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Abstract 
 
This thesis aims to explore the intersection of environmental factors and social justice in the 
context of air pollution in Mexico City. Mexico City is a well-known hot spot for air pollution, with 
its high levels of pollutants being linked to a range of health issues. The problem of air pollution 
in the city is caused by several factors, such as its unique topography and meteorological 
conditions, rapid urbanisation, increasing vehicular traffic, and inadequate environmental policies 
and regulations. To understand the spatial and social distribution of air pollution, statistical and 
geospatial tools were used. The disparities in the distribution of air pollution based on 
neighbourhoods socioeconomic status were examined, while also analysing the changing 
relationship between socioeconomic factors and air pollution distribution over time. Furthermore, 
the study evaluated the effectiveness of policy and regulatory interventions in reducing air 
pollution.  

Air pollutant concentrations were retrieved from the Atmospheric Monitoring System of Mexico 
City (SIMAT), while Poverty Rates and the Urban Marginalisation Index (UMI), which considers 
several indicators such as educational backwardness, access to health services, housing quality, 
and basic services were sourced from official data repositories. 

The results of this study underscore the persistent socio-environmental disparities in Mexico City 
and emphasize the importance of comprehensive and integrated approaches for the development 
of air pollution control policies. The study consistently demonstrates positive associations 
between urban marginalisation, poverty percentages, and the concentrations of O3, PM10, and 
PM2.5 across the studied years. It reveals that pollution sources in Mexico City, like in other parts 
of the world, are disproportionately located in low-income neighbourhoods mainly at the north and 
east of the city, consequently, the concentrations of pollutants tends to be higher in these areas. 
Moreover, as air pollution increases, housing prices go down, perpetuating the low-income status 
of these communities. It is worth noting that for O3 concentrations, the wind patterns of the city 
cause higher levels in the southern region due to the transportation of precursors generated in 
the north. 

Scientific studies indicate that current air quality policies have not effectively achieved objectives 
related to emissions prevention, environmental performance monitoring, and control of mobile 
source emissions in Mexico City. These findings have raised concerns about equity in air pollution 
management. Although progress has been made in reducing overall air pollutant concentrations, 
pollutants such as PM10, PM2.5, and O3 still frequently exceed acceptable limits. Importantly, these 
concentrations are often higher in areas with lower socioeconomic status, where populations tend 
to be more vulnerable, highlighting the urgent need for further action. 

This study provides crucial insights into effective policy and regulatory interventions that can help 
reduce air pollution and promote equity in both, social and environmental domains in the city. 
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1. Introduction 

1.1. Background and mo/va/on 

Mexico City, with a population of more than 9.2 million people, is one of the world's largest and 
most populous urban areas and is located within the Metropolitan Area of the Valley of Mexico 
(MAVM). This area comprises 16 municipalities within Mexico City and 60 municipalities within 
the States of Mexico and Hidalgo, with a combined population of 21.8 million people as of 2020 
(INEGI, 2020c). 

According to Molina and Molina (2004), "air pollution problems of megacities differ greatly and 
are influenced by several factors including topography, demography, meteorology, mobility and 
transportation patterns, fuel quality and usage, and the level and rate of industrialisation and 
socioeconomic development." 

Most of the conditions that contribute to the build-up of atmospheric pollutants listed by Ahrens 
(2009) are often present in Mexico City. Its location in a valley surrounded by mountains plays a 
crucial role in the accumulation of pollutants, particularly in winter, when thermal inversions occur 
more frequently (Ezcurra, 1991; Olguín Lacunza, 2022). In addition, weather patterns during the 
dry season can produce circulation features that contribute to poor air quality in the city (Díaz-
Esteban et al., 2022). The complex terrain in the Valley of Mexico further exacerbates air pollution 
by creating local wind patterns that trap pollutants and prevent their dispersion (Jazcilevich et al., 
2005).  

Moreover, emissions from the neighbouring Popocatepetl volcano contribute to the tropospheric 
gas and aerosol burden in the region (Pyle & Mather, 2005; Raga et al., 1999). However, while 
the city’s location does play a significant role in its air quality, other factors contribute to its air 
pollution problems. Industrial activities, transportation emissions, open burning of waste and 
agricultural fires all contribute to poor air quality in the city (Bravo et al., 2002; CONAFOR, 2023; 
Hodzic et al., 2012; Legorreta, 1991).  

Studies have shown that the spatial distribution of air pollutants in Mexico City is associated with 
socioeconomic status, with communities with lower income exposed to higher levels of air 
pollution than those with higher income (García-Burgos et al., 2022; Lome-Hurtado et al., 2020). 
Industrial activities are mostly concentrated in the northern and eastern parts of the city, where 
there is a high density of factories and transportation infrastructure. The emissions from these 
activities contribute to the formation of nitrogen dioxide (NO2) and carbon monoxide (CO), which 
are also directly related to vehicle emissions. As a result, the annual averages of NO2 and CO 
are highest in monitoring sites located in areas with abundant vehicular traffic, particularly in the 
centre and north of the city (SEDEMA et al., 2022). 

Ozone (O3), a secondary pollutant, is formed by the reaction of volatile organic compounds 
(VOCs) and NOx in the presence of solar light. Its amount and accumulation in the Metropolitan 
Area of the Valley of Mexico depends on meteorological factors, and the highest concentrations 
of O3 are typically observed downstream of emission sources of its precursors. These emission 
sources are concentrated in the northern and central areas of the Metropolitan Area, meaning 
that higher concentrations of O3 are typically found in the south of the city.  

In contrast, the highest concentrations of sulphur dioxide (SO2) have been observed in the north 
of the city due to the influence of the Tula-Tepeji industrial corridor in the State of Hidalgo and, to 
a lesser extent, to local industrial emissions. The "Benito Juárez" International Airport, which is 



 

 2 

one of the main emitters located within the city, also contribute to air pollution in the region (de 
Foy et al., 2009; SEDEMA et al., 2022).  

Particulate matter (PM10 and PM2.5) has anthropogenic and natural origins and originates from 
sources such as vehicular transit, industry, construction, eroded soil, bioaerosols, volcanic 
emissions, and forest fires. The main sources of PM10 in Mexico City include the resuspension of 
dust in paved streets, mobile sources, and area sources. PM2.5, contribute to approximately half 
of PM10, with mobile sources and area sources accounting for the majority of the total PM2.5 
(SEDEMA, Báez, et al., 2021). Weather patterns such as thermal inversions contribute to the 
accumulation of particulate matter (PM) by trapping pollutants close to the ground. In the east of 
the Metropolitan Area, local emissions from vehicular traffic significantly influence the high 
concentration of PM10, while PM2.5 shows homogeneity in most of the city except in the southwest, 
where there are lower concentrations (SEDEMA et al., 2022). 

Social disparities in income and education have been linked to higher levels of exposure to 
environmental hazards and health risks from air pollution in low socioeconomic status areas in 
Mexico City (Islas-Camargo et al., 2022). The challenges of addressing environmental and health 
issues can be amplified in communities with greater levels of residential segregation and limited 
access to resources and support. Additionally, limited education can make it harder for individuals 
to acquire the knowledge and skills necessary to access resources and information that promote 
good health (Link & Phelan, 1995; Lynch & Kaplan, 2000; O’Neill et al., 2008). 

Mexico City has been facing a severe air pollution crisis for decades, which has had a significant 
impact on the health and well-being of its residents. While the need for immediate action to 
address the issue has been emphasized before (Garza, 1996; Legorreta, 1991), the city’s high 
population density and continuous exchange of people and vehicles between the boundaries of 
the MAVM and Mexico City, where the jobs are concentrated, have further contributed to the 
problem. As lower-income individuals are often displaced to the Metropolitan Area and have to 
spend a higher percentage of their income on transportation in order to commute to Mexico City 
for work, this situation has led to broad economic and social inequalities that exacerbate the 
effects of air pollution on disadvantaged populations  (Damián, 2020; Leo et al., 2017).  

Table 1.1 highlights that mobile sources are the primary contributor to PM2.5, SO2, CO, and NOx 
emissions in the MAVM, accounting for more than 85% of NOx and almost 95% of CO emissions. 
Area sources, including residential, commercial, and institutional buildings, are the second-largest 
contributor, while point sources such as factories and power plants account for a smaller portion 
of the total emissions. Natural sources contribute a small percentage of PM10 and PM2.5 
emissions. 
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Table 1.1 Percentual contribution of sources to the total emissions in the Metropolitan Area of the Valley of 
Mexico, 2018 

Source 
Percentual contribution to the total emissions in the MAVM, 2018 

PM10  PM2.5  SO2 CO NOx 
Point sources1 12.02 19.25 33.19 0.77 6.58 
Area sources2 44.24 35.79 32.29 4.65 7.35 
Mobile sources3 39.56 43.01 34.52 94.57 85.82 
Natural sources4 4.16 1.95 N/A N/A 0.24 

Source: (SEDEMA, Báez, et al., 2021) 
(1) Point sources which are characterised as stationary or fixed point sources such as power plants, chemical industries, 
oil refineries and factories. 
(2) Mobile sources encompassing all forms of transport and motor vehicles. 
(3)  Area sources. All those activities that together affect air quality, such as the use of wood, printing, dyeing, or agricultural 
activities, to name a few. 
(4) Natural or biogenic sources. These are the result of animal and plant life phenomena, such as emissions from 
volcanoes, oceans and soil erosion. 

The Metropolitan Area of the Valley of Mexico faces major sustainability challenges related to the 
transport sector that were summarised by Steurer & Bonilla (2016) among which are an increase 
in the carpool, constant local air pollution, high CO2 emissions and a do-nothing policy of urban 
planning and growth. Some of these factors have led to an increasing occupation of public space 
that privileges predominantly private vehicular units, clogging up the roadways and increasing 
congestion (Chatziioannou et al., 2020). And, as it happens with other developing countries, 
public transportation in Mexico often faces economic limitations to provide good service and it 
usually gets congested, especially in the MAVM (Bautista-Hernández, 2021). 

Given that mobile sources are the primary contributors to air pollution in the MAVM, the 
government has implemented a variety of environmental policies to address the issue. These 
policies include the "Hoy No Circula" program, which limits the circulation of vehicles based on 
their license plate numbers, and the "Programa de Verificación Vehicular Obligatoria" program, 
which requires all vehicles to undergo regular emissions testing. Additionally, the city has adopted 
strategies to improve public transportation and consolidate an Integrated Mobility System such 
as the expansion and rehabilitation of Metro Lines, the introduction of new lines of BRT Metrobus 
system, the construction of a Commuter Rail Line that connects the State of Mexico with Mexico 
City and the purchase of new and more efficient buses for the Trolleybus and Urban Bus systems 
(Gobierno de la Ciudad de México, 2020, 2022). In addition, the government has promoted the 
use of electric and hybrid vehicles to reduce emissions and established an air quality monitoring 
network to measure pollutant levels in the atmosphere. 

In addition to these transportation-related policies, Mexico City has also implemented measures 
to boost the use of non-motorized mobility (NMM), such as bike-rental systems and the 
construction of bike lanes. However, even though the city has started a transition towards 
developing a more sustainable mobility, only 22% of investments made as a result of public 
policies in the mobility sector in Mexico are committed to public transport, 9% to cycling 
infrastructure and 4% to pedestrian one, while an amazing 65% is intended to be used for 
infrastructure for private cars  (Chatziioannou et al., 2020). These percentages are contrasting 
with Mexico City’s high multimodality since in 2020, 50.8% of the population used public 
transportation as the principal means to get to work, 38.8% used private cars and the rest used 
bikes or walked (Data México, 2020). 

While transportation policies play a crucial role in reducing air pollution in Mexico City, other 
measures targeting high pollution events and industrial emissions are also in place. When the city 
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experiences high levels of pollution, environmental contingency plans are activated, which include 
measures such as restricting the circulation of vehicles but also industrial activities and limiting 
outdoor activities for vulnerable populations like children and the elderly. The city has also 
implemented regulations to control emissions from industrial sources, including the establishment 
of emissions standards for factories and power plants. 

Despite these efforts, air pollution remains a significant public health concern in the city. Mexico 
City continues to struggle with high levels of air pollution and is considered one of the most 
polluted cities in Latin America (Alves, 2023). 

This research seeks to explore the complex relationships between environmental factors and 
social justice, focusing on the spatial and social distribution of air pollution and the varying levels 
of exposure based on individuals' socioeconomic circumstances. By utilising statistical and 
geospatial tools, this study aims to provide a comprehensive understanding of the environmental 
burdens related to air quality faced by different socioeconomic groups in Mexico City. The findings 
of this research will provide insights into the pressing need for equitable policies and interventions 
to alleviate the detrimental effects of air pollution on public health and the environment. 

1.2. Research ques/ons and objec/ves 

• How has the relationship between socioeconomic factors and air pollution distribution in 
Mexico City changed over time? 

• To what extent have policy and regulatory interventions aimed at reducing air pollution in 
Mexico City been effective, and how have they impacted disparities in air pollution 
distribution over time? 
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2. Literature Review 

2.1. Air pollu/on and health effects 

Air pollution has been identified as a major public health concern globally, the World Health 
Organisation estimates that outdoor air pollution causes about 4.2 million premature deaths each 
year, while indoor air pollution causes about 3.8 million deaths annually (WHO, 2022). The most 
common air pollutants that pose a threat to human health include particulate matter (PM), nitrogen 
oxides (NOx), sulphur oxides (SOx), and ozone (O3). Exposure to these pollutants has been 
extensively studied and has been linked to a wide range of health effects, including lung cancer, 
stroke, asthma, and heart disease (Cohen et al., 2017; De Matteis et al., 2022; Manisalidis et al., 
2020). Vulnerable populations, such as children, the elderly, and individuals with pre-existing 
health conditions, are particularly at risk. 

