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Chapter 1

Introduction

A social convention can be perceived as a mode of conduct adopted by a population or

group of individuals wherein they observe the actions of others and, guided by the desire for

conformity, proceed to emulate those actions (Bicchieri, 2005). Typical examples of social

conventions include greeting rituals or driving on a side of the road. The latter example is

particularly noteworthy as it is a behavior that entire populations adopt and sustain, even

in the absence of a law. Some scientists have put forth the argument that also language can

be considered as a social convention to a certain extent (Lewis, 2008). Conducts between

peer groups are another example of social conventions (Borsari and Carey, 2003): friends

within a social group may adopt a particular behavior due to social adaptation, whereby

they conform their actions to align with their peers. Although social conventions are pri-

marily of sociological interest, they have been widely investigated across diverse academic

disciplines, including economics, underscoring their significance as a fundamental aspect of

human behavior. For example, friends’ activities (that are guided by social conventions)

may drive the consumption behavior of that group of friends, or they may influence how

those people appear in an interview (and, therefore, their possibility of getting a job). Un-

derstanding the reasons behind the formation of social conventions is also crucial from a

policy-making perspective. Indeed, many economic phenomena are influenced by social con-

ventions, and therefore, a policymaker that wants to change a given economic behavior may

want to influence social conventions to change such behavior.

In this thesis, I analyze how and why social conventions emerge across distinct contexts

and their impact on different economic environments. In the first and second chapters, I

employ evolutionary game theory techniques together with stochastic stability to study the

formation of social conventions in two different strategic situations: a coordination game
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and a conflict game. In the third chapter, I conducted two field experiments to assess how

people react to different shares of the population engaging in a particular behavior, which is

crucial in understanding the emergence of social conventions. In the fourth chapter, I use a

signaling game to study the relevance of homophily in guiding the formation of social groups

among employees and the consequent impact on labor market outcomes.

Applied economic theory and experiments are widely employed tools to study the formation

and the consequences of social conventions.

Coordination games have a particular byte in studying social conventions since they are a

simple and intuitive tool that mimics the social pressure of certain phenomena. Specifically,

in a coordination game, multiple equilibria can represent different conventions, and stochastic

stability has been successfully used over the years in evolutionary game theory to capture

which convention is the most likely to happen in a context where more than one convention

is plausible (Freidlin and Wentzell, 1998; Young, 1993a; Kandori et al., 1993; Ellison, 2000).

According to stochastic stability, the convention that is the most likely to happen is the one

that requires fewer errors to be reached from all the other conventions and more errors to

be left (where errors are deviating behaviors of agents, not following the convention).

In the field of coordination games, the Language Game has been widely used to study the rise

of conventions between two groups with different tastes (Neary, 2012; Neary and Newton,

2017). As mentioned previously, these situations can shape the consumption behaviors of

agents. However, the importance of these games may extend beyond these situations; for

example, they can also be used to study the formation of conventions between two ethnic

groups, providing insights into the reasons beyond the integration process (Goyal et al., 2021;

Tanaka et al., 2018; He and Wu, 2020; Carvalho, 2017). In this kind of context, learning the

opponent’s type at first glance could also be costly. For example, it may take time and energy

to understand another agent’s preferences or tastes. Due to this factor, the convention that

emerges between two groups of agents may also depend on the cognitive cost of learning the

opponent’s type (Güth and Kliemt, 1994; Berger and De Silva, 2021).

On the other hand, evolutionary game theory has been studying conflict games ever since

its beginning (Smith and Price, 1973). Specifically, Hawk-Dove games are used to study

the formation of conventions when agents compete for a resource (Foley et al., 2018, 2021).

These diverse applications of this kind of game demonstrate its flexibility and power as a

framework for understanding complex social and economic systems. In particular it has been

used in biology (Smith and Price, 1973), economics (Lipnowski and Maital, 1983; Herold and

Kuzmics, 2020), or political science (Brams and Kilgour, 1987; Baliga and Sjöström, 2012,
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2020). It is relevant to study these situations since in Hawk-Dove games, agents must

choose between fighting aggressively for a resource or backing down and avoiding conflict.

By analyzing the dynamics of these games, we can gain insights into the conditions under

which a society may become more or less aggressive over time. Furthermore, in this kind

of games, boundedly rational agents may influence the long-run equilibrium in many ways:

the ability and rationality disparities among agents can play a crucial role in explaining

the selection of different equilibria (Bilancini et al., 2022) and even unexpected convergence

over the long-run (Arigapudi et al., 2021). Unexpected convergence may be good or bad for

the welfare of society depending on factors such as the harshness of conflict. In addition,

it is crucial to investigate the evolutionary basis of the coexistence of heterogeneous agents

in these games, such as when agents have different theories of mind (Mohlin, 2012). This

involves determining which type of agent is more likely to survive based on their fitness, and

whether this coexistence affects canonical predictions.

In the experimental economics literature, the importance of descriptive social norms in guid-

ing many economic phenomena has been documented in the literature across different fields

such as charitable giving (Frey and Meier, 2004; Agerström et al., 2016), intention to vote

(Gerber and Rogers, 2009), or tax evasion (Bott et al., 2020). The contribution of these

experiments is important from different points of view. In the first place, different types of

social conventions may form depending on how people react to different shares of the popula-

tion adopting a certain behavior. Such an importance have been proven in early theoretical

works such as Schelling (1971), or Granovetter (1978), and more recently in experimental

works like Centola and Baronchelli (2015), Centola et al. (2018), or Andreoni et al. (2021).

In these contexts, it is important to determine whether homogeneous behavior is more likely

to be a long-run equilibrium or whether heterogeneity is more prevalent. In the case of

homogeneous behavior, all agents will follow the same behavior in the long-run, while in

the case of heterogeneous case, agents may follow different behaviors. Understanding which

of these two outcomes is more likely is also important from a policymaker’s perspective.

Indeed, public policy decisions depend on whether a policymaker should expect long-term

homogeneous or heterogeneous convergence (Nyborg et al., 2016; Efferson and Vogt, 2018).

The study of signaling games (Spence, 1973), together with the one on costly information

acquisition (Grossman and Stiglitz, 1980), have been successful over the past decades in

explaining inefficiencies in labor market outcomes and other kinds of markets. Lately, many

scholars have been studying models that combine both approaches (Glazer and Rubinstein,

2004; Caillaud and Tirole, 2007; Gentzkow and Kamenica, 2014; Argenziano et al., 2016).

Specifically, certain models study situations where the receiver has to pay to observe the
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signal sent by the senders; this may be the case of an employer that has to exert effort

(or spend time) to screen candidates for a job position (Bilancini and Boncinelli, 2018c,b;

Fosgerau et al., 2020). In these situations, the screening process is costly; therefore, the

employer may decide to screen only a limited amount of information regarding the candi-

dates, or she may decide to rely on information that does not require effort. Given that

social attitudes of candidates are often more easily observable than their skills, agents’ so-

cial preferences could affect how they are assigned to job tasks or, in general, labor market

outcomes since the employer may rely on these easily observable social characteristics when

screening candidates. This process could lead to biased or sub-optimal outcomes in the labor

market (Austen-Smith and Fryer Jr, 2005; Kim and Loury, 2012; Bowles et al., 2014; Bolte

et al., 2020; Okafor, 2020; Jackson, 2021). Specifically, employees may send signals through

conventions (e.g. their clothes): the employer may only judge candidates based on these

signals (conventions, or clothes), inducing them to not invest in their skills.

My first chapter presents a theoretical study on the formation of social conventions between

two different groups in the presence of information costs. In this chapter, I use stochastic

stability to assess the stability of long-run outcomes in a Language Game, where learning

the opponent’s type requires effort. My findings indicate that the cost of learning the oppo-

nent’s type may influence the chances of agents coordinating. Specifically, there is a twofold

advantage in being the majority or the group with stronger preferences. When the cost is

high, nobody learns their opponent’s type, and the majority (the group with stronger prefer-

ences) always plays their favorite action. When the cost is low, the majority (the group with

stronger preferences) never pays for the information and always plays their favorite action.

However, when the cost is high and both groups have strong preferences, a convention in

which they do not coordinate when they meet may arise.

In my second chapter, I focus on another type of game, the Hawk-Dove, which is a conflict

game. Precisely, I use a theoretical model to study the formation of social conventions in

a Hawk-Dove game in the presence of agents with different behavioral rules. I study both

the stochastic stability of strategies for all different population compositions and then the

stability of each population level based on the stochastically stable distribution of strategies

for that population level. I find that the less intelligent type of agent outnumbers the more

intelligent one in the ultra long-run. Considering this endogenous selection mechanism, I

find non-standard convergence for the Hawk-Dove. Lastly, I find that the less intelligent

types behave aggressively when the conflict is harsh and defensively when it is mild. Due

to this result, agents are better of than under the canonical prediction when conflict is mild

(since they live in a peaceful population of doves), while they are worse off when conflict is
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harsh (since they live in an aggressive population of hawks).

In my third chapter, I step away from the theoretical perspective to study relevant implica-

tions for the formation of social conventions with two field experiments. Such an approach

complements the theoretical one since it allows testing relevant implications from theoret-

ical models. Indeed, my third chapter is an experimental investigation of heterogeneous

responses to descriptive social norms. Using two semi-continuous randomized treatments,

we show that the subjects’ response to different shares of the population acting in a certain

way is context-dependent. In the first experiment, we focus on face-masks, randomizing the

number of people wearing the mask in the subject’s immediate environment. In a second

experiment, we randomize the number of people turning the camera on in the subject’s

immediate environment. In the first experiment, We find evidence of a quadratic relation

between the different treatments, while in the second, we found evidence of linearity between

the treatments. When embedded in plausible dynamical models, our estimates suggest an

interior convergence in both experiments, i.e. heterogeneous behavior in the long-run. There-

fore, both of our studies predict the importance of enforcing these kinds of behaviors by law

and not relying on social pressure.

In my fourth chapter, I abandon dynamic games to study the implications of the social

attitudes of agents on their labor market outcomes. I use a signaling model with costly

information acquisition to study the effect on labor market outcomes of the formation of

social conventions due to homophily. Specifically, the employer only sees candidates’ social

groups if she does not buy the information: social groups may be informative about candi-

dates’ abilities and skills depending on how candidates form the social groups. The receiver

earns utility from matching candidates’ types and skills with the right job task. There are

two types of candidates. They decide their skill level and form social groups based on their

level of homophily. The receiver only observes candidates’ social groups unless she screens

them (at a given cost). Our results show that, due to homophily, the receiver never needs

to screen candidates to check their abilities: this effect leads to candidates’ moral hazard.

Indeed, due to homophily, candidates with similar abilities hang out together; therefore, the

receiver infers their abilities from their social group (e.g. from their clothes), and she does

not screen them.

Note that the first and the second chapters are single author papers: the first chapter is

published on Games (Rozzi, “Competing conventions with costly information acquisition.”

Games 12.3 (2021): 53.). The second chapter is the last work I did during my PhD. The third

chapter is joint work together with Itzhak Rasooly: we started to talk about this project

after an informal chat during an online conference in June 2021, and we carried it on until
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we finally did our first experiment in February 2022. The fourth chapter is joint work with

Ennio Bilancini and Leoardo Boncinelli: this is the second project I have worked on during

my PhD. Ennio and Leonardo asked me to work on this project together: I carried on the

modeling choices and the solutions to the model during my third year of the PhD.
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Chapter 2

Competing conventions under costly

information acquisition

Abstract

We consider an evolutionary model of social coordination in a 2 × 2 game where two groups of

players prefer to coordinate on different actions. Players can pay a cost to learn their opponent’s

group: if they pay it, they can condition their actions concerning the groups. We assess the stability

of outcomes in the long-run using stochastic stability analysis. We find that three elements matter

for the equilibrium selection: the group size, the strength of preferences, and the information’s

cost. If the cost is too high, players never learn the group of their opponents in the long-run. If

one group is stronger in preferences for its favorite action than the other, or its size is sufficiently

large compared to the other group, every player plays that group’s favorite action. If both groups

are strong enough in preferences, or if none of the groups’ sizes is large enough, players play

their favorite actions and miscoordinate in inter-group interactions. Lower levels of the cost favor

coordination. Indeed, when the cost is low, in inside-group interactions, players always coordinate

on their favorite action, while in inter-group interactions, they coordinate on the favorite action of

the group that is stronger in preferences or large enough.

Keywords: coordination; conventions; evolution; stochastic stability; costly information

acquisition.

JEL Classification Codes: C72; C73

Notes. This chapter is a single author work published on Games. Rozzi, “Competing conventions with costly

information acquisition.” Games 12.3 (2021): 53. In this version of my chapter, I moved Table A1 to the

Appendix, and I rewrote Theorem 4 for clarity.
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2.1 Introduction

Since the seminal contribution of Kandori et al. (1993), evolutionary game theorists have used

stochastic stability analysis and 2 × 2 coordination games to study the formation of social

conventions (Lewis, 2008 and Bicchieri, 2005 are classical references on social conventions

from philosophy, while for economics, see Schelling, 1980, Young, 1996, and Young, 2020).

Some of these works focus on coordination games such as the battle of sexes: a class that

describes situations in which two groups of people prefer to coordinate on different actions.

In this framework, the long-run convention may depend on how easily people can learn each

other’s preferences.

Think about Bob and Andy, who want to hang out together: they can either go to a football

match or to the cinema. Both Andy and Bob prefer football, but they do not know what the

other prefers. In certain contexts, learning each other’s preferences may require too much

effort. In these cases, if Bob and Andy know that everybody usually goes to the cinema, they

go to the cinema without learning each other’s preferences. In other situations, learning each

other’s preferences may require a small effort (for instance, watching each other’s Facebook

walls). In this case, Bob and Andy learn that they both prefer football, so they go to a

football match together.

In this work, we contribute to the literature on coordination games. We show which con-

ventions become established between two groups of people different in preferences if people

can learn each other’s preferences by exerting an effort. We do so, formalizing the previ-

ous example and studying the evolution of conventions in a dynamic setting. We model

the coordination problem as a repeated language game (Neary, 2012): we use evolutionary

game theory solution concepts and characterize the long-run equilibrium as the stochastically

stable state (see Foster and Young, 1990, Kandori et al., 1993 and Young, 1993a).

We consider a population divided into two groups, which repeatedly play a 2× 2 coordination

game. We assume that one group is larger than the other and that the two groups differ

in preferences towards the coordination outcomes. At each period, players can learn the

group of their opponent if they pay a cost. Such a cost represents the effort to exert if they

want to learn their opponent’s group. If they pay this cost, they can condition the action to

the player they meet. If they do not pay it, they can only play the same action with every

player. Given this change in the strategic set, we introduce a new possible perturbation.

Players can make a mistake in the information choice and a mistake in the coordination

choice. We model two situations: one where the cost is equal to zero, and players always

learn their opponent’s group, and one where the cost is strictly positive and players can learn
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their opponent’s group only if they pay that cost. Players decide myopically their best reply

based on the current state, which is always observable. We say that a group has a stronger

preference for its favorite action than the other if it assigns higher payoffs to its favorite

outcome or lower payoffs to the other outcome compared to the other group.

We find that cost level, strength in preferences, and group size are crucial drivers for the

long-run stability of outcomes. Two different scenarios can happen, depending on the cost.

Firstly, low cost levels favor coordination: players always coordinate on their favorite action

with players of their group. If one group has a stronger preference for its favorite action or

its size is sufficiently large compared to the other, every player plays the action preferred by

that group in inter-group interactions. Interestingly, players from the group that is stronger

in preferences never need to buy the information because they play their favorite action with

everyone, while players from the other group always need to buy it.

Secondly, when the cost is high, players never learn the group of their opponents, and they

play the same action with every player. Some players coordinate on one action that they do

not like, even with players of their group. Indeed, we find that when one group is stronger in

preferences than the other for its favorite action, or if its size is sufficiently large compared

to the other, every player coordinates on that group’s favorite action. Even worse, the two

groups may play their favorite action and miscoordinate in inter-group interactions. We find

that this outcome occurs when both groups have strong enough preferences for their favorite

action or if the two groups are sufficiently close in size.

Neary (2012) considers a similar model, where each player decides one single action valid for

both groups. Hence, it is as if learning an opponent’s group requires too much effort, and no

player ever learns it. Given this scenario, Neary’s results are the same as in our analysis

when the cost is high.

It is helpful to highlight our analysis with respect to the one proposed by Neary, from which

we started. We firstly enlarge Neary’s analysis to the case when players learn their opponent’s

group at zero cost. In this case, only states where all the players in one group buy the

information can be stochastically stable: this result was not possible in the analysis of

Neary. Overall, controlling for the cost equal to zero may be seen as a robustness exercise;

nevertheless, we find that the model is more tractable under this specification than under

Neary’s one. Indeed, if the cost is equal to zero, we can consider inter-group dynamics

separated from inside-group ones, and hence, we can consider two absorbing states at a time.

The behavioral interpretation is similar for high and low levels of the cost: either the minority

adapts to the majority, or the weaker group in preferences adapt to the strongest. Indeed,
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when the cost is low, the weakest group always needs to buy the information, while the

strongest group does not, since it plays its favorite action with everyone. Similarly, when

the cost is high, everybody will play the action favored by the strongest group in preferences

in the long-run. However, comparing the high-cost case with the low-cost case enriches the

previous analysis. From this comparison, we can say that reducing the cost of learning

the opponent’s group increases the probability of inter-group coordination in the long-run.

Indeed, inter-group miscoordination does not occur without incomplete information and a

high cost. Unlike in Neary, strength in preferences or group size alone does not cause inter-

group miscoordination.

The paper is organized as follows: In Section 2.2, we explain the model’s basic features.

In Section 2.3, we determine the results for the complete information case where the cost is

0. In Section 2.4, we derive the results for the case with incomplete information and costly

acquisition. We distinguish between two cases: low cost and high cost. In Section 2.5, we

discuss results, and in Section 2.6, we conclude. We give all proofs in the Appendix A and

we give the intuition during the text.

2.2 Model

We consider N players divided into two groups A and B, N = NA + NB. We assume

NA > NB + 1 and NB > 1. Each period, players are randomly matched in pairs to play

the 2 × 2 coordination game represented in Tables 2.1–2.2. Matching occurs with uniform

probability, regardless of the group. Tables 2.1(a) and 2.1(b) represent inside-group interac-

tions, while Table 2.2 represents inter-group interactions (group A row player and group B

column player). We assume that ΠA > πA, and thus, we name a the favorite action of group

A. Equally, we assume ΠB > πB, and hence, b is the favorite action of group B. We do not

assume any particular order between ΠB, and ΠA. However, without loss of generality, we

assume that ΠA + πA = ΠB + πB. Consider K ∈ {A,B}, and K ′ ̸= K ∈ {A,B}. We say

that group K is stronger in preferences for its favorite action than group K ′ if ΠK > ΠK′ or

equivalently πK < πK′ .

(a) Inside group A
a b

a ΠA,ΠA 0, 0
b 0, 0 πA, πA

(b) Inside group B
a b

a πB, πB 0, 0
b 0, 0 ΠB,ΠB

Table 2.1: Inside-group interactions

Each period, players choose whether to pay a cost to learn their opponent’s group or not
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a b
a ΠA, πB 0, 0
b 0, 0 πA,ΠB

Table 2.2: Inter-group Interactions.

before choosing between action a and b. If they do not pay it, they do not learn the group

of their opponent, and they play one single action valid for both groups. If they pay it,

they can condition the action on the two groups. We call information choice the first and

coordination choice the second.

Consider player i ∈ K. τi is the information choice of player i: if τi = 0, player i does not

learn the group of her/his opponent. If τi = 1, player i pays a cost c and learns the group.

We assume that c ≥ 0. x0i ∈ {a, b} is the coordination choice when τi = 0. If τi = 1,

xK1i ∈ {a, b} is the coordination choice when player i meets group K, while xK
′

1i ∈ {a, b} is

the coordination choice when player i meets group K ′.

A pure strategy of a player consists of her/his information choice, τi, and of her/his coordi-

nation choices conditioned on the information choice, i.e.,

si =
(
τi, x0i, x

K
1i , x

K′

1i

)
∈ S = {0, 1} × {a, b}3.

Each player has sixteen strategies. However, we can safely neglect some strategies because

they are both payoff-equivalent (a player earns the same payoff disregarding which strategy

s/he chooses) and behaviorally equivalent (a player earns the same payoff independently

from which strategy the other players play against her/him).

We consider a model of noisy best-response learning in discrete time (see Kandori et al.,

1993, Young, 1993a).

Each period t = 0, 1, 2, . . . , independently from previous events, there is a positive probability

p ∈ (0, 1) that a player is given the opportunity to revise her/his strategy. When such

an event occurs, each player who is given the revision opportunity chooses with positive

probability a strategy that maximizes her/his payoff at period t. si(t) is the strategy played

by player i at period t. U i
s(s

′, s−i) is the payoff of player i that chooses strategy s′ against

the strategy profile s−i played by all the other players except i. Such a payoff depends on

the random matching assumption and the payoffs of the underlying 2 × 2 game. At period

t+ 1, player i chooses
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si(t+ 1) ∈ argmax
s′∈S

U i
s(s

′, s−i(t)).

If there is more than one strategy that maximizes the payoff, player i assigns the same

probability to each of those strategies. The above dynamics delineates a Markov process

that is ergodic thanks to the noisy best response property.

We group the sixteen strategies into six analogous classes that we call behaviors. We name

behavior a (b) as the set of strategies when player i ∈ K chooses τi = 0, and x0i = a (b). We

name behavior ab as the set of strategies when player i chooses τi = 1, xK1i = a, and xK
′

1i = b,

and so on. Z is the set of possible behaviors: Z = (a, b, ab, ba, aa, bb). zi(t) is the behavior

played by player i at period t as implied from si(t). z−i(t) is the behavior profile played by

all the other players except i at period t as implied from s−i(t). Note that behaviors catch

all the relevant information as defined when players are myopic best repliers. U i
z(z

′, z−i(t))

is the payoff for player i that chooses behavior z′ against the behavior profile z−i(t). Such a

payoff depends on the random matching assumption and the payoffs of the underlying 2 ×
2 game. The dynamics of behaviors as implied by strategies coincide with the dynamics of

behaviors, assuming that players myopically best reply to a behavior profile. We formalize

the result in the following lemma.

Lemma 1. Given the dynamics of zi(t+ 1) as implied by si(t+ 1), it holds that zi(t+ 1) ∈
argmax

z′∈Z
U i
z(z

′, z−i(t)).

Consider a player i ∈ A such that the best thing to do for her/him is to play a with

every player s/he meets regardless of the group. In this case, both (0, a, a, b) and (0, a, b, b)

maximize her/his payoff. In contrast, (0, b, a, b) does not maximize her/his payoff since in

this case, s/he plays b with every player s/he meets. Moreover, the payoff of player i is

equal whether s−i = (0, a, a, b)N−1 or s−i = (0, a, b, b)N−1 but different if s−i = (0, b, a, b)N−1.

Therefore, all the strategies that belong to the same behavior are payoff equivalent and

behaviorally equivalent.

A further reduction is possible because aa (bb) is behaviorally equivalent to a (b) for each

player. The last observation and the fact that we are interested in the number of players

playing a with each group lead us to introduce the following state variable. We denote with

nAA (nBB) the number of players of group A (B) playing action a with group A (B), and nAB

(nBA) the number of players of group A (B) playing action a with group B (A). We define

states as vectors of four components: ω =
{
nAA, nAB, nBA, nBB

}
, with Ω being the state

space and ωt =
{
nAA
t , nAB

t , nBA
t , nBB

t

}
the state at period t. At each t, all the players know
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all the components of ωt. Consider player i playing behavior zi(t) at period t. U
i
zi(t)

(z′, ωt)

is the payoff of i if s/he chooses behavior z′ at period t + 1 against the state ωt. All that

matters for a decision-maker is ωt and zi(t). We formalize the result in the following lemma.

Lemma 2. Given the dynamics of ωt+1 generated by zi(t+ 1), it holds that U i
z(z

′, z−i(t)) =

U i
zi(t)

(z′, ωt). Moreover, U i
a(z

′, ωt) = U i
aa(z

′, ωt) = U i
ab(z

′, ωt), and U
i
b(z

′, ωt) = U i
bb(z

′, ωt) =

U i
ba(z

′, ωt).

If players are randomly matched, it is as if each player plays against the entire population.

Therefore, each player of group K myopically best responds to the current period by looking

at how many players of each group play action a with group K. Moreover, a player that is

given the revision opportunity subtracts her/himself from the component of ωt where s/he

belongs. If i ∈ K is playing behavior a, aa or ab at period t, s/he knows that nKK
t −1 players

of group K are playing action a with group K at period t.

Define with θt+1 the set of players that are given the revision opportunity at period t. Given

Lemma 2, it holds that ωt+1 depends on ωt and on θt+1. That is, we can define a map F (·)
such that ωt+1 = F (ωt, θt+1). The set θt+1 reveals whether the players who are given the

revision opportunity are playing a behavior between a, aa, and ab, or a behavior between b,

bb, and ba. In the first case we should look at U i
a, while in the second at U i

b .

From now on, we will refer to behaviors and states following the simplifications described above.

We illustrate here the general scheme of our presentation. We divide the analysis into two

cases: complete information and incomplete information. For each case, we consider unper-

turbed dynamics (players choose the best reply behavior with probability 1) and perturbed

dynamics (players choose a random behavior with a small probability). First, we help the

reader understand how each player evaluates her/his best reply behavior and which states

are absorbing. Second, we highlight the general structure of the dynamics with perturbation

and then determine the stochastically stable states. In the next section, we analyze the case

with complete information, hence, when the cost is zero.

2.3 Complete information with free acquisition

In this section, we assume that each player can freely learn the group of her/his opponent

when randomly matched with her/him. Without loss of generality, we assume that players

always learn the group of their opponent in this case. We refer to this condition as free

information acquisition. Each player has four possible behaviors as defined in the previous

section. Z = {aa, ab, ba, bb}, with a = aa, and b = bb in this case.
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Define πK
a =

{
ΠA if K = A

πB if K = B
and πK

b =

{
πA if K = A

ΠB if K = B
.

Equations (2.1)–(2.4) are the payoffs for a player i ∈ K playing aa or ab at period t.

U i
a(aa, ωt) =

nKK
t − 1

N − 1
πK
a +

nK′K
t

N − 1
πK
a , (2.1)

U i
a(ab, ωt) =

nKK
t − 1

N − 1
πK
a +

NK′ − nK′K
t

N − 1
πK
b , (2.2)

U i
a(ba, ωt) =

NK − nKK
t

N − 1
πK
b +

nK′K
t

N − 1
πK
a , (2.3)

U i
a(bb, ωt) =

NK − nKK
t

N − 1
πK
b +

NK′ − nK′K
t

N − 1
πK
b . (2.4)

2.3.1 Unperturbed dynamics

We begin the analysis for complete information by studying the dynamics of the system

when players play their best reply behavior with probability one.

We can separate the dynamics of the system into three different dynamics. The two regarding

inside-group interactions, i.e., nAA
t and nBB

t , and the one regarding inter-group interaction,

i.e., nAB
t and nBA

t . We call this subset of states nI
t =

(
nAB
t , nBA

t

)
. Both nAA

t and nBB
t are

one-dimensional; nI
t instead is two-dimensional.

Lemma 3. Under free information acquisition, nAA
t+1 = F1(n

AA
t , θt+1), n

BB
t+1 = F4(n

BB
t , θt+1)

and (nAB
t+1, n

BA
t+1) = F2,3(n

AB
t , nBA

t , θt+1).

The intuition behind the result is as follows. If players always learn their opponent’s group,

the inter-group dynamics does not interfere with the inside-group and vice-versa. If player

i ∈ K is given the revision opportunity, s/he chooses xK1i only based on nKK
t .

Consider a subset of eight states: ωR = {(NA, NA, NB, NB), (0, NA, NB, NB),

(NA, NA, NB, 0), (NA, 0, 0, NB), (0, NA, NB, 0), (NA, 0, 0, 0), (0, 0, 0, NB) and (0, 0, 0, 0)}.

Lemma 4. Under free information acquisition, the states in ωR are the unique absorbing

states of the system.

We call (NA, NA, NB, NB) and (0, 0, 0, 0) Monomorphic States (MS from now on). Specifi-

cally, we refer to the first one as MSa and to the second as MSb. We label the remaining

six as Polymorphic States (PS from now on). We call (NA, NA, NB, 0) PSa and (NA, 0, 0, 0)

PSb. In MS, every player plays the same action with any other player; in PS, at least
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one group is conditioning the action. In MSa, every player plays aa; in MSb, every player

plays bb. In PSa, group A plays aa and group B plays ba. In PSb, group A plays ab while

group B plays bb. In both PSa and PSb, all players coordinate on their favorite action with

their similar.

In the model of Neary, only three absorbing states were possible: the two MS and a Type

Monomorphic State where group A plays aa and group B plays bb. The PS were not present

in the previous analysis. We observe these absorbing states in our analysis, thanks to the

possibility of conditioning the action on the group.

We can break the absorbing states in ωR into the three dynamics in which we are interested.

This simplification helps in understanding why only these states are absorbing. For instance,

in inter-group interactions, there are just two possible absorbing states, namely (NA, NB)

and (0, 0). For what concerns inside-group interactions, NA and 0 matter for nAA
t , and NB

and 0 for nBB
t . For each dynamic, the states where every player plays a or where every player

plays b with one group are absorbing. In this simplification, we can see the importance of

Lemma 3. As a matter of fact, in all the dynamics we are studying, there are just two

candidates to be stochastically stable. This result simplifies the stochastic stability analysis.

2.3.2 Perturbed dynamics

We now introduce perturbations in the model presented in the previous section; that is,

players can make mistakes while choosing their behaviors: there is a small probability that

a player does not choose her/his best response behavior when s/he is given the revision

opportunity. We use tools and concepts developed by Freidlin and Wentzell (1998) and

refined by Ellison (2000).

Given perturbations, ωt+1 depends on ωt, θt+1 and on which players make a mistake among

those who are given the revision opportunity. We define with ψt+1 the set of players who do

not choose their best reply behavior among those who are given the revision opportunity.

Formally, ωt+1 = F (ωt, θt+1, ψt+1).

We use uniform mistakes: the probability of making a mistake is equal for every player

and every state. At each period, if a player is given the revision opportunity, s/he makes

a mistake with probability ε. In this section, we assume that players make mistakes only

in the coordination choice: assuming c = 0, adding mistakes also in the information choice

would not influence the analysis. Note that Lemma 3 is still valid under this specification.

If we consider a sequence of transition matrices {P ε}ε>0, with associated stationary dis-
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tributions {µε}ε>0, by continuity, the accumulation point of {µε}ε>0 that we call µ⋆, is a

stationary distribution of P := limε→0 P
ε. Mistakes guarantee the ergodicity of the Markov

process and the uniqueness of the invariant distribution. We are interested in states which

have positive probability in µ⋆.

Definition 1. A state ω̄ is stochastically stable if µ⋆(ω̄) > 0 and it is uniquely stochastically

stable if µ⋆(ω̄) = 1.

We define some useful concepts from Ellison (2000). Let ω̄ be an absorbing state of the

unperturbed process. D(ω̄) is the basin of attraction of ω̄: the set of initial states from

which the unperturbed Markov process converges to ω̄ with probability one. The radius of

ω̄ is the number of mistakes needed to leave D(ω̄) when the system starts in ω̄. Define a

path from state ω̄ to state ω′ as a sequence of distinct states (ω1, ω2, . . . , ωT ), with ω1 = ω̄

and ωT = ω′. Υ(ω̄, ω′) is the set of all paths from ω̄ to ω′. Define r(ω1, ω2, . . . , ωT ) as the

resistance of the path (ω1, ω2, . . . , ωT ), namely the number of mistakes that occurs to pass

from state ω̄ to state ω′. The radius of ω̄ is then

R(ω̄) = min
(ω1,ω2,...,ωT )∈Υ(ω̄,Ω−D(ω̄))

r(ω1, ω2, . . . , ωT ).

Now define the Coradius of ω̄ as

CR(ω̄) = max
ω/∈D(ω̄)

min
(ω1,ω2,...,ωT )∈Υ(ω,D(ω̄))

r(ω1, ω2, . . . , ωT )

Thanks to Theorem 1 in Ellison (2000), we know that if R(ω̄) > CR(ω̄), then ω̄ is uniquely

stochastically stable.

We are ready to calculate the stochastically stable states under complete information.

Theorem 1. Under free information acquisition, for N large enough, if πB

πA
< NB

NA
, then PSb

is uniquely stochastically stable. If πB

πA
> NB

NA
, then PSa is uniquely stochastically stable.

When the cost is null, players can freely learn the group of their opponent. Therefore, in the

long-run, they succeed in coordinating on their favorite action with those who are similar

in preference. Hence, nAA
t always converges to NA, and nBB

t always converges to 0. This

result rules out Monomorphic States and the other four Polymorphic States: only PSa and

PSb are left. Which of the two is selected depends on strength in preferences and group

size. Two effects determine the results in the long-run. Firstly, if πA = πB, PSa is uniquely

stochastically stable. The majority prevails in inter-group interactions if the two groups are
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equally strong in preferences.

Secondly, if πA ̸= πB, there is a trade-off between strength in preferences and group size.

If πB

πA
> NB

NA
, either group A is stronger in preferences than group B, or group A is sufficiently

larger than group B. In both of the two situations, the number of mistakes necessary to

leave PSa is bigger than the one to leave PSb: in a sense, more mistakes are needed to make

b best reply for A players than to make a best reply for B players. Therefore, every player

will play action a in inter-group interactions. Similar reasoning applies if πB

πA
< NB

NA
.

Interestingly, in both cases, only players of one group need to learn their opponent’s group:

the players from the group that is weaker in preferences or sufficiently smaller than the other.

Unlike in the analysis of Neary, if learning the opponent’s group is costless, the Monomorphic

States are never stochastically stable. This result is a consequence of the possibility to

condition the action on the group. Indeed, if players can freely learn the opponent’s group,

they will always play their favorite action inside the group.

We provide two numerical examples to explain how the model works in Figures 2.1 and 2.2.

We represent just nI
t , hence, a two-dimensional dynamics. Red states represent the basin

of attraction of (0, 0), while green states the one of (NA, NB). From gray states, there are

paths of zero resistance both to (0, 0) and to (NA, NB). Any path that involves more players

playing a within red states has a positive resistance. Every path that involves fewer people

playing a within green states has a positive resistance. The radius of (0, 0) is equal to

the coradius of (NA, NB), and it is the minimum resistance path from (0, 0) to gray states.

The coradius of (0, 0) is equal to the radius of (NA, NB), and it is the minimum resistance

path from (NA, NB) to gray states.

0 1 2 3 4 5 6 7 8 9 10
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3

4

5

Figure 2.1: PSb = (0, 0) is uniquely stochastically stable: πB

πA
< NB

NA
.
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Figure 2.2: PSa = (10, 5) is uniquely stochastically stable: πB

πA
> NB

NA
.

Firstly, consider the example in Figure 2.1. NA = 10, NB = 5, πA = 8, ΠA = 10, πB = 3,

ΠB = 15. Clearly, πB

πA
= 3

8
< 5

10
= NB

NA
. In this case R(10, 5) = CR(0, 0) = 1, while

R(0, 0) = CR(10, 5) = 3. Hence, (0, 0) is the uniquely stochastically stable state. We give

here a short intuitive explanation. Starting from (0, 0), the minimum-resistance path to gray

states is the one that reaches (0, 3). The minimum resistance path from (10, 5) to gray states

is the one that reaches (9, 5). Hence, fewer mistakes are needed to exit from the green states

than to exit from the red states, and PSb = (10, 0, 0, 0) is uniquely stochastically stable.

Secondly, consider the example in Figure 2.2. NA = 10, NB = 5, πA = 3, ΠA = 15,

πB = 8, ΠB = 10. Note that πB

πA
= 8

3
> 5

10
= NB

NA
. In this case, R(10, 5) = CR(0, 0) = 4,

CR(10, 5) = R(0, 0) = 1. Hence, PSa = (10, 10, 5, 0) is uniquely stochastically stable. In this

case, the minimum resistance path from (10, 5) to gray states is the one that reaches (6, 5)

or (10, 1). The one from (0, 0) to gray states is the one that reaches (0, 1).

2.4 Incomplete information with costly acquisition

In this section, we assume that each player can not freely learn the group of her/his opponent.

Each player can buy this information at cost c > 0. We refer to this condition as costly

information acquisition. It is trivial to notice that Lemma 3 is not valid anymore. Indeed,

since players learn the group of their opponent conditional on paying a cost, not every player

pays it, and the dynamics are no longer separable.

This time, Z = {a, b, ab, ba, aa, bb}. It is trivial to show that there are four strictly dominant

behaviors; indeed, U i
zi(t)

(aa, ωt) = U i
zi(t)

(a, ωt)− c and U i
zi(t)

(bb, ωt) = U i
zi(t)

(b, ωt)− c. Hence,
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U i
zi(t)

(aa, ωt) < U i
zi(t)

(a, ωt) and U
i
zi(t)

(bb, ωt) < U i
zi(t)

(b, ωt), ∀i ∈ N and ∀ωt ∈ Ω. We define

strictly dominant behaviors as Zo = {a, b, ab, ba}, with zoi being a strictly dominant behavior

of player i.

Equations (2.5)–(2.8) are the payoffs at period t, for a player i ∈ K currently playing a or ab.

U i
a(a, ωt) =

nKK
t + nK′K

t − 1

N − 1
πK
a , (2.5)

U i
a(b, ωt) =

N − nKK
t − nK′K

t

N − 1
πK
b , (2.6)

U i
a(ab, ωt) =

nKK
t − 1

N − 1
πK
a +

NK′ − nK′K
t

N − 1
πK
b − c, (2.7)

U i
a(ba, ωt) =

NK − nKK
t

N − 1
πK
b +

nK′K
t

N − 1
πK
a − c. (2.8)

Note that if c = 0, then aa = a and bb = b. We begin the analysis with the unper-

turbed dynamics.

2.4.1 Unperturbed dynamics

So far, there are no more random elements with respect to Section 2.3. Therefore, ωt+1 =

F (ωt, θt+1). Nine states can be absorbing under this specification.

Lemma 5. Under costly information acquisition, there are nine possible absorbing states:

ωR ∪ (NA, NA, 0, 0).

We summarize all the relevant information in Table A1. The reader can note two differences

with respect to Section 2.3: firstly, some states are absorbing if and only if some conditions

hold, and secondly, there is one more possible absorbing state, that is, (NA, NA, 0, 0). Such

an absorbing state was also possible in Neary under the same conditions on payoffs and

group size.

Where we write “none”, we mean that a state is always absorbing for every value of group

size, payoffs, and/or the cost. We name (NA, NA, 0, 0) the Type Monomorphic State (TS

from now on): each group is playing its favorite action in this state, causing miscoordination

in inter-group interactions. In both MS and TS, no player is buying the information, while

in PS, at least one group is buying the information.

Monomorphic States are absorbing states for every value of group size, payoffs, and cost.

Indeed, when each player is playing one action with any other player, players do not need
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to learn their opponent’s group (the information cost does not matter): they best reply to

these states by playing the same action.

Polymorphic States are absorbing if and only if the cost is low enough: if the cost is too

high, buying the information is too expensive, and players best reply to Polymorphic States

by playing a or b. The Type Monomorphic State is absorbing if group B is either sufficiently

close in size to group A or strong enough in preferences for its favorite action and if the cost

is high enough. The intuition is the following. On the one hand, if the cost is high and if

group B is weak in preferences or small enough, every player of group B best replies to TS

by playing a. On the other hand, if the cost is low enough, every player best replies to this

state by buying the information and conditioning the action.

2.4.2 Perturbed dynamics

We now introduce perturbed dynamics. In this case, we assume that players can make two

types of mistakes: they can make a mistake in the information choice and in the coordination

choice. Choosing the wrong behavior, in this case, can mean both. We say that with

probability η, a player who is given the revision opportunity at period t chooses to buy

the information when it is not optimal. With probability ε, s/he makes a mistake in the

coordination choice. We could have chosen to set only one probability of making a mistake

with a different behavior or strategy.

The logic behind our assumption is to capture behaviorally relevant mistakes. We assume a

double punishment mechanism for players choosing by mistake the information level and the

coordination action. Specifically, our mistake counting is not influenced by our definition of

behaviors. We could have made the same assumption starting from the standard definition

of strategies assuming that players can make different mistakes in choosing the two actions

that constitute the strategy. Our assumption is in line with works such as Jackson and Watts

(2002) and Bhaskar and Vega-Redondo (2004), which assume mistakes in the coordination

choice and the link choice.

Formally, ωt+1 = F (ωt, θt+1, ψ
c
t+1), where ψ

c
t+1 = {ψε

t+1, ψ
η
t+1} is the set of players who make

a mistake at period t among those who are given the revision opportunity, ψε
t+1 is the set

of players who make a mistake in the coordination choice, and ψη
t+1 the set of players that

make a mistake in the information choice.

Since we assume two types of mistakes, the concept of resistance changes. We then need to

consider three types of resistances. We call rε(ωt, . . . , ωs) the path from state ωt to state ωs

with ε mistakes (players make a mistake in the coordination choice). We call rη(ωt, . . . , ωs)
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the path with η mistakes (players make a mistake in the information choice). Finally, we call

rεη(ωt, . . . , ωs) the path with mistakes both in the coordination choice and the information

choice. Since we do not make further assumptions on ε and η (probability of making mistakes

uniformly distributed), we can assume η ∝ ε.

We count each mistake in the path of both ε and η mistakes as 1; however, rεη(ωt, . . . , ωs)

is always double since it implies a double mistake. Indeed, we can see this kind of mis-

take as the sum of two components, one in η and the other in ε, namely rεη(ωt, . . . , ωs) =

rεη|ε(ωt, . . . , ωs) + rεη|η(ωt, . . . , ωs).

For example, think about ωt = MSa, and that one player from B is given the revision

opportunity at period t. Consider the case where s/he makes a mistake both in the in-

formation choice and in the coordination choice. For example, s/he learns the group and

s/he plays a with A and b with B. This mistake delineates a path from MSa to the state

(NA, NA, NB, NB − 1) of resistance rεη(MSa, . . . , (NA, NA, NB, NB − 1)) = 2. Next, think

about ωt = TS: the transition from TS to (NA, NA − 1, 0, 0) happens with one η mis-

take. One player from A should make a mistake in the information choice and optimally

choosing ab. In this case, rη(TS, . . . , (NA, NA − 1, 0, 0)) = 1. With a similar reasoning,

rε(MSa, . . . , (NA − 1, NA − 1, NB, NB)) = 1: a player of group A makes a mistake in the

coordination choice and chooses b.

Before providing the results, we explain why using behaviors instead of strategies does not

influence the stochastic stability analysis. Let us consider all the sixteen strategies as pre-

sented in Section 2.2, and just one kind of mistake in the choice of the strategy. Let us take

two strategies s′, s′′ ∈ z′ and a third strategy s′′′ ∈ z′′. Now consider the state ω̄, where

si = s′, ∀i ∈ N , and the state ω′, where si = s′, ∀i ∈ {0, . . . , N − m − 1} and sj = s′′,

∀j ∈ {N − m, . . . , N}. Since s′ and s′′ are both payoff-equivalent and behaviorally equiv-

alent, s′ and s′′ are the best reply strategies ∀i ∈ N in both states ω̄ and ω′. Therefore

at each period, every player who is given the revision opportunity in state ω̄ or ω′ chooses

s′ and s′′ with equal probability. Now let us consider the state ω̄′ where si = s′′′, ∀i ∈ N .

When considering the transition between ω̄ and ω̄′, the number of mistakes necessary for

this transition is the same whether the path passes through ω′ or not because the best reply

strategy is the same in both ω′ and ω̄. Therefore, when computing the stochastically stable

state, we can neglect s′′ and ω′.

We divide this part of the analysis into two cases, the first one where the cost is low and the

second one when the cost is high.
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Low cost

This section discusses the case when c is as low as possible but greater than 0.

Corollary 1. Under costly information acquisition, if 0 < c < 1
N−1

min{πA, πB}, MS and

PS are absorbing states, while TS is not an absorbing state.

The proof is straightforward from Table A1. In this case, there are eight candidates to be

stochastically stable equilibria.

Theorem 2. Under costly information acquisition, for large enough N , take 0 < c < 1
N−1

min{πA, πB}. If πB

πA
< NB

NA
, then PSb is uniquely stochastically stable. If πB

πA
> NB

NA
, then PSa

is uniquely stochastically stable.

The conditions are the same as in Theorem 1. When the cost is low enough, whenever

a player can buy the information, s/he does it. Consequently, the basins of attraction of

both Monomorphic States and Polymorphic States have the dimension they had under free

information acquisition. Due to these two effects, the results are the same as under free

information acquisition. This result is not surprising per se but serves as a robustness check

of the results of Section 2.3.2.

High cost

In this part of the analysis, we focus on a case when only MS and TS are absorbing states.

Define the following set of values:

ΞPS = {NBπA, NAπB, (NB − 1)ΠB, (NA − 1) πA, NBΠA, (NB − 1)πB} .

Corollary 2. Under costly information acquisition, if c > 1
N−1

max{ΞPS} and πB

ΠB
< NB−1

NA
,

then only MS and TS are absorbing states. If πB

ΠB
≥ NB−1

NA
, then only MS are absorbing

states.

The proof is straightforward from Table A1, and therefore, we omit it. We previously gave

the intuition behind this result. Let us firstly consider the case in which TS is not an

absorbing state, hence, the case when πB

ΠB
≥ NB−1

NA
.

Theorem 3. Under costly information acquisition, for large enough N , take πB

ΠB
≥ NB−1

NA

and c > 1
N−1

max{ΞPS}. If NA > 2NπA+ΠA−πA

ΠA+πA
, then MSa is uniquely stochastically stable.

If NA <
2NπA+ΠA−πA

ΠA+πA
, then MSb is uniquely stochastically stable.

If group A is sufficiently large or strong enough in preferences, the minimum number of
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mistakes to exit from the basin of attraction of MSa is higher than the minimum number

of mistakes to exit from the one of MSb. Therefore, MSa is uniquely stochastically stable:

every player plays behavior a in the long-run.

Now we analyze the case when also TS is a strict equilibrium.

Theorem 4. Under costly information acquisition, for large enough N , take πB

ΠB
< NB−1

NA

and c > 1
N−1

max{ΞPS}.

• If πB − πA is high enough, MSa is uniquely stochastically stable.

• If πA − πB is high enough, MSB is uniquely stochastically stable.

• If πA + πB is small enough, TS is uniquely stochastically stable.

The first condition expresses a situation where group A is stronger in preferences than group

B or group A is sufficiently larger than group B. In this case, there is an asymmetry in

the two costs for exiting the two basins of attraction of MSa and MSb. Exit from the

first requires more mistakes than exit from the second. Moreover, reaching MSa from TS

requires fewer mistakes than reaching MSb from TS. For this reason, R(MSa) > CR(MSa)

and MSa is uniquely stochastically stable in this case. A similar reasoning applies to the

second condition.

The third condition expresses a case where both groups are strong enough in preferences or

have sufficiently similar sizes. Many mistakes are required to exit from TS, compared to how

many mistakes are required to reach TS from the two MS. Indeed, TS is the state where

both groups are playing their favorite action. Since they are both strong in preferences or

large enough, in this case, all the players play their favorite action in the long-run, but they

miscoordinate in inter-group interactions.

The results of Theorems 3 and 4 reach the same conclusions as Neary. However, our analysis

allows us to affirm that only with a high cost, the MS or the TS is stochastically stable.

