrite f(ξ)
as:

f(ξ) = f(α) +

∞∑
t=1

(βw)t

t!

[
∂t−1

∂xt−1

(
f ′(x)xt(B+1)

)]
x=α

. (6.14)

We can easily compute f(α) by substitution using Definition (6.13) that gives
0. We also have:

f ′(x) =
−βxB+1 +Bx2 + (β −B(α+ 1))x+ αB

xB+1α(1− x)2
.

We may conveniently rewrite f ′(x)xt(B+1) as follows:

f ′(x)xt(B+1) = −β
α

xt(B+1)

(1− x)2
+
B

α

x(t−1)(B+1)+2

(1− x)2

+
β −B(α+ 1)

α

x(t−1)(B+1)+1

(1− x)2
+B

x(t−1)(B+1)

(1− x)2
. (6.15)

Lemma 7. Let:

g(t) ,
∂t−1

∂xt−1

(
f ′(x)xt(B+1)

)∣∣∣∣
x=α

,

then, we have:

g(1) =
1− αB
1− α ,

and, for t ≥ 2:

g(t) = αB(t−1) (Bα− βB2 + β(1 +B)2t
) [(t− 1)(B + 1)]!

[B(t− 1)]!

− αB(t−1)−1β(α− βB)
[B(t− 1) + t+ 1]!

[B(t− 1)]!(t+ 1)
2F1

[
1 −B(t− 1)

t+ 2
;−β

α

]
− αBt−2βB [t(B + 1)]!

(Bt)!(t+ 1)
2F1

[
2 1−Bt
t+ 2

;−β
α

]
, (6.16)

where 2F1 is the Gaussian hypergeometric function.

Therefore, we can write:

P1(w) = (1− αB)w +

∞∑
t=2

βtwt

t!
g(t) . (6.17)

By taking the derivative of Equation (6.17) evaluated in w = 1, we obtain
the factorial moments of the distribution of the number of batches that have

6.3. THE QUEUEING MODEL AND ITS SOLUTION 89

to be served in order to reach the absorption starting from state 1 (see, e.g.,
[45]). In general, the n-th factorial moment of the distribution of the number of
consolidations required to serve the tagged transaction when the queue contains
Y − 1 jobs at the arrival time (Y ≥ 1) is:

MY
n =

1

Y !

∂Y

∂zY

(
∂nP (z, w)

∂wn

∣∣∣∣
w=1

)∣∣∣∣
z=0

.

However, since we do not have a closed form expression for P1(w), this expres-
sion should be considered to obtain an approximation of the factorial moments
because Series (6.17) needs to be truncated. In Section 6.3.3, we show that the
first moment can be obtained in an exact way thanks to a different approach to
the computation of P ′1(1) whose only numerical step consists in the computation
of the real root of a polynomial inside the unit disk.

6.3.3 Numerical solution for the mean confirmation time

In this section, we derive the expression for the expected number of blocks that
have to be consolidated before the tagged transaction is served.

In order to obtain MY
1 , we are interested in the derivation of P ′1(1), i.e., the

expected number of steps to reach the absorbing state when the initial state is
1. Equation (6.17) leads to the following expression:

P ′1(1) = 1− αB +

∞∑
t=2

βt

(t− 1)!
g(t) ,

that unfortunately does not admit a known closed-form expression. However,
P ′1(1) can be derived in an alternative way that is more computationally efficient.
Indeed, P ′1(1) corresponds to the expected number of batches served during a
busy period of the M/MB/1 queueing system. The stationary distribution of
this queueing system is well-known [5,6] and has a geometric distribution:

πi = (1− ρ̇)ρ̇i ,

for each state i ≥ 0, where ρ̇ is the root inside the unit disk (which is known to
be unique, real and positive in stability) of the polynomial:

µρB+1 − (λ+ µ)ρ+ λ .

Notice that ρ = 1 is a root of the polynomial and there exists only one real root
in [0, 1). Therefore, ρ̇ can be efficiently numerically derived thanks, e.g., to the
bisection method.

The expected duration of the busy period can hence be obtained by observing
that in steady-state π0 represents the ratio between the expected idle period
lengths and the sum of the expected idle and busy period lengths, thus obtaining:

P ′1(1) =

(
ρ̇

1− ρ̇

)
1

λ
=

(
ρ̇

1− ρ̇

)
1− α
α

1

µ
.

90CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Indeed, the expected number of consolidated blocks during an idle/busy
period must be proportional to their length. To easily see this, consider the
epoch of beginning of an idle period (a renewal instant). By the memoryless
property of the timers involved, the expected number of consolidated blocks
during the idle period is µ/λ. Therefore, for a busy period of expected length
1/b, the expected number of blocks must be µ/b since the process of block
consolidation is a homogenoeus Poisson process with rate µ.

We are now in position to state the main theorem that allows us to study this
queueing system (see Theorem 8 below). Further factorial moments MY

k , for

k > 1, may be derived in a similar way, although they will depend on P
(k)
1 (1),

i.e., on the knowledge of the factorial moments greater than 1 for the busy period
of the M/MB/1 queueing system or alternatively, they may be approximated
with a controlled truncation of the derivatives of the Series (6.17).

Theorem 8. Let MY
1 be the expected number of steps to reach the absorbing

state when the queue satisfies the stability condition starting from state Y . Then,
the following recursive scheme can be used to derive MY

1 :{
M1

1 = P ′1(1)

MY+1
1 = MY

1 + TY −1

αY −1

(
M1

1 + β
α

)
− TY

αY M
1
1 ,

(6.18)

where:

TY ,

b Y
B+1 c∑
c=0

(−1)c+1

(
Y −Bc

c

)
αBcβc . (6.19)

Proof. Let us consider P (z, w) as defined by Equation (6.8). Simple algebraic
computations show that:

M1(z) ,
∂P (z, w)

∂w

∣∣∣∣
w=1

= β
z2

(1− z)(z − α− βzB+1)
−αM1

1

z

z − α− βzB+1
,

(6.20)

where M1
1 = P ′1(1) is the expected consolidation time given that the system

contains one transaction. Successive derivatives of M1(z) evaluated in z = 0
give the expected consolidation times conditioned to the number of transactions
present in the queue at the arrival epoch (including that just arrived):

MY
1 =

1

Y !

∂YM1(z)

∂zY

∣∣∣∣
z=0

.

Let us consider function:

g1(z) ,
z2

(1− z)(z − α− βzB+1)
.

6.3. THE QUEUEING MODEL AND ITS SOLUTION 91

We can show that, for Y ≥ 2:

∂Y g1(z)

∂zY
=

Y∑
k1=0

Y∑
k2=0

(−1)k1

(1− z)k+1
z2−k2

∂Y−k1−k2

∂zY−k1−k2
1

z − α− βzB+1

× (−1)k1k1!(δk2=0 + 2δk2=1 + 2δk2=2)

(
Y

k1, k2, Y − k1 − k2

)
, (6.21)

where the multinomial coefficient with negative entries is assumed to be 0. Since
we evaluate this derivative in 0, we have that the only non-zero term of the inner
sum is k2 = 2, thus:

∂Y g1(z)

∂zY

∣∣∣∣
z=0

=

Y∑
k1=0

∂Y−k1−2

∂zY−k1−2
1

z − α− βzB+1

∣∣∣∣
z=0

2k1!
Y !

k1!2!(Y − k1 − 2)!

=

Y−2∑
k1=0

Y !

(Y − k1 − 2)!

∂Y−k1−2

∂zY−k1−2
1

z − α− βzB+1

∣∣∣∣
z=0

.

The following lemma allows us to compute the n-th order derivative that appears
in Equation (6.21) evaluated for z = 0:

Lemma 8. The following relation holds:

∂k

∂zk
1

z − α− βzB+1

∣∣∣∣
z=0

=
k!

αk+1

k∑
`=0

(−1)`+k+1

(
k + 1

`+ 1

)

×
b k
B+1 c∑

c=d k−`
B e

(
`

k − (B + 1)c, `− k +Bc, c

)
(−α)Bc(−β)c . (6.22)

Proof. We use the following identity for the derivative [29]:

∂k

∂zk
1

f(z)
=

k∑
`=0

(−1)`
(
k + 1

`+ 1

)
1

[f(z)]`+1

∂k

zk
[f(z)]` , (6.23)

where, in our case, f(z) = z − α − βzB+1. The expansion of the power of this
trinomial can be obtained as follows:

(z − α− βzB+1)` =
∑
a,b,c

a+b+c=`

(
`

a, b, c

)
za(−α)b(−β)cza+(B+1)c ,

where a, b, c are non-negative indices. The n-th order derivative of this expres-
sion is:

∂k(z − α− βzB+1)`

∂zk
=

∑
a,b,c

a+b+c=`

(
`

a, b, c

)
(a+ (B + 1)c)!

(a+ (B + 1)c− k)!

× za(−α)b(−β)cza+(B+1)c−kδk≤a+(B+1)c .

92CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Since we are interested in evaluating this expression only for z = 0, we have
that the only non-zero terms of the sum are those such that a+ (B + 1)c = k,
i.e., a = k − (B + 1)c. We can write:

∂k(z − α− βzB+1)`

∂zk

∣∣∣∣
z=0

=

b k
B+1 c∑

c=d k−`
B e

(
`

k − (B + 1)c, `− k +Bc, c

)
× (−α)`−k+Bc(−β)ck! .

Thus, Equation (6.23), evaluated for z = 0, becomes:

k∑
`=0

(−1)`
(
k + 1

`+ 1

)
1

(−α)`+1

b k
B+1 c∑

c=d k−j
B e

(
`

k − (B + 1)c, `− k +Bc, c

)
× (−α)`−k+Bc(−β)ck! .

This can be rewritten as in Equation (6.22) as required.

The following Lemma is used to simplify Equation (6.22) and then derive a
recursive expression for the computation of the first moment.

Lemma 9. Equation (6.22) can be rewritten as:

∂k

∂zk
1

z − α− βzB+1

∣∣∣∣
z=0

=
k!

αk+1

b k
B+1 c∑
c=0

(−1)c+1

(
k −Bc
c

)
αBcβc

 . (6.24)

Proof. By Lemma 8, we have:

∂k

∂zk
1

z − α− βzB+1

∣∣∣∣
z=0

=
k!

αk+1

k∑
`=0

(−1)`+k+1

(
k + 1

`+ 1

)

×
b k
B+1 c∑

c=d k−`
B e

(
`

k − (B + 1)c, `− k +Bc, c

)
(−α)Bc(−β)c

=
k!

αk+1

b k
B+1 c∑
c=0

(−α)Bc(−β)c
k∑

`=k−Bc

(−1)`+k+1

(
k + 1

`+ 1

)
×
(

`

k − (B + 1)c, `− k +Bc, c

)

=
k!

αk+1

(
− 1 +

b k
B+1 c∑
c=1

(−1)c+1(α)Bc(β)c
k∑

`=k−Bc

(−1)`+k+Bc
(
k + 1

`+ 1

)

×
(

`

k − (B + 1)c, `− k +Bc, c

))
.

6.3. THE QUEUEING MODEL AND ITS SOLUTION 93

We show now that, for 1 ≤ c ≤ b k
B+1c,

k∑
`=k−Bc

(−1)`+k+Bc
(
k + 1

`+ 1

)(
`

k − (B + 1)c, `− k +Bc, c

)
=

(
k −Bc
c

)
.

Indeed,

k∑
`=k−Bc

(−1)`+k+Bc
(
k + 1

`+ 1

)(
`

k − (B + 1)c, `− k +Bc, c

)

=

Bc∑
h=0

(−1)h+2k

(
k + 1

h+ k −Bc+ 1

)(
h+ k −Bc

k − (B + 1)c, h, c

)

=

Bc∑
h=0

(−1)h
(

k + 1

h+ k −Bc+ 1

)(
h+ k −Bc

k − (B + 1)c, h, c

)

=

(
k −Bc
c

)(
k

Bc

)
(k + 1)

Bc∑
h=0

(−1)h
1

(h+ k −Bc+ 1)

(
Bc

h

)
.

Now, by applying the following identity [29]:

a∑
h=0

(−1)h
1

(h+ x)

(
a

h

)
=
a!(x− 1)!

(a+ x)!
,

we obtain:(
k −Bc
c

)(
k

Bc

)
(k + 1)

Bc∑
h=0

(−1)h
1

(h+ k −Bc+ 1)

(
Bc

h

)
=

(
k −Bc
c

)(
k

Bc

)
(k + 1)

(Bc)!(k −Bc)!
(k + 1)!

=

(
k −Bc
c

)
.

This concludes the proof of the Lemma.

Let us consider again the computation of the Y -th order derivatives of g1(z)
evaluated in 0. We can write:

∂Y g1(z)

∂zY

∣∣∣∣
z=0

=

Y−2∑
k1=0

Y !

αY−k1−1

bY −k1
B+1 c∑
c=0

(−1)c+1

(
Y − k1 −Bc

c

)
αBcβc ,

and by rearranging the sum indices:

∂Y g1(z)

∂zY

∣∣∣∣
z=0

= Y !

Y−2∑
k1=0

1

αk1+1

b k1
B+1 c∑
c=0

(−1)c+1

(
k1 −Bc

c

)
αBcβc .

94CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Now, we consider the second part of Equation (6.20):

g2(z) ,
z

z − α− βzB+1
.

In this case, we have:

∂Y g2(z)

∂zY
= Y

∂Y−1

∂zY−1
1

z − α− βzB+1
+ z

∂Y

∂zY
1

z − α− βzB+1
. (6.25)

Since we need to evaluate the derivative in z = 0, we obtain:

∂Y g2(z)

∂zY

∣∣∣∣
z=0

= Y
(Y − 1)!

αY

bY −1
B+1 c∑
c=0

(−1)c+1

(
Y − 1−Bc

c

)
αBcβc

=
Y !

αY

bY −1
B+1 c∑
c=0

(−1)c+1

(
Y − 1−Bc

c

)
αBcβc .

In conclusion, for Y ≥ 2:

MY
1 = β

Y−2∑
k1=0

1

αk1+1

b k1
B+1 c∑
c=0

(−1)c+1

(
k1 −Bc

c

)
αBcβc

− M1
1

αY−1

bY −1
B+1 c∑
c=0

(−1)c+1

(
Y − 1−Bc

c

)
αBcβc . (6.26)

Let us call:

TY ,

b Y
B+1 c∑
c=0

(−1)c+1

(
Y −Bc

c

)
αBcβc ,

then we can write for Y ≥ 1:

MY+1
1 = MY

1 +
M1

1

αY−1
TY−1 −

M1
1

αj
TY +

β

αY
TY−1

= MY
1 +

TY−1
αY−1

(
M1

1 +
β

α

)
− TY
αY

M1
1 ,

as required.

Remark 3. In this remark, we discuss the numerical stability and complexity
of the recursive algorithm that uses the equations of Theorem 8 to compute the
average time to absorption.

We first notice that the binomial coefficient in Equation (6.19) can be com-
puted rather easily since index c ranges between 0 and bY/(B + 1)c. Thus, in
practice, the lower index is much smaller than the upper one and when it grows,

6.3. THE QUEUEING MODEL AND ITS SOLUTION 95

the upper one decreases quickly. Consequently, in our experiments we did not
need to resort to Stirling’s approximation.

Conversely, some problems of numerical instability may be caused by the
subtraction present in Equation (6.18). In fact, for low values of α, that trans-
lates in very low workload intensity, the recursive scheme becomes numerically
unstable. This reflects the fact that for very low α, we have λ → 0 and hence
MY

1 becomes a step function. In our experiments, we have not observed these
problems for load factors of the system higher than 0.2. It can be assumed as
a general behavior. On the other hand, when the arrival process is very low,
the prediction of the expected confirmation time may be simply approximated by
dividing Y by the block size and then by taking the upper integer.

Finally, the computational complexity of the recursive scheme is bounded by
O(Y 2).

Summarizing, Theorem 8 let us define the number of block consolidations
that take place until the transaction with the lowest fee density is included in
a new block considering that there are exactly Y transactions in the Mempool
at the time of the transaction arrival. More precisely, the theorem provides
the first moment that is the mean value while Equation (6.17) does so for the
following moments instead. The latter one with approximation can be of use to
determine variance and other crucial parameters.

The following subsection will describe the scenario when the tagged trans-
action have a fee-per-Byte ratio other than the lowest one.

6.3.4 Extension of the model to transactions with arbi-
trary fee

So far, we have assumed that the tagged transaction offers the lowest fee per
Byte in the system. Now, we remove this assumption. Assume that f is the
fee offered by the tagged transaction, and F1, F2, . . . are the continuous i.i.d.
random variables associated with the fees per Byte offered by all the other
transactions. Fi are independent of the arrival times; therefore the arrival pro-
cess formed by filtering out the transactions with fee lower than f , i.e., with
probability Pr{Fi < f}, is still a Poisson process with intensity:

λf = λF (f) ,

where F is the complementary cumulative density function (CCDF) of Fi. Now,
let us consider the occupancy of Mempool. If we assume that there are Y
pending transactions at the tagged transaction arrival, then we can count how
many of these transactions offer a fee per byte higher than f . Let us call this
number Yf . Notice that the fee offered by the transactions in the Mempool is
publicly known, thus Yf is deterministic.

A transaction offering a fee per Byte f , on average, has to wait a number of

blocks that is given by M
Yf

1 in a queueing system where the batch size is still
B and the arrival rate is λF (f). We will call λF (f) and ρF (f) the perceived
arrival rate and load factor, respectively, where ρ = λ/(Bµ).

96CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Figure 6.2: Expected number of blocks for the confirmation with different num-
ber of transactions in the MemPool as function of load factor.

If F is approximated by a discrete distribution, we have to deal with ties.
In case of ties, transactions are usually served according to their arrival order,
thus in determining Yf , we must count all the transactions with a fee per Byte
higher or equal to f , while in determining the arrival intensity we count only
the transactions with strictly higher values.

In the next section, we use the data presented in Figures 6.1c and 6.1d to
calculate the corresponding CCDFs that allow us to parameterize the model
and carry out the numerical evaluation. Intuitively, by increasing the offered
fee per Byte f , the users obtain two major benefits: (i) the reduction of the
perceived occupancy in the Mempool and (ii) the reduction of the intensity of the
perceived arrival process.

6.4 Numerical evaluation

In this section, we show some numerical experiments with our model and com-
ment on the insights that they reveal on the system under study. Moreover, we
resort to Monte Carlo simulation to test the robustness of the most important
assumptions, and to a trace-driven simulation to compare the model predictions
with real data.

6.4.1 Impact of the perceived load factor on the expected
confirmation time

The perceived load factor depends on the fee offered by a transaction. In this
set of experiments, we study its impact on the expected consolidation delay.

Figure 6.2 shows the impact of the perceived load factor on the expected
confirmation delay for different initial Mempool sizes. The figure reveals several

6.4. NUMERICAL EVALUATION 97

insights about the system that we are studying. The first is that the initial
Mempool size is very important to determine the average confirmation time,
especially in heavy load conditions. This is due to the fact that, in order to
serve the backlog found at the tagged transaction arrival time t0, the Mempool
accumulates the transactions arriving after t0 but before the tagged transac-
tion’s confirmation instant. This creates an unfavourable working condition
that moves the expected delay from 10 to 32 block consolidations in the cases
of 1 or 3, 000 transactions in the Mempool, under a load factor of 0.95.

This supports the idea that, in heavy load, the knowledge of the initial
Mempool state is crucial for an accurate prediction of the expected confirmation
delay, and this is a novelty of our queueing model with respect to the state of
the art.

Another important observation is that expected confirmation time tends
to grow to infinity as the load factor approaches 1. This is explained by the
fact that when ρ ≥ 1, the Markov chain underlying the model is not positive
recurrent; therefore, starting from any initial state, there is a positive probability
of having an infinite consolidation delay. In chapter 8 we study the model to
determine the probability of confirmation in case of ρ ≥ 1.

6.4.2 Impact of the initial Mempool state on the expected
confirmation time

In the previous experiment, we have already discussed the importance of the
Mempool state at the tagged transaction arrival. This observation is even more
evident thanks to the plots of Figure 6.3a. It is interesting to observe that the
function describing the expected confirmation delay given the initial number of
pending transactions has abrupt changes in its growth for values corresponding
to integer multiples of the maximum block capacity, which is in our case 2300
transactions. This is clearly shown by Figures 6.3b, 6.3c and 6.3d. This char-
acteristic is less evident with higher load factors, and, if we assume the limiting
case λ→ 0, this function becomes a step function with unit increase at B, 2B,
3B and so on.

6.4.3 Impact of the transaction fee on the expected con-
firmation time

From a practical point of view, the main goal of the model is that of supporting
the decision on which fee to offer to confirm a transaction with a given expected
delay. Figures 6.4a and 6.4b show the expected confirmation delay as function
of the offered fee for the tagged transaction, in moderate and heavy load at the
time of initial transaction arrival to Mempool. For the plot of Figure 6.4a, we
have used the fee distribution of Figure 6.1c, while for that of Figure 6.4b we
have used the distribution of Figure 6.1d. We should bear in mind that when
we increase the offered fee we reduce both the perceived arrival rate and the
occupancy of the Mempool. This explains the fast decrease of the expected
confirmation delay shown in the plots. In case of moderate load, with 85 sat/B

98CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45

50

(a) Expected number of blocks for the
confirmation as a function of number of
initially pending transactions for different
load factors.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

1.5

2

2.5

3

3.5

(b) Expected number of blocks for the
confirmation as a function of number of
initially pending transactions for ρ = 0.2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

1.5

2

2.5

3

3.5

4

4.5

(c) Expected number of blocks for the
confirmation as a function of number of
initially pending transactions for ρ = 0.4.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

6

7

(d) Expected number of blocks for the
confirmation as a function of number of
initially pending transactions for ρ = 0.6.

Figure 6.3: Impact of the initial Mempool size on the expected confirmation
delay.

5 15 25 35 45 55 65 75 85 95
0

2

4

6

8

10

12

14

16

(a) Expected number of blocks for the
confirmation as a function of fee per Byte
in moderate workload conditions.

5 15 25 35 45 55 65 75 85 95 105 115
0

25

50

75

100

125

150

175

200

225

(b) Expected number of blocks for the
confirmation as a function of fee per Byte
in heavy workload conditions.

Figure 6.4: Expected confirmation delay for different transaction fees per Byte.

6.4. NUMERICAL EVALUATION 99

we reach an expected confirmation delay close to 1 block, while higher values
are required in case of heavy load.

This observation is coherent with the distribution of the offered fees that we
measured. In fact, in moderate load, 85 sat/B are sufficient to be confirmed
quickly, while for heavy load one needs to almost double this offer.

6.4.4 Validation of the model

In this subsection, we present some experiments aimed at showing the robustness
of the model. We answer for the following three questions:

1. Is it accurate to estimate the expected confirmation delay by considering
a blockchain with smaller block size but same load factor?

2. Does the replacement of a random block size with its mean have a strong
impact on the expected consolidation delay?

3. Are the assumptions on the transaction arrival process robust with respect
to the real system?

In order to answer these questions, we resort to Monte Carlo simulations
whose data (e.g., transaction fees, arrival stream, transaction sizes) are retrieved
from the real BTC network. Unfortunately, real measurements on the confirma-
tion delay conditioned to the state of the Mempool, distribution of the offered
fees and arrival rate are not possible because most of these information are not
present in the blockchain logs.

1. Re-scaling of the block size

Currently, the BTC blockchain block can host on average approximately 2, 300
transactions. Other blockchain networks, as that of Bitcoin cash, allow for
bigger blocks and hence there is space for more transactions.

If we imagine to cluster the transactions with approximately the same fee
per byte into macro-transactions, we simplify the model by considering smaller
blocks as well as a statistically smaller population in the Mempool. However,
we can maintain an identical load factor. Clearly, the modified system is an
approximation of the original one, nevertheless it is easier to study.

In Figure 6.5, we show the relative error measured by the computation of
M1

1 and M20000
1 for the re-scaled block sizes B. We can see that the tenfold size

downscale from B = 2, 300 to B = 230 produces practically indistinguishable
results from the original model, while the relative error is more evident for
smaller block sizes.

We conclude that, in the case of the BTC system, in order to speed up the
computations for practical purposes, the block size can be safely re-scaled by
a factor of 10 without losing significant precision in the obtained performance
index.

100CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
el

at
iv

e
er

ro
r

[%
]

(a) Relative error on the computation of
M1

1 obtained by re-scaling the block size.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

R
el

at
iv

e
er

ro
r

[%
]

(b) Relative error on the computation of
M20000

1 obtained by re-scaling the block
size.

Figure 6.5: Analysis of the relative error obtained by re-scaling.

ρ Model Simulation Relative error %
0.4 1.1205 1.1234± 3 · 10−4 0.26
0.6 1.4803 1.4813± 3 · 10−4 0.073
0.8 2.6937 2.6728± 3 · 10−4 0.78
0.9 5.1808 5.0341± 1.5 · 10−2 2.91

Table 6.1: Comparison of M1
1 obtained analytically with fixed block size and

simulation estimates with random block size. Confidence intervals are at 98%
based on 15 independent experiments.

6.4. NUMERICAL EVALUATION 101

2. Robustness of the deterministic maximum block size assumption

In the model of Section 6.3, we assume that B is fixed. As shown in Figure 6.3b,
the transaction size may vary and hence the maximum capacity of a block is, in
practice, a random variable. In this experiment, we aim at assessing the error
in the computation of M1

1 that we commit using our simplifying assumption,
then from M1

1 we can derive all the other MY
1 . Thus, for this experiment,

for each transaction, we sample its size from the empirical distribution shown
in Figure 6.3b and proceed by selecting from the Mempool the largest amount
of transactions (ordered by offered fee per Byte in descending order) until we
reach the maximum block size of 1 MB. In this process, we take into account
technicalities such as Segwit transactions, i.e., the possibility of transactions to
store part of their information outside the block (and hence allowing a larger
number of elements in the block).

The model results are compared with estimates obtained with Monte Carlo
simulation (see Table 6.1). The simulations consist of 15 independent experi-
ments each of which consists of 106 independent runs.