As in other countries, exposure to air pollution in Mexico City has been associated with an 
increased risk of cardiovascular disease and stroke (Borja-Aburto et al., 1997), and short-term 
exposure has been estimated to be responsible for at least 10% of Cardiovascular Emergency 
Department Visits in the city (Ugalde-Resano et al., 2022). In addition, particulate air pollution 
exposure has been linked to damage to the body’s cells and DNA, leading to cell death (Alfaro-
Moreno et al., 2002), while exposure during pregnancy has been found to be related to an 
increased risk of post-partum depression (Niedzwiecki et al., 2020). Furthermore, long-term 
exposure to O3, PM10 and NO2 has been linked to a decrease in the growth of lung function among 
children, which could increase the likelihood of developing chronic obstructive lung disease over 
time, as well as increased cardiovascular morbidity and general mortality (Rojas-Martinez et al., 
2007). Air pollution, measured by PM10 concentrations, has been found to be one of the most 
significant environmental risks for mortality in Mexico (Stevens et al., 2008). 

2.2. Environmental jus/ce and environmental inequali/es 

In recent decades, there has been a growing concern about the unequal distribution of 
environmental hazards and risks, leading to the emergence of two related but distinct fields of 
study: environmental justice and environmental inequalities. Environmental justice is concerned 
with the fair distribution of environmental benefits and burdens, while environmental inequalities 
focus on the unequal distribution of environmental risks and hazards based on social and 
demographic factors (Brulle & Pellow, 2006; Bullard, 2000). While these two fields share similar 
concerns, they approach the issue from different perspectives and use different theoretical 
frameworks. In this section, I will first explore the concept of environmental justice, then discuss 
environmental inequalities, and finally, compare and contrast the two fields. 

Environmental justice is a movement and a policy approach that seeks to address the 
disproportionate distribution of environmental burdens and benefits across society, with a focus 
on marginalized and vulnerable communities (Bullard, 2000; Pastor et al., 2001). It aims to ensure 
that all people, regardless of race, ethnicity, or socioeconomic status, have equal access to 
healthy and safe environments (US EPA, 2022).  

The environmental justice movement emerged in the United States in the 1980s as a response 
to the disproportionate exposure of marginalised communities, particularly low-income 
communities and communities of colour, to environmental hazards and pollution. The movement 
sought to address the unequal distribution of environmental burdens and promote the equitable 
distribution of environmental benefits. The landmark report "Toxic Wastes and Race in the United 
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States" by the United Church of Christ Commission for Racial Justice (1987) was instrumental in 
bringing attention to the issue of environmental injustice, it was the first one to demonstrate the 
correlation between race, socioeconomic status, and exposure to toxic waste sites in the United 
States, providing evidence for the unequal distribution of environmental burdens across 
communities. It brought national attention to the issue of environmental racism and catalysed the 
movement. Since then, the environmental justice movement has grown and spread to other 
countries and has influenced policies and regulations aimed at addressing environmental 
disparities. 

Schlosberg (2007) argued that the environmental justice movement has a distributive justice 
component, which recognizes that low-income neighbourhoods and communities of colour are 
often subjected to a disproportionate burden of environmental hazards. Distributive justice refers 
to the fair distribution of benefits and burdens within a society, and in the context of environmental 
justice, it seeks to ensure that the benefits of effective environmental policies are shared equally 
across different demographics and locations, while also ensuring that certain groups do not bear 
the majority of environmental risks and costs. This idea of distributive justice is influenced by the 
work of Rawls (1999), who proposed the concept of the "veil of ignorance" as a way to ensure 
fairness in the distribution of resources and opportunities in society. The veil of ignorance is a 
hypothetical scenario where individuals must make decisions about societal institutions and 
policies without knowing their position in society, ensuring impartiality and fairness. In the context 
of environmental justice, the veil of ignorance emphasizes the importance of ensuring that all 
individuals have equal access to healthy and safe environments, regardless of their race, 
ethnicity, or socioeconomic status. 

This view is reinforced by the work of Bullard (2000) who argued that the spatial distribution of 
environmental hazards is closely linked to issues of race and socioeconomic conditions. In his 
research, Bullard found that toxic waste sites, hazardous waste facilities, and other environmental 
hazards were often located close to low-income neighbourhoods and communities of colour. 

The concept of environmental justice has evolved to include not only distributive issues but also 
social, economic, and political factors that shape environmental outcomes. This broader 
perspective is reflected in the emerging discourse of "just sustainability" in environmental justice 
scholarship (Agyeman & Evans, 2004). This discourse highlights the need to address underlying 
social and economic inequalities that create environmental disparities in the first place and to 
ensure that marginalised communities have a voice in decisions affecting their environments.  

In recent years, the concept of environmental justice has continued to evolve, with a growing 
focus on the importance of environmental justice in the global South. Overall, the evolution of 
environmental justice scholarship reflects a growing recognition of the complex and intersectional 
nature of environmental issues and the need for more inclusive and equitable approaches to 
environmental decision-making. 

Environmental inequalities, on the other hand, refer to disparities in exposure to environmental 
hazards and pollutants across different socio-demographic groups (Brulle & Pellow, 2006). This 
can include differences in exposure based on factors such as income, race/ethnicity, and 
education. Numerous studies have documented the existence of environmental inequities in 
various contexts, including air pollution, toxic waste sites, and access to clean water and green 
spaces. 
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For example, research in the United States has consistently demonstrated that low-income 
communities and neighbourhoods with a high proportion of ethnic minorities tend to be exposed 
to higher levels of various environmental pollutants (Clark et al., 2014; Jerrett et al., 2005). Similar 
findings have been reported in other countries around the world, such as Brazil, where low-
income people who belong to non-white racial groups are often the most vulnerable to 
environmental hazards such as flooding or landslides (Carvalho et al., 2022) or India, where air 
pollution from coal-fired power plants disproportionately affects poor and low-caste communities 
compared to their wealthier and high-caste counterparts (Kopas et al., 2020). 

In summary, environmental justice focuses on achieving fairness in the distribution of 
environmental benefits and burdens, while environmental inequalities highlight the unequal 
exposure to environmental risks and hazards experienced by different social and demographic 
groups. 

2.3. Socioeconomic status and air pollu/on exposure 

The evolution of environmental justice scholarship has brought attention to the intersections of 
socioeconomic conditions and environmental issues. Specifically, research has shown that low-
income communities tend to be exposed to higher levels of environmental pollutants (Hajat et al., 
2015; Rentschler & Leonova, 2022). Numerous studies have demonstrated that socioeconomic 
status is a significant predictor of air pollution exposure. In this section, I will explore the literature 
on the relationship between socioeconomic status and air pollution exposure in more detail. 

In the United States, research on environmental justice and air pollution consistently 
demonstrates that low-income communities and neighbourhoods with a high proportion of ethnic 
minorities tend to be exposed to higher levels of various environmental pollutants. For instance, 
Clark et al. (2014) discovered that outdoor NO2 air pollution is more concentrated in 
neighbourhoods with higher percentages of low-income and minority residents, while Jerret et al. 
(2005) found that residents of low-income communities, particularly those of colour, were more 
likely to experience higher levels of air pollution and a greater risk of premature death due to long-
term exposure to fine particulate matter (PM2.5).  

In the United Kingdom, McLeod et al. (2000), found that people residing in deprived areas in 
England and Wales experience higher levels of air pollution (NO2, SO2 and PM10) compared to 
those in affluent areas, while Fairburn et al. (2005) results revealed that areas of high social 
deprivation in Scotland tend to have higher levels of NO2, PM10 CO and Benzene.  

The associations between air pollution and socioeconomic characteristics, ethnicity, and age 
profile of neighbourhoods were investigated in England and the Netherlands by Fecht et al.  
(2015). The study found that in both countries, the highest air pollution levels were observed in 
neighbourhoods with lower socioeconomic status and higher levels of ethnic diversity.  

Samoli et al. (2019) identified that people with lower socioeconomic status in metropolitan areas 
of Europe are generally more exposed to higher levels of NO2 air pollution. Additionally, their study 
revealed that different socioeconomic indicators, such as population density, the population born 
outside the European Union and unemployment, may play different roles in determining air 
pollution exposure across the cities. Similarly, Moreno-Jiménez et al. (2016) found that areas with 
higher levels of poverty and unemployment in Barcelona and Madrid in Spain tended to have 
higher levels of NO2 air pollution. They also found that immigrant populations were more likely to 
be more exposed to air pollution.  
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Venter et al. (2023) found that socioeconomically disadvantaged sub-districts in the city of Oslo 
in Norway are more exposed to environmental hazards such as higher NO2 concentrations, even 
beyond the WHO recommendations. 

While many studies have found that people with lower socioeconomic status are generally more 
exposed to higher levels of NO2 air pollution in metropolitan areas of Europe, there are some 
contrasting findings. For instance, Branis and Linhartova (2012) documented that low educational 
attainment and high unemployment rate in the Czech Republic are inversely associated with 
increasing SO2 and PM10 but not with NO2 concentration, residents of larger cities in the Czech 
Republic with higher socioeconomic status are potentially exposed to higher levels of NO2 air 
pollution. 

In India, Kopas et al. (2020) results revealed that low-caste and marginalised communities are 
disproportionately exposed to air pollution from coal-fired power plants, with higher concentrations 
of air pollutants observed in areas with higher percentages of low-caste residents.  

The studies by Pearce and Kingham (2008) in New Zealand and Knibbs and Barnett (2015) in 
Australia both reveal a strong link between lower socioeconomic status and higher exposure to 
air pollution. In New Zealand, individuals living in areas with lower socioeconomic status 
experienced higher levels of air pollution, while in Australia, those living in socioeconomically 
disadvantaged areas and near major roads were exposed to higher levels of NO2 air pollution. 

The findings of these articles indicate that air pollution has evolved into an environmental 
inequality concern, with a disproportionate impact on the most vulnerable groups in society. 

2.3.1. La'n America and Mexico 

As the previous section highlights, studies around the world have shown that air pollution 
exposure is often unequally distributed along lines of socioeconomic conditions. However, the 
effects of environmental inequalities are not limited to these regions, and scholars have 
increasingly turned their attention to the experiences of communities in other parts of the world, 
such as Latin America (Fernández et al., 2023). Despite this, there is still a lack of research on 
the intersection of air pollution and environmental inequalities in the region. This section will 
review some of the key findings and trends in this area. 

The Multicity Study of Air Pollution and Mortality in Latin America, also known as the ESCALA 
study (Romieu et al., 2012), was a large-scale epidemiological study conducted in eight Latin 
American cities to investigate the relationship between air pollution and mortality. The study 
analysed data from 12 years of mortality records and air pollution monitoring in Monterrey, Toluca, 
and Mexico City in Mexico; Rio de Janeiro, São Paulo, and Porto Alegre in Brazil; and Santiago, 
Concepción, and Temuco in Chile. The study found a significant association between air pollution 
and increased mortality risk, particularly concerning cardiovascular and respiratory diseases. The 
results of the study also indicated that people with the lowest socioeconomic status were at 
greater risk of mortality, particularly related to respiratory causes. 

O’Neil et al. (2008) found a consistent association between exposure to air pollution and 
increased mortality in Mexico City, Mexico; Santiago, Chile; and São Paulo, Brazil, with PM10 
linked to increases in mortality, with a stronger association observed for cardiovascular diseases 
compared to respiratory diseases. However, this study did not observe gradients of increasing 
associations between particles and mortality with decreasing levels of education. The authors 
suggest that this could be attributed to the higher and more widespread air pollution levels in Latin 
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America, which lead to a more universal exposure and less variation in exposure based on socio-
economic factors. 

Romero-Lankao et al. (2013) found that at high concentrations of criteria pollutants in Mexico City, 
Mexico; Bogotá, Colombia; and Santiago, Chile, populations in the municipalities that are both 
the least and the most socioeconomically vulnerable face comparable risks when exposed to air 
pollution and temperature extremes. This finding contrasts with the predictions made by 
environmental inequalities literature, which typically expects disadvantaged communities to be 
more severely impacted by pollution. However, their study focused on vulnerability factors rather 
than the spatial distribution of exposure to explain the health risks related to air pollution. 

Spatial distribution of exposure refers to the geographic location of a community concerning 
pollution sources and the concentration of pollutants in the area. Disadvantaged communities, 
such as low-income neighbourhoods are often located near industrial zones and transportation 
infrastructure, which exposes them to higher levels of air pollution (US EPA, 2021). 

On the other hand, vulnerability factors refer to the physical or social characteristics of a 
community that make them more susceptible to the adverse health effects of air pollution. For 
example, individuals with pre-existing health conditions, such as asthma or heart disease, may 
be more vulnerable to the effects of air pollution. Similarly, individuals with limited access to 
healthcare, social networks, and education may be less equipped to mitigate the health risks 
associated with air pollution exposure. 

Romero Lankao et al.’s study focused on vulnerability factors rather than the spatial distribution 
of exposure to explain the health risks related to air pollution. Their findings suggest that 
vulnerability factors may play a larger role in determining the health risks of air pollution exposure 
than spatial distribution of exposure. This may explain why their results contradict the 
environmental justice literature, which typically focuses on the spatial distribution of exposure. 

The issue of air pollution and environmental justice is particularly relevant in the case of Mexico 
City, which has long been affected by severe air pollution problems. The intersection of 
environmental inequalities and air pollution in Mexico City provides a compelling case study for 
examining the complex social, economic, and political factors that contribute to environmental 
inequalities and the challenges of implementing effective environmental policies in a rapidly 
urbanising region of the world.  

A large body of published studies links air pollution exposure in the Mexico City Metropolitan Area 
to various adverse health outcomes. For instance, Carbajal-Arroyo et al. (2011) found that in the 
Mexico City Metropolitan Area, exposure to both PM10 and O3 was associated with an increased 
risk of infant mortality, with a stronger association for O3. Infants from lower to medium 
socioeconomic status were at a higher risk of mortality due to air pollution. 