This result enriches the previous analysis.

As a further contribution, comparing these results with those in Section 2.4.2, we can give the

two conditions for inter-group miscoordination to happen in the long-run. First, the cost to

pay to learn the opponent’s group should be so high that players never learn their opponent’s

group. Second, both groups should be strong enough in preferences or sufficiently close in

size. The following lemma states what happens when the cost takes medium values.

Lemma 6. If 1
N−1

max {πA, πB} < c < 1
N−1

min{ΞPS}, then the stochastically stable states

must be in the set M = {PSa, PSb,MSa,MSb}.
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When the cost lowers a tiny quantity from the level of Section 2.4.2, TS is not absorbing

anymore. Therefore, only PS and MS can be stochastically stable when the cost is in the

interval above. However, not all the PS can be stochastically stable, only the two where

all the players play their favorite action in inside-group interactions. The intuition of this

result is simple: if players condition their action on the groups in the long-run, they play

their favorite action with those with similar preferences.

We do not study when MS are stochastically stable or when PS are: we leave this question

for future analysis. Nevertheless, given the results of Sections 2.4.2 and 2.4.2, we expect that

for higher levels of cost, MS is stochastically stable, and for lower levels, PS is stochasti-

cally stable.

2.5 Discussion

The results of our model involve three fields of the literature. Firstly, we contribute to

the literature on social conventions. Secondly, we contribute to the literature on stochastic

stability analysis, and lastly, we contribute to the literature on costly information acquisition.

For what concerns social conventions, many works in this field study the existence in the

long-run of heterogeneous strategy profiles. We started from the original model of Neary

(2012), which considers players heterogeneous in preferences, but with a smaller strategic

set than ours (Heterogeneity has been discussed in previous works such as Smith and Price,

1973, Friedman, 1998, Cressman et al., 2001, Cressman et al., 2003 or Quilter et al., 2007).

Neary’s model gives conditions for the stochastic stability of a heterogeneous strategy profile

that causes miscoordination in inter-group interactions in a random matching case. Neary

and Newton (2017) expands the previous idea to investigate the role of different classes

of graphs on the long-run result. It finds conditions on graphs such that a heterogeneous

strategy profile is stochastically stable. It also considers the choice of a social planner that

wants to induce heterogeneous or homogeneous behavior in a population.

Carvalho (2017) considers a similar model, where players choose their actions from a set

of culturally constrained possibilities and the heterogeneous strategy profile is labeled as

miscoordination. It finds that cultural constraints drive miscoordination in the long-run.

Michaeli and Spiro (2017) studies a game between players with heterogeneous preferences

and who feel pressure from behaving differently. Such a study characterizes the circumstances

under which a biased norm can prevail on a non-biased norm. Tanaka et al. (2018) studies

how local dialects survive in a society with an official language. Naidu et al. (2017) studies

the evolution of egalitarian and inegalitarian conventions in a framework with asymmetry
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similar to the language game. Likewise, Belloc and Bowles (2013) examines the evolution

and the persistence of inferior cultural conventions.

We introduce the assumption that players can condition the action on the group if they pay

a cost. This assumption helps to understand the conditions for the stability of the Type

Monomorphic State, where players miscoordinate in inter-group interactions. We show that

a low cost favors inter-group coordination: incomplete information, high cost, strength in

preferences, and group size are key drivers for inter-group miscoordination. Like many works

in this literature, we show the importance of strength in preferences and group size in the

equilibrium selection.

Concerning network formation literature, Goyal et al. (2021) conducts an experiment on

the language game, testing whether players segregate or conform to the majority. van Ger-

wen and Buskens (2018) suggests a variant of the language game similar to our version but

in a model with networks to study the influence of partner-specific behavior on coordina-

tion. Concerning auctions theory, He (2019) studies a framework where each individual of

a population divided into two types has to choose between two skills: a “majority” and a

“minority” one. It finds that minorities are advantaged in competition contexts rather than

in coordination ones. He and Wu (2020) tests the role of compromise in the battle of sexes

with an experiment.

Like these works, we show that group size and strength in preferences matter for the long-

run equilibrium selection. The states where the action preferred by the minority is played in

most of the interactions (MSb or PSb) are stochastically stable provided that the minority

is strong enough in preferences or sufficiently large.

A parallel field is the one of bilingual games such as the one proposed by Goyal and Janssen

(1997) or Galesloot and Goyal (1997): these models consider situations in which players are

homogeneous in preferences towards two coordination outcomes, but they can coordinate on

a third action at a given cost.

Concerning the technical literature on stochastic stability, we contribute by applying stan-

dard stochastic stability techniques to an atypical context, such as costly information acqui-

sition. Specifically, we show that with low cost levels, Polymorphic States where all players

in one group condition their action on the group are stochastically stable. Interestingly, only

one group of players needs to learn their opponent’s group. With high cost levels, Monomor-

phic States where no player conditions her/his action on the group are stochastically stable.

Since the seminal works by Bergin and Lipman (1996) and Blume (2003), many studies have

focused on testing the role of different mistake models in the equilibrium selection. We

25



use uniform mistakes, and introducing different models could be an interesting exercise for

future studies.

Among the many models that can be used, there are three relevant variants: payoff/cost-

dependent mistakes (Sandholm, 2010; Dokumacı and Sandholm, 2011; Klaus and Newton,

2016; Blume, 1993; Myatt and Wallace, 2003a), intentional mistakes (Naidu et al., 2010;

Hwang et al., 2016), and condition-dependent mistakes (Bilancini and Boncinelli, 2020).

Important experimental works in this literature have been done by Lim and Neary (2016),

Hwang et al. (2018), Mäs and Nax (2016), and Bilancini et al. (2021).

Other works contribute to the literature on stochastic stability from the theoretical per-

spective (see Newton, 2018 for an exhaustive review of the field). Recently, Newton (2021)

has expanded the domain of behavioral rules regarding the results of stochastic stability.

Sawa and Wu (2018a) shows that with loss aversion individuals, the stochastic stability

of Risk-Dominant equilibria is no longer guaranteed. Sawa and Wu (2018b) introduces

reference-dependent preferences and analyzes the stochastic stability of best response dy-

namics. Staudigl (2012) examines stochastic stability in an asymmetric binary choice coor-

dination game.

For what concerns the literature on costly information acquisition, many works interpret the

information’s cost as costly effort (see the seminal contributions by Simon, 1955 or Grossman

and Stiglitz, 1980). Our paper is one of those. Many studies place this framework in a sender-

receiver game. This is the case of Dewatripont and Tirole (2005), which builds a model of

costly communication in a sender-receiver setup.

More recent contributions in this literature are Dewatripont (2006), Caillaud and Tirole

(2007), Tirole (2009), and Butler et al. (2013). Bilancini and Boncinelli (2021) applies

this model to persuasion games with labeling. Both Bilancini and Boncinelli (2018a) and

Bilancini and Boncinelli (2018c) consider coarse thinker receivers, combining costly informa-

tion acquisition with the theory of Jehiel (2005). Rational inattention is a recent field where

the information cost is endogenous (see Maćkowiak et al., 2023 for an exhaustive review).

We assume that the cost is exogenous and homogeneous for each player.

Güth and Kliemt (1994) firstly uses costly information acquisition in evolutionary game

theory in a game of trust. It finds conditions such that developing a conscience can be

evolutionarily stable. More recently, Berger and De Silva (2021) uses a similar concept in a

deterrence game where agents can buy costly information on past behaviors of their oppo-

nents.

Many works use similar concepts of cost in the evolutionary game theory literature on co-
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ordination games. For example, Staudigl and Weidenholzer (2014) considers a model where

players can pay a cost to form links. The main finding is that when agents are constraint in

the possible number of interactions, the payoff-dominant convention emerges in the long-run.

The work by Bilancini and Boncinelli (2018d) extends Staudigl and Weidenholzer (2014).

The model introduces the fact that interacting with a different group might be costly for

a player. It finds that when this cost is low, the Payoff-Dominant strategy is the stochas-

tically stable one. When the cost is high, the two groups in the population coordinate on

two different strategies: one on the risk-dominant and the other on the payoff-dominant.

Similarly, Bilancini et al. (2018) studies the role of cultural intolerance and assortativity in a

coordination context. In that model, there is a population divided into two cultural groups,

and each group sustains a cost from interacting with the other group. It finds interesting

conditions under which cooperation can emerge even with cultural intolerance.

2.6 Conclusions

We can summarize our results as follows. When players learn the group of their opponent

at a low cost, they always coordinate: they play their favorite action with their similar,

while in inter-group interactions, they play the favorite action of the group that is stronger

in preferences or with large enough size. If the cost is high, players never learn the group of

their opponent. All the players play the same action with every player, or they play their

favorite action.

By comparing Sections 2.4.2 and 2.4.2, we can see the impact of varying the cost levels on

the long-run results. Surely a low cost favors inter-group coordination. However, a change

in the cost level produces two effects that perhaps need further investigation. The first

effect concerns the change in the payoff from the interactions between players. The second

concerns the change in the purchase of the information.

Consider a starting situation where the cost is low. Players always coordinate on their

favorite action in inside-group interactions. If the cost increases, players stop learning their

opponent’s group (hence, they stop paying the cost), and they begin to play the same action

as any other player. If this happens, either Monomorphic States are established in the

long-run, or the Type Monomorphic State emerges. In the first case, a group of players

coordinates on its second best option, even in inside-group interactions. For this group,

there could be a certain loss in terms of welfare. In the second case, players miscoordinate

in inter-group interactions, and hence, all of them could have a certain loss in welfare.
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Nevertheless, when the cost is low, there is a “free-riding” behavior that vanishes if the

cost increases. In fact, with low cost levels, only one group needs to pay the cost, and the

other never needs to pay it. In one case, players of group A play their favorite action both

in inside-group and inter-group interactions; hence, they never need to pay the cost, while

group B always needs to afford it. In the other case, the opposite happens. Therefore, when

the cost increases, one of the two groups will benefit from not paying for the information

anymore. Future studies could address the implications of this trade-off between successful

coordination and the possibility of not paying the cost.

We conclude with a short comparison of our result with the one of Neary (2012). Indeed, it

is worthwhile to mention a contrast that is a consequence of the possibility of conditioning

the action on the group of the player. In the model of Neary, a change in the strength of

preferences or the group size of one group does not affect the behavior of the other group.

We can find this effect even in our model when the cost is high. For example, when MSa is

stochastically stable and group B becomes strong enough in preferences or sufficiently large,

the new stochastically stable state becomes TS. Therefore, group A does not change its

behavior. However, when the cost is sufficiently low, the change in payoffs or group size of one

group influences the other group’s behavior in inter-group interactions. For instance, when

PSa is stochastically stable, if group B becomes strong enough in preferences or sufficiently

large, PSb becomes stochastically stable. Hence, both groups change the way they behave

in inter-group interactions.

Nevertheless, we can interpret similarly the passing from MSa to TS and the one from

PSa to PSb. In both cases, both groups keep playing their favorite action in inside-group

interactions, and what happens in inter-group interactions depends on strength in preferences

and group size. Therefore, in this respect, the behavioral interpretation of our results is

similar to Neary’s.
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Chapter 3

The rise of conformism in the

Hawk-Dove game

Abstract

I consider a double selection mechanism to study the evolution of conformists (the less intelligent

type) and myopic best repliers (the more intelligent type) in the Hawk-Dove game. Firstly, I derive

the stochastically stable distribution of strategies for each population level. Secondly, I determine

the fitness of each type in the stochastically stable distribution of strategies for each population

level. Myopic best repliers pay a cognitive cost for being the more intelligent type. The process goes

on until both systems reach stability. My results highlight three main findings. First, conformists

outnumber myopic best repliers in the stable state. Second, the fraction of hawks is always higher

(lower) than the one predicted by standard models, depending on the harshness of the conflict.

Third, conformists play hawk when the conflict is harsh and dove when it is mild.

Keywords: hawk-dove, learning, evolutionary stability, stochastic stability, behavioral

rules.

JEL Classification Codes: C73, D74, D83

Notes. This chapter is a single author work.
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3.1 Introduction

“Alla riscossa stupidi che i fiumi sono in piena

Potete stare a galla”

To the rescue stupids that rivers are in flood

You can stay afloat.

– F. Battiato (1980), “Up Patriots to Arms”

Intelligence may seem like a prerequisite for survival in strategic interactions. Specifically, it

sounds reasonable to think that conflict games should be particularly selective against players

who do not play intelligently. However, there is often a trade-off between being intelligent

and not. Firstly, being intelligent causes cognitive costs. Secondly, intelligent players may

be forced to adapt the way they play to unintelligent ones in a way that favors the latter.

In this paper, I study the evolution of two types of agents in the Hawk-Dove game. I am

interested in mainly three research questions. Firstly, does the less intelligent type survive

in such a game? Secondly, is the stable distribution of strategies the canonical mixed Nash

Equilibrium? Lastly, which strategy does the less intelligent type play in the stable state?

I consider a population of agents repeatedly randomly matched to play a Hawk-Dove game in

discrete time. Each agent is either one of two types: conformists or myopic best repliers, the

former being less intelligent than the latter since they do not give importance to payoff while

making decisions. Specifically, myopic best repliers always calculate the best response to the

average payoff at the current period, while conformists choose the strategy played by the

majority in the current period. I study the evolution of strategies with stochastic stability

for all possible population levels. Then, I compute the evolution of types, calculating the

fitness of each type at each stochastically stable distribution of strategies. The stable state

is such that each type has the same fitness, and the distribution of strategies is stochastically

stable for that population level.1 Each agent chooses the best reply to the current period

following their own behavioral rule (Kandori et al., 1993; Young, 1993a). Types evolve

following a replicator equation (Hamilton, 1967; Smith, 1982). Myopic best repliers play

more intelligently than conformists; therefore, their fitness is discounted by a cognitive cost.

This mechanism generates a trade-off between being more or less intelligent.

With my model, I can answer the three research questions proposed above. First, not only

do conformists survive, they outnumber myopic best repliers in the stable state. This result

1 I am implicitly assuming that the stochastic stability process evolves at a faster rate than the evolution
of types, see Section 3.2.4.
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is due to the behavior of myopic best repliers that keep conformists alive. Indeed, as long

as conformists do not outnumber myopic best repliers, the latter compensates for what the

former plays and pushes the system towards a distribution of strategies where each type earns

the same payoff. In this distribution of strategies, superior intelligence becomes unnecessary

since more and less intelligent types achieve the same fitness. Second, the stochastically

stable distribution of strategies in the stable state is not the one predicted by canonical

models. It is a type monomorphic distribution of strategies where each type plays a different

strategy (which one is selected depends on the harshness of conflict as I should explain

below). In this distribution of strategies, the fraction of agents playing hawk is different

from the one predicted by standard Hawk-Dove games. Specifically, it is always greater than

the one predicted by canonical model when the conflict is mild and it is always lower when

the conflict is harsh. Third, in the stable state, the most intelligent type plays hawk when

the conflict is mild and dove when it is harsh.

The intuition behind my results is as follows. Considering the evolution of strategies, when

the fraction of conformists is a minority, the unique absorbing distribution of strategies is the

mixed one such that part of the agents plays hawk, and part play dove. Consequently, also the

stochastically stable distribution of strategies is the mixed one. Note that, in this distribution

of strategies, all conformists play hawk or dove depending on the harshness of conflict,

while myopic best repliers play a mixed strategy. When conformists are the majority, type

monomorphic distributions of strategies become absorbing. In such distributions, conformists

play hawk (dove), and myopic best repliers play dove (hawk). However, such distributions

of strategies are never stochastically stable as long as the level of conformists is lower than

a critical threshold. When conformists are the vast majority, the mixed distributions of

strategies are no longer absorbing since the fraction of conformists is so high that myopic best

repliers can only play a pure strategy as a response to conformists behavior. Therefore, only

the type monomorphic ones can be stochastically stable. In these situations, the harshness

of conflict guides the results. When conflict is mild, conformists play dove, and myopic best

repliers play hawk. When conflict is harsh, conformists play hawk, and myopic best repliers

play dove.

In the mixed distribution of strategies, conformists and myopic best repliers earn the same

payoff. However, myopic best repliers pay the cognitive cost for being the most intelli-

gent type. Hence, for all population levels such that the mixed distribution of strategies is

stochastically stable, the fraction of conformists keeps rising. This effect continues to the

point where conformists become the vast majority in the population, and type monomorphic

distributions of strategies become stochastically stable. In these distributions of strategies,
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myopic best repliers earn a higher payoff on average, but they still pay the cognitive cost for

being the most intelligent type. Therefore, conformists still grow up to the point where the

benefits of being myopic best repliers meet the costs of being such types.

I present some welfare considerations about the stable state in the ultra long-run. When

compared to the mixed distribution of strategies, the type monomorphic distribution of

strategies is desirable when conflict is mild, but not when conflict is harsh.

In addition to these results, I validate the robustness of my findings in different setups. I

verify the robustness of my findings to the relaxation of some crucial assumptions of my

model. I find that the first finding (conformists being the majority in the long-run) is the

most robust among the three, while the second and the third depend on the cost for being

intelligent, but they are still keep a level of robustness. Further, I consider a game where

agents play at each step a mild conflict Hawk-Dove with frequency p and a harsh conflict

Hawk-Dove with frequency 1 − p. In this setup, agents do not know which game they are

playing, but they play the best reply to the linear combination of the two games. The

linear combination between two Hawk-Doves games is itself an Hawk-Dove game. Hence,

not surprisingly, my results are robust to this setup. Afterwards, I consider a setup where

at each time a mild conflict Hawk-Dove is realized with probability p and a harsh conflict

Hawk-Dove is realized with probability 1− p. In this setup, agents are doubly myopic since

they assume that the game in a given time will be the same in the following time. The results

from this extension show that uncertainty (between steps) decreases the chances of survival

of the least intelligent behavioral rule. However, a small level for the cost for being intelligent

is sufficient to make conformists prosper. Lastly, I extend the results in my model to the

Hawk-Dove-Bourgeois model (Smith, 1982). I find that in the ultra long-run only conformists

survive, and they all play the bourgeois strategy (in line with canonical models). With this

extension, I show that conformists have a further advantage if an element of coordination is

introduced in the game, and therefore, myopic best repliers become extinct.

My paper is mostly related to three works in the literature: Mohlin (2012), Arigapudi et al.

(2021), and Bilancini et al. (2022).

Mohlin (2012) considers a model to study the evolution of theories of mind (namely, the

level-k model and the hierarchy model) in different classes of games. He firstly shows the

mechanism such that more sophisticated theories of mind can coexist with less sophisticated

ones even in the Hawk-Dove (through the mixed Nash Equilibrium). With respect to this pa-

per, I study the robustness of the analysis to the introduction of different levels of intelligence

and a cognitive cost for being more intelligent. In fact, in Mohlin (2012), the stable fraction
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of the population is a set of states where the stable distribution of strategies is the mixed one.

In my model, the stable fraction of the population is a precise value (such that conformists

are always the majority), and the stable distribution of strategies is type monomorphic. Im-

portantly, in Mohlin (2012), in the stable distribution of strategies, all agents (not acting

randomly) play hawk in the same fraction predicted by the mixed Nash Equilibrium. In

my model, not only the distribution of strategies is type monomorphic, but the fraction of

agents playing hawk is never the one predicted by the mixed Nash Equilibrium.

Arigapudi et al. (2021) proposes a Hawk-Dove game with two populations where agents have

heterogeneous sampling dynamics. They show that if agents have a limited sampling ability,

the two-populations Hawk-Dove game can converge to a mixed distribution of strategies (in-

stead of a type monomorphic one). I show that a type monomorphic distribution of strategies

(instead of a mixed one) arises in the Hawk-Dove with one population due to heterogeneity

in the intelligence of agents. In contrast with the previous work, such heterogeneity arises

endogenously in my model. In a few words, my result can be seen as a complement to

Arigapudi et al. (2021). They show non-standard results for a two-populations Hawk-Dove

due to heterogeneity in agents’ abilities; I show non-standard results for a one-population

Hawk-Dove due to heterogeneity in agents’ intelligence.

Bilancini et al. (2022) presents a Hawk-Dove game with two populations where one has a

longer memory than the other. They show that when conflict is harsh, the population with

the longest memory plays hawk, while they play dove when it is mild. Therefore, in their

model, the group with the better cognitive ability plays hawk when the conflict is harsh and

dove when it is mild. My model shows that the opposite happens in a one-population game.

Although the results are different and hardly comparable, in both models, greater cognitive

ability (longer memory in their model, and more intelligence in mine) pushes towards dove

when conflict is mild and hawk when conflict is harsh. Indeed, in my model, conformists

play dove (hawk) when conflict is mild (harsh) because they occasionally play intelligently.

However, given that the stable composition of the population is such that conformists are

the majority in the ultra long-run, myopic best repliers react to conformists’ behavior. This

mechanism generates the opposite results than Bilancini et al. (2022).

The remaining of the paper is organized as follows. In Section 3.1.1, I review the existing

literature. In Section 3.2, I present the model. In Section 3.3, I provide the results: in

3.3.1, I present the results of the stochastic stability analysis, in 3.3.2, the analysis on the

evolution of types, and in 3.3.3, the evolutionary stable state. In Section 3.3.4, I show some

welfare considerations about the stable state. In Section 3.3.5, I study some robustness

tests by relaxing some crucial assumptions to my model. In Section 3.4, I provide some
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extensions: in 3.4.1 and 3.4.2, I extend my result to uncertain environments (uncertainty

over games within and between steps), and in 3.4.3, I extend the results to the Hawk-Dove-

Bourgeois game. I offer some concluding remarks in Section 3.5. All the proof are provided

in Appendix B.1 and additional details on the simulations are given in Appendix B.2.

3.1.1 Literature review

The importance of the Hawk-Dove game in studying conflict situations has been documented

in various disciplines such as biology (Hamilton, 1964; Smith and Price, 1973), economics

(Lipnowski and Maital, 1983; Kimbrough et al., 2020), political science (Brams and Kil-

gour, 1987, 2001; Dixit et al., 2019), and in other interdisciplinary fields (Huntingford and

Turner, 1987; Archer, 1988; Baliga and Sjöström, 2012, 2020). The experimental litera-

ture has produced some interesting contributions to the understanding of the Hawk-Dove

game. Oprea et al. (2011) conducted an experiment testing the precision of the convergence

to both one and two populations games, finding positive answers.2 Benndorf et al. (2016)

and Benndorf and Martinez-Martinez (2017) studied both theoretically and in the lab an

hybrid version of the Hawk-Dove game where agents play a combination between the one

and two populations game. Such an hybrid version could explain empirical puzzles in the

laboratory. Recent developments in the theoretical literature on Hawk-Dove games have

focused on understanding when the standard predictions could fail. Standard models pre-

dict a mixed Nash Equilibrium in the one-population game and a type monomorphic state

in the two-populations game (Friedman, 1991; Weibull, 1997). Novel contributions in the

two-populations game have shown potential mechanisms in driving the selection towards one

type monomorphic state or the other (Herold and Kuzmics, 2020; Bilancini et al., 2022), or

in driving the selection towards a mixed Nash Equilibrium (Arigapudi et al., 2021). Foley

et al. (2018, 2021) are noteworthy works too in the social networks literature. They study

the emergence of conventions as a way to solve conflicts. They find that competitive ability

together with the partner choice guide the convergence to possibly cooperative equilibria.

Concerning this literature, I show an endogenous mechanism that creates the conditions

for the coexistence between more and less intelligent types in the Hawk-Dove game. This

mechanism also leads the system to a type monomorphic distribution of strategies, where

the fraction of agents that plays hawk is never the one predicted by standard evolutionary

models. I also show the role of the harshness of conflict in driving the results, showing that

the less intelligent type plays hawk when conflict is harsh and dove when conflict is mild.

2 See Van Huyck et al. (1995) and Friedman (1996) for notable previous attempt to reproduce such
convergence in the lab.
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Regarding the behavioral rules literature in evolutionary game theory (Alós-Ferrer and Buck-

enmaier, 2020), many relevant works focus on the level-k model of intelligence. A consistent

number of models have tried to generalize Young (1993b) bargaining model, introducing

the level-k model (Sáez-Martı and Weibull, 1999; Matros, 2003; Khan and Peeters, 2014).

Among the most important contributions, Nax and Newton (2022) proves that in coordina-

tion games, when generalized risk dominance exists, the long-run result is indifferent to the

introduction of any kind of level-k agents.3 Mohlin (2012) studies the evolution of theories

of mind in different classes of games, showing that the coexistence between different level-ks

is possible in different kinds of games. Heller (2015) shows that the coexistence between

agents with different foresight abilities is possible in a prisoner’s dilemma with an uncertain

horizon. LiCalzi and Mühlenbernd (2019) studies different learning rules in a model where

agents categorize games differently. They show the potential benefit of the imitation rule

regarding cooperation levels. Related to the industrial organization literature but still im-

portant for the behavioral rules one, Alós-Ferrer and Ritschel (2021) studies the coexistence

between imitators and myopic best repliers in Cournot oligopolies (see also Goerg and Selten,

2009 or Schipper, 2009).

Concerning this literature, I show how conformism can survive in the Hawk-Dove game

(a game where conforming is often the opposite of playing the best reply strategy). By

introducing a cognitive cost, I show the robustness of the states that predicts, in the ultra

long-run, a state where conformists outnumber myopic best repliers. Such an introduction

allows me to study the distribution of strategies in the stable state, with implications on

welfare, and in understanding the behavior of less intelligent types.

More generally, my study relates to other fields in the literature, studying the evolution of

learning models in different classes of games. This approach has been particularly prosperous

in the heuristic switching models literature (Brock and Hommes, 2001, 1998; Chiarella and

He, 2002, 2003; Anufriev and Hommes, 2012a,b). Such literature studies traders that adapt

their heuristics based on the relative performance of these heuristics. These works have suc-

cessfully explained many stylized facts in the financial markets. Relevant theoretical works

in this literature also include Dindo and Tuinstra (2011); Tuinstra et al. (2014); Schmitt

et al. (2017). All of the above cited works share one common characteristic with my model:

suggesting an evolutionary argument to explain the coexistence between more and less in-

telligent agents. Specifically, I show how a less intelligent behavioral rule can coexist with a

more intelligent one in the Hawk-Dove game. Also related to my model is the literature on

3 Such a study generalizes some previous results by Blume (2003), Myatt and Wallace (2003b), and Peski
(2010).
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the “Learning to Forecast” experiments (Hommes et al., 2005, 2007; Heemeijer et al., 2009).

The focus of this literature is the different forecasting heuristics that subjects use. With

these papers, I share the intent to explain which choice different subjects adopt. Specifically,

I study the role of the harshness of conflict in driving the result: the less intelligent type

plays aggressively in the stable state if the conflict is harsh and defensively if the conflict is

mild.

Lastly, it is worth mentioning two possibly related fields of the literature: the one on animal

behavior and the one on “zero-intelligence” players. In the animal behavior literature, one

old question concerns whether, for animals, it is better to be scroungers or producers, namely,

to follow other animals’ behaviors or to search on their own for their source of food. Many

works have been conducted in this literature, and their scope is far beyond the one of my

paper (Laland, 2004; Rendell et al., 2010; Dridi and Lehmann, 2015). However, my work

and these works share some relevant features. First, in both cases, one type of behavior

implies a cost (in my case, a cognitive cost, in the other case, a cost from try and error).

Secondly, the other type of behavior implies social learning. The main difference is that

I consider conformists that follow one strategy (playing hawk or dove), while in the other

literature, social learning often implies imitative behavior, which is a less extreme form of

conformism. In the “zero-intelligence” literature, it is shown that even in the presence of

traders with zero intelligence of the market, the equilibrium can be the one predicted by

models predicated on utility maximization (Gode and Sunder, 1993; Ladley, 2012). With

this literature, I share the result that players with zero intelligence of the game are kept

alive by players with full intelligence. However, my model shows that this coexistence brings

unexpected results compared to canonical models.

3.2 Model

I consider a continuum of agents, each agent is labelled i ∈ [0, 1]. Each agent is one of two

types θi ∈ {C,M}. As I will define better in Section 3.2.1, C types are conformists and M

types are myopic best repliers. I name α the fraction of C types, and 1 − α the fraction of

M types.

I consider a dynamical process divided in two steps. At the largest time scale there are

generation of types. Each generation is labelled t. The evolution of types between generations

is moved by the fitnesses of each type at the equilibrium play in each generation. Within each

generation I model how this equilibrium comes about using stochastic stability. The system

reaches a stable state whenever the population is stable, and agents reaches an equilibrium
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play given the stable population. In the next section I describe the evolution of strategies

within each generation t.

3.2.1 Evolution of strategies within a generation

In this part of the process, the fraction of conformists α is fixed. Time is discrete, indexed

by τ = 0, 1, 2..., at each step, agents are repeatedly randomly matched to play a Hawk-Dove

game as represented in Table 3.1.

H D

H v−c
2 , v−c2 v, 0

D 0, v v
2,
v
2

Table 3.1: The Hawk-Dove game

Trivially, each agent has two strategies: H and D, i.e. si = {H,D}. To make it a Hawk-Dove

game, I assume v < c. In the standard two players version of this model, there exists three

Nash Equilibria. One where one player plays H, and the other plays D, the opposite, and a

mixed Nash Equilibrium where both players play H with probability v
c
.

I call nH(τ, t) the fraction of agents playingH at time τ within generation t; hence, 1−nH(τ, t)

is the fraction of agents playing D at time τ within generation t. For simplicity, I will refer

to nH(τ, t) as nH(τ). nC
H(τ) (nM

H (τ)) is the fraction of type C (M) agents playing H at

time τ . Trivially, nH(τ) = nC
H(τ) + nM

H (τ). I define σ(τ, t) ∈ [0, 1]2 as the distribution of

strategies at time τ within generation t. For simplicity, I will refer to σ(τ, t) as σ(τ ). Note

that σ(τ ) =
(
nC
H(τ), n

M
H (τ)

)
. I define π(s, s′) as the payoff for playing strategy s against an

opponent playing strategy s′, and π̄(s, nH(τ)) = nH(τ)π(s,H) + (1 − nH(τ))π(s,D) as the

average payoff for playing strategy s at time τ .

Each agent earns utility Ui(s, nH(τ)) by playing strategy s at time τ , given the distribution

of strategies at time τ . The parameter λi measures the relative weight that agent i gives to

the average payoff in the decision making process. Trivially, 1− λi is the importance given

to the fraction of agents playing hawk (dove) in the decision making process, without taking

into account payoffs. I take λi as a proxy fro intelligence, as players with a higher λi give
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myopic best reply is an extreme form of asocial learning since a myopic best replier computes

(i.e. experiences/tries) all the payoffs on their own.

I assume that M types pay a higher cognitive cost than C types: I normalize to zero

the cognitive cost of C types. As a matter of fact, both types calculate the distribution

of strategies at each step. However, M types give importance close to 1 to the average

payoff. On the other hand, C types give importance close to 0 to the average strategy with a

frequency close to 1 and to the average payoff with a frequency close to 0. Given that myopic

best repliers give importance to a relevant dimension, they are for sure more intelligent than

conformists. Considering that higher level of intelligence also correlates with higher cognitive

loads/costs, I consider myopic best repliers to pay a higher cognitive sot than conformists.

Formally, I assume a cost κi(λi) = κλi, with κ > 0 for each agent. This means that κi = κ,

for all M types and κi ≈ 0 for all C types. I assume that only M types pay a cost κ > 0.6

Within each generation of agents, they converge to a stochastically stable distribution of

strategies (see Section 3.3.1 for technical details) that I call σ∗(t).7 Such a distribution of

strategies is the distribution of strategies where the generation t stays the most. Therefore,

types evolving between generations based on their fitness in σ∗(t). That is, the fraction

of a type in generation t + 1 positively depends on their fitness in the stochastically stable

distribution of strategies of generation t. In the next section I describe the process behind

the evolution of types.

3.2.2 Evolution of types between generations

This process represents the evolution of types between generations, each generation is labelled

t = 0, 1, 2, ....

I name α(t) the fraction of type C in generation t. I evaluate the fitness of each type in

generation t at σ∗(t), using a replicator equation. To define such an equation, I need to

define the average payoff for each type in σ∗(t). Firstly, I call s∗C the strategy played by all

C types in σ∗(t), and s∗M the strategy played by all M types in σ∗(t). Secondly, I name

ΠC(σ
∗(t)) the payoff earned by C types in σ∗(t), and ΠM(σ∗(t)) the payoff earned by M

types in σ∗(t).

6 It is like agents maximize a given problem that involves deciding how much to be intelligent and which
strategy to play given the level of intelligence they choose. Results are likely to be robust in a model where
agents’ strategies consist of choosing their behavioral rule and the strategy implied by such a rule (see Mohlin,
2012 for a similar model with level-k).

7 Note that the stochastically stable distribution of strategies is labelled with t, since it denotes the
convergence result of a generation t.
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I compute the average payoffs in σ∗(t) consequently:

ΠC(σ
∗(t)) = π̄(s∗C ,σ

∗(t)),

ΠM(σ∗(t)) = π̄(s∗M ,σ
∗(t))− κ.

Lastly, I define Π(σ∗(t)) = αΠC(σ
∗(t)) + (1 − α)ΠM(σ∗(t)) as the average payoff of the

population in σ∗(t).

Following standard evolutionary models (Hamilton, 1967; Smith and Price, 1973; Smith,

1982), I consider the following replicator equation:

∆α(t+ 1) = α(t)
[
ΠC(σ

∗(t))− Π(σ∗(t))
]
,

where ∆α(t+ 1) = α(t+ 1)− α(t).

Since there are only two types in the population, the above equation can be specified as

∆α(t+ 1) = α(t)(1− α(t))
[
ΠC(σ

∗(t))− ΠM(σ∗(t))
]
. (3.3)

To recap the two processes implied by my model, I illustrate them in Figure 3.1.

Evolution of strategies within t Evolution of strategies within t+ 1

σ(1, t), σ(2, t)... σ∗(t), σ∗(t)... σ(1, t+ 1), σ(2, t+ 1)... σ∗(t+ 1)...

Generation t Generation t+ 1

Evolution of types
between t and t+ 1

given σ∗(t)

Evolution of types
between t+ 1 and t+ 2

given σ∗(t+ 1)

Figure 3.1: A graphical illustration of the evolution of strategies and types

3.2.3 Evolutionary stable state.

To conduct my analysis I am interested in knowing the evolutionary stable composition of

the population and the stochastically stable distribution of strategies for this composition.

Therefore, I call ω(t, τ ) = (α(t),σ(τ, t)) the state of the world at time τ in generation t. I

am interested in ω = (α,σ): the evolutionary stable state such that α, i.e. the composition

of the population is stable and σ, i.e. the distribution of strategies is stochastically stable

given α.
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3.2.4 Technical assumptions behind the process

The dynamical process explained in the previous sections is reasonable under some assump-

tions. To track them down, I define formally the process implied by Equation (3.2).

∆σ(τ + 1, t) = F (σ(τ, t), ϵ,β(τ, t), α(t)) . (3.4)

Where ∆σ(τ + 1, t) = σ(τ + 1, t)− σ(τ, t). ϵ is the probability with which agents make

mistakes, i.e. the probability with which they choose a random strategy and not the one as

in Equation (3.2): this is a standard assumption in stochastic stability models. The vector

β(τ, t) is the vector of agents who are given the revision opportunity at time τ (as implied

by the inertia assumption).

I define a parameter γ that represents the difference in the speed of evolution of the two pro-

cesses. I define the dynamical system driving the evolution within generations and between

generations as follows

{
γ∆σ(τ + 1, t) = F (σ(τ, t), ϵ,β(τ, t), α(t))

∆α(t+ 1) = α(t)(1− α(t))
[
ΠC(σ(τ, t))− ΠM(σ(τ, t))

] . (3.5)

To solve the system, I study the solutions of the system when γ = 0 and when τ goes to

infinity and ϵ is small enough. Both the conditions on τ and ϵ are required by the stochastic

stability process. In such a way, strategies converge, according to stochastic stability, much

faster than types. Referring to the literature on fast-slow dynamical systems, putting γ = 0

is equivalent to calculating the solution of the system in the critical manifold, a proxy used

in such dynamical systems to calculate the solution (see Cortez and Ellner, 2010). Using

the critical manifold together with stochastic stability is reasonable under some assumptions

that ensure that a stochastically stable distribution of strategies is reached within each

generation t.

Firstly, as assumed in standard stochastic stability models, it must be that agents interact

repeatedly within each generation, in order to infer the distribution of strategies at each

τ (see Young, 1993a; Kandori et al., 1993). Moreover, Equation (3.3) is reasonable under

the assumption that within each t, agents interact with all the other agents, in order to

experience all the payoffs. Another usual assumption in standard stochastic stability is to

set ϵ close to zero. Indeed, the convergence to a stochastically stable distribution of strategies

is guaranteed by τ going to infinity and ϵ being very small (Young, 1993a). This means that

I am assuming that τ goes to infinity for each generation and that ϵ is small enough at each
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generation. I divide the following assumption in two parts, with different implications on

the convergence within a generation.

The first part concerns strategies converging before a new generation is born. I am implicitly

assuming that within a generation agents are incapable of evolving their intelligence, while

they are capable of converging to the stochastically stable distribution of strategies having

fixed the fraction of intelligent agents in the population. In other words, I am assuming that

strategies evolve faster than behavioral rules.

Assumption 1.

Within each t, the system implied by (3.4) converge to a stable distribution of strategies.

The second assumption states that not only strategies converge to a stable distribution of

strategies, this distribution is also the stochastically stable one. Such an assumption relies

on τ going to infinity and ϵ being small enough within each generation t.

Assumption 2.

Within each t, τ goes to infinity and ϵ is small enough to select the stochastically stable

distribution of strategies.

Note that Assumption 1 differs from Assumption 2 since if the former is relaxed, it means

that within a generation, agents may not converge to a stable distribution of strategies (they

may still be converging to one of those when the new generation begins). On the other hand,

if the latter is relaxed, agents still converge to at least one stable distribution of strategies

within a generation, but they maybe stuck between two of them (since the error mechanism

fails to select one of them as in stochastic stability). I test the robustness of my result to

the relaxation of such assumptions in Section 3.3.5.

As it is discussed in seminal works in the stochastic stability literature such as Kandori et al.

(1993) or Young (1993a), stochastic stability is a process that could require a considerable

amount of time to be completed. Therefore, Assumption 1 needs to be discussed deeply.

In my model, I consider the stochastic stability process of one generation to be limited by

the fraction of conformists during that generation. Therefore, I may refer to the length of

each generation as the long-run, while the length of the entire process as the ultra long-run.8

Such an assumption can be justified for three main reasons. First, the stochastically stable

distribution of strategies is the one such that agents spend the most time in it. Hence, in

8 In this sense, I am referring to the ultra long-run in the way of Binmore and Samuelson (1999), which
considers the long-run to be limited by initial conditions, while the ultra long-run to be such that structural
situations can change and the convergence is no longer dependent on initial conditions.
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the passing from one generation to another, I am giving weight 1, to the distribution of

strategies which is the most likely to be observed for the previous generation. Second, the

evolution of types can be viewed as the evolution of preferences or the evolution of learning

rules which are usually assumed to evolve slower than strategies; third, it is arguable that

the convergence of strategies can be quick in the case of study of this paper.9 The rationale

behind why the evolution of preferences or learning rules is usually assumed to be slower

than the evolution of strategies is as follows. It is reasonable to suppose that for an agent,

thinking about how intelligently they take a decision (i.e. their behavioral rule) implies an

additional level of cognitive effort than simply thinking about which decision they should

take (i.e. their strategy). Therefore, it is plausible to expect strategies to converge faster

than behavioral rules. A similar reasoning applies to preferences. Concerning the speed

of convergence of strategies in my model, it is reasonable to assume a fast convergence for

mainly two factors. First, when α < 1
2
, there is only one stable distribution of strategies, and

second, when α > 1
2
, the majority of agents (conformists) take decisions very quickly since

conformism is a relatively easy behavioral rule to follow (do whatever the majority does).

In the next section I compute the results generated by the two above mentioned mechanisms.

Given the double selection mechanism and the many names, I summarize the important

variables in the model in Table 3.2. For simplicity, from now on, I will refer to the term

“distribution/s of strategies” as DS.

Variable Referred to as Meaning
α Fraction of conformists The fraction of conformists

nH(τ) Fraction of hawks at time τ The fraction playing H at time τ

σ(τ )/ σ∗(t) Distribution of strategies (DS)
... at time τ/

stochastically stable in generation t
ω(t, τ )/ω State Both α(t)/α and σ(τ )/σ.

Table 3.2: Recap on the important notation.

3.3 Results

I divide this section into three subsections to make comprehension easier for the reader.

Firstly (3.3.1), I show the stochastically stable DS for each composition of the population.

Secondly (3.3.2), I compute the fitnesses of the types at each stochastically stable DS. Thirdly

9 Concerning the evolution of preferences or learning rules, see Dekel et al. (2007), Kuran and Sandholm
(2008) or Dridi and Lehmann (2015). For some considerations on the speed of evolution of strategies, see
Oprea et al. (2011), Kreindler and Young (2013), Ellison et al. (2016) or Arieli et al. (2020).
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(3.3.3), I show the stable composition of the population implied by the stochastic stability

analysis.

Before I move on, it is useful to define the concepts of mild and harsh conflict that will be

frequently used in the remaining of the paper.

Definition 2. The conflict is harsh if v
c
< 1

2
.

Definition 3. The conflict is mild if v
c
> 1

2
.

Trivially, the closer v gets to c the milder π(H,H) = v−c
2
, i.e. the conflict between two

hawks.

I also define some important DS for my results. I name (1, v−αc
(1−α)c

) HM , (0, v
(1−α)c

) DM , (0, 1)

DH, and (1, 0) HD. Throughout the rest of the paper, I call HM or DM as mixed DS

since M types play a mixed strategy in these cases. Instead, I refer to HD and DH as type

monomorphic DS since each type plays a different strategy in these situations. Importantly,

in the mixed DS, the fraction of hawks is v
c
, since in these DS, conformists play a pure

strategy, while myopic best repliers play a mixed strategy such that the total fraction of

hawks is v
c
. In the type monomorphic ones, the fraction of hawks depends on α since in

these DS, each type plays a different pure strategy.

3.3.1 Stochastic stability

In this section, I compute the stochastically stable DS for each level of α. The stochastic

stability analysis is usually divided into two parts: unperturbed and perturbed dynamics.

In the first part, absorbing DS are computed assuming that agents do not make mistakes.

In the second part, first, it is assumed that agents make mistakes with a small probability,

and then, the stochastically stable DS is determined considering that the probability with

which agents make mistakes approaches the 0 and that time (τ) approaches infinity. The

DS which requires the minimum fraction of errors to be reached starting from all the other

DS is the stochastically stable DS. For details see Freidlin and Wentzell (1998), Foster and

Young (1990), Kandori et al. (1993), Young (1993a), or Ellison (2000) (see also Wallace and

Young, 2015 for practical intuition). I provide the details about the unperturbed dynamics

in Appendix B.1 (see Lemma 12).

The next lemma states results of the stochastic stability analysis.

Lemma 7.

If conflict is mild, ∀α(t) ∈ [0, v
c
), σ∗(t) = HM , ∀α(t) ∈

[
v
c
, 1
]
, σ∗(t) = DH.
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If conflict is harsh, ∀α(t) ∈ [0, c−v
c
), σ∗∗(t) = DM , ∀α(t) ∈

[
c−v
c
, 1
]
, σ∗∗(t) = HD.

I prove the results in Appendix B.1, and give the intuition here. Results are summarized in

Figure 3.2.

α(t)

0 1
v
c

1
2

c−v
c

σ∗(t) = DHσ∗(t) = HM

(a) Mild conflict

α(t)

0 1c−v
c

1
2

v
c

σ∗∗(t) = HDσ∗∗(t) = DM

(b) Harsh conflict

Figure 3.2: Stochastically stable distributions of strategies for different levels of α.

Figure 3.2 highlights the importance of v
c
and c−v

c
. From now on, I will refer to them as the

critical thresholds.

Lemma 7 implies that unless conformists are a vast majority, the mixed DS is the stochas-

tically stable one. This result is perhaps not surprising but deserves a better explanation.

When α is lower than the critical thresholds, the system always converge to a mixed DS

since myopic best repliers are always in a fraction such that they influence the direction of

the system. Therefore, the system is driven towards the DS which are stochastically stable

with pure myopic best repliers, i.e. the mixed ones.

When α is higher than the critical thresholds, the long-run convergence is guided by con-

formists. Their grain of sand of intelligence pushes them to play H when the conflict is harsh

and D when the conflict is mild. Indeed, if λC = 0, it takes the same fraction of mistakes to

go from DH to HD than vice-versa. However, given that λC ≈ 0, the only thing that drives

the result is intelligence. For a myopic best replier, it takes fewer mutations to change from

H to D than to change from D to H when conflict is mild and vice-versa when conflict is

harsh. Hence, when conflict is mild, DH is the stochastically stable DS, and when conflict

is harsh, HD is the stochastically stable one. This result is the opposite of Bilancini et al.

(2022), although the result is driven by the same principle (greater cognitive ability pushes
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towards D when conflict is mild and towards H when conflict is harsh).

3.3.2 Evolution of types

In this section I analyze the evolution of types, computing Equation (3.3) at the stochastically

stable DS from Lemma 7.

Lemma 8.

If conflict is mild,

• ∀α(t) ∈ [0, v
c
), ∀κ > 0, ∆α(t+ 1) > 0.

• ∀α(t) ∈ [v
c
, 1], ∀κ > 0, ∃α ≥ v

c
s.t. ∀α(t) < α, ∆α(t + 1) > 0, and ∀α(t) ≥ α,

∆α(t+ 1) ≤ 0.

If conflict is harsh,

• ∀α(t) ∈ [0, c−v
c
), ∀κ > 0, ∆α(t+ 1) > 0.

• ∀α(t) ∈ [ c−v
c
, 1], ∀κ > 0, ∃α ≥ c−v

c
s.t. ∀α(t) < α, ∆α(t + 1) > 0, and ∀α(t) ≥ α,

∆α(t+ 1) ≤ 0.

Corollary 3.

If conflict is mild, and if κ ≤ 2v−c
2

, α = v
c
. If κ > 2v−c

2
, α > v

c
.

If conflict is harsh, and if κ ≤ c−2v
2

, α = c−v
c
. If κ > c−2v

2
, α > c−v

c
.

Lemma 8 and Corollary 3 set the last conditions for the main results of the paper. I prove the

results in Appendix B.1 and give the intuition here. I summarize the results in Figure 3.3.

When α is smaller than the critical thresholds, conformists always grow in the stochastically

stable DS. In other words, under mild and harsh conflict, conformists can always invade a

population of myopic best repliers and evolve up to a point where the former outnumbers the

latter. The intuition is as follows. As long as myopic best repliers can “influence” stochastic

stability in the way previously discussed, the stochastically stable DS is the mixed one, where

by definition, all the agents earn the same payoff. Therefore, since M types pay a cognitive

cost, they have a lower fitness than conformists. On top of that, M types drive the result in

a way that keeps “alive” conformists since, as it is shown in Lemma 8, they push the system

towards the mixed DS. However, by doing so, myopic best repliers lead the system in a DS

that is disadvantageous for them.

When α reaches the critical thresholds, the stochastically stable DS are the type monomo-

prhic ones. In these DS, there is a trade-off between being more or less intelligent. In fact,
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1α = v
c

1
2

c−v
c

α

α(t)

∆α(t+ 1)
- κ > 2v−c

2

- κ ≤ 2v−c
2

(a) Mild conflict

1α = c−v
c

1
2

v
c

α

α(t)

∆α(t+ 1)
- κ > c−2v

2

- κ ≤ c−2v
2

(b) Harsh conflict

Figure 3.3: The sign of the derivative of α with respect to time for different values of α.

