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Abstract

This thesis explores the use of Bayesian inference and Markow Chain Monte
Carlo (MCMC) methods for diffusion processes in asset pricing, including
Geometric Brownian Motion (GBM), Multivariate Merton’s model, and term
structure models.

In asset pricing, the GBM serves as a fundamental framework, and anti-
thetic techniques are employed to compare the efficiency of standard MCMC
and the antithetic MCMC. Moreover, we expand upon the GBM by incorpo-
rating jump processes through the Multivariate Merton’s model. Bayesian
inference is applied to estimate structure and state variables such as jump
size and time intensity.

Moving to the term structure modelling, the Vasicek model is employed
to capture the dynamics of interest rates. Here, we propose the band matrix
techniques for latent variables and the Adaptive Metropolis-Hastings algo-
rithm for variables. We also test the validity and efficiency of the MCMC
approximation using simulated data. Furthermore, application to real data
from economics and finance is provided.
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Chapter 1

Introduction

Diffusion processes, distinguished by stochastic movements and the progres-
sive dispersion of quantities across temporal and spatial dimensions, have
demonstrated significant utility across diverse fields. Some significant exam-
ples where this occurs include bio-informatics (Arkin et al., 1998; McAdams
and Arkin, 1999) , traffic flows (Zhang et al., 2019), image processing and
computer vision (Weickert et al., 1998), and economic & finance (Merton,
1990; Dixit, 1993).

Consider an Itô stochastic process that satisfies the form’s stochastic dif-
ferential equation (SDE):

dk (t) = m {k (t) , t, θ} dt+ n {k (t) , t, θ} dW (t) (1.0.1)

where:

• m {k (t) , t, θ} and n {k (t) , t, θ} are the drift and diffusion functions,
respectively, which depends on k (t) , t, and unknown vector of param-
eters θ

• dW (t) is the increment of a Wiener process, with W (0) = 0.

Assume that all conditions necessary for solving the SDE for a diffusion
k(t) have been met (see Oksendal (2013), p.65). Assume we have kt = k (τt)
measurements at times {τ1, τ2, ..., τT} and ∆t = τt+1− τt ≥ 0 for t ≤ T . The
objective is to estimate θ given the observations K = (k1, k2, ..., kT ). The
estimation of θ in the likelihood context is derived from the log-likelihood
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CHAPTER 1. INTRODUCTION 8

function log L (k2, k3, ..., kT |θ, y1) =
∑T−1

t=1 log h (kt+1|kt, θ), where kt is ob-
tained from the SDE:

k (t) = k (0) +

∫ t

0

m {k (s) , s, θ} ds+
∫ t

0

n {k (s) , s, θ} dW (s) (1.0.2)

and the Markov transition kernels h (kt+1|kt, θ) are used in this process.
Closed-form solutions for t ≤ T can be obtained for (1.0.2). If a strong so-

lution of the underlying process is available, then the closed form of h (kt+1|kt, θ)
allows for straightforward likelihood inference. However, analytic solutions
for SDEs are infrequently obtainable, and the parameters governing their
dynamics are often difficult to estimate from discrete-time data. Estimation
poses a challenge due to the discrepancy between the continuous time formu-
lation of the model and the discrete frequency nature of the available sample
data. Moreover, naive discretizations of diffusion processes may result in
discretization bias in the estimates.

The interest in estimating diffusion parameters from discretely sampled
measurements has increased and can be classified into three main areas. First,
alternative estimators to maximum likelihood estimation (MLE) have been
proposed in the literature. These include the use of estimating functions
(Bibby, 1996), the analytic approximation to the likelihood function (Ait-
Sahalia, 1998), and generalized method of moments (GMM)-based estima-
tors, which are discussed in Duffie and Glynn (2004). Second, Pedersen
(1995) have proposed Simulated Maximum Likelihood Estimation (SMLE)
approaches, Durham and Gallant (2002), further improving the computa-
tional efficiency of SMLE by alternate random schemes and higher-order sub-
transition densities. Finally, MCMC techniques were suggested by Elerian
et al. (2001), Roberts and Stramer (2001), and Eraker (2001). Bayesian and
likelihood methods often use a first-order Euler discretization to estimate the
true transition densities, which was first introduced in Kloeden et al. (1992).
Elerian et al. (1998) examined the Milstein scheme, an extended version of
the Euler-Maruyama scheme that includes a correction term with second-
order derivatives of the drift and diffusion functions for better accuracy. For
instance, for the general Itô process in (1.0.2), the discretization implied by
the Euler-Maruyama scheme is:

kt+1 = kt +m {k (t) , t, θ}∆t + n {k (t) , t, θ} (Wt+1 −Wt) (1.0.3)
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and by the Milstein scheme is:

kt+1 = kt +m {k (t) , t, θ}∆t + n {k (t) , t, θ} (Wt+1 −Wt)

+
1

2
n {k (t) , t, θ} dn {k (t) , t, θ}

dkt

[
(Wt+1 −Wt)

2 −∆t

]
.

(1.0.4)

Typically, the Euler-Maruyama scheme cannot use inter-observation times
as a time step due to their large size. To address this, latent data points
are augmented between each pair of observations by dividing the time in-
terval into more minor equidistant points and replacing missing data with
simulated data. However, extensive augmentation of data points can pose
challenges for the Bayesian computation approach. In particular, the strong
correlation between unknown parameters related to the diffusion or volatil-
ity coefficient and the missing data can result in slow convergence rates of
naive sampling methods (Bernardo et al., 2003). Roberts and Stramer (2001)
addressed the issue by transforming the SDE to achieve a constant diffusion
coefficient, which resolved the dependence problem. Golightly and Wilkinson
(2006) employed a sequential simulation filter that is not scalable for signifi-
cant augmentation. Still, large data sets can cause degeneration of posterior
samples, resulting in inadequate mixing of MCMC schemes like the Gibbs
sampler. On the other hand, the innovation scheme proposed by Golightly
and Wilkinson (2008) using analysis of a partially and discretely observed
SDE as a missing data problem does not suffer from this problem. Pieschner
and Fuchs (2020) incorporated the Milstein scheme into Bayesian data aug-
mentation and determined that impractical constraints limit its application
to multidimensional processes.

This thesis will focus on applying Markov Chain Monte Carlo (MCMC)
to estimate the diffusion process in dynamic asset pricing. This approach is
grounded in arbitrage and equilibrium arguments, which establish the func-
tional relationship between asset prices and a range of economic fundamen-
tals, including state variables, structural parameters, and market prices of
risk.

The inference of asset pricing using the Bayesian approach typically re-
quires determining the conditional distribution of observed prices, denoted
by Y , given the state variables, X, and the parameters, θ. The combina-
tion of information from the model and the observed prices is essential for
inferring parameters and state variables, which is facilitated by the posterior
distribution p (θ,X|Y ). Properly characterizing the joint probability distri-
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bution p(θ,X|Y ) in continuous-time asset pricing models presents several
challenges.

1. The observed prices are discrete, whereas the theoretical model assumes
continuous evolution of prices and state variables.

2. The researcher’s perspective often needs to capture the latent nature
of state variables.

3. The dimensionality of the joint posterior distribution p(θ,X|Y ) is fre-
quently high, leading to the inadequacy of conventional sampling tech-
niques.

4. Several continuous-time models generate transition distributions for
prices and state variables that are non-normal and nonstandard, thereby
rendering the application of standard estimation methods such as max-
imum likelihood estimation (MLE) more intricate.

Examining the Heston model as an example in Heston (1993) is beneficial to
contextualize the matter. Let St and νt be a pair of variables that simulta-
neously determine the price of an asset and its stochastic volatility.

dSt = µStdt+
√
νtStdW

s
t (P) (1.0.5)

dνt = κ (θ − νt) + ξ
√
νtdW

ν
t (P) . (1.0.6)

where W s
t (P) and W ν

t (P) are Brownian motions under the physical measure
P, µ is the average price of the asset, θ is the long-run average variance of
the price, κ is the rate at which νt revers to θ and ξ is the volatility of the
volatility, which determines the variance of νt.

The price of derivatives that include options is a common observation
among researchers. In the context of derivative pricing, assuming the pres-
ence of a probability measure denoted by Q under the no-arbitrage condition
is common.

dSt = µStdt+
√
νtStdW

s
t (Q)

dνt = κQ (θQ − νt
)
+ ξ

√
νtdW

ν
t (Q) .

