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Abstract

In the digital world, when users want to prove something about their identities (e.g.,
age, or degree grade), they need to provide pictures of physical documents (e.g., ID
cards, or degree certificates).

However, these documents may reveal on the identity of the users more than what
the users want to (e.g., the ID card reveals the birthdate, but also the home address).
Moreover, a malicious user can reuse those pictures, so to pretend to be another user.

Self‐Sovereign Identity, together with the blockchain technology, gives back to the
users the full control over the information they share about their own identities. In
this case, when the users want to prove a claim about their identities to another entity
(called verifier), they send a Verifiable Credential, which is tightly tied to them and
cannot be reused by any other user.

The verifier uses publicly‐available information stored on the blockchain to establish
the validity of that credential, but can accept the credential only if the entity that has
issued it (called issuer) is trusted. This trust is often established by means of invitations,
and requires the verifiers to obtain the invitation from each of the issuers they want to
trust.

In this thesis, we propose an extension of the current trust model, allowing a verifier
to trust an issuer without obtaining any invitation from them, provided that another en‐
tity, trusted by the verifier, trusts (directly or indirectly) the issuer, effectively creating
a chain of trust.

Keywords– Self‐Sovereign, Blockchain, Solidity, Digital identity, Chain of Trust
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Chapter 1

Introduction

Nowadays, more and more online services the users commonly access (like, for instance,
e‐mail clients, e‐commerce websites, social networking services, or video streaming
platforms) request them to authenticate. To perform the authentication, these services
typically ask the users to fill a web form with an e‐mail (or a username) and a password.

But what if the service needs to verify whether the user satisfies or not specific
requirements? For instance, a cinema may require users to prove they are over 18 before
booking tickets for watching a horror movie, while a car rental service may require users
to demonstrate they have a valid driving licence.

In all such cases, users are typically asked to provide pictures of physical documents
(e.g., ID cards or driver licences). However, those pictures are difficult to be automat‐
ically processed by a machine. Moreover, sharing the whole picture of a document may
lead to identity thefts.

Digital identity is a way to solve these problems. The use of machine‐readable doc‐
uments (like JSON documents) together with the use of cryptographic material (like
private and public keys) solve all the previously‐mentioned problems.

Self‐Sovereign Identity is a step further in the digital identity ecosystem. In particu‐
lar, when a user wants to prove specific claims about their identity (like name, surname,
birthdate, home address, etc.), they need to request to a trusted party, called issuer,
a Verifiable Credential, which is a JSON document containing all the claims the user
wants to prove. The Verifiable Credential is then digitally signed by the issuer, and
made available to the user.

The user can then share that Verifiable Credential to any entity, called verifier, that
requests the user to prove the claims contained in the credential. In particular, the
verifier makes use of publicly available information to verify the validity of the claims
inside the received Verifiable Credential.

However, the verifier can accept the Verifiable Credential only if they trust the
issuer. For instance, the cinema can accept a Verifiable Credential presented by a user
only if it has been issued by a trusted entity, like the registry office.

1



1.1. The solution we are looking for Chapter 1. Introduction

Current implementations of Self‐Sovereign Identity establish this trust between the
verifier and the issuer by means of invitations. These invitations are digital documents
(e.g., JSON documents) containing all the information needed by the verifier to fetch the
publicly available information that can then be used to verify the Verifiable Credentials
issued by the issuer and presented by any user.

This, however, requires a verifier to obtain an invitation from each issuers they want
to trust, which poses a scalability problem.

Indeed, imagine an employer that requires candidates for a job offer to provide their
degree certificate under the form of Verifiable Credentials. To accept the credential,
the employer, which acts as verifier, needs to obtain the invitation from any possible
university in the country.

To overcome this limitation, we propose an extension to the currently‐available stan‐
dards so to allow verifiers to also trust issuers without obtaining any invitation from
them, provided that another issuer, which is trusted by the verifier and, hence, the
verifier has obtained an invitation from, trusts the issuer. This creates a chain of trust,
in a way similar to the one created by digital certificates, but applied to Self‐Sovereign
Identity.

Therefore, supposing that the Department of Education trusts any university in the
country, the employer is not forced anymore to obtain an invitation from all the uni‐
versities, but the employer just needs to obtain the invitation from the Department of
Education.

This however, poses new challenges a new security risks that will be detailed in this
thesis. we propose also a new way to manage VC revocation.

1.1 The solution we are looking for

Establishing a chain of trust of issuer allows to reduce the computational burned on
verifiers. Indeed, they do not need to retrieve an invitation from each of the issuers
they want to trust, but they just need to trust an entity that, transitivey, trusts the
other issuers.

This, somehow, delegates the several checks (like the trstiness of the next issuer of
the chain) to another issuer, and not to the user. Indeed, it may be difficult for a user to
know if an issuer is trustable or not. However, in may be easy for other issuers to do so,
maybe bacause they have access to documents or because they force the new issuers of
the chain to present several guanatees and documentation on their trustiness.

Consider, for example, an employer may require the candiates for a job to present a
degree certificate, in the form of VC. To trust any university that could issue degree cer‐
tificates, the employer is forced to improt the invitation from each of the universities.
However, the employer has no access to documentation that proves that a univeristy is
trstworthy.

2



Chapter 1. Introduction 1.2. Structure of the thesis

This implies that the employer has to conduct some researches on the trusworth of
each of the universities, which requires time and may not be automated.

Moreover, the employer is forced to periodically check whether new university borns,
otherwise the employer may finish to reject valid Verifiable Credentials because they
have been issued by a university that have not imported the invitation.

Establishing a chain of trust allows the employer to trust only a single entity, like
the Department of Instruction of the governemtn. It will e then that entity that, before
relasing the trust certification to a university, conducts all the necessary processes to
ensure the tristworthiness of the univeristy.

Eth smart contracts are recuded in the number oand complexity of the operations ‐>
Allow Ethemreum smart contract to validate VC

Chain of trust where anyone can be part of a chain.
A system where any user can join, and any verifier to user information to validate

VC

1.2 Structure of the thesis

This thesis is structured as follows:

• In chapter 2 we will detail they different types of digital identities, putting in
evidence how Self‐Sovereign Identity differentiates from the other types;

• In chapter 3 we will describe how the literature tackles the problem of imple‐
menting a chain of trust in the Self‐Sovereign Identity ecosystem, how our imple‐
mentation differentiates from those proposals, and why the currently‐available
implementations of Self‐Sovereign Identity are not ready to implement chains of
trust;

• In chapters 5 and 6 we will explain in details the two main building blocks of Self‐
Sovereign Identity, that are Decentralized Identifiers and Verifiable Credentials;

• In chapter 7 we will detail what the Ethereum blockchain is, and how it is useful
to implement SSI;

• In chapter 8 we will present our implementation of Self‐Sovereign Identity that
supports the creation of chains of trust. We will also detail the design choices we
have made so to reduce or eliminate potential security risks;

• In chapter 9 we present two case studies that make use of our Self‐Sovereign
Identity implementation;

• In chapter 10 we conclude the thesis by detailing possible additions to our imple‐
mentation.

3



Chapter 2

Digital identity

In this chapter we will detail the types of digital identity management systems, focusing
on how Self‐Sovereign Identity superseeds the others.

The digital identity is “a means for people to prove electronically that they are who
they say they are and distinguish different entities from one another” [1, Sec.2].

Therefore, we can think a digital identity to be the digital counterpart of an ID card,
which states our name, our surname and our birthdate.

2.1 Digital identity management systems

A Digital Identity Management System (IDMS) is a collection of policies and technologies
that ensure that only relevant users have accesses to specific resources, like application,
systems or specific services [2, Sec. I].

IDMS can be categorized into three types, based on where the identity of the user is
actually stored. The following sections will details these three types.

2.2 Centralized identity

In centralized identity, the user, to authenticate, is requested to sign up on the online
service they are accessing to, typically by providing an e‐mail and a password[3, Ch. 4].
This implies that the user is creating a digital identity on each of the online services they
are accessing, which forces the user to remember (or to write down) many passwords.

In centralized systems, the information the user shares with an online service are
not under the control of the user, i.e., the online service can, at any time, delete those
information, effectively deleting the identity of the user[4].

Moreover, all the information the user shares about their identity with an online
service cannot be automatically shared with other services, i.e., the identity is not

4



Chapter 2. Digital identity 2.3. Federated identity

portable. This implies that the user has to sign up on each service they access, and they
need to share the same information to each service, and this may be annoying for the
user [4].

However, if the users prove their identity by providing pictures of physical documents
(like ID cards), these pictures are not automatically verifiable, and they need the human
interaction to extract the information and validate them, which may require to directly
contact the entity that has issued the document [2, Sec. C1]. However, this entity may
not be always online, which implies that the verification process of the document may
require several days to be completed.

2.3 Federated identity

In this type of digital identity management systems, all the information related to the
identity of the user are managed by a special entity called Identity Provider (IdP)[3, Ch.
5].

Google, Facebook or the Italian SPID are all examples of federated identity manage‐
ment systems.

When the user wants to prove claims about their identity to an entity, the users are
first requested to authenticate to the IdP, though mechanisms like Single Sign‐On (SSO),
whic returns back to the user a proof of the successful authentication[5, Sec. III C]

This proof can be then shared to any online service requesting the user to authenti‐
cate. Indeed, the online service, when receiving the authentication proof, can validate
it by contacting the IdP and asking if the proof is valid or not. Then, if the proof is
valid, the Idp shares some information about the digital identity of the user with the
online service. This implies that the IdP asks the user for consent, typically by sending
a notification to a user’s device like the smartphone [5, Sec. III C]. Only if the user
consents, the IdP will share the requested information with the online service,

With respect to centralized identity management systems, all the pieces of infor‐
mation related to the identity of the users are stored on servers under the control the
Identity Provider, and not of the single service. Moreover, the user needs only to au‐
thenticate to the IdP to prove claims about their identity to other services, hence the
user does not have to authenticate to each of the services they access, possibly us‐
ing different emails and passwords. Therefore, the digital identity of the user can be
onstructed from physical documents only once, and this is done by the IdP [4].

Moreover, the user can control how much information the IdP shares with each online
service. For instance, in centralized identity systems, a user sending a picture of the
ID card is sharing with the service the name, surname and birthdate, but also the home
address, and this may not be required to be shared. With federated models, the user can
select to share only the name, surname and birthdate with the online service, without
sharing also the home address [5, Sec. III C].

5



2.4. Self‐Sovereign identity Chapter 2. Digital identity

However, the IdP can still delete, at any time, all the information related to the dig‐
ital identity of the user, which will prevent the user from proving their identity to other
services. [4]. Moreover, the IdP may track the activity of the user. Indeed, any service
where the user present the authentication proof is required to contact the IdP so to
validate the proof. This implies that the IdP may track the activity of the user, knowing
exactly to which services the user is trying to authenticate to. This problem does not
affect centralized identity management systems, since, when the user authenticates to
an online service, the other are not contacted at all.

Note that there is still the problem, for the Identity Provider, to check the correctness
and the validity of the pictures of physical documents the user provided, like for the
centralized systems.

2.4 Self‐Sovereign identity

This arguments explained in this section, unless otherwise states, are based on [6].
In the Self‐Sovereign Identity ecosystem, we can distinguish between three entities

that interact [1, Sec. 2]:

1. The user, which is the entity wants to prove claims about their identity;

2. The verifier, which is the entity that asks the user to prove specific claims about
their identity;

3. The issuer, which is the entity that issues to the user a proof stating that the claims
claimed by the user are correct and valid.

In particular, the issuer issues to the user a Verifiable Credential, which is a digital
document containing the claims together with a proof of correctness. Th user can then
present the Verifiable Credential to any verifier that asks the user to prove the claims
contained in the Verifiable Credential.

The verifier will then use publicly available information to validate the proof of
correctness of the Verifiable Credential. If the proof is verified, then the issuer can be
sure the claims in the Verifiable Credential are correct.

Verifiable Credentials are digital documents (like JSON documents) which can be
automatically analyzed by computers. There is no need to take pictures of physical
documents that require human intervention to be verified and digitalized.

Since the information used to validate Verifiable Credentials are public and not stored
in a server under the control of the issuer, Verifiable Credentials to be immediately
verified, without the need for the verifier to contact the issuer. This implies also that
the issuer has no way to track the activity of the user, because the verifier does not
need to contact the issuer to validate the Verifiable Credential [4].

6



Chapter 2. Digital identity 2.5. Summary

Moreover, the issuer may issue “atomic” Verifiable Credentials, each of which con‐
taining the minimum information possible [4]. This allows the user to choose which
information to share with the verifier.

For instance, the registry office may issue the user 4 different VC, one containing the
name and surname, one containing the birthdate, one containing the home address and
one containing the gender. If the users are requested to prove only their name, surname
ean birthdate, users can send the first two Verifiable Credentials together. This implies
that the user shares with the verifier only the information the verifier needs to know
[4].