M types have a benefit on C types since they play the correct best response to the DS. How-

ever, M types also suffer from the cost κ. If α is higher than the critical thresholds but still

lower than α, the cost for being more intelligent is higher than the benefit for being so, and

hence, the level of conformists continues to grow. The cost meets the benefit in α, so, such a

composition of the population is stable. Importantly, whenever α > α, the benefit for being

myopic best replier is higher than the cost for being so; therefore, the level of conformists

decreases. This makes α globally stable (see Figure 3.3 for a graphical illustration). Note

that α depends on the level of κ: the higher κ, the higher the level of α. The discontinuity in

Figure 3.3 comes from the fact that the stochastically stable DS changes when α > v
c
( c−v

c
).

3.3.3 Evolutionary stable state

I now state the main result of the paper.

Theorem 5.

Consider a∗ ∈ [0, c−v
c
], and a∗∗ ∈ [0, v

c
]. If conflict is mild, ω = (v

c
+ a∗, DH). If conflict is
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harsh, ω = ( c−v
c

+ a∗∗, HD).

Corollary 4.

If conflict is mild, and if κ ≤ 2v−c
2

, ω = (v
c
, DH). If conflict is harsh, and if κ ≤ c−2v

2
,

ω = ( c−v
c
, HD).

The proof of both statements is straightforward and, therefore, is omitted. Indeed, the previ-

ous lemmas constitute the proof of Theorem 5, and the proof of Corollary 4 is a consequence

of Corollary 3 (and Theorem 5). Results are summarized in Figure 3.4.

α
ω = (α,DH)

0 1
v
c

1
2

c−v
c

(a) Mild conflict for κ > 2v−c
2

α
ω = (α,DH)

0 1
v
c

1
2

c−v
c

(b) Mild conflict for κ ≤ 2v−c
2

α
ω = (α,HD)

0 1c−v
c

1
2

v
c

(c) Harsh conflict for κ > c−2v
2

α
ω = (α,HD)

0 1c−v
c

1
2

v
c

(d) Harsh conflict for κ ≤ c−2v
2

Figure 3.4: The stable state in terms of the evolution of α.

First of all, the stable state is such that the type C is the predominant one in the ultra

long-run. We know from Lemma 8 that as long as α is lower than the critical thresholds, α

continues to grow. Since the critical thresholds are always greater than 1
2
, α is always going
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to be greater than 1
2
in the ultra long-run. In my paper, I evaluate the robustness of Mohlin

(2012) for level-k, introducing different levels of intelligence and a cognitive cost. Thanks to

the introduction of κ, I can say that the level of conformists is always higher than the one

of myopic best repliers in the stable state. Perhaps, this result is even more surprising than

the one in Mohlin (2012) since conformists play a strategy that is far from approximating

the best reply strategy in a Hawk-Dove game.

Secondly, in the stable state in the ultra long-run, the behavior of agents is not the one

predicted by canonical models. Indeed, in a single population game, all canonical models

(Smith and Price, 1973; Smith, 1982) agree on the fact that the only stable DS is the one

where v
c
agents play H and c−v

c
agents play D. From Theorem 5, it emerges that the fraction

of agents playing H is always lower or equal than c−v
c

in the case of mild conflict, while it is

always greater or equal than c−v
c

in the case of harsh conflict. I formalize the result in the

following corollary and summarise it in Figure 3.5.

Corollary 5.

If conflict is mild, n∗
H < c−v

c
for κ > 2v−c

2
, and n∗

H = c−v
c

for κ ≤ 2v−c
2

.

If conflict is harsh, n∗
H > c−v

c
for κ > c−2v

2
, and n∗

H = c−v
c

for κ ≤ c−2v
2

.

As discussed in Section 3.1, this result is complementary to Arigapudi et al. (2021). They

show that due to heterogeneity and limited cognitive ability of agents, a two-populations

Hawk-Dove may converge to a mixed DS instead of to a type monomorphic one. In my

model, I show that due to a different kind of heterogeneity and limited intelligence of agents,

a one-population Hawk-Dove game converges to a type monomorphic DS. Importantly, in

my model, the heterogeneity arises endogenously since the level of conformists is determined

by their fitness in the stochastically stable DS.

Thirdly, from Theorem 5, it emerges how more intelligent types behave in the stable state

depending on the harshness of conflict. When conflict is mild, the more intelligent type

(M type) plays H, while when conflict is harsh, they play D. My result differs from the

one of Bilancini et al. (2022), although both results are driven by the same mechanism. In

Bilancini et al. (2022), the agents with the greater cognitive ability (longer memory in their

case) play D when the conflict is mild and H when the conflict is harsh. Even though in my

model, the opposite happens, such a result is driven by the grain of sand of intelligence of

conformists (the less cognitively able agents). The non-trivial part of my result comes from

the fact that the stable level of unintelligent agents is above 1
2
in the ultra long-run: due to

this endogenous mechanism, the less intelligent agents behave the way they do.

In summary, when conflict is mild (harsh), conformists play D (H) in the stochastically
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Figure 3.5: The fraction of hawks in the stable state as a function of κ.

stable DS in the stable state: the best reply to this DS is H (D). Therefore, myopic best

repliers play H (D) when the conflict is mild (harsh). Despite this result being interesting

per se, its relevance comes from the fact that the high share in the population of conformists

is endogenously determined.

One interesting question that may arise from these results is whether the spread of con-

formists is good or bad in terms of welfare. I will answer this question in the next section.

3.3.4 Welfare implications

In this section, I compare the welfare from Theorem 5 to the case when a mixed DS is the

stable DS, in the style of Arigapudi et al. (2021), with similarities and differences between

our works being discussed in previous sections.

To compute such an analysis, I first need to calculate the average payoffs in the stable state

both in the case of mild conflict and in the case of harsh one. In the former case, the stable

DS is DH; therefore, in this state, α agents play D, and 1− α play H. I name Π(DH) the
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average payoff in the population in such a DS.

Π(DH) = α
(
α
v

2

)
+ (1− α)

(
αv + (1− α)

v − c

2

)
− (1− α)κ.

Similarly, I name Π(HD) the average payoff in the population in HD.

Π(HD) = α

(
α
v − c

2
+ (1− α)v

)
+ (1− α)

(
(1− α)

v

2

)
− (1− α)κ.

Finally, I name Π(mixed) the average payoff in the population in HM or DM . Such a

payoff is independent by which mixed DS is realized since v
c
is always the fraction of agents

playing H.

Π(mixed) =
v

c

(
v

c

v − c

2
+
c− v

c
v

)
+
c− v

c

(
c− v

c

v

2

)
− (1− α)κ.

Note that (1 − α)κ is present in all of the three equations defined above; therefore, the

cognitive cost will not be a disclaimer in determining the final welfare.

Corollary 6. If conflict is mild Π(DH) > Π(mixed),∀c, v > 0. If conflict is harsh,

Π(HD) < Π(mixed),∀α > v
c
.

The proof is straightforward and therefore is omitted. From Corollary 6, it emerges that

the welfare of agents depends on the harshness of conflict. Indeed, when conflict is mild,

the welfare in DH is higher than the mixed DS (HM). The reason is simple: in DH, the

majority of the population plays D, while in HM , the majority of the population plays H.10

A similar reasoning applies to harsh conflict. Indeed, in this case, in the stable state ω∗, the

stochastically stable DS is HD, where the vast majority of the population (i.e. conformists)

plays H. In this case, the mixed DS (DM) is always better as long as α > v
c
, which is

always the case given that α > c−v
c
> v

c
in the stable state. The reason for this inequality

is straightforward: given that α > v
c
, and that all i ∈ [0, α] play H, there is a population of

mostly hawks in a world where conflict is harsh.

10 Note that the result does not depend on the fraction of agents playing H in the mixed DS, so it does
not matter if we compare DH to HM or DM , but given that the mixed DS under mild conflict is HM I
chose to compare DH with it.
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3.3.5 Robustness checks

In this section, I relax some of the assumptions depicted in Section 3.2.4 to validate the

robustness of my findings to possibly different settings.

In a first test, I study the robustness of the statement in Theorem 5 to non using stochastic

stability to compute the prediction within a generation t. In other words, I relax Assump-

tion 2. To understand the implication of this exercise, it means that whenever there is more

than one possible distributions of strategies, I put equal weight on all the possible absorb-

ing distribution of strategies. I summarize the results releasing such an assumption in the

following corollary.

Corollary 7.

Consider a system where Assumption 2 is relaxed, α ≥ 1
2
∀κ > 0. When the conflict is mild,

α > v
c
if and only if κ > 2v−c

4
; when the conflict is harsh, α > c−v

c
if and only if κ > c−2v

4
.

I provide the proof in Appendix B.1 and a simple intuition here for the case of mild conflict

(the argument stands also for the case of harsh conflict).

Given that whenever α(t) ∈ [0, 1
2
), there is only one absorbing distribution of strategies,

that is a mixed one, conformists always grow from 0 to 1
2
. However, given the coexistence

between a mixed distribution of strategies and a type monomorphic one for α(t) between 1
2

and v
c
, myopic best repliers have an advantage half of the times in this range. Therefore,

conformists grow more than 1
2
only if κ is big enough. In other words, the κ such that α > 1

2

is higher without Assumption 2 than with it (see Corollary 4). Notably, the κ such that

α > v
c
is lower without Assumption 2 than with it (see again Corollary 4).

In a second test, I relax Assumption 1 and 2 not allowing τ to go to infinite within each

generation. In this way, the system may not converge to a stable DS within each generation.

To implement this test, I simulate the results in NetLogo.11 I summarized the parameters

used in the model in Table D1; I condensed all results in Table D2 to D9 and in Figure D1

to D4. For completeness I test two different settings, in the first, each generation lasts 50

periods, while in the second each generation lasts 20 (I choose such kind of length because

I wanted to prevent convergence within a generation). In order to assess the fitness, I took

the average payoff of the last 4 (30) periods in the case of 50 periods generation, and the

average payoff of the last 4 (12) periods in the case of 20 periods generation.

The first result which is evident from the first column of the tables is that still conformists

prevail in the long-run even if Assumption 1 and 2 are relaxed. In line with results in Theo-

11 The code is available at https://github.com/rrozzi/hawk-dove-uncertainty.
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rem 5, when conflict is harsh (mild), the higher (lower) v, the lower the level of conformists

in the ultra long-run; the higher κ, the higher the level of conformists in the ultra long-

run. Secondly, it emerges that the behavioral prediction is reversed. According to Table D2

to D9, on average, conformists play H when conflict is mild and D when conflict is harsh.

However, the level of conformists playing H (D) when conflict is mild (harsh) decreases with

increasing value of κ. Once I set a κ > 2v−c
2

( c−2v
2

), the equilibrium where conformists play

D (H) when conflict is mild (harsh) becomes more likely in line with Theorem 5. This result

can be seen both from the average of nC
H that decreases and its standard deviation that

increases, indicating the alternation between different behaviors of conformists. However

the other equilibria (HD in case of mild conflict and DH in case of harsh one) are still more

likely. This result is due to the small length of each generation. Due to this phenomenon, the

ergodicity property does no longer hold, and a sort of behavioral inertia drives the system

towards the equilibrium of the previous generation. Such an equilibrium is often HD in case

of mild conflict and DH in case of harsh one: as in Lemma 7, HD (DH) is stochastically

stable for all levels of α ≤ v
c
(α ≤ c−v

c
), in case of mild (harsh) conflict. The third result

which we can observe by looking at the tables is that again the fraction of hawks in the

stable state is different from the one predicted by canonical models. Indeed, the fraction of

hawks is consistently different from v
c
across all specifications: this result is due to the fact

that conformists do not play following the payoffs of the game, and they are the type with

the biggest share in the population.

Concluding, from this second test, I shown that my results are robust to a certain degree to

the relaxation of Assumption 1 and 2.

3.4 Extensions

In this section, I provide some extensions to the model presented in Section 3.2.

3.4.1 Uncertain environments within steps

In this section, I consider a model where agents play at each step, within generations one of

two kinds of games. I introduce the following notation: G = {G1, G2} is the set of games

played by agents at each τ . Particularly, at each τ agents play G1 with frequency p and

G2 with frequency 1 − p. G1 and G2 are characterized as follows. The rationale behind

such an extension is as follows: each day, agents face different types of situations, and their

behavior might be different depending on how many situations of each type they face. For

the moment, I am not assuming that agents condition their behavior on the type of situation
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(game) they face.

G1
H D

H v1−c
2 , v1−c

2
v1, 0

D 0, v1
v1
2 ,

v1
2

p

G2
H D

H v2−c
2 , v2−c

2
v2, 0

D 0, v2
v2
2 ,

v2
2

1− p

Table 3.3: G1 and G2.

Both G1 and G2 are Hawk-Dove games. However v1
c
> 1

2
, while v2

c
< 1

2
. Therefore, G1

represents every situation of mild conflict, while, G2 represents every situation of harsh

conflict. Agent do not distinguish between G1 and G2, and therefore, they still play one

strategy for both games, si = {H,D}. Consequently, the distribution of strategies is still

σ(τ ), while the state is still ω(t, τ ) = (α(t),σ(τ )). I still am interested in ω = (α,σ).

Equation (3.1), (3.2) and (3.3) still rule agents’ decisions and the states evolution.

To improve the interpretation of the reader I define harsh and mild environments in the

following way.

Definition 4. The environment is harsh if pv1+(1−p)v2
c

< 1
2
.

Definition 5. The environment is mild if pv1+(1−p)v2
c

> 1
2
.

For this section, I only present the main theorem, I provide the proof in Appendix B.1.

Theorem 6.

Consider a∗ ∈ [0, c−(pv1+(1−p)v2)
c

], and a∗∗ ∈ [0, pv1+(1−p)v2
c

]. If the environment is mild,

ω =
(

pv1+(1−p)v2
c

+ a∗, DH
)
. If the environment is harsh, ω =

(
c−(pv1+(1−p)v2)

c
+ a∗∗, HD

)
.

The intuition behind the result is straightforward. The convex combination between G1 and

G2 is a Hawk-Dove game itself. In such a game, there is mild conflict if (pv1+(1−p)v2)
c

> 1
2
(if

the environment is mild), and harsh conflict if (pv1+(1−p)v2)
c

< 1
2
(if the environment is harsh).

From this observation, it is easy to determine the results in Theorem 6 from Theorem 5.

The above extension is rather simple: things could get more interesting when considering

agents conditioning their actions on the game they play. I leave such a case for future

extensions. In the following extension, I study these robustness of the results to a new
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close to 1
2
, while in the other two cases v1 is far from

1
2
and c−v2

c
is close to 1

2
and vice-versa.13

I displayed the results from these simulations from Table D11 to D22 and Figure D5 to D8.

From a first look at the tables, the most apparent result is that allowing for this kind of

uncertainty favors the most intelligent behavioral rule. More precisely, when κ = 0.01,

myopic best repliers always become the majority across all specifications. This result is

due to the fact that even though myopic best repliers are doubly myopic, they react to the

changes in the environment in a better way than conformists since the latter only react to

changes in the share of agents playing hawk, while the former react to changes in the game’s

payoffs. A second look at the results for κ = 0.01 reveals a “U shape” relationship between

p and α. Such a shape is coherent with the fact that extreme levels of p denote situations

close to certainty in the game played at each step where we know (from Theorem 5) that

conformists prosper. On the other hand, when there is more uncertainty (e.g. p between 0.3

and 0.7), the myopic best repliers adapt better to uncertainty, and therefore, with a low κ,

they prosper more. The “U shape” relationship is asymmetric with respect to p = 0.5 when

v1 ̸= c−v2
c

. This result is imputable to the fact that, even where there is no uncertainty in

the game played, α is smaller when v1 or c−v2
c

are closer to 1
2
(see Corollary 4).

Interestingly, a small increase in κ (to 0.05) is sufficient to increase the level of α up to a

point where conformists outnumber myopic best repliers for almost all levels of p (except

0.05) across all specifications. This result shows that even for low levels for the cost of being

more intelligent, the less intelligent behavioral rule could prosper: the explanation may be

similar to the one of Theorem 5 since even though myopic best repliers react to the game

switches in a better way, they still drive the system towards a distribution of strategies such

that all players have the same fitness. Not surprisingly, if κ is greater than the thresholds of

Corollary 4, conformists always outnumber myopic best repliers in the ultra long-run across

all specifications. The last result suggests us that the first result of my paper is robust for

high values of κ.

Another result from these simulations discloses the stable fraction of hawks under uncertain

environments. Not strikingly, as p (the probability of playing the mild conflict game) in-

creases, the fraction of hawks increases. This result is due to two different features. Firstly,

if conformists are a few, the myopic best repliers push the system towards an equilibrium

where the fraction of hawks exceeds 1
2
. Secondly, even when they are the majority, as shown

in Section 3.3.5, as the ergodicity property no longer holds (inevitable in simulations), a

behavioral inertia pushes the fraction of hawks towards v1
c
> in G1 (more likely for high

13 Such a choice is coherent with the results in Theorem 5 (or Figure 3.4) such that the higher v when
conflict is mild, the higher α, and the lower v when conflict is mild, the higher α.
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Moreover, I define nC
D(τ) as the fraction of C types playing D at time τ and nC

H(τ) as the

fraction of C types playing H at time τ . Trivially, α − nC
D(τ) − nC

H(τ) is the fraction of C

types playing B at time τ . Similarly, nM
D (τ) is the fraction of M types playing D at time τ ,

nM
H (τ) is the fraction of M types playing H at time τ , and (1− α)− nM

D (τ)− nC
M(τ) is the

fraction ofM types playing B at time τ . I define σ(τ ) =
(
nC
H(τ), n

C
D(τ), n

M
H (τ), nM

D (τ)
)
. The

state is still ω(t, τ ) = (α(t),σ(τ )) and the main target of the analysis is still to individuate

ω = (α,σ). To distinguish this state from the one in the previous sections, I call the stable

state for the Hawk-Dove-Bourgeois game ωhdb.

Importantly, the underlying assumptions driving Equation (3.2) and (3.3) are still the same.

Lastly, I define (0, 0, 0, 0) as BB: in this DS, all agents play B. All the part of the analysis

concerning stochastic stability and the evolution of types is in Appendix B.1. In this section

I only state the main result in the following theorem.

Theorem 7.

∀κ > 0, both under mild and harsh conflict, ωhdb = (1, BB).

The intuition behind this result is quite simple. Introducing B gives an element of coor-

dination to the original game. Moreover, B is evolutionary stable in all standard models;

that is, a population of only myopic best repliers converges to play B. This fact makes

B the main attractor in all compositions of the population. For this reason, BB is the

stochastically stable DS for all α(t) ∈ [0, 1]. If this is the case, ∆α(t+1) > 0, for every level

of α(t) ∈ (0, 1), that is, conformists always grow more than myopic best repliers for every

value of α(t). This result is due to the fact that in BB, both types earn the same payoff,

given that they coordinate on playing the same strategy. However, given that M types pay

a cognitive cost κ > 0, they always have a lower fitness than C types. For this reason, α = 1

is the only possible value in the stable state. Intuitively, the Hawk-Dove-Bourgeois intro-

duces coordination in the Hawk-Dove game such that even intelligent players push towards

coordination. Given that, by nature, conformists push towards coordination, both types of

players will push towards playing B. Hence, there will be no trade-off between being more

or less intelligent, and conformists will be the unique type in the ultra long-run.

This result is not surprising, but it generalizes the model in previous sections; it shows that in

a game with an element of coordination, conformists prevail even more in the ultra long-run

due to the nature of the interaction.
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3.5 Conclusions

In this paper, I studied a double selection mechanism to assess the evolution of conformism

and myopic best reply in the Hawk-Dove game. Myopic best repliers correctly play the

strategy that best replies to the current distribution of strategies; conformists play the

one chosen by the majority at the current distribution of strategies. Myopic best repliers

pay a cognitive cost for being the most intelligent type. I consider the evolution of the

distributions of strategies through stochastic stability and the evolution of behavioral rules

through replicator dynamics. I find that conformists always outnumber myopic best repliers

in the ultra long-run. Moreover, in the stable distribution of strategies, the fraction of

agents playing hawk is never the one predicted by canonical models. In this distribution,

conformists play dove if the conflict is mild and hawk if it is harsh, while myopic best repliers

behave oppositely. Such a result has important implications for welfare. A population with

a majority of conformists is always better off than a population with a majority of myopic

best repliers if the conflict is mild, while it is always worse off if it is harsh.

I provide some relevant robustness checks to my result. I show that relaxing some critical

assumptions does not affect most of the main predictions. Specifically, I show that the pre-

diction concerning conformists being the majority in the ultra long-run is stable to many

robustness checks that include the relaxation of the assumptions that make stochastic stabil-

ity within each generation realistic. The prediction of the distribution of strategies depends

on the cost of playing more intelligently. However, across all robustness checks, the frac-

tion of hawks observed in the ultra long-run is consistently different from v
c
(the canonical

prediction).

I also provide some extensions to my model. Firstly, I prove the robustness of my results

to an environment where at each step, agents play with a certain frequency, a mild conflict

game, and with a certain frequency, a harsh conflict game, but they do not condition their

strategy on the game they are playing. Secondly, I study a case where the uncertainty is

between steps, namely, a mild (harsh) conflict game is realized with a certain probability at

each step. I show that in this environment, the survival of the least intelligent behavioral

rule is harder (comes at a higher cognitive cost) than when the uncertainty is within steps.

However, a small level of the cost of being more intelligent is sufficient to make conformists

outnumber myopic best repliers in the ultra long-run. I also provide results for the Hawk-

Dove-Bourgeois game, and I show that when an element of coordination is put in the game,

there are no longer any benefits for being more intelligent. This mechanism brings to the

extinction of myopic best repliers in the ultra long-run.
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Chapter 4

Masks, cameras and social pressure

Abstract

In contrast to classical social norm experiments, we conduct experiments that semi-continuously

randomise the share of individuals who are taking a particular action in a given environment. Using

our experimental results, we are able to estimate the distributions of individual tipping points across

our settings. We find that tipping points are very heterogenous, and that a substantial share choose

to do the action (or not) regardless of what others are doing. We also show that, once embedded

in dynamic models, our estimates predict that individuals will end up doing very different things

despite engaging in copying-like behaviour.

Keywords: social norms, field experiment, dynamic models

JEL Classification Codes: D90, C93, C73

Notes. This chapter is a joint work with Itzhak Rasooly.
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4.1 Introduction

There is a large literature demonstrating the power of peer effects and descriptive social

norms across a range of domains. For instance, studies have found that we look to others

when deciding whether to evade our taxes (Bott et al., 2020), donate to charity (Agerström

et al., 2016) and even whether to vote (Gerber and Rogers, 2009). Of course, these examples

are somewhat arbitrary: it is hard to think of even one activity that is not somehow shaped

by our expectations about the behaviour of others.

Despite the obvious importance of social norms, however, current studies only provide limited

evidence regarding the exact relationship between our beliefs about the share of people who

do an activity and our own inclination to do that activity. To take a fairly typical example,

consider Frey and Meier (2004)’s study of the impact of informing individuals that 64% as

opposed to 46% of their peers donate to charity. While their experiment reveals that higher

beliefs about the prevalence of charitable giving can lead to higher donation rates, it reveals

little about the exact shape of this relationship; and more generally how this function looks

over the full possible range of beliefs (0% to 100%).

There are at least three reasons why one might care about how actions depend on exact

beliefs about prevalence (we call this relationship the f function). First, there is a clear

policy motivation: the shape of this function reveals the returns to altering perceptions

about prevalence (e.g. by disclosing information). Second, estimating the shape of this

function allows us to test economic theories since certain economic models, e.g. those in

evolutionary game theory, make distinctive predictions about the observed functional form.

Third, the shape of this function turns out to be absolutely crucial for understanding long-run

equilibria in dynamic models.

In this paper, we begin by elaborating on this third point by demonstrating theoretically

how long-run equilibria in a plausible dynamic model depend on the shape of this function.

We show that curvature is critical. If the function is first convex and then concave, then

our dynamic system converges to an extreme equilibrium (as in Kreindler and Young 2013).

On the other hand, if the function is first concave and then convex, we obtain convergence

to an interior equilibrium; meaning that individuals end up doing very different things even

though each of them is engaging in copying-like behaviour. As a result, understanding the

curvature of this function is crucial for understanding long-run outcomes. In addition, we

show that the intercepts of this function play a key role in pinning down its fixed points,

thereby also shaping long-run equilibria.

This motivates our first experiment which aims to estimate the shape of this function in a
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particular setting, namely face mask usage. The basic idea of the experiment was straight-

forward. Subjects entered a room (one at a time) thinking that they were there solely to

answer a decision problem involving lotteries. Unbeknownst to them, the number of the four

experimenters in the room wearing a face mask had been randomised (leading to treatments

in which 0/4, 1/4, 2/4, 3/4, or 4/4 experimenters were wearing a mask). We then observed

whether each subject themselves chose to wear a face mask.

The experiment took place in Oxford over the course of nine days in February/March 2022. In

total, we conducted fourteen three-hour sessions across twelve different colleges; and repeated

our experimental protocol 646 times (each time with a different subject). Importantly, the

experiment took place at a time in which face masks were no longer required by law or

university rules, but still remained not abnormal. As a result, this was an ideal setting for

capturing the implications of social pressure.

Our first experiment yielded four main results. First, according to our point estimates, the

function is strictly increasing. That is, the greater the number of experimenters who were

wearing a mask, the more likely were subjects to wear a mask. Reassuringly, this increasing

relationship is evident across all of the specifications we estimate, including those that include

and omit demographic controls and college fixed effects.

Second, we observe that many individuals defy social pressure. For example, 20% of the

subjects chose to wear a mask even when none of the experimenters were wearing one (the 0/4

treatment); and 51% of the subjects did not wear the mask when all the other experimenters

were wearing it (the 4/4 treatment). Similar results can be obtained by looking at changes,

i.e. whether individuals chose to put on or take off a face mask during the experiment. For

instance, out of the 106 subjects in the 4/4 treatment who entered the room without wearing

a mask, only 39 chose to put on a mask during the experiment — a fact that illustrates the

limits of social pressure in our setting.

Third, according to our point estimates, the largest jump in mask wearing arises between

the 3/4 and 4/4 treatments. For instance, while increasing the number of mask wearers in

the room from 1 to 2 experimenters raises the probability that a subject will wear a mask

by around 4 percentage points, increasing the number of mask wearers from 3 to 4 raises

the probability that a subject will wear a mask by a full 12 percentage points. This finding

is consistent with an ‘everybody effect’ where social pressure becomes especially acute if

everybody in the relevant environment chooses to do a particular activity.

Fourth, and perhaps most importantly, our estimated function has an interior fixed point,

which is close to 23%. When embedded in our dynamic models, our results therefore suggest
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that, in the long-run, around 23% will choose to wear a face mask. As a result, calibrating

our models using our estimates predicts convergence to an interior equilibrium, despite the

existence of copying-like behaviour.

In order to assess the robustness of our findings, we conducted an analogous experiment

in a very different context: camera use in online calls. The idea of this experiment was

also straightforward. Subjects joined a Zoom call (one at a time) knowing only that they

were attending in order to participate in an economics experiment. Unbeknownst to them,

the number of the four experimenters on the call with their laptop camera on had been

randomised (leading again to five treatments, corresponding to 0/4, 1/4, 2/4, 3/4, and 4/4

experimenters with their camera on). We then observed whether each subject themselves

chose to use their video camera. In total, we repeated this process 1,114 times, leading to a

sample size that was almost twice as large as that obtained in our first experiment.

Conducting this experiment led to similar, although not identical, results. We again find

evidence of an everywhere increasing f function, i.e. that the share who use their camera is

everywhere increasing in the number of experimenters who use their camera. We also again

find high levels of non-compliance, with many participants choosing to use their cameras

(or not) regardless of how many others are doing the same. Most importantly, once we use

our estimates to calibrate our dynamic models, we again obtain convergence to an interior

equilibrium, now with around 37% using a camera. Despite these similarities, the estimated

f function in this context is not precisely the same as that estimated in the mask setting;

and appears to be substantially more linear.

Finally, we discuss which models could give rise to our experimental findings; and could

explain both the commonalities and differences between them. We observe that, assuming

that all individuals have tipping point preferences, our f function can be interpreted as the

cumulative distribution of individual tipping points. Viewed in this way, our experiments

can be interpreted as an attempt to estimate the distribution of individual tipping points

using randomisation. In both experiments, we find that individual tipping points are very

heterogeneous, in contrast to canonical models in evolutionary game theory (e.g. Young

1993a). We also provide a simple model to explain where these tipping points come from.

In our model, tipping points are the result of the interaction of intrinsic preferences to take

the action along with (potentially non-linear) social pressure effects.

Our study contributes to a number of literatures across economics and related disciplines.

First, our study contributes to the broader literature on the importance of peer effects

and descriptive social norms. The current literature consists of a series of generally binary
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experiments across a variety of domains (see Cialdini 2007, Mascagni 2018 and Farrow et al.

2017 for reviews).1 In contrast, our study is the first to semi-continuously randomise the

share taking an action in subjects’ immediate environment; and the first to do so in any

setting (not just the settings of face masks and video calls).2

Second, our study contributes to the literature on tipping points and long-run dynamics. Es-

pecially relevant references include papers like Young (1993a), Kandori et al. (1993), Jackson

and Yariv (2007), Young (2009) and Kreindler and Young (2013) in the economics litera-

ture; as well as the sociology literature following Schelling (1971) and Granovetter (1978)

(see Dodds and Watts 2011 for an overview). Our study can be viewed as a first attempt to

use randomisation in order to estimate the shape of the ‘aggregate best response function’

(or equivalently, tipping point distribution) that is crucial for driving the results of such

models. The works by Damon Centola in the sociology literature are particularly relevant

to this extent. In Centola and Baronchelli (2015) and Centola et al. (2018), the authors

experimentally estimate the aggregate best response function in a different way from our

experiment (see also Andreoni et al. (2021)). In the first experiment, they show how a group

of subjects can converge to a convention even without knowing the share of the other subject

doing one action nor the size of the population, while in the second experiment, they show

in the same setting, how many subjects going against the status quo are necessary to break

the convention.

Although these experiments have many advantages in studying dynamical systems compared

to our study, we differentiate our aims and results because we show the effect of directly

showing subjects the share of other people doing one activity. This is possible since, in our

study, subjects observe what the people in the immediate environment ¡ are doing, while in

the previously mentioned papers, they do not.

Other works using and/or trying to estimate the aggregate best response function is the

one on harmful norms such as FGM, child marriage, or domestic violence, among others.

1 Studies which provide some information about f functions in various contexts include: Cialdini et al.
(1990); Cason and Mui (1998); Ichino and Maggi (2000); Borsari and Carey (2003); Heldt (2005); Fortin et al.
(2007); Goldstein et al. (2008); Martin and Randal (2008); Krupka and Weber (2009); Gerber and Rogers
(2009); Allcott (2011); Ferraro and Price (2013); Ayres et al. (2013); Costa and Kahn (2013); Bursztyn et al.
(2014); Damm and Dustmann (2014); Smith et al. (2015); Thöni and Gächter (2015); Efferson et al. (2015);
Lefebvre et al. (2015); Allcott and Kessler (2019); Linek and Traxler (2021).

2 Our study also connects with the conformity literature following Asch (1951). In contrast to this
literature, our study concerns individuals’ actions (e.g. whether to wear a mask) as opposed to their cognitive
judgements. Perhaps more importantly, our study also uses semi-continuous randomisation, in contrast to
experiments in the Asch paradigm (see Bond and Smith 1996 for an overview).
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Efforts in these studies have focused on finding a way to reverse these detrimental norms.3

Many works have exploited evolutionary game theory works to try to empirically explain

the persistence or reversing of these norms (among the others, see Howard and Gibson,

2017; Efferson et al., 2020; Novak, 2020; Gulesci et al., 2021). Although our studies share

similar goals with these works, the fundamental difference between our work and the above

mentioned ones is that we can directly estimate the effect of varying the share of people

doing one activity on the subjects. For obvious reasons, it is harder to manipulate such a

share in harmful norms; therefore, it is hard to study the direct effect of descriptive social

norms in those settings. Although our results can hardly be compared to those mentioned

above, we believe that the discussion in Section 4.5 applies more generally to those works.

Third, and more narrowly, we contribute to the literature on the social determinants of face

mask wearing. The existing papers in this literature rely either on vignette-based experiments

and surveys (Bokemper et al., 2021; Barceló and Sheen, 2020; Rudert and Janke, 2022;

Goldberg et al., 2020; Barile et al., 2021) or instead observational data (Freidin et al., 2022;

Woodcock and Schultz, 2021). We contribute to this literature by conducting the first ever

randomised field experiment on the social determinants of face mask use.4

Fourth, we contribute to the literature on the social determinants of video camera use.

Existing papers in this literature are again based on surveys: see, for example, Castelli and

Sarvary (2021), Gherhes, et al. (2021), Sederevičiūtė-Pačiauskienė et al. (2022) and Bedenlier

et al. (2021). Our study is the first to examine this topic through use of a randomised field

experiment.

The remainder of this article is structured as follows. Section 4.2 motivates our experiments

with a theoretical discussion of the long-run implications of various f functions. Section 4.3

outlines the design of our face mask experiment and the associated results. Section 4.4

presents the design and results for our experiment on video cameras. Section 4.5 uses our

results to calculate the distribution of individual tipping points across our contexts and

discusses what could give rise to these distributions. Finally, Section 4.6 concludes with a

3 Among the others, see Shell-Duncan and Herniund (2006); Shell-Duncan et al. (2011); Lee-Rife et al.
(2012); Bicchieri et al. (2014); Bellemare et al. (2015); Efferson et al. (2015); Nyborg et al. (2016); Howard
and Gibson (2017); Vogt et al. (2016); Efferson and Vogt (2018).

4 Our use of a randomised field experiment allows us to side-step some of the issues that afflict previous
studies of the social determinants of face mask wearing. For example, attempts to study this problem using
hypothetical questions (as in Bokemper et al. 2021) suffer from the issue that individuals may not know what
they would do in a hypothetical situation — an especially pressing concern since imitative behaviour may
well rest on unconscious cognition. Meanwhile, attempts to study this problem using observational data (as
in Woodcock and Schultz 2021) can suffer from both omitted variable bias and reverse causality issues (see
Manski 1993 for an influential exposition of this latter point). Our randomised experiment avoids both of
these issues.
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discussion of future research suggested by our experiments.

4.2 Dynamics

To motivate our experiments, we begin by discussing how the relationship between beliefs

about prevalence and the actual prevalence of an activity pin down long-run equilibria in a

plausible dynamic model. Time is discrete, indexed by t = 0, 1, 2, . . . . Let ŝt ∈ [0, 1] denote

the belief (assumed to be common) about the share doing an activity at time t ∈ N. The

belief ŝt ∈ [0, 1] generates the actual share st ∈ [0, 1] via the function f : [0, 1] → [0, 1]. That

is, st = f(ŝt) for all t. If we assume that ŝt = st−1, then we obtain the relation st = f(st−1);

a dynamic process whose outcomes we can study. We will write f t to denote the tth iterate

of f . For example, f 3(s0) = f(f(f(s0))).

In canonical evolutionary game theory models (Young, 1993a; Kandori et al., 1993; Young,

2009), there exists some ‘tipping point’ at which all individuals will switch from not taking

the action to taking it. This gives rise to a convex and then concave shaped f function (see

Figure 4.1(a) for a smooth version). While this is a plausible model in many settings, it

is not the only possible model. For example, one might instead think that individuals are

quantitatively quite insensitive, so treat shares like 40% and 45% as ‘the same’. In contrast,

however, one might think that there is an important qualitative difference between nobody

and a minority taking an action, which leads to an f function which is steep near zero; and

one might similarly assume an f function that is steep near 1. The resulting f function

— which is reminiscent of the probability weighting function proposed in Kahneman and

Tversky (1979) — is concave and then convex, and is plotted in Figure 4.1(b).

Proposition 1. Suppose that f is continuous, strictly increasing, and has three fixed points

at s = 0, s = ŝ ∈ (0, 1) and s = 1. Then

• If f is convex on [0, ŝ] and concave on [ŝ, 1], then limt→∞ st ∈ {0, 1} provided that

s0 ̸= ŝ.

• If f is concave on [0, ŝ] and convex on [ŝ, 1], then limt→∞ st = ŝ provided that

s0 /∈ {0, 1}.

Proposition 1 shows how long-run equilibria crucially depend on the shape of the f function.

If one assumes a convex and then concave f function, as in Kreindler and Young (2013),

then one generically obtains convergence to an extreme equilibrium in which either nobody
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or everybody does the action.5 We do not outline the dynamics in any detail since they are

already familiar, but they are displayed graphically in Figure 4.1(a). On the other hand,

Proposition 1 also states that if the f function is concave and then convex, then one obtains

convergence to an interior equilibrium as displayed in Figure 4.1(b). This illustrates how

differently shaped f functions can generate very different equilibria.

s∗ 1

s∗

1

0
st−1

st

(a) Convex then concave

s∗ 1

s∗

1

0
st−1

st

(b) Concave then convex
Notes. This figure describes the evolution of st given two different f functions. When f(st−1) >
st−1, the share doing the activity rises. When f(st−1) < st−1, the share doing the activity falls.

Figure 4.1: Two possible f functions

While Proposition 1 assumes that f(0) = 0 and f(1) = 1, this need not be the case. Instead,

one might think that some individuals always do the action (leading to f(0) > 0) and that

some others never do the action (leading to f(1) < 1). We now show that understanding

the intercepts of the f function is also crucial for understanding long-run equilibria.

Proposition 2. Suppose that f is increasing. Then if s∗ is the limit of f t(s0) as t → ∞,

s∗ ∈ [f(0), f(1)].

Proposition 2 states that, assuming the f function is increasing, then the long-run share of

individuals who do the activity is bounded by f(0) and f(1). Intuitively, this is because the

fixed points of the f function must be bounded in this way; and any limit of the sequence

{st}∞t=0 must be a fixed point of f . As a result, estimating f(0) and f(1) can provide valuable

information about long-run equilibria.

5 One can then use stochastic stability arguments to identify which of these equilibria is more likely to
emerge: see, for example, Young (1993a); Kandori et al. (1993).
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In our experimental settings, behaviour is largely pinned down by beliefs about the share

doing the action in the individual’s immediate environment. Our results apply immediately

to such cases, barring some discreteness issues, if one defines this environment as the relevant

population. Alternatively, one can consider a network model in which individuals interact

locally in small but interconnected communities (see Appendix C.2). As one might expect,

this model yields very similar results.

In this section, our primary goal is not to insist on a particular dynamic model. Indeed,

we believe that a large number of reasonable models are possible; and that one can make

substantial variations on the assumptions made above. Rather, the main goal is to emphasise

how, in any reasonable model, the shape of the f function is going to be a crucial determinant

of long-run outcomes. This motivates our experimental investigation of f functions in the

next two sections.

4.3 Masks

4.3.1 Experimental design

We now describe our first experiment aimed at estimating the shape of the f function

in a particular context. The basic idea of the experiment was straightforward. Subjects

entered a room thinking that they were there solely to answer a decision problem involving

lotteries. Unbeknownst to them, the number of experimenters in the room wearing a face

mask had been randomized. We then observed whether each subject themselves chose to

wear a face mask (and how this varied with the number of experimenters wearing a mask in

their immediate environment).6

This first experiment took place in Oxford in late February and early March of 2022. At this

time, masks were not required by either law or university rules – however, they were also

not unusual. This gave us an ideal setting in which to study the effects of social pressure. In

total, we conducted 14 three-hour sessions in 12 different colleges over 7 days (with the help of

16 research assistants, some of whom participated in multiple sessions). On average, around

46 participants attended each session; which led to a total sample size of 646 experimental

6 The experiment received approval from the University of Oxford’s Departmental Research Ethics Com-
mittee (ECONCIA21-22-50). In line with the recommendations of the committee, we told subjects in advance
that taking part in the experiment might involve interacting with unmasked individuals (which was common
at the University of Oxford at the time). We also took reasonable social distancing precautions, including
making sure that the experimental settings were well ventilated. We should also emphasise that, although
we did not reveal the main purpose of our experiment to participants (as is not unusual in social science
experiments), we did not explicitly deceive participants at any stage.
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subjects (see Table C3 for the distribution of subjects across treatment groups).7

The structure of the experiment was as follows:

1. Subjects were asked to arrive at a room within a particular time slot.

2. Before each subject entered the room, the number of the four experimenters in the

room who were wearing a mask (and the allocation of masks to experimenters) had

been randomised. Thus, there were five treatment groups, corresponding to: 0/4

masks, 1/4 masks, 2/4 masks, 3/4 masks, 4/4 masks. We denote these treatments by

T0, T1, etc.

3. Once a subject entered, they were asked to sit at a table in a way that gave them a

clear view of the four experimenters. On the table were a box of masks as well as a

bottle of hand sanitiser (such a set-up was common within the University of Oxford at

the time). As a result, any subject who wished to wear a mask was able to do so.

4. Once the subject had sat down, each of the four experimenters introduced themselves

by stating their name and subject of study. The purpose of this was to further ensure

that each subject fully processed the number of experimenters who were wearing a

mask.

5. The subject was asked their name, age, college and subject of study; and then given a

decision problem involving lotteries.

6. We then asked the subject to leave the room, and repeated the process for the next

subject (see Appendix C.4 for a more detailed description of the experimental protocol

which includes the decision problem).

We recorded whether each subject was wearing a mask when they entered the room (this

variable is labelled ‘pre’ in the tables). Naturally, we also recorded whether they chose to

wear a mask after interacting with the experimenters. Finally, we recorded their choice in

the lottery problem; as well as whether they asked if they ought to wear a mask (in such

cases, each was told ‘it’s up to you’ by the data recorder).

Based on post-experimental conversations, it seemed that most subjects believed that our

goal was to measure risk aversion. Importantly, none of the subjects appeared to suspect

that the experiment had anything to do with face masks; and there was nothing in the

7 The experiment was pre-registered here: https://www.socialscienceregistry.org/trials/9013.
The pre-registration contains the details about the design, the sample size we were expecting to obtain,
and the approval from the Oxford ethical committee. Given that social norms have already been studied
across different fields, we did not have the urgency to pre-recording our expected results. Indeed, most of
the findings in the dedicated section are in line with other findings in the descriptive norms literature.
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experimental design that could have revealed this.8 This is reassuring since subjects might

have acted in unnatural and unrepresentative ways if they had known that they were taking

part in a face mask experiment.

Once all experimental sessions had been completed, we debriefed all subjects on the underly-

ing purpose of the experiment. During the debriefing, subjects were given the opportunity to

take part in an online survey. In the survey, subjects were asked to imagine that they entered

a room and saw 4 people sitting around a table. They were then asked if they would wear

a mask if none of the 4 people were wearing a face mask, if 1 of the 4 people were wearing a

face mask, and so forth. Finally, they were asked to give an explanation for their answers,

as well as whether they had contracted COVID-19 at any point during the pandemic. The

purpose of the follow-up survey was to obtain some suggestive evidence on mechanisms, as

well as some data on individual level f functions (see Section 4.5 for discussion).

4.3.2 Results

We now turn to our main results, beginning with a brief description of our sample. As shown

by Table C4, our average participant was around 21 years old; and approximately half of our

sample was male. Participants were fairly evenly distributed across subject divisions, with

social sciences students being most represented (33% of the sample). Turning to Table 4.1,

we see that genders, subjects and ages were reasonably balanced across our five treatment

groups. However, we do observe some imbalance in the share of participants who entered

the room wearing a mask: for example, the share is 27% in treatment T2 but only 14% in

T0. Given that this variable turns out to be highly predictive for our outcome (whether

participants continued to wear a mask), we control for it in our main specification.

Our regressions take the form

yi = β0 +
4∑

i=1

βiTi + γxi + ui, (4.1)

where yi denotes whether an individual chose to wear a mask, the Ti are dummy variables

indicating treatment assignment, and xi is a vector of covariates (including whether they

entered the room wearing a mask). In our main specification, we control for participant age,

gender, and whether they entered the room wearing a mask (the ‘pre’ variable). However,

we also report uncontrolled regressions, as well as regressions that use the full set of controls

8 We also required all research assistants to sign an agreement specifying that they would keep the main
purpose of the experiment confidential throughout its duration.
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Variable T0 T1 T2 T3 T4 p-value
Age 21.0 21.3 20.1 20.6 20.8 .143

[.361] [.539] [.165] [.219] [.268]
Pre .142 .157 .266 .242 .203 .060

[.031] [.032] [.039] [.039] [.035]
Male .535 .522 .461 .548 .421 .189

[.044] [.043] [.044] [.045] [.043]
Humanities .323 .246 .250 .347 .256 .237

[.042] [.037] [.038] [.043] [.038]
Social .268 .403 .336 .298 .353 .177

[.039] [.043] [.042] [.041] [.042]
MPLS .213 .209 .305 .242 .233 .380

[.036] [.035] [.041] [.039] [.037]
Medical .181 .104 .102 .105 .143 .235

[.034] [.027] [.027] [.028] [.030]

Notes. This table shows the average value of various variables across the five treatments. The
variables are age, whether the subject entered wearing a mask (‘pre’), gender, division of study
(Humanities; Social Sciences; Mathematical, Physical & Life Sciences; Medical Sciences). The final
column reports the p-value obtained from regressing the relevant variable on all treatment dummies
and testing the hypothesis that the coefficients on all treatment dummies are equal to zero.

Table 4.1: Balance table (experiment 1)

that are available (including session and college fixed effects).

Figure 4.2 plots the results from our main specification (see Table 4.2 for the corresponding

estimates, and Table C5 and C6 for the near identical results obtained by estimating probit

and logit regressions; see also Figure C1 for the detailed figure with confidence intervals).

The x-axis indicates the treatments, expressed as the fraction of experimenters wearing a

mask (0, 0.25, 0.5, 0.75, 1). The y-axis displays the predicted share of individuals wearing

a mask in each treatment. To obtain this predicted share, we set the three control variables

(age, gender, and pre) equal to their mean values; so we are implicitly correcting for any

imbalance in the pre variable. Thus, in the language of Section 4.2, Figure 4.2 displays our

preferred estimates of f(0), f(0.25), f(0.5), f(0.75), and f(1).

Several features of the data are apparent. First, we find evidence that the frequency of

mask wearing is everywhere increasing in the share of experimenters who wear a mask. This

pattern is evident in all the specifications that we estimate, regardless of whether they include

controls, use logit or probit, etc. (again, see Tables 4.2, C5 and C6). From a statistical

point of view, we can reject the hypothesis that lower treatments lead to the same levels of

mask wearing as higher treatments for the large majority of treatment pairs (see Table C7),

with the exception of the comparison of T0/T1 and the comparison of T1/T2. While we
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Notes. This figure shows how mask wearing varies by treatment group, after
setting all covariates in the ‘main specification’ to their mean value.

Figure 4.2: Mask wearing by treatment group

discuss mechanisms later on, we note that this is consistent with a model in which higher

rates of mask wearing lead to greater social pressure to wear a mask.

Second, we see that many individuals defy social pressure. In the treatment in which no

experimenters wear a mask (T0), 20.0% of the participants nonetheless choose to wear a

mask, a share which is statistically different from zero (p < 0.0001). In the language of

Angrist et al. (1996), these people can be interpreted as ‘always wearers’, i.e. individuals

who choose to wear a mask no matter how many others are doing the same (see Section 4.5

for elaboration). Similarly, in the treatment in which all experimenters wear a mask (T4),

only 48.7% choose to wear a mask, which is again statistically different from 1 (p < 0.0001).