García-Burgos et al. (2022) studied the spatial association between air pollutants (NO2, CO, O3, 
PM10 and PM2.5) and socioeconomic status in Mexico City from 2017 to 2019. The study used a 
spatial autocorrelation approach to evaluate the association between air pollutants and 
socioeconomic indicators. The study findings revealed that the population with lower 
socioeconomic status residing in the southern periphery of the city had greater exposure to O3, 
whereas the highest exposure to NO2 and CO2 was observed in the wealthy city centre. The 
pollutants PM10 and PM2.5 were weakly associated with the socioeconomic indicators the study 
evaluated 
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Lome-Hurtado et al. (2020) aimed to identify environmental justice concerns in Mexico City by 
analysing the spatial distribution of air pollution and socio-economic indicators. The study used a 
spatial quantile regression approach to estimate the relationship between exposure to air 
pollutants and socio-economic vulnerability at different levels of air pollution. The results showed 
that the populations in the most socio-economically vulnerable neighbourhoods are exposed to 
higher levels of PM10, and these neighbourhoods are not randomly distributed throughout the city 
but are concentrated in certain areas. The study also found a negative association between lower 
socioeconomic conditions and O3. 
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3. Data 

3.1. Air Quality Data 

The Atmospheric Monitoring System (SIMAT) is responsible for the continuous measurement of 
the main air pollutants in Mexico City. This system consists of 44 monitoring stations located 
throughout the metropolitan area, covering areas in both Mexico City and the conurbation zone 
of the State of Mexico. These monitoring stations use continuous equipment to measure the 
required criteria pollutants mandated by federal regulations, including sulphur dioxide (SO2), 
carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and suspended particles (PM10 and 
PM2.5). Some stations also measure the main surface meteorological variables, including solar 
ultraviolet radiation, while in others manual samples of suspended particles and atmospheric 
deposition information are collected. The information collected by SIMAT is used to generate air 
quality indexes and alerts for the population, as well as to inform decision-makers and guide policy 
aimed at reducing air pollution in the region. The location of the monitoring stations is presented 
in Figure 3.1.  

 

Figure 3.1 Location of air quality monitoring stations 
Source: Self-made with data from SEDEMA (n.d.) 

The list of the air quality monitoring stations that have made a part of the Atmospheric Monitoring 
System of Mexico City is shown in Annex I. Air Quality Monitoring Stations. Out of the total 44 
stations, 28 are located in Mexico City while the remaining 16 are situated in the State of Mexico. 

3.1.1. Datasets 

Air quality data were retrieved in .csv files for the years 2000, 2005, 2010, 2015 and 2020. Table 
3.1 presents a sample of the air quality datasets. 
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Table 3.1 Sample table from the air quality datasets  

date id_station id_parameter value unit 
01/01/19 1:00 CAM PM10 122 15 
01/01/19 1:00 CAM PM2.5 90 1 
01/01/19 1:00 CAM PMCO 32 1 

Source: (SEDEMA, 2023) 

3.1.2. Pre-processing 

The hourly registers of the following variables were considered for the analysis: 

• Date: continuous numerical variable [format: datetime] 
• Station: categorical variable. 
• Ozone (O3): continuous numerical variable [unit: ppb] 
• Carbon Monoxide (CO): continuous numerical variable [unit: ppm] 
• Sulphur Dioxide (SO2): continuous numerical variable [unit: ppb] 
• Nitrogen Oxides (NOx): continuous numerical variable [unit: ppb] 
• Particulate Matter (PM10): continuous numerical variable [unit:μg/m³] 
• Particulate Matter (PM2.5): continuous numerical variable [unit:μg/m³] 

The location of all the monitoring stations was retrieved from the official air quality website of 
Mexico City and the coordinates and altitude were added as additional columns: 

• Latitude: continuous numerical variable [unit: degrees north] 
• Longitude: continuous numerical variable [unit: degrees west] 
• Altitude: continuous numerical variable [unit: m] 

Pre-processing of the data was conducted with R Studio Version 2023.03.0+386 for Mac OS and 
QGIS 3.30.1-'s-Hertogenbosch software for Mac OS was used to perform the spatial analyses, 
both are widely used open-source software packages.  

3.2. Socioeconomic Indicators 

The socioeconomic indicators for this study are mainly measured at the AGEB level, which is a 
territorial subdivision of municipal geostatistical areas in Mexico. AGEBs are considered the 
fundamental unit of the National Geostatistical Framework and are classified into rural or urban 
areas depending on their characteristics. The use of AGEBs as the unit of analysis allows for 
more precise spatial analysis and comparison of socioeconomic indicators. AGEBs of Mexico City 
are shown in Figure 3.2. It is to be noted that the AGEBs have changed slightly over the years 
because the Geostatistical Framework has gone through updates. For this study, only the Urban 
AGEBs were considered, since there is no data available for the rural ones. 
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Figure 3.2 2020 AGEBs 
Source: Self-made with data from INEGI (2020a, 2020b) 

3.2.1. Datasets and/or layers 

3.2.1.1. Index of Urban Marginalisa'on  

The Urban Marginalisation Index (UMI) is a measure that summarises indicators of social 
deficiencies and household assets in urban AGEBs in Mexico. It uses four dimensions: 
educational backwardness, access to health services, quality and spaces of housing, and basic 
services in housing. Additionally, it incorporates indicators related to household assets. The UMI 
aims to identify the intensity of these dimensions in the urban AGEBs of the country and assign 
them a degree of social marginalisation: very low, low, medium, high, or very high. It is worth 
noting that the UMI is not a poverty measurement tool, as it does not take into account indicators 
such as income, social security, and food. Rather, it serves as a means of comprehending and 
analysing the uneven distribution of development and its advantages within urban areas, cities, 
and metropolitan zones. By using this index, areas that might be left out or at a disadvantage 
during the process of urban development can be identified (CONAPO, 2021a). 

Pre-processing 

2000 Urban Marginalisation Index 

To generate an Urban Marginalisation Index layer for the year 2000, the available data had to be 
processed as an official layer has not been issued to date The starting point was the SHP layer 
of the 2000 National Geostatistical Framework, obtained from INEGI (2000). This layer contained 
multiple individual layers of AGEBs, which were combined into a single layer covering Mexico 
City.  
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Then, the dataset of the Urban Marginalisation Index per AGEB from 2000 to 2010 was retrieved 
from the official Open Data portal of Mexico (CONAPO, 2023) and was separated per year. Table 
3.2 provides an overview of the relevant columns for the study. 

Table 3.2 Overview of the dataset of the Urban Marginalisation Index from 2000 to 2010 

NOM_ENT CVE_AGEB GMU AÑO 
Distrito Federal 900200010010 Bajo 2000 
Distrito Federal 900200010010 Muy bajo 2005 
Distrito Federal 900200010010 Muy bajo 2010 

Source: (CONAPO, 2023) 

To create the layer of Urban Marginalisation Index per AGEB, a union was performed in QGIS by 
importing the CSV file of the UMI for the year 2000 and joining it with the 2000 Geostatistical 
Framework layer using a join operation, at the end of the processing, it was found that the Urban 
Marginalisation Index dataset did not include 61 AGEBs that were included in the Geostatistical 
Framework layer. These AGEBs were removed from the analysis. 

2005 Urban Marginalisation Index 

To generate an Urban Marginalisation Index layer for the year 2005, the available data had to be 
processed as an official layer has not been issued to date The starting point was the SHP layer 
of the 2004 National Geostatistical Framework, obtained from INEGI (2004). Then, the dataset of 
the Urban Marginalisation Index per AGEB from 2000 to 2010 was used and the same procedure 
of 2000 was followed. At the end of the processing, it was found that the Urban Marginalisation 
Index dataset did not include 62 AGEBs that were included in the Geostatistical Framework layer. 
These AGEBs were removed from the analysis. 

2010 Urban Marginalisation Index 

To generate an Urban Marginalisation Index layer for the year 2010, the available data had to be 
processed as an official layer has not been issued to date The starting point was the SHP layer 
of the 2010 National Geostatistical Framework, obtained from INEGI (2010). Then, the dataset of 
the Urban Marginalisation Index per AGEB from 2000 to 2010 was used and the same procedure 
of 2000 was followed. At the end of the processing, it was found that the Urban Marginalisation 
Index dataset did not include 66 AGEBs that were included in the Geostatistical Framework layer. 
These AGEBs were removed from the analysis. 

Normalisation of the Urban Marginalisation Indexes 

To facilitate the comparison of the Urban Marginalisation Index values across different years and 
spatial units, the Min-Max scaling method was used to normalise the index to a 0-1 range. This 
method rescales the values of a variable to a range between 0 and 1 by subtracting the minimum 
value from each observation and then dividing the result by the range of the variable (i.e., the 
difference between the maximum and minimum values). 

However, since the minimum and maximum values of the Urban Marginalisation Index vary 
across different years (2000, 2005, 2010, and 2020), the rescaling procedure was performed 
separately for each year. By using this method, the Urban Marginalisation Index values were 
transformed into a common range of 0-1, which allowed for the comparison of the relative levels 
of marginalisation across different years and spatial units. Normalised values were used for Local 
Bivariate Moran’s I Index. 
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Annex II. Urban Marginalisation Index, shows the maps of the Index of Social Marginalisation for 
Mexico City over the years 2000, 2005, 2010 and 2020.  

3.2.1.2. Urban Poverty  

The urban poverty layers provide information on the percentage of poverty by AGEB. They allow 
for the identification of urban areas where a majority of the population lives under conditions of 
poverty. 

Pre-processing 
2015 Poverty Percentages 

The layer was retrieved from the National Council for the Evaluation of Social Development Policy 
(CONEVAL, 2018). It classifies AGEBs into five categories based on poverty percentages. Table 
3.3 presents a sample of the attribute table for the urban poverty layer. 

Table 3.3 Sample attribute table for Urban Poverty  

CVEGEO POBREZA POBREZAEX ID 
0900200010010 (18,34] [0,20] 1 
0900200010025 [0,18] [0,20] 2 
090020001003A [0,18] [0,20] 3 

Source: CONEVAL (2018) 

To facilitate the comparison of the 2015 poverty indicator with the air pollutants concentrations, 
an index was created for each poverty category. The index ranged from 1, representing the lowest 
range of poverty percentages, to 5, representing the highest range of poverty percentages. This 
allowed for the poverty indicator to be incorporated as a numerical variable in the statistical 
analysis alongside the air pollutant concentrations. 

2020 Poverty Percentages 

To generate a Poverty Percentages layer for the year 2020, the available data had to be 
processed as an official layer has not been issued to date. The poverty information for 2020 was 
obtained from the dataset of the Social Development Index (EVALUA, 2020). The percentages of 
people living in poverty were calculated by dividing the number of people living in poverty by the 
population of each AGEB. Finally, a union was performed in QGIS by importing the CSV file of 
the Social Development Index for the year 2020 and joining it with the 2020 Geostatistical 
Framework to create the layer of poverty percentages per AGEB. 

Annex III. Poverty Percentage shows the maps of poverty percentages for Mexico City for the 
years 2015 and 2020. 
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4. Methodology 

4.1. IDW interpola/on of air pollutants 

Inverse Distance Weighting Interpolation was used to estimate the concentration of air pollutants 
across Mexico City for each of the studied years. IDW predicts the value of a target location based 
on the values of surrounding known locations, weighted by their distance to the target location. 
The closer the known locations, the more weight they are given in the interpolation process. IDW 
assumes that the variable being interpolated varies smoothly in space and that nearby points are 
more similar than distant points. In air pollution modelling, IDW is a popular alternative to the 
Kriging methodology on various scales (Deligiorgi & Philippopoulos, 2011; Goutham Priya & 
Jayalakshmi, 2018). 

Deterministic methods like IDW use a fixed mathematical relationship to estimate the values at 
unobserved locations based on the distances to the observed data points. These methods 
assume that the influence of the observed data decreases as the distance between the data point 
and the unobserved location increases. IDW uses a power function to weight the contribution of 
the data points, with the exponent determined by a user-specified distance coefficient. It is to be 
noted that while deterministic methods are simple and computationally efficient, they do not 
incorporate any uncertainty in the predictions and may not account for complex spatial 
relationships between the variables. 

The IDW equation (Equation 1). is as follows. The estimation of the value zi at location x is a 

weighted mean of nearby observations: 

!̂($) = Σ!"(!!!
Σ!"(!

	 , where	(! = |$ − $!|#$ 

And where 1 ≥ 0	and	|∙|	corresponds to the Euclidean distance. 

Equation 1: IDW Interpolation 

The parameter β in the IDW method indicates how much preference is given to nearby points 

compared to distant points. β can take values of 1 or 2, corresponding to an inverse or inverse 
squared relationship, respectively. In this study, it was set to 2, based on previous studies (Kamboj 

et al., 2022; Shukla et al., 2020). The number of surrounding points, n, determines whether a 

global or local weighting is applied. If the point x	coincides with an observation location (x=xi), 
the observed value, x, is returned to avoid infinite weights (Hartmann et al., 2018). 

To ensure that the results of the interpolation were as accurate as possible, only the stations that 
had 75% of hourly data or above were considered for the analysis. Yearly averages were 
calculated for these stations. The list of stations is included in Annex IV. Air Quality Stations Used 
for the Interpolations. 

4.2. Zonal sta/s/cs 

Once the layers of the interpolated pollutants were ready, the zonal statistics function in QGIS 
was used to calculate the average of each pollutant at each AGEB. Zonal statistics is a spatial 
analysis technique that summarises the values of a raster layer (in this case, the interpolated 
pollutant layers) within the boundaries of a vector layer (Urban Marginalisation Index by AGEBs). 
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In other words, it calculates the average value of each pollutant for each AGEB. The outcome of 
this process was layers of AGEBs with the Urban Marginalisation Index and the averages of 
pollutants. 