(1.0.7)

whereW s
t (Q) andW ν

t (Q), are defined under the risk-neutral measure Q. The
parameters κQ

ν and θQ capture the diffusive ”price of volatility risk”. Under
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the risk-neutral measure Q, the valuation of a call option on the underlying
asset St at maturity T and strike price K can be expressed as follows:

Ct = C(St, νt, θ) = EQ
[
exp−

∫ T

t

rsds (ST −K)+ |νt, St, θ

]
. (1.0.8)

where θ =
(
θP, θQ

)
are the physical and risk-neutral parameters, respectively,

rs refers to the instantaneous interest rate. The state variable X consists of
the volatility.

In this case, empirical asset pricing aims to learn about the volatility-
related state variables, risk-neutral and objective parameters, and model
specifications from the observed stock returns and option prices. The joint
posterior distribution p(θ,X|Y ) denotes the information available from the
sample regarding the objective and risk-neutral parameters in the context of
parameters, which measures the estimation risk or the inherent uncertainty
in estimating parameters. The marginal distribution p (X|Y ) provides a con-
sistent approach for estimating stochastic volatility over time by integrating
the model and data of the state variables, which is crucial for empirical
issues requiring volatility estimations, such as option pricing or portfolio ap-
plications. Applying traditional approaches to this model is difficult since
volatility is latent and the transition density for observed prices is unknown.
MCMC techniques might address all these issues.

The development of MCMC algorithms for exploring p(θ,X|Y ) begins
with employing state space models to represent asset pricing problems, fol-
lowing Duffie (1996), which facilitates the construction of MCMC algorithms
by emphasizing the modular structure of asset pricing models. The obser-
vation equation represents the conditional distribution of asset prices given
the state variables and parameters. The evolution equation describes the
state variable’s dynamics based on the parameters. Equations (1.0.5) and
(1.0.6) constitute the observation equations, while (1.0.8) represent the evo-
lution equation, as previously stated. Nonlinear and non-Gaussian state
space models can be used to describe asset pricing models, for which MCMC
techniques are highly appropriate due to multiple factors:

1. Continuous-time asset models involve stochastic differential equations
(SDEs) that incorporate Brownian motions, Poisson processes, and
other independent and identically distributed (i.i.d.) shocks with eas-
ily characterizable distributions to determine the prices and state vari-
ables. When discretized over a finite time interval, the models can be
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represented as time series models with standard error distributions such
as the Normal, Discrete Mixture of Normal, or t-Students. Bayesian
inference can be directly applied to these models using standard tools.
Bayesian inference can be directly applied to these models using stan-
dard tools.

2. MCMC is a comprehensive method that concurrently estimates param-
eters and latent variables. MCMC calculates the distribution of latent
variables and parameters based on observed data, presenting a distinct
alternative to the common practice of utilizing approximate filters or
latent variable proxies with noise in the existing literature. Discretely
observed data enables researchers to distinguish between the impacts
of jumps and stochastic volatility in models of interest rates or equity
prices.

3. MCMC techniques facilitate researchers’ evaluation of estimation and
model risk. Estimation risk arises from the uncertainty in estimating
parameters or state variables, while model risk arises from the uncer-
tainty in specifying the model. The assessment of estimation risk is
crucial in real-world scenarios and requires quantifying its effects.

The thesis is structured as follows. Chapter 2 presents the fundamental
principles of Markov Chain Monte Carlo (MCMC) techniques. Chapter 3
demonstrates the application of MCMC techniques in asset pricing, which
includes the creation of posterior approximation algorithms for GBM and
Multivariate Merton’s model. Chapter 4 introduces a term-structure model,
specifically the Vasciek model, and its parameter estimation using MCMC
techniques. Chapter 5 provides concluding remarks and proposes ideas for
further research.



Chapter 2

MCMC methods

2.1 Gibbs Sampling

The Gibbs sampler is a basic MCMC algorithm described in Chapter 7 of
Robert et al. (1999), which involves iterative direct sampling from all com-
plete conditional distributions of parameters and latent variables. The sub-
sequent statement defines a Gibbs sampler: given

(
θ(0), X(0)

)
1. Draw θ(1) ∼ p

(
θ|X(0), Y

)
2. DrawX(1) ∼ p

(
X|θ(1), Y

)
.

(2.1.1)

The Gibbs sampler produces a sequence of random variables
{
θ(h), X(H)

}H
h=1

with an empirical distribution which converges to the joint posterior distri-
bution p (θ,X|Y ). The algorithm is iterated until convergence under the
researcher’s control of H.

If direct draw from p (θ|X, Y ) and p (X|θ, Y ) are not feasible, these dis-
tributions can be simplified. For instance, let us examine the Gibbs sampler:
given

(
θ(0), X(0)

)
1. Draw θ

(1)
1 ∼ p

(
θ1|θ(0)2 , θ

(0)
3 , θ

(0)
h , X(0), Y

)
2. Draw θ

(1)
2 ∼ p

(
θ2|θ(1)1 , θ

(0)
3 , θ

(0)
h , X(0), Y

)
...

h. Draw θ
(1)
h ∼ p

(
θh|θ(1)1 , θ

(1)
2 , θ

(1)
3 , . . . θ

(1)
h−1, X

(0), Y
)

(2.1.2)

13
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and then draw the states (X|θ, Y ). If block drawing is not possible for the
states, p(X|θ, Y ) can be factorized into lower-dimensional distributions using
similar reasoning.

The Gibbs sampler necessitates drawing from the entire set of conditional
distributions conveniently. It often requires drawing random variables from
standard continuous distributions and discrete distributions, such as Normal,
t-Students, Beta, Gamma, Binomial, Dirichlet, etc.

2.2 The Griddy Gibbs Sampler

The Griddy Gibbs sampler approximates the conditional distribution using
a discrete set of points. Assuming the continuous univariate distribution of
θ, p(θ|X, Y ) can be evaluated point-wise. However, direct draws from the
nonstandard distribution of p(θ|X, Y ) are not feasible. The Griddy Gibbs
sample discretizes the continuous distribution of θ into M-points, {θj}Mj=1.
Ritter and Tanner (1992) propose an algorithm based on this approximation:

Step 1 : Compute p (θj|X, Y ) and set wj =
p (θj|X, Y )∑M
j=1 p (θj|X, Y )

.

Step 2 : Approximate the inverse CDF of p (θj|X, Y ) .

Step 3: Generate a uniform on [0, 1] and invert the approximate CDF.

(2.2.1)

The authors also address grid point selection issues and demonstrate the
algorithm’s ability to characterize conditional distributions in some cases
effectively. The algorithm exhibits good performance with low parameter
discretization. High-dimensional systems may exhibit poor algorithmic per-
formance.

2.3 Metropolis-Hastings

The Gibbs sampler may only be applicable when it is convenient to sample
one or more conditional distributions. In some cases, nonlinear models may
have unrecognizable parameter conditional distributions. The distribution
is identifiable in other cases, yet efficient sampling algorithms do not exist.
The Metropolis-Hastings algorithm is commonly used in such scenarios.
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Assuming a single parameter case, let us consider the task of sampling
from a one-dimensional distribution π(θ) for simplicity. To produce samples
θ∗ from π(θ) using a Metropolis-Hastings algorithm, a proposal or candidate
density q

(
θ(h+1)|θ(h)

)
must be specified by the researcher. Typically, this

conditional distribution highly depends on the other parameters and state
variables. As in Metropolis et al. (1953), it is sufficient to evaluate the density

ratio π(θ∗)

π(θ(h))
. The general steps of the Metropolis-Hastings algorithm can be

described as follows:

Step 1. : Draw θ∗ from the proposal density q
(
θ(h+1)|θ(h)

)
Step 2. : Accept θ∗ with probability α

(
θ(h), θ∗

)
or reject it

(
i.e. θ(h+1) = θ(h)

)
(2.3.1)

where:

α
(
θ(h), θ∗

)
= min

(
π (θ∗) /q

(
θ∗|θ(h)

)
π (θ(h)) /q (θ(h)|θ∗)

, 1

)
. (2.3.2)

Implementing the Metropolis-Hastings algorithm involves generating random
variables from a proposal distribution and evaluating an acceptance criterion.
This algorithm decomposes the conditional distribution into a component
easily sampled to generate candidate points and another component that
determines the acceptance criteria. The acceptance criterion ensures the
accuracy of the algorithm’s stationary distribution. By iteratively applying

the algorithm, it produces a sequence of samples
{
θ(h)
}H
h=1

that converge to
the target distribution π (θ).

While the theory does not impose limitations on the proposal density,
it is crucial to acknowledge that the choice of the proposal density heavily
influences the algorithm’s efficiency. Too thin tails in the proposal density
can result in slow convergence of the algorithm. The algorithm may fail to
converge if it gets trapped by a particular region of the parameter space.

Two specific instances of the Metropolis-Hastings algorithm deserve par-
ticular consideration: Independence Metropolis-Hastings (IMH) and Ran-
dom Walk Metropolis-Hastings (RWMH).