The remaining 51.3% of individuals (who do not wear a mask) can be interpreted as ‘never

wearers’, i.e. individuals who will never choose to wear a mask, no matter how many others

are doing so (again, see Section 4.5 for a more formal discussion of this point).

Similar results are available if we look at changes. In treatment T0, out of the participants

who entered the room wearing a mask, only 5.6% chose to take off their mask (see Table C8).

Similarly, in treatment T4, out of the participants who entered the room not wearing a mask,
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Variable No controls Main Specification All Controls
Treatment 1 .044 .032 .020

[.048] [.029] [.033]
Treatment 2 .171*** .078** .075**

[.053] [.032] [.035]
Treatment 3 .238*** .163*** .156***

[.055] [.039] [.041]
Treatment 4 .331*** .284*** .289***

[.054] [.043] [.046]
Pre .757*** .741***

[.029] [.035]
Age .002 .001

[.005] [.005]
Male -.007 -.007

[.026] [.028]
Constant .157*** .014 .130

[.032] [.107] [.144]
n 646 646 646
R2 0.070 0.494 0.517

Notes. This table reports our main regressions. To obtain the estimates in the first
column, we regress whether subjects wore a mask on the treatment dummies. In the
second column, we control for subject age, gender, and whether they entered wearing
a mask. The third column also includes session and college fixed effects. Robust
standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table 4.2: Regressions (experiment 1)

only 36.8% chose to put on a mask. It is quite striking that the majority of those who entered

without a mask in T4 decided to defy social pressure in this way, especially given that all

four experimenters were clearly visible and that a box of masks was available.

Third, our estimated f function appears to be non-linear. Estimating a model with a

quadratic term suggests some convexity (p = 0.04): see Table C9. Insofar as estimates

appear non-linear, this is due to a large jump between the 3 and 4 treatments (the difference

is 12 percentage points, as opposed to the average difference between treatments of 7 per-

centage points). This is indicative of a potential ‘everybody effect’, i.e. that a particularly

large change in behaviour is induced by changing the share who are doing an action from

‘most people’ to ‘everybody’.

Finally, we examine what our estimates imply when embedded in plausible dynamic models

of the style discussed in Section 4.2. This delivers our fourth and perhaps most important

finding: when embedded in such models, our estimates predict convergence to an interior

equilibrium. In the very simple model discussed in Section 4.2, our model predicts global
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convergence to the fixed point of the estimated f function, which is about 23.3%.9 We

obtain very similar results when we use our estimates to calibrate our network model (see

Appendix C.2), which predicts that around 23%-24% should wear a mask (with almost no

dependence on the initial conditions). In these equilibria, around 0.20/0.23 ≈ 87% of mask

wearers wear the mask because they always wear one; with the remainder wearing a mask

due in part to copying behaviour. We discuss these interior equilibria in more detail in the

next section (which obtains even more striking evidence of interiority).10

Relating Figure 4.2 to Figure 3 in Centola et al. (2018), we can highlight the differences

between our findings and theirs.11 In their figure, we can see that 25% of the population

committed to doing a different action than the status quo is enough to eventually change

the status quo in the ”long-run”. This effect is not possible in our setting (according to our

estimates). Indeed 25% is approximately the percentage of people wearing the mask in the

long-run. This effect is due to the fact that the social pressure induced by 25% of the people

wearing the mask is not enough to induce the rest of the population to wear the mask.

Before moving to our second experiment, we briefly discuss the results of our online follow-

up survey. As explained earlier, this survey directly asked participants how their decision

to wear a face mask would vary with the number of individuals in the room who were also

wearing a face mask. Given that individuals might not always know what they would do

in a hypothetical situation, we do not emphasise the estimated f function obtained from

this survey (although, reassuringly, it is also monotone increasing in the number of mask

wearers). However, we use the follow-up survey to address two issues that our original

experiment could not speak to, namely individual level f functions and mechanisms.

Our first finding from the online survey is that individual decision rules are plausibly mono-

tone in the share of experimenters who are wearing a face mask. Indeed, over 99% of

subjects report weakly increasing decision rules: if such subjects chose to wear a mask in

some treatment Tk, they would also choose to wear the mask in all treatments Tk′ for k′ > k.

This finding helps validate our assumption in Section 4.5 that individual preferences have

a tipping point representation, which in turn provides an insightful decomposition of the

9 This fixed point is obtained by linearly interpolating between f(0) and f(0.25). However, given that the
fixed point is close to 0.25, near identical fixed points are obtained through other methods, e.g. quadratic
interpolation.

10 Although looking at Figure 4.2 it is easy to see that f(0) ̸= 0 drives our result, this effect was not true
a priori. It is easy to show that there could be also homogeneous convergence even if f(0) ̸= 0 (e.g. when 1
is the only fixed point).

11 Note that in that figure, the authors were estimating the effect of the size of a committed minority on
the adoption of the action of the committed minority in the last round of the experiment. Although this
figure is not directly the same as ours, the interpretations are similar, and therefore, we can compare the
two of them.
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observed aggregate behaviour. We should perhaps also stress that this finding cannot be

obtained from the data from our main experiment, which is in principle consistent with the

possibility that many individuals have decreasing decision rules.

Second, we obtain some suggestive evidence on why individuals are more likely to wear a

mask if they see more mask wearing in their immediate environment. To do this, we consider

only those individuals who reported that they would change their mask-wearing behaviour

depending on the share of others wearing a mask. We then placed the explanation into

various categories, including whether individuals were trying to avoid being judged, trying

to put others at ease, or taking high rates of mask wearing as a sign of high COVID risk levels

(see Appendix C.5 for a more detailed explanation of our categories along with examples).

The main message from this exercise is that the health-based mechanism (i.e. that masks

are used as a signal of COVID rates) is extremely unlikely to be driving our results: see

Table C10 for details. Instead, the observed changes seem to be driven by a variety of

social learning and social pressure mechanisms, although exactly identifying the relative

importance of these mechanisms is challenging.12

4.4 Cameras

4.4.1 Experimental design

In order to study the generality of our results, we conducted a second experiment which

used a near-identical methodology in a very different context. The basic idea of this second

experiment was the following. Subjects joined a Zoom call knowing solely that they were

taking part in some kind of economics experiment. Unbeknownst to them, the number of

experimenters on the call with their video camera on had been randomised. We then observed

whether each subject themselves chose to use their camera. Thus, this second experiment

was essentially the same as the first, except with the subject of video-camera instead of face

mask usage.13

This second experiment took place online in late July and early August of 2022. We con-

ducted 16 two-hour sessions over the course of 8 days (with the help of 20 research assistants,

some of whom participated in multiple sessions). On average, each session was attended by

around 70 participants, leading to a sample size of 1,113 participants in total (see Table C11

12 One particular issue is that individuals may not be entirely honest about the reasons for their behaviour.
For example, they might overstate the extent to which their behaviour is driven by altruistic reasons (e.g.
trying to put others at ease), as opposed to a fear of being judged.

13 This experiment also received approval from the University of Oxford’s Departmental Research Ethics
Committee (ECONCIA21-22-44).
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for the distribution of subjects across treatment groups). We recruited all participants from

Prolific, and required all participants to have a working microphone and video camera.14

The structure of the experiment was as follows:

1. Subjects were asked to join a Zoom call at a particular time.

2. Before each subject joined the call, the number of the four experimenters in the meet-

ing with their camera on (and which experimenters had their camera on) had been

randomised. Thus, there were again five treatment groups: 0/4 cameras (denoted

treatment T0), 1/4 cameras (T1), 2/4 cameras (T2), 3/4 cameras (T3), 4/4 cameras

(T4).

3. Once a subject joined the call, all four experimenters introduced themselves by stating

their name. The purpose of this was to ensure that each subject fully processed the

number of experimenters whose cameras were on.

4. The subject was asked for their age, and whether they would hypothetically want to

donate half of a bonus payment to the next subject on the call.

5. We then asked the subject to leave the call, and repeated the process for the next

subject (again, see Appendix C.4 for a more detailed description of the experimental

protocol).

Similarly to before, we recorded whether each subject had already turned their camera on

when they joined the call; and whether they chose to turn their camera on after interacting

with the experimenters. We also recorded their choice in the decision problem; as well as

whether they asked if they ought to turn their camera on (in such cases, each was told that

‘it’s up to you’). Finally, if a subject had not turned their camera on at any point during

the call, we asked them if there were any issues with their video camera.15

14 The experiment was pre-registered here: https://www.socialscienceregistry.org/trials/9829.
As for the masks experiment, we pre-registered the details about the design, the number of expected par-
ticipants, and the ethics committee approval. As for the previous experiment, we did not pre-record any
expected results. Since this second experiment was a follow-up to the previous one, the expected results
were the results from the previous one; therefore, we felt even less of the need to pre-recording any expected
result.

15 Unsurprisingly, asking this question occasionally had the effect of prompting participants to turn their
video camera on. In such cases, we still recorded such participants as having chosen to not use their camera
(on the basis that they had chosen not to use their camera until effectively asked to do so).
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4.4.2 Results

We now turn to our results, beginning again with a description of our sample. In contrast

with the student population studied in our first experiment, the average participant in this

experiment was around 42 years old, with a standard deviation of 13.9 years (see Table

C12). Around 46% of the sample was male. As shown by Table 4.3, ages and genders were

reasonably balanced across each of our five treatments. However, we again observe some

imbalance in the share who joined the call with their camera on (the ‘pre’ variable), and so

control for this variable in our main specification.

Variable T0 T1 T2 T3 T4 p-value
Age 42.2 43.4 42.3 41.3 42.7 .615

[.940] [.931] [.903] [.906] [.990]
Pre .116 .039 .058 .074 .070 .039

[.021] [.014] [.016] [.017] [.018]
Male .472 .441 .439 .455 .516 .486

[.033] [.035] [.033] [.032] [.034]

Notes. This table shows the average value of various variables across the five treat-
ments. The variables are age, whether the subject joined the call with their camera
on (‘pre’), and gender. The final column reports the p-value obtained from regress-
ing the relevant variable on all treatment dummies and testing the hypothesis that
the coefficients on all treatment dummies are equal to zero.

Table 4.3: Balance table (experiment 2)

Our regressions take the same form as Equation 4.1. That is, we regress whether an individual

used their camera on the treatment dummies (using treatment T0 as the omitted category),

and a vector of covariates. In our main specification, we control for participant age, gender,

and whether they joined the call with their camera on. However, we once again also report

uncontrolled regressions, as well as regressions that include the full set of possible controls

(including session fixed effects).

Figure 4.3 plots the results from our main specification (see Table 4.4 for the corresponding

estimates, and Tables C13 and C14 for the near identical results obtained by estimating pro-

bit and logit regressions; see also Figure C2 for the detailed figure with confidence intervals).

Several points are apparent. First, similarly to the face mask experiment, we once again

observe a monotone f function: the frequency of camera use is everywhere increasing in the

share of experimenters who use a camera. This pattern arises in all of the specifications

we estimate (see Tables 4.4, C13 and C14). In our main specification, we can reject the

hypothesis that treatment i and treatment i + 1 lead to the same rates of camera usage

(p < 0.05) for all i except i = 3; and we can always reject the hypothesis that treatment
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Notes. This figure shows how camera use varies by treatment group, after setting
all covariates in the ‘main specification’ to their mean value.

Figure 4.3: Camera use by treatment group

i and treatment i + 2 lead to the same rates of camera usage (p < 0.01) — see Table C15

for details. As before, this monotonicity is consistent with a model in which higher rates of

camera use lead to greater social pressure to use a camera.

Second, we once again observe that many individuals defy social pressure. In the treatment

in which no experimenters use a camera (T0), 20.9% of the participants nonetheless choose

to use a camera, a share which is statistically different from zero (p < 0.0001). As explained

in Section 4.5, such participants can be interpreted as ‘always users’, i.e. individuals who

use a camera no matter how many others do the same. Similarly, in the treatment in which

all experimenters use a camera (T4), only 58.7% choose to use a camera, which is again

statistically different from 1 (p < 0.0001). The remaining 41.3% of individuals (who do not

use a camera) can be interpreted as ‘never users’, i.e. individuals who will never choose to

use a camera, no matter how many others are doing so. As before, similar results can be

obtained by examining changes — see Table C16.

Third, the estimated f function in this context appears to be more linear. Statistically,

we cannot reject a linear model: see Table C17. However, the jump between the 0 and 1
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Variable No controls Main Specification All Controls
Treatment 1 .077* .118*** .125***

[.043] [.040] [.041]
Treatment 2 .176*** .209*** .214***

[.043] [.039] [.044]
Treatment 3 .281*** .308*** .320***

[.043] [.039] [.049]
Treatment 4 .355*** .380*** .386***

[.044] [.041] [.057]
Pre .579*** .581***

[.033] [.034]
Age .000 .000

[.001] [.001]
Male .024 .023

[.027] [.027]
Constant .241*** .155*** .094

[.028] [.047] [.061]
n 1,113 1,111 1,109
R2 0.069 0.161 0.183

Notes. This table reports our main regressions. To obtain the estimates in the first
column, we regress whether subjects used a camera on the treatment dummies. In
the second column, we control for subject age, gender, and whether they joined
the call with their camera on. The third column also includes session fixed effects.
Robust standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table 4.4: Regressions (experiment 2)

treatments (about 12 percentage points, in the main specification) is larger than the other

3 jumps (which are 9 percentage points, 10 percentage points, and 8 percentage points

respectively). This provides some suggestive evidence on non-linearity, although one would

need to obtain a larger sample to investigate this issue in greater detail. We should perhaps

emphasise that, linear or not, our estimated f function is clearly different to that generated

in standard evolutionary game theory models, which predict an S shape (see Section 4.2 for

elaboration).

Fourth, and most importantly, our estimates once again predict convergence to an interior

equilibrium when embedded in plausible dynamic models. When embedded in the model

from Section 4.2, our estimates predict convergence to the fixed point of the estimated f

function, which is about 37.0%.16 We obtain similar results in our network model, which

predicts that about 34.3% should turn the camera on (averaging across our models and initial

16 This fixed point is calculated by linearly interpolating between f(0.25) and f(0.5). Given that the f
function appears roughly linear, this seems like a sensible approach. Moreover, our network model delivers
similar predictions without the need to rely on any kind of interpolation.
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result, it is possible to rationalise any observed differences across contexts by postulating a

difference in the distribution of tipping points. For example, in the face mask experiment, a

substantially lower share are estimated to have tipping points of 1 and 2 than in the Zoom

experiment. This can be used to explain why the estimated f function is flatter over the

0− 2 range in the face mask experiment. Similarly, the observed non-linearity in the mask

experiment can be rationalised by postulating that an especially large fraction have a tipping

point of 4.

Notes. This figure shows the distributions of individual tipping points calcu-
lated from our two sets of experimental estimates.

Figure 4.4: Tipping point distributions

Although a model of heterogeneous tipping points is able to rationalise our results — and

indeed can rationalise any non-decreasing f function — the explanation is rather mechanical.

More precisely, while our results can be viewed as the cumulative distribution of tipping

points, the question remains as to why the distributions take the form that they do. We now

address this question using the simplest possible model of individual tipping points.

To this end, consider an individual i who is deciding whether to take the action or not

given that a fraction s is already doing so. If they take the action, they obtain utility

u(ai = 1) = αi+m(s), where αi ∈ R describes their intrinsic preference for taking the action
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and m(s) describes their ‘coordination payoff’ from doing the same thing as a fraction s of

their neighbours (assume m is differentiable). If they do not take the action, they get utility

u(ai = 0) = m(1 − s). An (interior) tipping point ti ∈ (0, 1) is a share s that makes the

individual indifferent between doing the action or not doing it, i.e. αi +m(ti) = m(1− ti).

To illustrate, consider the case in which of m(s) = s. In that case, it is easy to check that

ti = 1 for all individuals whose preferences satisfy αi ≤ −1. Such individuals never take the

action, no matter how many others are doing so. Similarly, we have ti = 0 for all individuals

for which αi ≥ 1: such individuals always take the action. Interior tipping points satisfy the

equation αi + ti = 1 − ti, or ti = 0.5(1 − αi) (see Figure 4.5). As a result, interior tipping

points are strictly decreasing in the αi parameter (and equal to 0.5 when the individual has

no intrinsic reason to do the action, i.e. αi = 0). Intuitively, this is because individuals with

a high intrinsic preference for taking the action will be indifferent between taking the action

or not even when the share of others who are taking the action is very low.

0−1 1

1

αi

ti

Notes. This figure shows how an individual’s tipping point ti varies with their
intrinsic preference to take the action αi when m(s) = s.

Figure 4.5: Tipping points when m(s) = s

We now verify that this result holds for any m function with an everywhere positive slope.

Proposition 3. If m′(s) > 0 for all s ∈ [0, 1], then each individual has a well defined tipping

point ti ∈ [0, 1]. Furthermore, if ti ∈ (0, 1), then ∂ti
∂αi

< 0.

Proposition 3 says that (interior) tipping points are strictly decreasing in an individual’s

intrinsic preference for taking the action. As a result, it provides us with an explanation for

the differences we observe across our two contexts. In the mask experiment, the estimated

tipping points tend to be higher (again, see Figure 4.5). One simple way to rationalise this,
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as suggested by Proposition 3, is to postulate that individuals are generally less willing to

wear masks than to use their laptop cameras.

Although intrinsic preferences for taking actions do plausibly influence tipping points in the

manner just discussed, we should emphasise that they are not the only factor that determines

the shape of the f function. In our view, the f function is driven by the complicated interplay

of both intrinsic preferences (captured by αi) and potentially non-linear social pressure effects

(captured by m). Future work could attempt to decompose these two channels.

4.6 Concluding remarks

In this paper, we conduct multi-treatment social norm experiments to obtain a quantitative

understanding of how individuals’ behaviour varies with the share doing an action in their

immediate environment. Despite some differences between the estimates across our contexts

(which we rationalise using a simple theory), we obtain many commonalities across the

two experiments: increasing f functions, high levels of non-compliance, etc. Perhaps most

importantly, when embedded in dynamic models, our estimates can explain how copying

can plausibly lead to heterogenous behaviour. In our view, this is an important insight

with applications to many settings (e.g. religious adoption, fashion trends, etc.): despite

the ubiquity of social pressure and copying behaviour, different individuals nonetheless often

end up doing very different things.

It may be worth briefly emphasising why our models generate convergence to interior equi-

libria, as opposed to the extreme equilibria predicted by canonical game theory models (e.g.

Young, 1993a, 2009; Kandori et al., 1993). In these models, each individual effectively has the

same tipping point, which in turn generates the S shaped f function discussed in Section 4.2.

This in turn leads to three fixed points, of which only two (the extreme equilibria) are sta-

ble. In contrast, our empirical estimates suggest: i) reasonably high levels of non-compliance

ii) substantial heterogeneity in individual tipping points. These two factors generate an f

function with a unique fixed point in the interior, which is the globally stable equilibrium.

Despite the large number of social norm experiments, we believe that our findings open up

several avenues for future research. First, it may be worthwhile to conduct more experiments

with semi-continuous randomisation in additional contexts. In particular, this could provide

further evidence on whether our key finding of interior equilibria is robust. Second, it may

be worthwhile to conduct such experiments with an even larger number of treatment groups,

thus allowing for a more fine grained estimate of the f function. Given the very large sample

sizes required to do this, however, such experiments are likely to be even more logistically
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challenging to implement than the two field experiments whose results we report here.
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Chapter 5

Does homophily impede human

capital investments?

Abstract

We consider a game between multiple candidates and a decision-maker. There are two types of

candidates: A and B. Each candidate chooses his social group and skill (high or low). The decision-

maker must assign each candidate to four kinds of tasks. Type A candidates fit for certain kinds of

tasks, and type B fits for others; only high skilled candidates can do specific tasks. The decision-

maker observes each candidate’s social group but needs to pay to observe his type and skill. We

find that when homophily intensity is high enough, the unique possible kind of equilibrium is a

separating equilibrium in social groups. In this equilibrium, social groups are informative about

candidates’ skills and types, and the decision-maker needs not to pay to know the candidates’ types

and skills. In such a case, the decision-maker never pays to see candidates’ skills and types, and

candidates never choose the high skill. If homophily intensity is weaker, there could be pooling

equilibria on social groups; however, in none of them, the decision maker buys the information, and

neither candidates invest in their skills.

Keywords: homophily; costly cognition; costly signal acquisition.

JEL Classification Codes: D82; D83; Z13

noindent Notes. This chapter is joint work together with Ennio Bilancini and Leonardo Boncinelli.

86



5.1 Introduction

In many situations, employers spend a lot of time and resources allocating employees to

job tasks. This practice is challenging since individuals’ abilities are hidden or not easily

observable. However, social attitudes may support employers in this process. For example, it

is well known that due to homophily, people with a similar feature, such as ability, are more

likely to frequent the same social group (McPherson et al., 2001; Jackson, 2021). Since people

from the same social group are distinguishable due to similar identity choices, employers may

learn enough information about employees’ abilities by looking at their social groups.

In this paper, we show a novel mechanism through which social attitudes could affect labor

market outcomes. We show that if candidates with similar abilities hang out together (due to

homophily), the employer never screens them to know their types or abilities, and therefore,

they never invest in their skills. We illustrate our findings with the help of an example.

Consider the human resources manager of a firm (HRM). She needs to allocate a pool of

candidates to four categories of tasks: accountant, CTO, salesman, and CFO. Nature assigns

each candidate to one of two types, i.e. types are mutually exclusive. Types represent innate

abilities, e.g. relational and cognitive.

Candidates decide whether to invest in their human capital or not. If they do it, they become

specialists in the ability they own by nature. Let us call high cognitive (relational) types

those candidates with cognitive (relational) ability who invested in their human capital, and

low cognitive (relational) types those with cognitive (relational) ability who did not invest

in their human capital. Each candidate also joins one between two social groups, e.g. cool

guys or nerds. Candidates all prefer the accountant job to the salesman one, CTO to the

accountant one, and the CFO to the salesman one. Candidates choose the social group based

on their social preferences. If there is homophily, candidates favor frequenting candidates of

the same type and dislike frequenting candidates of the other type. If there is no homophily,

candidates are inclined towards spending time with other candidates regardless of their type.

As stated above, people belonging to the same social group make similar identity choices and

are easily perceivable. For example, HRM could distinguish nerds from cool guys because

the former wear plaid shirts and the latter wear suits.

The HRM assigns each candidate to one of the four tasks. She needs high cognitive types for

the CTO position and high relational types for the CFO position. She needs low cognitive

types for the accountant and low relational types for the salesman positions. The HRM

always observes each candidate’s social group, and she decides between two assignment

policies: assigning tasks based on candidates’ social groups or giving each candidate a trial
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period to observe his skill and ability. The first option is less time-consuming and cheaper

for the firm, but only implementing the second, she learns candidates’ abilities and skills.

Imagine that candidates all have the same capacity to invest in their human capital. The

HRM will always have correct beliefs about their skills in equilibrium. However, she may be

uncertain about their type of abilities. Two relevant scenarios can happen.

In the first scenario, all candidates frequent both relational and cognitive types. In this way,

the HRM cannot know candidates’ abilities from their social groups. She can only implement

the trial period for everyone to know their abilities, provided that the cost of implementing

it is low enough. In such a case, HRM screens the candidates, and they are not assigned to

high-skilled tasks unless they invest in their human capital. Given that high-skilled tasks

pay more than low-skilled ones, all candidates will invest in their human capital in this case.

If the cost of implementing the trial period is too high, the HRM does not implement it,

and candidates do not invest in their human capital. Therefore, she assigns each candidate

to the same low-skilled task (salesman or accountant) depending on which ability is more

frequent in the population.

In the second scenario, candidates of the same type hang out in the same group. For example,

all cognitive types frequent nerds, and relational types frequent cool guys. In such a case, the

HRM always knows candidates’ abilities by looking at their social groups. She does not need

to implement the trial period for each candidate. Consequently, The HRM does not test

candidates’ skills, and they do not invest in their human capital. Consequently, the HRM

will assign all cool guys to the salesman position and all nerds to the accountant position,

but she will assign no one to the CTO or the CFO.

Our main result is that the first scenario happens if there is no homophily or if there is

homophily and the intensity of social preferences is low enough (weak homophily), while the

second scenario only happens if there is homophily and social preferences are intense enough

(strong homophily). The motivation behind these results is straightforward. If there is no

homophily or weak homophily, candidates have the incentive to look like cognitive types

since the cognitive type of jobs pay more. However, if there is strong homophily, candidates’

incentive to all look like cognitive types is lower than their preferences for hanging out

with similar types. Therefore, they will separate into two social groups, and the HRM can

distinguish between the two types of candidates without the trial period.

Importantly, even under weak homophily, the case where candidates choose the same social

group and invest in their skills is not stable. The reason is that if the HRM implement the

trial period, candidates have the incentive to deviate and frequent their own types since the
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HRM learns their types and skills.

Welfare implications follow directly from these results. When the information’s cost is low

enough, candidates are better off under no homophily since they are assigned to high-skilled

tasks. The firm is better off under no homophily than under strong homophily, provided

that the cost for the trial period policy is lower than the benefits of hiring candidates with

high skills. When the information’s cost is high enough, the firm is always better off under

strong homophily than under no homophily. Indeed, candidates do not invest in their hu-

man capital in any case. However, only under strong homophily does the HRM correctly

allocates candidates by observing their social groups. Candidates are better off under no

homophily than under strong homophily if they all prefer the task they are assigned to under

no homophily.

The remaining of the paper is organised as follows. In Section 5.1.1 we give a literature

review. In Section 5.2 we present the model, in Section 5.3 we give the principal results,

in Section 5.4 we discuss them, and in Section 5.5 we offer some concluding remarks. We

prove the principal theorems in Appendix D.1 and we provide and prove the results in mixed

strategies in Appendix D.2.

5.1.1 Related literature

Our model tackles three different fields of the literature: strategic information acquisition,

endogenous group formation, and homophily.

Recently, the strategic information acquisition literature progressed in two directions: costly

information acquisition and rational inattention. While there are some differences between

the two approaches, they share the same founding idea: it takes a cost to learn information.

The applications of these models vary from packaging decisions to job market signaling. The

original idea of costly information is due to Grossman and Stiglitz (1980).

Since this seminal contribution, many models in this literature have analyzed the role of

costly information in the markets’ functioning. Some of these models focus on costly mes-

sages (Di Pei, 2015; Gentzkow and Kamenica, 2014; Argenziano et al., 2016), other focus

on costly acquisition of signals (Caillaud and Tirole, 2007; Glazer and Rubinstein, 2004);

Dewatripont and Tirole (2005) combines both approaches. Bilancini and Boncinelli (2018a)

and Bilancini and Boncinelli (2018b) consider two variants of a sender-receiver game where

a coarse reasoner receiver can pay to acquire hard information on the state of the world.

Concerning this literature, we study the coexistence of separating and pooling equilibria
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in a so-far unexplored way. In a similar model, Bilancini and Boncinelli (2018c) noticed

that in a standard signaling model with costly acquisition of signals, there cannot exist

any other pooling equilibrium that is not the one on the low signal. We consider a model

with two kinds of signals (social group and skill). In this way, we can study the role of

social connections in the screening process. We are the first to examine this mechanism

in the literature to the best of our knowledge. We show that due to the costly nature

of information, separating equilibria on social groups reduces the uncertainty faced by the

decision-maker. This mechanism makes the purchase of the information less profitable.

Hence, it also makes investment in human capital less attractive for candidates. On the

other hand, pooling equilibria on social groups boost the decision-maker’s uncertainty and

information profitability. Therefore, under pooling equilibria on social groups, the decision-

maker is more likely to purchase the information than under separating equilibria on social

groups, and candidates are more likely to invest in their human capital.

Rational inattention contributions are built around the original model by Matějka and

McKay (2015) (see Maćkowiak et al., 2023 for an exhaustive review of the field). Of the

many existing models, we refer to Fosgerau et al. (2020) (FWS from now on) since it is

closely related to our model. FWS considers a pool of candidates that differ in traits and

categories. Candidates can invest in their qualifications to raise the probability of being

hired, and a rational inattentive screener decides whether to hire candidates based on the

information she acquires about them (in a similar model, Matveenko and Mikhalishchev,

2021 applies rational inattention to a labor market context, where candidates do not have

an active role). In our model, we introduce an endogenous social group choice and the mul-

tiplicity of tasks’ dimensions. Due to the endogenous social group selection, candidates may

choose their social group strategically to signal their type. Due to the multiplicity of tasks,

we can study homophily’s role in driving information acquisition and human capital invest-

ment. Specifically, we show under which circumstances the presence of homophily reduces

the profitability of buying the information and, therefore, the profitability of human capital

investment for candidates.

The mathematics behind our model links our paper to the prejudice literature (see Phelps,

1972, Fryer and Jackson, 2008, Becker, 2010 or Bertrand and Mullainathan, 2004), and more

importantly to the statistical discrimination literature (see Arrow, 1973, Spence, 1973, Coate

and Loury, 1993 or Moro and Norman, 2004).

Closely related to our model, many works in economics and identity field focus on the effect

of segregation on inequalities (see Benabou, 1996, Durlauf, 1996, Mookherjee et al., 2010 or

Bowles et al., 2014). Even more related to our model, works like Fang (2001), Desmet and
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Wacziarg (2018) or Kim and Loury (2019) treat group formation as an endogenous choice.

These models study how endogenous group formation affects employers’ stereotypes or peo-

ple’s performances in the labor market. Our purpose is different. Instead of studying eth-

nic/cultural group formation, we consider group formation based on the affinity of abilities.

Furthermore, rather than focusing on hiring decisions, we focus on task assignments. Due to

this difference, we can draw additional results from the previous works on endogenous group

formation. Specifically, we can show how the existence of homophily may help employees

allocate employees to different tasks at the cost of impairing the human capital investment

of employees.

Lastly, we contribute to the homophily literature. Although homophily can have many

forms (McPherson et al., 2001), in our model, we consider a specific form of homophily

involving abilities. Homophily has been modeled in different ways: intrinsic preference for

interacting with similar people (Currarini et al., 2009), higher probability to meet a similar

person (Jackson and Rogers, 2007 or Bramoullé and Rogers, 2009), or it can mean that

people better empathize with their similar (Kets and Sandroni, 2019). However, most of

these approaches treat homophily as exogenously given (excluding the third): our approach

is an endogenous version of the one adopted by Currarini et al. (2009).

For what concerns labor market outcomes, there are many channels through which homophily

operates. As an example, the above mentioned statistical discrimination and prejudice may

be driven by homophily (see Jacquemet and Yannelis, 2012, and Edo et al., 2019). Jackson

(2021) gives a broad overview of other channels through which homophily operates. The first

one is social connections: there is evidence that employers favor potential candidates that are

linked with current workers in their firms (see Arrow and Borzekowski, 2004, Calvo-Armengol

and Jackson, 2004 Patacchini and Zenou, 2012, Clauset et al., 2015, Beaman et al., 2018,

Bolte et al., 2020, or Okafor, 2020). This difference in referrals can also lead to disincentive

people with fewer contacts to invest in education (see Bowles et al., 2014 again). A second

channel is the access to valuable information (see Golub and Jackson, 2012, Chetty et al.,

2020, or Aybas and Jackson, 2021). A third channel concerns norms and peer pressure (see

Jackson and Rogers, 2007, or Jackson and Storms, 2019).

We contribute to the homophily literature in two ways. Firstly, we study a novel mecha-

nism through which homophily may influence labor market outcomes. Due to homophily,

candidates with similar abilities congregate in the same social groups. Therefore, employers

identify candidates’ abilities more easily, even though this effect may impede the human

capital investment of employees. Secondly, our model differs from most homophily models
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because, in our model, homophily is an endogenous social preference in candidates’ utility.

Through this introduction, we can capture for which degree of homophily, candidates with

the same ability frequent the same social group. Indeed, we study a context where candi-

dates perceive a trade-off between frequenting the same social group and polarizing into two

different social groups. In such a context, polarization only happens if the intensity of social

preferences is high enough compared to material preferences.

5.2 Model

There is a continuum of candidates of mass 1 and a decision-maker DM (sometimes referred

to as “she”). Each candidate i is one of two types ti ∈ {A,B} (types are mutually exclusive):

the proportion of A types (pA) is greater than the proportion of B types (pB).

Each candidate selects two actions: his skill si ∈ {L,H}, and his social group ki ∈ {x, y}.
The social group choice and the skill L are free, while the skill H is costly. ζ > 0 is the

cost of playing H. We say that candidates that choose H invest in their human capital.

Candidates’ social groups are common knowledge, while each candidate’s type and skill are

his private information. We name K : {x, y} → [0, 1] the distribution of candidates’ social

group choices (which represents the probability that a candidate chooses social group x),

T : {A,B} → [0, 1] the distribution of candidates’ types (the probability that a candidates is

of type A) and S : {L,H} → [0, 1] the distribution of candidates’ skill choices (the probability

that a candidate selects skill H).

The decision-maker observes the social group of each candidate at no cost. She can acquire

information about each candidate’s type and skill. We denote this decision by d ∈ {d0, d1},
where d0 is the choice of not acquiring the information and d1 is the choice of acquiring

it. If DM acquires the information, she pays a cost c > 0. When she plays d1, she knows

each candidate’s skill and type. If she plays d0, she only observes the social group of each

candidate.

Furthermore, DM has to assign each candidate to one of four tasks: αH for A types with

H skill, αL for A types with L skill, βH for B types with H skill, and βL for B types with

L skill. We denote with m ∈ {αH , αL, βH , βL} a generic task. If DM does not acquire the

information, she can only assign tasks conditioning on the social group; if she acquires the

information, she assigns tasks conditioning on the type and the skill. We denote with mk =

(mx,my) ∈ {αL, αH , βL, βH}2 the action of DM if she does not acquire the information, and

with ms = (mAH ,mAL,mBH ,mBL) ∈ {αL, αH , βL, βH}4 the action when she acquires it. We

callm = (mk,ms) ∈ M the vector containing these choices. IfDM acquires the information,

92



she learns both the type and the skill of the candidate. We assume that DM always allocates

the tasks correctly when she acquires the information. We call m∗
s = (αH , αL, βH , βL) the

optimal assignment for d = d1. We define the common prior that a candidate is of type A as

pA and the common prior that a candidate is of type B as pB. We assume that the common

prior is correct; hence, pA > pB.

The prior beliefs held by DM are p(t|k)=(p(A|x), p(A|y)), and p(s|k)=(p(H|x), p(H|y)).
The first couple are the probabilities that a randomly screened candidate with social group

x or y is of type t, while the second are the probabilities that he has skill s.

The posterior beliefs of DM are the probabilities that a candidate i is of type t or of

skill s, given the information choice of DM and the social group choice of i. They are

p(t|k; ti,d)=(p(A|x; ti, d), p(A|y; ti, d)), and p(s|k; si,d)=(p(H|x; si, d), p(H|y; si, d)). IfDM
plays d1, the social group has no more informativeness. Moreover, in this case, her posterior

beliefs are always correct; hence, they are either 1 or 0. If DM plays d0, her posterior beliefs

are equal to her priors.

A strategy for a candidate i is a pair (si, ki). A strategy for DM is a vector (d,ω), where d ∈

{d0, d1} and ω =

{
ωd0 if d = d0

ωd1 if d = d1
is a function that gives the vector of tasks assignments

(m), given DM decisions, and candidates’ distributions of social group choices, skills and

types. We denote with Ω the set of all ω functions. Note that ωd0 : [0, 1] → M and

ωd1 : [0, 1]2 × {d0, d1} → M.1 We assume that when players are indifferent between two or

more strategies, they randomize over these strategies.

The game is sequential, firstly each candidate i chooses (si, ki), then DM chooses (d,ω).

The utility of candidate i depends on which task DM assigns to him and on how many

candidates of his type and of the other choose his own social group. Let us define ϕm the

payoff earned by a candidate from being assigned to task m. We assume that ϕαL
> ϕβL

:

such an assumption introduces a misalignment in preferences between candidates and DM ,

such that all candidates prefer to signal themselves as A types. We introduce this assumption

to avoid cheap talk: this assumption can be justified by assuming that one of the two tasks

pays a higher wage than the other (we discuss the implications of alternative assumptions in

Section 5.4). We assume that ϕαH
> ϕαL

, and ϕβH
> ϕβL

: candidates prefer to be assigned

to high-skilled tasks, because of higher job satisfaction for example.

1 In the case of ωd0, the domain of the function is the co-domain of the distribution of social group choices
of candidates, while in the case of ωd1 it is the co-domain of the distributions of skill choices and types of
candidates.
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Situation DM utility
Task assignment does not match type or skills 0
Task assignment matches L skill but not type 0

Task assignment matches H skill but not type
τδH (t and s substitutes)
0 (t and s complements)

Task assignment matches type but not skills τ
Task assignment matches H skill and type τ(1 + δH)
Task assignment matches L skill and type τ(1 + δL)

Table 5.1: Recap of DM ’s utility.

Parameter Meaning
ζ Cost of playing H
c Information’s cost
ϕm′ Candidates’ Utility from m′ task
ϕm Candidates’ rigidity towards αL

ϕ
s

Premium from high-skilled tasks
η Intensity of Social preferences
τ DM premium for matching types and tasks
δH DM multiplier for H skills candidates
δL DM multiplier for matching L skills candidates

Table 5.2: Parameters of the model.

5.3 Results

Firstly, we use the Perfect Bayesian-Nash Equilibrium (PBE from now on) as the solution

concept, and secondly, we use the Coalition-Proof Nash Equilibrium as a refinement (CPE

from now on). For a formal definition, see Bernheim et al. (1987). The structure of our model

allows us to restrict the attention to coalitions between candidates (see Battaglini, 2002 for

a similar approach). In short, the decision-maker never has the incentive to deviate from

an equilibrium where she buys the information, and given the misalignment of preferences

between the candidates and the decision-maker, it cannot exist any self enforcing coalition

between them if the decision-maker does not buy the information.

We provide the results in pure strategies. In Appendix D.2, we show that the intuition of

our results still holds including mixed strategies. We begin by giving the results for the

benchmark case.

5.3.1 Benchmark case

In this section, we consider f
(
nt′

k , n
t
k

)
as indicated in Definition 6.
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Theorem 8.

Consider a game where there is not homophily, and types and skills are either complement

or substitute.

• If c < pBτ , there only exist pooling equilibria on social groups, where all candidates

play H, and DM buys the information. These equilibria are CPE.

• If c > pBτ(1 + δH), there only exist pooling equilibria on social groups, where all

candidates play L, DM does not buy the information, and she assigns αL to each

candidate. These equilibria are CPE.

From Theorem 8, we conclude that the absence of homophily is beneficial for both candidates

and the decision-maker provided that the information’s cost is low enough. However, the

decision-maker faces a trade-off: she hires candidates with high skills, but on the other hand,

she pays a cost to know their types and skills. When the information’s cost is high enough,

the absence of homophily is adverse to the decision-maker since she does not allocate B

types correctly.

For simplicity, we only show results where equilibria are unique; a detailed map of what

happens for every level of c can be found in Appendix D.1 (Corollary 11). Despite some

quantitative differences between complementarity and substitutability, the qualitative mes-

sage stays the same. We prove the theorem in Appendix D.1 and give an intuition here.

If there is no homophily, there can only be pooling equilibria on social groups. Indeed,

candidates maximize their social utility by choosing whichever social group with at least a

positive mass of candidates, and they maximize their material utility by signaling themselves

as A types. As a consequence, social groups are not informative about candidates’ types in

equilibrium. Additionally, due to Assumption 3 and 4, all candidates chose the same skill,

and DM always knows candidates’ skills in equilibrium.

In the light of these considerations, we are only interested in two situations. In the first,

the decision-maker buys the information, candidates invest in their human capital, all A

types are assigned to αH , and all B types are assigned to βH . Such a situation is the unique

possible one if and only if c < pBτ . In the second, the decision-maker does not buy the

information, candidates do not invest in their human capital and all candidates are assigned

to αL. This situation is the unique possible one if and only if c > pBτ(1 + δH).

5.3.2 Homophily

In this section, we consider f
(
nt′

k , n
t
k

)
as indicated in Definition 7.
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Theorem 9.

Consider a game where there is homophily, and types and skills are either complement or

substitute.

• If c < pBτ , there exist infinite pooling equilibria on social groups, where all candidates

play H, and DM buys the information. These equilibria are not CPE.

• If c > pBτ(1 + δH), there exist infinite pooling equilibria on social groups, where all

candidates play L, DM does not buy the information, and m∗
k = (αL, αL). These

equilibria are not CPE.

• If c > pBτ(1 + δH), there exists one pooling equilibria on x (and one on y), where

all candidates play L, DM does not buy the information, and m∗
k = (αL, βL) (m∗

k =

(βL, αL)). These equilibria are CPE if and only if η < 1
pA
ϕm.

• ∀c > 0, if η > ϕm, there exist two separating equilibria on social groups, where all

candidates play L, DM does not buy the information, and she assigns αL to A types

and βL to B types. These equilibria are CPE if and only if η > pA+ϵpB
pA

ϕm.

We depict all the possible equilibria as a function of η in Figure 5.1, and 5.2 to clarify this

result. We say that there is strong homophily when separating equilibria on social groups are

the unique CPE equilibria; weak homophily represents the case when only pooling equilibria

on social groups are CPE.

From Theorem 9, we conclude that strong homophily helps the decision-maker in taking her

decisions. Indeed, under strong homophily, she always knows the candidates’ types and skills

in equilibrium without buying the information. However, due to this selection mechanism,

candidates never invest in their human capital. This result is detrimental for the candidates

and for the decision-maker: for candidates since they are not assigned to high-skilled tasks

and for the decision-maker because she cannot hire candidates with high skill. Interestingly,

we observe pooling equilibria on social groups under weak homophily. However, none of them

lead to CPE with skill acquisition from candidates. This is one of the most important results

of the paper: although we observe pooling equilibria on social groups even under homophily,

no equilibrium with candidates’ skill acquisition is CPE under homophily, whatever the

intensity of social preferences is.

As for Theorem 8, there are other possible pooling equilibria on social groups for c taking

middle values (see Corollary 12 in Appendix D.1). None of them is CPE under strong ho-

mophily ; therefore, we omit them in the main paper. We prove the theorem in Appendix D.1

and give an intuition here.
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η
0 ϕm pA+ϵpB

pA
ϕm 1

pA
ϕm

Separating on s.g. PBE

Separating on s.g. CPE

Strong Homophily

Pooling on s.g., and L PBE

Pooling on s.g. and L CPE

Figure 5.1: Equilibria under Homophily as a function of η, for c > pBτ(1 + δH).

η
0 ϕm pA+ϵpB

pA
ϕm 1

pA
ϕm

Separating on s.g. PBE

Separating on s.g. CPE

Strong Homophily

Pooling on s.g., and H PBE

Figure 5.2: Equilibria under Homophily as a function of η, for c < pBτ .

The results in Theorem 9 can be interpreted as follows. Under homophily, there is an

additional conflict of interest between the candidates and the decision-maker: all candidates

want to be assigned to αL, but the decision-maker wants to assign βL to B types. Therefore,

the existence of pooling and separating equilibria on social groups depends on the trade-off

between the social and the material utility of candidates. The uniqueness of the separating

equilibria is attained by the intensity of social preferences.

If η > ϕm, separating equilibria on social groups exist for all c > 0. Let us take an example

where all A types choose x, and all B types choose y. In this case, DM has no uncertainty

on candidates’ types and skills, and she will never buy the information. Moreover, she will

assign all candidates of social group x to α tasks and all candidates of social group y to β

tasks. Given this scenario, two situations can happen. In the first, candidates invest in their

human capital, all candidates with social group x are assigned to αH , and all candidates with

social group y are assigned to βH . In the second, candidates do not invest in their human

capital, all candidates with social group x are assigned to αL, and all candidates with social

group y are assigned to βL. Given that DM plays d0, only the second situation is possible
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in equilibrium. In this case, each B type has a trade-off between choosing x and y. On the

one hand, if he chooses x, he earns a material utility of ϕαL
but a social utility of 0. On

the other hand, if he chooses y, he earns a material utility of ϕβL
but a social utility of η.

Therefore, all B types choose y if and only if η > ϕαL
− ϕβL

= ϕm.

Our results show how homophily could lead employees to non-invest in their skills, resulting

in a sub-optimal equilibrium for society. Homophily has been historically used to explain the

persistence or the rising of inequalities. However, other mechanisms describe homophily as

a potential source of inefficiency in productivity Bolte et al. (2020); Jackson (2021). These

works show that homophily could trigger inefficient productivity through unequally spread

referrals. We show that homophily could trigger inefficient equilibria through the informa-

tion conveyed to the decision-maker (employer). Similar to other works in the homophily

literature, the results in our paper comes from the separation of the two types into two

different social groups. As shown in previous works, due to this separation (that may be

seen as segregation), inequalities can arise if one of the two groups is somehow disadvan-

taged (Austen-Smith and Fryer Jr, 2005; Kim and Loury, 2012; Bowles et al., 2014; Kim

and Loury, 2019). We show how the separation into social groups can lead the system to a

sub-optimal equilibrium for society, not driven by inequalities but by the under-investment

in the skills of employees. Another source of inequalities through (homophilous) group for-

mation is access to valuable information Golub and Jackson (2012); Lobel and Sadler (2016);

Aybas and Jackson (2021). According to these models, people tend to listen more to their

peers, i.e. their connections, and due to homophily, their connections can be biased and lead

them towards bad choices. Therefore, inequalities may emerge between two social groups

because one group has better sources of information (e.g. on school choices). Compared to

these works, we show that group formation can be detrimental to society due to the amount

of information delivered to employers.

5.3.3 Welfare

In this section, we compare the social welfare under strong homophily and the benchmark.

We made this decision since our paper concerns situations in which social preferences matter

compared to material ones, and only under strong homophily does this happen. For the sake

of our comparison, we keep omitting middle values of c. This decision is coherent with the

one we took for theorems. As it is not clear whether homophily corresponds to preferring

the company of similar types or disliking the company of dissimilar ones, we also omit from

the welfare analysis the social utility component.

In Figure 5.3 and 5.4, we depict the different human capital investments under the benchmark
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case and the strong homophily one if there is substitutability and complementarity. As we

can see from these pictures, candidates never invest in their human capital under homophily,

while they invest in their human capital under the benchmark case, provided that the cost

is low enough.

pBτ pBτ(1 + δL)0 c

Benchmark

Strong Homophily Strong Homophily Both

Candidates’ skills

High

Low

Figure 5.3: Cost’s effect on human capital investments (under substitutability between skills
and types).

Firstly, we consider candidates’ welfare. We call W ben
can candidates welfare under the bench-

mark and W hom
can the one under strong homophily.

If c < pBτ ,

W ben
can = pAϕαH

+ pBϕβH
− ζ,

W hom
can = pAϕαL

+ pBϕβL
.

Clearly, W ben
can > W hom

can . The intuition behind this result is simple: if the information’s cost

is low enough, candidates always invest in their human capital under the benchmark, and

consequently, their welfare is higher under this case than under strong homophily.

If c > pBτ(1 + δH),

W ben
can = ϕαL

,

W hom
can = pAϕαL

+ pBϕβL
.
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pBτ(1 + δL) pBτ(1 + δH)0 c

Benchmark Benchmark

Strong Homophily Both Both

Candidates’ skills

High

Low

Figure 5.4: Cost’s effect on human capital investments (under complementarity between
skills and types).