In addition, Verifiable Credentials are tightly linked to the user. This implies that,
verifiers cannot reuse that Verifiable Credentials to pretend to authenticate as a user
(see 6). This prevents identity thefts.

Finally, Verifiable are not stored online, but they are stored on a device under the
control of the user. This implies that the user has full control over them. For instance,
the user can make copies the Verifiable Credentials so to distribute them across multiple
devices all under the control of the user. Therefore, the user is not forced to use a
specific device to prove claims about its identity, but they can use any device they want
[1, p. 6.2].

2.5 Summary

In this section we have seen how Self‐Sovereign Identity management systems differen‐
tiate from the centralized and federated ones. In particular, we have seen that all the
information related to the identity of the user are stored in devices under the control
of the user, and the user can decide which information to share to the verifiers. This is
a big step further in the digital identity ecosystem, since it puts the user in the center
and protects them from tracking and identity thefts.

7



Chapter 3

State of the art

In the literature, there are few solutions that propose the creation a chain of trust for
the issuers of Verifiable Credentials. Considering the solution we are looking for, as
explained in section 1.1, we excluded from these solutions the ones that require the
issuer to delegate to another issuer the possibility to issue Verifiable Credential as if it
were issued by the first issuer.

From the remaining solutions we selected the ones that are similar to the solution we
are looking for. In particular, [7] proposes to establish a chain of trust for the issuers by
using the Domain Name System, adding additional information to the DNS records. The
new information are called trust lists, which are lists where issuers insert other trusted
issuers.

However, the Ethereum smart contracts are not allowed to make DNS reoslution calls,
unless they use oracles 7.3.5, which sould be avoided as much as possible.

Moreover, there is no way for an issuer A to avoid to be added to the trust list of an‐
other issuer B to its trust list, is the issuer to add new members (in my implementation,
issuers issue certifications, and it is up to the members decide to use it or not).

Another solution is proposed in [8]. This solution makes use of Verifiable Credentials
to establish the chain of trust. In partiular, if the issuer A wants to be part of a chain of
trust having B as parent, the issuer A needs to ask to issuer B a Verifiable Credential
that allows A to be added to the chain of trust. Moreover, the solution imposes no limit
on the depth of the chain of trust.

However, [8] requires the issuers to be authorized by governing authorities, like
government agencies, to be part of a chain of trust, and we want a solution where any
entity can be part of a chain of trust, without the need to be authorized by issuers with
an high level of trust (like governments).

Consider, for example, [9], where the authors propose the use of Verifiable Creden‐
tials to track food in the food supply chain. This implies that a farmer, when selling a
vegetable, issue food certifications in the form of Verifiable Credentials so to guarantee
specific food standards are met.

8



Chapter 3. State of the art 3.1. Implementations

Imagine that a group of farmers create a consortium. In this case, verify should trust
each single farmer in the consortium to properly verify Verifiable Credentials attesting
the quality of the food. Using a chain of trust is a solution to this problem. Indeed,
there could be an issuer that represents the entire constortium, and each farmer is part
of a chain of trust having the consortium issuer as parent.

In this way, each farmer still issue Verifiable Credentials attesting the quality of
their food, but any verifier needs only to trust the consortium issuer to accept those
Verifiable Credentials. Moroever, if, in the furutre, additional farmers become part of
the consortium, there is no need for the verifiers to directly trust them, because they
trust the consortium issuer.

Using the solution proposed in [8] may not be fasible for small consortiums because
the farmers will require a governance authority to onboard them in the system, and to
issue a Verifiable Credential that allows the farmers to become part of a chain of trust.
However, to do so, the governance authority may require additional documentation that
the farmers may not be able to produce, or it may require the farmers to prove they
met some requirements that they cannot meet.

The solution suggested by the same authors of [8] in [10] is a step allows any issuer
(also non‐governance ones) to insert other issuers in a chain of trust. However, there is
still the requirement that at least one member (typically the root) of the chain of trust
must be a governance autority.

3.1 Implementations

We also analyzed some of the ready‐to‐use implementations of Self‐Sovereign Identity
that make use of the blockchain, so to see if some of them already allow the establish‐
ment of chains of trust, or if they can be extended to support them.

In this section we briefly present them, but none of them can be used to implement
our solution because none of them supports chain of trusts or can be exetended to
support them.

3.1.1 Sovrin

This arguments explained in this section are based on [11].
Born in 2016, Sovrin 1 is stores the verification information on public and permis‐

sioned blockchain that uses Hyperledger Indy, which is an open‐source project imple‐
menting a blockchain.

Sovrin allows any user to issue verifiable credentials, but users, to use the Sovrin
network, must first be onboarded by trusted entities that are part of the network. Users

1https://sovrin.org/
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can then use a mobile application, offered by Sovrin, to issue Verifiable Credentials, and
to import invitations so to trust other entities.

In our implementation, many of the design choices are inspired to Sovrin.

3.1.2 veramo

As the official site states, veramo 2 allows any deveoper can create an application that
makes use of Self‐Sovereign Identity by using the APIs veramo makes available. In par‐
ticular, the APIs are ready to be used in Node.js environments or in React applications.
Veramo allows also adding additional functionalities via plugins.

3.1.3 everest

Everest 3, as the official site states, provides a Self‐Sovereign Identity application that
allows users to create their digital identities. To do so, the users must use the client
application made available by Everest. However, Everest recently made available an SDK
allowing developers to directly interact with the blockchain that stores the information
without using the client application Everest provided..

3.1.4 Evernym

Evernym 4, is a Self‐Sovereign Identity solution that provides deveolpers a mobile SDK
that interacts, via REST APIs, with the backend server that accesses information stored
on the blockchain.

Initially, Evernym supported only the Sovrin network, but they recently added the
support for integrating other blockchains.

3.1.5 Midy

Midy 5 is an evolution of Evernym. In particular, as stated in [12], Midy provides a
mobile application that the users can use to create digital identities. These identities
are directly created from physical documents. The user just takes a picture of the
document, and the Midy team will take care of verifying the document and to update
the digital identity of the user accordingly.

2https://veramo.io/
3https://everest.org/
4https://www.evernym.com/
5https://www.evernym.com/
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3.1.6 self key

Self Key 6 provides its mobile application, for the users, and SDK for servers. It provieds
also SDK to realize custom client application they primarily allow users to authenticate
to other website, which make use of the SDK provied by self‐key to autehnticate. it
uses Etehreum as blockchain.

3.1.7 civic

Civic 7 allows decentralized
it may use deveral blockchains, like Etehreum or solana
it scans the physical documents that is then manually verified by Cicvic and added

to the digital identity
They do not use VC but similar things called attestations, which do not follow the

W3C standards it supports api to access the data stored on‐chain, so to verify VC.

3.1.8 Other implementations

We have also considered other publicly available but not so popular solutions, but they
still do not support for the creation of a chain of trust, or they cannot be extended to
support it.

3.2 Our approach to the problem

In our implementation, we allow each user to become an issuer and to be part of a chain
of trust. Like proposed by we use VC to establish this trust.

We want a way for smart contracts to fully verify the identity trust certifications,
without the need to call external smart contracts or external entities.

Moreover, we want a way for the verifiers to always retrieve the chain of trust of the
issuers, and to retireve all the ifnromation needed to verify if the trust certification is
still valid or not.

Finally, we want to a way to clearly state if a trust certification has been revoked,
and that this can be directly verified on‐chain.

with respect to the already‐available possible implementations available in the liter‐
ature, descpribed in the presious sections, we dont’t want the issuers to be government
authorities, but they can be any user.

6https://selfkey.org/
7https://www.civic.com/
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Note that, we are not taking into account concepts like reputation. This is by design.
We do not want issuers to be denied to be part from chains of trust because their repu‐
tation is not so high , maybe due to previously security breaches that allowed attackers
to stela sensitive data.

We want also a way for the verifiers to not trust specific issuers, even if they are
part of chains of trust where there are trusted issuers. This is because an entity may
loose its trustowrhitness, and we want verifiers to blacklist those entities.

3.2.1 Digital certificates

What we have implemented look very similar to digital certificates. So, why not directly
using digital certificates to create chains of trust.

Digital certificates have problems. First of all, the must be always available, other
verifiers cannot verify the chain of trust of an issuer. If the digital certificate is hosted
on a server under the control of the issuer, the server may be down. In this case, the
verifier will not be able to obtain the digital certificate,

Moreover, it requires DNS to properly resolve the server holding the certificate. Fi‐
nally, since the server is under the control of the issuer, it may track the activities of the
users, in particular, to which verifiers the user present VC. Indeed, only that verifiers
will ask the issuer its digital certificate.

A solution may be store the digital certificate in the blockchain. This resolves the
availability problem, because the blockchain is higly‐available. It also solves the prob‐
lem of traking if the blockchain in public ad unpermissioned, because there is no eneity
that controls the blockchain, hence there is no way to track the verifier back to the
account they use to access the blockchain.

Howver, thesre is still a problem. Blockchains often puts a limit in the maximum size
of the transactions. This implies that X.509 digital certificates may exceed that limit.
Moreover, they contain also many information that are not necessary to prove the trust
(i.e., a descriptive name of the entity the certificate belongs to). Finally, and this is
a big issue, smart contracts cannot parse and verify digital certificates in an efficient
way. This requires to perform several operations, and the blockchain put a limit in the
number of operations that can be performed, or on their complexity. Validating a X.509
digital certificate may require very complex operations, which are costly.

Therefore, instead of using digital certificates, we use VC while are lightweight and,
using a specific algorithm to create digital proofs, they can be easily verified by smart
contracts.

Digital certificates may also be stored on other online services, which are cccejtral‐
ized and they are not owned, e.g., Interplanetary File System. However, these solutions
cannot be directly used by smart contracts to retrieve information.
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3.3 Summary
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Chapter 4

Data representations

In this chapter, we will analyze two formats that allow to represent data in a compact
and standard form. In particular, we will analyze the RDF format, which will be then
used to compute the digital proofs inserted in Verifiable Credentials (see 6.2.2), and we
analyze the JSON‐LD format, which is used to represent DID documents (see 5.3) and
Verifiable Credentials (see 6).

4.1 Resource Description Format

Resource Description Format (RDF) is a format that allows to represent pieces of infor‐
mation as a directed graph [13, Sec. 1.1].

In particular, the information to represent are organized in an RDF graph, which is a
set of triples in the form:

(subject, predicate, object)

where the subject and the object are two nodes of the graph linked together by an arc,
while predicate is the label of that arc. In case there is no label on the arc connecting
the subject and the object, the predicate is empty.

The RDF graph, therefore, will contain all the triples that describe all the nodes and
arcs in the graph.

RDF categorizes the nodes of the RDF graph in 3 distinct categories, based on their
content. In particular:

1. Internationalized Resource Identifier (IRIs), which are like Uniform Resource Loca‐
tors (URLs), but they also allow the use of any UTF‐8 character [14, Sec. 1.1];

2. Literals, which are used to define constant values like numbers, strings or boolean
values. These literals are sequences of characters that represent the value (like
0.1, or true) together with an IRI that uniquely identifies the type of the value
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(like http://www.w3.org/2001/XMLSchema#string or
http ://www.w3.org/2001/XMLSchema#boolean);

3. Blank nodes, which are nodes that are neither IRIs nor literals. These nodes are
not associated with any identifier. This implies that, using the RDF format, it is
not possible to distinguish between two blank nodes.

However, there are cases where it is imperative to associated with each node a
unique indentifier. In these cases, it is possible to assign to each bloank node a so‐
called blank node identifier, which will uniquely identify the blank node, allowing
to distinguish it from the others.

The RDF standard does not impose any particular constraint on structure on the
blank node identifiers, because it highly depends on the implementation [13, Sec.
3.4]

RDF imposes some restrictions on the information that can be stored in the nodes of
the graph. In particular, as explained in [13, Sec. 3]:

• Subjects must be IRIs, or blank nodes;

• Predicates must be IRIs or empty strings in case there is no label on the arc con‐
necting the subject and the object;

• Objects must be IRIs, literals or blank nodes.

The graph represented in figure 4.1.1 is an example of a directed graph that can be
represented in the RDF format. The figure highlights in green the nodes that are IRIs,
in yellow the nodes that are literals, and in blue the node that is a blank node.
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“Mario” “Rossi”

https://www.example.com/name https://www.example.com/nickname

“MRossi”

https://www.example.com/User

https://www.example.com/firstName https://www.example.com/lastName

Figure 4.1.1: Example of an DRF graph

Listing 4.1 contains the representation of the graph in figure 4.1.1 using the RDF
format, supposing to use (A) as a blank node identifier for the blank node.