2.3.1 Independence Metropolis–Hastings

The Metropolis-Hastings algorithm employs a proposal density, q
(
θ|θ(h)

)
,

which depends on the previous chain θ(h), as well as other parameters and
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states variables. An alternative approach is to sample the candidate θ∗ from a
distribution that is independent of the previous state, denoted as q

(
θ∗|θ(h)

)
=

q(h+1), which corresponds to an IMH algorithm described as follows:

Step 1. : Draw θ∗ from the proposal density q (θ∗)

Step 2. : Accept θ∗ with probability α
(
θ(h), θ∗

) (2.3.3)

where:

α
(
θ(h), θ∗

)
= min

(
π (θ∗) /q (θ∗)

π (θ(h)) /q (θ(h))
, 1

)
. (2.3.4)

Although the candidate draws, θ∗, are independent of the previous state,
the dependence of the acceptance probability on previous draws implies that

the sequence
{
θ(h)
}H
h=1

is not independent. In IMH, the choice of the proposal
distribution is often tailored to closely match particular characteristics of the
target distribution.

2.3.2 Random-Walk Metropolis-Hastings

The RWMH algorithm, first introduced by Metropolis et al. (1953), uses a
random-walk model to generate candidate points. Specifically, the candidate
θ∗ is obtained by adding an independent error term ϵt to the current state
θ(h), i.e., θ∗ = θ(h) + ϵt. The error term ϵt is normally assumed to have a
symmetric density function with fat tails, such as a t-Students distribution.
In the RWMH, the choice of the proposal distribution is generic and does
not consider the specific structural characteristics of the target distribution.

The equation q
(
θ|θ(h)

)
= q

(
θ(h)|θ

)
illustrates the symmetry in the pro-

posal density of the RWMH algorithm. This symmetry allows for simplifica-
tion of the algorithm, leading to the following expression:

Step 1. : Draw θ∗ from the proposal density q
(
θ∗|θ(h)

)
Step 2. : Accept θ∗ , i.e. θ(h+1) = θ∗, with probability α

(
θ(h), θ∗

) (2.3.5)

where:

α
(
θ(h), θ∗

)
= min

(
π (θ∗)

π (θ(h))
, 1

)
. (2.3.6)

The error term’s variance is under the researcher’s control in RWMH.
The algorithm’s error term variance should be adjusted to achieve an accept-
able level of accepted draws, typically between 20-40%. A comprehensive
discussion of this will be provided in the following part.



CHAPTER 2. MCMC METHODS 17

2.4 Adaptive Metropolis-Hastings

Continuing with RWMH from the previous section, we want to choose the
scale of the proposal σ to optimize the results of the MCMC algorithm. An
initial observation reveals that when the value of σ is minimal, the accep-
tance rate of proposed moves approaches unity. However, these accepted
moves represent minor changes, leading to poor mixing of the Markov chain
(Figure 2.2). Conversely, when σ is excessively large, most moves are re-
jected, resulting in the limited overall movement of the chain (Figure 2.1).
Optimal performance requires a moderate value of σ, allowing for reasonable
proposals and maintaining a reasonably high acceptance rate (Figure 2.3).

One practical approach to addressing this issue involves monitoring the
acceptance rate of the algorithm, i.e., the proportion of accepted proposed
moves. If the acceptance rate is close to 1, σ is too tiny (Figure 2.2). Con-
versely, if the acceptance rate is close to 0, σ is too large (Figure 2.1). We
can balance exploration and exploitation in the Markov chain by selecting a
value of σ that yields an acceptance rate far from both extremes (Figure 2.3)
(see Brooks et al. (2011), chapter 4).

This straightforward guideline is a rule of thumb for scaling RWMH or
Adaptive Metropolist-Hastings (Adaptive MH) algorithms. However, it al-
lows for a wide range of choices, and further insights can be obtained under
specific conditions. Even when we understand the criteria defining an optimal
MCMC algorithm, the challenge remains to achieve this optimality, specif-
ically, how to design and implement a Markov chain exhibiting (approxi-
mately) optimal characteristics. Gelman et al. (1997) demonstrated that
multivariate proposal distribution yields an optimal acceptance rate of 0.234
for target distributions with a specific structure. According to Roberts and
Stramer (2001) recommendation, a univariate proposal distribution should
have a value of 0.44. Even though these theoretical outcomes were formu-
lated based on relatively stringent assumptions, they have demonstrated their
efficacy in addressing broader issues. A general approach in MCMC is ad-
justing acceptance probabilities by manually tuning the scale parameter to
attain the above-mentioned rates. The manual adjustment of scale parame-
ters can pose challenges in practical applications, mainly when the MCMC
sampler involves numerous proposal distributions. Additionally, the presence
of parameter correlations can exacerbate these difficulties.

We propose using the Robbins-Monro process, a stochastic search algo-
rithm, to automatically tune scale parameters. The adaptive sampler adjusts
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Figure 2.1: MCMC draws from the posterior distribution: large σ, small
acceptance rate, and poor mixing.

Figure 2.2: MCMC draws from the posterior distribution: small σ, large
acceptance rate, and poor mixing.
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Figure 2.3: MCMC draws from the posterior distribution: medium σ, good
acceptance rate, and good mixing.

the value of σ based on the acceptance or rejection of the previous MCMC
proposed move. Specifically, it increases σ after an acceptance and decreases
σ after a rejection. The step size, or change in σ, exhibits a linear decrease
as the number of iterations in the Markov chain increases.

2.5 The Robbins-Monro process

In the context of this thesis, we only consider the algorithm in a univari-
ate case. The Robbins-Monro process was initially developed for a typical
scenario that is described in the following:

The probability of success for a binary response is denoted by p (σ), with
σ being a controllable parameter. The function p(σ) is assumed to decrease
monotonically concerning σ. In RWMH, it is generally valid to assume that
a minor scale parameter σ corresponds to a higher acceptance rate p (σ), and
vice versa.

The objective is to determine the standard deviation, denoted by σ, cor-
responding to a predetermined probability of success, denoted by p∗. Let σ∗

be the designated value such that p (σ∗) = p∗. The Robbins-Monro procedure
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performs a probabilistic exploration through the execution of a series of at-
tempts. During each trial, the value of σ is equated to the present estimation
of σ∗. Suppose the trial yields a favourable outcome, σ∗ increases, while an
unfavourable outcome decreases. The notation σk represents the estimation
of the true value σ∗ obtained during the kth iteration, where k = 1, 2, . . ..
Robbins and Monro (1951) introduced the process that involved transitioning
from σk to σk+1 based on the following rule:

σk+1 =

{
σk +

c(1−p∗)
k

if the kth trial is a success

σk − cp∗

k
if the kth trial is a failure

(2.5.1)

• The size of steps is controlled by c, where the optimal value for c is
c = σk

p∗(1−p∗)
, which is suggested by Garthwaite et al. (2016)

• The optimal value of p∗ has been determined to be 0.44 for the uni-
variate case.

This fundamental approach involves iteratively enhancing the estimation of
σ∗ during each iteration of the Markov chain.

The initial values for a search process can either be randomly selected
(e.g., σ1 = 1) or deliberately chosen based on an estimated standard deviation
of the original function. Following Garthwaite (1996), it is optional for σ1

to be appropriately selected, given that the Robbins-Monro process can be
supervised and a new search initiated if the initial value appears inadequate.
Convergence of σk → σ∗ may be delayed as the step size decreases with k.



Chapter 3

Asset Pricing

The following two chapters’ modelling and estimation methods are based on
Johannes and Polson (2010).

3.1 Geometric Brownian Motion

The Geometric Brownian Motion (GBM) is a fundamental asset pricing
model for an asset’s price, in which the stock price St satisfies a well-known
SDE:

d logS(t) = µdt+ σdW P
(t) (3.1.1)

where µ is the continuously-compounded expected return and σ is the volatil-
ity. Prices are discretely recorded at equally spaced time intervals. A closed-
form solution exists for continuously-compounded returns in this model:

Yt = log

(
St

St−1

)
= µ+ σϵt, (3.1.2)

where ϵt ∼ N(0, 1), i.i.d, t = 1, 2, . . . T . The model for the continuously
compounded return vector produces a conditional likelihood:

p
(
Y |µ, σ2

)
=
∣∣2πσ2It

∣∣− 1
2 exp

{
− 1

2σ2
(Y − µ)′ (Y − µ)

}
=
(
2πσ2

)−T
2 exp

{
− 1

2σ2
(Y − µ)′ (Y − µ)

}
.