Again, W ben
can > W hom

can . However, this result is arbitrary since candidates’ favorite tasks

coincide with the task that better fits with the majority type.

Secondly, we consider the decision-maker’s welfare. We call W ben
DM the decision-maker’s wel-

fare under the benchmark and W hom
DM the one under strong homophily.

If c < pBτ ,

W ben
DM = τ(1 + δH)− c,

W hom
DM = τ(1 + δL).

Therefore, W ben
DM > W hom

DM if and only if c < δH − δL. The interpretation is straightforward.

Under the benchmark, the decision-maker hires candidates with high skill, but she pays for

the information, while under strong homophily, she does not buy the information, but she

does not hire candidates with high skill. Consequently, if the cost of buying the information

is paid off by the benefit of having candidates with high skill, the decision-maker’s welfare

is higher under the benchmark.

If c > pBτ(1 + δH),

W ben
DM = pAτ(1 + δL),
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W hom
DM = τ(1 + δL).

Hence, W ben
DM < W hom

DM . In this case, the decision-maker does not buy the information un-

der the benchmark, and the information she has without the purchasing is higher under

strong homophily. Consequently, the decision-maker’s welfare is always higher under strong

homophily if the information’s cost is high enough.

Lastly, we consider the total social welfare as the sum of the candidates’ welfare and the

decision-maker’s one. We call W ben the total social welfare under the benchmark and W hom

the one under strong homophily.

If c < pBτ ,

W ben = τ(1 + δH)− c+ pAϕαH
+ pBϕβH

− ζ,

W hom = τ(1 + δL) + pAϕαL
+ pBϕβL

.

W ben > W hom if and only if c + ζ < ϕ
s
+ δH − δL. In other words, if the social costs from

information acquisition and human capital investment do not overwhelm the social benefits

from having high candidates with high skills, the total social welfare is better under the

benchmark when the cost is sufficiently low.

If c > pBτ(1 + δH),

W ben = pAτ(1 + δL)ϕαL
,

W hom = τ(1 + δL) + pAϕαL
+ pBϕβL

.

W ben > W hom if and only if τ(1 + δL) < ϕm. We can interpret this inequality in the

following way. When the cost is sufficiently high, there are no (direct) social costs since the

decision-maker does not buy the information, and candidates do not invest in their human

capital. Moreover, we know for sure that candidates’ welfare is always better under the

benchmark, while the decision-maker’s welfare is always better under homophily. Hence, if

the candidates’ benefits are higher than the decision-maker’s one, the total social welfare is

higher under the benchmark and vice-versa.
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5.4 Discussion

In this section we discuss some points concerning alternative assumptions, and follow-up

analysis.

5.4.1 Heterophily and intrinsic values for social groups

In our model, we do not consider heterophily, i.e. the love for the different, since it would give

the same result as the benchmark. Nevertheless, heterophily could give interesting results

when incorporated with more realistic assumptions, such as introducing an intrinsic value for

the social groups. Indeed, in our model, cognitive types perceive the same utility in joining

nerds or cool guys a priori. However, the opposite may be true in the real world.

Introducing this assumption may eradicate all the results under the benchmark but reinforce

those under homophily since an intrinsic value for social groups would accentuate candidates’

desire to polarize. Under homophily, we would observe separating equilibria on social groups

for even lower values of η. Under no homophily, even a little intrinsic value for social groups

would destroy all equilibria where the decision-maker buys the information and candidates

invest in their human capital. The intuition is as follows. If the decision-maker buys the

information, candidates earn the same material utility no matter which social group they

choose. They also earn the same social utility no matter which social group they choose,

provided that there is at least one person in each social group (see Definition 6). Therefore,

even a little intrinsic value for social groups would make candidates polarize in the two social

groups they prefer, destroying all these pooling equilibria. Under heterophily, candidates

would have material and social incentives to pool in the same group, and they would have

a reason to split due to the different intrinsic preferences of the social groups. Therefore,

sufficiently strong social preferences would sustain a pooling equilibrium on social groups.

5.4.2 Candidates with heterogeneous preferences

As we assume in Section 5.2, all candidates prefer αL to βL. We could introduce heterogeneity

in candidates’ preferences between types, meaning A types prefer αL to βL, but B types prefer

βL to αL. In this case, when the decision-maker does not buy the information, each candidate

could claim to be his own type, having no incentive to lie. In other words, candidates could

send cheap signals rather than choosing social groups to signal their type to the decision-

maker. As a result, the decision-maker would always prefer cheap talk signals to social

groups to infer candidates’ types, and there would no longer be a homophily effect.
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Nevertheless, it would be sufficient to introduce a small heterogeneity in candidates’ pref-

erences to return to our results. As a matter of fact, if some candidates’ preferences were

heterogeneous within the same type (some candidates of the same type prefer αL, and some

βL), cheap talk signals would be no longer effective, and the decision-maker would rely again

on social groups to infer candidates’ types and skills under homophily. Therefore, there

would be again the homophily effect.

Intuitively, candidates who prefer αL would claim to be A types no matter their real type,

and candidates who prefer βL would claim to be B types no matter their real type. The

decision-maker could not rely on these cheap talk signals, and she would look at candidates’

social groups as in our version. Therefore, our results would be preserved.

5.4.3 Alternative assumptions on the decision-maker

In our model, we assume that there are enough tasks for every candidate and that there

is no difference between the number of high and low tasks. Secondly, we assume a unique

decision-maker, ignoring possible competitors of the firm.

Concerning the second case, we can argue that our analysis applies to situations when there

is only one big firm in the market (e.g., a monopoly). However, it is reasonable to think that

part of our results would still hold even under competition between two decision-makers. A

competition between decision-makers could raise the wages in equilibrium (e.g., no matter

their beliefs, the two decision-makers assign all the high-skilled tasks in equilibrium), but it

would not change the relevant mechanism behind our model. Separating or pooling equilibria

on social groups would still happen depending on candidates’ social preferences. Therefore,

the two decision-makers would still face the same uncertainties, and they would buy the

information under the same conditions as in our model.

Concerning the first case, it is arguably more reasonable to assume that the number of tasks

is limited (specifically high-skilled ones). However, these assumptions would neither affect

candidates’ incentives to invest in their human capital nor their incentives to signal their

type through social groups. Firstly, when the decision-maker does not buy the information,

candidates would have no incentive to invest in their human capital, even in this case.

Secondly, when the decision-maker buys the information, only a few candidates will be

assigned to high-skilled tasks, but the only way for them to have a chance is to invest in their

human capital. Since candidates cannot signal their types differently, the decision-maker

would still face the same uncertainty levels under homophily or the benchmark. Therefore,

our results would remain untouched by this assumption.
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5.4.4 Testable Implications

To the best of our knowledge, we are the first to study this mechanism referred to the specific

setting of our model. For this reason, there is a lack of empirical validation or examples as

a reference in the literature. However, we believe that our hypothesis can be tested in

different frameworks. Two main implications can be tested: the first concerns the role of

homophily as a tool for decision-makers, while the second concerns the implied mechanism

such that candidates should invest less in their human capital if the decision-makers invest

fewer resources in the screening process.

Testable Implication 1. A higher level of homophily correlates with a lower level of re-

sources invested in the screening process of the decision-maker.

Testable Implication 2. A higher level of homophily correlates with a lower level of human

capital investments of candidates.

Whichever road is chosen to test our implications, there should be three key variables: one

on homophily, one on the screening process (information acquisition), and one on human

capital investments. Note that the underlying assumption beyond these implications is that

the number of tasks coincides with the number of types of candidates.

Empirical data

Our hypothesis can be empirically validated through existing data or ad hoc questionnaires.

Ideal data should come from big firms with different figures to fill (preferably, at least four,

as in our model). The analysis can be done within the same firm, comparing two different

departments or between two firms.

The degree of homophily among employees can be studied through variables concerning

the employees’ social networks. Alternatively, homophily can be studied through ad hoc

questionnaires. Such questionnaires should be delivered to the employees and concern their

relations inside or outside the workplace. Otherwise, homophily can be calculated by mea-

suring the diversity within the different departments (for example, looking if there are recur-

rent characteristics among employees of each department). The variable regarding screening

methods of the firm could be directly asked to the firm or captured from existing data: e.g.,

the amount of resources spent in interviews. The variable concerning human capital invest-

ment could concern, but may not be limited to, educational attainments. Some measures

that can be used are grades at school, the number of degrees, or the number of refresher

courses done by each employee.
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Experimental investigation

Our implication could also be tested through an experiment: the aim of such an experiment

should be to generate the variables described in the previous section to test Implications 1

and 2. There are two possible roads that the experimenter can adopt. The experiment could

be designed in a way that subjects would play a simplified version of our model, with some

subjects being the decision-maker and some subjects being candidates. Alternatively, the

experiment could be designed in a way to test the interpretation of our results. In our paper,

we give a specific interpretation of the mathematical structure, but any other interpretation

that a possible experimenter could think about could be used as well. As an example, the

pooling and the separating equilibria can be forced among subjects, and the experimenter

could focus mainly on the decision-maker role.

The key variables that the experiment should generate are the same as in the previous

section. Homophily should be the treatment, and it could either be generated endogenously

or given exogenously. The easiest way to design this experiment is to use two treatments:

one with no/low homophily and the second with high homophily. The easiest way to induce

homophily is to reward subjects, as in our model, but any alternative way could be used as

well. Endogenous homophily could give more relevance to the analysis but may be harder

to induce.

5.4.5 Policy implications

Our results report a malfunction of the job assignment process when firms can see the

social groups of potential employees. Such an issue is closely related to problems associated

with genders or ethnicities. Both of them are visible to employers, and they are often

causes of discrimination against employees. As a consequence of these similarities in the

problems, there could also be similarities in the solutions. Although a consensus has not

been reached yet, anonymous resumes are often used to dampen the effect of gender or ethnic

discrimination (Goldin and Rouse, 2000; Behaghel et al., 2015; Derous and Ryan, 2019;

Lacroux and Martin-Lacroux, 2020). These kinds of interventions can also be functional to

reduce the negative effect of homophily found in our paper.

Nevertheless, implementing blind interviews or blind CV policies can be a redundant cost

if there is no homophily. Therefore, firms need to know whether there is homophily be-

tween potential/current employees and how intense are the social preferences of employees.

Among the many techniques that can be used to study the intensity of homophily, we find

particularly suggesting the one in Currarini and Mengel (2016). In that experiment, sub-
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jects can choose with whom to interact between in-group or out-group members, and their

willingness to play with an in-group member is also elicited through their willingness to pay.

With similar methods, firms can elicit homophily and the intensity of homophily of their

candidates/current employees.

A final consideration about these policies is their expensive nature, both in terms of resources

and cognitive costs. In both cases, firms need to pay a cost that is reminiscent of an

information cost; therefore, these policies are only implementable when the information’s cost

is considerably low. In such a case, the comparison between homophily and the benchmark

case is still important, given the results in Section 5.3.3.

5.5 Conclusions

In this paper, we have shown a novel mechanism through which homophily can affect the

labor markets. Overall, we have shown that homophily favors decision-makers because they

can retrieve all the relevant information about candidates without buying it. However, this

tool is a double-edged sword since candidates never invest in their human capital under

homophily due to this effect. We also show that our results hold both under substitutability

and complementarity between skills and types.

We started from the case where candidates have a social desire to aggregate indiscrimi-

nately from their types. In Theorem 8, we showed that effortlessly observable signals are

no longer informative about the relevant pieces of information if this is the case. There-

fore, the decision-maker buys the information (for low cost levels), and candidates invest in

their human capital. Afterward, we consider the homophily case, where candidates have a

social desire to aggregate only with candidates of the same type. In Theorem 9, we showed

that the only reasonable equilibria under (strong) homophily are the ones where effortlessly

observable signals (such as social group traits) are informative about the relevant pieces of

information in the model. Due to this effect, the decision-maker never needs to buy the

information under strong homophily. Consequently, candidates never invest in their human

capital. Importantly, even though pooling equilibria on social groups are still possible under

weak homophily, the pooling equilibria on social groups, where candidates invest in their

skills and the decision-maker buys the information are never CPE under homophily, for any

intensity of social preferences.

109



Bibliography

Agerström, J., Carlsson, R., Nicklasson, L., and Guntell, L. (2016). Using descriptive so-

cial norms to increase charitable giving: The power of local norms. Journal of Economic

Psychology, 52:147–153.

Allcott, H. (2011). Social norms and energy conservation. Journal of Public Economics,

95(9-10):1082–1095.

Allcott, H. and Kessler, J. B. (2019). The welfare effects of nudges: A case study of energy

use social comparisons. American Economic Journal: Applied Economics, 11(1):236–76.

Alós-Ferrer, C. and Buckenmaier, J. (2020). Behavioral rules. In Handbook of Experimental

Game Theory, pages 289–309. Edward Elgar Publishing.

Alós-Ferrer, C. and Ritschel, A. (2021). Multiple behavioral rules in cournot oligopolies.

Journal of Economic Behavior & Organization, 183:250–267.

Andreoni, J., Nikiforakis, N., and Siegenthaler, S. (2021). Predicting social tipping and

norm change in controlled experiments. Proceedings of the National Academy of Sciences,

118(16):e2014893118.

Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996). Identification of causal effects using

instrumental variables. Journal of the American Statistical Association, 91(434):444–455.

Anufriev, M. and Hommes, C. (2012a). Evolution of market heuristics. The Knowledge

Engineering Review, 27(2):255–271.

Anufriev, M. and Hommes, C. (2012b). Evolutionary selection of individual expectations

and aggregate outcomes in asset pricing experiments. American Economic Journal: Microe-

conomics, 4(4):35–64.

Archer, J. (1988). The behavioural biology of aggression, volume 1. Cup Archive.

110



Argenziano, R., Severinov, S., and Squintani, F. (2016). Strategic information acquisition

and transmission. American Economic Journal: Microeconomics, 8(3):119–55.

Arieli, I., Babichenko, Y., Peretz, R., and Young, H. P. (2020). The speed of innovation

diffusion in social networks. Econometrica, 88(2):569–594.

Arigapudi, S., Heller, Y., and Schreiber, A. (2021). Sampling dynamics and stable mixing

in hawk-dove games. arXiv preprint arXiv:2107.08423.

Arrow, K. J. (1973). O. Ashenfelter and A. Rees (eds), Discrimination in Labor Markets.

Princeton University Press.

Arrow, K. J. and Borzekowski, R. (2004). Limited network connections and the distribution

of wages. FEDS working papers.

Asch, S. E. (1951). Effects of group pressure upon the modification and distortion of judg-

ments. Organizational Influence Processes, 58:295–303.

Austen-Smith, D. and Fryer Jr, R. G. (2005). An economic analysis of “acting white”. The

Quarterly Journal of Economics, 120(2):551–583.

Aybas, Y. C. and Jackson, M. O. (2021). Homophily in information networks: Sample-based

herding and its implications for immobility and inequality. mimeo Stanford.

Ayres, I., Raseman, S., and Shih, A. (2013). Evidence from two large field experiments

that peer comparison feedback can reduce residential energy usage. The Journal of Law,

Economics, and Organization, 29(5):992–1022.
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Appendix A

Chapter 1 Appendix

Proof of Lemma 1. We have to formally show that each strategy inside the same behavior is

behaviorally and payoff-equivalent for each player. Consider a player i ∈ K. Define gKi (s−i)

and gK
′

i (s−i) as the frequencies of successful coordination for i on action a with group K

and K ′ given strategy profile s−i.

U i
s((0, a, a, a), s−i) = U i

s((0, a, b, b), s−i) =

U i
s((0, a, b, a), s−i) = U i

s((0, a, a, b), s−i) =
NK − 1

N − 1
gKi (s−i)π

K
a +

NK′

N − 1
gK

′

i (s−i)π
K
a .

Therefore, if (0, a, a, a) is the maximizer, then also (0, a, a, b), (0, a, b, a), and (0, a, b, b) are

so. Hence, in this case, i maximizes her/his payoff by choosing behavior a. Moreover,

consider s′−i = (0, a, a, b)N−1 and s′′−i = (0, a, a, a)N−1. In this case gKi (s′−i) = gKi (s′′−i),

so for gK
′

i . Contrarily, if s′′′−i = (0, b, a, a)N−1, gKi (s′−i) ̸= gKi (s′′′−i), so for gK
′

i . Therefore,

U i
s(a, s

′
−i) = U i

s(a, s
′′
−i) = U i

z(a, a
N−1). Thanks to symmetry in payoff matrix, the argument

stands for all strategies and behaviors. This passage completes the proof.

Proof of Lemma 2. Consider a player i ∈ K currently playing behavior a that is given a

revision opportunity at period t. gKi (z−i(t)) is the frequency of successful coordinations of

player i on action a with group K at period t, given z−i(t). In this case, U i
z(a, z−i(t)) =

NK−1
N−1

gKi (z−i(t))π
K
a +

NK′
N−1

gK
′

i (z−i(t))π
K
a . Note that gKi (z−i(t)) = gKi (zi(t), ωt) and

gK
′

i (z−i(t)) = gK
′

i (zi(t), ωt), where g
K
i (zi(t), ωt) is the frequency of successful coordinations

of player i on action a with group K at period t, given ωt and that player i is currently

playing zi(t). Therefore, U
i
z(a, z−i(t)) = U i

zi(t)
(a, ωt), with zi(t) = a in our case.

Note that gKi (a, ωt) =
nKK
t −1

NK−1
, and gKi (b, ωt) =

nKK
t

NK−1
. Moreover, gKi (a, ωt) = gKi (aa, ωt) =
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gKi (ab, ωt), and gKi (b, ωt) = gKi (bb, ωt) = gKi (ba, ωt). Contrarily, gK
′

i (zi(t), ωt) = gK
′

i (ωt) =
nK′K
t

NK′
, ∀zi(t) ∈ Z.

Therefore, U i
a(a, ωt) = U i

aa(a, ωt) = U i
ab(a, ωt). Equally, U i

b(a, ωt) = U i
bb(a, ωt) = U i

ba(a, ωt).

Thanks to symmetry in payoff matrix, the argument stands for all strategies and behaviors.

A.1 Proofs of Section 2.3

Proof of Lemma 3. Consider a player i ∈ K currently playing aa who is given the revision

opportunity at period t. On the one hand, ∀nKK
t , U i

a(ab, ωt) = U i
a(aa, ωt). On the other

hand, ∀nK′K
t , U i

a(ba, ωt) = U i
a(aa, ωt). Therefore, player i chooses aa or ab depending on

nK′K
t , and ba or aa depending on nKK

t .

Moreover, if player i chooses ab instead of aa, nKK
t+1 = nKK

t , but nK′K
t+1 < nK′K

t . If player i

chooses ba instead of aa, nKK
t+1 < nKK

t , but nK′K
t+1 = nK′K

t . This passage completes the proof.

With abuse of notation, we call best reply (BR) the action optimally taken by a player in

one of the three dynamics. For example, if a player of group A earns the highest payoff by

playing a against a player of group B, we say that a is her/his BR. We do this in the context

of complete information because of the separability of the dynamics.

Proof of Lemma 4. Thanks to Lemma 3, we can consider the three separated dynamics:

nAA
t , nBB

t , and nI
t .

Inside-group interactions.

Firstly, we prove the result for nAA
t , and then the argument stands for nBB

t thanks to sym-

metry of payoff matrix. We have to show that all the states in ωR have an absorbing

component for nAA
t , that is, 0 or NA. When nAA = NA, ∀i ∈ A, a is BR against group A

at period t. Hence, F1(NA, θt+1) = NA. Symmetrically, if nAA = 0, b is always BR, and so

F1(0, θt+1) = 0. Therefore, NA and 0 are fixed points for nAA
t .

We need to show that these states are absorbing, that all the other states are transient,

and that there are no cycles. Consider player i ∈ A, who is given the revision opportunity

at period t. We define n̄A as the minimum number of A players such that a is BR, and nA

as the maximum number of A players such that b is BR. From Equations (2.1)–(2.4), we

know that n̄A = NAπA+ΠA

ΠA+πA
, and that nA = NAπA−πA

ΠA+πA
. Assume nAA

t ≥ n̄A. There is always
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a positive probability that a player not playing a is given the revision opportunity. Hence,

F1(n
AA
t , θt+1) ≥ nAA

t . Symmetrically, we can say that if nAA
t < nA, F1(n

AA
t , θt+1) ≤ nAA

t .

We now prove that if nAA
t ≤ nA ̸= 0,

Pr
(
lim
t→∞

F1(n
AA
t , θt+1) = nAA

t

)
= 0.

Equally, if nAA
t ≥ n̄A ̸= NA,

P r
(
lim
t→∞

F1(n
AA
t , θt+1) = nAA

t

)
= 0.

We prove the first case, and the result stands for the second, thanks to symmetry in payoff

matrices. Consider a period s in a state nAA
s < nA ̸= 0. For every player, b is BR. Define

Pr
(
nAA
s+1 = nAA

s

)
= p. Such a probability represents the event that only players playing b are

given the revision opportunity. Pr
(
nAA
s+2 = nAA

s

)
= p2, Pr

(
nAA
s+k = nAA

s

)
= pk. If k → ∞,

Pr
(
nAA
s+k = nAA

s

)
= 0. Therefore,

If nAA
0 ≤ nA, P r

(
lim
t→∞

F1(n
AA
t , θt+1) = 0

)
= 1,

If nAA
0 ≥ n̄A, P r

(
lim
t→∞

F1(n
AA
t , θt+1) = NA

)
= 1.

Next, consider nA < nAA
0 < n̄A. For every i playing a, b is BR, while, for every i′ playing

b, a is BR. There are no absorbing states between these states. If only players playing a

are given the revision opportunity, they all choose b, and if enough of them are given the

revision opportunity, nAA
1 < nA. The opposite happens if only players playing b are given

the revision opportunity.

Inter-group interactions.

We now pass to the analysis of nI
t . We define four important values for nAB and nBA:

TA = min
{
nBA|nBA > πANB

ΠA+πA

}
, TB = min

{
nAB|nAB > ΠBNA

ΠB+πB

}
,

DA = max
{
nBA|nBA < πANB

ΠA+πA

}
, and DB = max

{
nAB|nAB < ΠBNA

ΠB+πB

}
.

Given these values, we also define two sets of states, Ωb
I and Ωa

I :

Ωa
I =

{
nI |nBA ≥ TA and nAB ≥ TB

}
and Ωb

I =
{
nI |nBA ≤ DA and nAB ≤ DB

}
.
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With similar computation as for nAA
t , we can say that (0, 0) and (NA, NB) are two fixed

points for nI
t . Are they absorbing states?

Consider the choice of a player i ∈ A against player j ∈ B and vice-versa. There can be four

possible combinations of states: states in which a is BR for every player, states in which b

is BR for every player, states, in which ∀i ∈ A, a is the best reply and b is the best reply

∀j ∈ B, and states for which the opposite is true. Let us call the third situation as Ωab
I and

the fourth as Ωba
I .

Firstly, we prove that Ωa
I and Ωb

I are the regions where a and b are BR for every player.

Secondly, we prove that there is no other absorbing state in Ωa
I than (NA, NB), and no other

absorbing state in Ωb
I than (0, 0).

Assume that player i ∈ A is given a revision opportunity at period t. From Equations (2.1)–

(2.4), a is the BR against group B if nBA
t > πANB

ΠA+πA
. Since TA is defined as the minimum

value s.t., the latter holds, ∀nBA
t ≥ TA, ∀i ∈ A, a is BR against B groups. Now, assume that

j ∈ B is given the revision opportunity, a is the BR against group A if nAB
t > ΠBNA

ΠB+πB
. Since

TB is defined as the minimum value s.t., this relation is true, ∀nAB
t ≥ TB, a is the best reply

∀j ∈ B. Therefore, if nI
0 ∈ Ωa

I , n
I
s ∈ Ωa

I ,∀s ≥ 0. Similarly, if nI
0 ∈ Ωb

I , n
I
s ∈ Ωb

I ,∀s ≥ 0.

Consider being in a generic state (TB + d, TA + d′) ∈ Ωa
I at period t, with d ∈ [0, NA − TB)

and d′ ∈ [0, NB − TA). In such a state, there is always a probability p that a player not

playing a is given the revision opportunity.

Therefore, if nI
t ∈ Ωa

I \ (NA, NB), P r
(
F2,3

(
nI
t , θt+1

)
≥ nI

t

)
> p (meaning that n

′I
t > n

′′I
t if

either n
′AB
t > n

′′AB
t and n

′BA
t = n

′′BA
t or n

′BA
t > n

′′BA
t and n

′AB
t = n

′′AB
t or both n

′BA
t > n

′′BA
t

and n
′AB
t > n

′′AB
t ). Similar to what we proved before,

if nI
t ∈ Ωa

I \ (NA, NB), P r
(
lim
t→∞

F2,3(n
I
t , θt+1) = nI

t

)
= 0,

if nI
t ∈ Ωb

I \ (0, 0), P r
(
lim
t→∞

F2,3(n
I
t , θt+1) = nI

t

)
= 0.

Consequently,

If nI
0 ∈ Ωa

I Pr
(
lim
t→∞

F2,3(n
I
t , θt+1) = (NA, NB)

)
= 1,

if nI
0 ∈ Ωb

I , P r
(
lim
t→∞

F2,3(n
I
t , θt+1) = (0, 0)

)
= 1.
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We now consider Ωab
I and Ωba

I . Take an nI
0 ∈ Ωab

I : at each period, there is a positive

probability that only players of group A are given the revision opportunity, since for them

a is the best reply, in the next period, there will be more or equal players in A playing a.

Hence, if enough players of A that are currently playing b are given the revision opportunity,

nI
1 ∈ Ωa

I . By the same reasoning, there is also a positive probability that only players from B

are given the revision opportunity; hence, that nI
1 ∈ Ωb

I . The same can be said for every state

in Ωba
I . Hence, starting from every state in Ωab

I

⋃
Ωba

I , there is always a positive probability

to end up in Ωa
I or Ωb

I .

Lemma 9. Under complete information,

Pr
(
limt→∞ nI

t = (NA, NB)
)
= 1− Pr

(
limt→∞ nI

t = (0, 0)
)
.

Pr
(
limt→∞ nAA

t = NA

)
= 1− Pr

(
limt→∞ nAA

t = 0
)
.

Pr
(
limt→∞ nBB

t = NB

)
= 1− Pr

(
limt→∞ nBB

t = 0
)
.

Proof. We prove the result for nI
t , and the argument stands for the two other dynamics

thanks to symmetry in the payoff matrix. Firstly, note that whenever the process starts in

Ωa
I ∪ Ωb

I , the lemma is always true thanks to the proof of Lemma 4. We need to show that

this is the case, as well as when the process starts inside Ωab
I

⋃
Ωba

I . We prove the result for

Ωab
I using the same logic, and the result stands for Ωba

I for symmetry of payoff matrix.

Take nI
0 ∈ Ωab

I , define as pa the probability of extracting m players from A that are currently

playing b, and who would change action a if given a revision opportunity. Define as pb the

probability of picking m players from B currently choosing a who would change action to b

if given a revision opportunity. The probability 1− pa − pb defines all the other possibilities.

Let us take k steps forward in time:

Pr
(
nI
k ∈ Ωa

I

)
≥ (pa)

k

Pr
(
nI
k ∈ Ωb

I

)
≥ (pb)

k

Pr
(
nI
k ∈ Ωab

I

⋃
Ωba

I

)
≤ (1− pa − pb)

k.

Consider period k + d:

Pr
(
nI
k+d ∈ Ωa

I

)
≥ (pa)

k
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Pr
(
nI
k+d ∈ Ωb

I

)
≥ (pb)

k

Pr
(
nI
k+d ∈ Ωab

I

⋃
Ωba

I

)
≤ (1− pa − pb)

k+d.

Clearly, the probability of being in Ωa
I(Ω

b
I) is now greater than or equal to (pa)

k((pb)
k): we

know that once in Ωa
I(Ω

b
I), the system stays there. The probability of being in Ωab

I

⋃
Ωba

I

consequently, is lower than (1− pa − pb)
k+d.

Taking the limit for d that goes to infinity

lim
d→∞

(
Pr
(
nI
k+d ∈ Ωab

I

⋃
Ωba

I

))
= 0.

This means that if we start in a state in Ωab
I there is no way of ending up in Ωab

I

⋃
Ωba

I in the

long-run; hence, the system ends up either in Ωa
I or in Ωb

I , but given this, we know that it

ends up either in (0, 0) or in (NA, NB).

Corollary 8. Under complete information,

Pr
(
limt→∞ nI

t = (NA, NB)
)
= 1 IFF nI

0 ∈ Ωa
I .

Pr
(
limt→∞ nI

t = (0, 0)
)
= 1 IFF nI

0 ∈ Ωb
I .

Pr
(
limt→∞ nAA

t = NA

)
= 1 IFF nAA

0 ∈
[
n̄A, NA

]
, and

Pr
(
limt→∞ nAA

t = 0
)
= 1 IFF nAA

0 ∈
[
0, nA

]
.

Pr
(
limt→∞ nBB

t = NB

)
= 1 IFF nBB

0 ∈
[
n̄B, NB

]
, and

Pr
(
limt→∞ nBB

t = 0
)
= 1 IFF nBB

0 ∈
[
0, nB

]
.

This result is a consequence of the previous lemmas, and therefore, the proof is omitted.

Since the only two absorbing states in the dynamics of nI
t are (0, 0) and (NA, NB), they are

the only two candidates to be stochastically stable states. From now on we call (0, 0) as

Ibn and (NA, NB) as I
a
n. We define as 0A the state where all players of group A play b with

group A and 0B the state where all players of group B play b with group B.

Let us call EA and EB the two values for which players in A and in B are indifferent in

playing a or b in inter-group interactions. EA =
⌈

NBπA

ΠA+πA

⌉
and EB =

⌈
NAΠB

ΠB+πB

⌉
. From now

on, we often use values of N large enough to compare the arguments inside ceiling functions.

Lemma 10. Under free information acquisition, for large enough N , R(Ibn) = CR(Ian) = EA
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for all values of payoffs and sizes of groups, while

R(Ian) = CR(Ibn) =

 NA − EB if πB

ΠA
< NB

NA

NB − EA if πB

ΠA
> NB

NA

Proof. Firstly, we know from Ellison (2000) that if there are just two absorbing states,

the radius of one is the coradius of the other and vice-versa. Hence, R(Ibn) = CR(Ian),

and R(Ian) = CR(Ibn). Moreover, from the proof of Lemma 4, we know that D(Ian) = Ωa
I

and D(Ibn) = Ωb
I .

We prove that the minimum resistance path to exit the basin of attraction of Ibn is the one

that reaches (EB, 0) or (0, EA), and that the one to exit the basin of attraction of Ian is the

one that reaches either (EB, NB) or (NA, EA). To prove this statement for Ibn, firstly, note

that once inside Ωb
I , every step that involves a passage to a state with more people playing

a requires a mistake. Secondly, note that in a state that is out of Ωb
I , at least one of the two

groups is indifferent in playing b or a, in other words, in a state where either nAB = EB or

nBA = EA or both. Hence, the minimum resistance path to exit from Ibn is the one either

to (EB, 0) or to (0, EA). It is straightforward to show that all the other paths have greater

resistance than the two above. Since we use uniform mistakes, every mistake counts the same

value, and without loss of generality, we can count each of them as 1. Since every resistance

counts as 1, then R(Ibn) = min{EB;EA} = EA. Similarly, R(Ian) = min{NA−EB;NB −EA},
and

NA − EB < NB − EA ⇐⇒ πB
ΠA

<
NB

NA

.

Lemma 11. Under free information acquisition, for large enough N , R(0A) =
⌈
NAπA−πA

ΠA+πA

⌉
,

R(NA) =
⌈
NAΠA+ΠA

ΠA+πA

⌉
, R(0B) =

⌈
NBΠB+ΠB

ΠB+πB

⌉
and R(NB) =

⌈
NBπB−πB

ΠB+πB

⌉
.

Proof. The proof is straightforward; indeed, the minimum resistance path in terms of mis-

takes required to reach one absorbing state starting from the other one is the cost of exit

from the basin of attraction of the first. As a matter of fact, let us consider R(0A); we know

from the proof of Lemma 4 that we are out of the basin of attraction of 0A when we reach

the state nA. Hence, R(0A) =
⌈
NAπA−πA

ΠA+πA

⌉
. The same applies to the other states.

Proof of Theorem 1. We divide the proof for the three dynamics described so far: for what

concerns nAA
t , NA is uniquely stochastically stable, and for what concerns nBB

t , 0B is uniquely

stochastically stable; this proof follows directly from Lemma 11 and therefore is omitted.
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Let us pass to nI
t . We know from Lemma 10 that R(Ibn) = EA and that the value of R(Ian)

depends on payoffs and group size. Let us firstly consider the case when πB

ΠA
< NB

NA
and

R(Ian) = NA − EB. It is sufficient that EA > NA − EB for Ibn to be uniquely stochastically

stable. Indeed, if this happens, R(Ibn) > CR(Ibn). This is the case IFF

πANB

ΠA + πA
>

πBNA

ΠB + πB
⇐⇒ πB

πA
<
NB

NA

. (A.1)

To complete the proof, we show that whenever πB

πA
> NB

NA
, then Ian is the uniquely stochastically

stable state. Firstly, note that πB

ΠA
< πB

πA
; hence, for πB

πA
> NB

NA
> πB

ΠA
, R(Ian) = NA − EB and

EA = R(Ibn). However, Equation (A.1) is reversed, so, Ian is uniquely stochastically stable.

For πB

πA
> πB

ΠA
> NB

NA
, R(Ian) = NB −EA and still R(Ibn) = EA. In this case, Ian is the uniquely

stochastically stable if EA < NB − EA, hence, IFF

πANB

ΠA + πA
<

ΠANB

ΠA + πA
.

This happens for every value of the payoffs (given that ΠA > πA) and of the group size. We

conclude that whenever πB

πA
< NB

NA
, PSb is uniquely stochastically stable and when πB

πA
> NB

NA
,

PSa is uniquely stochastically stable.

A.2 Proofs of Section 2.4

For convenience, we call behavior τ1 the optimal behavior when a player decides to acquire

the information: τ1 = max(ab, ba, aa, bb).

We will use in some proofs the concept of Modified Coradius from Ellison (2000). We write

here the formal definition. Suppose ω̄ is an absorbing state and (ω1, ω2, . . . ωT ) is a path from

state ω′ to ω̄. Let L1, L2, . . . , Lr = ω̄ be the sequence of limit sets through which the path

passes consecutively. The modified resistance is the original resistance minus the radius of

the intermediate limit sets through which the path passes,

r∗(ω1, ω2, . . . ωT ) = r(ω1, ω2, . . . ωT )−
r−1∑
i=2

R(Li).

Define

r∗(ω′, ω̄) = min
(ω1,ω2,...ωT )∈Υ(ω′,ω̄)

r∗(ω1, ω2, . . . ωT ),
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the Modified Coradius is defined as follows

CR∗(ω̄) = max
ω′ ̸=ω̄

r∗(ω′, ω̄).

Note that CR∗(ω̄) ≤ CR(ω̄). Thanks to Theorem 2 in Ellison (2000), we know that when

R(ω̄) > CR∗(ω̄), ω̄ is uniquely stochastically stable.

Proof of Lemma 5. We first show that the nine states are effectively strict equilibria, that

there is no other possible equilibrium, and that a state is absorbing if and only if it is a

strict equilibrium.

Monomorphic States.

It is easy to show that (NA, NA, NB, NB) and (0, 0, 0, 0) are two strict equilibria. We take

the first case, and the argument stands also for the second, thanks to the symmetry of the

payoff matrix. Consider player i ∈ K who is given the revision opportunity at period t:

U i
a(a, ωt) =

NK +NK′ − 1

N − 1
πK
a = πK

a ,

U i
a(b, ωt) =

N −NK −NK′

N − 1
πK
b = 0,

U i
a(τ1, ωt) =

NK +NK′ − 1

N − 1
πK
a − c = πK

a − c.

(NA, NA, NB, NB) is a strict equilibrium since πK
a > 0 and c > 0.

Polymorphic States.

Firstly let us consider the case of (NA, 0, 0, NB). Since in this case, every player is playing

ab, the state is a strict equilibrium IFF max zoi = ab, ∀i ∈ N . If player i ∈ K is given the

revision opportunity at period t,

U i
a(a, ωt) =

NK − 1

N − 1
πK
a ,

U i
a(b, ωt) =

NK′

N − 1
πK
b ,
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U i
a(τ1, ωt) =

NK − 1

N − 1
πK
a +

NK′

N − 1
πK
b − c.

For group A players, U i
a(a, ωt) > U i

a(b, ωt) since NB

N−1
πA < NA−1

N−1
ΠA. For group B players,

U i
a(b, ωt) > U i

a(a, ωt) as
NB−1
N−1

πB < NA

N−1
ΠB. U

i
a(τ1, ωt) is the highest of the three ∀i ∈ N IFF

c < 1
N−1

min {NBπA, NB − 1πB}.

Consider the case of (0, NA, NB, 0); since every player is playing ba, it must be that max zoi =

ba. i ∈ K faces the following payoffs

U i
b(a, ωt) =

NK′

N − 1
πK
a ,

U i
b(b, ωt) =

NK − 1

N − 1
πK
b ,

U i
b(τ1, ωt) =

NK − 1

N − 1
πK
b +

NK′

N − 1
πK
a − c.

Note that U i
b(a, ωt) > U i

b(b, ωt) IFF
πK
b

πK
a
<

NK′
NK−1

, and therefore ba is the best reply behavior

in this case if c < NK−1
N−1

πK
b . When the opposite happens, and so

πK
b

πK
a
>

NK′
NK−1

, ba is the best

reply behavior if c <
NK′
N−1

πK
a . These conditions take the form of the ones in Table A1.

Consider the remaining four PS; they are characterized by the following fact: BR(nKK) =

BR(nK′K) but BR(nK′K′
) ̸= BR(nKK′

). In this case, it must be that τi = 0 is optimal for

i ∈ K while τj = 1 is optimal for j ∈ K ′. Thanks to the symmetry in payoff matrices, we

can say that the argument to prove the results for these four states is similar to the one for

(NA, 0, 0, NB) and (0, NA, NB, 0). All the conditions are listed in Table A1.

Type Monomorphic State.

(NA, NA, 0, 0) is a strict equilibrium if a is the BR ∀i ∈ A and b, ∀j ∈ B. Consider a player

i ∈ A, who is given the revision opportunity at period t:

U i
a(a, ωt) =

NA − 1

N − 1
ΠA,

U i
a(b, ωt) =

NB

N − 1
πA,
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U i
a(τ1, ωt) =

NA − 1

N − 1
ΠA +

NB

N − 1
πA − c.

Given that U i
a(a, ωt) > U i

a(b, ωt), a is the best reply behavior IFF c > NB

N−1
πA. Consider

player j ∈ B:

U j
b (a, ωt) =

NA

N − 1
πB,

U j
b (b, ωt) =

NB − 1

N − 1
ΠB,

U j
b (τ1, ωt) =

NA

N − 1
πB +

NB − 1

N − 1
ΠB − c.

In this case, when πB

ΠB
> NB−1

NA
, b is never the best reply and a is the best reply; hence, the state

can not be a strict equilibrium. When πB

ΠB
< NB−1

NA
, U j

b (b, ωt) > U j
b (a, ωt), and U j

b (b, ωt) >

U j
b (τ1, ωt) IFF c > NA

N−1
πB.

No other state is a strict equilibrium.

For what concerns states where not all players of a group are playing the same action with the

same group, this is easy to prove. Indeed, by definition, in these states, either not all players

are playing their best reply action, or players are indifferent between two or more behaviors.

In the first case, the state is not a strict equilibrium by definition; in the second case, there

is no strictness of the equilibrium since there is not one best reply, but more behaviors

can be best reply simultaneously. Hence, such states can not be strict equilibria. We are

left with the seven states where every player of one group is doing the same thing against

the same group. Such states are: (0, 0, NB, NB), (0, NA, 0, NB), (NA, 0, NB, 0), (0, 0, NB, 0),

(NA, NA, 0, NB), (0, NA, 0, 0), and (NA, 0, NB, NB). It is easy to prove that these states enter

in the category of states where not every player is playing her/his best reply. Therefore,

they can not be strict equilibria.

Strict equilibria are always absorbing states.

We first prove the sufficient and necessary conditions to be a fixed point, and second that

every fixed point is an absorbing state. To prove the sufficient part, we rely on the definition

of strict equilibrium. In a strict equilibrium, every player is playing her/his BR, and no

one has the incentive to deviate. Whoever is given the revision opportunity does not change
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her/his behavior. Therefore, F (ωt, θt+1) = ωt. To prove the necessary condition, think about

being in a state that is not a strict equilibrium; in this case, by definition, we know that

not all the players are playing their BR. Among them, there are states in which there are

no indifferent players. In this case, with positive probability, one or more players who are

not playing their BR are given the revision opportunity and they change action; therefore,

F (ωt, θt+1) ̸= ωt for some realization of θt+1. In states where some players are indifferent

between two or more behaviors, thanks to the tie rule, there is always a positive probability

that the indifferent player changes her/his action since s/he is randomizing her/his choice.

Moreover, there is also a positive probability to select a player indifferent between two or

more behaviors. In this case, s/he changes the one that is currently playing with a positive

probability too. Knowing this, we are sure that no state outside strict equilibria can be a

fixed point. In our case, a fixed point is also an absorbing state by definition. Indeed, every

fixed point absorbs at least one state: the one where all players except one are playing the

same behavior. In this case, if that player is given the revision opportunity, s/he changes for

sure her/his behavior into the one played by every player.

State Conditions Conditions on c
MSa none none
MSb none none
TS πB

ΠB
< NB−1

NA
c > max

{
NB

N−1
πA,

NA

N−1
πB
}

PSb none c < NB

N−1
πA

PSa

(1) πB

ΠB
> NB−1

NA

(2) πB

ΠB
< NB−1

NA

(1) c < NB−1
N−1

ΠB

(2) c < NA

N−1
πB

(0, NA, NB, NB)
(1) πA

ΠA
< NB

NA−1

(2) πA

ΠA
> NB

NA−1

(1) c < NA−1
N−1

πA
(2) c < NB

N−1
ΠA

(NA, 0, 0, NB) none c < min
{

NB

N−1
πA,

NB−1
N−1

πB
}

(0, NA, NB, 0)

(1) πA

ΠA
< NB

NA−1
and πB

ΠB
> NB−1

NA

(2) πA

ΠA
> NB

NA−1
and πB

ΠB
> NB−1

NA

(3) πA

ΠA
< NB

NA−1
and πB

ΠB
< NB−1

NA

(4) πA

ΠA
> NB

NA−1
and πB

ΠB
< NB−1

NA

(1) c < min
{

NA−1
N−1

πA,
NB−1
N−1

ΠB

}
(2) c < min

{
NB

N−1
ΠA,

NB−1
N−1

ΠB

}
(3) c < min

{
NA−1
N−1

πA,
NA

N−1
πB
}

(4) c < min
{

NB

N−1
ΠA,

NA

N−1
πB
}

(0, 0, 0, NB) none c < NB−1
N−1

πB

Table A1: Necessary and sufficient conditions for absorbing states.

Here, we prove the results of the stochastic stability analysis of Section 2.4.

Proof of Theorem 2. We split the absorbing states into two sets and then apply Theorem

1 by Ellison (2000). Define the following two sets of states: M1 = {PSa, PSb} and M2 =

(PS \M1) ∪MS. Similarly, define M ′
1 = PSb and M

′
2 =MS ∪ (PS \M ′

1).
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Analysis with M1 and M2.

R(M1) is the minimum number of mistakes to escape the basins of attraction of both PSa

and PSb. The dimension of these basins of attraction is determined by the value of c. In a

state inside D(PSa), ba is BR for B, and a is BR for A. Similarly, ab is optimal for A inside

D(PSb) and b is optimal for B. The minimum resistance paths that start in PSa, and PSb

and exit from their basins of attraction involve ε mistakes.

We calculate the dimension of these basins of attraction for 0 < c < 1
N−1

min{πA, πB}.
We start from PSa and the argument stands for the other states in PS for symmetry of

payoffs matrix.

Firstly, we consider the minimum number of mistakes that makes a BR for B players.

Consider the choice of a B player inside a category of states where nBB ∈
[
0, NBΠB−ΠB

ΠB+πB

)
and

nAB ∈
(

NAΠB

ΠB+πB
, NA

]
. Referring to Equations (2.5)–(2.8), the optimal level of c s.t. 1 is the

best reply, and for B players, it is

c < min

{
NBΠB − nBB(ΠB + πB)− ΠB

N − 1
,
nAB(ΠB + πB)−NAΠB

N − 1

}
.

If 0 < c < 1
N−1

min{πA, πB}, whenever nBB ∈
[
0, NBΠB−ΠB

ΠB+πB

)
and nAB ∈

(
NAΠB

ΠB+πB
, NA

]
, 1 is

the BR for B. Therefore, a path towards a state where nBB ≥ NBΠB+πB

ΠB+πB
is a transition out of

the basin of attraction of PSa. Starting from nBB = 0, the cost of this transition is NBΠB+πB

ΠB+πB
.

This cost is determined by ε mistakes, since once in PSa, it is sufficient that a number of B

plays by mistake b. Another possible path is to make ba BR for A. The cost of this transition

is NAΠA+πA

ΠA+πA
. With similar arguments, it is possible to show that the cost of exit from M1

starting from PSb is the same. For this reason, R(M1) = min
{

NBΠB+πB

ΠB+πB
, NAΠA+πA

ΠA+πA

}
.

We can show that the minimum resistance path to exit from the basin of attraction of M2

reaches either PSa from MSa or PSb from MSb. Therefore, R(M2) =

min
{

NAπA+ΠA

ΠA+πA
, NBπB+ΠB

ΠB+πB

}
. R(M1) > R(M2) for every value of payoffs and group size: the

stochastically stable state must be in M1.

Analysis with M ′
1 and M ′

2

Let us consider the path that goes from M ′
1 to PSa. Starting in PSb, it is sufficient that

NBπA

ΠA+πA
players from A play a for a transition from PSb to D(PSa) to happen.

Since NBπA

ΠA+πA
< min

{
NBΠB+πB

ΠB+πB
, NAΠA+πA

ΠA+πA

}
, we can say that R(M ′

1) =
NBπA

ΠA+πA
. With a similar
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argument, it can be shown that R(M ′
2) =

NAπB

ΠB+πB
. When R(M ′

2) > R(M ′
1), PSa is uniquely

stochastically stable. When R(M ′
1) > R(M ′

2), PSb is uniquely stochastically stable.

R(M ′
2) ⋚ R(M ′

1) when
NB

NA
⋚ πB

πA
.

Proof of Theorem 3. In this case, R(MSa) = CR(MSb) and R(MSb) = CR(MSa). There-

fore, we just need to calculate the two Radius.

Radius of each state.

Let us consider R(MSa). Since the basin of attraction ofMSa is a region where a is the best

reply behavior for both groups, many players should make a mistake such that b becomes BR

for one of the two groups. For b to be BR for B players, it must be that nAB+nBB ≤ NΠB−ΠB

ΠB+πB
.

This state can be reached with ε mistakes at cost NπB+ΠB

ΠB+πB
. In a state where nAA + nBA ≤

NπA−πA

ΠA+πA
, b is BR for A, this path happens at cost NΠA+πA

ΠA+πA
. In principle, NΠA+πA

ΠA+πA
> NπB+ΠB

ΠB+πB
,

hence, R(MSa) should be NπB+ΠB

ΠB+πB
. However, it may not be sufficient to reach such a state.