RDF Listing 4.1: RDF representation of the graph

[https://www.example.com/User, https://www.example.com/Pred_1,
https://www.example.com/name],
[https://www.example.com/User, https://www.example.com/Pred_2,
https://www.example.com/nickna

me],
[https://www.example.com/name, , https://www.example.com/nickname],
[https://www.example.com/name, https://www.example.com/Pred_3, (A)],
[(A), , https://www.example.com/firstName],
[(A), , https://www.example.com/lastName],
[https://www.example.com/firstName,,"Mario"],
[https://www.example.com/lastName,,"Rossi"],
[https://www.example.com/nickname,,"MRossi"]
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4.1.1 RDF canonicalization

As explained in the previous section, the RDF format represents nodes and arcs of a
directed graph in the form of set of triples. Since it is a set, changing the order of
triples does not change the described graph.

However, to create digital proofs starting from an RDF graph, we need a way to
represent it as a unique string. Indeed, if we change the order of the triples in the
set, the described graph is still the same, but the computed digital signature will be
different.

The RDF Dataset Canonicalization algorithm is the solution to that problem. Indeed,
given an RDF graph in input, the algorithm produces a string in output, and this string
is guaranteed to be unique independently of the order of the tuples in the set [15, Sec.
1].

This allows creating the same digital signature out of the same RDF graph represented
in two different ways using the RDF format [15, Sec. 1.1]. In particular, as described
in [15, Sec. 1.1], the canonicalization algorithm will deterministically assign to each
blank node a unique blank node identifier, so that the same black node will be associated
to the same identifier, independently of the order of the tuples in the set that represents
the RDF graph. Then, the algorithm will order the tuples in the set describing the RDF
graph and, finally, it represents the set as a sequence of characters.

The canonicalization algorithm guarantees, therefore, that, starting from two RDF
representations of the same graph, the resulting string will be the same.

The listing 4.2 shows the result of the application of the canonicalization algorithm
to the graph depicted in figure 4.1.1.

RDF‐CANON Listing 4.2: RDF caninicalization of the graph

_c140. ....%TODO:

4.2 JSON‐LD

As the standard documentation [16, Sec. 1] states, “Linked Data is a way to create a
network of standards‐based machine‐interpretable data across different documents and
websites.” In particular, “starting from one piece of Linked Data, and application can
follow embedded links to other pieces of Linked Data that are hosted on different sites
across the Web.”

JSON‐LD (JavaScript Object Notation for Linked Data), is a format that represents
Linked Data using a JSON object [16, Sec. 1].

A conformant JSON‐LD object is a JSON object where each property is an IRI [16,

17
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Sec. 3]. The IRIs allows to unambiguously identify each of the values fo the properties
specified in the JSON‐LD document. Moreover, by accessing the resource identified by
the IRI, we can retrieve a web page containing human‐readable information explaining
the meaning of property. In addition, to avoid misinterpreting a property name, each
JSON‐LD document is associated with a type, specified using the @type property.

Consider the example in listing 4.3. As you can see, the JSON‐LD document is a JSON
object describing a person. Indeed, from the @type property, we know that the type of
the entity described in the JSON‐LD context is https://schema .org/Person and, at
that URL, we find a web page describing all the properties that can be associated to a
person.

In particular, we can find:

• The https://schema.org/givenName property, which describes the first name of
the person;

• The https://schema.org/familyName property, which describes the last name of
the person;

• The https://schema.org/url property, which describes a URL associated with
the person.

JSON‐LD Listing 4.3: Example JSON‐LD document

{
"@type": "https://schema.org/Person",
"https://schema.org/givenName": "Jane",
"https://schema.org/familyName": "Doe",
"https://schema.org/url": {

"@id": "https://www.janedoe.com"
}

}

However, the JSON‐LD document in listing 4.3 is quite verbose because it repeats the
prefix https://schema.org/. To reduce this verbosity, the JSON‐LD format allows for
the specification of contexts [16, Sec. 3.1]. In particular, using contexts, the JSON‐LD
document can be compacted by condensing all the IRIs used as names in the property.
The JSON‐LD parser will then take care of appending to each property name the URL of
the context specified in the @context property.

For example, the JSON‐LD document in listing 4.3 can be condensed in the document
in listing 4.4, which is more compact and still allows a JSON‐LD parser to correctly
reconstruct the original document in listing 4.3.
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JSON‐LD Listing 4.4: Example JSON‐LD document with context

{
"@context": "https://schema.org",
"@type": "Person",
"givenName": "Jane",
"familyName": "Doe",
"url": {

"@id": "https://www.janedoe.com"
}

}

Note that, in the example, we have specified only one context in the @context
propery. However, the JSON‐LD standard allows for specifying multiple contexts in the
@context property, in the form of a JSON array [16, Sec. 4.1]. In this case, each
property name and type is prepended with the context URL that defines the meaning of
that porperty.

In listing 4.5 there is an example of a JSON‐LD document using multiple contexts. In
particular:

• The Person and Place types together with the address, givenName and familyName
properties are prepended with the https://schema.org URL, because it defines
the meaning of those properties and types;

• The geometry and coordinates properties are prepended with
https://geojson.org/geojson-ld/geojson-context.jsonld” URL, because it
defines the meaning of those properties.

JSON‐LD Listing 4.5: Example JSON‐LD document with context

{
"@context": [

"https://schema.org",
"https://geojson.org/geojson-ld/geojson-context.jsonld",

],
"place": {

"@type": "Place",
"address": "1600 Amphitheatre Pkwy, Houston, TX",
"geometry": {

"coordinates": [107.04, 115.5]
}

},
"owner": {

"@type": "Person",
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"givenName": "Jane",
"familyName": "Doe"

}
}

A JSON‐LD document can be represented as an RDF graph [16, Sec. 10], in which
property names (after having being preprended with one of the context URLs) are the
subjects, and their values are the objects. The predicates are absent, i.e., they are all
empty strings.

For instance, the JSON‐LD in listing 4.3 can be represented with the directed graph
in figure 4.2.1

“Mario” “Rossi”

https://www.example.com/name https://www.example.com/nickname

“MRossi”

https://www.example.com/User

https://www.example.com/firstName https://www.example.com/lastName

Figure 4.2.1: RDF graph computed from the JSON‐LD document in listing 4.3

4.3 Summary

In this section we have detailed two RDF and JSON‐LD. The first allows representing
pieces of information as directed graph, which can then be uniquely represented as a
string using the RDF canonicalization algorithm. The second, instead, allows information
represented as JSON objects to be then represented as RDF graphs.

These two formats will be useful when computing digital signatures of Verifiable
Credentials, as explained in 6.2.2.

20



Chapter 5

Decentralized Identifiers

In this chapter we will explain the first of the two building blocks of Self‐Sovereign
Identity, that is Decentralized Identifiers. These identifiers allow to uniquely identify
each user but, at the same time, to guarantee their privacy.

As the W3C standard states, Decentralized Identifiers (DIDs) are a new kind of glob‐
ally unique identifiers that allow users to prove control over them [19, Sec. 1]. The
W3C standard refers to the users with the term DID subject, since they are the subject
identified by the DID.

To guarantee more privacy for the users, they are suggested to use different DIDs
when interacting with different entities [19, Sec. 10.2]. Indeed, if the user presents
the same DID to different entities, they can collude to track the activity of the user. If,
instead, the user presents two different DIDs, the entities receiving them are not able
to know if the subject of those DIDs is the same user or two different users.

The W3C standard allows any entity to be identified using Decentralized Identifiers,
also non‐human ones. For instance, DIDs can identify the occupant of a specific role,
like the CEO of a companyThis reduces discrimination, since any entity, when receiving
a DID, cannot exclude a specific category of users (like, for instance, IoT devices) to
perform some actions because there is no way to know if the DID subject is a physical
person or not.

5.1 DID scheme

[19, Sec. 3.1]
The DID scheme defines the structure of the Decentralized Identifiers [19, Sec. 3.1].

The W3C standard requires DIDs to follow the structure contained in listing 5.1.
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DID Listing 5.1: Basic DID scheme

did:<method>:<method-specific>

In particular, any DID must start with the string did:, followed by a string that identi‐
fies the DID method (see 5.5), and another string that uniquely identifies the DID subject
according to the DID method.

5.2 DID URL

A DID URL is an identifier that identifies the location of a network resource [19, Sec.
3.2]. In particular, a DID URL is just a DID with the addition of the components that can
be found in URLs.

The W3C standard specifies the usage of the query string to identify services [19,
Sec. 3.2.1], while the fragment is used to identify verification methods.

DID URLs can be used, for instance, to reference parts of DID documents like verifi‐
cation methods or service (see 5.3).

5.3 DID Document

A DID document contains information about DID subject [19, Sec. 1.1]. In particular, as
described in [19, Sec. 1.1], the DID document describes the cryptographic material the
DID subject can use to prove control over the DID, as well as the cryptographic material
that can be used to make assertions like Verifiable Credentials (see 6). Moreover, DID
documents list URLs that can be used by other entities to establish a communication
channel with the DID subject.

An example of a DID document is presented in listing 5.2. In particular:

• The DID subject is contained in the id property;

• The authentication property specifies the verification methods (see 5.3.1) de‐
scribing the cryptographic material the user can use to prove their control over
the DID;

• The assertionMethod property specifies the verification methods (see 5.3.1) de‐
scribing the cryptographic material the user can use to make assertions, like Veri‐
fiable Credentials (see 6);

• The service property specifies the endpoints (see 5.3.3) where the DID subject
can be contacted to exchange information.
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, while the authentication, .

JSON‐LD Listing 5.2: Example of DID document

{
"@context": [

"https://www.w3.org/ns/did/v1",

"https://identity.foundation/EcdsaSecp256k1RecoverySignature2020/lds-ecdsa-secp256k1-reco
very2020-2.0.jsonld",
"https://www.ssicot.com/did-document",
"https://ssi.eecc.de/api/registry/context/credentialregistry"

],
"id": "did:ssi-cot-eth:5777:1234567890abcdef123456789abcdef123456789",
"authentication": [

{
"id":

"did:ssi-cot-eth:5777:1234567890abcdef123456789abcdef123456789#issuer-authentication-key",
"type": "EcdsaSecp256k1RecoveryMethod2020",
"controller":

"did:ssi-cot-eth:5777:1234567890abcdef123456789abcdef123456789",
"blockchainAccountId":

"eip155:5777:d14DaC2057Bd0BEbF442fa3C5be5b2b69bbcbe35"
}

],
"assertionMethod": [

{
"id":

"did:ssi-cot-eth:5777:1234567890abcdef123456789abcdef123456789#vc-issuing-key",
"type": "EcdsaSecp256k1RecoveryMethod2020",
"controller":

"did:ssi-cot-eth:5777:1234567890abcdef123456789abcdef123456789",
"blockchainAccountId":

"eip155:5777:e14D5C265fBdfB7bF442fa3C30ed1b2b69bbe1e59"
}

],
"service": [

{
"id":

"did:ssi-cot-eth:5777:123456789abcdef123456789abcdef123456789abc#issuing-service",
"type": "CredentialRegistry",
"serviceEndpoint": {

"registries": [
"https://www.issuer-service.com/verifier",
"https://www.new-issuer-service.com"

]
}
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}
]

}

The information contained in the DID documents can be modified at any time. The
entities that can make changes to a DID document are called DID controllers [19, Sec.
2]. Typically, the DID subject is also a DID controller, meaning that the DID subject can
always make changes to their DID document. However, the standard allows the DID
subject to specify other users, identified with other DIDs, that are allowed to make
changes to the DID document.

5.3.1 Verification methods

A verification method describes a set of information that can be used by other entities
to authenticate or authorize the interaction with the DID subject [19, Sec. 5.2].

An authentication is a verification method that contains information that can be
used to authenticate the DID subject [19, Sec. 5.3.1]. For instance, it can contain the
public key paired with a private key that the DID subject can use to authenticate to an
external service by proving the knowledge of the private key. In particular, an entity
can authenticate the DID subject by making them use the private key to sign a particular
message. If the entity can then decrypt the message using the public key contained in
the verification method, then the DID subject has proved the control over the DID and,
hence, they are authenticated.

Another type of verification methods are assertion methods [19, Sec. 5.3.2]. These
verification methods can be used by the DID subject to express claims, like Verifiable
Credentials 6.

The W3C standard allows the DID subject to specify distinct verification methods
to authenticate and to express claims, so to avoid an attacker to reuse public crypto‐
graphic material for purposes it is not intended to be used to. For instance, if the DID
subject uses its private key sign expressed claims, an attacker may reuse the signature
to authenticate as a user. The W3C standard allows not to incur in these situations by
using different keys for authenticating the DID subject and for assert claims.

All the verification methods are uniquely identified by a DID URL (see 5.2). The cryp‐
tographic material associated to them is determined by the specific type of verification
method. For instance, some verification methods may contain public keys, while others
may contain references Ethereum accounts (see 5.3.2).