(3.1.3)

21
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To fully specify the model, we make the following assumption of indepen-
dent priors for µ and σ2:

µ ∼
(
µ0, σ

2
0

)
, σ2 ∼ IG (ν0, S0) . (3.1.4)

The Gibbs sampler is used to obtain samples from the joint posterior
distribution of the parameters and iterates the following steps:

1. Draw µ from the Normal distribution N (µ̂,Kµ) where:

Kµ =
1

1
σ2 +

T
σ2
0

, µ̂ = Kµ

(
1
′
TY

σ2
+

µ0

σ2
0

)
. (3.1.5)

2. Draw σ2 from the Inverse Gamma distribution:

IG
(
ν0 +

T

2
, S0 +

1

2
(Y − µ)′ (Y − µ)

)
. (3.1.6)

See Appendix A for the derivation of the full conditional distributions.
In the following, we provide an antithetic implementation of the Gibbs

sampler. Antithetic techniques can enhance the efficiency of a Gibbs sampler,
an iterative MCMC algorithm. Antithetic variables can produce negatively
correlated sample pairs, resulting in quicker convergence and decreased vari-
ance. The Antithetic techniques with Gibbs, as described by Holmes and
Jasra (2009) and Casarin et al. (2023), will be applied to the GBM in (3.1.1).

The first and second steps of the Antithetic Gibbs sampler are the same
as (3.1.5) and (3.1.6), whereas the remaining steps are outlined below:

3. Using the same random standard normal number but a different sign
with (3.1.5) in each draw.

4. Draw antithetic mean µ1 from the Normal distribution N (µ̂1, Kµ1)
where:

Kµ1 =
1

1
σ2
1
+ T

σ2
0

, µ̂1 = Kµ1

(
1
′
TY

σ2
1

+
µ0

σ2
0

)
. (3.1.7)

5. Draw the antithetic variance σ2
1 from the Inverse Gamma distribution

with the antithetic mean µ1:

IG
(
−ν0 +

T

2
, S0 +

1

2
(Y − µ1)

′ (Y − µ1)

)
. (3.1.8)
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We will demonstrate the methodology using a GBM applied to the S&P500
equity index returns between 03/01/2007 and 08/12/2022.

Posterior

M Std CI

(a) Standard Gibbs Sampler

µ 0.0253 1.699 [-0.0151,0.066]

σ2 1.698 0.0375 [1.626,1.772]

(b) Antithetic Gibbs Sampler

µ1 0.0256 0.00019 [0.0253,0.026]

σ2
1 1.698 0.0371 [1.647,1.75]

Table 3.1: Estimated Geometric Brownian Motion on S&P 500 daily returns
from 03/01/2007 to 08/12/2022: parameter estimates (M), their standard
deviation (Std) and 95% Credible Interval (CI). Posterior quantities are ap-
proximated by standard Gibbs Sampler (panel a) and Antithetic Gibbs Sam-
pler (panel b).

The Gibbs and Antithetic Gibbs samplers have been coded in Matlab
(see GBM code). We consider 6250 iterations for each sampler. The first
1250 iterations were discarded as a burn-in period of the MCMC chain. The
posterior distributions were summarised using the last 5000 draws, resulting
in the parameter estimates reported in Table 3.1, their standard deviations,
and credible intervals.

The posterior histogram is presented in Figure 3.1, while additional graphs
can be found in Appendix B. From all the graphs, we can see that:

• With the mean parameter (µ, µ1), the antithetic techniques have a
much lower standard deviation than the standard techniques.

• However, the variance parameter (σ2, σ2
1) is nearly identical in both

techniques.

• Looking at the progressive mean plot in Figure B.2, we can see that
with the antithetic techniques, these two parameters converged faster
than the standard techniques.

https://github.com/holmes12345/GBM_code/blob/main/GBM%20model
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Figure 3.1: MCMC approximation of the posterior histograms for µ, µ1, σ
2

and σ2
1 (from top to bottom).
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3.2 AMultivariate Version of Merton’s Model

Matsuda (2004) introduced a jump-diffusion model as an extension of the
Geometric Brownian Motion, specifically a multivariate version of the Mer-
ton model (1976). The asset price M-vector is a solution to the following
stochastic differential equation (SDE):

dS(t) = µS(t)dt+ σS(t)dW P
(t) + d

NP
(t)∑

j=1

S (τj)−
(
eZ

P
j − 1

) , (3.2.1)

The given variables are a vector standard Brownian motion denoted as
W

(P)
(t) , a diffusion matrix Σ = σσ′, a Poisson process N

(P)
t with constant

intensity λ, and multivariate normal jump sizes Zj ∈ RM with mean µz and
variance-covariance matrix Vz. The model assumes correlated jumps in prices
and allows for the inclusion of an idiosyncratic jump process. Its objective is
to solve the SDE for continuously compounded equity returns within a daily
interval, as follows:

log (St/St−1) = µ+ σ
(
W P

t −W P
t−1

)
+

NP
t+1∑

j=NP
t +1

Zj (P) , (3.2.2)

To incorporate the variance correction, we construct the drift vector sim-
ilar to the GBM equation (3.1.1). The Euler-Maruyama scheme in (1.0.3)
is then used to discretize the jump component, assuming a single jump per
time interval.

Yt ≡ log (St/St−1) = µ+ σϵt + JtZt (3.2.3)

The probability of Jt being equal to 1 is denoted by λ, where λ ∈ (0, 1) .
Additionally, the structure of the jump sizes remains unchanged. The MCMC
algorithm is used to sample from the joint distribution p(θ,X|Y ), where θ
represents a set of structure parameters including µ, Σ, λ, µz, and Vz, and
X represents the state parameters including vectors of jump times and jump
sizes denoted by J and Z, respectively. The observed prices are represented
by the vector Y . The full likelihood for the continuous-compound returns is:

p (Y |θ, J, Z) ∝ |Σ|−
Tm
2 × exp

{
−1

2
(Y − µ− ZJ)′

(
IT ⊗ Σ−1

)
(Y − µ− ZJ)

}
.

(3.2.4)
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with m as the number of return series, T being the number of observations,
IT is an T × T identity matrix and 1Tm is an Tm× 1 vectors of one.

Next, we select standard independent conjugate priors for five structure
parameters and two state parameters, conditioned on the remaining param-
eters, that is:

µ ∼ Nm (µ0, V0) , V ∼ IWm (ν0, S0) , µz ∼ Nm (µz0 , Vz0) ,

Vz ∼ IWm (νz0 , Sz0) , λ ∼ B (α0, β0) .
(3.2.5)

The Gibbs sampler is employed for sampling from the joint posterior
distribution of parameters. The sampling process involves the following steps:

1. Draw µ from the Normal distribution Nm

(
µ̂,K−1

µ

)
where:

Kµ = Σ−1
0 + 1′Tm

(
IT ⊗ Σ−1

)
1Tm

µ̂ = K−1
µ

(
V −1
0 µ0 + 1′Tm

(
IT ⊗ Σ−1

)
(Y − ZJ)

)
.

(3.2.6)

2. Draw V from the Inverse Wishart distribution:

IWm

(
ν0 + T, S0 +

T∑
t=1

(Yt − µ− JtZt)
′ (Yt − µ− JtZt))

)
. (3.2.7)

3. Draw µz from the Normal distribution Nm

(
µ̂z, K

−1
µz

)
where:

Kµz = V −1
z0 + 1′Tm

(
IT ⊗ V −1

z

)
1Tm

µ̂z = K−1
µz

(
V −1
z0 µz0 + 1′NT

(
IT ⊗ V −1

z

)
Z
)
.

(3.2.8)

4. Draw Vz from the Inverse Wishart distribution:

IWm

(
νz0 + T, S0 + (Z − µz)

′ (Z − µz)
)
. (3.2.9)

5. Draw λ from the Beta distribution:

B

(
α +

T∑
t=1

Jt, T −
T∑
t=1

Jt

)
. (3.2.10)
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6. Draw Zt from the Normal distribution N (kt, Vt) where:

Vt =
(
JtΣ

−1 + V −1
z

)−1

kt = V −1
z

(
JtΣ

−1 (Yt − µ) + V −1
z µz

)
.

(3.2.11)

7. Draw Jt from the Bernoulli Distribution:

Bin (1, φt) . (3.2.12)

See Appendix C for the derivation of the full conditional distributions.