Indeed, the relative error remains below 3% and is more evident in heavy
load. What is more, the accuracy is essentially maintained even for larger values
of Y . As we consider an initial Mempool size of 20, 000 transactions and a load
factor of ρ = 0.9, the model predicts that expected consolidation delay is 91.6
blocks while the Monte Carlo simulation using transaction sizes taken from real
data estimates 87.08 with an error of 5.1%. Notice that the stochastic simulation
with fixed block size gives 91.44, fully confirming the model prediction.

A relative error of 5.1% on 87.08 blocks is widely tolerable, since 87 blocks
require 14 hours on average to be consolidated, and the introduced noise, e.g.,
by the fluctuation of the arrival rate, surely has a higher impact. Thus, we
conclude that considering the queueing model with random sized batches is
clearly an intriguing mathematical problem, yet it does not significantly improve
the applicability of the results.

3. Comparison with trace-driven simulation

So far, we have assumed that the arrival process is a time-homogeneous Poisson
process with intensity λ. In this experiment, we evaluate the accuracy of the
model prediction by resorting to trace-driven Monte Carlo simulation. To this
aim, we have collected the arrival timestamps of the transactions for 5 days in
the BTC mining node. Starting from a certain t0 in the collection, we estimate
the arrival rate measured in the interval [t0 − 7200, t0), where time units are
seconds. The generation times of blocks and the number of transactions that
they contain are exponentially distributed with mean 600s and obtained from
the distribution of Figure 6.3b, respectively. Offered fees per byte are sampled
from the distributions depicted by Figure 6.1d since we are interested in studying
the system in heavy load. The initial number of transactions in the Mempool
is determined according to the offered fee: if with the lowest fee we run an
experiment with Y0 transactions in the Mempool, we assume that Yf = F (f)Y0.

102CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

Notice that the trace-driven arrival stream is the same for all the experiments.
This is due to the difficulty of finding a sufficiently large set of initial times in
our time series that recreate the same initial conditions.

The first experiment is done by measuring λ = 3.21 transactions per second,
i.e., ρ ' 0.85. In this case, transactions offering 0 sat/B4 are almost sure
to be confirmed. We assume that the Mempool contains 6, 000 transactions.
Figure 6.7a shows the model predictions and the simulation estimates assuming
that fees of 0, 50 or 100 sat/B are offered. We can see that, in these cases, there
is an excellent agreement among the data.

In order to stress our model, we consider a situation in which the measured
arrival rate is λ = 4.02 tx/s and we assume the Mempool to contain 12, 000
pending transactions. It is worth of notice that the cheapest transactions may be
not confirmed (the protocol implementations usually evict cheapest transactions
when the Mempool size exceeds a certain threshold or when they stay in the
queue longer than 3 days) since ρ > 1. Thus, we consider a minimum fee of 50
sat/B.

Figure 6.7b shows the comparison between the model predictions and the
simulation estimates. We can see that, in this case, the precision is lower.
This can be explained by several factors. First, the working condition of the
queue is closer to saturation (with 50 sat/B) than what we had in the first
experiment, and small variations in the arrival rate can have stronger impacts
on the confirmation time. The second reason is connected to the fact that, by
investigating the time series of the arrivals, there is the moment of extremely
heavy load (5 tx/s) after our starting point which is reached for fees of 50 and
75 sat/B due to the large backlog of transactions in the Mempool. Given the
unfavourable conditions, the model manages to maintain a relative error below
20%. Moreover, we believe that the accuracy can be further increased with
appropriate techniques of workload predictions.

6.4.5 Validation of the prototype of the confirmation time
estimator

In this section, we carry out an experiment aimed at assessing the accuracy of
the model forecast. For this purpose, we collected data about pending trans-
actions occurring in the Mempool of our installed node for 96 hours. Further,
we randomly picked one transaction for each hour in our dataset with offered
fee-per-byte ratios between 10 and 20 sat/B. This interval includes the major-
ity of all transactions. Finally, for every transaction from the sample, we first
calculated the predicted confirmation time measured in blocks and compared it
with the actual number of blocks after which the transaction appeared in the
block ledger. Among the selected 96 transactions only 2 were not confirmed
while all the other 94 appeared in a block.

Recall that the model provides the prediction of the expected number of

4BTC miners usually avoid transactions whose fee is 0 to prevent flooding attacks, therefore
the actual fee is just above 0.

6.5. CONCLUSION 103

Figure 6.6: Empirical probability density function of relative error of actual and
predicted confirmation delays.

blocks for the confirmation. Thus, it is normal to observe a certain discrepancy
between real and analytical data for a few transactions. This is shown in Fig-
ure 6.6. The histogram shows the distribution of the relative errors between
model-based outcomes and actual measurements for sample set of transactions.
It is interesting to note that almost 50% of transactions have a prediction with
negligible relative error. Overall, the mean of the relative errors for all the con-
sidered transactions is very small and equals to −0.13. Finally, we notice that
the histogram resembles the bell shape and this supports the applicability of
our approach in real world scenarios.

6.5 Conclusion

In this chapter, we propose a transient analysis of a M/MB/1 queueing model
that allows the definition of a new method for estimating the expected transac-
tion confirmation time in blockchain based on PoW. The model uses three key
parameters: the observed state of the Mempool, the current arrival intensity
and the distribution of the offered fees. With respect to the queueing models
proposed at the state of the art, we take into account the initial state of the
Mempool and the numerical experiments have shown that this has a strong im-
pact on the estimations. In fact, the stationary analysis proposed in [6, 39, 41]
cannot depend on the initial state of the queue, but this means that they ignore
an important piece of information that is in practice available to the users.

Although the model was studied on the Bitcoin network, it can be applied for
any kind of PoW-driven blockchains where transactions are confirmed according
to an auction on the fees.

From the application point of view, the proposed algorithm is generally much
faster than those based on Monte Carlo simulations. In fact, the simulation of

104CHAPTER 6. TRANSACTION CONFIRMATION TIME: A USER’S PERSPECTIVE

(a) Expected number of blocks for the
confirmation as function of fee per Byte
for model and simulation results with
Y = 6, 000 and λ = 3.21 transactions per
second.

(b) Expected number of blocks for the
confirmation as function of fee per Byte
for model and simulation results with
Y = 12, 000 and λ = 4.02 transactions
per second.

Figure 6.7: Comparison between model results and trace-driven simulation es-
timates.

the M/MB/1 model, with large B and in heavy load can exhibit a quite slow
convergence.

One application of our results consists in the development of a confirmation
time predictor. This service monitors the blockchain status (Mempool occu-
pancy, arrival rate and fee distribution) and uses Theorem 8 to predict the
average number of blocks required to confirm a transaction given its fee.

Notice that, since the confirmation time is monotonic non increasing with the
offered fee, determining the optimal offered fee for a given expected confirmation
time requires only a few computations (e.g., thanks to bisection methods).

The results of the models have been compared with trace-driven simulations
under heavy and very heavy workloads. The accuracy is generally very good,
although it may deteriorate for long-term predictions in very heavy load since
small errors in the estimations of the arrival intensity may cause important
changes in the validation delay.

In order to improve the accuracy of the model, one viable improvement could
be to predict the arrival rate during the consolidation delay. In fact, this is the
subject to the following chapter.

Finally, it seems promising to apply the model for the analysis of general
scheduling disciplines in which customers are ordered on the base of some strong
priority rule. In these cases, it will become crucial to derive the expression of
the waiting time in the continuous model that may be non-trivial in general.

Chapter 7

Workload prediction
methods

105

106 CHAPTER 7. WORKLOAD PREDICTION METHODS

7.1 Introduction

In this chapter, we study the problem of predicting the traffic intensity in BTC
blockchain with the aim of parameterising a simulation model that studies the
expected confirmation time of transactions. After collecting data regarding the
transaction arrival process at our BTC node, we use these traces to train two
possible prediction models: one based on Facebook Prophet model [73], and
the other is the well-known Autoregressive Integrate Moving Average (ARIMA)
model. Both models provide confidence intervals in the prediction of the ar-
rival process and allow us to consider pessimistic-, average- and optimistic-case
scenarios. After comparing the two predictive models and choosing one that
demonstrates better results in terms of the absolute error , we study by simu-
lation the transaction confirmation time as a function of the offered fees and
compare the results obtained with the real trace as input with those obtained
by using the predicted trace as input.

The chapter is structured as follows. Section 7.2 gives a brief description
of the applied prediction models. In Section 7.3, we examine the ARIMA and
Prophet forecasts accuracy after certain hours from the transaction arrival and
the accuracy of the predictions on the expected confirmation time using Monte
Carlo simulations. Finally, Section 7.4 concludes the chapter and provides an
insight for future work.

7.2 Background

This section provides some information about two prediction models, namely
ARIMA and Prophet by Meta (ex-Facebook), that are used to forecast the
throughput of the transactions.

7.2.1 Background on the ARIMA model

ARIMA(p,d,q) model [12] is one of the most widely used models for statistical
forecasting a time series of observations Xt. The ARIMA equation is a linear
(i.e., regression-type) equation in which the predictors consist of lags of the
dependent variable and lags of the forecast errors. The general model can be
written as

(1− φ1L− · · · − φpLp)(1− L)dXt = c+ (1 + θ1L+ · · ·+ θqL
q)εt

where L is the lag-operator, i.e. Lkat = at−k and εt is a white noise. The value p
refers to the “AutoRegressive” component and represents the number of lagged
observations included in the model. The “Integrated part” of the ARIMA model
indicates that the data values have been replaced with the difference between
their current and previous values, i.e. (1 − L)xt = xt − xt−1. The value d is a
number of times that the raw observations are differenced. In general, differenc-
ing refers to the transformation applied to non-stationary time series in order to
make them stationary by attempting to remove the deterministic components

7.3. EVALUATIONOF THE ACCURACY IN PERFORMANCE PREDICTIONS107

such as trends or periodicities. The value q, stands for the size of the “Moving
Average” window for the forecast errors. Automatic identification of the orders
p, d, q and statistical estimation of the parameters φ1, . . . , φp, θ1, . . . , θq can be
done easily (see [12]).

The data are collected every 10 minute and our time series exhibit seasonality
with frequency of 144 = 24 × 6 which is exactly 24 hours in 10-minutes terms.
In our experiment, using the Akaike Information Criterion, we identify a special
instance of the ARIMA model, namely a multiplicative seasonal model [12]:

(1− φ1L− φ2Lp)(1− L)(1− L144)Xt = (1 + θ1L+ θ2L
2)εt.

7.2.2 Background on the Facebook Prophet model

The Prophet model [73] is a modular regression model with interpretable pa-
rameters that can be adjusted in order to optimize the prediction response.

The authors use a decomposable time series model with three key compo-
nents, namely trend, seasonality, and holidays. The model may be represented
as follows:

Xt = gt + st + ht + εt .

where gt refers to the trend function that simulates non-periodic changes in
the value of the time series, st describes periodic changes of the series, that is
any seasonality effects, and ht stands for the effects of holidays which occur on
rather irregular pattern over one or more days. The error term εt is still white
noise and represents any idiosyncratic changes of the model.

What is more, one of the features of gt can be changepoint prior scale. The
changepoints allow to incorporate trend changes in the growth models and stand
for the points in time at which the trend is supposed to change its vector. It can
be set manually otherwise it will be done automatically. This feature modulates
the flexibility of the automatic changepoint selection. Larger values will allow
many changepoints and small ones - few.

The authors frame the forecasting problem as a curve-fitting exercise, which
differs from the models that account for the temporal dependence structure
in the data. Although they miss some inferential benefits of using a generative
model, e.g., the ARIMA model, their approach provides several practical advan-
tages such as the fast fitting, ability to use irregular time data, flexible tuning
of the trend, and seasonality behavior.

7.3 Evaluation of the accuracy in performance
predictions

This section consists of two parts. First, we study the accuracy of the ARIMA
and Prophet predictions on the time series of the transaction arrivals in the
BTC blockchain. This allows us to obtain a punctual value of the prediction
after τ hours from the last considered arrival of transaction and its confidence

108 CHAPTER 7. WORKLOAD PREDICTION METHODS

2020/11/18 05:10:00 2020/11/18 20:02:30 2020/11/19 10:55:00 2020/11/20 00:47:30 2020/11/20 16:40:00

0

1

2

3

4

5

6

7

8

9

Test data

Predicted data

(a) The comparison at changepoint prior
scale of 0.06.

2020/11/18 05:10:00 2020/11/18 20:02:30 2020/11/19 10:55:00 2020/11/20 00:47:30 2020/11/20 16:40:00

0

1

2

3

4

5

6

7

8

9

Test data

Predicted data

(b) The comparison at changepoint prior
scale of 0.07.

Figure 7.1: Comparison of the actual arrival rate of transactions and the pre-
dicted response based on the Prophet model with different changepoint prior
scale instances and confidence interval of 95%.

interval. Thus, for each epoch, we have a predicted expected value, a lower
bound that represents the optimistic scenario and an upper bound leading to
the pessimistic scenario.

The second contribution of the section is the estimation of the accuracy of
the predictions on the expected confirmation time by means of Monte Carlo
simulations of the confirmation process. The simulation uses as input three val-
ues of the confidence interval (lower, upper and central) to obtain an optimistic,
pessimistic and expected estimation of the confirmation time.