4.3. Weighted Cohen’s Kappa (Interrater reliability) 

Weighted Cohen's Kappa is a statistical measure used to assess the agreement between two 
raters or measurements for categorical variables with an inherent order. It takes into account the 
ordinal nature of the categories and assigns weights to reflect the level of disagreement between 
different pairs of categories. In this study, Weighted Cohen's Kappa was applied to the Urban 
Marginalisation Index (UMI) data. The weighted Cohen’s Kappa can be calculated with the 
following equation (Equation 2): 

8% = 1 − &%!"×(#!"
&%!"×($!"

  

Equation 2: Weighted Cohen’s Kappa 
Where W are the weighting factors,	 fo are the observed frequencies, and	 fe are the expected 
frequencies.  

To calculate Weighted Cohen's Kappa, the vcd package in R was utilised. The dataset was 
prepared by excluding AGEBs that did not have values for all four studied years, resulting in a 
total of 2,051 AGEBs. 

To perform this analysis, the data was first subsetted for each pair of consecutive years by 
selecting the corresponding columns. This resulted in a subsetted dataset representing the UMI 
values for those specific years. 

The subsetted data was then transformed into a contingency table, a statistical tool frequently 
employed to display categorical data in the form of frequency counts arranged in a table format. 
In this case, the contingency table represented the observed agreement between the two years, 
capturing the frequency of each category combination. 

It is noteworthy that the contingency table was created in the order from "Very High" to "Very 
Low." This ordering aligns with the expected logical progression of marginality in Mexico City, 
where areas with higher marginality are categorized as "Very High" and areas with lower 
marginality are categorized as "Very Low."  

The Weighted Cohen's Kappa was then calculated using the contingency table for each pair of 
years. The resulting kappa value provides an indication of the agreement level between the 
consecutive years in terms of UMI. Table 4.1 was used to interpret the Kappa values.  

Table 4.1 Agreement measures for categorical data 
Kappa statistic Strength of agreement 
< 0.0 Poor 
0.0 – 0.20 Slight 
0.21 – 0.40 Fair 
0.41 – 0.60 Moderate 
0.61 – 0.80 Substantial 
0.81 – 1.00 Almost Perfect 

Source: Landis & Koch (1977) 
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4.4. Bivariate Moran’s I Index 

Moran's I is a common measure used to assess spatial autocorrelation, which refers to the 
similarity in spatial patterns between neighbouring locations. The Moran's I test statistic ranges 
between -1 and 1, with values closer to 1 indicating strong positive spatial autocorrelation (i.e., 
similar values tend to cluster together), values closer to -1 indicating strong negative spatial 
autocorrelation (i.e., dissimilar values tend to cluster together), and values close to 0 indicating 
no spatial autocorrelation. 

On the other hand, bivariate Local Moran's I is a statistical measure used to assess the spatial 
autocorrelation between two variables in a geographic area. It measures the degree of spatial 
association between two variables, indicating whether high or low values of one variable are 
clustered near high or low values of the other variable, or whether there is no spatial association 
between the two variables. Bivariate Local Moran's I was employed with the open-source software 
GeoDa 1.20.0.36 for Mac OS to investigate the spatial association between two variables at the 
local level. 

Specifically, it measures the correlation between the values of the two variables at different 
locations and their spatial arrangement, taking into account the values of the neighbouring 
locations. If high values of one variable tend to be close to high values of the other variable, the 
Bivariate Moran's I will have a positive value, indicating positive spatial association. If the high 
values of one variable tend to be close to the low values of the other variable, or vice versa, the 
Bivariate Moran's I will have a negative value, indicating negative spatial association.  

As a first step, a spatial weights matrix was constructed using queen contiguity weights with an 
order of contiguity 1. This approach takes into account the geographic proximity between 
neighbouring locations, including those that are adjacent and diagonal to each other. Queen 
contiguity is often appropriate for analysing spatial data where the features have irregular shapes.  

Isolated observations without neighbours were removed for all years. This step was taken to 
ensure that the spatial relationships and associations examined in the subsequent analyses are 
based on meaningful spatial connections. The removed observations ranged from 1 to 3.  

Once the spatial weights matrix is constructed, the spatial lags for each variable are calculated. 
The spatial lag for a variable is defined as the weighted average of that variable's values for all of 
its neighbouring units, using the spatial weights matrix. This produces two new variables, one for 
each of the original variables, that reflect the spatial context of each unit's value. 

Then, the variables used in the analysis are standardised, meaning that they are transformed so 
that their means are zero and their variances are one. This ensures that all variables are on the 
same scale and have equal weight in the analysis. Additionally, the spatial weights used in the 
analysis are row-standardized to ensure that the weights sum one for each observation. 

Next, the program calculates the cross-product of the two standardised variables for each pair of 
neighbouring units, using the spatial weights matrix. This results in a new matrix of cross-products 
that captures the spatial covariation between the two variables. 

Then, the bivariate Moran's I statistic is calculated, which is defined as the ratio of the sum of the 
cross-product terms to the sum of the product of the spatial lags for each variable. In the Bivariate 
Moran Scatter Plot, one variable is represented on the x-axis and the spatial lag of another 
variable on the y-axis. Specifically, the plot measures the degree to which the value of one 
variable at a location is correlated with its neighbours for a different variable. The focus of interest 
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is on the slope of the linear fit of the points on the plot, which yields a bivariate Moran's I-like 
statistic (IB). The slope of the regression line is calculated using the formula (Equation 3): 

"! =
"#("$$#$%$×'#)

"#'#%
, or the slope of a regression of $% on %. 

Equation 3: Bivariate Moran’s I Statistic 
 

Along with the scatterplot, a LISA Cluster Map is generated to display the spatial pattern of the 
bivariate relationship. LISA Cluster Map refers to a graphical representation of Local Indicators of 
Spatial Association (LISA), which is a local spatial statistic calculated for each location within a 
given study area. LISA measures are used to analyse spatial patterns and identify clusters or 
spatial autocorrelation at the local level. The plot distinguishes between four types of local spatial 
association: high-high, low-low, high-low, and low-high.  

Spatial Clusters 

• A high-high relationship occurs when neighbouring observations have high values for 
both variables, indicating a cluster of high values for both variables in a particular area, 
which suggests a positive association between the two variables.  

• A low-low relationship occurs when neighbouring observations have low values for both 
variables, indicating a cluster of low values for both variables in a particular area, which 
suggests a negative association between the two variables.  

Spatial Outliers 

• A high-low relationship occurs when neighbouring observations have high values for one 
variable and low values for the other variable. 

• Finally, a low-high relationship occurs when neighbouring observations have low values 
for one variable and high values for the other variable. 

 

4.5. Spa/al Lag Model – Maximum Likelihood Es/ma/on 

Spatial data, such as air pollutant concentrations and socioeconomic factors, often exhibit spatial 
autocorrelation, wherein nearby areas tend to have more similar values than those that are farther 
apart. Therefore, it is important to use statistical methods that account for this autocorrelation, 
rather than assuming independence between observations (Gouveia et al., 2022). 

In this study, the relationship between the socioeconomic factors and various pollutants (O3, CO, 
NOx, SO2, PM10 and PM2.5) was analysed considering their spatial distribution. To account for 
spatial autocorrelation, the spatial regression decision tree proposed by Anselin (2005) was 
employed. The preliminary analysis to choose the model focused on the year 2000 and GeoDa 
was utilised for the analysis. 
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Figure 4.1 Spatial Regression Decision Tree 
Source: Anselin (2005) 

As a first step, an Ordinary Least Squares Estimation (OLS) Regression was conducted 
considering the same spatial weights matrix created before. The diagnostics for spatial 
dependence revealed evidence of spatial clustering or patterns in the data that cannot be 
explained by chance alone (see Table 4.2). Hence, spatial regression techniques were deemed 
more appropriate for modelling the data compared to non-spatial techniques. Furthermore, both 
the Lagrange Multiplier (LM) Lag and LM Error tests yielded significant p-values. Subsequently, 
Robust LM diagnostics were considered, and only the Robust LM lag was found to be significant, 
suggesting the estimation of a spatial lag model.  

Anselin (1988) introduced the Lagrange Multiplier (LM) test to detect spatial autocorrelation, 
which is the presence of residual spatial dependence in a spatial regression model. This test 
examines whether residual spatial dependence exists after accounting for the spatial structure 
captured by the model. It helps identify whether there are unexplained spatial patterns or 
correlations in the residuals that are not adequately captured by the spatial regression model. 

In addition, the Robust LM test was proposed by Anselin et al. (1996) as an alternative to the 
traditional LM test. The Robust LM test addresses potential model misspecification and 
heteroscedasticity, which can impact the accuracy of the results.  

The LM Lag test focuses on the spatial lag component of the model. It helps determine whether 
there is spatial autocorrelation in the dependent variable itself, considering the influence of 
neighboring observations. On the other hand, the LM Error test examines spatial dependence in 
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the model residuals. It assesses whether there are spatial patterns or correlations remaining in 
the residuals after accounting for the spatial lag component and other covariates. capture all the 
spatial effects. More information on these tests can be found in Anselin (2017). 

 
Table 4.2 OLS Diagnostics for spatial dependence for 2000 data 

Test MI/DF Value Prob 
Moran’s I (error) 0.6487 51.13 0.00 
Lagrange Multiplier (lag) 1 2573.32 0.00 
Robust LM (lag) 1 5.75 0.02 
Lagrange Multiplier (error) 1 2567.58 0.00 
Robust LM (error) 1 0.01 0.92 
Lagrange Multiplier (SARMA) 2 2573.33 0.00 

The complete results of the OLS Regression are presented in Annex VI. Spatial Lag Model – Maximum 
Likelihood Estimation. 

Although the spatial lag model was initially suggested, both a spatial lag model and a spatial error 
model were evaluated to assess their goodness of fit. The Alkaike Information Criterion (AIC), 
which is based on the likelihood function, was employed as a measure of goodness-of-fit. The 
model with the lowest AIC was considered the best. In this case, the spatial lag model exhibited 
the lowest AIC, confirming its suitability as the best fit for the data. 

Finally, Moran scatterplots were constructed to analyse the model residuals (Figure 4.2) and the 
model-predicted errors (Figure 4.3). The Moran's I test statistic for the spatially autoregressive 
error term in the model was -0.056, indicating the elimination of spatial autocorrelation as 
intended. In contrast, Moran's I statistic for the predicted errors remained similar to the original 
OLS residuals. 

 

Figure 4.2 Moran’s I for spatial lag model residuals 

 

Figure 4.3 Moran’s I for spatial lag model predicted 
errors 

 

In a spatial lag models, explanatory variables and a response variable are related similarly to a 
standard linear regression model, with the distinction that the response variable is also influenced 
by spatially lagged response variables (Chi & Zhu, 2019). Spatial lag models are appropriate 
when the focus of interest is the assessment of the existence and strength of spatial interaction 
(Anselin, 1999). The spatial lag regression model can be expressed as in Equation 4: 
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; = <=; + ?$ + @  
Equation 4 Spatial Lag Model 

Where	y is a vector of observations on the dependent variable, X is a matrix of observations on 

the explanatory variables, Wy	is a spatially lagged dependent variable for weights matrix W, ε is 

a vector of independent and identically distributed error terms and ρ and β are parameters. This 
model is an estimation using the maximum likelihood of a spatial regression model that includes 
a spatially lagged dependent variable. (Anselin, 2005).  

Once the models were conducted, the statistical significance of coefficients was assessed 
following Chi & Zhu’s (2019) approach. Coefficients with p < 0.001 were considered to provide 
very strong evidence against the null hypothesis, those marked with ** at p < 0.01 were 
considered to provide strong evidence, and coefficients with * at p < 0.05 were considered to 
provide moderate evidence against the null hypothesis. 
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5. Results 

5.1. Descrip/ve sta/s/cs 

Table 5.1 provides an overview of the descriptive statistics of the air pollutants and socioeconomic 
variables considered over the studied period.  

Table 5.1 Descriptive statistics 
Statistic 2000 2005 2010 2015 2020 

O3 (ppb) 
Mean 37.09 31.01 27.04 27.98 31.92 
SD 39.87 31.67 27.93 26.18 25.78 
Min 22.24 20.76 22.24 23.72 25.20 
Max 282.00 222.00 208.00 179.00 159.00 

CO (ppm) 
Mean 2.28 1.32 1.02 0.72 0.32 
SD 1.60 1.04 0.80 0.50 0.30 
Min 1.19 0.74 0.59 0.30 0.15 
Max 19.60 12.20 11.30 7.80 4.60 

NOx (ppb) 
Mean 58.19 60.47 54.54 44.82 29.63 
SD 55.60 53.85 49.54 39.34 29.94 
Min 32.62 34.10 29.65 23.72 14.83 
Max 500.00 615.00 716.00 717.00 509.00 

SO2  (ppb) 
Mean 17.38 11.13 5.81 4.39 3.29 
SD 15.93 18.98 10.96 7.85 6.28 
Min 8.90 5.93 2.97 1.48 1.48 
Max 422.00 450.00 344.00 299.00 170.00 

PM10  (μg/m³) 
Mean 53.49 55.71 50.88 43.24 38.26 
SD 46.84 39.38 38.25 29.38 25.76 
Min 34.10 32.62 29.65 22.24 20.76 
Max 998.00 683.00 830.00 742.00 615.00 

PM2.5 (μg/m³) 
Mean ND 29.05 22.72 23.67 19.05 
SD ND 20.95 16.56 16.59 11.81 
Min ND 17.79 13.34 13.34 10.38 
Max ND 541.00 378.00 690.00 189.00 

Urban Marginalisation Index (Original and Normalised) 
Mean -1.94 (0.29) -0.69 (0.22) -0.63 (0.29) ND 0.05 (0.29) 
SD 1.48 (0.16) 0.49 (0.14) 0.55 (0.16) ND 0.02 (0.12) 
Min -4.72 (0) 0.45 (0) -1.61 (0) ND 0 (0) 
Max 4.74 (1) -1.47 (1) 1.75 (1) ND 0.15 (1) 

Poverty Rates (%) 
Mean ND ND ND ND 64.29 
SD ND ND ND ND 17.34 
Min ND ND ND ND 17.5 
Max ND ND ND ND 98.86 
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5.2. Spearman Correla/on 

The Spearman correlations of the Urban Marginalisation Index (UMI) and Poverty Percentages 
(P %) were analysed over the studied years to get an overview of the data before the spatial 
analyses. It was observed that significant positive correlations were constantly observed between 
UMI and air pollutants O3, PM10, and PM2.5, while negative correlations were found between UMI 
and CO, NOx, and SO2. The strength of these correlations varied over time, with the highest 
correlation coefficient observed in 2010 for PM2.5 and in 2005 for PM10. As for Poverty 
Percentages, significant positive correlations were found with all pollutants except NOx and SO2 

in 2020. 