The verification methods include also the controller of that verification methods,
which may not be necessarily the DID subject. The controller expressed the DID that
can prove control over the cryptographic material that is described by the verification
method.
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For example, a parent controlling the DID of the child may insert, as an authenti‐
cation verification methods of the child, a public key that is under the control of the
parent. This allows the parent to authenticate as the child in any online service where
the child can be authenticated [19, Sec. 2]. The controller property of the verification
method will contain the DID of the parent, effectively disallowing the child to modify
or remove that verification method.

5.3.2 EcdsaSecp256k1RecoveryMethod2020

The EcdsaSecp256k1RecoveryMethod2020 standard, detailed in [17] details the format
of cryptographic material the DID subject can use to authenticate or to to express claims
by using the private key associated with an Ethereum account (see 7.3).

The EcdsaSecp256k1RecoveryMethod2020 standard represents verification methods
as shown in the listing 5.3 where the blockchainAccountId property contains the ad‐
dress of the Ethereum account whose private key can be used by the DID subject to
authenticate or assert claims.

The address of the Ethereum account is prepended with the ID Ethereum chain the
account belongs to, according to the EIP‐155 standard (see 7.3.4).

JSON Listing 5.3: Example of an EcdsaSecp256k1RecoveryMethod2020 verification
method

{
"id": "did:example:123#key-0",
"type": "EcdsaSecp256k1RecoverySignature2020",
"blockchainAccountId": "eip155:1:0x89a932207c485f85226d86f7cd486a89a24fcc12"

}

5.3.3 Services

Services describe service endpoints, which are network addresses like URLs that can be
contacted to communicate or interact with the DID subject [19, Sec. 2].

Each service, like verification methods, is uniquely identified by a DID URL [19,
Sec.5.4]. In this way, we decouple the location of the service from the identifier that
identifies it. Indeed, if the DID subject moves the service to another location, the
subject is just required to change the service endpoint in the DID document, without
the need to contact all the entities that use the service warning them that the service
endpoint has changed.
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Additional information may be included to further describe the service, like a de‐
scription of the steps to perform to establish an encrypted communication channel when
accessing the service endpoint [19, Sec. 5.4]

A service described in the DID document may be used, for instance, by an online
website that wants to authenticate the users. In particular, the website may present a
QR code to the user that wants to autenticate, and this QR code encodes the DID URL of
the login service. Once the user takes a picture of the QR code, the user’s device can
contact the service identified by the DID URL to start the authentication process, e.g.,
a challenge‐response protocol where the server challenges the user to prove they have
control over a specific DID.

5.4 CredentialRegistry

The CredentialRegistry is a type of services allowing the DID subject to express service
endpoints where users can ask for Verificable Credentials [18, Sec 6.2.3].

In particular, by sending an HTTP request to one of the listed service endpoints spec‐
ifying a DID, the user will receive a verifiable credential. The listed endpoints,typically
require the users to authenticate by proving control over the specified DID.

Listing 5.4 (source [18, Example 30]) contains an example of the specification of a
CredentialRegistry service in a DID document.

JSON Listing 5.4: Example of an CredentialRegistry service

{
"service": [

{
"id": "did:example:123#vcregistry-1",
"type": "CredentialRegistry",
"serviceEndpoint": {

"registries": [
"https://registry.example.com/{credentialSubject.id}",
"https://identity.foundation/vcs/{credentialSubject.id}"

]
}

},
{

"id": "did:example:123#vcregistry-2",
"type": "CredentialRegistry",
"serviceEndpoint":

"https://ssi.eecc.de/api/registry/vcs/{credentialSubject.id}"
}

]
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}

5.5 DID method

The DID method describes all the operations that can be performed on a DID document
[19, Sec. 8].

In particular, the DID method describes which CRUD operations are allowed on the
DID document (like addition, modification and deletion of verification methods and ser‐
vices), and which entities can perform such operations.

Note that the DID methods are not required to implement all the CRUD operations
[19, Sec. 8]. For instance, the DID method may allow the addition and deletion of
verification methods, but not their modification.

5.6 DID resolver and DID URL dereferencer

The DID resolver is a system component that, given in input a DID, returns the DID
document describing it [19, Sec. 2]. The DID URL dereferencer, instead, is a system
component that, given in input a DID URL, retruns in output the resource identified by
that URL [19, Sec. 2].

DID resolver and DID URL dereferencers may accepts specifying DID and DID URL that
conform one or more DID methods [19, Sec. 7].

5.6.1 DID resolution

DID resolution is the operation of resolving a DID into the DID document describing it [19,
Sec. 7.1].

The W3C standard allows to perform the DID resolution using two different func‐
tions[19, Sec. 7.1]:

1. resolve, which given a DID, resolves it to the associated DID document, and re‐
turns the document as a sequence of key/value pairs;

2. resolveRepresentation, acts like the resolve one but, instead of returning a
sequence of key/value pairs, it returns the information in a specific data repre‐
sentation (like a JSON‐LD document;

Since the resolve function is quite restrictive in the representation of the returned
information, we will only consider the resolveRepresentation function, because it is
more flexible by allowing to return DID documents in different formats.
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The DID resolution process can be customized by passing to the DID resolver specific
options [19, Sec. 7.1]. For instance, specifying to the resolveRepresentation function
the JSON object presentedin listing 5.5, we are requesting the resolver to return the
DID document as a JSON‐LD document. In this case, if the resolver does support that
representation, a representationNotSupported error is generated.

JSON Listing 5.5: Example of DID resolution options

{
"accept": "application/did+ld+json"

}

The process of resolution must return a JSON‐LD object with the structure presented
in listing 5.6.1 (real values are subsituted with ...), where:

• didDocumentStream contains the resolved DID document in the requetsed repre‐
sentation, e.g., JSON‐LD document;

• didDocumentMetadata contains some metadata about the DID document, like the
date it was created, or the date it was last update or whether the DID has been
deactivated;

• didResolutionMetadata, instead, contains some metadata on the result returned in
didDocumentStream, like the MIME type of the representation used to represent
the DID document.

JSON Listing 5.6: Example of the result of DID resolution

{"@context":"....",
"didResolutionMetadata": {"conetntTRype":""},
"didDocumentStream":{"..."},
"didDocumentMetadata":{

"created":"....",
"updated":"...",
"deactivated"}

In case of errors, the result will be a JSON‐LD object the structure presented in listing
5.7, where error is be a string that identifies the error. For example [18, Sec. 10]:

• invalidDid states that the DID is not conformant to the syntax exposed in 5.1;

• notFound states that the DID document has not been found;

• methodNotSupported states that the DID resolver does not support the DIDmethod;
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• interalError states that there were problems in performing the action (like not
able to contact the netwrok to retrive the information).

JSON Listing 5.7: Example of the result of DID resultion in case of errors

{"@context":"....",
"didResolutionMetadata": {"conetntTRype":""},
"didDocumentStream":{"..."},
"didDocumentMetadata":{

"created":"....",
"updated":"...",
"deactivated"}

5.6.2 Did URL dereferencing

DID URL dereferencing is the process of taking a DID URL and returning the resource
identified by that DID URL [19, Sec. 7.2]. Examples of returned resources can be an
authentication, an assertion method or a service.

Like for the DID resolution (5.6.1) the DID URL dereferencing process can be cus‐
tomized by specifying additional options. For instance, specifying as options the JSON
oject presented in listing 5.5, we are requesting the DID URL dereferencer to rep‐
resent the returned resource as a JSON‐LD document. As for the DID resolution, in
this case the specified representation is not supported by teh DID URL dereferencer, a
representationNotSupported error is generated.

The DID URL dereferencing process must return a JSON‐LD object with a structure
similar to the object presented in listing 5.8 where:

• contentStream contains the resource identified by the DID URL;

• contentType expresses the MIME type of the resource contained in contentStream
property;

• contentMetadata contains some metadata relative to the contentStream, like
creation date or the last update date.

Note that the metadata highly depends on the type of resource contained in the
contentStream property. For instance, if the DID URL references an entire DID
document, contentMetadatamust be the same structure we find in the didDocumentMetadata
property of the JSON‐LD object returned when performing a DID resolution (see
5.6.1).
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JSON Listing 5.8: Example of the result of DID URL dereferencing

{
"@context": "....",
"dereferencingMetadata": {

"contentType": "...."
},
"contentStream": {

"..."
},
"contentType":{
"..."

}}

In case of errors, isntead, the result returned by the DID URL dereferenced will be
a JSON‐LD object with the structure presented in listing 5.9, where the error property
is a string identifying the error that occured. For example[18, Sec. 10]:

• invalidDidUrl states that the ID URL is not conformant to the DID URL syntax
exposed in 5.2;

• notFound states that the resource referenced by the DID URL has not been found;

• methodNotupported states that the DID resolver does not support the specified
DID method;

• interalError means that there were problems in performing the action

JSON Listing 5.9: Example of the result of DID URL dereferencing in case of errors

{
"@context": "....",
"dereferencingMetadata": {

"error": "..."
},
"contentStream": {},
"contentMetadata":{}}

5.7 Summary

In this chapter we have detailed the first of the two building blocks of SSI, Decentralized
Identifiers. We described why DID are important in SSI, how they guarantee privacy of
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the user, how DID documents are useful to obtain information related to the subject of
the DID (like public keys, or services), and how to retrieve the DID document (or a part
of it) associated with a DID.
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Chapter 6

Verifiable credentials

Verifiable Credentials are the second main building block of SSI. They can be used by the
user to prove the coorectness of specific claims. In particular, the verifiable credential
is digitally signed by the issuer of the credential, which gurantees the VC has not been
tampered with, and guarantees the authenticity, i.e., guarantees that the issuer has
really isssued that VC.

VC are JSON‐LD objects 4.2 and they contain the claims the user is claiming. In
addition, additional infromation are present, like the identifier of the issuer that has
issued it, the issuance date so not to use VC that has been issued in the future, expiration
date, so to reject VC that have been expired, and the proof guaranteeing the integrity
of the VC (6.2).

An example of VC is the listing 1.

{@context:[...],
id:....,
credentialSubject:{....},
type:[VerifiableCredential, ..],

issuer:””,
issuanceDate:””,
expirationDate:””,
credentuialStatus:{...},
proof:{...}}

As you can see, the VC contains the follwoing info:

• The @context field contaisns the JSON‐LD contexts, Note that the URL must be the
first one and must be always present to properly resolve the terms of the standard;

• The id, whhich uniquely identifies the VC. However, this may provoke a correlation
6.6;
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• The credentialSubject field contains the claims of the verifiable credential. The
claims effectlively present depend on what the user wants to prove;

• A set of types, which describe the meaning of the fields in the credentialSubject.
Note that VerifiableCredential is required;

• The issuer of the VC, indentified using a DID (see 5);

• The issuance date, before which the VC cannot be considered valid;

• The expiration date, after which the VC cannot be considered valid;

• credentialStatus, which contain ifnromation that can be used to retrieve the sta‐
tus of the verifiable credential (e.g., revoked or suspended). The ifnromation
contained depend on the stype of credential status;

• The proof, which integrity protects the content. The fields in the proof depend
on the type of proof generated.

Verifiable credentials make use of DIDs. This allows more privacy for the user. For
instance, two verifiers cannot collude by sharing their infromation to know on the user
much more than the user has shared with the single verifier. Indeed, since the user
may use two different DIDs to present VC to the two verifiers, they cannot merge the
ifnromation of the same user because they do not know whcih DIDs belong to the same
user.

6.1 Trust model

The trsut model of VCs is depisced in the picture 6.1.1.
In particular:

• The user trusts the issuer;

• The verifier trusts the issuers;

• The issuer does not trust the user. It trust them only when the user authenticates,
e.g ., it proves the control over a DID;

• The veirfier does not trust the user. It trum them only after authentication, so that
the user has proven the control ofver the DID reported in the credentialSubject.id
field.

• The issuer does not know the verifier, so no trust is required.
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Issuer

Trusts

User

Verifier

Trusts

Figure 6.1.1: Trust model assumed by Verifiable Credentials
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In our implementation, we will extend this trust model by allowing the verifier to
accept VC issued by non non‐trusted issuer provided that another issuer, which is trusted
by the verifier, trusts the issuer of the VC.

The verifiable data registry is a foruth component that holds information that allow
to tamper‐evident and to be a correct record of which data is controlled by which entity.

The verifiable credentials trust model is as follows:
The verifier trusts the issuer. To establish this trust, a verifiable credential is ex‐

pected to either: Include a proof establishing that the issuer generated the verifiable
credential; Have been transmitted in a way clearly establishing that the issuer gener‐
ated the verifiable credential and hat the verifiable credential was not tampered with
in transit or storage. The holder and the verifier trust the issuer to issuer true (i.e., not
false) credentials about the subject, and to revoke them quickly when appropriate; The
holder trusts the repository that stores and protects the access to the holder’s verifi‐
able credentials. In particular, the holder trusts the repository to store the credentials
securely, not to release them to anyone other than the holder, and not to corrupt or
loose them while they are in its care All entities trust the verifiable data registry to be
tamper‐evident and to be a correct record of which data is controlled by which entity.
Note that:

The issuer and the verifier do not need to trust the repository storing the holder’s
verifiable credentials; The issuer does not need to know or trust the verifier.