It worth noting that, while the expected confirmation delay is monotonic
increasing with respect to the arrival rate, the relation between waiting time
and intensity of the arrival process is not linear and hence the intervals obtained
in the confirmation delay predictions are not symmetric with respect to the
prediction obtained using the expected arrival rate.

7.3.1 Comparison of time series prediction models

This section describes the accuracy of the estimates as well as their insights
obtained by the aforementioned prediction models.

In order to collect the time series, we have installed a BTC mining node and
logged the transactions announced at its Mempool. We have collected the data
for five days and obtained our dataset that was coherent with the information
available on specialised websites but with higher granularity. Additionally, we
analysed the distribution of transaction fees of the Bitcoin clients in heavy load
conditions.

In order to train the models, we divided our dataset in two parts with the
same size: the first one has been used to train the models, while the second part
has been used to assess the accuracy of the prediction.

For both the models, we use prediction intervals with a coverage of 95%.
Figures 7.1 and 7.2 show predictions of the transaction arrival intensity pro-

vided by the Prophet and ARIMA models, respectively. What is more, Fig-

7.3. EVALUATIONOF THE ACCURACY IN PERFORMANCE PREDICTIONS109

2020/11/18 05:10:00 2020/11/18 20:02:30 2020/11/19 10:55:00 2020/11/20 00:47:30 2020/11/20 16:40:00

0

2

4

6

8

10

12

14

Test data

Predicted data

Figure 7.2: Comparison of the actual arrival rate of transactions and the pre-
dicted response based on the ARIMA model.

ures 7.1a and 7.1b illustrate the prediction deviation due to the choice of differ-
ent changepoint prior scale values, namely, 0.06 and 0.07 accordingly. Thus, the
outcome of the Prophet model at the parameter 0.07 gives the best prediction,
according to our experiment. In our assessment, we will use the best results.

For both the plots, we used the first 2.5 days of data to train the model,
and then we predicted the future arrivals. We show the test data of our dataset
(blue line), the prediction of the model (red line) and the confidence intervals
(grey lines). As expected, as the prediction time is moved far in the future, the
confidence interval becomes wider. However, for practical applications, predic-
tions are useful when performed within approximately 10 or 12 hours, otherwise
it is very likely that the transaction is delay tolerant.

Even before formally testing the accuracy of the predictions with an error
measure, we may notice that Prophet seems to give a better accuracy in this
context.

Now, we consider the predictions of the Prophet and ARIMA model at fixed
time intervals. More precisely, given an interval τ , at each time t we use all the
data up to t to train the model, and forecast the value of the time series at time
t+ τ .

Figure 7.4 shows the comparison of the predictions obtained with the Prophet
and ARIMA models for different values of τ . We can see that, although the
ARIMA predictions tend to be more noisy, both the models show rather good
predictions of the test data.

More precisely, in Table 7.1 we compute the absolute errors of the Prophet
and ARIMA predictions. According to our experiments, the Prophet outper-
forms ARIMA, especially for short term predictions. Henceforth, in the follow-
ing section we will carry out our experiments by using the Prophet model.

110 CHAPTER 7. WORKLOAD PREDICTION METHODS

2020/11/18 06:10:00 2020/11/18 20:47:30 2020/11/19 11:25:00 2020/11/20 02:02:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

Test data

Predicted data

(a) Comparison of the actual arrival rate
of transactions and the predicted re-
sponse for τ = 1 hour ahead based on
the Prophet with changepoint prior scale
of 0.07.

2020/11/18 06:10:00 2020/11/18 20:47:30 2020/11/19 11:25:00 2020/11/20 02:02:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

8

Test data

Predicted data

(b) Comparison of the actual arrival rate
of transactions and the predicted re-
sponse for τ = 1 hour ahead based on
the ARIMA model.

Figure 7.3: Comparison of the Prophet and ARIMA prediction models at pre-
diction horizon τ = 1 hour and confidence interval of 0.95.

2020/11/18 07:10:00 2020/11/18 21:32:30 2020/11/19 11:55:00 2020/11/20 02:17:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

Test data

Predicted data

(a) Comparison of the actual arrival rate
of transactions and the predicted re-
sponse for τ = 2 hours ahead based on
the Prophet with changepoint prior scale
of 0.07.

2020/11/18 07:10:00 2020/11/18 21:32:30 2020/11/19 11:55:00 2020/11/20 02:17:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

8
Test data

Predicted data

(b) Comparison of the actual arrival rate
of transactions and the predicted re-
sponse for τ = 2 hours ahead based on
the ARIMA model.

Figure 7.4: Comparison of the Prophet and ARIMA prediction models with
prediction horizon τ = 2 hours and confidence interval of 0.95.

Table 7.1: Mean Absolute Errors of Prophet and ARIMA models with different
size of the prediction horizon.

Prediction horizon τ in hours Prophet Error ARIMA Error
1 0.3120 0.3668
2 0.3366 0.3896
4 0.3966 0.4219
12 0.6333 0.6416

7.3. EVALUATIONOF THE ACCURACY IN PERFORMANCE PREDICTIONS111

2020/11/18 09:10:00 2020/11/18 23:02:30 2020/11/19 12:55:00 2020/11/20 01:47:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

Test data

Predicted data

(a) Comparison of the actual arrival rate
of transactions and the predicted re-
sponse for τ = 4 hours ahead based on
the Prophet with changepoint prior scale
of 0.07.

2020/11/18 09:10:00 2020/11/18 23:02:30 2020/11/19 12:55:00 2020/11/20 01:47:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

8
Test data

Predicted data

(b) Comparison of the actual arrival rate
of transactions and the predicted re-
sponse for τ = 4 hours ahead based on
the ARIMA model.

Figure 7.5: Comparison of the Prophet and ARIMA prediction models with
prediction horizon τ = 4 hours and confidence interval of 0.95.

2020/11/18 17:10:00 2020/11/19 05:42:30 2020/11/19 16:55:00 2020/11/20 04:47:30 2020/11/20 16:40:00

1

2

3

4

5

6

7

Test data

Predicted data

(a) Comparison of the actual arrival rate
of transactions and predicted response for
τ = 12 hours ahead based on the Prophet
prediction approach by Facebook with
changepoint prior scale of 0.07.

2020/11/18 17:10:00 2020/11/19 05:42:30 2020/11/19 16:55:00 2020/11/20 04:47:30 2020/11/20 16:40:00

0

1

2

3

4

5

6

7

8 Test data

Predicted data

(b) Comparison of the actual arrival rate
of transactions and predicted response for
τ = 12 hours ahead based on the ARIMA
model.

Figure 7.6: Comparison of the Prophet and ARIMA prediction models with
prediction horizon τ = 12 hours and confidence interval of 0.95.

112 CHAPTER 7. WORKLOAD PREDICTION METHODS

7.3.2 Simulations

In this section, we are interested in determining the accuracy of the estimation of
the expected confirmation time using the Prophet prediction model to determine
the arrival intensity of the transactions. The comparison is performed having the
real data obtained from the running blockchain node and the data predicted by
the model. Moreover, in order to estimate the confirmation time of the tagged
transaction using the predicted arrival rate we resort to Monte Carlo simulations
whose structure can be summarised as follows:

• We consider a fixed sequence of transaction arrivals. This can be trace-
driven by our retrieved dataset or obtained by the model (optimistic-,
average- or pessimistic-case scenarios).

• The generation of the blocks occurs at random time intervals, exponen-
tially distributed with average 10 minutes. This follows from the memory-
less characteristic of the mining process and from the invariant properties
of the BTC blockchain.

• At a block generation instant, the most valuable transactions of the Mem-
pool are confirmed and removed from the queue. We assume that the block
contains 2, 300 transactions. Transaction fees are chosen probabilistically
using the distribution of Figure 2.4d.

• Initially, the Mempool is populated with a fixed amount of transactions.
These transactions offer a fee per Byte according to the distribution of
Figure 2.4d. Notice that, although this is an approximation since the
cheapest transactions tend to remain in the Mempool, the comparison
remains fair since the initial Mempool population is the same for all the
scenarios.

More precisely, we number the transactions from −M to ∞, where M is the
initial Mempool size, transaction 0 is the tagged transaction whose confirmation
time is measured, and transaction denoted by i > 0 are those arriving after the
tagged one.

Transaction ti is denoted by a pair (τi, fi), where τi is the arrival time and
fi the offered fee. For i ≤ 0, ti = 0. fi is sampled from the distribution of
Figure 2.4d independently of τi. τi, for i > 0 are obtained from the real traces
or from the predictions of Prophet. Notice that, in practice, the fees may be
dependent from the system state (Mempool size, intensity of the arrival process)
but in this context we use the simplifying assumption of independence since we
mainly focus on the accuracy of the predictive power of the Prophet model.

Let T be the set of transactions and X1, X2, . . . be the sequence of block
consolidation times, and assume X0 = 0. Then, Xi+1 − Xi, i ≥ 0, are i.i.d.
exponential random variables with mean 10 minutes.

The state of the simulation model is described by a collection of transactions
in the Mempool, denoted byMi, where the subscript i expresses that the state
is associated with the instant immediately after the consolidation of block i.

7.3. EVALUATIONOF THE ACCURACY IN PERFORMANCE PREDICTIONS113

The set of transactions arriving during the consolidation of the (i + 1)-th
block, but after the consolidation of the i-th, can be denoted by:

Ai = {ti ∈ T : τi > Xi ∧ τi ≤ Xi+1} .

Now, let F(M) the set of at most 2, 300 transactions with the highest fee
present in M.

Thus we have the following recursive relation:

• M0 = {ti ∈ T : τi ≤ 0}
• Mi+1 =Mi ∪ Ai \ F(Mi ∪ Ai).
Hence, the confirmation time Tc for the tagged transaction is given by:

Tc = min{i : t0 /∈Mi} .

The Monte Carlo simulation experiment consists of 10, 000 samples of Tc for
a fixed fee f0. Then, the expected confirmation time is obtained by averaging
the sample values. The experiments have been repeated 30 times and the es-
timates have been used to determine the confidence interval for the expected
confirmation delay. To avoid confusion, we omit the confidence interval from
the plot. For a confidence of 95% we have a maximum relative error of 7%.

For each scenario that we consider, the tagged transaction offers a certain
fee per Byte that controls the confirmation time: the higher the fee, the quicker
the process.

According to the trace of arrival that we use, we obtain four estimates:
the first using the real data, the second using the average prediction of Prophet
model, the third and fourth using the traces given by the lower and upper bounds
of the confidence intervals determined by the model. These two latter scenarios
can be interpreted as pessimistic and optimistic cases in terms of confirmation
delay.

Fig. 7.7a and 7.7b show the expected number of blocks required for the
transaction confirmation for different offered transaction fees. The grey bars
refer to the expected number of blocks obtained with use of the real data while
the combined bars consisting of the light, normal and dark blue bars that are
the optimistic-, average- and pessimistic- case scenarios, respectively, derived
from the predicted data.

Notice that in the scenario of Figure 7.7a, the data were derived from the
time series shown in Figure 7.1b, and the arrival time of the tagged transaction
is 2020/11/18 05:10. Thus, the first half of the dataset was used to train the
model. While in the second scenario (Figure 7.7b), the arrival time for the
tagged transaction is 2020/11/19 08:30:00, and hence the training data include
all the series up to that epoch, i.e., 70% of the dataset.

The inspection of Figure 7.7a shows that the pessimistic case scenario for
70 sat/B is absent: this happens because the transaction is dropped before its

114 CHAPTER 7. WORKLOAD PREDICTION METHODS

70 80 90 100
0

5

10

15

(a) The simulation results at 50% of the
training data.

70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

22

(b) The simulation results at 70% of the
training data.

Figure 7.7: Simulation results based on the actual data (grey bar) compared to
the results of the Prophet predicted response (blue bars) with the optimistic,
average and pessimistic cases and the initial Mempool occupancy of 10, 000
transactions and different amount of the training data.

confirmation (usually after 72 hours of residence in the Mempool). A second
observation is that, especially in heavy-load (70 and 80 sat/B), the distance
between the optimistic prediction and the average is smaller than that from
the pessimistic and the average. This is due to the non-linearity of expected
response time of a queueing system with respect to the arrival intensity. Finally,
for this scenario, we notice that while the prediction obtained with the dataset
is always within the optimistic and pessimistic cases, it seems to be closer to
the latter. Indeed, Fig. 7.1b shows that predicted values for the first period of
time are rather underestimated by the model. To confirm this explanation, we
can look at the beginning of the next prediction interval (2020/11/19 08:30:00)
when the prediction accuracy is higher. In this case, there is a good matching
between the predicted average confirmation time and that obtained by using
the real dataset (see Figure 7.7b).

7.4 Conclusion

In this chapter, we have applied two different time series forecast models, namely
the Prophet by Facebook and ARIMA, in order to predict the arrival rate of
the transactions at the Mempool of the Bitcoin network. According to our
experiments, the Prophet model provides more accurate predictions in terms of
the absolute errors.

Moreover, we have investigated if these predictions can be used to parame-
terise a model aimed at estimating the expected confirmation time of a trans-
action given its offered fee. We have shown two scenarios and in both cases we
obtained valuable predictions that can be used to study the trade-off between
the blockchain running costs and the quality of service.

Although our study has been carried out for the BTC blockchain, it can be
extended to any similar system where transactions are chosen from the Mempool

7.4. CONCLUSION 115

according to an auction (e.g., Ethereum blockchain).
As future work it would be important to compare the approach proposed

here with other forecasting models, e.g., based on machine learning.