Table 5.2 Summary of Spearman Correlations 
Year O3 CO NOx SO2 PM10 PM2.5 
2000 UMI 0.142** 0.059** -0.116** -0.098** 0.236** ND 
2005 UMI 0.211** -0.226** -0.092** -0.321** 0.339** -0.321 
2010 UMI 0.214** -0.124** -0.099** -0.294** -8.454** 0.381 
2020 UMI 0.159** 0.105** -0.144** -0.207** 0.220** 0.293** 
2015 P % 0.234** -0.155** -0.221** -0.264** -0.011 -0.177** 
2020 P % 0.186** 0.115** -0.170** -0.233** 0.235** 0.318** 

Note: The coefficients with ***  are statistically significant at p < 0.001 

5.3. Temporal Evolu/on and Spa/al Distribu/on of Variables 

5.3.1. Air pollutants 

To provide a general overview of the temporal evolution of air pollutants in Mexico City, a yearly 
average time series plot based on monthly averages was created using data from 1986 to 2021 
(See Figure 5.1). The openair package in R Studio was utilised for this purpose. To compare all 
pollutants, the time series were normalised by dividing each one by its mean value. The plot 
includes data from all stations in Mexico City since their establishment and for the entire duration 
that each station was operational until 2021. Overall, the plot shows that the concentration of 
pollutants has decreased in Mexico City over time. There was a particularly marked decrease in 
2020 for most of the pollutants, which is probably related to the lockdown restrictions imposed 
during the COVID-19 pandemic.  
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Figure 5.1 Normalised yearly average time plot of pollutants in Mexico City from 1986 to 2021 
 

Regarding the spatial distribution of pollutants, for Ozone (O3), concentrations have been 
consistently higher in the southern region of the city throughout the study period. For Carbon 
Monoxide (CO), higher concentrations have increasingly clustered in the northern part of the city, 
with high concentrations observed throughout most of the city, except for the western area, in 
2020. 

For Nitrogen Oxides (NOx), a cluster of higher concentrations was present in the central and 
northeastern parts of the city in 2000, which expanded to cover most of the north by 2010, a trend 
that has continued until 2020. For Sulphur Dioxide (SO2), higher concentrations have been 
consistently observed in the northern regions of the city, especially in the northwest. 

The spatial distribution of higher concentrations of Particulate Matter PM10 and PM2.5 have 
fluctuated over the years, but since 2015, the highest concentrations have been consistently 
located in the north and east of the city.  

See Figure 5.2 and Figure 5.3 for O3 overall trends and Annex IV. Air Pollutant Interpolations for 
full-size maps of the pollutants across the studied years. 
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Figure 5.2 Average O3 concentrations in 2000 

 

Figure 5.3 Average O3 concentrations in 2020 
 

5.3.2. Urban Marginalisa'on 

The Urban Marginalisation Degree data suggests that between 2000 and 2020, there has been 
a decrease in the percentage of AGEBs that fall under the high and very high categories of urban 
marginalisation. At the same time, there has been an increase in the percentage of AGEBs that 
fall under the very low and low categories and a decrease in the percentage of AGEBs that fall 
under the medium category. To summarise, there has been an overall shift towards lower levels 
of urban marginalisation in the areas represented by the AGEBs in Mexico City. See Figure 5.4. 

 

Figure 5.4 Degree of Urban Marginalisation in Mexico City over time 
 

In terms of the spatial distribution, the data indicates a consistent pattern of higher marginalisation 
levels in the north, east, and south areas of the city. While disparities have been reducing over 
time, the aforementioned regions still have higher marginalisation levels compared to the centre 
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and the western areas of the city. As of 2020, the northernmost, easternmost, and southernmost 
areas of the city are predominantly categorised as medium, with some high spots and very high 
spots, while the centre and east areas remain mostly very low to low in degree of marginalisation.  

See Figure 5.5 and Figure 5.6 for the overall evolution of the Urban Marginalisation Index and 
Annex II. Urban Marginalisation Index, for full-size maps of the UMI across the studied years. 

 

 

Figure 5.5 Urban Marginalisation Index in 2000 

 

Figure 5.6 Urban Marginalisation Index in 2020 
 

The obtained weighted Cohen's Kappa values for each pair of years are as follows: 

• Year 2000 to 2005: Weighted Kappa = 0.182 (Slight agreement) 

• Year 2005 to 2010: Weighted Kappa = 0.4228 (Moderate agreement) 

• Year 2010 to 2020: Weighted Kappa = 0.3418 (Fair agreement) 

The obtained weighted Cohen's Kappa values provide insights into the consistency of the Urban 
Marginalisation Index (UMI) categorisations over time. The Kappa values reveal varying levels of 
agreement over time. While the Kappa values do not directly capture the magnitude of change in 
the UMI values or indicate the direction of change, they provide an assessment of the agreement 
between the UMI categorisations. In other words, they reveal the extent to which the UMI 
categorisations remain stable or consistent across consecutive years, despite the evolving 
socioeconomic conditions. 

It is important to note that the interpretation of these Kappa values should be considered 
alongside the overall trend towards lower levels of urban marginalisation indicated by the UMI 
data. The observed agreement, although varying in strength, suggests that there is some stability 
or consistency in the categorisations of marginality captured by the Urban Marginalisation Index. 

5.3.3. Poverty Percentages 

The poverty rates in Mexico City have been reported differently for 2015 and 2020. While EVALUA 
(2022) reported a decrease from 60.9% in 2015 to 57.4% in 2020 in their “Poverty Measurement 
in Mexico City Municipalities, 2015 and 2020” report, a self-made calculation using the Social 
Development Index database from EVALUA (2020) resulted in a poverty rate of 67.68% for 2020. 
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It should be noted that the 2015 poverty rates used for this analysis were only available in ranges 
per AGEB, and not as a continuous variable, which limits the accuracy of any comparison with 
2020 data. Additionally, the poverty rates for 2015 were retrieved from CONEVAL (2018) and 
those for 2020 were self-calculated based on information from EVALUA (2020). Although both 
institutions retrieved their data from the National Institute of Statistics and Geography (INEGI), 
there may be differences in the way they calculate poverty. Therefore, any comparison between 
poverty rates for these two years using this information should be interpreted with caution. 

See Figure 5.7 and Figure 5.8 for the evolution of poverty rates from 2015 to 2020 and Annex III. 
Poverty Percentages for full-size maps. 

 

Figure 5.7 Poverty Percentages in 2015 

 

Figure 5.8 Poverty Percentages in 2020 
 

5.4. Spa/al Lag Model – Maximum Likelihood Es/ma/on 

For these regression analyses, the dependent variables were the Urban Marginalisation Index 
and the Poverty Percentages, and the independent variables were the air pollutants (SO2, CO, 
NOx, O3, PM10, and PM2.5). A summary of the coefficients of the regressions is shown in Table 5.3, 
and the complete reports for each regressions are presented in Annex VI. Spatial Lag Model – 
Maximum Likelihood Estimation. 

Table 5.3 Summary of Spatial Lag Model Coefficients –  Maximum Likelihood Estimation 

Year O3 CO NOx SO2 PM10 PM2.5 Rho 
R-
squared 

2000 UMI 0.036*** 0.334*** -0.003 0.005 0.037*** ND 0.824 0.700 
2005 UMI 0.019*** -0.131 0.002 -0.016** 0.005** 0.023*** 0.811 0.704 
2010 UMI 0.024*** -0.163* 0.006* -0.020** 0.002 0.030*** 0.829 0.749 
2020 UMI 0.001 -0.047 0.000 0.000 0.000 0.002** 0.736 0.571 
2015 P % 0.124*** -0.086 0.022 -0.155*** 0.048*** 0.018** 0.687 0.532 
2020 P % 0.800** -34.972 -0.018 1.160 0.166 1.190** 0.857 0.770 

Note: The coefficients with ***  are statistically significant at p < 0.001, with ** at p < 0.01 and with * at p < 0.05 
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Urban Marginalisation Index 

The results of the spatial lag models highlight significant associations between the Urban 
Marginalisation Index (UMI) and air pollutant concentrations in Mexico City over the years. Higher 
levels of O3 and PM2.5 consistently coincide with higher marginalisation in the area at very strong 
or strong significance levels. 

In the year 2000, UMI shows positive and significant relationships with O3, CO, and PM10, 
indicating that areas with higher UMI tend to exhibit higher concentrations of these pollutants. The 
positive spatial lag coefficient Rho suggests spatial autocorrelation, where neighbouring areas 
with high UMI also have high pollutant concentrations. 

In 2005, a notable change occurs in the UMI-air pollutant relationship. Alongside O3 and PM10, 
higher UMI values become positively associated with increased concentrations of PM2.51. 
However, a contrasting pattern emerges with SO2, where higher UMI values are linked to lower 
concentrations of this pollutant. This shift suggests a more complex and nuanced relationship 
between UMI and air pollution during this period. 

By 2010, the relationships between UMI and air pollutants continue to evolve. O3 and PM2.5 
remain positively associated with UMI, while SO2 retains its negative association. Notably, NOx 
now exhibits a positive association with UMI, and the significance of the PM10 relationship 
diminishes. Additionally, CO shows a negative association with UMI, contrasting with the positive 
association observed in 2000. 

In 2020, the only statistically significant relationship is found with PM2.5. This may indicate a 
change in the dynamics or spatial patterns of UMI and air pollution. The lower spatial lag 
coefficient suggests weaker spatial autocorrelation, suggesting a more dispersed pattern of UMI 
and air pollutants this year. 

Poverty Percentages 

The results of the spatial lag models reveal significant associations between Poverty Percentages 
(% P) and air pollutant concentrations in Mexico City for the two studied years. Consistently, 
higher levels of O3 and PM2.5 align with higher poverty rates in the area. Additionally, in the year 
2015, a positive and significant relationship is observed between poverty percentages and PM10 
concentrations. 

5.5. Bivariate Local Moran’s I Spa/al Autocorrela/on 

The following subsections provide an overview of the results of Bivariate Local Moran’s Spatial 
Autocorrelation for Urban Marginalisation Index and Poverty Percentages. Some relevant Moran 
Cluster Maps are presented below and the full-size Moran Scatterplots and the Moran Cluster 
Maps are shown in Annex VI. LISA Cluster Maps. 

5.5.1. Urban Marginalisa'on Index 

Table 5.4 presents the Bivariate Local Moran's I Index, showcasing the relationship between each 
air pollutant and the Urban Marginalisation Index (UMI) over the years in Mexico City. This table 
provides insights into how the association between these variables has evolved. Notably, 
consistent positive spatial autocorrelations were observed for O3, PM10, and PM2.5, indicating 

 
1 It is important to note that PM2.5 were not being monitored in Mexico City in the year 2000, indicating that this relationship 
represents the introduction of a new variable rather than a change in an existing one. 
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clustering patterns of high or low values in nearby locations. Conversely, negative spatial 
autocorrelations were found for NOx and SO2. 

Of particular interest, O3 and PM2.5 consistently exhibited higher Moran's Index values. However, 
it is essential to recognise that the strength and direction of these relationships may vary across 
different regions within Mexico City. In other words, specific neighbourhoods may demonstrate a 
more pronounced positive spatial autocorrelation between a particular pollutant and urban 
marginalisation, while other areas may exhibit a weaker or even negative association. This 
highlights the spatial heterogeneity in the relationship between air pollutants and urban 
marginalisation within the city. 

Table 5.4 Bivariate Local Moran’s I Index Summary for Urban Marginalisation Index 
Year O3 CO NOx SO2 PM10 PM2.5 
2000 0.168 0.069 -0.106 -0.097 0.249 NA 
2005 0.237 -0.174 -0.95 -0.291 0.048 0.345 
2010 0.280 -0.074 -0.054 -0.313 0.015 0.373 
2020 0.151 0.115 -0.144 -0.201 0.182 0.263 

 
Table 5.5 provides an overview of the percentages of AGEB (local administrative units) 
categorized as High-High and High-Low for the LISA Cluster Maps between the Urban 
Marginalisation Index and each air pollutant over the studied years.  

Notably, O3, PM10, and PM2.5 consistently exhibit higher percentages of High-High associations, 
indicating the presence of spatial clusters where areas with higher urban marginalization and 
higher concentrations of these pollutants are spatially concentrated. This suggests a spatial 
relationship between urban marginalization and the levels of O3, PM10, and PM2.5, where 
neighbouring AGEBs with higher UMI tend to have higher concentrations of these pollutants. 