6.2 Data Integrity Proofs

Data Integrity Proofs allows the issuer to integrity‐protect the content of VC. This allows
users to present the VC without requiring the verifier to directly contact the issuer to
check the validity of the ifnromation stored in the VC.

Typically, Data Integrity Proofs typically are digital signatures, so to guarantee also
te authenticity of the VC/VP, i.e ., to prove that the VC/VP has been issued by the issuer
claiming to have issued it.

Indeed, using the digital signature, if the public key of the issuer is publicly available,
anyone can verify that the issuer specified in the VC is effectively the one that has signed
it.

To create a digital signature, as described by the standard, the VC should first be
canonicalized so to represent it in a unique form, independently of the order of the
fields in it (see 4.1.1 for additional details). Then, the result of the canonicalization is
hashed with an hashing algorithm and the resulting hash is signed with the private key
of the issuer.

Transformation algorithm: takes the VC and computes a string from it Hashing algo‐
rithm: takes the result of the transformation algorithm and computes an hash Signature
algorithm: takes the hash and computed the digital signature.
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The proof is associated with a proof purpose. This allows the proof not to be used in
contexts where the user don’t want to. For instance, a proof with proof purpose=assertionMethod
cannot be used to authenticate the user. This allows not to take proofs of verifiable cre‐
dentials and try to use uthem to athenticate an attacker as the user.

6.2.1 JSON Web Signature

JSON Web Signature (JWS) allows to represent contennt that is integrity‐protected. In
particular, it is composed of 3 parts, separatect by a dot . character:

1. Header, which is a JSON object containing infromation of the JWS, like the algo‐
rithm used to digitally sign the content. It must contain at least the alg header
parameter, which specifies the algorithm used to compute the digital signature.
It may also contain the crit parameter, which specifies the array fo header param‐
eters that the receipient must know and process in order ot validate the JWS.

JWS distinguish between protected and unprotected headers: the first are in‐
tegrity protected with the gital signature, the second does not. In the implemen‐
tation we realized, we make use only of protected headers.

2. Payload,which is the content to integrity protect;

3. signature, which is the digital signature of the payload and the protected header,
separated by a dot . character

To allow JWSs to be placed into URLs or contenxts where there are reserved symbols,
each part of the JWS is base64url‐encoded (see 6.2.1).

In listing 4 there is an example of JWS.

aaaa.bbbbbb.cccccc

where:

• aaaa is the header, which is the base64url encoding of the JSON object ....;

• bbbb is the payload, which is the base64url encoding of the string .....;

• ccccc is the digital signature, creted using the .... algorithm.

There are cases where encoding the payload is not necessary or it in unfeasible.
Consider for instance, a case where you want to integrity protect a movie file. These
file may be tenth of gigabytes. In this case, base64url encoding is unfasible because the
reuslting encoded payload will much bigger. The Unencoded Payload option, allows to
create JWSs with an undencoded payload. To not create trubles with teh standard JWS,
it adds the b64 paremetr to the ehader and the crit header must contain the string b64.
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There are also cases where the payload does not need to be sent. In particular, it
the recipient can reconstruct it in some way, it is not neccessary to include it in the
JWS. A JWS like so, uses the Detached Payload option appendinx F This allows to reduce
the information sent to just the header and the digital signature, saving bandwith and
reduucing the latency. However, the recipient must be able to recontrsuct the whole
payload, otherwise it cannot verify the signature. This type of JWS is used to guarantee
the integrity of content that is known both by the sender and the receiver.

It is possible to distinguish detached payload from non detached payload by checking
if the payload is empty or not in the JWS: if it is, then the payload is detached.

Base64 and Base64URL

Base64 is a format to encode an arbitrary sequence of bits. In particular, the sequence
of bits is consireder as a sequence of groups of 6 bits. Each group is then considered
as an unsigned integer number ranging from 0 to 63. Finally, each of these numbers is
converted to a character according to the following rules:

1. numbers from 0 to 9 are converted to characters from ’0’ ot ’9’;

2. numbers from 10 to ... are converted to upper case letters from ’A’ to ’Z’,

3. numbers from .... to 61 are converted to lower case letters from ’a’ to ’z’;

4. number 62 is converted to the charatcert +;

5. number 63 is converted to the character /

The base64 format cannot be used in contexts where / and + have a sepecific mean‐
ing. For instance , in URLs, the / character is the separator of the paths coponents

Base64URL format is similar to base64, but it substitutes the caharcter + with ‐ and
the character / with _, leaving all the other as they are. The resulting string can be
now inserted in URLs.

This allows to easily use base64 encoders and decoders to also encode enad decote
base64url ‐encoded strings. Indeed, it is sufficient to subitute + and / after with ‐ and
_encodning with ase64, and subsitute ‐ and _with + and / before decoding.

6.2.2 EcdsaSecp256k1RecoverySignature2020

This is a type of data integruty proof
It uses RDF caninocalization as transformation algorithm, SHA256 for the hashing

algorithm and ECDSA with recovery bit as signature algorithm.
The resulting signature is inserted in a JWS with detached payload and unencoded

payload option. Therefore, the unendoced header of the JWS will look like listing 3.
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{
”alg”: ”ES256K-R”,
”b64”: false,
”crit”: [”b64”]

}
Note the use of b64 due to unencoded payload, and the b64 in the crit header paramter
because the recipient must know and understand the meaning of the b64 header param‐
eter before processing the JWS.

A proof created with this type of data integrity proof algorithm looks like the follow‐
ing

{
”type”: ”EcdsaSecp256k1RecoverySignature2020”,
”created”: ”2020-04-11T21:07:06Z”,
”verificationMethod”: ”did:example:123#vm-3”,
”proofPurpose”: ”assertionMethod”,
”jws”: ”eyJhbGciOiJFUzI1NkstUiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..pp9eiLCMfN4EfSB3cbl3UxJ4T

tgUaTfByDaaB6IZbXsnvIy5AUIFjbgaiFNtq9-3f8mP7foD_HXpjrdWZfzlwAE”
}

For instance, consider the VC in listing 1 and 2. They contain the same ifnromation
but, if we compute the hash directly from them , we end up with two different hashes
and, therefore, with two different digital signatures.

RDF dataset canonicalization allows to express an RDF dataset into a standard format,
so that it can be digitally‐signed for later verification.

{
proof: ...
credentialSubject:..
issuer:...
issuanceDate: ...

}

{
issuer:...
issuanceDate: ...
proof: ...
credentialSubject:..

}

Therefore, to avoid this problem, we need a form of canonicalization that, given the
two VC before, or any other permutation, gives in output the same string.
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6.3 Zero‐Knowledge Proofs

Zero‐Knwoledge Proofs are ways to create claims without revailing the data of the
claims. cite ZPK

For instance, we can proove to be over 18 without revealing the birthdate.
The verifier can verify the claims are correct because the ZPK are cryptographically

tight to the claims they are generated from.
ZPKs are a step further in the SSI ecosystem by enancing the privacy of the user. VC

support for ZPK.

6.4 Credential status

VC can be revoked at any time due to different factors. To support correctly the cre‐
dential status, VC allows to specify URLs that, once dereferenced, result in information
telling the status of the VC.

The only registered credential status standard in the VC ext reg is teh CredentialSta‐
tusList2017 An improvement is CredentialStatusList2021 , but both do the same. This
standard allows to revoke verifiable credentials. In particular, once a VC is revoked, it
cannot be used anymore, i.e., the verifier must discard it.

In particular, each issuer is associated with a string of bits, where in position i there
is 1 if the i‐th verifiable credential has been revoked. The bit string is then packed, so
to reduce its size.

In the VC, a URL is placed together with an index x. When this URL id dereferenced,
the bit string is returned. The verifier can know if the VC has been revoked by checking
if at index x there is a 1 or 0.

This allows to know which VCs has been revoked. Indeed, the verifier can cache the
result and, if receiving a VC with index y, can check if the y‐th bit of the bit string is 1.
If it is, then the VC is revoked for sure. If it is 0, then the verifier must dereference the
URL so to obtain an updated version of the bit string.

However, the standard requires the bit string to be reified at creation, i.e., it must
be created a bit string of a specific size filled all with 0, and this size cannot be changed.

6.5 Verifiable Presentations

Verifiable presentations allow the user to present in a single unit one or more verifiable
credentials. Moreover, the user presenting the presentation may not be the subject to
which the verifiable credentials are issued to. The standard refers to such a user as
”holder”.
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In case the holder is not the subject, then it is up to the verifier accepting or not the
credentials. Indeed, to properly delegate the holder to use the credential of a subcjet,
a special verifiable credential stating the delegation should be issued by the subject,
and included in the presentation.

6.6 Risk of correlation

To avoid the risk of correlating the user, i.e., for a verifier to understand that behind two
different DIDs there is the same users, identifiers in the verifiable credentials should be
omimitted when possible.

For instance, connsider the following two VCs:

credSubj: {id: did:example:123, name: Mario surname: Rossi}

credSubj: {id: did:example:456, name: Mario surname: Rossi}

Even if the two subjects have the same name and surname, the verifier cannot be sure
they are the same user. Indeed, they may be omonimous.

However, consider the following two VCs:

id:”issuer/abc”, credSubj: {id: did:example:123, name: Mario surname: Rossi}

id:”issuer/abc” credSubj: {id: did:example:456, name: Mario surname: Rossi}

Even if the two verifiable credentials are issued to two different DIDs, the verifier can
understand that the two VC have been issuet to the saem exact usser, which is using two
different DIDs.

6.7 Summary

In this chapter we have exposed the concept of Verifiable Credential. In particular, we
have underlined its importance in the SSI ecosystem, and how to integrity protect the
content.
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Blockchain

Born in 2008 by a person with the psuedonim Satoshi Nakamoto, the blockchain is a way
to store data in an immutable and distributed fashion. The blockchain is also called
distributed ledger technology.

Nakamoto prposed its use so to exchange money, in form of Bitcoins, without the
need of instritutions like banks or governments. Moreover, no authority controls the
chain, hence anyone can exchange money.

The computers particupating in the maintainment of the blockchain, in the check
of the transactions and in the proposal of new blocks are rewarned by freshly created
Bitcoins, plus fees gives by the people sending the transactions included in the block.

Anyone can send a transaction to the network. This transaction is put on a glibal
pool, called mempool, from which each miner will extract the transactions to put in the
next block of the chain.

The fee model used by Bitcoin is quite unfair, becaseu block miners will be incenti‐
vated to insert in a new block all the transactions with a higher fee.

Every node contains the hash of the previous block and the hash of the current block.
Therefore, it is not possible to modify a block without the need to modify all the sub‐
sequent blocks. The

7.1 Blockchain ownership

While the Bitcoin blockchain is public and has no owned, the idea of a blockchain has
been implemented.

We can distinguish between permissioned and permissionless blockchain.s . The first,
the users requires to be inserted in the newtrork in order to participate, in the other
they can freely participate.

Blockchains may also be private or public. The first are accessible only by the ones
that knws it , while the second are accessible by anyone.
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7.2 Ethereum

Ethereum can be thought as a distributed computing system more than a way to ex‐
change money. Indeed, it allows to execute programs, called smart contracts. Since
the execution of a program requires computing power, anyone that wants to execute
smart conracts need to pay.

The paymant is done in ETH, which is the native value of the Etehereum network.
Since the value of ETH is high, we ususlayy work with submultiples of ETH, in particular,
wei which is 10−18 ETH and gwei (giga wei) which is 10−9 ETH or, equivalently, 109 wei.

Etehreum is a public and unpermissioned blockchain, menaning taht anyone can par‐
ticipate and send transaction to the network.

Addresses are identifiers to uniquely identify accounts and smart contracts. In par‐
ticular, they are 40 bytes‐long, and the address is directly computed starting from the
public key.

Any entity having an address can hold ETH. Therefore either accounts and smart
contracts can hold ETH.

7.3 Accounts and wallets

An account is a user that can access the network to make transactions or to propose new
blocks. To create an account, it is sufficient to generate a pair of public and private
keys.

A wallet is just a container of the private and public keys.
Elliptic Curve Digital Signature Algorithm (ECDSA) is an algorithm thata llows to com‐

pute a public and a private key in a asymmetric key criptography context.
In particular, while the private key is just a random sequence of bytes, the public

key is computed with an algorithm. Ethereum uses ECDSA with the secp256k1 constants
to generate the public key.

Note that the balance is not stored in the wallet but it stored in the blockchain.
Therefore, to access the balance of an accoutn, the user must access the blockchain
and recontruct the whole history of deposit and withdraw done with that account in
order to compute the balance of the account.