Chapter 8

Reliability in blockchains:
droppings

117

118 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

8.1 Introduction

Recall that blockchain transactions are added to blocks are selected from a queue
of pending transactions according to an auction-based policy. Each block is
formed with the transactions offering the highest fees according to the dropping
policy. However, when the number of pending transactions exceeds a certain
threshold the least valuable transactions are evicted and will never be included
in the blockchain.

Notice that this eviction is different from that of invalid transactions due,
e.g., to double spending. Henceforth, we will focus on dropping due to saturation
of resources. In addition, the eviction of a transaction is not notified to the
owners. This creates a serious problem of reliability for the applications based
on blockchains. Since transactions offering higher fees have lower probability
of being evicted, this poses an important trade-off to the applications: What is
the lowest fee that should be offered to ensure a confirmation probability higher
than a given threshold?

In this chapter, we provide a model to answer to this question. To the best
of our knowledge, this is the first model that focuses on the reliability analysis
of PoW blockchains, intended as a measure of the confidence that a user can
have about the inclusion of his/her transactions in the ledger.

The model is parameterized with publicly known information about the state
of the blockchains: the intensity of the transaction arrival process, the distribu-
tion of the fees offered by the transactions, the capacity of a block, the rate of
block generation and the occupancy and offered fee of the transactions in the
Mempool.

The model is solved with an efficient numerical algorithm that, compared to
simulation based solutions, allows for the optimization of the trade-off between
reliability and running costs of blockchain based applications with the lower
computational effort.

The chapter is structured as follows. Section 8.2 introduces the analytical
model. In Section 8.3 we provide the analysis of the transaction confirmation
estimation for our model. Finally, Section 8.4 concludes the paper and proposes
future research direction.

8.1.1 Problem statement and practical relevance

Given the auction governing the transaction confirmations, it is natural to study
the trade-off between reliability, i.e., probability for a transaction of being even-
tually confirmed, and running costs in terms of offered fees. We take a user
perspective, so that our model accounts for all publicly available information
that can help make an effective decision: the instantaneous intensity of the trans-
action arrival process per class of fee per Byte, the distribution of the fees and
the population and the Mempool. The main question is If we send a transaction
offering f as fee per Byte, what is the probability of being eventually confirmed?
Clearly, the model can be used also to solve the inverse problem, that is What is

8.2. A GAMBLER’S RUIN BASEDMODEL TO ESTIMATE THE DROPPING PROBABILITY119

the minimum fee per Byte that we should offer to have a confirmation probability
higher than a certain threshold?

The problem has practical importance especially for those applications using
PoW blockchains that do not have constrains on the confirmation time but need
to be sure that, up to a certain probability, the transactions will be eventually
included in the ledger.

For instance, this is the case of applications that use the blockchain to store
monitored data collected by IoT systems. Without a proper estimation of the
confirmation probability, the application could incur into unnecessary running
costs. Moreover, the lack of notification of the transaction droppings would
require the application to consult the Mempools to understand if their transac-
tions are still present, and this is often very costly or unfeasible.

So, wherever it is applicable, the model can be used to estimate the confir-
mation probability of the transaction already in the Mempool and the cost of
another transaction that replaces the former and whose confirmation probabil-
ity is higher. In fact, given the auction of transactions, the new more expensive
transaction would be confirmed before the older one and, if it spends the same
cryptocurrency output, immediately invalidates it because of double spending.

8.2 A Gambler’s ruin based model to estimate
the dropping probability

In this section, we present a model for the estimation of the transaction dropping
probability given its offered fee per Byte and the state of the Mempool. We will
formulate the problem as the probability of absorption in a CTMC.

8.2.1 Modeling assumptions and notation

Let K be the maximum number of transactions that can be stored in the Mem-
pool. We assume that transaction bids are i.i.d. random variables with CDF
F (x), where F is not necessary continuous but can be càdlàg (for this reason we
consider ties), F (x) , 1−F (x). Transactions arrive according to a homogeneous
and independent Poisson process with intensity λ and blocks are generated on
average every µ−1 seconds with an independent exponentially distributed delay.
The number of transactions in a block is at most B: if the Mempool contains
less than B blocks, the block is generated with all available transactions. The
model exploits the memoryless property of the mining process, i.e., if miners
are working on a candidate block in which the less valuable transaction offers
f1 and a transaction with a bid higher than f1 arrives, the latter immediately
replaces the cheapest one in the candidate block that returns to the Mempool
if some space is available, or is evicted otherwise.

Thanks to the independence and the exponential distributions of the delays,
the stochastic process underlying the system is a CTMC. Figure 8.1 shows the
underlying process for a toy example system with B = 2 and K = 5. First,
let us consider the case of a transaction t offering strictly less than all other

120 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

Figure 8.1: CTMC underlying the model for B = 2 and K = 5. The grey filled
states are absorbing states.

transactions in the system. Suppose that at its arrival epoch τ the Mempool
contains i transactions. Then, all the transactions present in the Mempool
and those arriving after τ but before the confirmation or eviction of t will be
confirmed before t. The problem consists in computing the probability that t is
confirmed or evicted. From the perspective of t, this means that if the CTMC
is absorbed in state 0, then t is confirmed, while if the process is absorbed in
state K, then t is evicted.

Thus, our goal is that of computing the probability of absorption in state 0
or 5 given the initial state i seen at the arrival epoch of t. We will generalize
this reasoning for the situations in which t makes a general bid in the following
subsection.

We introduce α , λ/(µ+ λ), i.e., the probability that a transaction arrives
before next block consolidation, i.e., 0 < α < 1.

8.2.2 Model analysis

Let pi be the probability that a transaction offering the lowest possible fee
per Byte is dropped given that at its arrival epoch the Mempool contains i
transactions. We write the system of equations for the probability of absorption
in state K from state i as follows [38]:

p0 = 0

pi = αpi+1 1 ≤ i ≤ B
pi = (1− α) pi−B + αpi+1 B < i < K

pK = 1 .

(8.1)

Let β denote the probability that B arrivals occur before a block is consoli-
dated,

β = αB(1− α). (8.2)

Theorem 9 gives the expression of the probability of eviction for a transaction
arriving when the Mempool occupancy is i, as a function of α, β,K and B.
Henceforth, binomial coefficients with negative upper index are assumed to have
value 0.

8.2. A GAMBLER’S RUIN BASEDMODEL TO ESTIMATE THE DROPPING PROBABILITY121

Theorem 9. For 0 ≤ i ≤ K, the solution of the system of equations (8.1) is:

pi =
Ti
TK

, (8.3)

where

Ti =
1

αi−1

mi∑
l=0

βl
(
l(B + 1)− i

l

)
(8.4)

and

mi =
⌊ i− 1

B + 1

⌋
.

Proof. It is easy to see that p0 = 0 and pk = 1 are verified. Let us define

T ,

⌊K − 1

B + 1

⌋
∑
l=0

(1− α)l

αK−1−lB

(
l + lB −K

l

)
.

We first consider 1 ≤ i ≤ B. In this case, since⌊ i− 1

B + 1

⌋
= 0 ,

hence

pi =

0∑
l=0

(1− α)l

αi−1−lB
(
l+lB−i

l

)
T

=

1

αi−1

T
=
α1−i

T
= αpi+1 .

Let now consider K(B+ 1) ≤ i < (K+ 1)(B+ 1) for some K ≥ 1. We prove
that (8.3) is a solution of equation

pi = (1− α) pi−B + αpi+1 .

Indeed, we have:

(1− α)T pi−B + αT pi+1

= (1− α)

K−1∑
l=0

(1− α)l

αi−lB−B−1

(
l + lB − i+B

l

)

+α

K∑
l=0

(1− α)l

αi−lB

(
l + lB − i− 1

l

)

=

K−1∑
l=0

(1− α)l+1

αi−lB−B−1

(
l + lB − i+B

l

)

+

K∑
l=0

(1− α)l

αi−lB−1

(
l + lB − i− 1

l

)
.

122 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

The latter expression can be further simplified as follows:

(
K−1∑
l=0

(1− α)l+1

αi−lB−B−1

(
l + lB − i+B

l

)

+

K−1∑
l=0

(1− α)l+1

αi−lB−B−1

(
l + lB − i+B

l + 1

))
+

1

αi−1

=

(
K−1∑
l=0

(1− α)l+1

αi−lB−B−1
(−1)l

×
[

(i− l − lB −B)l
l!

− (i− l − lB −B)l+1

(l + 1)!

])
+

1

αi−1

=

(
K−1∑
l=0

(1− α)l+1

αi−lB−B−1
(−1)l

(i− l − lB −B)l
l!

×
(

1− (i− lB −B)

l + 1

))
+

1

αi−1

=

(
K−1∑
l=0

(1− α)l+1

αi−lB−B−1
(−1)l

(i− l − lB −B)l
l!

× (l + lB +B − i+ 1)

l + 1

)
+

1

αi−1

=

(
K−2∑
l=0

(1− α)l+1

αi−lB−B−1
(−1)l

(i− l − lB −B)l
l!

× (l + lB +B − i+ 1)

l + 1

)
+

1

αi−1

=

(
K−1∑
l=1

(1− α)l

αi−lB−1
(−1)l

(i− l − lB)l
l!

)
+

1

αi−1

=

K−1∑
l=0

(1− α)l

αi−lB−1

(
l + lB − i

l

)
.

This proves the statement since, by substituting, we obtain:

(1− α) pi−B + αpi+1 =

k−1∑
l=0

(1− α)l

αi−lB−1
(
l+lB−i

l

)
T

= pi .

8.2. A GAMBLER’S RUIN BASEDMODEL TO ESTIMATE THE DROPPING PROBABILITY123

Notice that, if we define T , TK , we can rewrite System (8.1) as:

p0 = 0

pi = 1
T α

1−i 1 ≤ i ≤ B
pi = (1− α)pi−B + αpi+1 B < i < K

pK = 1 .

In practice, Theorem 9 suffers a problem of numerical stability because of the
presence of the binomial coefficients that may reach high values both at the
numerators and denominator. While truncation and summation cancellation
could be partly covered by applying Fox&Glynn approach [23], in this chapter we
propose another computationally efficient method based on theory of difference
equations.

We call cases 0 < i ≤ B initial conditions, and B < i < K the general
difference equation.

Given the general difference equation, we can derive the characteristic poly-
nomial [27] as follows:

P (x) = αxB+1 − xB + (1− α) .

From the roots of P (x), we will derive important properties of our system, as
well as an alternative way to compute pi that does not require the evaluation
of large binomial coefficients. To this aim, we need the following lemma.

Lemma 10. If α 6= B/(B+ 1), the characteristic polynomial P (x) has distinct
roots.

Proof. A root r of P (x) has multiplicity higher than one if and only if P (r) = 0
and P ′(r) = 0. We have:

P ′(x) = α(B + 1)xB −BxB−1 .

P ′(x) has B − 1 roots in 0 and another one in B/((B + 1)α). Clearly, 0 is not
a root of P (x) and

P (
B

(B + 1)α
) = −

(
B

(B + 1)α

)B (
1

B + 1

)
+ (1− α) .

We seek the relations between α and B that makes this quantity equal to 0.
This corresponds to find the real roots of Q(α) in the interval (0, 1) with:

Q(α) = αB+1 − αB +

(
B

B + 1

)B (
1

B + 1

)
.

124 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

This polynomial can be factorized as:

Q(α) =

(
α− B

B + 1

)2
αB−1 +

B−1∑
j=1

Bj−1(B − j)
(B + 1)j

αB−j−1

 (8.5)

=

(
α− B

B + 1

)2

 (B + 1)2(αB+1 − αB) + (B + 1)
(

B
B+1

)B
(α(B + 1)−B)2

 .

Notice that the root B/(B + 1) has multiplicity 2 but is excluded by the
hypothesis of the theorem, and the second factor, as expressed in Equation (8.5),
is a sum of terms whose coefficients are all strictly positive. By Descartes’ rule
of signs, the second factor does not admit any positive real root.

In conclusion, for α 6= B/(B + 1), there cannot be any root of P ′(x) that is
also a root of P (x). In the following, we will notice that α = B/(B + 1) is a
critical value for the stability of the system when K →∞.

Henceforth, we assume α 6= B/(B + 1). We may study the solution also for
this special case for which Equation (8.6) does not hold since P (x) has multiple
roots in 1, but we omit it for the sake of brevity.

Hence, P (x) admitsB+1 distinct real or complex roots, namely {x1, . . . , xB+1}.
The complex roots come in pairs of conjugate numbers, and one trivial root is
1. Without loss of generality, let us assume x1 = 1.

According to theory of difference equations (see, e.g., [27]), since all roots of
P (x) are different by Lemma 10, the solutions can be written as:

pi =

B+1∑
j=1

C∗j x
i
j , (8.6)

where C∗k ∈ C are coefficients to be determined thanks to the B initial conditions
and the case i = 0. Thus, we need to solve the system:{

C∗1 + C∗2 + . . .+ C∗B+1 = 0 i = 0

C∗1x
i
1 + C∗2x

i
2 + . . .+ C∗B+1x

i
B+1 = 1

T α
1−i 1 ≤ i ≤ B .