Table 5.5 Percentage of AGEBs that fall within High-High and High-Low categories for air pollutants and 
Urban Marginalisation Index 

Pollutant 
/ Year 

High-High (% of AGEBs) High-Low (% of AGEBs) 
2000 2005 2010 2020 2000 2005 2010 2020 

O3 8.2 10.83 10.87 10.84 14.50 15.14 15.74 12.73 
CO 9.33 2.26 6.01 9.20 14.02 10.28 10.91 13.78 
NOx 8.24 2.60 3.81 3.66 13.18 12.71 11.21 11.51 
SO2 6.25 2.09 2.71 2.86 12.33 11.26 8.80 10.39 
PM10 10.85 8.06 4.70 10.38 17.14 16.59 17.47 18.40 
PM2.5 ND 10.79 11.04 10.76 ND 18.29 18.65 18.70 

 
Ozone (O3) 

The Bivariate Local Moran's Index analysis indicates a consistent positive spatial autocorrelation 
between O3 concentrations and the Urban Marginalization Index in Mexico City over the studied 
years. Even though the index has had an overall decrease, the concentration of high-high pairs, 
representing areas of both high O3 and high marginalisation, has been on the rise with a slightly 
higher number of clusters seen in recent years. The percentages of AGEBs falling into each 
category indicate that around one-quarter of AGEBs in Mexico City have been exposed to higher 
O3 levels, regardless of their marginalisation status. However, the percentage of AGEBs falling 
into the High O3 - High Marginalisation category has increased from 8.2% to 10.84% over time, 
indicating a growing clustering of O3 pollution in high marginalisation areas primarily located in 
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the south and east of the city. Figure 5.9 and Figure 5.10 show the overall evolution of Bivariate 
Moran’s cluster map for O3. 

 

 

Figure 5.9 LISA Cluster Map for O3 and Urban 
Marginalisation Index in 2000 

 

Figure 5.10 LISA Cluster Map for O3 and Urban 
Marginalisation Index in 2020 

 

Carbon Monoxide (CO) 

The Bivariate Local Moran's Index analysis indicates that there is not a consistent pattern of 
correlation between the CO concentrations and the Urban Marginalization Index in Mexico City 
over the studied years, with the relationship between the two variables fluctuating over time. The 
percentages of AGEBs falling into each category indicate that a proportion, ranging from 12% to 
23%, of AGEBs in Mexico City have been exposed to higher levels of CO pollution, irrespective 
of their marginalization status. The location of High CO - High Marginalization clusters category 
has been inconsistent over time, with the clusters moving between the south and the east of the 
city.  

Nitrogen Oxides (NOx) 

The Bivariate Local Moran's Index analysis indicates a consistent negative spatial autocorrelation 
between NOx concentrations and the Urban Marginalization Index in Mexico City over the studied 
years, suggesting that high levels of NOx pollution are not clustered in specific areas of the city. 
The percentages of AGEBs falling into each category show that a proportion, ranging from 15% 
to 21%, of AGEBs in Mexico City have been exposed to the higher levels of NOx pollution. 
Moreover, the percentage of AGEBs falling into the High-High category has had an overall 
decrease over time, while the percentage of AGEBs falling into the High-Low category has 
remained consistently significantly higher, indicating that, in general, NOx pollution is not 
disproportionately affecting marginalized areas of the city, but rather is distributed more evenly. 
However, since 2005, there is a small cluster of High -High values in the north of the city.  

 
Sulphur Dioxide (SO2) 

The Bivariate Local Moran's Index analysis indicates a consistent negative spatial autocorrelation 
between SO2 concentrations and the Urban Marginalization Index in Mexico City over the studied 
years, suggesting that, in general, high levels of SO2 pollution are not clustered in specific areas 
of the city. The percentages of AGEBs falling into each category show that a proportion ranging 
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from 11% to 19%, of AGEBs in Mexico City, have been exposed to higher levels of SO2 pollution. 
Moreover, the percentage of AGEBs falling into the High-High category has had an overall 
decrease time, while the percentage of AGEBs falling into the High-Low category has remained 
consistently significantly higher, indicating that SO2 pollution is not disproportionately affecting 
marginalized areas of the city. However, there is a small but consistent cluster of High-High values 
located in the north of the city that has persisted throughout all years.  

Particulate Matter (PM10) 

The Bivariate Local Moran's Index analysis indicates a consistent positive spatial autocorrelation 
between PM10 concentrations and the Urban Marginalization Index in Mexico City over the studied 
years, suggesting that high levels of PM10 pollution are clustered in specific areas of the city. The 
percentages of AGEBs falling into each category show that at least one-quarter of AGEBs in 
Mexico City have been exposed to higher levels of PM10 concentrations, regardless of their 
socioeconomic status. Moreover, the percentage of AGEBs falling into the High-High category 
has fluctuated over time. The High-High clusters have remained consistently in the east and the 
north of the city.   

In 2010, a significant concentration of PM10 pollutants was observed in the northeast of the city. 
This localized hotspot of high concentration had a profound impact on the overall Moran's Index 
calculation. As a result, the Moran's Index appeared lower because the high concentrations in 
other areas were overshadowed and masked by this extreme value in the northeast. This 
localized hotspot acted as an outlier, distorting the spatial pattern analysis and making it less 
sensitive to the presence of high concentrations in other areas of the city. Thus, it is important to 
recognize that although other areas also had higher pollutant concentrations, their significance 
and contribution were diminished in the Moran's Index due to the dominance of the extreme 
concentration in the northeast. 

Particulate Matter (PM2.5) 

The Bivariate Local Moran's Index analysis indicates a consistent positive spatial autocorrelation 
between PM2.5 concentrations and the Urban Marginalisation Index in Mexico City over the 
studied years, suggesting that high levels of PM2.5 pollution are clustered in specific areas of the 
city. The percentages of AGEBs falling into each category show that a proportion of around 29%, 
of AGEBs in Mexico City have been exposed to higher levels of PM2.5 concentrations, regardless 
of their socioeconomic status. Moreover, the percentage of AGEBs falling into the High-High 
category has remained between 10 and 11% over time. The High-High clusters have remained 
consistently in the east and the north of the city.   

5.5.2. Poverty Percentages 

Table 5.6 displays the Bivariate Local Moran’s Index between each air pollutant and the poverty 
rates in Mexico City for the years 2015 and 2020. For 2020, the findings are consistent with those 
for the Urban Marginalisation Index, revealing positive spatial autocorrelations for CO, O3, PM10, 
and PM2.5, and a negative one for NOx and SO2.  

Table 5.6 Bivariate Local Moran’s I Index Summary for Poverty Percentages  
Year O3 CO NOx SO2 PM10 PM2.5 
2015 0.225 -0.155 -0.232 -0.240 -0.008 -0.107 
2020 0.163 0.147 -0.143 -0.209 0.243 0.323 
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Table 5.7 provides an overview of the percentages of AGEB that fall within the High-High and 
High-Low categories for the LISA Cluster Maps between Poverty Percentages and each air 
pollutant over the studied years. 

There are significant differences between both years, probably related to the origin of the poverty 
data, however, the results from 2020 where O3, PM10 and PM2.5 have higher percentages are 
consistent with those for Urban Marginalisation Index. 

Table 5.7 Percentage of AGEBs that fall within High-High and High-Low categories for air pollutants and 
Poverty Percentages 

Pollutant / Year 
High-High (% of AGEBs) High-Low (% of AGEBs) 
2015 2020 2015 2020 

O3 12.61 17.31 15.68 14.83 
CO 2.66 13.28 9.36 14.45 
NOx 2.74 5.38 6.53 11.72 
SO2 2.45 2.86 7.93 10.38 
PM10 10.50 16.68 12.48 19.71 
PM2.5 2.45 15.97 11.13 20.00 

 

The Bivariate Local Moran's Index analysis indicates that there is a consistent positive spatial 
autocorrelation between O3 concentrations and poverty percentages in Mexico City, with High-
High clusters located in the south of the city. Moreover, positive spatial autocorrelations were also 
found for CO, PM10 and PM2.5 in 2020.  

High-High clusters are consistent for CO, NOx, SO2, PM10 and PM2.5, indicating clustering of these 
pollutants in areas with higher percentages of poverty primarily located in the northernmost part 
of the city. High-High clusters of PM10 and PM2.5 are also located in the east of the city. Figure 
5.11 and Figure 5.12 show the overall evolution of Bivariate Moran’s cluster map for PM10. In 2020 
there were more high-poverty areas with high concentrations of PM10 compared to low-poverty 
areas with high PM10 concentrations, indicating that a larger proportion of the population living in 
poverty was exposed to higher levels of PM10. 

 

Figure 5.11 LISA Cluster Map for PM2.5 and 
Poverty in 2015 

 

Figure 5.12 LISA Cluster Map for PM2.5 and Poverty 
in 2020 
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The percentages of AGEBs falling in each category reveal that areas with higher concentrations 
of pollutants and higher percentages of poverty have increased for all pollutants, while areas with 
high concentrations of pollutants and lower percentages of poverty have mostly decreased.  

In 2020, there was a notable increase in the number of High-High AGEBs for PM2.5. This increase 
can be attributed to the significant concentration of PM2.5 observed in the east of the city in 2015. 
The localized hotspot of elevated pollution in 2015 had a substantial impact on Moran's Index 
calculations. As a result, the number of High-High areas appeared lower than expected, as the 
extreme concentrations in the east masked the high concentrations in other areas of the city. 
Therefore, the increase in High-High areas observed in 2020 can be better understood by 
considering the influence of the concentrated pollution in the east in 2015, which distorted the 
spatial pattern of poverty and PM2.5 concentrations. 

The difference between the 2015 and 2020 results is likely influenced by the fact that the 2015 
poverty rates used for this analysis were only available in ranges per AGEB, and not as a 
continuous variable, which limits the accuracy of any comparison with 2020 data. Nevertheless, 
the spatial patterns of pollutants and poverty are clear, with some geographically located clusters 
of pollutants in areas with higher percentages of poverty.  
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6. Discussion 

How has the relationship between socioeconomic factors and air pollution distribution in 

Mexico City changed over time? 

The research on air pollution within the context of environmental inequalities in Latin America is 
limited, with a low proportion of published papers focusing on this topic (Fernández et al., 2023). 
Among these studies, a consistent pattern emerges, indicating higher concentrations of air 
pollutants in socially deprived areas (Gouveia et al., 2022). However, the findings from different 
studies in Mexico City present contrasting results. For instance, Garcia-Burgos et al. (2022) found 
socioeconomic disparities specifically in O3 concentrations, while observing no such disparities in 
the distribution of PM10 and PM2.5. Conversely, Lome-Hurtado et al. (2020) identified a positive 
association between deprived socioeconomic conditions and PM10, but a negative association 
between lower socioeconomic conditions and O3. 

However, the present study, which covers a longer period, reveals a different perspective. 
Contrary to the previous studies, this research consistently demonstrates positive associations 
between urban marginalisation, poverty percentages and the concentrations of O3, PM10, and 
PM2.5 through both, the Spatial Lag Models and the Bivariate Moran’s I Index. Notably, the 
concentrations of O3 and Particulate Matter in Mexico City often exceed the maximum permissible 
limits established by both Mexican regulations and the World Health Organisation (SEDEMA et 
al., 2022). 

Mexico City exhibits a complex socio-spatial structure, with diverse social groups coexisting within 
delegations and municipalities, although there are exceptions. Notably, a distinct spatial pattern 
emerges, where the urban elite tends to concentrate in central areas while poorer groups disperse 
towards the outer periphery. This segregation is driven by real estate dynamics, including 
processes like gentrification, which displace lower-income groups and attract middle-class 
populations (Aguilar et al., 2015). Additionally, there is a notable pattern of spatial fragmentation 
and segregation within the city, where specific points of interest are exclusive to particular income 
groups (Letouzé et al., 2022). 

The city's socio-spatial differentiation is historically marked by two axes: north-south and east-
west. The southwestern and western areas are consistently associated with socioeconomic 
privilege and higher social strata, while the eastern areas tend to have lower strata (Duhau, 2003; 
Schteingart, 2001; Ziccardi, 2016).  

This spatial pattern aligns with the spatial distribution of PM10 and PM2.5 concentrations, where 
areas with high vehicular intensity and heavy traffic are the main contributors to the generation 
and suspension of particles, primarily due to transportation activities on roadways (SEDEMA, 
Báez, et al., 2021). Moreover, industrial activities also play an important role in the distribution of 
particulate matter in the city.  

Cruz et al., (2014) identified significant industrial activities in both the northern and eastern parts 
of the city, which contribute to the emissions of pollutants in their respective areas. The industrial 
zones in the northern region are strategically positioned to cater to domestic markets and facilitate 
trade with the United States. Similarly, the eastern regions of Iztapalapa and La Paz serve as 
important industrial hubs primarily oriented towards meeting the demands of the city's domestic 
markets. 
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These spatial disparities in socio-economic conditions contribute to the unequal distribution of 
resources and opportunities across the city. However, these disparities extend beyond the socio-
economic realm and encompass environmental burdens such as air pollution. These disparities 
in exposure to air pollutants further contribute to the environmental inequalities experienced by 
socially or economically disadvantaged communities (Gouveia et al., 2022). 

Air pollution exposure can vary among different socioeconomic groups and have implications for 
housing choices and job opportunities. Fontenla et al. (2019) uncovered that as PM10 air pollution 
levels increase in Mexico City, the prices of houses tend to decrease. This means that individuals 
living in areas with higher pollution may pay less for their homes compared to those residing in 
cleaner areas. Additionally, the study revealed that as pollution levels increase, wages tend to be 
higher. This suggests that individuals working in areas with higher pollution may earn more money 
compared to those working in cleaner areas. This creates a cycle where socially or economically 
disadvantaged communities not only live in areas with higher levels of air pollution but also face 
challenges in accessing better housing options and may be compelled to work in more polluted 
environments. 