Prior Posterior

M Std M Std CI

µ1 0 10 -0.0252 6.9746 [-13.9837,13.4947]

µ2 0 10 0.0587 6.9743 [-13.4647,14.0015]

σ2
1 1.67 0.248 2.4568 0.0546 [2.3525,2.5649]

σ2
2 1.67 0.248 2.9051 0.0655 [2.7814,3.0346]

ρ12 0 1.5 0.7369 0.001 [0.7228,0.7508]

µz1 0 10 0.0398 6.9876 [-13.4694,13.9581]

µz2 0 10 -0.0244 6.988 [-14.0236,13.5765]

σ2
z1 1.67 0.248 2.6642 4.3961 [0.008,14.0372]

σ2
z2 1.67 0.248 2.6347 4.3877 [0.008,13.9987]

ρz12 0 1.5 -0.7701 0.4169 [-0.9801,0.2241]

λ 0.5 0.29 0.1448 0.2168 [0.0002,0.5068]

Table 3.2: Bi-variate Merton’s model estimated on S&P 500 and NASDAQ
100 daily returns from 03/01/2007 to 08/12/2022. Parameter estimates (M),
their standard deviation (Std), and 95% Credible Interval (CI).

.
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We will demonstrate the methodology using a bi-variate Merton’s model
applied to returns of the S&P500 and NASDAQ 100 equity indexes covering
the period from 03/01/2007 to 08/12/2022. The sampler Matlab code for
the Gibbs sampler ran for 6,250 iterations with a burn-in period of 1,250,
as shown in MMerton code. The posterior distributions were summarized
using the last 5000 draws, resulting in the parameter estimates reported in
Table 3.2, their standard deviations and credible intervals.

The posterior parameters histograms and the posterior jump times are
presented in Figures 3.2-3.4. MCMC trace plots and progressive mean plots
can be found in Appendix D. From all the tables and graphs, we can see
that:

• The jump size characteristics of both returns are nearly identical and
have a high negative correlation.

• Despite having identical standard deviations, the NASDAQ 100 index
has more than twice the absolute value of posterior average returns
compared to the S&P 500 index.

• Figures 3.2-3.4 present the posterior trace plot for all parameters and
highlight the Gibbs sampler’s movement within the posterior distribu-
tion after burn-in.

• The informative prior on λ indicates rare jump events, as Figure 3.4
confirms.

• The posterior estimates for the parameter jump size are quite not in-
formative:

– The observed posterior standard deviation shows a marked in-
crease compared to the prior assumption.

– The jump size correlation has a different sign from the returns cor-
relation, which is quite unusual in the case of two major indexes.

– The percentage of simulation step that correlates smaller than -0.8
is the highest.

• The sampler Matlab code in MMerton code exhibits low efficiency
due to the numerous parameter computations and updates executed in
each iteration, especially the jump size and time parameters.

https://github.com/holmes12345/MMerton_code/blob/main/MMerton%20model
https://github.com/holmes12345/MMerton_code/blob/main/MMerton%20model
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• The model’s constant volatility results in clustered jumps in some pe-
riods, thereby capturing volatility time-variation that is not inherently
incorporated in the model.

Figure 3.2: MCMC approximation of the posterior histograms for S&P 500
parameters and NASDAQ 100 parameters (from top to bottom).
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Figure 3.3: MCMC approximation of the posterior histograms for other pa-
rameters (jump intensity, return correlation, and jump size correlation).

Figure 3.4: MCMC approximation of the posterior of the jump times



Chapter 4

Term Structure of Interest
Rates

This Chapter illustrates Bayesian inference and MCMC for term structure
models. This application’s novelty consists of using an efficient sampling pro-
cedure for the posterior of the hidden spot rate. We replaced the standard
Forward filtering Backward sampling with the band matrix technique pro-
posed by Chan and Jeliazkov (2009). Moreover, the Adaptive MH method
is used for the parameters instead of the RWMH usually employed.

4.1 Term structure model

The first term structure model is the uni-variate, Gaussian model of Vasicek
(1977). Let (R,F ,P) a probability space and (W P

t )t≥0 be a Wiener (or stan-
dard Brownian motion) process under the physical measure P. In Vasicek
model, the spot rate r(t) is the Itô’s process, which satisfies:

r(t) = r0

∫ t

0

(
a1 − b1r(s)

)
ds+

∫ t

0

σrdW
P
(s), t ≥ 0 (4.1.1)

or equivalently, the SDE

dr(t) =
(
a1 − b1r(t)

)
dt+ σrdW

P
(t), t ≥ 0 (4.1.2)

with given initial value r0, where a1 and b1 are the means and the speed of
reversion parameters, respectively. The parameters are measured under the
physical measure P.

31
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The spot rate evolves under the equivalent martingale measure (risk-
neutral measure) Q via:

dr(t) =
(
a2 − b2r(t)

)
dt+ σrdW

Q
(t), (4.1.3)

where a2 and b2 are measured under Q and (WQ
(t))t≥0 is a standard Brownian

motion under Q. In the following, we define the parameter vectors θP =
(a1, b1, σr) ∈ Θ and θQ = (a2, b2, σr) ∈ Θ, where Θ is the parameter space.

Let F = (Ft) be the natural filtration generated by (r(t))t≥0 and denote

with EQ
t (·) = EQ(·|Ft) the conditional expectation, where Q is the risk-

neutral measure. The price of a zero coupon bond at time t is the expected
value of the value of 1$ discounted by the risk-free instantaneous rate between
t and t+ τ :

P
(
r(t), τ

)
= EQ

t

[
exp

(∫ t+τ

t

r(s)ds

)]
= exp

[
α (a2, b2, σr, τ) + β (b2, σr, τ) r(t)

] (4.1.4)

where the loading functions are:

β (b2, σr, τ) =
exp (−b2τ)− 1

b2

α (a2, b2, σr, τ) =
1

2

[
σ2
r

b22
− a2

b2

]
(τ − β (b2, σr, τ))−

σ2
r

4b2
β (b2, σr, τ)

2 .

(4.1.5)

We assume that there exists a panel of zero coupon bonds, continuously-
compounded yields Yt = [Yt,τ1 , ..., Yt,τm ], where Yt,τ = −lnP

(
r(t), τ

)
and τ =

[τ1, ..., τk] are the yield to maturity and the set of maturities, respectively.
Given the maturity, we will write the loading functions in the vector form:
α̃ (a2, b2, σr, τ) = (αt,τ1 , ..., αt,τm)

′ and β̃ (b2, σr, τ) = (βt,τ1 , ..., βt,τm)
′.

4.2 Inference

To estimate all of the parameters, we use a discrete-time approximation of
the first order (Euler-Maryama approximation, in (1.0.3)) of the SDEs and
obtain:

Yt = α̃ (a2, b2, σr, τ) + β̃ (b2, σr, τ) rt + ϵt

rt+1 = rt + a1 − b1rt + σrηt+1

(4.2.1)
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with ϵt ∼ N (0,Σ) and ηt ∼ N (0, 1), i.i.d, t = 1, 2, . . . T .
Prior to going into MCMC estimation, we will provide a brief overview

of parameter identification. Equations (4.1.4) and (4.1.5) show that:

• The identification of a1 and b1 is based exclusively on the short rate
dynamics.

• α̃ (a2, b2, σr, τ) is linear in a2, and both α̃ (a2, b2, σr, τ) and β̃ (b2, σr, τ)
are non-linear in b2;

• The identification of Σ is based only on the bond yields cross-section.

• The joint identification of σr is achieved by analyzing both the cross-
section of bond yields and the latent short-rate dynamics.

Next, we choose independent standard conditionally conjugate priors for
each objective measure parameter given the rest, that is:

(a1, b1) ∼ N2 (z0, V0) , a2 ∼ N
(
m2a, σ

2
2a

)
, b2 ∼ N

(
m2b, σ

2
2b

)
,

Σ ∼ IWm (ν0, S0) , σ2
r ∼ IG (νr, Sr) , r0 ∼ N

(
c0, d

2
0

)
.

(4.2.2)

. Assuming stationary, we can ensure b1 > 0 by eliminating any MCMC
draws with b1 < 0, as we anticipate a non-explosive latent short rate. The
posterior distribution is p (θ, r|Y ) where θ = (a1, b1, a2, b2, σr,Σ, r0) is the pa-
rameter vector and Y = (Y1, ..., YT )

′ and r = (r1, ..., rT )
′ are the observation

vectors.
The Gibbs sampler is used to obtain samples from the joint posterior

distribution of the parameters. The sampler iterates the following steps:

1. Generate r from the Normal distribution N (r̂, V −1
r ) where:

Vr = w1, r̂ = V −1
r w2 =

w2

w1

. (4.2.3)

2. Generate z = (a1, b1) from the Normal distribution N2 (ẑ, K
−1
z ) where:

Kz =

(
V −1
0 +

r̃′r̃

σ2
r

)
, ẑ = K−1

z

(
V −1
0 z0 +

r̃′∆r

σ2
r

)
. (4.2.4)

3. Generate Σ from the Inverse Wishart distribution:

IWm

(
ν0 + T,

T∑
t=1

(
Yt − α̃− β̃rt

)′ (
Yt − α̃− β̃rt

))
. (4.2.5)
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4. Generate a2 from the Normal distribution N (â2, D2a) where:

D2a =

(
0.25Tg

′

1Σ
−1g1 +

1

σ2
2a

)−1

, â2 = D2a

(
u1 + u2 +

m2a

σ2
2a

)
.