Consider reaching a state s.t. nAB + nBB = NΠB−ΠB

ΠB+πB
, since NΠB−ΠB

ΠB+πB
> NπA−πA

ΠA+πA
, it must

be that a is still the best reply ∀i ∈ A, and therefore, there is a path of zero resistance

to MSa. Nevertheless, once in that state, it can happen that only B players are given

the revision opportunity, and that they all choose behavior b. This creates a path of zero

resistance to a state (n̄AA, n̄AB, 0, 0). Once in this state, if n̄AA < NπA−πA

ΠA+πA
, the state is in the

basin of attraction of MSb. This happens only if NπA−πA

ΠA+πA
+NB = NΠB−ΠB

ΠB+πB
. More generally,

considering k ≥ 0, this happens if NπA−πA

ΠA+πA
+NB = NΠB−ΠB

ΠB+πB
− k. Fixing payoffs and groups

size, k = NΠB−ΠB

ΠB+πB
− NπA−πA

ΠA+πA
−NB; hence, the cost of this path would be

NπB +ΠB

ΠB + πB
+
NΠB − ΠB

ΠB + πB
− NπA − πA

ΠA + πA
−NB = NA − NπA − πA

ΠA + πA
.

With a similar reasoning, R(MSb) =
NπA+ΠA

ΠA+πA
.

We prove that all the other paths with η mistakes are costlier than ones with ε. We know

that a is the BR for every state inside the basin of attraction of MSa, nobody in the basin

of attraction of MSa optimally buys the information, and every player who once bought the

information (by mistake) plays behavior aa. Every path with an η mistake also involves an

ε mistake, and hence is double that of the one described above.

Conditions for stochastically stable states.
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MSa is stochastically stable IFF NA − NπA−πA

ΠA+πA
> NπA+ΠA

ΠA+πA
, this is verified when NA >

2NπA+ΠA−πA

ΠA+πA
. Therefore, we conclude thatMSa is stochastically stable in the above scenario,

while if the opposite happens, MSb is stochastically stable.

Proof of Theorem 4. We first calculate radius, coradius, and modified coradius for the three

states we are interested in, and then we compare them to draw inference about stochas-

tic stability.

Radius of each state.

The Radius of MSa is the minimum number of mistakes that makes b BR for B players.

This number is NπB+ΠB

ΠB+πB
. The alternative is to make b BR for A: hence, a path to state

(0, 0, NB, NB), and then to (0, 0, 0, 0). The number of ε mistakes for this path is NΠA+πA

ΠA+πA
.

Therefore, R(MSa) =
NπB+ΠB

ΠB+πB
. With a similar reasoning, we can conclude that R(MSb) =

NπA+ΠA

ΠA+πA
.

Consider TS: the minimum-resistance path to exit from its basin of attraction reaches either

MSa or MSb, depending on payoffs. In other words, the minimum number of mistakes to

exit from D(TS) is the one that makes either a or b as BR. Consider the path from TS to

MSa: in this case, some mistakes are needed to make a BR for B. The state in which a is

BR for B depends on payoffs and group size. In a state (NA, NA, k
′, k′), a is BR for every

player in B if (NA + k′ − 1)πB > (N −NA − k′)ΠB. This inequality is obtained by declining

Equations (2.5)–(2.8), comparing B playing a/ab or b/ba. Fixing payoffs, we can calculate

the exact value of k′ that is NBΠB−NAπB+πB

ΠB+πB
; this would be the cost of the minimum mistake

transition from TS to MSa. With a similar argument, the cost of the minimum mistake

transition from TS to MSb is
NAΠA−NBπA+πA

ΠA+πA
.

There are no paths involving η mistakes that are lower than the two proposed above. The in-

tuition is the following. Consider a situation in which m players of A are given the revision

opportunity at one period, and they all choose to buy the information. In this case, they all

optimally choose behavior ab. This means that at the cost of n, there is a path to a state in

which NA −m players are playing b against B, in this state, b is still the BR for group B,

while a is still the BR for A. Hence, from that state, there is a path of zero resistance to TS.

The same happens when B players choose by mistake to buy the information. Therefore,

R(TS) = min
{

NBΠB−NAπB+πB

ΠB+πB
, NAΠA−NBπA+πA

ΠA+πA

}
.

Coradius of each state.

We start from TS: in this case, we have to consider the two minimum-resistance paths to
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reach it from MSa and MSb. Therefore, NπA+ΠA

ΠA+πA
and NπB+ΠB

ΠB+πB
. Firstly, the argument to

prove that these two are the minimum resistance paths to reach TS from MSa and MSb are

given by the previous part of the proof. Secondly, we have to prove that this path is the

maximum among the minimum resistance paths starting from any other state and ending

in TS. There are three regions from which we can start and end up in TS: the basin of

attraction of MSb, the one of MSa, and all the other states that are not in the basins of

attraction of the three states considered. We can say that from this region, there is always a

positive probability of ending up in MSa, MSb, or TS. Hence, we can consider as 0 the cost

to reach TS from this region. The other two regions are the one considered above, and since

we are taking the maximum path to reach TS from any other state, we have to take the sum

of this two. Hence, CR(TS) = NπA+ΠA

ΠA+πA
+ NπB+ΠB

ΠB+πB
.

Let us think about MS. Similarly to the two previous proofs, we can focus only on ε paths.

Note that in this case, TS is always placed between the two MS. Let us start from MSb: in

this case we can consider three different paths starting from any state and arriving to MSb.

The first one starts in TS, the second starts in every state outside the basin of attractions of

the three absorbing states, and the last starts in MSa. In the second case, there is at least

one transition of zero resistance toMSb. Next, assume starting in TS: the minimum number

of mistakes to reach MSb from TS is the one that makes b BR for A players. Therefore,
NAΠA−NBπA+πA

ΠA+πA
.

Now, we need to consider the case of starting inMSa. Firstly, consider the minimum number

of mistakes to make b BR for A players. This number is NΠA+πA

ΠA+πA
. Secondly, consider the

minimum number of mistakes to make b BR for B players, and then once TS is reached, the

minimum number of mistakes that makes b BR for A players.

min r(MSa,MSb) = min

{
NΠA + πA
ΠA + πA

,
NπB +ΠB

ΠB + πB
+
NAΠA −NBπA + πA

ΠA + πA

}
.

Since the two numbers in the expression are all greater than NAΠA−NBπA+πA

ΠA+πA
, we can say that

CR(MSb) = min r(MSa,MSb).

Reaching a state where b is BR for group A from TS is for sure less costly than reaching it

from MSa, since in TS there are more people playing b. Therefore, NΠA+πA

ΠA+πA
≥ NπB+ΠB

ΠB+πB
+

NAΠA−NBπA+πA

ΠA+πA
, hence, CR(MSb) = NπB+ΠB

ΠB+πB
+ NAΠA−NBπA+πA

ΠA+πA
. With a similar reasoning,

CR(MSa) =
NπA+ΠA

ΠA+πA
+ NBΠB−NAπB+πB

ΠB+πB
.

Modified Coradius of each state.
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Firstly, note that CR(TS) = CR∗(TS), since betweenMS and TS, there are no intermediate

states. Formally,

CR∗(TS) = min r∗(MSa, . . . , TS) + min r∗(MSb, . . . , TS) =
NπA +ΠA

ΠA + πA
+
NπB +ΠB

ΠB + πB
.

The maximum path of minimum resistance from each MS to the other MS passes through

TS. Hence, for each MS, we need to subtract from the coradius the cost of passing from

TS to the other MS. Let us consider CR∗(MSa); we need to subtract from the coradius

the cost of passing from TS to MSb: this follows from the definition of modified coradius.

Hence,

CR∗(MSa) =
NπA +ΠA

ΠA + πA
+
NBΠB −NAπB + πB

ΠB + πB
− NAΠA −NBπA + πA

ΠA + πA
.

Similarly,

CR∗(MSb) =
NπB +ΠB

ΠB + πB
+
NAΠA −NBπA + πA

ΠA + πA
− NBΠB −NAπB + πB

ΠB + πB
.

Note that CR∗(MSa) < CR(MSa) and CR
∗(MSb) < CR(MSb).

Conditions for stochastically stable states.

By comparing all the possibilities, it is possible to verify that if R(MSa) > CR(MSa), both

R(MSb) < CR(MSb) and R(TS) < CR(TS). Similar for R(MSb) > CR(MSb) or R(TS) >

CR(TS). When R(MSa) ≤ CR(MSa), R(MSb) ≤ CR(MSb), and R(TS) ≤ CR(TS),

we need to use Modified Coradius. Given that CR(TS) = CR∗(TS) it will never be that

R(TS) > CR∗(TS). We can show that when R(MSa) > CR∗(MSa), then R(MSb) <

CR∗(MSb) and vice-versa.

When R(MSa) = CR∗(MSa), it is also possible that R(MSb) = CR∗(MSb). Thanks to The-

orem 3 in Ellison (2000), we know that either both states are stochastically stable, or neither

of the two is. Note that for the ergodicity of our process, the second case is impossible; hence,

it must be that when both R(MSa) = CR∗(MSa) and R(MSb) = CR∗(MSb), both MSb

and MSa are stochastically stable.

Proof of Lemma 6. Recall from Section 2.3 that ωR = {PS,MS}. Firstly, if 1
N−1

max {πA, πB}
< c < 1

N−1
min {ΞPS}, TS is not an absorbing state (see Corollary 2), all PS are absorbing

states (see Corollary 1), and MS are absorbing states (see Table A1). Secondly, consider
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the set M = {PSa, PSb,MSa,MSb} and the set ωR \M containing all the PS not in M .

If R(M) > R(ωR \M), then the stochastically stable state must be in M . Since the level

of the cost is not fixed, the radius of these two sets depend on the cost level. Following the

same logic as in Theorem 2 but computing the result as a function of c, we can calculate the

two Radii:

R(M) = min

{
NAπB + c(N − 1)

ΠA + πA
,
NBπA + c(N − 1)

ΠA + πA
,
NΠA + πA
ΠA + πA

,
NΠB + πB
ΠB + πB

}

R(ωR \M) = min

{
NBπB − c(N − 1) + ΠB

ΠB + πB
,
NBπA − c(N − 1)

ΠA + πA
,
NAπB − c(N − 1)

ΠB + πB

}
.

By comparing all the twelve possibilities case by case, it is possible to show that for every

value of payoffs, group size, and cost, R(M) > R(ωR \ M). Therefore the stochastically

stable state must be in the set M .
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Appendix B

Chapter 2 Appendix

B.1 Proofs

Before proceeding with the proofs, I clarify some terms and phrases that will be recurrent

throughout the proofs. First of all, referring to Young (1993a), the resistance between two

DS is the minimum fraction of mistakes to go from one DS to another one (the reader can

interpret this term as the cost for going from one DS to another, such a cost is weighted by

the fraction of errors necessary to reach one DS starting from the other one). Secondly, I will

often use the phrase “induce X to play Y”; such a phrase refers to the fraction of mistakes

necessary to make Y the best reply strategy for type X, starting from a DS where Y was not

the best reply for X. This fraction often coincides with the resistance between two DS.

The following lemma states the results fro the unperturbed dynamics part.

Lemma 12.

If conflict is mild,

• ∀α(t) ∈ [0, 1
2
), HM is the only stable distribution of strategies.

• ∀α(t) ∈ [1
2
, v
c
), HM and DH are the only stable distributions of strategies.

• ∀α(t) ∈ [v
c
, 1], HD and DH are the only stable distributions of strategies.

If conflict is harsh,

• ∀α(t) ∈ [0, 1
2
), DM is the only stable distribution of strategies.

• ∀α(t) ∈ [1
2
, c−v

c
), DM and HD are the only stable distributions of strategies.
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• ∀α(t) ∈ [ c−v
c
, 1], HD and DH are the only stable distributions of strategies.

Proof of Lemma 12.

I prove the results for v
c
> 1

2
, and the results for v

c
< 1

2
hold for symmetry in payoffs. I proceed

to prove the result by steps. Firstly, I show the absorbing DS for α ∈ [0, 1
2
), secondly, I show

the absorbing DS in α ∈ [1
2
, v
c
), and thirdly, I show the absorbing DS for α ∈ [v

c
, 1].

α ∈ [0, 1
2
)

To show that HM is stable, firstly, acknowledge that when nH(τ) =
v
c
, according to Equa-

tion (3.1), UM(H, v
c
) = UM(D, v

c
). Secondly, note that if nH(τ) =

v
c
, UC(H,

v
c
) > UC(D,

v
c
).

Therefore, HM is a fixed point. That is, if the system ends up in HM , it will stay there. It

is easy to prove referring to Equation (3.1), that HM is unique for this range of levels of α.

To see that this DS is also absorbing, consider to start in a DS s.t. nH(0) = v
c
+ ϵ, with

nC
H(0) = 1. In this DS, UC(H,

v
c
+ ϵ) > UC(D,

v
c
+ ϵ), and UM(D, v

c
+ ϵ) > UM(H, v

c
+ ϵ) for

all ϵ > 0. This means that if conformists are given the revision opportunity, they do not

change their strategy, while if M types are given the revision opportunity, they choose H.

In other words, with probability 1, nH(m) ≤ v
c
+ ϵ with m > 0, and for m′ > m big enough,

nH(m
′) = v

c
with probability 1. A similar reasoning can be made for a DS nH(0) =

v
c
− ϵ,

with nC
H(0) = 1.

To see why, the fraction of M types playing H is exactly v−αc
(1−α)c

, consider the case where

nC
H(τ) = 1. In this case, nH(τ) ≥ α: since α < 1

2
< v

c
, the fraction of hawks grows until

it reaches v
c
, and since all conformists are already playing H, myopic best repliers will be

the one fulfilling this hole. Since conformists choose deterministically, we know that when

nH(τ) =
v
c
, α of it will be conformists; therefore, the remaining part must be myopic best

repliers, that is v
c
− α = v−αc

c
. This number is the fraction in the population of myopic best

repliers playing H. To see the fraction of hawks within M types, it is sufficient to divide
v−αc

c
by 1− α, obtaining v−αc

(1−α)c
.

α ∈ [1
2
, v
c
)

HM is still a stable DS, and the argument is the same for the case α ∈ [0, 1
2
). Moreover,

When α > 1
2
and nH(τ) = 1−α, referring to Equation (3.1), UC(D,nH(τ)) > UC(H,nH(τ)),

and UM(H,nH(τ)) > UM(D,nH(τ)). Hence, all agents are playing a best reply strategy to

the current DS, i.e. DH is a fixed point.

To show that DH is also absorbing, consider to start in a state nH(0) = 1 − α − ϵ, where

nC
H(0) = 0. In this case, UC(D, 1 − α − ϵ) > UC(H, 1 − α − ϵ), and UM(H, 1 − α − ϵ) >
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UM(D, 1− α− ϵ), for all ϵ > 0. Therefore, nH(m) ≥ 1− α− ϵ, for m > 0, with probability

1, and for m′ > m, nH(m
′) = 1− α with probability 1. A similar reasoning can be done for

nH(0) = 1− α + ϵ and nC
H(0) = 0.

α ∈ [v
c
, 1]

DH is still a stable DS as for the case α ∈ [1
2
, v
c
), with the same argument.

If α > v
c
, when nH(τ) = α, UC(H,nH(τ)) > UC(D,nH(τ)) and UM(D,nH(τ)) > UM(H,nH(τ))

(again, see Equation (3.1)). Therefore, whenever the system ends up inHD it will stay there.

Intuitively if α > v
c
, v−αc

(1−α)c
is a negative number, that means that if α > v

c
, and if all con-

formists choose H, myopic best repliers best respond by playing a pure strategy (D) and

not a mixed strategy. To show that HD is also absorbing, the argument is the same used

for DH thanks to symmetry in payoffs.

A small note on type monomorphic DS and mixed DS. When the fraction of C types is

exactly v
c
, then HD coincides with HM . This is due to the fact that v−α(t)c

c
= v

c
if α(t) = v

c
.

A similar reasoning applies for DM and DH. I formalize the result in the corollary below.

Corollary 9. If α(t) = v
c
, HD = HM , and if α(t) = c−v

c
, DH = DM .

The proof of Corollary 9 is straightforward and therefore is omitted.

Proof of Lemma 7.

I prove the results for v
c
> 1

2
, and the results for v

c
< 1

2
hold for symmetry in payoffs. I prove

the results in three steps. Firstly, I show the stochastically stable DS for α ∈ [0, 1
2
), secondly,

I show the stochastically stable DS in α ∈ [1
2
, v
c
), and thirdly, I show the stochastically stable

DS for α ∈ [v
c
, 1].

α ∈ [0, 1
2
)

To show the stochastic stability for this range of parameters, it is enough to notice that

whenever α ∈ [0, 1
2
), there is only one absorbing DS, that is HM . Since it is the unique

absorbing DS, it is automatically the stochastically stable DS.

α ∈ [1
2
, v
c
)

If α ∈ [1
2
, v
c
), there are two absorbing DS. To show the stochastic stability of HM , consider

the two paths of minimum resistance from HM to DH and from DH to HM .
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Starting from DH, it would take α − c−v
c

errors to make UM(H, ·) = UM(D, ·). Indeed,

consider to be in the state nH(τ) = 1− α + εM ,

UM(H, 1− α + εM) = (1− α + εM)

(
v − c

2

)
+ (α− εM) v,

UM(D, 1− α + εM) = (α− εM)
v

2
.

UM(H, 1 − α + εM) = UM(D, 1 − α + εM) ↔ εM = α − c−v
c
. With a similar reasoning, it

takes εC ≈ α − 1
2
errors to make UC(H, 1 − α + εC) = UC(D, 1 − α + εC) starting from

DH (i.e. to convince conformists to play H). Therefore, if this fraction of mistakes is

enough to exit from the basin of attraction of DH, the minimum fraction of errors to go

from DH to HM must pass through convincing C types since α − 1
2
< α − c−v

c
. To show

that α− 1
2
errors is enough to exit from DH’s basin of attraction, consider to be in the state

such that nH(τ) = α − εC = 1
2
. In this DS, with positive probability all conformists are

selected to revise the strategy and they choose H with probability 1
2
. Hence, if nH(τ) =

1
2
,

nH(τ +m) = 1 with positive probability. Such a DS is out of the basin of attraction of DH

since UC(H, 1) > UC(D, 1) and UC(D, 1) > UC(H, 1), i.e. if nH(τ +m) = 1, with positive

probability σ(τ +m′) = HM , for m′ > m.

Now consider to start in HM . With a similar reasoning to the one above, it takes ε′C ≈ v
c
− 1

2

errors to convince C types to playD. With a similar reasoning of the one above, if nH(τ) =
1
2
,

with positive probability nH(τ + m) = 0. However, if nH(τ + m) = 0, σ(τ + m′) = DH,

for m′ > m with positive probability since UM(H, 0) > UM(D, 0). In other words, v
c
− 1

2

mistakes are enough to go from HM to DH. To show that this fraction of errors is also

the minimum, consider the fraction of mistakes to make UM(H, ·) > UM(D, ·) starting from

HM . Such a fraction is ε′M ≈ 0, since it takes only a small fraction of agents playing D to

make UM(H, ·) > UM(D, ·). However, let us consider the agents that might deviate. Imagine

that a small fraction ε′ of M types that was playing H chose D by mistake. In this case,

nH(τ) = v
c
+ ε′. If nH(τ) = v

c
+ ε′, UM(D, v

c
+ ε′) > UM(H, v

c
+ ε′) and UC(H,

v
c
+ ε′) >

UC(D,
v
c
+ ε′). This means that if myopic best repliers who are playing H are given the

revision opportunity, they will choose D. If conformists are given the revision opportunity

they will still play H. Uniting the two above arguments, we can conclude that v
c
+ ε′ is still

in the basin of attraction of HM . Note that ε′ can be as big as we like and it will not change

the result. With a similar argument, if a fraction of myopic best repliers who were playing

H and who are given the revision opportunity play D by mistake, a fraction in the next time
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will choose H as best reply re-balancing the fraction of hawks to v
c
. Therefore, the only path

to go out from the basin of attraction of HM is the one that convinces conformists to play

D, i.e. the one with v
c
− 1

2
errors.

To conclude this part of the proof, the minimum fraction of errors to go from DH to HM is

α− 1
2
, and the minimum fraction of errors to go from HM to DH is v

c
− 1

2
. Since v

c
> α, this

means that the path of minimum resistance to reach DH is bigger than the path of minimum

resistance to reach HM . Therefore, HM is the stochastically stable DS if α ∈ [1
2
, v
c
).

α ∈ [v
c
, 1]

By Lemma 12, in this range of values of α, there are two absorbing DS: HD and DH. To

show the minimum fraction of errors to go from one DS to the other, consider first the case

of myopic best repliers. With a similar argument to the one for α ∈ [1
2
, v
c
), it is easy to show

that whenever we start in DH, if more myopic best repliers play D, they will play H in the

following round, as well as if we start in HD and more myopic best repliers play H, they

will play D in the following round. Therefore, in both cases, whatever fraction of myopic

best repliers play by mistake, it is not sufficient to exit form the basins of attraction of the

two DS.

Therefore, we have to consider errors played by conformists in both cases. Let us start

from DH. In this case, as I showed for the previous case, the minimum fraction of errors

to go from DH to HD is approximately α − 1
2
. Starting from HD, the minimum fraction

of mistakes to convince conformists playing D is again approximately α − 1
2
. However, the

minimum fraction of mistakes necessary to make myopic best repliers play H starting from

HD is α− v
c
.

To prove this result is enough to equate the two following equations and solve for x.

UM(H,α− x) = (α− x)

(
v − c

2

)
+ (1− α + x) v,

UM(D,α− x) = (1− α + x)
v

2
.

To show if this fraction is enough to exit from the basin of attraction of HD, let us consider

the DS such that nH(τ) = α − (α − v
c
) = v

c
. In this DS, all conformists that are playing

D (by mistake) would change strategy and play H if given the revision opportunity. While

all myopic best repliers are indifferent between H and D. At this point, if another small

fraction of conformists selects D, then UM(H, ·) > UM(D, ·). This means that if all myopic
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best repliers could change the strategy, they would choose H. However, if that is the case,

we will end up in a DS where v
c
−ϵ+1−α agents are playing H. In such a DS, all conformists

who are not playing H would choose H if given the revision opportunity, and all myopic

best repliers will choose D if given the revision opportunity. In other words we will return

to HD with positive probability.

Hence, the only way to go out of the basin of attraction of HD and DH is through con-

formists. The minimum fraction of errors to leave the basin of attraction of both HD and

DH is approximately α− 1
2
. Now, I show in detail how to compute the exact number.

If we start from DH and a fraction of conformists ε
′′
C plays H by mistake the utilities from

playing D and H for C types are defined by the following equations:

UC(H, 1− α + ε
′′

C) = λC

(
(1− α + ε

′′

C) +
v − c

2
(α− ε

′′

C)v

)
+ (1− λC)(1− α + ε

′′

C),

UC(D, 1− α + ε
′′

C) = λC

(
(α− ε

′′

C)
v

2

)
+ (1− λC)(α− ε

′′

C).

From the above equations it can be retrieved that UC(H, 1−α+ ε
′′
C) > UC(D, 1−α+ ε

′′
C) iff

ε
′′

C >
αcλC + 4αλC − 4α− cλC + λCv − 2λC + 2

cλC + 4λC − 4
(B.1)

Similarly, starting from HD, if a fration fo conformists ε
′′′
C plays D by mistake,

UC(H,α− ε
′′′

C ) = λC

(
(α− ε

′′′

C )
v − c

2
+ (1− α− ε

′′′

C )v

)
+ (1− λC)(α− ε

′′′

C ),

UC(H,α− ε
′′′

C ) = λC

(
(1− α− ε

′′′

C )
v

2

)
+ (1− λC)(1− α + ε

′′′

C ),

UC(H, 1− α + ε
′′
C) > UC(D, 1− α + ε

′′
C) iff

ε
′′

C >
αcλC + 4αλC − 4α− λCv − 2λC + 2

cλC + 4λC − 4
. (B.2)

Comparing (B.1) with (B.2), it emerges that the RHT of (B.1) is greater than the RHT of

(B.2) if and only if v
c
> 1

2
. This passage concludes the proof, as it shows that the fraction of
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mistakes to go from DH to HD is higher than the one from HD to DH whenever conflict

is mild. In other words, DH is stochastically stable for α ∈ [v
c
, 1] if and only if conflict is

mild (v
c
> 1

2
).

Proof of Lemma 8.

I prove the results for v
c
> 1

2
, and the results for v

c
< 1

2
hold for symmetry in payoffs. I prove

the result in two steps. Firstly, I show the the evolution of α for α ∈ [0, v
c
), and secondly, I

show the the evolution of α for α ∈ [v
c
, 1].

α ∈ [0, v
c
)

By Lemma 7, we know that whenever α ∈ [0, v
c
), HM is the stochastically stable DS. If that

is the case,

Π̄C (HM) =
v

c

v − c

2
+
c− v

c
v,

Π̄M (HM) =
v − αc

(1− α)c

(
v

c

v − c

2
+
c− v

c
v

)
+

c− v

(1− α)c

(
c− v

c

v

2

)
− κ.

With some calculus it can be shown that Π̄C−Π̄M = κ. Therefore, referring to Equation (3.3),

∆α (t) = α(t) (1− α(t))κ.

In other words, if α ∈ [0, v
c
), ∆α (t) > 0, ∀κ > 0.

α ∈ [v
c
, 1]

By Lemma 7, we know that DH is the stochastically stable DS in this case. Therefore,

Π̄C (DH) = α(
v

2
)

Π̄M (DH) = αv + (1− α)

(
v − c

2

)
− κ.

With some calculus it can be shown that Π̄C (DH) − Π̄M (DH) = 1
2
((1− α)c+ 2κ− v).

Hence,
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∆α (t) = α(t) (1− α(t))
1

2
((1− α(t))c+ 2κ− v) ,

and ∆α (t) = 0 if and only if α(t) = c+2κ−v
c

= α. This last passage completes the proof.

Proof of Corollary 3.

The proof is straightforward from the proof of Lemma 8. Indeed, consider α = c+2κ−v
c

.
c+2κ−v

c
= v

c
↔ κ = 2v−c

2
. Since ∆α (t) > 0,∀α(t) ∈ [0, v

c
), if κ ≤ 2v−c

2
, α = v

c
. Moreover,

c+2κ−v
c

> v
c
, iff κ > 2v−c

2
, and therefore, it must be that α > v

c
iff κ > 2v−c

2
. The same

argument applies for the case of v
c
< 1

2
for symmetry in payoffs. This completes the proof.

Proof of Corollary 7.

I prove the result for v
c
> 1

2
, and the argument stands for v

c
> 1

2
for symmetry in payoffs.

α ∈ [1
2
, v
c
)

From Lemma 12, we know that if conflict is mild and α ∈ [1
2
, v
c
) there are two possible

absorbing distribution of strategies DH and HM . Therefore, I compute the fitness of each

type assuming that they will be half of the times in DH and half of the times in HM .

ΠC

(
1

2
HM +

1

2
DH

)
=

1

2

(
v

c

v − c

2
+
c− v

c
v

)
+

1

2

(
α
v

2

)
,

ΠM

(
1

2
HM +

1

2
DH

)
=

1

2

(
v − αc

(1− α)c

(
v

c

v − c

2
+
c− v

c
v

)
+

c− v

(1− α)c

(
c− v

c

v

2

))
+
1

2

(
αv + (1− α)

v − c

2

)
− κ.

From the two equations above it emerges that α = c−v
c

+ 4
c
κ. The corresponding level of κ

such that α > 1
2
and α = v

c
are easily calculated, and they are k1 =

2v−c
8

and k2 =
2v−c
4

.

α ∈ [v
c
, 1]

From Lemma 12, we know that if conflict is mild and α ∈ [v
c
, 1] there are two possible

absorbing distribution of strategies DH and HD. Therefore, I compute the fitness of each
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type assuming that they will be half of the times in DH and half of the times in HD.

ΠC

(
1

2
HD +

1

2
DH

)
=

1

2

(
α
v − c

2
+ (1− α)v

)
+

1

2

(
α
v

2

)
,

ΠM

(
1

2
HD +

1

2
DH

)
=

1

2

(
(1− α)

v

2

)
+

1

2

(
αv + (1− α)

v − c

2

)
− κ,

The above equations equated bring out an α = 1
2
+ 2

c
κ. Therefore, κ s.t. α > v

c
is κ2 =

2v−c
4

.

Comparing results for α ∈ [1
2
, v
c
) and α ∈ [v

c
, 1], we obtain the thresholds in the corollary.

This last passage completes the proof.

Proof of Theorem 6.

The proof of this theorem is built upon the arguments of previous proofs. Let us consider the

matrix G3 = pG1+(1−p)G2. The payoffs of this matrix are as follows: π(H,H) = pv1+(1−p)v2
c

,

π(H,D) = pv1 + (1− p)v2, π(D,H) = 0, and π(H,D) = pv1+(1−p)v2
2

. Given these payoffs, we

can call v3 = pv1 + (1 − p)v2, and the payoffs of G3 become π(H,H) = v3
c
, π(H,D) = v3,

π(D,H) = 0, and π(H,D) = v3
2
. Given these payoffs, the proof is straightforward and it

follows from Lemma 12, 7 and 8 and Theorem 5. The results depend on v3
c
, namely on

pv1+(1−p)v2
c

.

Before I move forward to the proof of Theorem 7, I introduce some useful DS. I name

(1, 0, v−αc
(1−α)c

, c−v
(1−α)c

) HM , (0, 1, 1, 0) DH, (1, 0, 0, 0) HB, and (1, 0, 0, 1) HD. Intuitively, HM

is the mixed DS where conformists play H and myopic best repliers play a mixed strategy,

DH is a type monomorphic DS such that conformists play D and myopic best repliers play

H, HB is such that conformists play H and myopic best repliers play B, and finally HD is

such that conformists play H and myopic best repliers play D.

Note that for simplicity of exposition I will use nB(τ) instead of 1− nH(τ)− nD(τ).

Proof of Theorem 7.

I prove this theorem in a similar way of Theorem 5. I prove the results for v
c
> 1

2
, and

the ones for v
c
< 1

2
stands for symmetry in payoffs. I prove the results by lemmas, to be

consistent with the main part of the paper and to (hopefully) ease the understanding of the

proof to the reader.
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Lemma 13.

For v
c
> 1

2
,

• if α ∈ [0, 1
2
), BB and HM are the unique stable DS.

• If α ∈ [1
2
, v
c
), BB, HM , DH and HB are the unique stable DS.

• If α ∈ [v
c
, 1], BB, DH and HD are the unique stable DS.

The proof for this lemma resembles the arguments of the proof of Lemma 12. I divide the

proof in three parts: α ∈ [0, 1
2
), α ∈ [1

2
, v
c
), and α ∈ [v

c
, 1].

α ∈ [0, 1
2
)

Firstly, it can be shown from Equation (3.7), that whenever nH(τ) =
v
c
, and nD(τ) =

c−v
c

UM(H, v
c
, c−v

c
) = UM(D, v

c
, c−v

c
) > UM(B, v

c
, c−v

c
), and UC(H,

v
c
, c−v

c
) > UC(D,

v
c
, c−v

c
) >

UC(B,
v
c
, c−v

c
). Hence, whenever the system end up in HM , it stays there. Similarly, when-

ever 1 − nH(τ) − nD(τ) = 1, UM(B, 0, 0) > UM(H, 0, 0) > UM(D, 0, 0), and UC(B, 0, 0) >

UC(H, 0, 0) ≈ UC(D, 0, 0). Therefore, in BB all agents are playing the best reply to the

current DS, that is BB is a fixed point.

Let us start from proving that BB is absorbing. Consider to be in a DS such that nH(τ) = ϵ,

and nD(τ) = 0. In this case, UC(B, ϵ, 0) > UC(H, ϵ, 0) > UC(D, ϵ, 0), for all ϵ <
1
2
. Moreover,

B is the myopic best reply strategy for M types, as long as ϵ < v
c
. A similar reasoning

applies for nH(τ) = 0 and nD(τ) = ϵ. From the above reasoning, we can conclude that there

is a set of DS such that converges to BB with probability 1.

For HM , think about a state nH(τ) = v
c
− ϵ and nD(τ) = c−v

c
+ ϵ. Again H is the best

reply for C types as long as ϵ < 2v−c
2c

. For M types, H is the best reply, ∀ϵ > 0. This means

that the system will converge to HM with probability 1, from all DS of the same kind as

described above. A similar reasoning can be applied to the DS such that nH(τ) =
v
c
+ ϵ and

nD(τ) =
c−v
c

− ϵ, where H is still the best reply for all C types, and D is the best reply for

all M types for all ϵ > 0.

α ∈ [1
2
, v
c
)

The argument such that BB and HM are still stable is the same as for α ∈ [0, 1
2
), and

therefore, is omitted.

To see that DH is a fixed point, note that when nH(τ) = 1− α, and nD(τ) = α, UC(D, 1−
α, α) > UC(H, 1 − α, α) > UC(B, 1 − α, α), and UM(H, 1 − α, α) > UM(B, 1 − α, α) >

UM(D, 1 − α, α), referring to Equation (3.7). Therefore, whenever the system ends up in
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DH it will stay there. Similarly, referring to Equation (3.7), if nH(τ) = α and nD(τ) = 0,

UC(H,α, 0) > UC(B,α, 0) > UC(D,α, 0), and UM(B,α, 0) > UM(D,α, 0) > UM(H,α, 0).

Again, this means that in HB every agent is playing the myopic best reply to the current

DS, and hence, if the system ends up in HB, it will stay there.

Now, I show that these DS are also absorbing. First of all, let us consider DH. If nD(τ) =

α+ ϵ, and nH(τ) = 1− α− ϵ, surely D is still the best reply for C types ∀ϵ > 0. Moreover,

also H is still the best reply forM types, ∀ϵ > 0. Therefore, whenever the system is near DH

as described above, it converges to DH with probability 1. Secondly, let us consider HB. If

nH(τ) = α + ϵ, and nD(τ) = 0, H is the best reply for all C types ∀ϵ > 0. Furthermore, B

is still the best reply for all M types ∀ϵ < v
c
−α. This last passage proves that there is a set

of DS that converges with probability 1 to HB, i.e. HB is an absorbing DS.

α ∈ [v
c
, 1]

The argument such that BB and DH are still stable is the same as for α ∈ [0, v
c
), and

therefore, is omitted.

Let us now consider HD, similar as for the other DS, it can be shown using Equation (3.7),

that if nH(τ) = α and nD(τ) = 1−α, UC(H,α, 1−α) > UC(D,α, 1−α) > UC(B,α, 1−α),

and UM(D,α, 1−α) > UM(B,α, 1−α) > UM(H,α, 1−α). Hence, all agents are playing the

best reply at HD, that is, HD is a fixed point. Similar to what was done above, consider

to be in a DS such that nH(τ) = α+ ϵ. Conformists would still play H, and for myopic best

repliers, D is still the best reply ∀ϵ > 0. In other words, there is a set of DS that converges

to HD with probability 1, i.e. HD is absorbing.

Lemma 14. If v
c
> 1

2
, ∀α ∈ [0, 1], BB is uniquely stochastically stable.

I divide the proof in three parts: α ∈ [0, 1
2
), α ∈ [1

2
, v
c
), and α ∈ [v

c
, 1].

α ∈ [0, 1
2
)

For this range of values, only BB and HM are absorbing. However, it is easy to show

that HM is hardly stable (by means of stochastic stability). Indeed, it is sufficient that a

small fraction of agents that was playing H play B by mistake, to make M types choose

B with positive probability. Indeed, consider the DS nH(τ) = v
c
− ε, nD(τ) = c−v

c
, with

ε ≈ 0. Using Equation (3.7), it can be shown that UM(B, v
c
− ε, c−v

c
) = UM(H, v

c
− ε, c−v

c
) >

UM(D, v
c
− ε, c−v

c
). If this is the case, it means that if nH(τ) =

v
c
− ϵ, nD(τ) =

c−v
c
, we can

reach a DS such that nH(τ +m) = α, nD(τ +m) = 0, m > 0, with zero resistance. In such a

DS, B is the best reply for all M types and also for all C types, that is, we can reach a DS
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such that nB(τ +m′) = 1, for m′ > m with zero resistance. In other words, it is sufficient a

small deviation of size ε to exit from the basin of attraction of HM and enter in the basin

of attraction of BB.

Furthermore, it can be shown using Equation (3.7), that there exists no small deviation of

size ε ≈ 0 sufficient to leave the basin of attraction of BB. Therefore, we can conclude that

BB is the uniquely stochastically stable DS ∀α ∈ [0, 1
2
).

α ∈ [1
2
, v
c
)

For this range of values of α, there are four absorbing DS. However, as it was shown before,

it is sufficient a small deviation of size ε ≈ 0 to exit from the basin of attraction of HM .

This means that HM can never be the stochastically stable DS. However it should not be

removed from the analysis. Indeed, the path of minimum resistance from one absorbing

DS to another one, may pass through HM as well. I will call an indirect path from one

absorbing DS to another, a path that passes through HM . I will call a direct path from one

absorbing DS to another, a path that does not passes through HM . For each absorbing DS

I will provide the path of minimum resistance from that absorbing DS to each of the other

absorbing DS. In the end, I calculate the stochastic potential of each absorbing DS in the

way of Young (1993a). From now on, I call r (σ′,σ′′) the path of minimum resistance from

σ′ to σ′′. Moreover, I call rd (σ
′,σ′′) the direct path of minimum resistance and rid (σ

′,σ′′)

the indirect path of minimum resistance.

Let us start from the paths from BB to DH and HB.

r(BB,DH)

Firstly, consider the direct path. The minimum fraction of mistakes, to convince C types

to play D starting from BB is 1
2
. Indeed, when 100% of the population plays B, it takes

half of the population playing D by mistake to make D the best reply for conformists. The

minimum fraction of mistakes necessary to convince M types to play H starting from BB

is c−v
c
. This fraction of mistakes is sufficient to exit the basin of attraction of BB under one

condition. Indeed, suppose nB(0) = 1, and that after m steps nB(m) = v
c
, and nD(m) = c−v

c
.

This DS is reached with a resistance of c−v
c
. Suppose that all the agents playing D at this

DS are conformists. In this DS, H is the best reply for myopic best repliers; hence, with

positive probability after other m′ steps, nH(m + m′) = 1 − α nD(m) = c−v
c
. In this DS,

nH > nD, but nH > nB iff α < 2c−v
2c

. Furthermore, nD > nB iff α < 2(c−v)
c

. From the above

statements, it emerges that the direct path of minimum resistance from BB to DH depends

on three situations. The first is when nH > nD > nB, the second is when nH > nB > nD,

and the third is when nB > nH > nD. In the first case, it is sufficient that v
c
−α conformists
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that were choosing B choose D by mistake to make D the best reply for all conformists (still

H the best reply for all myopic best repliers). In other words, an additional resistance of
v
c
− α is needed to reach DH. This means that in the first case, r(BB,DH) = 1 − α. In

the second case, the reasoning is similar, and the minimum path from BB to DH is still

1−α. In the third case, the minimum fraction of errors needed to reach DH is such that D

becomes the best reply for C types instead of B (since nB > nH > nD). This happens with

a resistance of α
2
− c−v

c
in case α > 2

3
and of 2−α

4
− c−v

c
otherwise. Consequently, in the third

case, the path of minimum resistance from BB to DH is α
2
or 2−α

4
. Wrapping up,

rd(BB,DH) ≈


1− α if v

c
< 3

4
α
2

if v
c
> 3

4
∧ α > 2

3
2−α
4

if v
c
> 3

4
∧ α < 2

3

. (B.3)

To show that the direct path has a lower resistance than the indirect one, let us consider the

path of minimum resistance from BB to HM . Such a path is similar to the one from BB to

DH; indeed, it passes through mistakes of conformists to convince M types to play H. We

know from the above part of the proof that the minimum fraction of mistakes to make H

the best reply for M types is c−v
c
, and that with zero resistance, then we can reach a DS s.t.

nB = α− c−v
c
, nH = 1−α, nD = c−v

c
. In this DS, nH > nB iff α < 2c−v

c
. Therefore, if α < 2c−v

c
,

c−v
c

is enough to reach HM , while if α > 2c−v
c

, a fraction of α − 2c−v
2c

mistakes is necessary

to reach HM . Consequently, r(BB,HM) =

{
c−v
c

if v
c
< 2

3
∨
(
v
c
> 2

3
∧ α < 2c−v

2c

)
α− v

2c
if v

c
> 2

3
∧ α > 2c−v

2c

.

Moreover, similarly to the proof of Lemma 7, r(HM,DH) = v
c
− 1

2
. For this reason, the

indirect path from BB to DH is always at least 1
2
. Since the RHT of (B.3) is always lower

than 1
2
, we conclude that the direct path from BB to DH must be the one defined in (B.3).

Therefore, r(BB,DH) = rd(BB,DH).

r(BB,HB)

The direct path of minimum resistance from BB to HB always passes through convincing

conformists to play H, since myopic best repliers still play B in this DS, and hence, it would

be inconvenient to induce them to change the strategy to pass from BB to HB. Similar

to the case above, the minimum fraction of mistakes to induce C types play H starting

from nB = 1 is 1
2
. However, the indirect path of minimum resistance is lower than 1

2
.

Indeed, as I showed above, r(BB,HM) =

{
c−v
c

if v
c
< 2

3
∨
(
v
c
> 2

3
∧ α < 2c−v

2c

)
α− v

2c
if v

c
> 2

3
∧ α > 2c−v

2c

, and

r(HM,HB) = ε ≈ 0 as shown earlier in this proof. Therefore,
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r(BB,HB) = rid(BB,HB) ≈

{
c−v
c

if v
c
< 2

3
∨
(
v
c
> 2

3
∧ α < 2c−v

2c

)
α− v

2c
if v

c
> 2

3
∧ α > 2c−v

2c

. (B.4)

r(DH,HB)

Concerning the direct path, the minimum fraction of mistakes to go from DH to HB con-

vincing conformists is α − 1
2
. Such resistance is lower than the one which involves myopic

best repliers changing their strategy. Indeed, consider being in a DS such that nB = x,

nH = 1 − α, and nD = α − x. B becomes best reply for M types when x > α − c−v
c
,

that is the resistance to make D best reply for M types is α − c−v
c

> α − 1
2
. Therefore,

rd(DH,HB) = α− 1
2
.

Concerning the indirect path, we know from the proof of Lemma 7 that r(DH,HM) = α− 1
2
,

and that r(HM,HB) = ε. therefore, the path of minimum resistance from DH to HB must

be the direct one. That is,

r(DH,HB) = α− 1

2
. (B.5)

r(DH,BB)

Concerning the direct path, with similar calculus as the ones for the last two cases of (B.3),

it can be shown that the minimum resistance to make B best reply for conformists is α
2
if

α > 2
3
and 2−α

4
if α < 2

3
. However, as I showed above, the minimum resistance necessary

to make B best reply for M types is α − c−v
c
. Such resistance is also enough to reach BB

starting from DH. Indeed, consider to start in a DS s.t. nD(0) =
c−v
c

and nH(0) = 1 − α.

As stated above, B is the best reply for M types; therefore, after m periods, with positive

probability, we will end up in a DS s.t. nD(m) = c−v
c

and nH(m) = 0. However, in this DS, B

is also the best reply for C types. This means that with positive probability nB(m+m′) = 1,

with m′.

Consequently, the direct path of minimum resistance from DH to BB is either α − c−v
c

or
α
2
if α > 2

3
or α− c−v

c
or 2−α

4
if α < 2

3
.

Concerning the indirect path, we know that r(DH,HM) = α− 1
2
. Moreover, the minimum

resistance from HM to BB, always involves HB and myopic best repliers. Indeed, the

minimum resistance to make conformists play B is v
c
− 1

2
. While considering M types, the

minimum resistance passes through convincing M types playing B, which has resistance ε

(as for r(HM,HB)), and then from HB convincing C types playing B, which has resistance
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α− 1
2
. This means that the indirect path of minimum resistance from DH to BB is 2α− 1,

which is greater than all the cases of the direct path. Hence,

r(DH,BB) =


α
2

if
(

v
c
> 3

4
∧ α > 2(c−v)

c

)
∨ 2

3
< v

c
< 3

4

2−α
4

if v
c
> 7

8
∨
(
2
3
< v

c
< 7

8
∧ α > 6c−4v

3c

)
α− c−v

c
otherwise

. (B.6)

r(HB,DH)

Concerning the direct path, with similar calculus as for (B.3), it can be shown that this

path is either α
2
or 2−α

4
, depending on whether α > 2

3
or not. Concerning the indirect path,

we already know that r(HM,DH) = v
c
− 1

2
, while r(HB,HM), can be calculated as the

minimum resistance to make H the best reply for M types. This resistance is equal to c−v
c

(see r(BB,HM)). The sum of these two resistance is equal to 1
2
, which is always greater

than the two direct cases. Hence,

r(HB,DH) =

{
α
2

if v
c
> 2

3
∧ α > 2

3
2−α
4

if v
c
< 2

3
∨
(
v
c
> 2

3
∧ α < 2

3

) . (B.7)

r(HB,BB)

The direct path of minimum resistance from HB to BB, is α − 1
2
. The calculus are the

same as for r(DH,HB). The indirect path of minimum resistance cannot be lower since we

already know from previous calculus that r(HM,BB); therefore, it must be that

r(HB,BB) = α− 1

2
. (B.8)

Once we know these paths, we need to calculate the stochastic potential of each absorbing DS.

The stochastic potential is the minimum path to reach each absorbing DS starting from all the

other DS (Young, 1993a). Let us call ρσ′ the stochastic potential of σ′. In this case, ρBB =

min{(B.6)+(B.8), (B.5)+(B.8), (B.7)+(B.6)}, ρHB = {(B.5) + (B.4), (B.6) + (B.4), (B.3) + (B.5)},
ρDH = min{(B.3) + (B.7), (B.4) + (B.7), (B.8) + (B.3)}. With calculations it can be shown

that ρBB is the minimum ∀α ∈ [1
2
, v
c
).

α ∈ [v
c
, 1]

161



For this range of values of α, HM is no longer stable. Therefore, we only need to calculate

the direct paths from one stable DS to the other.

Similar reasoning as for the case of α ∈ [1
2
, v
c
) lead to

r(BB,DH) =

{
c−v
c

if v
c
< 2

3
∧ α < 2(c−v)

c

α
2

if v
c
> 2

3
∨
(

v
c
< 2

3
∧ α > 2(c−v)

c

) , (B.9)

r(DH,BB) =

{
α− c−v

c
if v

c
< 2

3
∧ α < 2(c−v)

c

α
2

if v
c
> 2

3
∨
(

v
c
< 2

3
∧ α > 2(c−v)

c

) , (B.10)

r(HD,DH) = r(DH,HD) = r(HD,BB) = α− 1

2
. (B.11)

Concerning calculus and cases, r(BB,HD) is the longest to calculate for this part of the

proof. Intuitively, the path of minimum resistance cannot path through inducing only con-

formists to play H since the cost would be 1
2
. Such a path is obtained by passing through

inducingM types playing D and then inducing C types playing H. Firstly, with a resistance

of c−v
c
, we can reach one of these two DS such that nB = v

c
, nH = 1−α and nD = c−v

c
−(1−α)

or nB = v
c
− (1 − α), nH = 1 − α and nD = c−v

c
. From these DS, the path of minimum

resistance depends on which between nB, nH , and nD at these DS. With some calculations,

we can retrieve

r(BB,HD) =


α− v

2c
if v

c
> 2

3

min{α− 5
4
v
c
+ 1

2
, αc+c−v

2c
} if v

c
< 2

3
∧ α > 2(c−v)

c

αc+2c−3v
2c

if v
c
< 2

3
∧
(

4c−3v
4c

< α < 2(c−v)
c

∨ α < 2c−v
2c

)
min{α+4αc−3v

4c
, αc+c−v

2c
} if 2c−v

2c
< α < 4c−3v

4c

(B.12)

Similar to the previous calculus, we obtain ρBB = min{(B.10)+(B.11), (B.11)+(B.11), (B.11)+

(B.10)}, ρHD = {(B.11) + (B.12), (B.10) + (B.12), (B.9) + (B.11)}, ρDH = min{(B.9) +
(B.11), (B.12) + (B.11), (B.11) + (B.9)}. Again, it can be shown that ρBB is always the

minimum of the three, and therefore, BB is the stochastically stable DS.