In relation to O3, the topographical characteristics of the semi-closed basin of Mexico City 
contribute to the circulation of O3. In the morning, pollutants emitted in the north and northeast 
are carried by winds towards the southwestern and southern sectors of the basin. However, the 
presence of mountain ranges restricts ventilation, causing air masses with high levels of O3 to 
accumulate in these areas. (Peralta et al., 2021). Consequently, the southern parts of Mexico City 
consistently exhibit higher concentrations of O3, importantly this area also corresponds to regions 
with higher levels of marginalisation and poverty. 

This study reveals that specific areas in Mexico City continue to experience high levels of both air 
pollution and low socioeconomic conditions, highlighting the persistence of socio-environmental 
disparities. While the overall spatial association between urban marginalisation, poverty 
percentages, and air pollutant concentrations may have weakened over time, certain pockets 
within the city remain disproportionately affected.  

It is important to note that individuals from lower socioeconomic backgrounds often reside in 
conditions that amplify their exposure to these pollutants. Moreover, these populations tend to be 
more vulnerable and experience a higher prevalence of diseases, which can be further 
exacerbated by poor air quality (Clougherty et al., 2014; Ortiz-Hernández et al., 2015). This is 
attributed to various factors such as limited access to healthcare services, education, lifestyle 
choices, and work and transportation-related factors, all of which are associated with 
socioeconomic disparities (Bautista-Hernández, 2021; Makri & Stilianakis, 2008). 

Conversely, wealthier individuals, despite being exposed to high levels of pollutant concentrations 
in certain areas, possess greater socioeconomic and political resources. These resources provide 
them with the means and options to effectively avoid or mitigate many environmental health risks 
(Romero-Lankao et al., 2013). 

To what extent have policy and regulatory interventions aimed at reducing air pollution in 

Mexico City been effective, and how have they impacted disparities in air pollution 

distribution over time? 

To improve air quality in Mexico City, policy and regulatory interventions have been implemented, 
with a particular emphasis on addressing emissions from mobile sources, since they are 
recognised as major contributors to air pollution in the city. 
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It has been claimed by researchers that mobility policies in Mexico City focus on enhancing long-
distance daily journeys by increasing mass transport options and thus reducing air pollution, 
however, this approach contradicts the goal of reducing air pollution since it fails to promote 
productive activities and services in southern municipalities, from where people have to travel 
longer distances (Finck Carrales, 2023). These differences between policy priorities and 
objectives have implications for the effectiveness of interventions targeting mobile sources, which 
are considered crucial in reducing air pollution in Mexico City. 

According to the evaluation of the ProAire2 program conducted by the Environmental Commission 
of the Megalopolis (2021), measures targeting mobile sources, such as the Mandatory Vehicle 
Emission Testing Program and the "Hoy No Circula" program, which restricts vehicle usage on 
certain days based on license plate numbers, are considered the most effective in reducing 
emissions in Mexico City. However, studies have shown that these driving restrictions have had 
minimal impact on overall vehicle travel and pollution reduction (Davis, 2017; Guerra & Millard-
Ball, 2017). Additionally, these policies raise equity concerns as uneven enforcement has led to 
a concentration of exempt vehicles in the city centre, while higher-polluting vehicles may be 
pushed towards lower-income peripheral neighbourhoods (Guerra & Reyes, 2022). This gives 
rise to worries regarding the fairness and effectiveness of a program that grants exemptions to 
wealthier households. As a result, it disproportionately impacts individuals who rely on a single 
restricted vehicle, particularly those who commute to areas with stricter enforcement measures 
in place. 

There are concerns regarding the adequacy of meeting the objectives related to preventing and 
controlling pollutant emissions, monitoring vehicle environmental performance, and controlling 
emissions from mobile sources (Ontiverios Jiménez, 2019). The effectiveness of the Mandatory 
Vehicle Emission Testing Program has been brought into question, with researchers raising 
significant concerns about the prevalence of cheating, which allows non-compliant vehicles to 
pass emission tests and evade the restrictions imposed by the Hoy No Circula program (Oliva, 
2015). 

These concerns align with Muñoz-Pizza et al.'s (2022) research, which emphasizes a 
predominant focus on technological solutions and vehicle fleet modernisation by policy makers, 
limited consideration of alternative approaches, barriers related to dependence on petroleum-
based industries, lack of public awareness about the health risks of air pollution, scepticism 
towards suggested solutions, and the need for stronger regulatory frameworks to ensure air 
quality. 

Policy and regulatory interventions aimed at reducing air pollution in Mexico City have 
demonstrated a certain degree of effectiveness in decreasing overall pollutant concentrations. 
Despite criticisms, the stable trend observed in air pollution levels since 2010 suggests a positive 
impact of these measures (SEDEMA et al., 2021). However, it is important to acknowledge that 
certain pollutants, such as PM10, PM2.5, and O3, still often exceed permissible limits, indicating the 
need for further action. 

 
2 ProAire programs are management instruments that establish actions to prevent and reverse trends in air quality 
deterioration. 
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7. Conclusion 

This research underscores the persistent socio-environmental disparities in Mexico City and 
emphasizes the importance of comprehensive and integrated approaches for the development of 
air pollution control policies. The study consistently demonstrates positive associations between 
urban marginalisation, poverty percentages, and the concentrations of O3, PM10, and PM2.5 across 
the studied years. It reveals that pollution sources in Mexico City, like in other parts of the world, 
are disproportionately located in low-income neighborhoods, consequently, the concentrations of 
pollutants tends to be higher in these areas. Moreover, as air pollution increases, housing prices 
go down, perpetuating the low-income status of these communities. 

Scientific studies indicate that current air quality policies have not effectively achieved objectives 
related to emissions prevention, environmental performance monitoring, and control of mobile 
source emissions in Mexico City. These findings have raised concerns about equity in air pollution 
management. Although progress has been made in reducing overall air pollutant concentrations, 
pollutants such as PM10, PM2.5, and O3 still frequently exceed acceptable limits. Importantly, these 
concentrations are often higher in areas with lower socioeconomic status, where populations tend 
to be more vulnerable, highlighting the urgent need for further action. 

Mobility policies need to adopt a comprehensive approach that goes beyond relying solely on 
restrictive measures, which, although useful in some cases, are not sufficient on their own. The 
focus should steer towards targeting the root causes of the issue, one of which is the large 
population that commutes daily to the city. It is important to acknowledge that certain policies may 
currently prioritise addressing the symptoms rather than the underlying core problem. 

By tackling the underlying factors of pollution with policies that lead to improvements in regional 
infrastructure, promote decentralised economic development and enhance public transportation 
systems, the root causes of pollution can be better addressed, leading to significant and enduring 
change. For improving the overall well-being of the Mexico City, we must focus on sustainable 
solutions that take into account the bigger picture and prioritise measures that reduce pollution. 

8. Limitations 

The use of interpolation techniques, particularly inverse distance weighting (IDW), introduces 
uncertainty and error into air pollution distribution estimates. Even though IDW is commonly used 
for air pollutants interpolation, this method assumes that closer monitoring points have a greater 
influence on estimated values, which oversimplifies the complex dispersion patterns and may 
yield less accurate results, especially in areas with spatial variations. Furthermore, IDW does not 
consider the underlying physical processes governing pollutant dispersion. 

Additionally, calculating yearly averages of pollutants within the AGEBs has its limitations. It 
assumes uniform pollution levels within a given area, potentially neglecting spatial variability and 
leading to a less accurate representation of distribution patterns. Moreover, the use of yearly 
averages fails to account for temporal variations in pollution levels, such as diurnal, seasonal, 
and annual fluctuations. Moreover, relying on data from a limited number of monitoring stations 
may result in incomplete spatial coverage, thereby limiting the representation of air pollution levels 
across the study area. 

Lastly, the utilisation of poverty rates from different sources and their varying presentation 
introduces potential inconsistencies and bias in the analysis. Despite these limitations, this study 
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provides a valuable temporal overview of the evolving relationship between air pollutants and 
socioeconomic conditions.  
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Annex I.  Air Quality Monitoring Stations 
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Table 9.1 Air quality monitoring stations 

Code Name Municipality State 
ACO Acolman Acolman State of Mexico 
AJU Ajusco Tlalpan Mexico City 
AJM Ajusco Medio Tlalpan Mexico City 
ATI Atizapán Atizapán de Zaragoza State of Mexico 
BJU Benito Juarez Benito Juárez Mexico City 
CAM Camarones Azcapotzalco Mexico City 

CCA 

Centro de Ciencias de la 
Atmósfera Coyoacán Mexico City 

TEC Cerro del Tepeyac Gustavo A. Madero Mexico City 
CHO Chalco Chalco State of Mexico 
COR CORENA Xochimilco Mexico City 
CUA Cuajimalpa Cuajimalpa de Morelos Mexico City 
CUT Cuautitlán Cuautitlán Izcalli State of Mexico 
DIC Diconsa Tlalpan Mexico City 
EAJ Ecoguardas Ajusco Tlalpan Mexico City 

EDL 

Ex Convento Desierto de los 
Leones Cuajimalpa de Morelos Mexico City 

FAC FES Acatlán Naucalpan de Juárez State of Mexico 
FAR FES Aragón Nezahualcóyotl State of Mexico 
GAM Gustavo A. Madero Gustavo A. Madero Mexico City 
HGM Hospital General de México Cuauhtémoc Mexico City 
INN Investigaciones Nucleares Ocoyoacac State of Mexico 
IZT Iztacalco Iztacalco Mexico City 
LPR La Presa Tlalnepantla de Baz State of Mexico 
LAA Laboratorio de Análisis Ambiental Gustavo A. Madero Mexico City 
IBM Legaria Miguel Hidalgo Mexico City 
LOM Lomas Miguel Hidalgo Mexico City 
LLA Los Laureles Ecatepec de Morelos State of Mexico 
MER Merced Venustiano Carranza Mexico City 
MGH Miguel Hidalgo Miguel Hidalgo Mexico City 
MPA Milpa Alta Milpa Alta Mexico City 
MON Montecillo Texcoco State of Mexico 
MCM Museo de la Ciudad de México Cuauhtémoc Mexico City 
NEZ Nezahualcóyotl Nezahualcóyotl State of Mexico 
PED Pedregal Álvaro Obregón Mexico City 
SAG San Agustín Ecatepec de Morelos State of Mexico 
SNT San Nicolás Totolapan La Magdalena Contreras Mexico City 
SFE Santa Fe Cuajimalpa de Morelos Mexico City 
SAC Santiago Acahualtepec Iztapalapa Mexico City 
TAH Tláhuac Xochimilco Mexico City 
TLA Tlalnepantla Tlalnepantla de Baz State of Mexico 
TLI Tultitlán Tultitlán State of Mexico 
UIZ UAM Iztapalapa Iztapalapa Mexico City 
UAX UAM Xochimilco Coyoacán Mexico City 
VIF Villa de las Flores Coacalco de Berriozábal State of Mexico 
XAL Xalostoc Ecatepec de Morelos State of Mexico 

Source: (SEDEMA, n.d.) 
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Annex II. Urban Marginalisation Index
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Figure 9.1 Urban Marginalisation Index in 2000 

 

Figure 9.2 Urban Marginalisation Index in 2005 
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Figure 9.3 Urban Marginalisation Index in 2010 

 

Figure 9.4 Urban Marginalisation Index in 2020 

Source: The 2000, 2005 and 2010 layers were self-made with data from CONAPO (2023) and INEGI (2000, 2004, 2010), the layer from 2020 was retrieved from CONAPO 
(2021b) 
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Annex III. Poverty Percentages
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Figure 9.5 Poverty percentages in Mexico City in 2015 
Source: Self-made with data from CONEVAL (2018) 

 

Figure 9.6 Poverty percentages in Mexico City in 2020 
Source: Self-made with data from EVALUA (2020) 
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Annex IV. Air Quality Stations Used for the Interpolations 
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Table 9.2 Air quality stations used for the interpolations 

Pollutant Year 
Stations 
# Stations Key 

O3 

2000 19 
AZC, BJU, CES, CUA, FAC, HAN, LAG, MER, MON, PED, PLA, SAG, 
TAC, TAH, TAX, TLA, TPN, UIZ, XAL 

2005 18 
AZC, CES, CUA, FAC, HAN, LAG, MER, MON, PED, PLA, SAG, SUR, 
TAC, TAH, TAX, TLA, UIZ, XAL 

2010 22 
ACO, AZC, CES, CHO, COY, CUA, FAC, IZT, LAG, MER, MON, PED, 
PLA, SAG, SUR, TAC, TAH, TAX, TLA, TPN, UIZ, XAL 

2015 25 
AJM, AJU, BJU, CAM, CCA, CHO, COY, CUA, CUT, FAC, GAM, HGM, 
INN, IZT, LLA, MER, MGH, NEZ, PED, SAG, TLA, TPN, UAX, UIZ, XAL 