(4.2.6)

5. Generate b2 from Adaptive MH with proposal distribution N (b2, σ
2
k)

and σk is adjusted at each step following the formula from (2.3.5),
(2.3.6) and (2.5.1).

6. Generate σ2
r from Adaptive MH algorithm with truncated proposal

distribution N
(
0, σ2

r , σ
2
j

)
and σj is adjusted at each step following the

formula from (2.3.5), (2.3.6) and (2.5.1).

7. Generate r0 from the Normal distribution N (r̂0, Dr0) where:

Dr0 =

(
n2
1

σ2
r

+
1

d20

)−1

, r̂0 = Dr0

(
n1 (r1 − a1)

σ2
r

+
c0
d20

)
. (4.2.7)

See Appendix E for the derivation of the full conditional distributions.
We conduct a simulation experiment to assess the posterior approxima-

tion’s performance. The simulated yields are generated using specific param-
eter values based on findings from the empirical term structure literature,
as reported by Pearson and Sun (1989). In particular, the mean reversion
parameter b1 in the latent short rate process is set to 0.1036 for monthly
observation data. The long-run mean of rt, denoted as a1, is assigned a
value of 0.0518. Similarly, the risk-neutral parameters b2 and a2 are set to
0.0529 and 0.0518, respectively. The volatility parameter σ2

r is set at 0.0131
(σr = 0.1145).

The correlation matrix represents the variance-covariance matrix of the
pricing errors Σ in the observation equation,

ρ =


1 0.2 0.2 0.2

0.2 1 0.2 0.2

0.2 0.2 1 0.2

0.2 0.2 0.2 1
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and the diagonal matrix with the maturity-specific standard deviations on
the main diagonal

D =


0.2 0 0 0

0 0.3 0 0

0 0 0.4 0

0 0 0 0.5


which correspond to standard deviations in short rates of 20%, 30%, 40%
and 50% for the respective terms to maturity, τj, j = 1, 3, 6, 12.

We first simulate a time series for the latent factor rt monthly to gener-
ate the observed yield curves, using the specified parameter values and the
initial condition r0 = 1%/12. Based on these simulated values of rt, we then
generate 192 monthly observed yield curves from 03/01/2007 to 08/12/2022.
The yield curves are generated for four different terms to maturity, namely
τj = 1, 3, 6, 12 months. The first equation in (4.2.1) is used for this simu-
lation process. To calculate the values of α̃ (a2, b2, σr, τ) and β̃ (b2, σr, τ) in
(4.1.5), the parameter values mentioned above are used.

Posterior

True value M Std CI

a1 0.0518 0.0534 0.0191 [0.0160,0.0685]

b1 0.1036 0.126 0.0392 [0.0706,0.2027]

a2 0.0529 0.0552 0.0017 [0.0518, 0.0586]

b2 0.0529 0.0574 0.0044 [0.0500,0.0670]

σ2
r 0.0131 0.0146 0.0007 [0.0132,0.0161]

Table 4.1: Simulation experiments for Term-structure model from
03/01/2007 to 08/12/2022. Parameter estimates (M), their standard de-
viation (Std), and 95% Credible Interval (CI).

The simulation exercise aims to determine how well the Bayesian MCMC
method performs in estimating the true parameters of the Vasicek model
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in (4.2.1), in particular, as compared with estimation parameters using our
assumption. The sampler Matlab code in Vasicek code is executed using
Simulation data for 6250 iterations, with the first 1250 iterations being dis-
carded as a burn-in period. The parameter estimate presented in Table 4.1
was obtained by summarizing the posterior distribution using the most recent
5000 draws. From the table, we can see that:

• The MCMC method quite accurately estimates the parameters of the
true process, as evidenced by the closeness of the point estimates ob-
tained from the posterior means to the actual parameter values.

• However, the estimated parameters exhibit an upward bias towards the
true value, indicating the necessity of augmenting the data to capture
the dynamics of the underlying process better and reduce biases in
parameter estimation.

4.3 US interest rate application

Using a term structure model and the MCMC methodologies, we estimate
the latent spot rate from the actual monthly data for the US Treasury Rates
for One Month, Three Months, Six Months, and One Year from 03/01/2007
to 08/12/2022. Using the same sampler Matlab code from Vasicek code
to this actual data with the same number of iterations (6250) and burn-in
period (1250) resulted in the parameters estimate that is shown in Tables 4.2
and 4.3.

Posterior

M Std 95% CI

a1 0.5217 0.1034 [0.3202,0.7282]

b1 0.9096 0.1484 [0.619,1.1973]

σ2
r 0.4841 0.0131 [0.4502,0.4993]

Table 4.2: Parameters estimates for state equation from 03/01/2007 to
08/12/2022. Parameter estimates (M), their standard deviation (Std), and
95% Credible Interval (CI).

https://github.com/holmes12345/Termstructure_code/blob/main/Vasicek%20model
https://github.com/holmes12345/Termstructure_code/blob/main/Vasicek%20model
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Posterior

M Std CI

a2 0.6466 0.0792 [0.5404,0.8681]

b2 0.4739 0.0247 [0.4023,0.4987]

σ2
1 2.5824 0.2642 [2.1098,3.1389]

σ2
2 2.603 0.2685 [2.1245,3.1673]

σ2
3 2.5438 0.2682 [2.0786,3.1165]

σ2
4 2.4134 0.2733 [1.9313,3.01]

ρ12 0.7909 0.0014 [0.7879,0.7932]

ρ13 0.7674 0.0051 [0.7563,0.7761]

ρ14 0.7507 0.0085 [0.7318,0.7653]

ρ23 0.7852 0.0023 [0.7803,0.7892]

ρ24 0.774 0.0047 [0.7636,0.7821]

ρ34 0.7927 0.0013 [0.7898,0.7949]

Table 4.3: Parameter estimates for observation equation from 03/01/2007 to
08/12/2022. Parameter estimates (M), their standard deviation (Std) and
95% Credible Interval (CI).

The latent short rate vs. actual rate, average acceptance rate, and pos-
terior histogram graphs are shown in Figures 4.1-4.6, and additional graphs
can be found in Appendix F. From all of the tables and graphs, we can see
that:

• The variances and correlation parameters for four maturities have a
similar pattern (mean, standard deviation, and posterior distribution).

• The mean and reversion parameters in the observation and state equa-
tions have quite the same behaviour as the simulated parameters set
up in the previous section but have a different posterior distribution.



CHAPTER 4. TERM STRUCTURE OF INTEREST RATES 38

– With the state equation, both parameters a1 and b1 have normal dis-
tributions.

– With the observation equation, parameters a2 and b2 might have left-
skewed and right-skewed distributions, respectively.

⇒ This might reflect the pattern of actual financial data about interest rates.

• The average acceptance rates of b2 and σ2
r are around 24.5% and 17.5%,

respectively (Figure 4.1), which is quite far from the target acceptance rate
of 44% proposed for Adaptive MH for the univariate case, which might be due
to the problem of identification in the loading functions in (4.1.5), leading to
an unsuitable shape for the likelihood function of both parameters.

Figure 4.1: MCMC average acceptance rate for b2 and σ2
r with Adaptive MH

(from top to bottom).
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• The positive pair correlation with nearly equal magnitude (Table 4.3)
among the four maturities reflects the observed co-movements in inter-
est rates, as depicted in Figure 4.2. However, applying the one-factor
Vasicek model to this pattern might not align with the behaviour above.

Figure 4.2: 1 month T-bill, 3 months T-bill, 6 months T-bill, 1 year T-bill,
and the estimated latent short rate path, resulting from fitting a one-factor
Vasicek model to monthly observations of the T-bill rate from 03/01/2007
to 08/12/2022.

Figure 4.3: MCMC approximation of the posterior histograms for the pa-
rameters of the observation equation.
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Figure 4.4: MCMC approximation of the posterior histograms for the pa-
rameters of the state equation.

Figure 4.5: MCMC approximation of the posterior histograms for the vari-
ance parameters of the observation equation.
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Figure 4.6: MCMC approximation of the posterior histograms for the corre-
lation parameters of the observation equation.



Chapter 5

Conclusion

This thesis deals with Bayesian inference methods for the diffusion processes.
We review some numerical methods for posterior approximation and develop
posterior inference for standard asset pricing models and interest rate term
structures.