Define Ci , C∗i T , then we can compute pis following an algorithm below:

(1) Compute the roots {x1, . . . , xB+1} of P (x).

(2) Solve the following system of linear equations in C:{
C1 + C2 + . . .+ CB+1 = 0

C1x
i
1 + C2x

i
2 + . . .+ CB+1x

i
B+1 = α1−i 1 ≤ i ≤ B . (8.7)

(3) To avoid the computation of T with Equation (8.4), we can use the obser-
vation pK = 1 to write:

C∗1x
K
1 + C∗2x

K
2 + . . .+ C∗B+1x

K
B+1 = 1 ,

8.2. A GAMBLER’S RUIN BASEDMODEL TO ESTIMATE THE DROPPING PROBABILITY125

and hence, multiplying both hand sides by T :

T = C1x
K
1 + C2x

K
2 + . . .+ CB+1x

K
B+1 . (8.8)

(4) Compute all pi as:

pi =

∑B+1
j=1 Cjx

i
j

T
=

∑B+1
j=1 Cjx

i
j∑B+1

j=1 Cjx
K
j

. (8.9)

8.2.3 The case of infinite Mempool

In this section, we study the case K → ∞ as in [40]. A misconception may
suggest that if K → ∞, then there is no transaction dropping. However, from
a theoretical point of view, if λ > µB constantly, this implies that the intensity
of the arrival process is higher than the capacity of service. Thus, transactions
tend to form a backlog that grows with time and some of them may never
be confirmed. The assumption K → ∞ has clearly an important theoretical
importance but it also represents an optimistic model of real systems. In fact,
if for a blockchain the Mempool size K has a dropping probability close to the
case studied in this section, then it is useless to increase the value of K with
the aim of reducing the dropping probability.

First, notice that the stability condition λ < Bµ is equivalent to α < B/(B+
1). The following Theorem states what happens to the roots of P (x) when this
condition is (not) satisfied.

Theorem 10. The number of roots ϕ strictly inside the unit disk of P (x) are:

• if α ≤ B/(B + 1), then ϕ = B − 1

• if α > B/(B + 1), then ϕ = B.

Proof. To prove this result, we resort to [18][Thm 2.1] stating that the trinomial
bxn − axm + a − b has a number of zeros strictly inside the unit disk equal to
m − gcd(m,n) if a/b ≥ n/m, and m if a/b < n/m. The result immediately
follows by the observation that, in P (x), b = α, a = 1, n = B+1 and m = B.

In our model, we have to consider two cases.

Stable system: α < B/(B+ 1) The model with infinite buffer has an under-
lying CTMC that will eventually be absorbed in state 0 from every state i with
probability 1 since the intensity of the workload is lower than the maximum ser-
vice capacity. Formally, P (x) has B−1 roots strictly inside the unit disk, one is
x1 = 1 and let us call the remaining one xB+1. This root must be real, because
if it were complex, also its conjugated would be on the perimeter of or outside
the unit disk. Moreover, we can also observe that it must lay strictly outside
the unit disk because −1 is not a root of P (x) and 1 cannot have multiplicity
2 by Lemma 10. Therefore, T → ∞ because all roots strictly inside the unit

126 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

disk vanish for K → ∞ and xKB+1 → ∞. Since for all finite i, the numerator
of Equation (8.9) is finite, then we conclude that pi → 0. This means that the
probability of not being absorbed in state 0 is 0, as the intuition suggested.
Thus, we can write:

K →∞∧ α < B

B + 1
, pi = 0 .

Unstable system: α > B/(B+ 1) This is the most interesting case. In fact,
while the workload intensity is higher that the maximum service capacity, if i
is sufficiently close to 0 we may still have a high probability of being absorbed
in state 0. Formally, all roots of P (x) lay strictly inside the unit disk with the
exception of x1 = 1. This implies that all the terms of Cix

K
i vanish for K →∞

with the exception of x1, i.e., T = C1. Therefore, we have:

K →∞∧ α > B

B + 1
, pi =

1

C1

B+1∑
j=1

Cjx
i
j = 1 +

B+1∑
j=2

Cj
C1
xij .

8.2.4 A toy example

In order to support the intuition behind the results presented so far, we introduce
a toy example. Let us consider a blockchain in which blocks consist at most
of 3 transactions (B = 3), the intensity of the arrival process is λ = 1.4 tx/s
and blocks are generated with rate µ = 0.6 blocks/s. The blockchain is able
to process µB = 1.8 tx/s, and α = 1.4/(1.4 + 0.6) = 0.7 and B/(B + 1) =
3/4 = 0.75. Therefore, if the Mempool has infinite capacity K →∞, we are in
the case of a stable system, i.e., the probability of dropping is 0 regardless to
the state seen by a transaction at its arrival. If the Mempool capacity is, e.g.,
K = 50 we must first find the roots of the characteristic polynomial P (x) that
turn out to be:

x1 = 1 , x2 ' −0.354− 0.501j , x3 ' −0.354 + 0.501j , x4 ' 1.137 .

Notice that, beside x1 = 1 that is common to all possible P (x), we have only
one root outside the unit disk, x4, that is real and positive and two complex
conjugate roots inside the unit disk. The next step consists in finding the
coefficients by solving the linear system of Equation (8.7). We obtain:

C1 ' −3.500 , C2 ' −0.1561− 0.054889j ,
C3 ' −0.156 + 0.05489j , C4 ' 3.812 .

Finally, we compute T ' 2337.29155 with Equation (8.8). The probability
of dropping given the initial number of transactions found in the Mempool are
shown in Figure 8.2.

Let us assume now λ = 2, and hence α = 2/(2 + 0.6) ' 0.769 tx/s, i.e.,
greater that B/(B + 1). In this case, the system with infinite Mempool is
unstable. In fact, the roots of the polynomial all lay strictly inside the unit

8.2. A GAMBLER’S RUIN BASEDMODEL TO ESTIMATE THE DROPPING PROBABILITY127

0 10 20 30 40 50
Number of transactions in the Mempool

0.2

0.4

0.6

0.8

1.0
Dr

op
pi

ng
 p

ro
ba

bi
lit

y

Toy example: eviction probability
Stable
Unstable
Unstable with K

Figure 8.2: Comparison of the dropping probabilities for the three cases studied
for the toy example.

circle, with the exception of x1 = 1. Finally, if K →∞ we have T = C1 and the
dropping probability can be expressed in closed form as a function of the three
roots of (1−α)x−B +αx = 1 that lie inside the unit circle, namely C̃1 ' 0.950,
C̃2 ' −0.325 + 0.459j and C̃3 ' −0.325 − 0.459j. Indeed, it follows from [40]

that pi = 1 − Real
(∑B

l=1 κl · C̃i+B−1l

)
where κl =

∏
i 6=l(1 − C̃i)/(C̃j − C̃i),

i.e., κ1 ' 1.07, κ2 ' −0.035 + 0.044j and κ3 ' −0.035 − 0.044j. Figure 8.2
shows that the case K → ∞ is a lower bound for the dropping probability for
unstable systems. The bound becomes tighter for larger values of K and the
result should be used to assess the reliability of the system given a Mempool
size with respect to the ideal case.

8.2.5 Computational aspects

The heaviest computational effort for the model solution is the computation of
the B + 1 roots of P (x). In our implementation, we used the state of the art
solution for this problem, i.e., the Aberth’s method combined with multipreci-
sion [11] in its implementation MPSolve1.

Since all roots of P (x) are distinct, the algorithm converges cubically [10] and
its parallel version can handle sparse polynomials of degree up to one million,
far above our needs.

Finally, the solution of linear system (8.7) has an asymptotic complexity of
O(B3).

1https://github.com/robol/MPSolve

https://github.com/robol/MPSolve

128 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

8.2.6 The model for transactions offering a general fee

So far, we have reasoned on transactions offering the lowest possible fee, i.e.,
0. The model can be easily extended to account for arbitrary fees thanks to
the observation that any transaction is insensitive to all transactions offering
a fee per Byte strictly lower that its own. Let X be the non-negative random
variable modeling the fee per Byte offered by a transaction. Transaction T
arrives at time t0 at the blockchain offering f as fee per Byte. The transactions
in the Mempool that are confirmed before T may be possibly dropped are those
whose fee per Byte is strictly higher f . Transactions offering exactly f may
be evicted before T because they are older. The transactions arriving after t0
compete with T if and only fee their offered fee per Byte is higher or equal than
f , i.e., the perceived arrival process, from the point of view of T , has intensity
λPr{X ≥ f}.

Summing up, a transaction offering f fee per Byte can evaluate its proba-
bility of being dropped as follows:

(1) Count the number of transactions if offering a fee per Byte strictly higher
than f inside the Mempool.2

(2) Compute the intensity of the perceived arrival process λf = λPr{X ≥ f}.2

(3) Use the algorithm presented in Section 8.2.2 using λf as arrival rate to
obtain pif that represents the probability of dropping for the transaction.

Recall that increasing the value of f has two positive effects: the decrease of the
number of transactions in the Mempool seen by the new transaction as well as
the decrease of persisting number of arriving transactions. Thus, such impact
helps with the reduction of the dropping probability.

8.3 Experiments

In this section, we study the accuracy of the model with respect to the prediction
of confirmation for transactions in Bitcoin.

8.3.1 Methodology

The model that we propose can be seen as a probabilistic binary classifier [33]
that takes the state of the blockchain and the fee per Byte offered by a trans-
action t and returns the probability for t to be confirmed (Class 0) or dropped
(Class 1). The classifier cannot be deterministic because of the intrinsic ran-
domness of the blockchain system variables: the arrival process, the fees offered
by the arriving transactions and the random times of block consolidations. We
describe the methodology of validations in three steps: (i) analysis of the data
set, (ii) parameterization of the model and (iii) performance analysis of the
probabilistic classifier.

2All information required is publicly available through web services such as
www.blockchain.com.

8.3. EXPERIMENTS 129

Analysis of the dataset. We use a dataset containing the Mempool oc-
cupancy in vMB and transaction counts for the last 5 years for Bitcoin. We
consider two systems: one with infinite Mempool size that never drops transac-
tions, and the standard one of Bitcoin Core. Transactions are clustered in 40
classes based on the fee per Byte offered. Class 1 is that with the lowest priority
(offering between 0 and 1 sat/B) and Class 40 contains the transactions offering
more than 2, 000 sat/B. The sampling time is of 1 minute.

Let Fc(t) and Mc(t) the number of transactions at minute t belonging to class
c in the infinite and real Mempools, respectively. The Dc(t) = Fc(t) −Mc(t)
is always non-negative and denotes the number of transactions present in the
fictitious Mempool that have been dropped in the real one. At minute t the
number of dropping is then dc(t) = (Dc(t)−Dc(t− 1))+, where x+ is x if x > 0
or 0, otherwise. Dc(t) −Dc(t − 1) can be negative if at minute t we observe a
block confirmation in which the miner with the infinite Mempool found some
space in the block that could have potentially hosted some transactions of class
c that had been previously dropped.

From these data, we infer a transaction dropping or confirmation event as
follows. Consider a transaction t arriving at time t0 and finding a backlog of N
transactions of the same class in front of it, i.e., N := Mc(t0). All transactions
with lower class (offering lower fees) are irrelevant to determine the behavior
of t and are ignored. At each minute t > t0, N is decreased by the number
of class c dropped transactions dc(t) (since the oldest are chosen), or by the
number of transactions of class c that entered a block. Assume that at t1 we
have N < 0. Then, transaction may have been dropped if at t1 we do not have
a block consolidation, and it is confirmed otherwise.

In this way, from the dataset, we compute, for each arrival epoch, if a trans-
action offering a certain fee per Byte has been confirmed or not.

Parameterization of the model. From the dataset, we obtain the other
statistics of interest to configure our model in a trivial way. So we consider
the size of the block B, the maximum capacity of the Mempool in number of
transactions K, the state of the Mempool if at the transaction arrival time and
the arrival rate λf of transactions offering more than f as fee per Byte (see
Section 8.2.6). While the former two parameters are stable for long periods, the
latter two change for each considered transaction. For all our experiments, we
have considered B = 2, 100 transactions and K = 180, 000.

Performance analysis of the probabilistic classifier. In order to validate
our model, we resort to the computation of Brier Score (see, e.g. [34]). Given
a set of R observations obtained from the dataset o1, o2, . . . , OR, where oi = 0
if the transaction is confirmed and oi = 1, otherwise and the corresponding
probability of dropping estimated by the model q1, q2, . . . , qR, Brier score can
be computed as:

BS =
1

N

R∑
i=1

(qi − oi)2 ,

130 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

Table 8.1: Brier scores for heavy and moderate loads.

Heavy load Moderate load
Transaction class [1, 12]sat/B [1, 5]sat/B

Fraction confirmed 0.39 0.64
Fraction dropped 0.61 0.36

BS 0.134 0.161
BSRef1 0.465 0.431
BSRef2 0.242 0.232
BSS 0.447 0.306

that can be interpreted as mean square error of the forecast. Then, we consider
two simple probabilistic predictors as reference models. Ref1 is a simple random
predictor without any knowledge of the system representing a predictor with no
skill. Ref2 is an ideal predictor that knows a priori the fraction of transactions
of Class c that will be dropped and assigns this value as probability of dropping
to all transactions of Class c. Ref2 is not implementable in practice since it
uses information available a posteriori, but can be approximated by assuming
that, for sufficiently long periods, in case of similar workloads, the fraction
of transactions offering a certain fee that are dropped does not vary much.
Therefore, the dropping probability used by Ref2 could be inferred by historical
data. As expected, Ref2 outperforms Ref1 and will be the term of comparison
for our model. Therefore, the Brier Skill Score (BSS) is defined as:

BSS = 1− BS

BSRef2

.