2020 22 
ATI, BJU, CAM, CCA, CUT, FAC, FAR, GAM, INN, MER, MGH, MON, 
NEZ, PED, SAC, SAG, SFE, TAH, TLA, UAX, UIZ, VIF 

CO 

2000 21 
ARA, ATI, AZC, BJU, CES, FAC, HAN, IMP, LAG, MER, NET, PED, 
PLA, SAG, TAC, TAX, TLA, TLI, UIZ, VAL, VIF, XAL 

2005 22 
ARA, ATI, AZC, CES, FAC, HAN, IMP, LAG, MER, MIN, PED, PLA, 
SAG, SUR TAC, TAX, TLA, TLI, UIZ, VAL, VIF, XAL 

2010 15 
CHO, FAC, IMP, IZT, LAG, MER, PED, SAG, SUR, TAC, TAX, TLA, TLI, 
UIZ, XAL 

2015 19 
AJM, BJU, CAM, CCA, CHO, CUA, FAC, HGM, INN, IZT, MER, MGN, 
NEZ, PED, SAG, TLA, UAX, UIZ, XAL 

2020 18 
ATI, BJU, CAM, FAC, FAR, INN, MER, MGH, NEZ, PED, SAC, SAG, 
SFE, TAH, TLA, UAX, UIZ, VIF 

NOx 

2000 16 
ATI, AZC, BHU, CES, FAC, HAN, LAG, MER , PED, PLA, SAG, TAC, 
TAX, TLI, UIZ, VIF 

2005 18 
ATI, AZC, CES, FAC, HAN, LAG, MER, PED, PLA, SAG, SUR, TAC, 
TAX, TLA, TLI, UIZ, VIF, XAL 

2010 16 
ATI, AZC, CES, FAC, IZT, LAG, MER, PED, SAG, SUR, TAC, TAX, 
TLA, TLI, UIZ, XAL 

2015 18 
AJM, CAM, CCA, CUA, CUT, FAC, HGM, IZT, MER, MGH, MON, NEZ, 
PED, SAG, TLA, UAX, UIZ, XAL 

2020 18 
ATI, CAM ,CCA, CUT, FAC, MER, MGH, MON, NEZ, PED, SAC, SAG, 
SFE, TAH, TLA, UAX, UIZ, VIF 

SO2 

2000 25 
ARA, ATI, AZC, BJU, CES, FAC, HAN, LAG, LPR, LVI, MER, NET PED, 
PLA, SAG, SUR, TAC, TAH, TAX, TLA, TLI, UIZ, VAL VIF, XAL 

2005 23 
ARA, ATI, AZC, BJU, CES, HAN, LAG, LPR, LVI, MER, PED, PLA, 
SAG, SUR, TAC, TAH, TAX TLA, TLI, UIZ, VAL, VIF, XAL 

2010 21 
ACO, ATI, AZC, CES, CHO, FAC, IZT, LAG, LVI, MER, PED, PLA, 
SAG, SUR, TAC, TAH, TAX, TLA, TLI, UIZ, XAL 

2015 18 
AJM, CAM, CCA, CHO, CUT, FAC, HGM, IZT, LLA, MER, MGH, NEZ, 
PED, SAG, TLA, UAX, UIZ, XAL 

2020 19 
ATI, BJU, CAM, CCA, CUT, FAC, FAR, INN, MER, MGH, MON, NEZ, 
PED, SFE, TAH, TLA, UAX, UIZ, VIF 

PM10 

2000 10 CES, LVI, MER, NET, PED, TAH, TLA, TLI, VIF, XAL 
2005 13 CES, FAC, HAN, LVI, MER, PED, PLA, SAG, SUR, TAX, TLA, VIF, XAL 
2010 13 CES, FAC, IZT, LVI, MER , PED, SAG, SUR, TAH, TAX, TLA, TLI, XAL 

2015 16 
AJM, BJU, CAM, CHO, CUA, CUT, FAC, HGM, IZT, MER, MGH, PED, 
SAG, SUR, TLA, UIZ 

2020 13 ATI, BJU, CAM, CUT, FAC, INN, MER, PED, SAG, SFE, TLA, UIZ, VIF 
PM2.5 2005 8 CAM, COY, MER, PER, SAG, SJA, TLA, UIZ 



 

 x 

Pollutant Year 
Stations 
# Stations Key 

2010 8 ACO, CAM, COY, PER, SAG, SJA, TLA, UIZ 

2015 14 
BJU, CAM, CCA, FAR, INN, MER, NEZ, PED, SAC, SAG, SFE, TLA, 
UAX, UIZ 

2020 14 
BJU, CAM, CCA, FAR, INN, MER, NEZ, PED, SAC, SAG, SFE, TLA, 
UAX, UIZ 
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Annex V. Air Pollutant Interpolations 
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Ozone (O3) 

 

Figure 9.7 Average O3 concentrations in 2000 

 

Figure 9.8 Average O3 concentrations in 2005 
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Figure 9.9 Average O3 concentrations in 2010 

 

Figure 9.10 Average O3 concentrations in 2015 



 

 xiv 

 

Figure 9.11 Average O3 concentrations in 2020 
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Carbon Monoxide (CO) 

 

Figure 9.12 Average CO concentrations in 2000 

 

Figure 9.13 Average CO concentrations in 2005 



 

 xvi 

 

Figure 9.14 Average CO concentrations in 2010 

 

Figure 9.15 Average CO concentrations in 2015 
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Figure 9.16 Average CO concentrations in 2020 
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Nitrogen Oxides (NOx) 

 

Figure 9.17 Average NOx concentrations in 2000 

 

Figure 9.18 Average NOx concentrations in 2005 



 

 xix 

 

Figure 9.19 Average NOx concentrations in 2010 

 

Figure 9.20 Average NOx concentrations in 2015 
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Figure 9.21 Average NOx concentrations in 2020 
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Sulphur Dioxide (SO2) 

 

Figure 9.22 Average SO2 concentrations in 2000 

 

Figure 9.23 Average SO2 concentrations in 2005 
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Figure 9.24 Average SO2 concentrations in 2010 

 

Figure 9.25 Average SO2 concentrations in 2015 



 

 xxiii 

 

Figure 9.26 Average SO2 concentrations in 2020 
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Particulate Matter (PM10) 

 

Figure 9.27 Average PM10 concentrations in 2000 

 

Figure 9.28 Average PM10 concentrations in 2005 
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Figure 9.29 Average PM10 concentrations in 2010 

 

Figure 9.30 Average PM10 concentrations in 2015 



 

 xxvi 

 

Figure 9.31 Average PM10 concentrations in 2020 
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Particulate Matter (PM2.5) 

 

Figure 9.32 Average PM2.5 concentrations in 2005 

 

Figure 9.33 Average PM2.5 concentrations in 2010 



 

 xxviii 

 

Figure 9.34 Average PM2.5 concentrations in 2015 

 

Figure 9.35 Average PM2.5 concentrations in 2020 
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Annex VI. Spatial Lag Model – Maximum Likelihood Estimation 
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Ordinary Least Squares Estimation ( Urban Marginalisation Index 2000) 
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Annex VII.  LISA Cluster Maps
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Urban Marginalisation Index 
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Figure 9.36 LISA Cluster Map for O3 and Urban Marginalisation Index in 2000 

 

Figure 9.37 LISA Cluster Map for O3 and Urban Marginalisation Index in 2005 
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Figure 9.38 LISA Cluster Map for O3 and Urban Marginalisation Index in 2010 

 

Figure 9.39 LISA Cluster Map for O3 and Urban Marginalisation Index in 2020 
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Figure 9.40 Bivariate Moran’s I Scatter Plot for O3 and Urban Marginalisation 
Index in 2000 

 

Figure 9.41 Bivariate Moran’s I Scatter Plot for O3 and Urban Marginalisation 
Index in 2005 
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Figure 9.42 Bivariate Moran’s I Scatter Plot for O3 and Urban Marginalisation 
Index in 2010 

 

Figure 9.43 Bivariate Moran’s I Scatter Plot for O3 and Urban Marginalisation 
Index in 2020 
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Carbon Monoxide (CO) 

 

 

Figure 9.44 LISA Cluster Map for CO and Urban Marginalisation Index in 2000 

 

Figure 9.45 LISA Cluster Map for CO and Urban Marginalisation Index in 2005 
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Figure 9.46 LISA Cluster Map for CO and Urban Marginalisation Index in 2010 

 

Figure 9.47 LISA Cluster Map for CO and Urban Marginalisation Index in 2020 
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Figure 9.48 Bivariate Moran’s I Scatter Plot for CO and Urban Marginalisation 
Index in 2000 

 

Figure 9.49 Bivariate Moran’s I Scatter Plot for CO and Urban Marginalisation 
Index in 2005 
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Figure 9.50 Bivariate Moran’s I Scatter Plot for CO and Urban Marginalisation 
Index in 2010 

 

Figure 9.51 Bivariate Moran’s I Scatter Plot for CO and Urban Marginalisation 
Index in 2020 
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Nitrogen Oxides (NOx) 

 

 

Figure 9.52 LISA Cluster Map for NOx and Urban Marginalisation Index in 2000 

 

Figure 9.53 LISA Cluster Map for NOx and Urban Marginalisation Index in 2005 
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Figure 9.54 LISA Cluster Map for NOx and Urban Marginalisation Index in 2010 

 

Figure 9.55 LISA Cluster Map for NOx and Urban Marginalisation Index in 2020 
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Figure 9.56 Bivariate Moran’s I Scatter Plot for NOx and Urban Marginalisation 
Index in 2000 

 

Figure 9.57 Bivariate Moran’s I Scatter Plot for NOx and Urban Marginalisation 
Index in 2005 
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Figure 9.58 Bivariate Moran’s I Scatter Plot for NOx and Urban Marginalisation 
Index in 2010 

 

Figure 9.59 Bivariate Moran’s I Scatter Plot for NOx and Urban Marginalisation 
Index in 2020 
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Sulphur Dioxide (SO2) 

 

 

Figure 9.60 LISA Cluster Map for SO2 and Urban Marginalisation Index in 2000 

 

Figure 9.61 LISA Cluster Map for SO2 and Urban Marginalisation Index in 2005 
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Figure 9.62 LISA Cluster Map for SO2 and Urban Marginalisation Index in 2010 

 

Figure 9.63 LISA Cluster Map for SO2 and Urban Marginalisation Index in 2020 
  



 

 xlix 

 

Figure 9.64 Bivariate Moran’s I Scatter Plot for SO2 and Urban Marginalisation 
Index in 2000 

 

 

Figure 9.65 Bivariate Moran’s I Scatter Plot for SO2 and Urban Marginalisation 
Index in 2005 
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Figure 9.66 Bivariate Moran’s I Scatter Plot for SO2 and Urban Marginalisation 
Index in 2010 

 

Figure 9.67 Bivariate Moran’s I Scatter Plot for SO2 and Urban Marginalisation 
Index in 2020 
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Figure 9.68 LISA Cluster Map for PM10 and Urban Marginalisation Index in 2000 

 

Figure 9.69 LISA Cluster Map for PM10 and Urban Marginalisation Index in 2005 
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Figure 9.70 LISA Cluster Map for PM10 and Urban Marginalisation Index in 2010 

 

Figure 9.71 LISA Cluster Map for PM10 and Urban Marginalisation Index in 2020 
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Figure 9.72 Bivariate Moran’s I Scatter Plot for PM10 and Urban Marginalisation 
Index in 2000 

 

Figure 9.73 Bivariate Moran’s I Scatter Plot for PM10 and Urban Marginalisation 
Index in 2005 
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Figure 9.74 Bivariate Moran’s I Scatter Plot for PM10 and Urban Marginalisation 
Index in 2010 

 

Figure 9.75 Bivariate Moran’s I Scatter Plot for PM10 and Urban Marginalisation 
Index in 2020 
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Figure 9.76 LISA Cluster Map for PM2.5 and Urban Marginalisation Index in 2005 
 

 

Figure 9.77 LISA Cluster Map for PM2.5 and Urban Marginalisation Index in 2010 
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Figure 9.78 LISA Cluster Map for PM2.5 and Urban Marginalisation Index in 2020 
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Figure 9.79 Bivariate Moran’s I Scatter Plot for PM2.5 and Urban Marginalisation 
Index in 2005 

 

Figure 9.80 Figure 9.81 Bivariate Moran’s I Scatter Plot for PM2.5 and Urban 
Marginalisation Index in 2010 
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Figure 9.82 Bivariate Moran’s I Scatter Plot for PM2.5 and Urban Marginalisation Index in 2020 
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Figure 9.83 LISA Cluster Map for O3 and Poverty Percentages in 2015 

 

Figure 9.84 LISA Cluster Map for O3 and Poverty Percentages in 2020 
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Figure 9.85 Bivariate Moran’s I Scatter Plot for O3 and Poverty Percentages in 2015 

 

Figure 9.86 Bivariate Moran’s I Scatter Plot for O3 and Poverty Percentages in 2020 
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Figure 9.87 LISA Cluster Map for CO and Poverty Percentages in 2015 
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Figure 9.89 Bivariate Moran’s I Scatter Plot for CO and Poverty Percentages in 2015 
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Figure 9.91 LISA Cluster Map for NOx and Poverty Percentages in 2015 
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Figure 9.93 Bivariate Moran’s I Scatter Plot for NOx and Poverty Percentages in 2015 

 

Figure 9.94 Bivariate Moran’s I Scatter Plot for NOx and Poverty Percentages in 2020 
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Figure 9.95 LISA Cluster Map for SO2 and Poverty Percentages in 2015 
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Figure 9.97 Bivariate Moran’s I Scatter Plot for SO2 and Poverty Percentages in 2015 

 

Figure 9.98 Bivariate Moran’s I Scatter Plot for SO2 and Poverty Percentages in 2020 
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Figure 9.99 LISA Cluster Map for PM10 and Poverty Percentages in 2015 

 

Figure 9.100 LISA Cluster Map for PM10 and Poverty Percentages in 2020 
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Figure 9.101 Bivariate Moran’s I Scatter Plot for PM10 and Poverty 
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Figure 9.102 Bivariate Moran’s I Scatter Plot for PM10 and Poverty 
Percentages in 2020 
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Figure 9.103 LISA Cluster Map for PM2.5 and Poverty Percentages in 2015 

 

Figure 9.104 LISA Cluster Map for PM2.5 and Poverty Percentages in 2020 
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Figure 9.105 Bivariate Moran’s I Scatter Plot for PM2.5 and Poverty 
Percentages in 2015 

 

Figure 9.106 Bivariate Moran’s I Scatter Plot for PM2.5 and Poverty 
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