In asset pricing, we applied Bayesian inference and antithetic techniques
to estimate the parameters of the GBM, which assumes constant volatility
and log-normal returns. By employing Bayesian inference, we incorporated
prior knowledge and updated it with observed data to obtain posterior dis-
tributions for the mean and variance. In addition, through antithetic tech-
niques, we efficiently generated pairs of correlated samples, enabling us to
improve the accuracy and convergence rate of our estimation process, which
allowed us to make more reliable inferences about the dynamics of the GBM
and quantify the uncertainty associated with our parameter estimates.

Furthermore, we extended our analysis to the Multivariate Merton’s model,
which incorporates jump processes into asset price dynamics. Including price
jumps in the process enables modelling of non-Gaussian behaviour and ex-
treme events in financial markets. The application of the Bayesian framework
facilitated the estimation of parameters related to jump intensity, return cor-
relation, and jump size correlation, thereby offering valuable insights into the
dynamics of these variables. Our findings revealed the importance of con-
sidering jumps in asset pricing models and their impact on risk assessment.
However, there still exist some limits regarding the jump parameters and
computational times, and further research in this area could explore more
complex diffusion processes, such as stochastic volatility models or jump-
diffusion models, and investigate advanced Bayesian techniques, such as ran-
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dom scan, in which the variables in the joint distribution are updated one at
a time in a random order, instead of updating them sequentially to reduce
computational times. Additionally, expanding the application of Bayesian
inference to other areas of finance, such as option pricing or portfolio opti-
mization, would further improve our understanding of financial markets and
enhance risk management practices.

In the interest rate term structure, we focused on applying the Vasicek
model, which characterizes the evolution of interest rates. We obtained a
comprehensive view of the term structure dynamics by considering the pos-
terior distributions of the parameters using MCMC methods. From there,
we could make informed predictions about interest rate movements. Never-
theless, one typical limitation of the Vasicek model is that we do not control
for the negative value of the interest rate, which might affect our estimation
and prediction of the term structure. One possible alternative is to draw
the posterior parameters of the Cox-Ingersoll-Ross (CIR) model or the Hull-
White model, which includes additional parameters to capture the potential
for negative interest rate levels. Another alternative is to consider term struc-
ture models with regime switches, in which the long-run mean and volatility
can change over time. Last, we can extend the model suggested above with
the jump component and more hidden factors or consider more maturity
with augmentation techniques to better capture the complex behaviour of
the interest rate term structure.

In summary, Bayesian inference is valuable for estimating and modelling
diffusion processes in asset pricing and interest rate term structure. Integrat-
ing Bayesian techniques and financial models presents novel opportunities for
research and practical implementation, facilitating enhanced comprehension
and decision-making within the finance domain.
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A Derivations for the Geometric Brownian

Motion

A.1 Full conditional distribution of µ

p
(
µ|Y, σ2

)
∝ p

(
Y |µ, σ2

)
p(µ)

∝ exp

{
− 1

2σ2
(Y − µ)′ (Y − µ)

}
× exp

{
− 1

2σ2
0

(µ− µ0)
2

}
∝ N (µ̂,Kµ)

(A.1)

with 1T is an T × 1 vectors of one and:

Kµ =
1

1
σ2 +

T
σ2
0

, µ̂ = Kµ

(
1
′
TY

σ2
+

µ0

σ2
0

)
. (A.2)

A.2 Full conditional distribution of σ2

p
(
σ2|Y, µ

)
∝ p

(
Y |µ, σ2

)
p(σ2)

∝ (σ2)(
T
2
+ν0+1) × exp

{
− 1

σ2

(
S0 +

1

2
(Y − µ)′ (Y − µ)

)}
∝ IG

(
ν0 +

T

2
, S0 +

1

2
(Y − µ)′ (Y − µ)

)
.

(A.3)
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B Results for Geometric Brownian Motion

B.1 Posterior trace plot

Figure B.1: MCMC posterior trace plots for µ, µ1, σ
2 and σ2

1 (from top to
bottom).



BIBLIOGRAPHY 51

B.2 Progressive mean plot

Figure B.2: MCMC progressive averages increasing the number of simula-
tions for µ, µ1, σ

2 and σ2
1 (from top to bottom).
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C Derivation for the Multivariate Merton’s

model

C.1 Full conditional distribution of µ

p (µ|Z, J, Y ) ∝ p (Y |θ, Z, J) p (µ)

∝ |Σ|−
Tm
2 × exp

{
−1

2
(Y − µ− ZJ)′

(
IT ⊗ Σ−1

)
(Y − µ− ZJ)

}
× exp

{
−1

2
(µ− µ0)

′ V −1
0 (µ− µ0)

}
∝ exp

{
−1

2

[
µ′K−1

µ µ− 2µ′µ̂
]}

∝ Nm

(
µ̂,K−1

µ

)
(C.1)

with:
Kµ = Σ−1

0 + 1′Tm

(
IT ⊗ Σ−1

)
1Tm

µ̂ = K−1
µ

(
V −1
0 µ0 + 1′Tm

(
IT ⊗ Σ−1

)
(Y − ZJ)

)
.

(C.2)

C.2 Full conditional distribution of V

p (V |Z, J, Y ) ∝ p (Y |Θ, Z, J) p (V )

∝ |Σ|−
ν0+N+T+1

2 × exp

{
−1

2
tr
(
S0 + (Y − µ− ZJ)′ (Y − µ− ZJ) Σ−1

)}
∝ IWm

(
ν0 + T, S0 +

T∑
t=1

(Yt − µ− JtZt)
′ (Yt − µ− JtZt))

)
.

(C.3)
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C.3 Full conditional distribution of µz

p (µz|Z, J, ) ∝ p (Z|θ, J) p (µz)

∝ exp

{
−1

2
(Z − µz)

′ (IT ⊗ V −1
z
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C.4 Full conditional distribution of Vz

p (Vz|Z, J) ∝ p (Z|θ, J) p (Vz)

∝ |Vz|−
νz0+N+T+1
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C.5 Full conditional distribution of λ

p (λ|J) ∝ p (J |λ) p (λ)
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C.6 Full conditional distribution of Zt

p (Zt|Yt, Jt, θ) ∝ exp

{
−1

2

(
h

′

tΣ
−1ht + (Zt − µz)

′ V −1
z (Zt − µz)

)}
∝ exp

{
−1

2
(Zt − kt)

′ V −1
t (Zt − kt)

}
∝ N (kt, Vt)

(C.8)

with:
ht = Yt − µ− ZtJt

Vt =
(
JtΣ

−1 + V −1
z

)−1

kt = V −1
z

(
JtΣ

−1 (Yt − µ) + V −1
z µz

)
.

(C.9)

C.7 Full conditional distribution of Jt

The conditional posterior distribution for jump times is Bernoulli due to the
binary nature of Jt, which can only take values of 0 or 1.

p (Jt|θ, Zt, Yt) ∝ p (Yt|Jt, Zt, θ) p (Jt|Θ)

∝ Bin (1, φt)
(C.10)

with:
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D Results for the Multivariate Merton’s model

D.1 Posterior trace plot

Figure D.1: MCMC posterior trace plots for S&P 500 and NASDAQ 100
parameters (from top to bottom).
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Figure D.2: MCMC posterior trace plots for other parameters (jump inten-
sity, return correlation, and jump size correlation).

D.2 Progressive mean plot

Figure D.3: MCMC progressive averages increasing the number of simula-
tions for other parameters (jump intensity, return correlation, and jump size
correlation).
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Figure D.4: MCMC progressive averages increasing the number of simula-
tions for S&P 500 parameters and NASDAQ 100 parameters (from top to
bottom).
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E Derivation for the Vasicek model

E.1 Full conditional distribution of r

Rewrite the state equation in (4.2.1). We have:

rt+1 = a1 + (1− b1) rt + σrηt+1

= a1 + n1rt + σrηt+1

⇒ rt+1 − n1rt = a1 + σrηt+1

⇒ Hr = a11T + n1r̃0 + σrη

(E.1)

where:

n1 = 1− b1, H =



1 0 0 . . . 0

−n1 1 0 . . . 0

0 −n1 1 . . . 0
...

...
...

...
...

0 0 0 −n1 1


is a T × T matrix

r̃0 = (r0, 0, . . . , 0)
′ , η = (η1, . . . , ηT )

′ are T × 1 vectors.