Values of BSS between 0 and 1 denote a better performance of our model with
respect to Ref2 .

We consider two scenarios for our test: heavy load, where the arrival intensity
is higher than the maximum service capacity and moderate load, where the
stability is satisfied but we are close to the saturation point.

8.3.2 Heavy load conditions

During heavy load periods, we observe many droppings of the cheapest trans-
actions. If we consider a class with very low fee, the experiment would show
100% of dropping probability, with a perfect accuracy of our model.

To make the scenario more challenging for the model, we consider a class
of transactions that is not very cheap. A condition of heavy load occurred
between 2017/11/30 and 2018/01/03. Figure 8.3a shows the Bitcoin Mempool
occupation during these days. We notice that the populations at the infinite
and finite Mempools are basically overlapped at the beginning of the observation
period, but then a sudden increase in the traffic intensity brings to a high number
of droppings.

8.3. EXPERIMENTS 131

2017/11/30 01:00 2017/12/17 08:47:04 2018/01/03 17:19:04
Timestamp

25000

50000

75000

100000

125000

150000

175000

200000

225000

M
em

po
ol

 o
cc

up
an

cy
 [t

x]

Heavy load experiment
Without dropping
With dropping

(a) Heavy load.

2018/01/03 17:20:04 2018/02/05 14:17:01 2018/03/14 03:59:01
Timestamp

20000

40000

60000

80000

100000

120000

140000

160000

180000

M
em

po
ol

 o
cc

up
an

cy
 [t

x]

Moderate load experiment
Without dropping
With dropping

(b) Moderate load.

Figure 8.3: Mempool occupancy in a system with and without dropping mea-
sured in number of transactions.

We study the class of transactions offering between 1 and 12 sat/B. From
the dataset, we collect 100 samples uniformly distributed in the considered time
interval according to the methodology described in Section 8.3.1.

Table 8.1 shows the results of this experiment. In heavy load, around 60% of
the transactions in the consider time interval are dropped despite their offered
fee. We may notice that the model that we propose outperforms both the
classifier with no skill Ref1 , and Ref2 based on the assumption of the knowledge
of the probability of dropping for the data set.

8.3.3 Moderate load conditions

To study the moderate load condition, we consider a cheaper class of transac-
tions, i.e., the one including transactions offering fees between 1 and 5 sat/B.
Figure 8.3b shows the traces of the Mempool occupation during the time inter-
val between 2018/01/03 and 2018/03/14, i.e., immediately following the heavy
load condition previously studied. Although the two traces are not overlapped,
we can observe that the infinite Mempool trace is a translation of the other,
and this denotes that not so many droppings are being done in the time frame
(differently from Figure 8.3a).

Table 8.1 shows the results of this experiment. Although there seems to be
not much difference in the number of droppings between moderate load and
heavy load, the reader should consider that we are studying a class of cheaper
transactions. We may notice, also in this case, that the model that we propose
outperforms both the reference classifiers.

8.3.4 Reliability Analysis as Function of the Mempool state

Reliability becomes crucial especially when the perceived arrival intensity λf is
higher than the maximum system service capacity Bµ. Let ρ = λf/(Bµ) be the
perceived load factor of the system. Recall that, by rising the offered fee per
Byte f , the perceived arrival rate decreases and hence also the perceived load

132 CHAPTER 8. RELIABILITY IN BLOCKCHAINS: DROPPINGS

0 2000 4000 6000 8000 10000
Number of transactions in the Mempool

0.0

0.2

0.4

0.6

0.8

Dr
op

pi
ng

 p
ro

ba
bi

lit
y

= 1.01
= 1.10
= 1.20
= 1.30

Figure 8.4: Dropping probability for different load factors.

factor. Figure 8.4 shows the impact of this fee modulation as function of the
occupancy of the Mempool. The vertical lines show the first two multiplications
of the block capacity. It is interesting to observe that this function appears to
be convex only when the transaction may be included in the first block, if this
is impossible, then it becomes concave.

8.4 Conclusion

In this chapter, we have proposed a model to predict the confirmation or drop-
ping probabilities of transactions in PoW blockchain. The model exploits the
auction-based mechanism underlying the confirmation process of these block-
chains to derive the the dropping probabilities from the offered fees. The analy-
sis relies on theory of difference equations and its main step is the computation
of the roots of a certain characteristic polynomial. The advantage of this white
box model relies on the fact that no historical data are necessary to train the
model. This is a major drawback of machine learning models applied to this
context since dropped transactions do not leave traces in the blockchain logs
and hence, if for Bitcoin we have a dataset that allows us to infer these events,
for other blockchains analogous historical data are unavailable.

To the best of our knowledge, reliability analysis of the transaction confir-
mation process in PoW blockchain is a novel aspect in the field of blockchain
studies. However, the increasing popularity of these distributed ledgers com-
bined with their limited throughput due to their intrinsic security design, are
going to pose the problem of the minimization of the application running costs
while maintaining a certain level of reliability. Our contribution is a first step

8.4. CONCLUSION 133

toward an automatic optimization of this trade-off.
Future works include integration of this model with workload predictors (see,

e.g., Chapter 7) to allow the long-term classification of transactions.

Chapter 9

Conclusion

In this thesis, we examine the blockchain network driven by the most actively
used family of consensus protocols, namely PoW, in order to study the perfor-
mance, reliability and fairness of such systems. While performance and reliabil-
ity are addressed from the end-user and the system perspectives (see Chapters 5,
6 and 8), the fairness is a property that concerns miners (see Chapter 4).

Regarding the fairness in private blockchain domain, we introduce a solution
based on the sliding window approach that is easy to implement and integrate
in existing systems. This solution offers a feasible method of tackling with two
network security issues. On the one hand, our algorithm limits the miners’
ability of the new block consolidation such that the 50% and the greedy miner’s
attacks cannot be executed in such network. On the other hand, thanks to
our quantitative Markovian model, we can balance the HPs of the miners to
ensure fair sharing of the mining load. What is more, we discuss the possible
scenarios of blockchain behaviors considering different size of the sliding window
and various fractions of fair and unfair miners in the network.

For what concerns the performance and reliability assessment of the main
public blockchains, we introduce and then examine outcomes of our analytical
models for estimation of the optimal transaction confirmation time and, as a
corner case, assess the probability of being eventually confirmed or evicted from
the Mempool for transactions with fairly low fees. Such models are based on
the biggest and the most well-known public blockchain, Bitcoin. In addition, to
enhance our model we assess several forecasting methods to provide comprehen-
sive prediction of transaction arrival rate (see Chapter 7). Such contribution is
of importance for any user producing the transactions as (i) one is always keen
to know the optimal fee he/she should propose to guarantee the confirmation of
his/her transactions at each moment of time after certain confirmation delay and
(ii) considering arbitrary confirmation delays (and consequently relatively low
transaction fees) one would like to know the probabilities of such transactions
to be eventually included in a block (e.g., storing data from IoT devices).

It is worth noting that all the obtained results are fully applicable to every
other blockchain network with similar key properties such as PoW.

135

136 CHAPTER 9. CONCLUSION

The initial purpose of our thesis was to provide mathematically tractable
analysis of blockchain networks with PoW consensus mechanism. However, we
may state another crucial contribution: the evidence that the queuing models
can be and should be of high applicability for the purposes of the blockchain
evaluation as it provides fast and powerful mechanism to study the reliability
and performance of the networks overcoming the more common approaches,
such as Monte Carlo simulations. In addition, we believe that the aggregated
positive effect of this thesis can be the first step forward to a greater framework
to study, develop new and improve existing blockchain protocols.

Finally, although PoW is widely used and acknowledged family of blockchain
protocols, the application of analytical models and the genuine framework must
not be limited by these blockchains only. Clearly, the PoS as well as many
other promising solutions developing now pose a great challenge to the queuing
systems. Nevertheless, the modeling systems based on Markov chains should
be able to grant a valuable mathematical interpretation of such blockchains
providing a great scope of analytical insights. The latter could be a viable
subject to future work.

Bibliography

[1] Jameela Al-Jaroodi and Nader Mohamed. Blockchain in industries: A
survey. IEEE Access, 7:36500–36515, 2019.

[2] Maher Alharby, Roben Castagna Lunardi, Amjad Aldweesh, and Aad
van Moorsel. Data-driven model-based analysis of the Ethereum verifier’s
dilemma. In IEEE/IFIP Int. Conf. on Dependable Systems and Networks,
DSN, pages 209–220. IEEE, 2020.

[3] Maher Alharby and Aad van Moorsel. The impact of profit uncertainty
on miner decisions in blockchain systems. Electronic Notes on Theoretical
Computer Science, 340:151–167, 2018.

[4] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru,
and Sara Tucci-Piergiovanni. On fairness in committee-based blockchains.
In Proc. of the 2nd International Conference on Blockchain Economics,
Security and Protocols (Tokenomics 2020), pages 4:1–4:15, 2020.

[5] Norman T.J. Bailey. On queueing processes with bulk service. J. of the
Royal Statistical Society, Series B, 16(1):80–87, 1954.

[6] Simonetta Balsamo, Andrea Marin, Isi Mitrani, and Nicola Rebagliati. Pre-
diction of the consolidation delay in blockchain-based applications. In Proc.
of Int. Conf. on Performance Engineering (ICPE), pages 81–92, 2021.

[7] Simonetta Balsamo, Andrea Marin, Ivan Mitrani, and Nicola Rebagliati.
Prediction of the consolidation delay in blockchain-based applications. In
Proc. of ICPE ’21: ACM/SPEC International Conference on Performance
Engineering, pages 81–92. ACM, 2021.

[8] Jiabin Bao, Debiao He, Min Luo, and Kim-Kwang Raymond Choo. A sur-
vey of blockchain applications in the energy sector. IEEE Systems Journal,
15(3):3370–3381, 2020.

[9] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without
proof of work. In Proc. of Int. Conf. on Financial Cryptography and Data
Security, pages 142–157. Springer, 2016.

137

138 BIBLIOGRAPHY

[10] Dario A. Bini. Numerical computation of polynomial zeros by means of
Aberth’s method. Numerical Algorithms, 13(2):179–200, 1996.

[11] Dario A. Bini and Leonardo Robol. Solving secular and polynomial equa-
tions: A multiprecision algorithm. J. of Computational and Applied Math-
ematics, 272, 2015.

[12] George E.P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M.
Ljung. Time Series Analysis: Forecasting and Control. John Wiley & Sons,
2015.

[13] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation,
and queues, volume 31. Springer Science & Business Media, 2013.

[14] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In
Proc. of the 3rd Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 173–186, 1999.

[15] Kaylash Chaudhary, Vishal Chand, and Ansgar Fehnker. Double-spending
analysis of bitcoin. In Proc. of 24th Pacific Asia Conference on Information
Systems, (PACIS 2020), page 210, 2020.

[16] Jacob Willem Cohen. The single server queue, volume 8 of North-Holland
series in Applied Mathematics and Mechanics. North-Holland, revised edi-
tion, 1979.

[17] Christian Decker and Roger Wattenhofer. Information propagation in the
bitcoin network. In IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

[18] Karl Dilcher, James D. Nulton, and Kenneth B. Stolarsky. The zeros of
a certain family of trinomials. Glasgow Mathematical Journal, 34:55–74,
1992.

[19] David Easley, Maureen O’Hara, and Soumya Basu. From mining to mar-
kets: The evolution of bitcoin transaction fees. Journal of Financial Eco-
nomics, 134(1):91–109, 2019.

[20] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.
Bitcoin-ng: A scalable blockchain protocol. In Proc. of 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 16),
pages 45–59, 2016.

[21] Mahboubeh Faghih Mohammadi Jalali and Hanif Heidari. Predicting
changes in Bitcoin price using grey system theory. Financial Innovation,
13(6), 2020.

[22] Jean-Michel Fourneau, Andrea Marin, and Simonetta Balsamo. Modeling
energy packets networks in the presence of failures. In Proc. of 24th IEEE
International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, MASCOTS, pages 144–153. IEEE
Computer Society, 2016.

BIBLIOGRAPHY 139

[23] Bennett L. Fox and Peter W. Glynn. Computing poisson probabilities.
Communications of the ACM, 31(4):440–445, 1988.

[24] Brian Fralix. On classes of bitcoin-inspired infinite-server queueing systems.
Queueing systems, 95:29–52, 2020.

[25] Lucia Gallina, Sardaouna Hamadou, Andrea Marin, and Sabina Rossi. A
probabilistic energy-aware model for mobile ad-hoc networks. In Proc.
of Analytical and Stochastic Modeling Techniques and Applications - 18th
International Conference, ASMTA, volume 6751 of Lecture Notes in Com-
puter Science, pages 316–330. Springer, 2011.