7.3.1 Smart contract

A smart contract is just a program than can be run by the nodes in the Etehereum
network. In particular, it is like a class in object‐oriented programming languages, and
it exposes methods to users and other smart contracts.
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Any method can be called by sending a transaction to the smart contract, specify‐
ing in the content of the transaction the index of the method to execute, and all the
paremters it needs, properly encoded.

Smart constract, to be executed, must be deployed to the entwork. To do so, the
creator of the smart contract needs to send to the enetwork a transaction, specifying as
the sender the address of where the smart contract will be deployed, and the content
f the transaction will be the code fo the contract.

A smart contract can call any method exposed by the smart contract itself. Moreover,
the smart contract can also call methods exposed by other smart contracts. However,
this requires the first smart contract to peroform a transaction, which has a much higher
gas cost thatn calling a method inside the smart the smart contract itself.

7.3.2 EVM

The smart contracts need to be executed by any machine in the netwkork. Since the
machines are different, smart contracts cannot be written in a machine‐specific code.
Therefore, smart contracts are written in byte‐code, and then executed by an interpeter
called Ethereum Virtual Machine (EVM).

The EVM is run by every node of the network.
Unlike most other applications, the EVM puts some limits in the size and in the com‐

plexity of the smart contracts. In particular, the smart contracts cannot have a size
bugger than 24.576 KiB. Moreover, the more a method of the smart contract is complex,
the more computing power Thta’s why, for complex smart contracts, optimization is
needed.

Typically, like for machine‐language, smart contracts are not directly written in byte‐
code, but they are wiritten using a high‐level language, called Solidity, that is then
compiled to the EVM bytecode.

This also allows to easily create other languages to create smart contracts, provided
that a compiler is able to produce bytecode the EVM can understand.

7.3.3 Gas

Any instruction executed by the EVM has a cost. However, instead of measuring it is ETH
(or submultiples like gwei or wei), each instruction is asoociated with a cost measured
in gas units. The more the instruction is complex, the more its cost in gas units.

The cost of each instruction is fixed. The use of gas allows to decouple the complexity
of the instruction from its real cost in ETH.

Note that while methods that require to write on the blockchain require the user
to send a transaction of the network, methods that perform only read‐only operations
can be directly executed by the client. This allows not to pay to execute read‐only
transactions because no transaction is sent.
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However, even if the smart contract code is public, it is not so easy to compute the
gas that a transaction uses. For instance, if the contract contains loops based on data
stroed on the chain, it may be difficult to determine how many time the cycle will cycle.

Therefore, to properly pay the transaction, Etehreum instroduces the concept of gas
limit. In parituclar a user, when sending a transaction, specifies in it the gas limit, and
the value of the gas limit. For instance, if you specify a gas limit of 10000, then you pay
the cost in ETH of 10000 gas. When the transaction is executed, the node executing the
transaction will use up to the gas limit to execute the instructions. If the total gas used
to execute the transaction is less than the gas limit, then the difference is refunded to
the sender. For instance, if you set the gas limit to 10000 and only 6500 is used , then
the remaining 3500 are refunded in ETH back to the sender. If, instead, the transaction
exceeds the gas limit, the node aborts the execution of the transaction as soon as the gas
limit is excceded. The transaction is then reverted, i.e., all the effects produced by the
transaction are cancelled. The user will not receive any result back already computed
by the method, and no gas is refunded.

The cost of the gas is proportional to the load of the network: the higher the load,
the higher the cost of the gas. This allows to reduce the number of transactions sent to
the netwkork because the cost higher.

The gas protects the network agains DoS and DDos attacks. Indeed, when the num‐
ber of transactions sent to the netwok increases, the cost of the gas increses as well.
Moreover, a transaction cannot run forever because at some point, it finishes all the gas
that has been paid.

Note that the block proposer is not forced to pay for its transactions, i.e., it can add
its transactions to the block it is porposing without paying.

7.3.4 Networks

There are several Etehreum blockchains available. The main chain is called mainnet. In
this chain, all the transactions must be paid, meaning that the user has to lead ETH to
their accounts before sending a transaction. Recall that also deploying a smart contract
is a transaction.

Ethereum provides also two other test networks, called goerli and Sepolia. They can
be used by developers to test the execution of their smart contracts in an environemnt
which is similar to the one of the mainnet.

each netwrok is independent form the others, i.e., they contain different blocks.
However, the transactions are free, i.e., you do not have to pay to execute the

transactions.
However, to avoid all the users to use test networks (so running applications that

make use of the blockchain without the need to pay for transactions), test networks are
by design much slower, so they can handle much less transactions that the main net.
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There are also private Ethereum blockchains. This are typically used by develop‐
ers to test their smart contracts before deploying them on the mainnet. With respect
to testnets, local netwroks are faster because there is no network latency. Moreover,
they do not impose any limit in the number of deployed contracts on in the number of
transactions sent.

Ganache is an example fo local Etehereum blockchains. It simulates a blockchain
with a bunch or accounts already loaded with ETH. Therefore, the devoper do not need
to pay for executing the transactions, and have no latency due to the network becuase
it is local. However, running an application on a local network is not robust, becuase
if the node fails all the ifnromation are lost. Moreover, if the node is not connected to
the Internet, the users cannot use the application anymore. Therefore local networks
should be used only for development purposes only.

To uniquely identify each of these blockchains, the EIP‐155 assigns a unique number
that identifies each chain. Frr instance, the mainnet (the main Etehereum network ) is
identifie by 1, while a local private test network is identified with 1337.

7.3.5 Oracles

Smart contract cannot access extenal entities like files or URLs. This is because they
might not be always available, or they may change during the time.

If it is imperative to access external entities, a smart contract can user oracles.
However, oracles are difficult to use since they must always provide the same data
every time it is required. Indeed, at any time, one can take the entire blockchain and
execute all the transactions to retieve the current status of the chain. This is impossible
if the oracle returns different resources every time it is called.

Therefore, oracles should be avoided when possible.

7.3.6 Consensus algorithms

Different nodes in the network see the transaction in different order. We need a way to
choose the next block of the blockchain. Moreover, due to the network latency, some
nodes may receive blocks after the other nodes, creating multiple views of the last block
in the chain, e.g., if the blocks are A‐B, a node may receive only A, hence one node says
that the last block is B but the other says that it is A.

we need, tehrefore, a way to deterministically determine the real last block of the
cahin when there are multiple options.

Etehereum uses two types of consensus algorithms that will be detailed in the fol‐
lowing sections
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Proof of Work

Before the London hard fork Proof of Work (PoW). In this type of consensus algorithm,
all the nodes participating to the network are in competition to selve a mathematical
problem, called puzzle.

In particular, the nodes are challenged to find the correct nonce that, added to the
next block of the blockchain, will create a sequence of bytes whose hash begins with a
specific amount of zeros.

Any node particupating in this competition can put in the next block of the blockchain
whatever transaction it wants.

The winner of the competition will add the block to the blockchain, and receives all
the fees from the transactions included in the block. All the other nodes have simply
lose, and all the work they have done needs to be discarded.

The number of zeros varies so to maintain a specific mean rate of blocks produced
per hour.

This type of consensus algorithm has been abandoned by Etehereum because it is not
considered environemntally‐friendly, since the miners are using compters to solve the
mathematical problem, and they consume electricity to do so.

Proof of Stake

Proof of Stake (PoS)
Unlike Proof of Work, this solution is environmentally friendly because the comuters

just need to listen to the transactions sent to the network and, every 12 seconds, they
may be called to propose the next block of the chain. No computing power is used to
create the new block, it is just composed by the chosen node and then propagated to
the rest of the network.

To participate to the block poposal process, a node must stake at least 32 ETH. This
means that the 32 ETH (or more) cannot be used by the user to make transactions, i.e.,
they are locked. In any time the user can un‐stake the ETH. This are sent to a specific
smart contract, called deposit smart contract.

Every 12 seconds a new block will be proposed. To do so 128 nodes are randomly
chosen among all the nodes of the network, to form a comittee. The probability to be
chosen depends on the number of ETH that are staked: the more you stake, the higher
the probability to be chosen as the next block proposer.

Then, from the 128 nodes, 1 is randomly chosen, again based on the number of
staked ETH. This chosen node will become the next block proposer. It will create the
block by inserting the transactions it wants, it inserts the hash of the previous block and
computes the hash of the resulting block

The block proposer will then propageate the created block to the other 127 chosen
nodes of the network. These nodes will check the correctness of the block, i.e., if all
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the transaction contained in the block are correct against the status of the network.
They then vote for the block: ”yes, it is correct” or ”no, it contains some errors”. The
block becomes part of the blockcchain only if at least 2/3 of the 127 nodes respond
”yes”.

If less than half of the 127 nodes are not reachable (online), or if the block proposer
goes offline, then the no new block is added to the blockhain, and a new block will be
proposed the next time slot.

The block proposer will receive great part of the the fees, while the remeining part
is split among the 127 nodes that have participated.

A node can answer ”no” because transactions are received by the nodes in different
orders. For example, if a user deposit 1 ETH and then withdraw 0.5 ETH, then the
two transactions are logically correct. Indeed, if the block proposer receives these
two transaction and inserts the second one , it kows it is correct because there is a
transaction (that will be added).

All the received ETH by the varius nodes are added to the staked ETH, i.e., they
acannot be use dto make transaction.

If a node does not behave correclty, part or all of the staked ETH will be burned, i.e.,
they will be sent to a wallet whose private key is not known by anyone, while everyone
knows the public key.

Do not bahave correctly means: ‐ Not responding while conatcted during the process
of blockc proposal. This is because the other nodes are waiting for all the nodes to
answer, and a malicious user that is selected to participate to the block proposal may
delay tohe answer or not repond at all so to slow down or block the newtork; ‐ Propose a
block with wrong transactions inside. Indeed, a malicious user may insert a transaction
”A sends 100 ETH to B” even if A does not have 100 ETH. If A and B are two accounts
owned by the maliclious users, that transaction may insert in the network more ETH
that the ones that are in the network currently, and makes the malicious user rich even
if it has no money.

After 12 blocks has been proposed, all the validators selected to validate the previous
12 blocks are asked to vote for the correct last block of the chain.

7.3.7 Digital signatures

Ethereum allows any account to digitally sign arbitrary sequences of bytes. Indeed,
since every account is associated with a private and a public key, the user can use its
private key to sign any sequence of bytes.

Etehreum allows smart contracts to verify those signatures. To do so, it makes use
of the ecrecover function, which takes the hash of the message, the signature, and
returns the address of the user that has signed the message. In case of errors, the
function returns either 0 or an address that is different from the one of the user that
has signed the message.
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Of course, Etehreum does not allow smart contracts to generate digital signatures.
Indeed, to do so, the smart contract requires to know the private key to use to sign.
This implies that the user has to specify, when calling the mathod of the smart contract,
as an argument the private key to use. However, recall that anything on the blockchain
is public, included the arguments passed when calling a method of a smart contract.
This implies that the private key of the user, specified as argument, will be published in
a block of the blockchain, meaning that the account of the user will be compromized.

7.3.8 Attacks

An attacker may try to attack the network so to shuffling the order of the blocks (caller
reorg) so to inlcude new blocks or exclude ones.

As exmplained by mouting a successful reorg attack would require the attacker to
control at 66% of the total staked ETH.

As the time of writing, the total amount of ETH staked is 19,741,828 ETH. This implies
that a 66% attack sligjlty more tahan 13 million ETH, which implies thay have to stake
almost 23 billion dollars (sine 1 ETH= 1,742.42 dollars) . It is improbable that an attacker
can stake that amount of ETH and, even if they can, the economic loss in case the attack
doe not succeed is so high to prevent a possible attack. With less that 66%, the attack is
difficult to mount, because it requires the attacker to ”collaborate” with the validators
off‐chain, possibly indicung a netwrok partiction, or by delaying messages.

Another attack if the finality delay in which the attacker prevents the network from
reaching an agreement on the next block to add to the chain. In this case, the attacker
should be chosen to be the block proposer. The attacker will withdraw its block until
many validators has voted for the preiouvos block in the chain to be the correct head.
Then the attacker releases its block. If the timing is correct, some other validators will
vote for the attacker’s block to be the last block of the chain. This prevents the newtrok
to reach the 2/3 of the majority, meaning that there is no agreement on the last block
of the chain, and the prcedure should be repeated. This will slow down the network.

There is a solution to this problem which identifies and excludes the validators that
are not attesting at all, or they are attesting opposite to the majority of the network
(which is still less than 2/3 of the staked ETH). To exclude these validators, part of their
staked ETH is burned , so that, at some point, the validators attasting the oppoiste of
the majority will hold less than 1/3 of the staked ETH, meaning that the 2/3 will reach
an agreement. This solution is called inactivity leak.