Lemma 15. If v
c
> 1

2
, ∀κ > 0, ∆α (t,σ∗(α(t))) > 0 ∀α ∈ (0, 1).

The proof of Lemma 15 is straightforward. ∀α ∈ [0, 1], BB is the stochastically stable DS.
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Therefore, Π̄C(BB) = v
2
, Π̄M(BB) = v

2
− κ, and

∆α (t) = α(t) (1− α(t))κ.

In other words, ∆α (t) > 0, ∀α(t) ∈ (0, 1). From Lemma 15, we can reach the conclusions of

Theorem 7, that is α continues to grow up to α = 1, and the stochastically stable DS is BB.
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B.2 Simulations

B.2.1 Simulations from relaxations of Assumptions 1 and 2

In this appendix, I give further details about the simulations used to compute results in

Section 3.3.5. First of all, in Table D1 I present the parameters to calibrate the simulations.

Parameter Value
Periods 600
Number of players 1000
Mistake probability 0.01
Probability to revise strategy 0.05
v 0.2, 0.3, 0.4, 0.6, 0.7, 0.8
κ 0.01, 0.05, 0.31, 0.21, 0.11
Generation length 20 or 50
c 1
λ 1× 10−16

Table D1: Model calibration for simulations from relaxations of Assumptions 1 and 2.

I choose 600 (1000) as a limit period because it is a number large enough, which allows the

system to reach all the possible states (given the initial condition) and allows for the system

to stabilize around a cycle when possible. I chose a number of players large enough to justify

the continuum considered in previous sections. I picked a mistake probability small enough

(0.01). I assume that at each step, only the 5% of the agents can revise their strategy: this

assumption rules out continuous cycling and is in line with usual works in the evolutionary

game theory literature. I normalize the payoffs so that c = 1, and v varies from 0.2 to 0.8

depending on the harshness of conflict. I choose κ to be either 0.01, 0.05, 0.31, 0.21, or

0.11. The last three values are respectively the thresholds 2v−c
2

( c−2v
2

) for the cases when

conflict is mild (harsh) and v takes different values. Each generation lasts either 20 or 50

periods: types evolve according to their fitness every 20 (50) rounds. I evaluate the last 4

or 30 periods depending on the specification. I chose λ as the smallest possible number that

NetLogo distinguishes from 0.

In the following tables, I present the results of the simulations as presented in Section 3.3.5.
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Harsh conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.2, κ = 0.01 841 49.183 0.009 0.005 0.969 0.024 0.161 0.042
v = 0.2, κ = 0.05 1000 0.000 0.005 0.002 0.000 0.000 0.005 0.002
v = 0.2, κ = 0.31 967 67.904 0.291 0.449 0.025 0.019 0.260 0.401
v = 0.3, κ = 0.01 749 49.990 0.010 0.006 0.980 0.018 0.253 0.042
v = 0.3, κ = 0.05 833 60.092 0.009 0.005 0.984 0.018 0.172 0.054
v = 0.3, κ = 0.21 960 104.283 0.173 0.448 0.016 0.011 0.134 0.349
v = 0.4, κ = 0.01 640 50.990 0.010 0.007 0.979 0.025 0.358 0.042
v = 0.4, κ = 0.05 715 71.239 0.011 0.006 0.986 0.012 0.288 0.065
v = 0.4, κ = 0.11 800 98.995 0.285 0.441 0.710 0.439 0.296 0.233

Table D2: Harsh Conflict, with generation length 50 and average payoff of last 30 rounds.

Mild conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.8, κ = 0.01 846 49.840 0.992 0.004 0.028 0.024 0.845 0.043
v = 0.8, κ = 0.05 1000 0.000 0.995 0.003 0.000 0.000 0.995 0.003
v = 0.8, κ = 0.31 968 61.449 0.719 0.443 0.983 0.000 0.750 0.443
v = 0.7, κ = 0.01 755 49.749 0.992 0.004 0.017 0.014 0.754 0.044
v = 0.7, κ = 0.05 794 64.529 0.993 0.004 0.022 0.017 0.793 0.061
v = 0.7, κ = 0.21 933 113.186 0.729 0.437 0.987 0.013 0.795 0.330
v = 0.6, κ = 0.01 636 52.000 0.992 0.005 0.021 0.030 0.639 0.043
v = 0.6, κ = 0.05 680 74.833 0.993 0.004 0.018 0.011 0.682 0.070
v = 0.6, κ = 0.11 783 103.010 0.698 0.450 0.318 0.443 0.695 0.227

Table D3: Mild Conflict, with generation length 50 and average payoff of last 30 rounds.

Harsh conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.2, κ = 0.01 837 48.280 0.008 0.004 0.964 0.027 0.163 0.040
v = 0.2, κ = 0.05 978 46.000 0.005 0.002 0.986 0.026 0.026 0.044
v = 0.2, κ = 0.31 956 77.872 0.272 0.439 0.023 0.015 0.229 0.370
v = 0.3, κ = 0.01 749 49.990 0.010 0.006 0.979 0.016 0.253 0.042
v = 0.3, κ = 0.05 828 58.447 0.010 0.005 0.980 0.019 0.176 0.053
v = 0.3, κ = 0.21 960 90.554 0.173 0.372 0.016 0.014 0.134 0.286
v = 0.4, κ = 0.01 646 51.807 0.010 0.007 0.980 0.027 0.353 0.042
v = 0.4, κ = 0.05 726 68.731 0.011 0.006 0.987 0.012 0.278 0.063
v = 0.4, κ = 0.11 781 105.541 0.334 0.462 0.663 0.455 0.320 0.235

Table D4: Harsh Conflict, with generation length 50 and average payoff of last 4 rounds.
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Mild conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.8, κ = 0.01 851 49.990 0.983 0.098 0.039 0.099 0.843 0.086
v = 0.8, κ = 0.05 967 49.102 0.994 0.007 0.006 0.011 0.961 0.050
v = 0.8, κ = 0.31 971 65.261 0.768 0.416 0.000 0.000 0.796 0.366
v = 0.7, κ = 0.01 763 48.280 0.992 0.005 0.016 0.013 0.761 0.043
v = 0.7, κ = 0.05 820 66.332 0.992 0.004 0.020 0.017 0.818 0.062
v = 0.7, κ = 0.21 913 127.008 0.669 0.464 0.986 0.011 0.754 0.343
v = 0.6, κ = 0.01 646 49.840 0.992 0.005 0.017 0.012 0.647 0.044
v = 0.6, κ = 0.05 713 71.631 0.993 0.005 0.016 0.014 0.713 0.067
v = 0.6, κ = 0.11 816 101.705 0.806 0.385 0.203 0.382 0.764 0.195

Table D5: Mild Conflict, with generation length 50 and average payoff of last 4 rounds.

Harsh conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.2, κ = 0.01 839 106.672 0.031 0.016 0.877 0.095 0.159 0.049
v = 0.2, κ = 0.05 1000 99.499 0.005 0.002 0.000 0.000 0.007 0.020
v = 0.2, κ = 0.31 1000 0.000 0.292 0.450 0.000 0.000 0.292 0.450
v = 0.3, κ = 0.01 749 68.549 0.044 0.019 0.911 0.072 0.258 0.038
v = 0.3, κ = 0.05 849 69.993 0.029 0.016 0.926 0.051 0.163 0.060
v = 0.3, κ = 0.21 955 93.140 0.250 0.424 0.099 0.043 0.210 0.359
v = 0.4, κ = 0.01 626 86.741 0.042 0.022 0.924 0.072 0.367 0.028
v = 0.4, κ = 0.05 719 68.840 0.035 0.020 0.945 0.036 0.290 0.045
v = 0.4, κ = 0.11 928 141.478 0.219 0.403 0.064 0.036 0.154 0.282

Table D6: Harsh Conflict, with generation length 20 and average payoff of last 12 rounds.

Mild conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.8, κ = 0.01 805 112.583 0.979 0.015 0.189 0.123 0.836 0.047
v = 0.8, κ = 0.05 1000 0.000 0.995 0.002 0.000 0.000 0.995 0.002
v = 0.8, κ = 0.31 1000 0.000 0.777 0.410 0.000 0.000 0.777 0.410
v = 0.7, κ = 0.01 699 76.805 0.977 0.018 0.143 0.088 0.731 0.039
v = 0.7, κ = 0.05 828 78.842 0.981 0.014 0.100 0.059 0.831 0.065
v = 0.7, κ = 0.21 969 71.687 0.774 0.404 0.936 0.063 0.802 0.356
v = 0.6, κ = 0.01 591 66.476 0.975 0.018 0.118 0.068 0.628 0.029
v = 0.6, κ = 0.05 711 94.758 0.978 0.017 0.070 0.042 0.717 0.077
v = 0.6, κ = 0.11 871 143.035 0.724 0.425 0.510 0.435 0.768 0.285

Table D7: Mild Conflict, with generation length 20 and average payoff of last 12 rounds.
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Harsh conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.2, κ = 0.01 837 128.293 0.033 0.016 0.874 0.111 0.171 0.031
v = 0.2, κ = 0.05 1000 0.000 0.005 0.002 0.000 0.000 0.005 0.002
v = 0.2, κ = 0.31 1000 0.000 0.272 0.440 0.000 0.000 0.272 0.440
v = 0.3, κ = 0.01 746 59.025 0.042 0.019 0.920 0.060 0.263 0.027
v = 0.3, κ = 0.05 842 51.342 0.032 0.015 0.919 0.059 0.172 0.034
v = 0.3, κ = 0.21 931 113.750 0.288 0.443 0.089 0.046 0.227 0.348
v = 0.4, κ = 0.01 634 62.000 0.042 0.022 0.930 0.058 0.365 0.027
v = 0.4, κ = 0.05 731 68.840 0.037 0.019 0.957 0.034 0.284 0.048
v = 0.4, κ = 0.11 866 156.346 0.301 0.440 0.431 0.429 0.236 0.289

Table D8: Harsh Conflict, with generation length 20 and average payoff of last 4 rounds.

Mild conflict Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

v = 0.8, κ = 0.01 810 132.288 0.978 0.014 0.162 0.128 0.838 0.040
v = 0.8, κ = 0.05 1000 0.000 0.995 0.002 0.000 0.000 0.984 0.002
v = 0.8, κ = 0.31 1000 0.000 0.728 0.440 0.000 0.000 0.728 0.440
v = 0.7, κ = 0.01 716 78.384 0.977 0.018 0.127 0.088 0.741 0.041
v = 0.7, κ = 0.05 816 77.097 0.981 0.012 0.097 0.060 0.821 0.060
v = 0.7, κ = 0.21 942 106.939 0.705 0.443 0.944 0.043 0.758 0.366
v = 0.6, κ = 0.01 606 69.022 0.969 0.021 0.107 0.069 0.633 0.029
v = 0.6, κ = 0.05 696 77.356 0.975 0.017 0.075 0.046 0.703 0.053
v = 0.6, κ = 0.11 824 118.423 0.744 0.407 0.333 0.392 0.748 0.228

Table D9: Mild Conflict, with generation length 20 and average payoff of last 4 rounds.
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(a) α for harsh conflict (b) α for mild conflict

(c) nH for harsh conflict (d) nH for mild conflict

Figure D1: Results for generation length 50 and average payoff of last 30 rounds
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(a) α for harsh conflict (b) α for mild conflict

(c) nH for harsh conflict (d) nH for mild conflict

Figure D2: Results for generation length 50 and average payoff of last 4 rounds
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(a) α for harsh conflict (b) α for mild conflict

(c) nH for harsh conflict (d) nH for mild conflict

Figure D3: Results for generation length 20 and average payoff of last 12 rounds
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(a) α for harsh conflict (b) α for mild conflict

(c) nH for harsh conflict (d) nH for mild conflict

Figure D4: Results for generation length 20 and average payoff of last 4 rounds
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B.2.2 Simulations for uncertainty between steps

I summarize the parameters used for the calibrations of the simulations of Section 3.4.2 in

the following table.

Parameter Value
Periods 1000
Number of players 1000
Mistake probability 0.01
Probability to revise strategy 0.05
p 0.1 to 0.9 with 0.1 increment
v1 0.6, 0.8
v2 0.2, 0.4
κ 0.01, 0.05, 0.31, 0.11, p0.31 + (1− p)0.11, p0.11 + (1− p)0.31
Generation length 100
c 1
λ 1× 10−16

Table D10: Model calibration for simulations with uncertainty between steps.

Much of these parameters resemble the ones in Table D1. p is the probability that G1 is

played at each step, and it is varied between each simulation with 0.1 increment. v is now

split into two values v1 and v2, for simplicity, across treatments, I choose to set the following

couples: v1 = 0.8, v2 = 0.2, v1 = 0.6, v2 = 0.2, v1 = 0.8, v2 = 0.4, and v1 = 0.6, v2 = 0.4.

Values of κ are 0.01, 0.05 and such that in the non uncertainty case α should reach the critical

thresholds. Such a test is meant to prove the robustness of the statements in Theorems 5 and

6. The generations length is 100 times, to allow for convergence within each generation (and

recreate somehow the conditions in Theorem 5). According to this length, I also increased

the total number of periods to 1000.

κ = 0.01 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 397 177.457 0.006 0.004 0.376 0.126 0.210 0.016
p = 0.2 96 130.323 0.005 0.005 0.279 0.054 0.249 0.045
p = 0.3 25 65.383 0.008 0.005 0.316 0.073 0.307 0.072
p = 0.4 18 51.730 0.007 0.004 0.389 0.082 0.382 0.085
p = 0.5 26 62.642 0.518 0.428 0.504 0.083 0.504 0.093
p = 0.6 35 80.467 0.982 0.029 0.597 0.080 0.611 0.081
p = 0.7 21 65.261 0.992 0.005 0.683 0.065 0.690 0.067
p = 0.8 110 132.288 0.994 0.005 0.727 0.056 0.761 0.044
p = 0.9 494 148.876 0.995 0.004 0.565 0.132 0.795 0.012

Table D11: Results for the case with uncertainty between steps, when v1 = 0.8, v2 = 0.2 and
κ = 0.01.
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κ = 0.05 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 858 91.848 0.005 0.002 0.939 0.106 0.133 0.073
p = 0.2 759 90.659 0.005 0.003 0.808 0.181 0.184 0.034
p = 0.3 628 107.778 0.005 0.003 0.581 0.166 0.203 0.021
p = 0.4 509 109.631 0.089 0.270 0.486 0.100 0.266 0.126
p = 0.5 407 104.168 0.520 0.487 0.495 0.067 0.506 0.208
p = 0.6 488 119.398 0.971 0.143 0.525 0.092 0.754 0.062
p = 0.7 612 109.800 0.995 0.003 0.439 0.159 0.795 0.022
p = 0.8 760 92.736 0.994 0.002 0.199 0.181 0.817 0.041
p = 0.9 871 87.516 0.995 0.002 0.050 0.085 0.876 0.076

Table D12: Results for the case with uncertainty between steps, when v1 = 0.8, v2 = 0.2 and
κ = 0.05.

κ = 0.31 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 994 31.048 0.292 0.449 0.014 0.010 0.287 0.441
p = 0.2 998 19.900 0.263 0.434 0.020 0.000 0.261 0.431
p = 0.3 1000 0.000 0.391 0.483 0.000 0.000 0.391 0.483
p = 0.4 1000 0.000 0.272 0.440 0.000 0.000 0.272 0.440
p = 0.5 1000 0.000 0.530 0.494 0.000 0.000 0.530 0.494
p = 0.6 1000 0.000 0.649 0.472 0.000 0.000 0.649 0.472
p = 0.7 1000 0.000 0.589 0.487 0.000 0.000 0.589 0.487
p = 0.8 1000 0.000 0.787 0.403 0.000 0.000 0.787 0.403
p = 0.9 991 34.914 0.688 0.458 0.982 0.024 0.697 0.446

Table D13: Results for the case with uncertainty between steps, when v1 = 0.8, v2 = 0.2 and
κ = 0.31.

κ = 0.01 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 628 114.961 0.005 0.002 0.583 0.186 0.200 0.014
p = 0.2 331 155.367 0.006 0.004 0.345 0.078 0.222 0.026
p = 0.3 199 122.061 0.007 0.006 0.340 0.067 0.271 0.057
p = 0.4 211 101.877 0.033 0.111 0.416 0.080 0.334 0.080
p = 0.5 181 135.422 0.201 0.333 0.497 0.069 0.436 0.097
p = 0.6 38 91.411 0.785 0.348 0.541 0.060 0.546 0.061
p = 0.7 8 33.705 0.972 0.033 0.560 0.044 0.564 0.040
p = 0.8 16 50.438 0.990 0.017 0.579 0.031 0.587 0.025
p = 0.9 230 157.162 0.994 0.005 0.458 0.113 0.599 0.014

Table D14: Results for the case with uncertainty between steps, when v1 = 0.6, v2 = 0.2 and
κ = 0.01.
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κ = 0.05 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 868 73.321 0.005 0.002 0.971 0.027 0.132 0.069
p = 0.2 834 71.021 0.005 0.002 0.940 0.098 0.156 0.055
p = 0.3 755 82.916 0.005 0.003 0.809 0.182 0.188 0.028
p = 0.4 669 99.695 0.006 0.003 0.652 0.169 0.204 0.027
p = 0.5 526 148.068 0.102 0.282 0.544 0.128 0.280 0.112
p = 0.6 452 130.752 0.575 0.486 0.456 0.158 0.457 0.164
p = 0.7 522 87.841 0.785 0.403 0.287 0.251 0.547 0.120
p = 0.8 602 72.083 0.940 0.222 0.096 0.184 0.616 0.073
p = 0.9 651 65.567 0.965 0.168 0.044 0.155 0.653 0.064

Table D15: Results for the case with uncertainty between steps, when v1 = 0.6, v2 = 0.2 and
κ = 0.05.

κ = p0.11 + (1− p)0.31 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 966 73.783 0.222 0.410 0.006 0.006 0.189 0.349
p = 0.2 956 81.633 0.272 0.439 0.005 0.005 0.228 0.369
p = 0.3 966 72.415 0.253 0.428 0.005 0.005 0.219 0.373
p = 0.4 960 82.462 0.282 0.444 0.007 0.006 0.243 0.384
p = 0.5 925 97.340 0.480 0.494 0.004 0.005 0.406 0.421
p = 0.6 885 95.263 0.727 0.439 0.006 0.006 0.614 0.376
p = 0.7 872 93.894 0.619 0.480 0.192 0.380 0.539 0.378
p = 0.8 814 72.139 0.678 0.462 0.305 0.434 0.623 0.299
p = 0.9 803 87.698 0.718 0.444 0.268 0.418 0.676 0.261

Table D16: Results for the case with uncertainty between steps, when v1 = 0.6, v2 = 0.2 and
κ = p0.11 + (1− p)0.31.

κ = 0.01 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 254 170.540 0.005 0.004 0.563 0.127 0.400 0.017
p = 0.2 29 68.257 0.011 0.024 0.430 0.040 0.416 0.024
p = 0.3 12 51.536 0.005 0.007 0.437 0.044 0.430 0.036
p = 0.4 59 107.791 0.241 0.319 0.479 0.063 0.465 0.065
p = 0.5 182 126.791 0.752 0.361 0.507 0.084 0.566 0.093
p = 0.6 215 99.373 0.973 0.110 0.590 0.079 0.675 0.078
p = 0.7 188 131.362 0.995 0.005 0.662 0.061 0.727 0.059
p = 0.8 321 140.922 0.994 0.005 0.668 0.069 0.781 0.026
p = 0.9 645 126.787 0.994 0.003 0.387 0.205 0.803 0.018

Table D17: Results for the case with uncertainty between steps, when v1 = 0.8, v2 = 0.4 and
κ = 0.01.
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κ = 0.05 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 653 71.351 0.025 0.139 0.961 0.131 0.342 0.064
p = 0.2 590 80.623 0.038 0.170 0.896 0.168 0.380 0.060
p = 0.3 494 100.817 0.184 0.374 0.692 0.237 0.442 0.107
p = 0.4 464 122.082 0.402 0.484 0.563 0.167 0.538 0.166
p = 0.5 575 117.792 0.956 0.186 0.427 0.124 0.749 0.082
p = 0.6 670 91.104 0.995 0.003 0.354 0.161 0.797 0.021
p = 0.7 763 91.274 0.995 0.003 0.171 0.184 0.815 0.033
p = 0.8 813 71.631 0.995 0.003 0.091 0.121 0.832 0.049
p = 0.9 875 75.333 0.995 0.002 0.029 0.045 0.876 0.069

Table D18: Results for the case with uncertainty between steps, when v1 = 0.8, v2 = 0.4 and
κ = 0.05.

κ = p0.31 + (1− p)0.11 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 798 87.155 0.273 0.439 0.754 0.398 0.323 0.257
p = 0.2 817 66.415 0.282 0.445 0.740 0.414 0.355 0.290
p = 0.3 866 87.430 0.263 0.434 0.885 0.308 0.375 0.351
p = 0.4 912 98.265 0.431 0.490 0.995 0.005 0.518 0.419
p = 0.5 937 90.172 0.579 0.489 0.994 0.006 0.642 0.419
p = 0.6 947 95.347 0.679 0.462 0.996 0.005 0.731 0.389
p = 0.7 947 89.950 0.678 0.462 0.994 0.006 0.731 0.388
p = 0.8 961 74.693 0.747 0.429 0.993 0.006 0.786 0.363
p = 0.9 968 67.646 0.797 0.396 0.994 0.006 0.829 0.333

Table D19: Results for the case with uncertainty between steps, when v1 = 0.8, v2 = 0.4 and
κ = p0.31 + (1− p)0.11.

κ = 0.01 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 481 114.625 0.005 0.003 0.774 0.150 0.388 0.026
p = 0.2 249 124.495 0.006 0.004 0.550 0.088 0.404 0.016
p = 0.3 106 108.462 0.029 0.103 0.471 0.057 0.418 0.031
p = 0.4 92 103.615 0.104 0.219 0.488 0.053 0.449 0.047
p = 0.5 135 108.972 0.534 0.392 0.499 0.069 0.509 0.068
p = 0.6 66 88.566 0.913 0.182 0.530 0.052 0.559 0.041
p = 0.7 118 116.086 0.991 0.013 0.516 0.062 0.578 0.035
p = 0.8 245 134.443 0.994 0.004 0.452 0.091 0.596 0.016
p = 0.9 514 128.078 0.995 0.004 0.178 0.163 0.618 0.035

Table D20: Results for the case with uncertainty between steps, when v1 = 0.6, v2 = 0.4 and
κ = 0.01.

175



κ = 0.05 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 654 57.306 0.005 0.002 0.985 0.014 0.344 0.053
p = 0.2 655 49.749 0.005 0.003 0.984 0.015 0.342 0.044
p = 0.3 634 63.592 0.075 0.253 0.931 0.194 0.370 0.077
p = 0.4 595 81.701 0.322 0.462 0.701 0.390 0.435 0.118
p = 0.5 580 77.460 0.540 0.493 0.454 0.420 0.511 0.127
p = 0.6 574 74.324 0.619 0.479 0.364 0.399 0.538 0.114
p = 0.7 628 67.941 0.966 0.168 0.051 0.138 0.637 0.056
p = 0.8 647 51.875 0.995 0.003 0.017 0.015 0.650 0.048
p = 0.9 654 59.025 0.995 0.003 0.016 0.015 0.657 0.055

Table D21: Results for the case with uncertainty between steps, when v1 = 0.6, v2 = 0.4 and
κ = 0.05.

κ = 0.11 Avg α Std α Avg nC
H Std nC

H Avg nM
H Std nM

H Avg nH Std nH

p = 0.1 792 86.810 0.163 0.363 0.837 0.361 0.263 0.186
p = 0.2 740 78.740 0.243 0.423 0.758 0.421 0.334 0.187
p = 0.3 744 71.162 0.282 0.445 0.718 0.443 0.352 0.204
p = 0.4 740 64.807 0.351 0.472 0.650 0.470 0.406 0.227
p = 0.5 741 58.472 0.540 0.493 0.461 0.492 0.517 0.245
p = 0.6 750 60.828 0.678 0.462 0.320 0.458 0.612 0.229
p = 0.7 725 72.629 0.648 0.471 0.347 0.466 0.610 0.207
p = 0.8 740 78.740 0.757 0.423 0.241 0.418 0.666 0.188
p = 0.9 753 103.397 0.659 0.469 0.338 0.463 0.660 0.219

Table D22: Results for the case with uncertainty between steps, when v1 = 0.6, v2 = 0.4 and
κ = 0.11.
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(a) α

(b) nH

Figure D5: Results for v1 = 0.8 and v2 = 0.2.
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(a) α

(b) nH

Figure D6: Results for v1 = 0.6 and v2 = 0.2.
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(a) α

(b) nH

Figure D7: Results for v1 = 0.8 and v2 = 0.4.
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(a) α

(b) nH

Figure D8: Results for v1 = 0.6 and v2 = 0.4.
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Appendix C

Chapter 3 Appendix

C.1 Proofs

Proof of Proposition 1. To prove the first statement, assume that f is first convex and

then concave; and also that s0 ̸= ŝ. (The proof of the second statement is entirely analogous

and therefore omitted). As a preliminary, observe that, if s0 = 0, then st = f t(0) = 0 for

all t ∈ N (recall that 0 is a fixed point). Hence, if s0 = 0, then limt→∞ st = 0. Similarly,

limt→∞ st = 1 if st = 1. Therefore, the statement holds trivially in the cases of s0 = 0 and

s1 = 1. It remains to consider the cases of s0 ∈ (0, ŝ) and s0 ∈ (ŝ, 1).

Suppose then that s0 ∈ (0, ŝ). (The argument when s0 ∈ (ŝ, 1) follows similar lines and is

therefore omitted.) Given that f is convex on [0, ŝ], and furthermore that f(0) = 0 and

f(ŝ) = ŝ, one may check that f(s) < s for all s ∈ (0, ŝ). In addition, given that f is

increasing, f(s) > f(0) = 0 for all such s. So for all s ∈ (0, s∗), f(s) ∈ (0, s).

Given that this fact, and also that s0 ∈ (0, s∗), one can show by induction that st ∈ (0, st−1)

for all t ∈ N. Hence, the sequence {st}∞t=0 is strictly decreasing and bounded from below by

zero. By the monotone convergence theorem, it therefore has a limit s∗. Furthermore, since

f is continuous, every limit s∗ must be a fixed point:

s∗ = lim
t→∞

st = lim
t→∞

st+1 = lim
t→∞

f(st) = f( lim
t→∞

st) = f(s∗), (C.1)

where the penultimate equality uses the continuity of f . By assumption, f only has three

fixed points: 0, ŝ, and 1. Since s∗ < s0 < ŝ, we see that the only possible limit is 0.

The argument given above establishes that limt→∞ st = 0 if s0 ∈ (0, ŝ). By an analogous
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argument, one may show that limt→∞ st = 1 if s0 ∈ (ŝ, 1). Furthermore, we have already

observed that limt→∞ st ∈ {0, 1} if either s0 = 0 or s0 = 1. This establishes that limt→∞ st ∈
{0, 1} for any initial value s0 ̸= ŝ.

Proof of Proposition 2. As noted earlier, given that f is continuous, we know that every

limit s∗ must be a fixed point. Moreover, since f is increasing, f(s) ≥ f(0) for all s ∈ [0, 1].

In particular, then, f(s∗) ≥ f(0). However, since s∗ is a fixed point (established earlier),

s∗ = f(s∗). From this, we conclude that s∗ ≥ f(0); and a symmetric argument establishes

that s∗ ≤ f(1).

Proof of Proposition 3. Let us define the difference in utilities by

∆(αi, s) ≡ U(ai = 1)− U(ai = 0) = αi +m(s)−m(1− s) (C.2)

To show that the individual has tipping point preferences, we consider three cases:

Case 1. For all s ∈ [0, 1], ∆(αi, s) ≥ 0. In that case, a∗i = 1 for all s (where a∗i denotes the

optimal action). Equivalently, a∗i = 1 if and only if s ≥ ti, for any tipping point that satisfies

ti ≤ 0. Thus, the individual has tipping point preferences (for example, we may set ti = 0).

Case 2. For all s ∈ [0, 1], ∆(αi, s) < 0. Similarly to before, this means that a∗i = 0 for all

s. Equivalently, a∗i = 1 if and only if s ≥ ti for any tipping point that satisfies ti > 1: for

example, we can set ti = 2. Thus, the individual again has tipping point preferences.

Case 3. ∆(αi, s) ≥ 0 for some s ∈ [0, 1]; but also ∆(αi, s) < 0 for some s′ ∈ [0, 1].

Differentiating with respect to s, we see that

∆′(s) = m′(s) +m′(1− s) > 0. (C.3)

Thus, ∆(s) is strictly increasing (and continuous) in s. This means that there is a unique

s∗ ∈ (0, 1] such that ∆(s) > 0 for s > s∗, ∆(s) = 0 when s = s∗, and ∆(s) < 0 for s < s∗.

Thus, the individual has tipping point preferences for ti = s∗.

To prove the second statement, observe that, if ti ∈ (0, 1), then

αi +m(ti)−m(1− ti) = 0 (C.4)

We can totally differentiate to obtain

∂αi

∂αi

+
∂m(ti)

∂ti

∂ti
∂αi

+
∂m(1− ti)

∂ti

∂ti
∂αi

= 0 (C.5)
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which implies that
∂ti
∂αi

= − 1

m′(ti) +m′(1− ti)
< 0 (C.6)

where the inequality holds since both derivatives are strictly positive. Thus, ti is strictly

decreasing in αi for ti ∈ (0, 1).
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C.2 Local interaction

In this section, we extend the model described in Section 4.2 to allow for local interaction

in overlapping networks. The model presented here shares some similarities to the model

studied by Efferson et al. (2020). An important difference is that, while Efferson et al.

(2020) assume that decision makers choose randomly, we instead assume that they choose

deterministically but with heterogenous decision rules. In addition, our model assumes that

individuals respond to the decisions of their ‘neighbours’ (in line with our experimental set-

tings); whereas Efferson et al. (2020) assume that they best respond to the entire population.

In our baseline model, we assume the following:1

• There are l2 agents, each located on a node of a grid with side length l ∈ N+. Let

(r, c) denote the agent located at row r and column c; so the set of agents is the set

N = {(r, c) : r ∈ {1, ..., l}, c ∈ {1, ..., l}}.

• As in our experiments, agents are faced with a binary choice: they must either take an

action (denoted ar,c = 1) or not take the action (denoted ar,c = 0).

• Each agent (r, c) has a set of ‘neighbours’ Nr,c whose actions they can see. For each

agent, we assume that Nr,c = {(i, j) : (i, j) ∈ N, |i− r| ≤ 1, |j − c| ≤ 1, (i, j) ̸= (r, c)}.
Observe that agents in the interior have 4 neighbours, agents on the edge have 3

neighbours, and agents in the corners have 2 neighbours.

• We define m1
r,c as the share of individual (r, c)’s neighbours who have chosen to do the

action. Formally, m1
r,c =

1
|Nr,c|

∑
(r,c)∈Nr,c

ar,c where |Nr,c| is the cardinality of Nr,c.

• Each agent is endowed with a (fixed) tipping point tr,c ∈ [0, 1]. As in the main text,

we assume that they choose ar,c = 1 if and only if tr,c ≥ m1
r,c.

• Agents interact over multiple periods. In each period, one agent is chosen to move at

random; and updates their action (if necessary) by comparing their tipping point tr,c

with the share of their neighbours who are taking the action m1
r,c.

To assess the robustness of our results, we also study an alternative model that departs from

the model sketched above in various ways.2 In this model — which we label the edgeless

model — each agent is linked with the same number of neighbours. In addition, each agent

has a probability ϵ ∈ [0, 1] of making a ‘mistake’, i.e. choosing the opposite action as that

required by their tipping point. Finally, a share p ∈ [0, 1] of agents are selected in period to

1 The corresponding code can be viewed here: https://github.com/Itzhak95/tipping_points
2 The corresponding code can be viewed here: https://github.com/rrozzi/tipping_point-netlogo-
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revise their action; so in principle multiple agents can update their action simultaneously.

To simulate the results of our models, we use the following procedure:

• We specify a distribution of tipping points in the population, and randomly scatter

these tipping points across the agents.

• We also specify the share of agents who initially take the action; and we randomly

scatter the agents who are taking the action on grid.

• We then allow the model to run for 1000 periods (or until it is ‘stable’ so no further

changes can occur).

As discussed above, the results of the model could in principle depend on the way in which

tipping points and initial actions are scattered. As a result, we conduct all simulations 1000

times and report the distribution of results across simulations.

Before turning to our main results, we provide a simple example to illustrate the mechanics

of the model. To generate this example, we suppose that, initially, 40% of agents are taking

the action; and we set s = 5. In addition, we assume (for expositional simplicity) that all

agents have a tipping point tr,c = 0.5, so choose ar,c = 1 if and only if half or more of their

neighbours are doing the action. While one would normally repeat the simulation many

times, here we just report the outcome of one simulation.

After randomly scattering the initial actions, we obtain the initial state

0 1 1 1 0

0 1 0 0 1

1 0 1 1 0

0 0 0 0 0

1 0 0 1 0

As can be seen, 10 of the s2 = 25 agents initially take the action (indicated by a 1); the

rest do not. Several rounds now progress in which the player chosen to move does not wish

to update their action. Eventually, however, the player at row 3 and column 1 is chosen

to move (they are coloured in red). Since none of their neighbours (coloured in blue) were

taking the action, they choose to switch to action 0. This yields the new state
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0 1 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

1 0 0 1 0

As the process continues, additional players are given the opportunity to also revise their

action. After 13 such revisions, we finally obtain the state

1 1 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

This state is stable in the sense that no agent has an incentive to change their behaviour.

The agent in the top left is surrounded by neighbours who choose ar,c = 1, so would also

want to choose ar,c = 1 if allowed to update their action. The agent at (2, 2) is surrounded

by 4 neighbours, half of whom are taking the action; so also chooses ar,c = 1 (recall that

all tipping points are set at tr,c = 0.5). Meanwhile, the agents at (2, 1) and (1, 2) are each

surrounded by 3 neighbours, 2 of whom are choosing the action; so they also wish to choose

the action. Finally, one can verify that the agents choosing ar,c = 0 are choosing optimally

given their tipping point and the share of their neighbours who are taking the action.

We now calibrate our model using the tipping point distributions calculated in Section 4.5.

We assume a population size of 100; and the edgeless model further assumes an error prob-

ability ϵ = 0.01 and a probability of revision p = 0.07. As stated above, each simulation is

run for 1000 periods (or until the obtained state is stable); and all simulations are conducted

1, 000 times. Tables C1 and C2 display the results for experiment 1 (face masks) and exper-

iment 2 (Zoom calls) respectively. The first row specifies the initial share who are assumed

to do the action. The rows ‘mean (main)’ and ‘mean (edgeless)’ display the average share

who end up doing the activity in the main specification and edgeless model respectively. The

rows ‘Var (main)’ and ‘Var (edgeless)’ specify the variance of outcomes across simulations.
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Initial share 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Mean (main) .228 .230 .230 .231 .231 .233 .234 .235 .235 .236

Var (main) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Mean (edgeless) .237 .242 .242 .242 .240 .242 .240 .239 .240 .239

Var (edgeless) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Notes. This table shows the results of simulating our models using the distribution of tipping

points obtained by experiment 1 (see Table 4.2). That is, we set p0 = .203, p1 = .033, p2 = .044,

p3 = .085, p4 = .123, p5 = .513.

Table C1: Simulation results (experiment 1)

Initial share 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Mean (main) .311 .316 .321 .329 .333 .338 .341 .345 .349 .353

Var (main) .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

Mean (edgeless) .353 .353 .347 .356 .355 .362 .354 .360 .356 .355

Var (edgeless) .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

Notes. This table shows the results of simulating our models using the distribution of tipping

points obtained by experiment 2 (see Table 4.4). That is, we set p0 = .209, p1 = .118, p2 = .091,

p3 = .099, p4 = .072, p5 = .411.

Table C2: Simulation results (experiment 2)

Three results are apparent. First, we see that the results of the simulations are relatively

insensitive to the initial share who are assumed to do the activity. This is especially true in

the edgeless model since this assumes that agents occasionally make errors, which weakens

dependence on initial conditions in the usual way (Young, 1993a). Second, the variance in

outcomes across simulations is very low, which is again points to the lack of importance

of initial conditions (since different simulations generate different outcomes only due to

variation in initial conditions). Finally, and most importantly, we see that our models

generate convergence to interior equilibria that resemble those obtained from the simple

model of Section 4.2. This should not come as a surprise given that some agents always do

the action, that other agents never do the action, and that a final group of agents engage in

copying behaviour.
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C.3 Tables and figures

Treatment Frequency Percentage

0 127 19.7

1 134 20.7

2 128 19.8

3 124 19.2

4 133 20.6

Total 646 100.0

Notes. This table shows how many subjects were allocated

into each of the five treatments in the first experiment.

Table C3: Sample allocation (experiment 1)

Variable Mean Std. Dev.

Age 20.8 3.90

Male .497 .500

Humanities .283 .451

MPLS .240 .427

Medical Sciences .127 .333

Social Sciences .333 .471

Pre .201 .401

n 646

Notes. This table shows the descriptive statistics for experi-

ment 1 (see Table 4.1 for a description of the variables).

Table C4: Descriptive statistics (experiment 1)
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Variable No controls Main Specification All Controls

Treatment 1 .044 .033 .029

[.047] [.030] [.034]

Treatment 2 .171*** .073** .079**

[.053] [.032] [.035]

Treatment 3 .238*** .162*** .168***

[.055] [.040] [.043]

Treatment 4 .331*** .283*** .304***

[.054] [.042] [.046]

Pre .504*** .498***

[.030] [.031]

Age .003 .002

[.005] [.004]

Male -.006 -.002

[.026] [.028]

n 646 646 620

Notes. This table reports the exact same specifications reported on in Ta-

ble 4.2, except using logistic instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table C5: Logit regressions (experiment 1)
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Variable No controls Main Specification All Controls

Treatment 1 .044 .036 .029

[.047] [.031] [.034]

Treatment 2 .171*** .078** .078**

[.053] [.033] [.035]

Treatment 3 .238*** .163*** .162***

[.055] [.040] [.043]

Treatment 4 .331*** .284*** .298***

[.054] [.043] [.046]

Pre .518*** .512***

[.024] [.027]

Age .002 .001

[.004] [.004]

Male -.007 -.004

[.026] [.028]

n 646 646 620

Notes. This table reports the exact same specifications reported on in Ta-

ble 4.2, except using probit instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table C6: Probit regressions (experiment 1)

Comparison No controls Main specification All controls

T0 vs T1 .355 .278 .536

T1 vs T2 .019 .205 .163

T2 vs T3 .269 .051 .068

T3 vs T4 .131 .019 .017

T0 vs T2 .001 .014 .032

T1 vs T3 .001 .002 .002

T2 vs T4 .008 .000 .000

Notes. This table reports p-values corresponding to hypothesis that the

effect of treatment k is the same as the effect of treatment k′, for all possible

k ̸= k′. We do this for the three specifications considered in Table 4.2.

Table C7: Comparisons (experiment 1)
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Notes. This figure shows the marginal effects of the treatments in the main spec-
ification, including the confidence intervals.

Figure C1: Mask wearing by treatment group (with confidence intervals)

T0 T1 T2 T3 T4

Putting mask on .028 .080 .106 .223 .368

Taking mask off .056 .143 .059 .067 .037

Notes. The first row shows the share who put a mask on given that they

entered the room without wearing a mask. The second row shows the share

who took their mask off given that they entered the room wearing a mask.

Table C8: Changes (experiment 1)
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Variable Linear Quadratic Cubic

Masks .070*** 0.008 0.024

[-.010] [-.028] [-.062]

Masksˆ2 .016** .004

[-.008] [-.045]

Masksˆ3 .002

[-.008]

Pre .752*** .757*** .757***

[-.029] [-.029] [-.029]

Age .002 .002 .002

[-.005] [-.005] [-.005]

Male -.008 -.007 -.007

[-.026] [-.026] [-.026]

Constant -.022 .016 .014

[-.102] [-.107] [-.107]

Joint test .000 .000 .000

R2 .491 .494 .494

Notes. In this table, we regress whether subjects chose to wear a mask

on the number of experimenters wearing a mask, as well higher order

terms to capture potential non-linearity (we also control for ‘pre’, age,

and gender). The penultimate row reports p-values corresponding to the

hypothesis that the coefficients on all mask variables are zero.

Table C9: Polynomial regressions (experiment 1)

Explanation Frequency

Trying to avoid judgement .148

Trying to cater to others’ preferences .511

Trying to follow rules .148

Reciprocity .023

COVID risks .011

Not answering question .159

n 88

Notes. This table shows the frequencies of the explanations

given by subjects (see Appendix C.5 for a detailed description

of the categories).

Table C10: Explanations from online survey
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Treatment Frequency Percentage

0 232 20.8

1 204 18.3

2 223 20.0

3 241 21.7

4 213 19.1

Total 1113 100.0

Notes. This table shows how many subjects were allocated

into each of the five treatments in the second experiment.

Table C11: Sample allocation (experiment 2)

Variable Mean Std. Dev.

Age 42.4 13.9

Male .465 .499

n 1113

Notes. This table shows the descriptive statistics for ex-

periment 2.

Table C12: Descriptive statistics (experiment 2)
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Variable No controls Main specification All controls

Treatment 1 .077* .127*** .133***

[.043] [.039] [.039]

Treatment 2 .176*** .215*** .218***

[.043] [.039] [.040]

Treatment 3 .281*** .314*** .323***

[.043] [.039] [.045]

Treatment 4 .355*** .385*** .389***

[.044] [.041] [.051]

Pre .741*** .743***

[.092] [.092]

Age .000 .000

[.001] [.001]

Male .023 .023

[.027] [.027]

n 1,113 1,111 1,109

Notes. This table reports the exact same specifications reported on in Ta-

ble 4.4, except using logistic instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table C13: Logit regressions (experiment 2)
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Variable No controls Main specification All controls

Treatment 1 .077* .125*** .130***

[.043] [.039] [.039]

Treatment 2 .176*** .216*** .218***

[.043] [.039] [.040]

Treatment 3 .281*** .312*** .321***

[.043] [.039] [.046]

Treatment 4 .355*** .385*** .389***

[.044] [.040] [.052]

Pre .701*** .699***

[.075] [.076]

Age .000 .000

[.001] [.001]

Male .024 .025

[.027] [.027]

n 1,113 1,111 1,109

Notes. This table reports the exact same specifications reported on in Ta-

ble 4.4, except using probit instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table C14: Probit regressions (experiment 2)

Comparison No controls Main Specification All Controls

T0 vs T1 .074 .003 .002

T1 vs T2 .035 .043 .051

T2 vs T3 .022 .028 .020

T3 vs T4 .116 .116 .152

T0 vs T2 .000 .000 .000

T1 vs T3 .000 .000 .000

T2 vs T4 .000 .000 .001

Notes. This table reports p-values corresponding to hypothesis that the

effect of treatment k is the same as the effect of treatment k′, for all possible

k ̸= k′. We do this for the three specifications considered in Table 4.4.

Table C15: Comparisons (experiment 2)
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Notes. This figure shows the marginal effects of the treatments in the main spec-
ification, including the confidence intervals.

Figure C2: Camera use by treatment group (with confidence intervals)

T0 T1 T2 T3 T4

Turning camera on 0.156 0.296 0.381 0.491 0.566

Turning camera off 0.111 0.125 0.000 0.059 0.000

Notes. The first row shows the share who turned their camera on given

that they joined the call without video. The second row shows the share

who turned their camera off given that they joined the call with video.

Table C16: Changes (experiment 2)

196



Variable Linear Quadratic Cubic

Cameras .095*** .119*** .119

-.009 -.032 -.074

Camerasˆ2 -.006 -.006

-.008 -.049

Camerasˆ3 .000

-.008

Pre .576*** .578*** .578***

-.033 -.033 -.033

Age .000 .000 .000

-.001 -.001 -.001

Male .023 .024 .024

-.027 -.027 -.027

Constant .169*** .156*** .156***

-.046 -.047 -.047

Joint test .000 .000 .000

R2 .161 .161 .161

Notes. In this table, we regress whether subjects chose to use their camera

on the number of experimenters using a camera, as well higher order

terms to capture potential non-linearity (we also control for ‘pre’, age,

and gender). The penultimate row reports p-values corresponding to the

hypothesis that the coefficients on all camera variables are zero.

Table C17: Polynomial regressions (experiment 2)
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C.4 Experimental protocols

In this section, we provide a more detailed outline of the experimental protocols followed in

both experiments.

Experiment 1 (face masks). There were four experimenter roles, labelled 1 through 4. Exper-

imenter 1’s role was to greet the subject and (at the end) bid them goodbye. Experimenter

2’s role was to record the data and ask some demographic questions. Experimenter 3’s role

was to ask the question about the lotteries. Experimenter 4’s only role was to was to intro-

duce themselves when asked to do so and wear a face mask when this was required by the

randomisation.

Subjects were asked to arrive at a room within a particular time slot. Importantly, it was

not possible to view inside the room without entering it; and once a subject had entered,

the only people they could see were the experimenters inside the room. Before each subject

entered the room, the number of the four experimenters in the room who were wearing a

mask (and the allocation of masks to experimenters) had been randomised. Thus, there were

five treatment groups, corresponding to: 0/4 masks, 1/4 masks, 2/4 masks, 3/4 masks, 4/4

masks. All four experimenters were seated in front of a table on which a box of face masks,

hand sanitiser, and bag of checkers had been placed.

Once a subject arrived, the experiment proceeded in the following manner:

1. Experimenter 1 welcomed the participant in and asked all other experimenters to in-

troduce themselves. The other three experimenters then did this by stating their name

and subject of study.

2. Experimenter 2 asked the subject for their name, age, and academic division. They

recorded these on a spreadsheet, along with their apparent gender and whether they

had entered the room wearing a mask.

3. Experimenter 3 asked the subject the following question. ‘As you may know, we have

issued a fixed number of lottery tickets for an Amazon voucher. I am now going to give

you two options to choose from. The first option is simply to get one lottery ticket for

the voucher. The second option is a gamble between 2 and 0 lottery tickets. Specifically,

if you take the second option, then you will take a checker from the bag in front of you.

If you get a black checker — and there are six of these — then you will get two lottery

tickets. However, if you get a white checker — and there are five of these — then you

will not get any lottery tickets. So what do you choose — getting one lottery ticket for

sure, or taking the gamble between 2 and 0 lottery tickets? ’
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4. Person 1 thanked the participant for coming and told them that the experiment had

concluded.

Occasionally, a subject asked if they should wear a face mask. In response to such questions,

Experimenter 2 always replied: ‘it’s up to you’.