[26] Stefan Geissler, Thomas Prantl, Stanislav Lange, Florian Wamser, and
Tobias Hossfeld. Discrete-time analysis of the blockchain distributed ledger
technology. In 2019 31st International Teletraffic Congress (ITC 31), pages
130–137. IEEE, 2019.

[27] Saber Goldberg. Introduction to difference equations. Dover Publications,
1986.

[28] Aditya Gopalan, Abishek Sankararaman, Anwar Walid, and Sriram Vish-
wanath. Stability and scalability of blockchain systems. Proc. of ACM on
Measurement and Analysis of Computer Systems, 4(2):art. n. 35, 2020.

[29] Henry Wadsworth Gould. Combinatorial Identities. 1972.

[30] Rachid Guerraoui and Jingjing Wang. On the unfairness of blockchain. In
Proc. of Int. Conf. on Networked Systems (NETYS 2018), pages 36–50.
Springer, 2018.

[31] Rowel Gundlach, Martijn Gijsbers, David Koops, and Jacques Resing. Pre-
dicting confirmation times of bitcoin transactions. ACM Perf. Eval. Review,
48(4):16–19, 2021.

[32] Peter G. Harrison and Andrea Marin. Product-forms in multi-way synchro-
nizations. Comput. J., 57(11):1693–1710, 2014.

[33] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Data mining, Inference, and Prediction. Springer, 2nd
edition, 2009.

[34] Jose Hernandez-Orallo, Peter Flach, and Cesar Ferri. A unified view of per-
formance metrics: translating threshold choice into expected classification
loss. Journal of Machine Learning Research, 13:2813–2869, 2012.

[35] Gur Huberman, Jacob D. Leshno, and Ciamac Moallemi. Monopoly with-
out a monopolist: An economic analysis of the bitcoin payment system.
Review of Economic Studies, 0:1–30, 2021.

140 BIBLIOGRAPHY

[36] Muhammad Anas Imtiaz, David Starobinski, and Ari Trachtenberg. Inves-
tigating orphan transactions in the bitcoin network. IEEE Transactions on
Network and Service Management, 18(2):1718–1731, 2021.

[37] Shuai Wang Fei-Yue Wang Juanjuan Li, Yong Yuan. Transaction queuing
game in Bitcoin blockchain. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 114–119. IEEE, 2018.

[38] Samuel Karlin and Howard M. Taylor. A first course in stochastic processes.
Academic Press, Second edition, 1968.

[39] Shoji Kasahara and Jun Kawahara. Effect of bitcoin fee on transaction-
confirmation process. Journal of Industrial & Management Optimization,
15(1):365, 2019.

[40] Guy Katriel. Gambler’s ruin probability - a general formula. Statistics &
Probability Letters, 83(10):2205–2210, 2013.

[41] Yoshiaki Kawase and Shoji Kasahara. Priority queueing analysis of
transaction-confirmation time for bitcoin. J. of Industrial & Management
Optimization, 16(3):1077–1098, 2020.

[42] David G. Kendall. Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chains. The
Annals of Mathematical Statistics, 24(3):338–354, 1953.

[43] Kashif Mehboob Khan, Junaid Arshad, and Muhammad Mubashir Khan.
Investigating performance constraints for blockchain based secure e-voting
system. Future Gener. Comput. Syst., 105:13–26, 2020.

[44] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain proto-
col. In Proc. of 37th Annual Int. Cryptology Conf - Advances in Cryptology
(CRYPTO 2017), pages 357–388. Springer, 2017.

[45] Leonard Kleinrock. Queueing Systems Volume 1: Theory. Wiley, 1975.

[46] David Koops. Predicting the confirmation time of bitcoin transactions.
preprint, 2018. Available on Arxive https://arxiv.org/pdf/1809.10596.pdf.

[47] Sergio Demian Lerner. Decor+ hop: A scalable blockchain protocol. Avail-
able at https://scalingbitcoin.org/papers/DECOR-HOP.pdf, 2015.

[48] Juanjuan Li, Yong Yuan, and Fei-Yue Wang. Analyzing bitcoin transaction
fees using a queueing game model. Electronic Commerce Research, pages
1–21, 2020.

[49] Zhijie Li, Haoyan Wu, Brian King, Zina Ben Miled, John Wassick, and
Jeffrey Tazelaar. A hybrid blockchain ledger for supply chain visibility. In
Proc of 17th Int. Symp. on Parallel and Distributed Computing (ISPDC),
pages 118–125, 2018.

https://scalingbitcoin.org/papers/DECOR-HOP.pdf

BIBLIOGRAPHY 141

[50] Damiano Di Francesco Maesa and Paolo Mori. Blockchain 3.0 applications
survey. Journal of Parallel and Distributed Computing, 138:99–114, 2020.

[51] Ivan Malakhov, Carlo Gaetan, Andrea Marin, and Sabina Rossi. Workload
prediction in btc blockchain and application to the confirmation time esti-
mation. In Performance Engineering and Stochastic Modeling, pages 3–21.
Springer, 2021.

[52] Ivan Malakhov, Andrea Marin, and Sabina Rossi. Analysis of the con-
firmation time in proof-of-work blockchains. 2022. Available at SSRN:
https://ssrn.com/abstract=4031244.

[53] Morris Marden. Geometry of Polynomials, volume 3 of Mathematical Sur-
veys and Monographs. AMS, 1966.

[54] Andrea Marin and Sabina Rossi. Autoreversibility: Exploiting symmetries
in Markov chains. In Proc. of 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, MASCOTS, pages 151–160. IEEE Computer Society, 2013.

[55] Andrea Marin and Sabina Rossi. On the relations between lumpability and
reversibility. In 2014 IEEE 22nd International Symposium on Modelling,
Analysis & Simulation of Computer and Telecommunication Systems, pages
427–432. IEEE, 2014.

[56] Andrea Marin and Sabina Rossi. On the relations between Markov chain
lumpability and reversibility. Acta Informatica, 54(5):447–485, 2017.

[57] Andrea Marin, Sabina Rossi, Dario Burato, Andrea Sina, and Matteo Sot-
tana. A product-form model for the performance evaluation of a band-
width allocation strategy in WSNs. ACM Trans. Model. Comput. Simul.,
28(2):13:1–13:23, 2018.

[58] Johnnatan Messias, Mohamed Alzayat, Balakrishnan Chandrasekaran, and
Krishna P. Gummadi. On blockchain commit times: An analysis of how
miners choose bitcoin transactions. In The Second International Workshop
on Smart Data for Blockchain and Distributed Ledger (SDBD2020), 2020.

[59] Johnnatan Messias, Mohamed Alzayat, Balakrishnan Chandrasekaran, Kr-
ishna P Gummadi, Patrick Loiseau, and Alan Mislove. Selfish & opaque
transaction ordering in the bitcoin blockchain: the case for chain neutrality.
In Proceedings of the 21st ACM Internet Measurement Conference, pages
320–335, 2021.

[60] Mohammed Mudassir, Shada Bennbaia, Devrim Unal, and Moham-
mad Hammoudeh. Time-series forecasting of bitcoin prices using high-
dimensional features: a machine learning approach. Neural Computing and
Applications, 2020.

[61] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

142 BIBLIOGRAPHY

[62] Muhammad Hassan Nasir, Junaid Arshad, Muhammad Mubashir Khan,
Mahawish Fatima, Khaled Salah, and Raja Jayaraman. Scalable
blockchains - A systematic review. Future Gener. Comput. Syst., 126:136–
162, 2022.

[63] Marcel F. Neuts. The busy period of a queue with batch service. Operations
Research, 13(5):815–819, 1965.

[64] Kelly Olson, Mic Bowman, James Mitchell, Shawn Amundson, Dan Mid-
dleton, and Cian Montgomery. Sawtooth: An introduction, 2018.

[65] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings
of the ACM symposium on principles of distributed computing, pages 315–
324, 2017.

[66] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the
permissionless model. In Proc. of 31st International Symposium on Dis-
tributed Computing (DISC 2017), volume 91, pages 39:1–39:16, 2017.

[67] Hao Qiu and Tong Li. Auction method to prevent bid-rigging strategies
in mobile blockchain edge computing resource allocation. Future Gener.
Comput. Syst., 128:1–15, 2022.

[68] Saulo Ricci, Eduardo Ferreira, Daniel Sadoc Menasche, Artur Ziviani,
Jose Eduardo Souza, and Alex Borges Vieira. Learning blockchain delays:
A queueing theory approach. ACM Perf. Eval. Review, 46(3):122–125,
2019.

[69] Sheldon M. Ross. Stochastic processes, 2nd ed. Wiley series in probability
and statistics. 2008.

[70] Sabina Rossi and Andrea Marin. On discrete time reversibility modulo
state renaming and its applications. EAI Endorsed Transactions on Self-
Adaptive Systems, 1(3), 2015.

[71] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish
mining strategies in bitcoin. In Proc. of Int. Conf. on Financial Cryptog-
raphy and Data Security, pages 515–532. Springer, 2017.

[72] Ivo Stoepker, Rowel Gundlach, and Stella Kapodistria. Robustness analysis
of bitcoin confirmation times. SIGMETRICS Perf. Eval. Review, 48(4):20–
23, 2021.

[73] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American
Statistician, 72(1):37–45, 2018.

[74] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication. In Prof. of Int. Work. on Open Problems in Network
Security, pages 112–125. Springer, 2016.

BIBLIOGRAPHY 143

[75] Marko Vukolić. Rethinking permissioned blockchains. In Proc. of the ACM
Workshop on Blockchain, Cryptocurrencies and Contracts, pages 3–7, New
York, NY, USA, 2017. ACM.

[76] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niy-
ato, Ping Wang, Yonggang Wen, and Dong In Kim. A survey on consen-
sus mechanisms and mining strategy management in blockchain networks.
IEEE Access, 7:22328–22370, 2019.

[77] Sam M. Werner, Paul J. Pritz, Alexei Zamyatin, and William J. Knotten-
belt. Uncle traps: Harvesting rewards in a queue-based ethereum mining
pool. In Proc. of EAI Int. Conf. on Perf. Eval. Methodologies and Tools,
VALUETOOLS, pages 127–134, 2019.

[78] Edmund Taylor Whittakerm and George Neville Watson. A course of mod-
ern analysis. Cambridge at the university press, 1920.

[79] Abdullah A. Zarir, Gustavo A. Oliva, Zhen M. Jiang, and Ahmed E. Has-
san. Developing cost-effective blockchain-powered applications: A case
study of the gas usage of smart contract transactions in the ethereum
blockchain platform. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(3):1–38, 2021.

	Introduction
	Description of the problem
	Performance and Reliability analysis of the Confirmation process of transactions
	Fairness in blockchain networks

	Contributions
	Published papers
	Structure of the thesis

	Background on blockchain and state of the art
	Introduction
	Types of blockchains
	PoW-driven blockchains
	Fixed size and fixed capacity blocks
	Auction and transaction confirmation time
	Predicting the minimum fee for QoS
	Transaction dropping policy

	Literature review
	Fairness in PoW blockchains
	Transaction confirmation process
	Blockchain throughput prediction

	Essential elements of stochastic modeling
	Markov chains
	Discrete-time Markov Chains (DTMC)
	Continuous-time Markov Chains

	Queueing models
	Stability and instability of a queueing system
	M/M/1 queueing system

	Fairness in PoW private blockchains
	Introduction
	Contribution
	Structure of the Chapter

	The problem statement and window-based control
	Security vulnerabilities of PoW
	Fairness issues in permissioned blockchains
	Algorithm description: window-based control

	Stochastic Model for the performance evaluation of the algorithm
	Security and performance assessment
	Double spending and greedy miner attacks
	Security for a single malicious miner
	Security analysis for pools of colluded miners

	Fairness assessment
	Conclusion

	Transaction confirmation time: a system perspective
	Introduction
	Structure of the Chapter

	Comparison of fixed block size and fixed block capacity
	Queueing model for fixed block size
	Numerical investigation

	Dropping policy for fixed block capacity
	Bulk services and droppings
	Numerical investigation
	Description of the simulator
	Results

	Conclusion

	Transaction confirmation time: a user's perspective
	Introduction
	Contribution
	Structure of the Chapter

	Problem statement and motivation
	The queueing model and its solution
	Model description and notation
	Solution of the model
	Numerical solution for the mean confirmation time
	Extension of the model to transactions with arbitrary fee

	Numerical evaluation
	Impact of the perceived load factor on the expected confirmation time
	Impact of the initial Mempool state on the expected confirmation time
	Impact of the transaction fee on the expected confirmation time
	Validation of the model
	Validation of the prototype of the confirmation time estimator

	Conclusion

	Workload prediction methods
	Introduction
	Background
	Background on the ARIMA model
	Background on the Facebook Prophet model

	Evaluation of the accuracy in performance predictions
	Comparison of time series prediction models
	Simulations

	Conclusion

	Reliability in blockchains: droppings
	Introduction
	Problem statement and practical relevance

	A Gambler's ruin based model to estimate the dropping probability
	Modeling assumptions and notation
	Model analysis
	The case of infinite Mempool
	A toy example
	Computational aspects
	The model for transactions offering a general fee

	Experiments
	Methodology
	Heavy load conditions
	Moderate load conditions
	Reliability Analysis as Function of the Mempool state

	Conclusion

	Conclusion