H is a band matrix with |H| = 1 ̸= 0. Therefore, H is invertible. We
claim that: H−1r̃0n1 = r0
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n1, n

2
1, . . . , n

T
1

)′
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2
1, . . . , n

T
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Combine with (1.10), and we have:
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−1η. (E.2)

thus:
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p (r|Y,Θ) ∝ p
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{
−1

2
(r′w1r − 2r′w2)

}
∝ NT

(
r̂, V −1

r

)
(E.3)

with:

w1 = IT ⊗ β̃′Σ−1β̃ +
H ′H

σ2
r

,

w2 =
(
IT ⊗ β̃′Σ−1

)
Y −

(
1T ⊗ β̃′Σ−1α̃

)
+

H ′H

σ2
r

(
a1H

−11T + Ar0
)

Vr = w1, r̂ = V −1
r w2 =

w2

w1

.

(E.4)

E.2 Full conditional distribution of z = (a1, b1)

Rewrite the state equation in (4.2.1), we have the following:

∆r = r̃z + σrηt+1 (E.5)

with: ∆r = [r1 − r0, ..., rT − rT−1]
′ and r̃ =


1 −r1
...

...

1 −rT

.
Since ηt ∼ N (0, 1), from (1.5), thus:

p (∆r|z, σr) =
∣∣2πσ2

rIT
∣∣− 1

2 exp

{
− 1

2σ2
r

(∆r − r̃z)′ (∆r − r̃z)

}
=
(
2πσ2

r

)−T
2 exp

{
− 1

2σ2
r

(∆r − r̃z)′ (∆r − r̃z)

}
.

(E.6)



BIBLIOGRAPHY 61

Combine with (4.2.2), and we have:

p (z|∆r, σr) ∝ p (∆r|z, σr) p (z)

∝ exp

{
− 1

2σ2
r

(∆r − r̃z)′ (∆r − r̃z)

}
× exp

{
−1

2
(z − z0)

′ V −1
0 (z − z0)

}
∝ exp

{
−1

2

[
z′K−1

z z − 2z′ẑ
]}

∝ N2

(
ẑ, K−1

z

)
(E.7)

with:

Kz =

(
V −1
0 +

r̃′r̃

σ2
r

)
, ẑ = K−1

z

(
V −1
0 z0 +

r̃′∆r

σ2
r

)
. (E.8)

E.3 Full conditional distribution of Σ

Rewriting the observation equation in (4.2.1), we have: Y = 1T ⊗ α̃ +(
IT ⊗ β̃

)
r + ϵ, with ϵ ∼ N (0, IT ⊗ Σ) and 1T is a T × 1 vectors of one,

thus:
Y |α̃, β̃,Σ ∼ NTm

(
1T ⊗ α̃ +

(
IT ⊗ β̃

)
r, IT ⊗ Σ

)
(E.9)

with probability density function:

p
(
Y |α̃, β̃,Σ

)
= (2π)−

mT
2 |Σ|−

T
2

× exp

{
−1

2

(
Y − 1T ⊗ α̃−

(
IT ⊗ β̃

)
r
)′ (

IT ⊗ Σ−1
) (

Y − 1T ⊗ α̃−
(
IT ⊗ β̃

)
r
)}

= (2π)−
mT
2 |Σ|−

T
2

× exp

{
−1

2

T∑
t=1

(
Yt − α̃− β̃rt

)′
Σ−1

(
Yt − α̃− β̃rt

)}
.

(E.10)
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Following the prior assumptions in equation (4.2.2), we have an Inverse
Wishart conditional distribution:

p
(
Σ|Y, α̃, β̃

)
∝ p

(
Y |α̃, β̃,Σ

)
p (Σ)

∝ |Σ|−
ν0+T+m+1

2 × exp

{
−1

2
tr

[(
S0 +

T∑
t=1

(
Yt − α̃− β̃rt

)′ (
Yt − α̃− β̃rt

))
Σ−1

]}

∝ IWm

(
ν0 + T,

T∑
t=1

(
Yt − α̃− β̃rt

)′ (
Yt − α̃− β̃rt

))
.

(E.11)

E.4 Full conditional distribution of a2

Rewrite the second equation in (4.1.5), but in the vector form, we have:

α̃ (a2, b2, σr, τ) =
1

2

[
σ2
r

b22
− a2

b2

](
τ − β̃ (b2, σr, τ)

)
− σ2

r

4b2
β̃ (b2, σr, τ)

2

= −1

2
a2

(
τ − β̃

b2

)
+

σ2
r

4b2

[
2

(
τ − β̃

b2

)
− β̃2

]

= −1

2
a2g1 +

σ2
r

4b2

(
2g1 − β̃2

)
= −1

2
a2g1 + h1.

(E.12)

with g1 =
(

τ−β̃
b2

)
and h1 =

σ2
r

4b2

(
2g1 − β̃2

)
are a m× 1 vectors.

p (a2|Y, b2,Σ) ∝ p (Y |a2, b2,Σ) p (a2)

∝ exp

{
−1

2

(
Y − 1T ⊗ α̃−

(
IT ⊗ β̃

)
r
)′ (

IT ⊗ Σ−1
) (

Y − 1T ⊗ α̃−
(
IT ⊗ β̃

)
r
)}

× exp

{
− 1

2σ2
2a

(a2 −m2a)
2

}
∝ exp

{
−1

2

[
a22D

−1
2a − 2a2â2

]}
∝ N (â2, D2a)

(E.13)
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with:

u1 =
1

4

[
Tg

′

1Σ
−1h1 + Th

′

1Σ
−1g1 +

(
1
′

T ⊗ g
′

1Σ
−1β̃
)
r −

(
1
′

T ⊗ g
′

1Σ
−1
)
Y
]

u2 =
1

4

[
r′
(
1T ⊗ β̃′Σ−1g1

)
− Y ′ (1T ⊗ Σ−1g1

)]
D2a =

(
0.25Tg

′

1Σ
−1g1 +

1

σ2
2a

)−1

, â2 = D2a

(
u1 + u2 +

m2a

σ2
2a

)
.

(E.14)

E.5 Full conditional distribution of b2

p (b2|Y, a2,Σ) ∝ p (Y |a2, b2,Σ) p (b2)

∝ exp

{
−1

2

(
Y − 1T ⊗ α̃−

(
IT ⊗ β̃

)
r
)′ (

IT ⊗ Σ−1
) (

Y − 1T ⊗ α̃−
(
IT ⊗ β̃

)
r
)}

× exp

{
− 1

2σ2
2b

(b2 −m2b)
2

}
.

(E.15)

This conditional distribution of b2 is nonstandard. We use a Metropolis-
Hasting algorithm to sample from this nonstandard density within the Gibbs
sampler. Because b2 only appears in the yield equation, generating a reason-
able proposal for an independent Metropolis can be difficult. Thus we will
use an RWMH step for b2. In addition, the proposal distribution will be
automatically adjusted during the simulation (Adaptive MH).
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E.6 Full conditional distribution of σ2
r

From (4.2.2) and (E.3), we have:

p
(
σ2
r |Y, r,Θ

)
∝ p

(
Y |α̃, β̃,Σ

)
p (r|a1, b1, σr, r0) p

(
σ2
r

)
∝ NT

(
r̂, V −1

r

)
IG (νr, Sr) .

This conditional density of σ2
r is nonstandard (multiplication of the Nor-

mal distribution and the Inverse Gamma distribution), so we will use the
Metropolis-Hasting algorithm to sample this. Moreover, σr appears in both
the yield equation and state equation, so we will use Adaptive MH for this
to account for the complicated shape of the target distribution.

E.7 Full conditional distribution of r0

Recall that r0 only appears in the first state equation: r1 = a1+n1r0+σrη1,
where η1 ∼ N (0, 1). Given the normal prior r0 in (4.2.2), we can again use
standard linear regression results to get:

p (r0|Y, r,Θ) ∝ exp

{
−1

2

[
r20

(
n2
1

σ2
r

+
1

d20

)
− 2r0

(
n1 (r1 − a1)

σ2
r

+
2c0
d20

)]}
∝ N

((
n1 (r1 − a1)

σ2
r

+
2c0
d20

)(
n2
1

σ2
r

+
1

d20

)−1

,

(
n2
1

σ2
r

+
1

d20

)−1
)
.
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F Results for Vasicek model

F.1 Posterior trace plot

Figure F.1: MCMC posterior trace plots for the parameters of the state and
observation equations (from top to bottom).
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Figure F.2: MCMC posterior trace plots for the correlation parameters of
the observation equation.
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Figure F.3: MCMC posterior trace plots for the variance parameters of the
observation equation.

F.2 Progressive mean plot

Figure F.4: MCMC progressive averages increasing the number of simulations
for the variance parameters of the observation equation.
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Figure F.5: MCMC progressive averages increasing the number of simulations
for the state and the observation equations (from top to bottom).
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Figure F.6: MCMC progressive averages increasing the number of simulations
for the correlation parameters of the observation equation.
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