7.4 Summary

In this section we have presneted the Etehereum blockchain, and why it is useful to
store immutable ifnromation that must be publicly available.
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Implementation

Our implementation is made of two parts, a TypeScript library and one Etehereum smart
contarct. The smart contract will take care of storing the ifnromation regarding teh DID
documenst, The library is just a wrapper around the smart contract, allowing to bring to
the clients amny of the checks and parsing logic, so to make the smart contract easier
and gas efficient.

In particular, we propose a new DID method, the ssi‐cot‐eth DID method.
Realizing the smart contarct was a challenge. Indeed, the smart contract needs to

provide a lot of functionalities, and we didn’t want to split the smart contract into many
others, because it increases the gas needed.

The smart contract requires the compiler to optimize the code, because the bytecode
exceeds the limit of 24.576 bytes. Instead of splitting the smart contracts into several
others so to overcome the limit in size, we preferred keeping all the code inside the
same smart contract, so that the gas cost is lower.

8.1 Chains of trust

In our implementation we allow the creation of chains of trust. In particular, a DID may
have at most one parent in the chain of trust. If the same issuer wants to be part of
chains with different parents, it must create different DIDs.

However, there is no limit in the length of the chain, meaning that the chain of trust
can contain an arbitrary number of issuers.

To establish the chain of trust of an issuer, this issuer must first create a new DID or
use an already existing one under their control. Then, the issuer must ask to the parent
of the chain of trust a trust certification, which is a VC digitally signed by the parent in
the chain of trust.

Then, the issuer can call the updateTrustCertification method of the smart con‐
tract, providing the trust certification as paramster. The smart contract will validate
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the trust certification and, if valid, the chain of trust is established.
The smart contratc performs the check so that a user cannot specify an invalid veri‐

fiable credential. This check could be done on the library, but a malicious user can also
skip the library and directly call the smart contract.

8.2 Authentication

The user is authenticated on a per‐transaction basis, i.e., it must authenticate on every
request it sends to update its DID document.

To be authenticated, the user speicifes the DID URL that iodentifies one of its au‐
thentication methods. Then, the user uses their private key to send a transaction to the
Etehereum blockchain. The TypeScript library will do so behind the scenes.

The method of the smart contract will then perform tha authentication of the sender
of the transaction. In particular, it takes the DID URL, splits in DID and fragment, ac‐
ccesses the DID document relative to the DID and extracts the authentication method
with the specified fragment.

If the auth method is not found, then the user is for sure not authenticated. If,
instead, the auth method is found, the retrieved address is checked against the address
of the sender fo the transaction. Only if the two addresses match, the user is authen‐
ticated, and it can perfrom modification to its DID document (the smart contract will
check if the user tries to make modifications to other DID documents).

8.3 Role of the blockchain

The blockchain is used to store the ifnromation of the DID Documents. In particular, the
DID, list of authentication and assertion methods, services and trust certification.

To save gas, not all the information oare stored. Only the one that cannot be recom‐
puted from the others. For instance, the type of verification methods (auth and asser‐
tion) is not stroed because it is assumed to be EcdsaSecp256k1RecoverySignature2020.
Moreover, the controller of the verification methods is not stored because it is assumed
to be the DID subject.

8.4 library

The library supports, for digital signatures, the EcdsaSecp256k1RecoverySignature2020
standard. This standard requires the use of ECDSA with sekp256k1 constants to create
the digital signature. This allows the smart contract to verify the digital proof directly,
without requiring to contact other contracts or extenarl entities.
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The proof is ecoded as a JSON Web Signature with detached and unencoded payload.
This allows to reduce the size of the JWS because it does not contain the payload.
Moreover, it reduces the gas cost of executing the verification method on the smart
contract because the payload to hash must not be base64url encoded.

Moreover, there is no way for an issuer A to avoid to be added to the trust list of an‐
other issuer B to its trust list, is the issuer to add new members (in my implementation,
issuers issue certifications, and it is up to the members decide to use it or not).

8.5 CRUD operations

The TypeScript library we realized acts as the DID resolver for the ssi‐cot‐eth DIDmethod.
Therefore, the library allows the user to make modifications to their DID documents,

as well as resolving DID into DID documets, dereferencing DID URLs and resolving the
chain of trust of an issuer. In my implementation, the DID subject is also the only DID
controller, meaning that the user cannot deleage another user to make modifications to
their DID document.

Any CRUD operation requires the user to pay a fee because an Etehreum transaction
is sent to the network.

8.5.1 Create

To create a new DID the user must just create a new Eteherum account, hence a pair of
public and private keys. The DID will be teh following:

did:ssi‐cot‐eth:chain id:address
where chain Id is the id of the chain where the smart contract containing all the DID

documents is deploywed, while address is the address of the account, without 0x, that
ahs been used to create a new DID. Call to the createNewDid function to do so.

You can also create a new DID from al already existing account, by providing the
private key. Call the createNewDidFromAccount to do so.

8.5.2 Read

Refer to 8.10, 8.11 and 8.12 for additional details on read operations.

8.5.3 Update

Once the user has created a DID, it can make modifications to the asscoiated DID docu‐
ment. In particular, the user can associated with it any number of additional Etehereum
accounts, by updateing the DID document and adding new Etehereum addresses.
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The user can also update existing auathehtocation and assertion methods, or even
remove them. ‘addAuthentication‘, ‘addAssertionMethod‘ and ‘addService‘ updateAu‐
thentication‘, ‘updateAssertionMethod‘ and ‘updateService‘ ‘removeAuthentication‘,
‘removeAssertionMethod‘ and ‘removeService‘

8.5.4 Delete (deactivate)

The user can also deactivate the DID, whcih implies that the DID cannot be used any‐
more to authenticate the user, or to issue new verifiable credentials. However, the DID
document remain available to be resolved. This allows, for instance, to validate trust
ceritfications issued to other issuer so that they become part of a chain of trust. If the
DID document is removed, any verifier asking for the chain of trust of an issuer, and
in this chain of trust there is a deactivated DID, whould not be able to verify the trust
certification.

Moreover, not removing the DID document allows also the verifier to still verify VC
the issuer has issued before being deactivated. Therefor,e even if the issuer is deacti‐
ated, the users can still present VC to verifiers, and verifiers can still verify the digital
signature of the VC because all the ifnroamtion required are still available n the DID
document of the issuer.

To do so, the developer calls the deactivate function.

8.6 DID document

The DID document stores verification methods (auth and assertion) fo tyep ECSA...,
services of any type, and the trust certification (if any).

To support the trust certification, we extended the standard by adding the trustCer‐
tification field to the document. It contains all the infromation that are required to
reconstruct the Trust certification. In particular, it contains the issuer, the issuance
date, the expiration date, the DID URL to derence to obtain the status of the certifica‐
tion, and the digital proof (creation date, verification method and digital signature).

we do not allow a user to specify verificztion methods that are controlled by other
DIDs different from the DID subject.

an example of a DID document is the listing

8.6.1 Reification

Since the user, when creating a new DID, does not interact with the blockchain, no
information is stored on the chain. This allows any user to create DIDs when they want,
without worring about loading some ETH on the newly created accounts.
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However, when someone asks for the DID document of that newly created DID, no
information can be retrieved from the chain. Therefore, the smart contract will return
a DID documetn generated on‐the‐fly. In particular, the DID document has no services,
no trust certification, and the authentication equal to the assertion method, which are
both the address of the Ethereum account associated with the DID, and whose address
is directly placed in the DID, as described by the DID scheme.

Any further operaition that requires update the DID document, will force the reifi‐
cation of the document itself. This implies that the operations will be costly the first
time, but they cost less the next times. In this case, the resolution process will returns,
for the metadatda, the current date and time ffor update and creation.

8.7 Services

The library supports any type of service. In particular, since the services may contain
several infromation other that the DID URL and the type, the library forces the develpers
to serialize all the additional information in a string.

Thta string will be then stored on the blockchain.
Once the DID document is resolved or the DID URL referencing the service is derefer‐

enced, the library will ask the developer to parse the string into the object containing
all the ifnromation of the service.

8.8 Trust certification

The trust certification is a VC issued by the parent of the DID in the chain of trust and
presented to the smart contract by the DID subject. The VC has the following format:

{
”@context”: [

”https://www.w3.org/2018/credentials/v1”,
”https://identity.foundation/EcdsaSecp256k1RecoverySignature2020/lds-ecdsa-secp256k1-reco

very2020-2.0.jsonld”,
”https://www.ssicot.com/certification-credential”,
”https://www.ssicot.com/RevocationList2023”

],
”type”: [”VerifiableCredential”, ”CertificationCredential”],
”credentialSubject”: {

”id”: ”<DID of the DID subject>”
},
”issuer”: ”<DID of the issuer>”,
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”issuanceDate”: ”...”,
”expirationDate”: ”...”,
”credentialStatus”: {

”id”: ”<Certification status URL>”,
”type”: ”RevocationList2023”

},
”proof”: {

”type”: ”EcdsaSecp256k1RecoverySignature2020”,
”created”: ”...”,
”verificationMethod”: ”<Issuer verification method>”,
”proofPurpose”: ”assertionMethod”,
”jws”: ”...”

}
}

In particular, it must contain:

• CertificationCredential in the type,

• credentialSubject.id is the leaf issuer of the chain of trust;

• issuer is the parent in the chain of trust;

• issuanceDate and expirationDate express the date and time the trust certification
becomes valid and the date and time the trust certification will become invalid
and must be renewed;

• credentialStatus conbatin ifnromation to retrieve the current status of teh trust
certification (like revoked);

• The proof is conformant to EcdsaSecp256k1RecoverySignature2020 type (see 6.2.2.

Note that we force trust certifications to be periodically renewed. This housld in‐
centivize the issuers of the chain to behave well, otheriwise the parents may not renew
the trust certification. Moreover, this forces the parent of the chain to periodically
re‐check the trustworthiness of the issuers.

Moreover, in order to accept the certification, the user must trust the issuer, directly
or indicercly though a chain of trust. The library allows the user to select which issuuers
to trust directly and which ones can be trusted though a chain of trust.

The smart contract will perform several operations:

• Check if it has been issued to the DID subject

• Check if it has been issued in the future
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• Check if it is expired

• Check if it has been revoked;

• Check the proof: retireve the address of the issuer by resolving the DID URL in
the verificationMethod field. Then the smart contract recomputes the RDF canini‐
calization of the VC. Finally, computes the hash, calls ecrecover to compute the
address of the entity that has produced that signature. Finally, it checks if the two
addresses match and, if so, the trust certification is added to the DID document,
possibly replacing the already associated one.

It is possible to remove a trust certification by calling ‘removeTrustCertification‘. In
this case, the subject will not be part of any trust chain, and becomes the root of other
trust chains in case there are childern.

8.9 Invitations

To establish the trust between the verifier and the issuer, we propose the use of invita‐
tions. They are JSON documents containing a field, did, which contains the DID of the
issuer.

Additional fields may be present, like the name of the issuer.
An example of invitation of teh Ca’ Foscary University can be:

{
did: ”...”,
displayName: ”Ca’Foscari univeristy”,
...
}

We propose this invitation to be downloadable from the official site of the issuer, or
can be sent from a certified source (like certified e‐mails).

This part is delicate from a security prospective, because if the user imports a cer‐
tifiacation from a malicious user, they can trust any verifiable credential issued by the
malicious user.

However, the user can distinguish between peer‐to‐peer issuers and chains of trust
issuers. This implies that the user, when receiving a VC, can be asked to accept the VC
because issued by an issuer that they directly trust, or because the issuer is part of a
chain of trust that contains an issuer that the user trsust.

This allows the verifier, in any case, to reject VC issued by an issuer Y in which their
chain of trust contains the issuer X that is trusted by the verifier. The cahin of trust
allows, however, the verifier to trust the VC even if the issuer Y is not directly trusted,
since X is trusted by the verifier and part of the chain of trust of Y.
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8.10 DID resolution

The library, as said before, acts as DID resolver for the ssi‐cot‐eth DID method. In
particular, it allows, given a DID, to resolve the corresponding DID document.

We propose an extension of the standard, allowing in case of error messages, to
include the errorMessage field in the returned response so to detail the cause of the
error:

{@context:....,
didResolutionMetadata: {error:””,
erroMessage;:.....},
didDocumentStream:{},
didDocumentMetadata:{}

}
The only type acceptable is application/json+ld. No other didDocument metadata

are added form the ones examplined in chapter 5.

8.11 DID URL dereferencing

The library, as part of the DID resolver job, can dereference DID URLs. In particular, it
allows to resolve DID URL referencing auth and assertion methods, services and creden‐
tial status.

We propose an extension of the standard, allowing in case of error messages, to
include the errorMessage field in the returned response so to detail the cause of the
error:

{@context:....,
dereferencingMetadata:{
error: ”...”,
erroMessage:----},
contentStream:{},
contentMetadata:{}}

The only type acceptable is application/json+ld. The library does not amike use of
any metadat for the content.