Experiment 2 (Zoom calls). As before, there were four experimenter roles, labelled 1 through

4. Experimenter 1’s role was to admit subjects into the Zoom room and guide them through

the experiment. Experimenter 2 was the data recorder, and Experimenter 3 double checked

all data. Experimenter 4 pasted a link to the survey in the Zoom chat just before the subject

was asked to leave the room.

Subjects were asked to join the Zoom call at a particular time slot. Before the subject joined

the call, the number of experimenters with their camera on, and which experimenters had

their camera on, had been randomised. Once a subject arrived in the Zoom waiting room,

the experiment proceeded in the following manner:

1. Experimenter 1 thanked the subject for joining and asked if whether they could hear

the audio. They stated their name, and said that the other experimenters would now

introduce themselves.

2. The other three experimenters on the call now introduced themselves by stating their

name.

3. Experimenter 1 asked the subject for their age. Experimenter 2 recorded this on a

spreadsheet along with their apparent gender, and whether they had joined the call

with their video camera on.3

4. Experimenter 1 then asked the subject the following question: ‘If we were to hypothet-

ically give you a £10 bonus payment, would you choose to share half of it with the next

person on the call? ’

5. If the subject’s camera had remained off throughout the call, Experimenter 1 asked

them if there were any issues with their camera.

6. Experimenter 1 then thanked the subject for participating, asked them to click the

survey link, and removed them from the room.

Some notes:

3 In contrast to the first experiment, we did not require Experimenter 2 to ask the demographic questions
due to the more rapid pace of data collection.
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• All experimenters ensured that they did not have a Zoom profile photo; so when they

turned their camera off, only the text of their name was visible.

• If a subject asked if they should turn their camera on, then Experimenter 1 told them

that ‘it’s up to you’.

• If a subject turned their camera on when the host asked if they had issues with their

camera, then we ignored this from a data recording point of view (see previous discus-

sion).

200



C.5 Explanations

In this section, we elaborate on the way in which we categorise subject explanations for

‘switching behaviour’ (recorded in the online survey). The categories are as follows:

1. ‘Trying to avoid judgement’

Elaboration: if you see many others wearing a mask, you might infer that these others

want you to wear a mask. This in turn might induce you to wear a mask if you do not

want to be negatively judged by the others.

Example from dataset : ‘Don’t see the point in wearing a mask now, but if everyone

else was then social conformity and not wanting to be the odd one out would mean I

probably would.’

2. ‘Trying to cater to others’ preferences’

Elaboration: If you see many others wearing a mask, you might infer that these others

want you to wear a mask. This in turn might induce you to wear a mask if you want

to altruistically cater to their preferences (e.g. to make them feel more comfortable).

Comment : Observe that, like the explanation before, this explanation is based on

learning about the preferences of others through their actions.

Example from dataset : ‘if i see someone wearing a mask it makes me think that they

might be uncomfortable about the virus so if i had one on me i would wear it.’

3. ‘Trying to follow rules’

Elaboration: If you see many others wearing a mask, you might conclude that a (for-

mal or informal) rule requires wearing a mask — and you might generally try to follow

rules.

Comment : In practice, it can be hard to distinguish this from the first explanation: in-

dividuals may follow informal rules to avoid judgement. However, we used this category

since some participants mentioned rules without mentioning a fear of being judged.

Example from dataset : ‘If majority of people wearing mask, I assume there is writ-

ten/unwritten rules regarding this, in that room that I am not aware of’

4. ‘Reciprocity’

Elaboration: if you see many others wearing a mask, you might infer that they are try-

ing to protect you. As a result, you might want to protect them (as in Rabin (1993)).

Example from dataset : ‘I want to protect others, but if they aren’t willing to protect

me then I’m not willing to protect them’
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5. ‘COVID risks’

Elaboration: if you see many others wearing a mask, you might conclude that the

COVID risk around you is high: for example, these people might be wearing a mask

because they have COVID. Assuming that you want to avoid COVID, you might

therefore choose to wear a mask.

(Only) example from dataset : ‘I’d think if anyone were wearing a mask they probably

have a good reason to, like being a close contact of a positive tester. Or if someone is

just being particularly careful I would also think they have a good reason to and try

to respect that.’

6. ‘Not answering question’

Elaboration: Some subjects explained the various factors which determine whether

they choose to wear a mask, but did not explain why their decision to wear a mask

would vary with the number of others wearing a mask (the question we were interested

in).

Example from dataset : ‘It depends on the setting, and if I were carrying a mask at the

time. If asked in advance I would always wear a mask, and would never want to make

someone feel uncomfortable. However if the situation was relatively safe, I would not

feel a need to wear a mask.’
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Appendix D

Chapter 4 Appendix

D.1 Proofs for pure strategies

In this section, we prove the results from Theorem 8 and 9.

With abuse of notation, in proofs, we denote by · the choices of all the other players when

focusing on one single player. Moreover, when comparing equilibrium choices with coalition

choices, we refer to Ui(k
∗, ·) as the utility from choosing social group k in equilibrium, and

Ui(k
′
ϵ, ·) as the utility of a coalition of mass ϵ choosing social group k′.

We start by giving some general results that apply both to the homophily case and to the

benchmark case.

Lemma 16. If DM chooses d0, there cannot exist any pooling equilibrium on H.

Proof.

This lemma is quite standard in signaling games, and the proof is straightforward. If DM

chooses d0 and blindly assigns H tasks to candidates, they have no incentive to invest in their

human capital since they are assigned H tasks in any case. Therefore whenever DM chooses

d0, all candidates choose L, and DM ’s beliefs are not correct. Hence, the one described

above is not an equilibrium.

Corollary 10. If DM chooses d0, in equilibrium it must be that p∗(s|k) = (0, 0).

The argument stands from the previous Lemma, therefore, the proof is omitted.
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Lemma 17. If p∗(t|k) = (1, 0), or p∗(t|k) = (0, 1), then, it must be that p∗(s|k) = (0, 0).

Proof.

The argument of this proof stands from Proposition 1 of Bilancini and Boncinelli (2018c).

When DM has beliefs p∗(t|k) = (1, 0) or p∗(t|k) = (0, 1), her expected utility from choosing

d0 depends on p∗(s|k). Since we assume both ζ and ϕ
s
to be homogeneous, it must be that

p∗(s|k) = (0, 0), or p∗(s|k) = (1, 1).

If p∗(s|k) = (0, 0) and if p∗(t|k) = (1, 0) or p∗(t|k) = (0, 1), then V (·, d0,m∗
k) = τ(1+δL) and

V (·, d1,m∗
s) = τ(1+δL)−c. If p∗(s|k) = (1, 1) and if p∗(t|k) = (1, 0) or p∗(t|k) = (0, 1), then

V (·, d0,m∗
k) = τ(1 + δH) and V (·, d1,m∗

s) = τ(1 + δH)− c. Consequently, if p∗(t|k) = (1, 0)

or p∗(t|k) = (0, 1), DM always plays d0, and hence, due to Corollary 10, it must be that

p∗(s|k) = (0, 0).

The next lemma will be useful in proving equilibrium strategies for candidates.

Lemma 18. Given a candidate i, with si = s′:

MUi(ti, x, s
′, d1,m

∗
s) =MUi(ti, y, s

′, d1,m
∗
s).

The proof is straightforward and therefore is omitted. The intuition is simple: when DM

plays d1, she always observes each candidate’s type and skill. Hence, DM assigns a candidate

to the same task regardless of the social group he chooses.

We now prove the principal statements in the main text.

Proof of Theorem 8.

Firstly, we prove that there cannot exist separating equilibria on social groups.

When DM has beliefs p(t|k) = (1, 0) (p(t|k) = (0, 1)), she assigns α (β) tasks to social

group x, and β (α) tasks to social group y. For Lemma 17, DM plays d0 this case, and

p∗(s|k) = (0, 0). Therefore, If p(t|k) = (1, 0) (p(t|k) = (0, 1)), the decision-maker plays d0,

and mk = (αL, βL) (mk = (βL, αL)). Next, let us consider candidates’ strategies. Thanks

to Lemma 16, we know that they all choose L. Consider the situation in which each A type

chooses x, and each B type chooses y. In this case, Ui(x, ·) = ϕαL
+ η,∀i, and Ui(y, ·) =

ϕβL
+ η,∀i.
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Given that Ui(x, ·) > Ui(y, ·), each i chooses x, and therefore, there cannot exists any

separating equilibrium on social groups.

Next, let us consider the case of pooling equilibria on social groups. There can be two cases,

p(t|k) = (pA, p(A|y)) (p(t|k) = (p(A|x), pA)), or p(t|k) = (pA, pA).

Let us consider the second case. First, let us consider the case of p(s|k) = (1, 1). In

this case, DM plays mk = (αH , αH). Therefore, E [V (·, d0,mk)] = pAτ + τδH , if there is

substitutability or E [V (·, d0,mk)] = pAτ(1 + δH), if there is complementarity. And in both

cases, V (·, d1,m∗
S) = τ(1 + δH)− c.

Therefore, she chooses d1, if and only if c < pBτ (substitutability) or c < pBτ(1 + δH)

(complementarity). If she plays d1, due to Lemma 18, we know that each candidate earns

the same material utility by choosing social group x, or y. Moreover, due to Assumption 4,

all candidates choose H. To sustain such an equilibrium it must be that both A and B

types choose x in a fraction q, and y in a fraction 1− q. In such a case, Ui(x, ·) = Ui(y, ·) =
ϕαH

− ζ + η,∀i ∈ A and Uj(x, ·) = Uj(y, ·) = ϕβH
− ζ + η,∀j ∈ B. Therefore, there exist

infinite pooling equilibria on social groups (∀q, 1 − q ∈ [0, 1]), pooling on H, where DM

buys the information. Thanks to Lemma 16, we know that there could not exist any pooling

equilibrium on social groups, pooling on H when DM plays d0, and hence, there is no

equilibrium when c > pBτ (c > pBτ(1 + δH)).

With a similar reasoning it is possible to show that there exist infinite pooling equilibria

on social groups, pooling on L, when p∗(s|k) = (0, 0), c > pBτ(1 + δL) (both under substi-

tutability and complementarity) and DM plays (d0,m
∗
k), with m∗

k = (αL, αL).

All the above equilibria are also CPE. Indeed, in the case of pooling equilibrium on H, by

Lemma 18, we know that the material utility of each candidate is the same, no matter which

social group they choose. Moreover, if there is no homophily, SUi(k
′
ϵ, ·) = η,∀ϵ, which is the

same utility they earn in equilibrium. Therefore, there are no profitable coalitions in case

of pooling equilibria on social groups and on H. The same reasoning applies to a pooling

equilibrium on L, given that DM assigns αL to each social group.

Now, we consider a degenerate pooling equilibrium on x (the argument also stands for the

case of a degenerate pooling equilibrium on y for symmetry in payoffs). In this case, it must

be that p(A|x) = pA, and it can be that p(A|y) > p(B|y), or that p(A|y) < p(B|y). If

p(A|y) > p(B|y), similar to the above cases, there exists a pooling equilibrium on x, such

an equilibrium can be pooling on H, and or L depending on DM ’s beliefs, and information

decision. Such equilibrium is also CPE.
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Let us consider the case such that p(A|y) < p(B|y). If p∗(s|k) = (1, 1), DM plays mk =

(αH , βH), if she plays d0. Similar to what we prove before, there is a pooling equilibria on x

and on H, where DM buys the information, and similarly to what we prove before, such an

equilibrium is also CPE.

There also exists a pooling equilibrium on L. In fact, if p∗(s|k) = (0, 0), DM plays mk =

(αL, βL) if she chooses d0. Similarly to what we prove before, there exists no equilibrium if

c < pBτ(1+δL). However, consider the case when c > pBτ(1+δL). Ui(x, ·) = ϕαL
+η,∀i, and

Ui(y, ·) = ϕβL
,∀i. Therefore, each candidate chooses social group x, and the one described

above is an equilibrium.

Similar to what we prove before, these kind of equilibria are also CPE.

The uniqueness of equilibria as meant in the statement is a consequence of the above argu-

ments.

Corollary 11.

Consider a game where there is not homophily, and types and skills are either complement

or substitute.

• Under substitutability, if pBτ < c < pBτ(1 + δL), there exists no equilibrium. If

c > pBτ(1+δL), there only exist pooling equilibria on social groups, where all candidates

play L, DM does not buy the information, and she assigns αL to each candidate. These

equilibria are CPE.

• Under complementarity, if pBτ < c < pBτ(1 + δL), there only exist pooling equilibria

on social groups, where all candidates play H, and DM buys the information. These

equilibria are CPE. If pBτ(1 + δL) < c < pBτ(1 + δH), there exist pooling equilibria

on social groups, where all candidates play H, and DM buys the information, and

there exist pooling equilibria on social groups, where all candidates play L, DM does

not buy the information, and she assigns αL to each candidate. These equilibria are

CPE. If c > pBτ(1 + δH), there only exist pooling equilibria on social groups, where

all candidates play L, DM does not buy the information, and she assigns αL to each

candidate. These equilibria are CPE.

The nonexistence of equilibria for pBτ < c < pBτ(1 + δL) under substitutability must not

be a concern since it is a consequence of Assumption 4, that can be seen as a refinement of
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the possible equilibria. The multiplicity under complementarity instead is inevitable, but it

does not change that qualitative result of the main paper.

Proof of Theorem 9.

We prove the theorem bullet point by bullet point.

Pooling equilibria on social groups, and on H if c < pBτ (c < pBτ(1 + δH)).

To prove DM ’s strategies we refer to Theorem 8’s proof. In case, p(t|k) = (pA, pA) and

p(s|k) = (1, 1), she chooses d1 if and only if c < pBτ (substitutability) or if and only if

c < pBτ(1 + δH) (complementarity).

If DM plays d1, candidates play H due to Assumption 4, and due to Lemma 18, their social

group choice depends only on SU . Specifically, if every candidate chooses x,

Ui(x, ·) = ϕαH
− ζ + pAη,∀i ∈ A,

Ui(y, ·) = ϕαH
− ζ, ∀i ∈ A,

Uj(x, ·) = ϕβH
− ζ + pBη,∀j ∈ B,

Uj(y, ·) = ϕβH
− ζ, ∀j ∈ B.

Given that both Ui(x, ·) > Ui(y, ·) and Uj(x, ·) > Uj(y, ·), there exists a pooling equilibrium

on x and pooling on H if c < pBτ (c < pBτ(1 + δH)). However, this equilibrium is not

coalition-proof. Indeed, consider a coalition of B types of mass ϵ that deviates to y.

Uj(yϵ, ·) = ϕβH
− ζ + η,∀j ∈ ϵ.

Now consider a sub-coalition of mass ϵ′ < ϵ, that chooses x.

Uj(xϵ′ , ·) = ϕβH
− ζ +

(
pB(1 + ϵ′ − ϵ)

pB(1 + ϵ′ − ϵ) + pA

)
η,∀j ∈ ϵ′.

Given that Uj(yϵ, ·) > Uj(xϵ′ , ·), the coalition is self-enforcing. Moreover, Uj(yϵ, ·) > Uj(x
∗, ·).

Therefore, the coalition is profitable with respect to the equilibrium and no pooling equilib-

rium on social groups and H is CPE.
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A similar reasoning applies to a pooling equilibrium on y and to all the other pooling equi-

libria on social groups such that A and B types choose x in a fraction q, and y in a fraction

1− q.

Pooling equilibria on social groups, and on L if c > pBτ(1 + δL).

Firstly, consider the case for which p(t|k) = (pA, pA), and p(s|k) = (0, 0). Coherently with

Theorem 8, DM chooses d0 when c > pBτ(1 + δL). Thanks to Lemma 16, we know that

there exists no pooling equilibrium when DM plays d1; therefore, we only consider the case

of c > pBτ(1 + δL). When she chooses d0, she chooses mk = (αL, αL).

In this case, all candidates choose L, and they earn MU = ϕαL
whichever social group

they choose. Consider a case such that both A and B types choose x with frequency q.

SUi(x, ·) = SUi(y, ·) = ηpA,∀i ∈ A, while SUj(x, ·) = SUj(y, ·) = ηpA,∀j ∈ B. Therefore,

candidates choose social group x with frequency q, and the above described is an equilibrium.

Similarly to the case when DM chooses d1, such an equilibrium is not a CPE.

The same reasoning applies to a degenerate pooling equilibrium on x (y) s.t. p(t|k) =

(pA, p(A|y)) with p(A|y) ≥ pA (p(t|k) = (p(A|x), pA) with p(A|x) ≥ pA).

Secondly, we consider the case when a degenerate pooling equilibrium on x (y) s.t. p(t|k) =
(pA, p(A|y)) with p(A|y) < pA (p(t|k) = (p(A|x), pA) with p(A|x) < pA). As for Theorem 8’s

proof, DM chooses d0 and mk = (αL, βL). In this case, from Lemma 16 all candidates choose

L. Moreover,

Ui(x, ·) = ϕαL
+ pAη,∀i ∈ A,

Ui(y, ·) = ϕβL
, ∀i ∈ A,

Uj(x, ·) = ϕαL
+ pBη,∀j ∈ B,

Uj(y, ·) = ϕβL
, ∀j ∈ B,

Therefore, each candidate chooses social group x, and the above described is an equilibrium.

To see if this equilibrium is coalition-proof, consider a coalition of B types of mass ϵ deviating

to y.

Uj(yϵ, ·) = ϕβL
+ η,∀j ∈ ϵ.

Consider a sub-coalition of mass ϵ′ < ϵ deviating to x,
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Uj(xϵ′ , ·) = ϕβL
+

(
pB(1 + ϵ′ − ϵ)

pB(1 + ϵ′ − ϵ) + pA

)
η,∀j ∈ ϵ′.

Comparing the above equations we say that the coalition is self-enforcing if and only if

η < pB(1+ϵ′−ϵ)+pA
pB(1+ϵ′−ϵ)

ϕm. Moreover, the coalition is profitable with respect to the equilibrium if

and only if ϕβL
+ η > ϕαL

+ pBη ↔ η < 1
pA
ϕm.

Next, consider a mixed coalition of mass ϵ = ϵA+ ϵB, such that ϵA of A types chooses y, and

ϵB of B types chooses y.

Ui(yϵA , ϵB, ·) = ϕβL
+

(
pAϵA

pAϵA + pBϵB

)
η,∀i ∈ ϵA,

Uj(yϵB , ϵA, ·) = ϕβL
+

(
pBϵB

pAϵA + pBϵB

)
η,∀j ∈ ϵB.

If ϵA = ϵB, Ui(yϵA , ·) < Ui(x
∗, ·). If ϵA > ϵB, Ui(yϵA , ·) > Ui(x

∗, ·) but Uj(yϵB , ·) < Uj(x
∗, ·).

Finally, if ϵA < ϵB, Uj(yϵB , ·) > Uj(x
∗, ·), but Ui(yϵA , ·) < Ui(x

∗, ·). Therefore, this coalition

is never profitable ∀ϵA ⋛ ϵB.

Therefore, no mixed coalition is profitable compared to the equilibrium, but a coalition of

B types is profitable and self-enforcing if and only if η > 1
pA
ϕ. We conclude that the pooling

equilibrium on x and on L is also CPE if and only if η < 1
pA
ϕ.

A similar reasoning applies to a pooling equilibrium on y s.t. mk = (βL, αL).

Separating equilibria on social groups.

Consider the case when DM has beliefs p(t|k) = (1, 0). Thanks to Lemma 17, we know

that it must be that in equilibrium p(s|k) = (0, 0). Hence, it must be that DM chooses d0

and mk = (αL, βL). Given DM ’s choices, candidates all choose L (Lemma 16). Consider

the case s.t. all A choose x, and all B choose y.

Ui(x, ·) = ϕαL
+ η,∀i ∈ A,

Ui(y, ·) = ϕβL
, ∀i ∈ A,

Uj(x, ·) = ϕαL
,∀j ∈ B,

Uj(y, ·) = ϕβL
+ η,∀j ∈ B.
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Hence, each i always chooses x, while each j chooses y if and only if η > ϕm, and the one

described above is an equilibrium. Is it CPE?

To prove this, we have to show that there cannot be any coalition that deviates from the

equilibrium that has a strictly higher utility than in equilibrium. Let us first consider a

mixed coalition of ϵA A types and ϵB B types. Consider the case of i ∈ ϵA:

Ui(yϵA , ϵB, ·) = ϕβL
+ η

(
ϵApA

ϵApA + (ϵB − 1)pB

)
,∀i ∈ ϵA.

Since Ui(yϵA , ϵB, ·) < Ui(x
∗, ·), there would never be any mixed coalition profitable with

respect to the separating equilibrium. Similarly, there could never be any coalition of A

types alone. Now let us think about a coalition of B types with mass ϵ to social group x. In

this case,

Uj(xϵ, ·) = ϕαL
+ η

(
ϵpB

ϵpB + pA

)
,∀j ∈ ϵ.

Consider a sub-coalition of mass ϵ′ < ϵ deviating to y.

Uj(yϵ′ , ·) = ϕαL
+ η

(
(1 + ϵ′ − ϵ)pB

(1 + ϵ′ − ϵ)pB + pA

)
,∀j ∈ ϵ′.

The coalition is self-enforcing if and only if η < (ϵpB+pA)((1+ϵ′−ϵ)pB+pA)
pBpA(1−2ϵ+ϵ′)

ϕm. Moreover, such

a coalition is profitable for each member of the coalition if η < ϵpB+pA
pA

ϕm. Therefore, the

separating equilibrium on social groups and pooling on L such that all A types choose x, and

all B types choose y is also CPE if and only if η > ϵpB+pA
pA

ϕm. A similar reasoning applies to

the other separating equilibrium on social groups given the symmetry in utility functions.

Lastly, we show that there cannot exist any semi-separating equilibrium on social groups.

Consider a situation where DM has beliefs p(t|k) = (p(A|x), p(A|y)), where p(A|x) >

p(B|x), and p(A|y) < p(B|y), and p(t|k) = (0, 0). In this case, there is no equilibrium

when DM buys the information; hence, we only consider the case in which she plays d0,

and mk = (αL, βL). In this case all candidates choose L, and to be an equilibrium it must

be that a fraction qA (1 − qA) of A types chooses x (y), and a fraction qB (1 − qB) of B

types choose x (y) such that qA > qB (1 − qA < 1 − qB). Each i ∈ A earns Ui(x, ·) =

ϕαL
+ η

(
qAx pA

qAx pA+qBx pB

)
, or Ui(y, ·) = ϕβL

+ η
(

(1−qAx )pA
(1−qAx )pA+(1−qBx )pB

)
. Similarly, each j ∈ B earns

Uj(x, ·) = ϕαL
+ η

(
qBx pB

qAx pA+qBx pB

)
, or Uj(y, ·) = ϕβL

+ η
(

(1−qBx )pB
(1−qAx )pA+(1−qBx )pB

)
. Therefore, there
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exist a semi-separating equilibrium on social groups, pooling on L if and only if

 ϕαL
+ η

(
qAx pA

qAx pA+qBx pB

)
= ϕβL

+ η
(

(1−qAx )pA
(1−qAx )pA+(1−qBx )pB

)
ϕαL

+ η
(

qBx pB
qAx pA+qBx pB

)
= ϕβL

+ η
(

(1−qBx )pB
(1−qAx )pA+(1−qBx )pB

)
Given that the solution to the above system involves qB

qA
> 1−qB

1−qA
, which would violate weak-

consistency, the above one cannot be an equilibrium.

A similar reasoning applies to the case when p(s|k) = (1, 1), and DM buys the information.

Corollary 12.

Consider a game where there is homophily, and types and skills are either complement or

substitute.

• Under substitutability, if pBτ < c < pBτ(1+ δL), there exists no pooling equilibrium on

social groups. If c > pBτ(1 + δL), there exist pooling equilibria on social groups, where

all candidates play L, DM does not buy the information, and m∗
k = (αL, αL). These

equilibria are not CPE. If c > pBτ(1 + δL), there exists one pooling equilibrium on x

and one on y, where all candidates play L, DM does not buy the information, and

m∗
k = (αL, βL) (m

∗
k = (βL, αL)). These equilibria are CPE if and only if η < 1

pA
ϕm.

• Under complementarity,

– if pBτ < c < pBτ(1+ δL), there exist pooling equilibria on social groups, where all

candidates play H, and DM buys the information. These equilibria are not CPE.

– If pBτ(1 + δL) < c < pBτ(1 + δH), there exist pooling equilibria on social groups,

where all candidates play H, and DM buys the information, and there exist pooling

equilibria on social groups where all candidates play L, DM does not buy the

information, and m∗
k = (αL, αL). These equilibria are not CPE.

– If pBτ(1 + δL) < c < pBτ(1 + δH), there exists one pooling equilibrium on x

and one on y, where all candidates play L, DM does not buy the information,

and m∗
k = (αL, βL) (m∗

k = (βL, αL)). These equilibria are CPE if and only if

η < 1
pA
ϕm.

– If c > pBτ(1 + δH), there exist pooling equilibria on social groups, where all can-

didates play L, DM does not buy the information, and m∗
k = (αL, αL). These
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equilibria are not CPE.

– If c > pBτ(1+δH), there exists one pooling equilibrium on x (and one on y), where

all candidates play L, DM does not buy the information, and m∗
k = (αL, βL)

(m∗
k = (βL, αL)). These equilibria are CPE if and only if η < 1

pA
ϕm.

D.2 Mixed Strategies Equilibria

In this section we state and prove the existence of all the Mixed strategies Nash Equilibria

(MNE from now on) of our model. We begin by saying that we exclude from the results

those MNE that exist only under knife edge conditions.

To formalise the results we need to define what a MNE is in our model. We callΥ∗ = (q∗xA, q
∗
xB, q

∗
H)

the vector of mixed strategies in equilibrium of candidates, where q∗H is the probability with

which candidates choose H in equilibrium, and q∗xt is the probability with which type t can-

didates choose x in equilibrium.1 Similarly, we call Σ∗ = (q∗d,ω
∗
k,ω

∗
s) the choices of DM in

equilibrium, where q∗d is the probability with which DM chooses d0 in equilibrium, and ω∗
k

and ω∗
s are the tasks choices in equilibrium.2 I will write the value of c for substitutability

and in parenthesis the value of c for complementarity.

D.2.1 Benchmark

Theorem 10.

Consider a game where there is not homophily, and types and skills are either complement

or substitute.

• Take q∗H < 1
2
. If c = τ [pB (1 + (1− q∗H)δL) + q∗HδH ], there exist infinite pooling equilib-

ria on social groups s.t. p∗(t|k) = (pA, pA), p
∗(s|k) = (q∗H , q

∗
H , ), Σ

∗ =
(

ϕ
s−ζ

ϕ
s , (αL, αL),ω

∗
s

)
,

and Υ∗ = (q∗, q∗, q∗H). These equilibria are CPE.

• Take q∗H > 1
2
. If c = τ [pB + (1− q∗H)δL] (c = τ [pB (1 + q∗HδH) + (1− q∗H)δL]), there

exist infinite pooling equilibria on social groups s.t. p∗(t|k) = (pA, pA), p∗(s|k) =

(q∗H , q
∗
H , ), Σ

∗ =
(

ϕ
s−ζ

ϕ
s , (αH , αH),ω

∗
s

)
, and Υ∗ = (q∗, q∗, q∗H). These equilibria are

CPE.

1 Given Assumption 3, A types B types randomize the skill with the same probability.
2 Because we exclude knife edge conditions, we are automatically excluding the strategies where DM

mixes within the tasks assignments, hence, we do not need to have mixed strategies inside the tasks assign-
ments.
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Proof.

We will prove the second bullet point and the argument stands for the first by symmetry of

payoffs.

Firstly, let us start by showing the conditions for DM . In order for the first kind of MNE

to happen DM must have these kind of beliefs: p(t|k) = (pA, pA) and p(s|k) > (1
2
, 1
2
). Note

that there are two cases in which DM can have this beliefs in equilibrium: one where qxA =

qxB = q, and the one where qxA = qxB = 1 (qxA = qxB = 0) and p(A|y) = pA (p(A|x) = pA).

If this is the case, mk = (αH , αH). In this case E[V (·,mk, d0)|x] = E[V (·,mk, d0)|y] = pAτ+

qHτδH , if there is substitutability, and E[V (·,mk, d0)|x] = E[V (·,mk, d0)|y] = pAτ(1+qHδH).

In both cases, V (·,m∗
s, d1) = τ(1 + qHδH + (1− qH)δL)− c.

If c > pBτ + (1 − qH)τδL (c > pBτ(pB + pBqHδH + (1 − qH)δL)), DM chooses d0 and

candidates all choose L and the one described above cannot be an equilibrium. On the

opposite, If c < pBτ + (1− qH)τδL (c < pBτ(pB + pBqHδH + (1− qH)δL)), DM chooses d1,

candidates all choose H and the one described above cannot be an equilibrium. Therefore,

there exists MNE with the above characteristics if and only if c = pBτ + qHδ. Note that

in this case, DM chooses to play d0 with probability qd, and when she plays d0 she plays

mk = (αH , αH).

Secondly, consider candidates. If qxA = qxB = q, each candidate earns the same utility, no

matter which social group they choose. Moreover,

Ui(q,H, ·) = ϕαH
− ζ + η,∀i ∈ A

Ui(q, L, ·) = qdϕαH
+ (1− qd)ϕαL

+ η,∀i ∈ A.

The first equation equals the second if and only if qd = ϕ
s−ζ

ϕ
s (equally for B types). If that

is the case, candidates choose H with probability qH ∈ (1
2
, 1). Given that all candidates are

indifferent between x and y, hence, qxA = qxB = q in equilibrium. Similar reasoning can be

done for the case in which all candidates choose x (y).

As for previous proofs under the benchmark, note that these equilibria are also CPE since

there is no coalition that gives a strictly higher utility to the candidates in the coalition than

in the equilibrium.
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D.2.2 Homophily

We now consider f
(
nt′′

k′ , n
t′

k′

)
as indicated in Definition 7. We give a unique statement

divided into four parts. The first concerns pooling equilibria on social groups, the second

concerns separating equilibria on social groups with randomized skill, the third concerns semi-

separating equilibria on social groups, and the fourth concerns semi-separating equilibria

on social groups with randomized skill. With randomized skill, we mean equilibria where

candidates choose q∗H /∈ {0, 1}. Note that throughout the statements we will refer to ϕ
m
=

ϕαH
− ϕβH

.

Theorem 11.

Consider a game where there is homophily, and types and skills are either complement or

substitute.

Pooling equilibria on social groups.

• Take q∗H < 1
2
. If c = τ [pB (1 + (1− q∗H)δL) + q∗HδH ], there exist infinite pooling equilib-

ria on social groups s.t. p∗(t|k) = (pA, pA), p
∗(s|k) = (q∗H , q

∗
H , ), Σ

∗ =
(

ϕ
s−ζ

ϕ
s , (αL, αL),ω

∗
s

)
,

and Υ∗ = (q∗, q∗, q∗H). These equilibria are not CPE.

• Take q∗H > 1
2
. If c = τ [pB + (1− q∗H)δL] (c = τ [pB (1 + q∗HδH) + (1− q∗H)δL]), there

exist infinite pooling equilibria on social groups s.t. p∗(t|k) = (pA, pA), p∗(s|k) =

(q∗H , q
∗
H , ), Σ

∗ =
(

ϕ
s−ζ

ϕ
s , (αH , αH),ω

∗
s

)
, and Υ∗ = (q∗, q∗, q∗H). These equilibria are

not CPE.

Separating equilibria on social groups, with randomized skill.

• Take q∗H < 1
2
. If c = τq∗HδH and η > ϕ

s−ζ

ϕ
s ϕm, there exist two separating on social groups

s.t. p∗(t|k) = (1, 0) or p∗(t|k) = (0, 1), p∗(s|k) = (q∗H , q
∗
H), Σ

∗ =
(

ϕ
s−ζ

ϕ
s , (αL, βL),ω

∗
s

)
or Σ∗ =

(
ϕ
s−ζ

ϕ
s , (βL, αL),ω

∗
s

)
, and Υ∗ = (1, 0, q∗H) or Υ

∗ = (0, 1, q∗H). These equi-

libria are CPE if and only if η > pA+ϵpB
pA

(
ϕ
s−ζ

ϕ
s ϕm

)
.

• Take q∗H > 1
2
. If c = τ(1− q∗H)δL and η > ϕ

s−ζ

ϕ
s ϕ

m
, there exist two separating on social

groups s.t. p∗(t|k) = (1, 0) or p∗(t|k) = (0, 1), p∗(s|k) = (q∗H , q
∗
H), Σ

∗ =
(

ϕ
s−ζ

ϕ
s , (αH , βH),ω

∗
s

)
or Σ∗ =

(
ϕ
s−ζ

ϕ
s , (βH , αH),ω

∗
s

)
, and Υ∗ = (1, 0, q∗H) or Υ∗ = (0, 1, q∗H). These

equilibria are CPE if and only if η > pA+ϵpB
pA

(
ϕ
s−ζ

ϕ
s ϕ

m
)
.

Semi-separating equilibria on social groups.

• Take p∗(A|x) ∈ (pA, 1) or p
∗(A|y) ∈ (pA, 1), and η <

1
pA
ϕm.
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If c > τ(1+ δL)o
∗
x or c > τ(1+ δL)o

∗
y, there exist infinite semi-separating equilibria s.t.

p∗(t|k) = (p∗(A|x), 0) or p∗(t|k) = (0, p∗(A|y)), p∗(s|k) = (0, 0), Σ∗ = (1, (αL, βL),ω
∗
s)

or Σ∗ = (1, (βL, αL),ω
∗
s), Υ∗ = (1, q∗xB, 0) or Υ∗ = (0, q∗xB, 0), and η =

pA+q∗xBpB
pA

ϕm. These equilibria are not CPE.

• Take p∗(A|x) ∈ (pA, 1) or p
∗(A|y) ∈ (pA, 1), q

∗
d >

ϕ
s−ζ

ϕ
s , and η < 1

pA
q∗dϕ

m.

If c = τ(1+ δL)o
∗
x or c = τ(1+ δL)o

∗
y, there exist infinite semi-separating equilibria s.t.

p∗(t|k) = (p∗(A|x), 0) or p∗(t|k) = (0, p∗(A|y)), p∗(s|k) = (0, 0), Σ∗ = (q∗d, (αL, βL),ω
∗
s)

or Σ∗ = (q∗d, (βL, αL),ω
∗
s), Υ∗ = (1, q∗xB, 0) or Υ∗ = (0, q∗xB, 0), and η =

pA+q∗xBpB
pA

q∗dϕ
m. These equilibria are not CPE.

• Take p∗(A|x) ∈ (pA, 1) or p
∗(A|y) ∈ (pA, 1), q

∗
d <

ϕ
s−ζ

ϕ
s , and η < 1

pA
q∗dϕ

m
.

If c = τo∗x or c = τo∗y (c = τ(1 + δH)o
∗
x or c = τ(1 + δH)o

∗
y), there exist infinite semi-

separating equilibria s.t. p∗(t|k) = (p∗(A|x), 0) or p∗(t|k) = (0, p∗(A|y)), p∗(s|k) =

(1, 1), Σ∗ = (q∗d, (αL, βL),ω
∗
s) or Σ∗ = (q∗d, (βL, αL),ω

∗
s), Υ∗ = (1, q∗xB, 1) or

Υ∗ = (0, q∗xB, 1), and η =
pA+q∗xBpB

pA
q∗dϕ

m
. These equilibria are not CPE.

Semi-separating equilibria on social groups with randomized skill.

• Take q∗H < 1
2
, p∗(A|x) ∈ (pA, 1) or p

∗(A|y) ∈ (pA, 1), q
∗
d = ϕ

s−ζ

ϕ
s , and η < 1

pA
q∗dϕ

m.

If c = τ [(1 + (1− q∗H)δL)o
∗
x + q∗HδH ] or c = τ

[
(1 + (1− q∗H)δL)o

∗
y + q∗HδH

]
, there exist

infinite semi-separating equilibria s.t. p∗(t|k) = (p∗(A|x), 0) or p∗(t|k) = (0, p∗(A|y)),
p∗(s|k) = (q∗H , q

∗
H), Σ

∗ = (q∗d, (αL, βL),ω
∗
s) or Σ

∗ = (q∗d, (βL, αL),ω
∗
s), Υ

∗ = (1, q∗xB, q
∗
H)

or Υ∗ = (0, q∗xB, q
∗
H), and η =

pA+q∗xBpB
pA

q∗dϕ
m. These equilibria are not CPE.

• Take q∗H > 1
2
, p∗(A|x) ∈ (pA, 1) or p

∗(A|y) ∈ (pA, 1), q
∗
d = ϕ

s−ζ

ϕ
s , and η < 1

pA
q∗dϕ

m
.

If c = τ (o∗x + (1− q∗H)δL) or τ
(
o∗y + (1− q∗H)δL

)
(c = τ [(1 + q∗HδH) o

∗
x + (1− q∗H) δL]

or c = τ
[
(1 + q∗HδH) o

∗
y + (1− q∗H) δL

]
), there exist infinite semi-separating equilibria

s.t. p∗(t|k) = (p∗(A|x), 0) or p∗(t|k) = (0, p∗(A|y)), p∗(s|k) = (q∗H , q
∗
H), Σ

∗ = (q∗d, (αH , βH),ω
∗
s)

or Σ∗ = (q∗d, (βH , αH),ω
∗
s), Υ∗ = (1, q∗xB, q

∗
H) or Υ∗ = (0, q∗xB, q

∗
H), and

η =
pA+q∗xBpB

pA
q∗dϕ

m
. These equilibria are not CPE.

The coefficients o∗x ∈ (0, 1) and o∗y(0, 1) are:

o∗x = 1− pAp
∗(A|x)− q∗xBpBp

∗(A|x)− (1− q∗xB)pB

o∗y = 1− pAp
∗(A|y)− (1− q∗xB)pBp

∗(A|y)− q∗xBpB.
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Proof.

Pooling equilibria on social groups.

We prove the second bullet point, and the argument for the first stands by symmetry of

payoffs. The part of this proof concerningDM strategies is the same as the one in Theorem 10

and hence, we omit it. Concerning candidates, we already know from Theorem 10 that they

will choose H with probability qH ∈ (1
2
, 1) if and only if qd = ϕ

s−ζ

ϕ
s . Since candidates are

indifferent between H ans L, for the remaining part of this proof, will consider that they

choose L for simplicity. Consider the case in which candidates choose x and y in the same

proportion.

Ui(x, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕαL

+ ηpA,∀i ∈ A,

Ui(y, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕαL

+ ηpA,∀i ∈ A.

Uj(x, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

+ ηpB,∀j ∈ B,

Uj(y, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

+ ηpB,∀j ∈ B.

Given that Uj(x, L, ·) = Uj(y, L, ·) and Ui(x, L, ·) = Ui(y, L, ·), qxA = qxB = q, and DM

beliefs will be correct in equilibrium. The same can be said for the case in which all candidates

choose x (y).

However, none of these equilibria is CPE. Indeed, consider the case in which a fraction ϵ of

B types who were choosing identity x chooses identity y.

Uj(yϵ, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

+ η
(1− q + ϵ)pB

(1− q + ϵ)pB + (1− q)pA
, ∀j ∈ ϵ.

Consider a sub-coalition of mass ϵ′ < ϵ deviating from the coalition and choosing x.

Uj(xϵ′ , L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

+ η
(q + ϵ′ − ϵ)pB

(q + ϵ′ − ϵ)pB)pB + (1− q)pA
, ∀j ∈ ϵ′.
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The coalition is self-enforcing given that (1−q+ϵ)pB
(1−q+ϵ)pB+(1−q)pA

> (q+ϵ′−ϵ)pB
(q+ϵ′−ϵ)pB)pB+(1−q)pA

, for ϵ > ϵ′.

Moreover, (1−q+ϵ)pB
(1−q+ϵ)pB+(1−q)pA

> pB and the coalition is profitable.

Therefore, all the pooling equilibria on social groups s.t. q∗xA = q∗xB = q are not CPE.

Similarly for the pooling equilibrium on x (y).

Separating equilibria on social groups with randomized skill.

We prove the fourth bullet point and the argument for the third stands by symmetry of

payoffs. Firstly, consider DM . For the equilibrium to exist, it must be that p(t|k) =

(1, 0) and p(s|k) = (qH , qH) > (1
2
, 1
2
). Given these beliefs, she chooses mK = (αH , βH), if

she plays d0. Specifically, E[V (·,mk, d0)|x] = E[V (mK, d0)|x] = τ(1 + qHδ), both under

substitutability and complementarity.

Given that V (·,m∗
s, d1) = τ(1 + qHδH + (1 − qH)δL), she chooses qd ∈ (0, 1) if and only if

c = τ(1− qH)δL. If c > τ(1− qH)δL, DM chooses d0 and all candidates choose L, therefore,

there cannot be any equilibrium with qH > 1
2
. If c < τ(1 − qH)δL, DM chooses d1 and all

candidates choose H, therefore, there cannot be any equilibrium with qH < 1.

Secondly, consider candidates’ choices. We know from Theorem 10’s proof that candidates

choose qH ∈ (1
2
, 1), if and only if qd =

ϕ
s−ζ

ϕ
s . Since candidates are indifferent between H and

L, we show the case in which they all choose L. Consider the case in which qxA = 1 and

qxB = 0.

Ui(x, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕαL

+ η,∀i ∈ A,

Ui(y, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕβH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕαL

,∀i ∈ A.

Uj(x, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

,∀j ∈ B,

Uj(y, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕβH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

+ η,∀j ∈ B.

Each i ∈ A chooses x ∀η > 0. However, B types choose y if and only if η > ϕ
s−ζ

ϕ
s ϕ

m
.

Therefore, there exists a separating equilibrium on social groups, provided that the above

condition holds.

To show the coalition proofness, consider a coalition of mass ϵ of B types choosing x.
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Uj(xϵ, L, ·) =

(
ϕ
s − ζ

ϕ
s

)
ϕαH

+

(
1− ϕ

s − ζ

ϕ
s

)
ϕβL

+ η
ϵpB

ϵpB + pA
,∀j ∈ ϵ.

A sub-coalition of mass ϵ′ < ϵ deviating to y would earn

Uj(yϵ′ , L, ·) = ϕβL
+ η

(1 + ϵ′ − ϵ)pB
(1 + ϵ′ − ϵ)pB + pA

,∀j ∈ ϵ′.

The coalition is self-enforcing if and only if η < (ϵpB+pA)((1+ϵ′−ϵ)pB+pA)
pBpA(1−2ϵ+ϵ′)

(
ϕ
s−ζ

ϕ
s ϕm

)
. Moreover,

the coalition is profitable if and only if η < ϵpB+pA
ϵpB

(
ϕ
s−ζ

ϕ
s ϕ

m
)
. Therefore, the separating

equilibrium on social groups described above is CPE if and only if η > ϵpB+pA
ϵpB

(
ϕ
s−ζ

ϕ
s ϕ

m
)
.

Semi-separating equilibria on social groups.

We now prove the fifth bullet point, and the argument stands for the sixth and the seventh,

thanks to symmetry in payoffs.

Consider the case in which DM has the following beliefs: p(t|k) = (p(A|x), 0), with p(A|x) ∈
(pA, 1), and p(s|k) = (0, 0). In such a case, mk = (αL, βL). Therefore,

E[V (·,mk, d0)] = (pA + qxBpB) (p(A|x)τ(1 + δL)) + (1− qxBpB)(τ(1 + δ)).

With due simplifications, it can be shown that

E[V (·,mk, d0)] = τ(1 + δL) (pAp(A|x) + qxBpBp(A|x) + (1− qxB)pB) .

Note that 1−o∗x = pAp(A|x)+qxBpBp(A|x)+(1−qxB)pB. Therefore, given that V (m∗
s, d1) =

τ(1 + δL)− c, DM will chose d1 if and only if c < o∗xτ(1 + δL). However, in this case, there

exists no equilibrium since candidates will all choose H. If c > o∗xτ(1 + δL), DM chooses d0,

and if c = o∗xτ , DM mixes. We only show the proof for the first case, but the argument for

the second stands for symmetry in payoffs.

Consider the case when DM chooses d0. Let qxA = 1 and qxB ∈ (0, 1).3 If qd = 1, we know

3 Note that any qxB ∈ (0, 1) satisfies p(t|k) = (p(A|x), 0), hence, any qxB ∈ (0, 1) sustain a semi-
separating equilibrium.
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from Lemma 16 that qH = 0. Therefore,

Ui(x, L, ·) = ϕαL
+ η

(
pA

pA + qBx pB

)
,∀i ∈ A,

Ui(y, L, ·) = ϕβL
,∀i ∈ A.

Uj(x, L, ·) = ϕαL
+ η

(
qBx pB

pA + qBx pB

)
,∀j ∈ B,

Uj(y, L, ·) = ϕβL
+ η,∀j ∈ B.

All i ∈ A will choose x. However, Uj(x, L, ·) = Uj(y, L, ·) if and only if η = qBx pB+pA
pA

ϕm,

therefore, semi-separating equilibria exist if and only if this condition holds.

Let us check for coalition proofness. Consider a coalition of mass ϵ of B types previously

choosing y that now chooses x. They will all earn

Uj(xϵ, L, ·) = ϕαL
+ η

(
(qBx + ϵ)pB

pA + (qBx + ϵ)pB

)
, ∀j ∈ ϵ.

If a sub-coalition of mass ϵ′ < ϵ deviates to y, they earn

Uj(yϵ′ , L, ·) = ϕβL
+ η,∀j ∈ ϵ′.

Given that the semi-separating equilibria exist if and only if η = qBxpB+pA
pA

ϕm and that
(qBx+ϵ)pB

pA+(qBx+ϵ)pB
> qBxpB

pA+qBxpB
, Uj(xϵ, L, ·) > Uj(y

∗, L, ·), and Uj(xϵ, L, ·) > Uj(yϵ′ , L, ·). Therefore,
the coalition is both self-enforcing and profitable with respect to the equilibrium and all

these semi-separating equilibria are never CPE.

Semi-separating equilibria on social groups with randomized skill.

This part of the proof refers to the eighth and ninth bullet points. The logic of the proof is

the same as the fifth to seventh bullet points for the semi-separation on social groups, while

the logic for the randomization of skill is the same as the third and fourth bullet points. For

this reason, we omit the proof.
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In  this  thesis,  I  analyze how  and  why  social  conventions  emerge  across  distinct  contexts  and  their 
impact on different  economic environments.  In  the  first  and second chapters,  I  employ evolutionary 
game theory techniques together with stochastic stability to study the formation of social conventions 
in  two different strategic situations: a coordination game and a conflict game.  In  the  third chapter,  I 
conducted  two  field  experiments  to  assess  how  people  react  to  different  shares  of  the  population 
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guiding the formation of social groups among employees and the consequent impact on labor market 
outcomes. 
 
In  questa  tesi,  analizzo  come  e  perché  le  convenzioni  sociali  emergono  in  contesti  distinti  e  il  loro 
impatto  su  diversi  ambienti  economici.  Nei  primi  due  capitoli,  utilizzo  tecniche  di  teoria  dei  giochi 
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condotto due esperimenti sul campo per valutare come  le persone reagiscano a diverse percentuali 
della popolazione che si impegnano in un comportamento particolare, che è cruciale per comprendere 
l'emergere delle convenzioni sociali. Nel quarto capitolo, utilizzo un gioco di segnalazione per studiare 
l'importanza  dell'omofilia  nella  guida  alla  formazione  di  gruppi  sociali  tra  dipendenti  e  l'eventuale 
impatto sui risultati del mercato del lavoro. 
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