8.12 Chain resolution

This is a new operation that, given a DID, returns the chain of trust ending on the
specified DID. For each issuer on the chain, the trust certification is returned together
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with its revocation status or if they are expired , so that the clint can know which issuers
are part of the chain, and can validate the trust certifications against revocation and
expiration.

It returns the last 10 trust certification in the chain. The process can be iterated
with the other issuers, but typically it is not necessary because the chains are emant to
be short.

The chain resolution accepts options to be customized. In particular, the accpet
option can be used to specify the MIMe type of the returned chain. Currently, only
application/jsn‐ld is supported. Any other MIMe type will result in the representation‐
NotSupported error.

An example of result returned by this operation is the following:

{
@context:....,
resolutionMetadata:{contentType:....},

trustChain: [....],
chainMetadata:{}
}
where trustChain contains the sequwence of trust certgifications enabling the chain of
trust, resolutionMetadata contains the MIMe type of the content of trustChain (in the
fuiuture, additional type may be supported) and chainMetadata currently is an empty
object, but in the future it may contain additional information.

If the issuer is not part of any chain of trust, the field trustChain contains an empty
array, and no error is generated.

We also propose a represnetation for resultion errors:

{
@context:....,
resolutionMetadata:{error:””,

erroMessage:””},
trustChain: [],

chainMetadata:{}
}
where error is s tring identifying the error, like methodNotSupported if the DID method of
the DID whose chain is to resolve is not the ssi‐cot‐eth, or internalError if there are some
errors in contacting the blockchain. Like for did resolution and did url dereferencing,
we add the error message explaining the cause of the error.

8.13 RevocationList2023

CredentialStatusList2021 is a good standard to represent
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However, it requires the reification of the entire bit string when it is created. More‐
over, it requires to encode such bit string. This may be a waste of space and a high gas
cost if this information is stored on the blockchain.

However, if not stored on the blockchain, the verifiers may not be able to retrive the
status of a VC, hence this will cause the VC to be discared.

Therefore, the information (revoked or not) must be stroed on the blockchain so to
be publicly and highly available.

Moreover, if there are a lot of revocations, the array returned by the smart contract
is very big, and the latency increases. This forces splitting the bit string into multiple
pieces, and the computation of which piece contain the information we want.

Therefore, we propose a new credential status, that allows to retrieve the status
information from any smart contract.

In particular, the verifiable credentials contain a DID URL in the credentialStatus
field. This DID URL, once dereferenced, returns a JSON‐LD object with the following
form:

{
”@context”: [”https://www.ssicot.com/RevocationList2023/”],
”revoked”: false

}

hence it contains just a field specifitying whetehre the speciifed VC is revoked or
not.

The check of the revocation status can also be directly done in the smart contrct,
by calling the resolveCredetialStatus method. The result is just a boolean value, an not
a complex object like the one presented before. This allows to ease the resolution of
credential statuses also on‐chain.

To check for revocation, therefore, there is no need for the verifier to interact with
a server under the control of the issuer. The interaction is directly with the blockchain.

To make the solution more gas efficient, theblockchain stores only the fragment part
of the DID URl of the revoked verifiable credentials. Therefore, the space required is
proportiinal to the number of revoked verifiable credentials.

Note that once a verifiable credential is revoked, there is no way to un‐revoke it.
However, there is no limit on the number of revoked credentials.

8.14 Smart contract

In this section, we report the costs, in gas units, of the execution of the methods exposed
by the smart contract.

Note that, as explained in the previous section, the execution of any method on a
DID document that is not reified requires its reification, which mean higher costs.
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Therefore, we divide the computation of the cost in two categories, when the DID
document is reified, an when it is not.

As said before, read‐only methods do not cost any gas because they are directly
executed on the client node.

removeAuthentication not reified (is is not possible because it is the last authenti‐
cation)

Resolts give a rough idea, because the real gas cost depends also on the size of the
inputs (i.e .,string lengths)

Method gas cost if not reified gas cost if reified
(wei) (wei)

addService 508.401 180.469
updateService / 47.778
removeService / 58.952

addAssertionMethod 460.444 137313
updateAssertionMethod 368.204 42.285
removeAssertionMethod 297.320 54.184

addAuthentication 460.700 142.369
updateAuthentication 368.168 42.249
removeAuthentication / 58.330

updateTrustCertification 635.832 143.062
removeTrustCertification / 66.168

revokeVerifiableCredential 433.690 105.759

deactivate 365.166 40.039

Table 8.14.1:

8.15 Privacy

When creating a new DID, the user does not contact the blockchain and does not need
to authenticate. Therefore, there is not transaction connecting the user with the DID
or any other DID the user uses.

Anyone listening to the transaction will see some transactions. However, the issuer
cannot track the users, because they do ot knowwhich verifiers will ask for the resolution
of the chain. Indeed, the issuer will see some accounts asking for the resolution of the
chain.

Therefore, what the issuer sees is a bich of transaction made by several addresses
to resolve the chain. If the verifiers are also issuer, they should use divverent Etehreum
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accounts to issue VC and to verify VC. In this way, other issuers have no way to associate
the DID the verifiers use to ask for the chin of trust to the verifier themeselves, hence
the issuer has no way to track which issuers receive VC issued by the issuer.

8.16 Security

See 7.3.8 for a discussion on the possible attacks to the Etehereum network.
An attacker tries to modify DID documents that are not the one relayted to them ‐>

the DID of the document to modify is directly extracted from the DID URL specified as
authentication method when calling the method. Since the specified DID URL contains
the DID, only the relative DID document can be modified by the attacker. However,
since the attacker cannot insert its auth method to other DID documents, there is no
way for the attacker to use one of its auth methods to autehtnicate and modify other
DID documents.

An attacker calls updateTrustCertification using a ”fake” (crafted) certification, even
with a valid signature ( even from a government authority): ‐> The transaction is aborted,
because the attacker cannot autehnticate as another user. ‐> The transaction is aborted
because the data integrity proof of the VC cannot be validated.

An attacker is able to foll the issuer and make it issue a valid trust certification to
them: Solution: the issuer can revoke the trust certification issued to the attacker.

An attacker steal a trust certification: ‐> They cannot use it to call updateTrustCer‐
tification because the credentialSubject.id field mentions a DID that is not under the
control of the attacker, hence it cannot authenticate when calling updateTrustCertifi‐
cation as the subject of the VC.

An issuer loses its auth key: ‐> The DID is lost, because the issuer cannot authenticate
anymore. Solution: use multiple

An issuer loses its assertion key: ‐> Solution: The issuer can revoke the stolen asser‐
tion key

An issuer is stolen its auth key: ‐> The DID is lost because the attacker can remove
the auth key and add a new one.

If the issuer is part of a chain (but not the root), the parent in the chain could
revoke the trust certification, the issuer can create a new DID, the parent issues a new
ceritfication to the newly created DID, and the newly created DID re‐issues the trust
certification for all the children, whihich must take the new certification and call the
updateTrsustCertification method to remove the previous certification and use the new
one. If the issuer is the root, it has not certification to revoke, hence the first action is
not to be executed.

Mitigation: periodic key rotation. Note that the children, nor the parent are com‐
promized. This means that the attacker cannot autehnticate nor issue VC as the childer
or the parent. The attacker can harm the children by revoking their trust certifications,
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which impleis that they are not part of a chain of trust anymore. Note that the attacker
must know the certification credentials to be revoked because they are not stored in
the DID document of the issuer but in the DID documents of the children. Therefore,
if not using a predictable scheme (like a counter), the attacker cannot revoke their
credentials, unless it knows they are part of a chain of trust where there is also the
compromized issuer. Moreover, the attacker cannot even know all the chains of trust
the compromized issuer belongs to.

For instance, using a date and time as counter is not predictable, because the at‐
tacker cannot revoke any certification varying the date and time for any second, because
it is very expensive.

An issuer is stolen its assertion key: ‐> Solution: The issuer can revoke the stolen
assertion key (the attacker cannot do that typically is the issuer uses auth key != assert
key) and insert a new one.

A user loses its auth key: ‐> The DID is lost, because the user cannot authenticate
anymore. Solution, add more authentication keys, so that is one is lost the user can use
another one.

A user is stolen its auth key: ‐> The DID is lost, because an attacker can authenticate
as the user, and modify its DID document adding a new key under the control of the at‐
tacker and remove the one stolen. The user will be, therefore, not able to authenticate
anymore. Mitigation: periodic rotation of the keys

8.17 Summary
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Case studies

In this chapter, we describe two case studies that use the library we implemented. They
have been both realized by two people attending the University of Padua.

In the first one is to automatic subdividing the heritage of a person to their heirs
after death. In particular, a person, before dying, will create its will in form of smart
contract deployed on the Ethereum blockchain. All the ETH part of the heritage will
then be sent to the contract.

When the person dies, anyone (not necessarily the hiers) can call a method exposed
by the smart contract so to start the hertitage subdivision. To do so, the caller must
provide a valid death certificate, under the form of Verifiable Credential. The smart
contract will check the validity by calling the methods exposed by our smart contract.

In particular, it retrieves the chain of trust of the issuer of the death certificate, so
to check if it is trusted by an entity that the death person has indicated when creating
the will. After that, the smart contract will retrieve the Ethereum addresses of all the
heirs indicated in the will by resolving the DID URLs that have been indicated by the
death person. Finally, once retrieved the addresses, the smart contract will subdivide
the heritage to all the heirs.

The second case study, instead, aims to expand the library so to use Zero‐Knowledge
Proofs. In particular, this solution is applied to an invented cinema that offers an online
service allowing the users to book tickets for watching a movie. Since some movies
cannot be seen by people under a specific age, the cinema, before booking a ticket for
watching such a movies, requires the user to prove they are over a specific age.

To do so, the user creates a Verifiable Credential containing a Zero Knowledge Proof
that proves the user is over a specific age without sharing their bitrh date, or any other
information related to their identity.

The cinema, once received this Verifiable Credential, will validate it by retrieving
the cryptographic material dereferencing DID URLs by using the library we have imple‐
mented.
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9.1 Summary

In this section we exposed two case stduies that make use of the implementation we have
realized , denoting their importance in the SSI ecosystem and how our implemebtation
and idea esaed their implementation.
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Conclusion and future work

Self‐Sovereign Identity is a big step further in the digital identity ecosystem. Indeed,
compared to other solutions like centralized identity and federated identity, SSI guar‐
antees much more privacy for the user. The ability to verify credentials without forcing
verifiers to contact the issuer allows the verification at any time (the issuer must not
be online). What we have proposed in an addition to SSI, allowing to reduce the burden
of the verifiers, an allows any issuer to become part of a chain of trust.

The SSI implementation we have realized can be extended further. For instance,
Verifiable Credentials need the definition of JSON‐LD contexts, which are then used
to properly caninicalize the VC when computing and verifying the Data Integrity Proof.
However, these context definitions must be publicly available and always accessible,
otherwise it would not be possible to create nor verify Verifiable Credentials.

Currently, these context definition files are published on web servers. While this
enables the use of proxies so to cache these context definition files that, typically,
change very often, there could be the chance that the servers are not available, an the
verifier or the issuer ha no access to a cached copy of these files.

A possible solution to this problem would be to publish the JSON‐LD context definition
files on the blockchain. To do so, another smart contract should be deployed, and this
smart contract will take care of managing the context definitions while using our smart
contract to authenticate the user, so that a malicious user cannot modify a JSON‐LD
schema published by another user.

Another improvemente can be the addition of the generation and verification of Zero
Knwoledge Proofs , so including directly in the library what a case study implements and
extending it by adding the possibility to prove non‐revocation, i.e., instead of using
RevocationList2023 which requires to dereference a DID URL, you can directly include
in the VC a proof that the VC has not been revoked.

Finally, RevocationList2023 can be extended by adding the possibility to suspend
Verifiable Credentials. Indeed, with the implementation we porposed, VC can be only
revoked and, once revoked, then cannot be used anymore. This forces the user to
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request a new VC with the same claims if it wants to prove that claims again.
Indeed, imagine that, after an incident, the driving licence of a person is suspended

while waiting for a judge to evaluate the respoinsibility of the driver. Using Revocation‐
List2023, this implies that the VC representing the driving licence is revoked, otherwise
the driver may use the VC to prove they have a valid driving licence.

However, it the judge judges that the driver is not responsible for the accident, the
driving licence returns to be valid. This implies that the VC representing the diriving
licence can become valid. Nevertheless, RevocationList2023 does not allow to un‐revoke
a revoked credential because revocation is permanent.

If we extend ReocationLists2023 to allow for suspension, then the VC driving licence
will be suspended after the incident, and then unsuspended when the judge judges that
the driver is not responsible. Therefore, the driver will not be forced to ask a new VC,
but they can use the already issued one. This implies that, any verifier that has stored
the verifiable credential, does not have to ask the new VC to the driver.
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