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Abstract

Software obfuscation is the act of changing the inner workings of a program
to make it more expensive in terms of time and effort to reverse engineer, while
maintaining the same semantics. This practice has lately been employed for
a variety of purposes, both legit and malicious, such as intellectual property
protection and hiding malware internal details to avoid detection. Moreover, by
using obfuscation it is possible to achieve Software diversification, a condition
where different versions of the same program are generated and distributed,
with the advantage of reducing code-reuse attacks.

The quality of these obfuscation and diversification techniques can be mea-
sured by using a wide variety of similarity metrics. In this work, several of these
software similarity techniques, working on different abstraction levels, are im-
plemented. Their performance is then evaluated by applying them to sample
programs that were obfuscated with common obfuscation techniques.
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Chapter 1

Introduction

Software Obfuscation and Diversification are two techniques that have long been
used to protect software from man-at-the-end attacks. Obfuscation operates by
changing the inner workings of a program to make it harder for a reverse engi-
neer to understand how the program works. Diversification, on the other hand,
focuses on delivering different versions of a software, so that an attacker, for
example, would be unable to build an exploit that works on all the variants.

Being able to measure how similar two programs are is therefore very im-
portant in the context of these two techniques, and Software Similarity metrics
achieve exactly that purpose. Using these metrics, it is possible to evaluate the
effectiveness of an obfuscation configuration, while also allowing to search for
a set of diversified variants of a software whose distance between each other is
maximized.

This work explores the topic of Software Similarity by implementing a selec-
tion of metrics and testing them against an array of programs obfuscated using
multiple obfuscation configurations.

In particular, chapter 2 provides a background on the knowledge of Soft-
ware Obfuscation and Diversification. Regarding the first, a formal definition is
given, and the most common obfuscating transformations are described. Then,
Diversification is analyzed, providing information on the different ways it can
be achieved.

Chapter 3 covers instead the problem of Software Similarity. After an in-
troduction on the topic, an overview on how the metrics can be categorized is
given. Then, the chapter describes in depth the set of metrics investigated in this
work.

The following chapter, chapter 4, focuses on the project developed to test
the metrics. Particularly, it introduces the structure of the project, it describes
every tool used and how they work, explains how each metric is invoked and
provides examples of the outputs. Additionally, it shows how the automated
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CHAPTER 1. INTRODUCTION

testing is performed and how it is configured.
Finally, chapter 5 provides a description of how the experiments are set up,

then presents the results obtained for each metric, while providing comments
explaining the results. Then, a comparison of all the metric is shown, and the
best performing metrics are identified.
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Chapter 2

Background

2.1 Software Obfuscation

2.1.1 Definitions

As mentioned in the introduction, Software Obfuscation is the act of changing
the implementation details of a program to make it more difficult to reverse-
engineer. Obfuscation can be achieved by chaining together a list of obfuscating
transformations.

Formally, an Obfuscating Transformation is a program transformation P →τ

P′, where P and P′ are respectively the source and target programs, and the
two have the same observable behaviour. This condition requires P and P′ to
have the same behaviour as seen by the user, while allowing side-effects like file
creation and network activity. [4]

Applying a set of obfuscation transformations τ = {τ1, ..., τn} on a program P
has the objective of finding a new program P′ such that its quality is maximized.
The quality is an aggregation of the following measures [4] [5]:

• Obscurity (also known as Potency) measures how much more expensive it
is for a reverse engineer to understand the obfuscated code with respect
to the clean one. It is defined as τpot(P) = E(P′)/E(P)− 1, where E is a
software complexity measure (e.g. the Halstead program length [9] or the
McCabe cyclomatic complexity [16]);

• Resilience, similarly to obscurity, measures how expensive it is for an au-
tomatic tool such as a deobfuscator to undo the transformations;

• Stealth, which measures the statistical similarity of the code, or how hidden
the obfuscation is;
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2.1. SOFTWARE OBFUSCATION CHAPTER 2. BACKGROUND

• Cost measures the overhead in terms of execution time and space. It should
be minimized.

An additional way of measuring the quality of obfuscation is Similarity. This
method, which measures how similar two programs are, is the focus of this work
and will be detailed in chapter 3.

2.1.2 Obfuscation Transformations

Here are introduced common obfuscation transformations as described in the
article A taxonomy of obfuscating transformations by Collberg, Thomborson, and
Low [4]. The following techniques are classified according to the target of the
transformations: layout, control or data.

Layout Obfuscations

The Layout class provides trivial obfuscation transformations that achieve low
obscurity but come with no performance impact. These are often useful when
dealing with interpreted languages or in general with ones that do not compile
to native code. These transformations include:

• Remove Comments: as the name suggests, it simply removes the comments
from the code;

• Scramble Identifiers: removes or renames the identifiers. This can also be
achieved on native binaries by stripping them of debug symbols.

Control Obfuscations

This class of obfuscations targets the control flow of a program. These can be
further classified according to how they influence the flow: aggregation, ordering
and computation.

A fundamental construct useful to implement several of the computation
transformations is the Opaque Construct. These can be Opaque Variables and
Opaque Predicates. Formally, Vq

p is a opaque variable if it has a property q at
point p known at obfuscation time, while a predicate P is opaque at p if its
outcome is known at obfuscation time. Notably, PF

p and PT
p respectively mean

that the predicate always evaluates to false and true. Moreover, P?
p may evaluate

to either true or false.
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Aggregation These methods try to achieve confusion by meddling with the
aggregation of the code the programmer originally intended:

• Inline method: replaces the call of a procedure with the code of the proce-
dure itself;

• Outline statements: moves a sequence of statements into a new function;

• Method interleaving: merges multiple functions into a single one with an
additional parameter that allows choosing the desired behaviour;

• Clone methods: clones a method so that it seems that different functions
are being called;

• Loop unrolling: this technique is often used by the compiler to achieve loop
parallelism and improve performance. It creates confusion by removing
or reducing the number of iterations of a loop and replicating the code
originally inside of it.

Ordering These transformations simply reorder statements, loops, expressions
in the code to counter the principle of locality.

Computation Finally, computation transformations add and modify code, of-
ten using opaque constructs:

• Insert Dead code: this method uses opaque predicates to split basic blocks.
For example, a PT predicate can be used by moving the code inside the
true branch, while the false branch will contain either nothing or some
fake / buggy code. Alternatively, a P? predicate could contain semantically
equivalent code on both branches;

• Extend Loop Conditions: adds an opaque predicate to the condition of a
loop to make it harder to understand how many times it will cycle;

• Remove Library Calls: hides system library calls by replacing them with a
version provided by the obfuscator;

• Add Redundant Operands: adds opaque variable to arithmetic expres-
sions;

• Parallelize Code: creates useless processes or splits sequential code into
multiple parallel processes.
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2.2. SOFTWARE DIVERSIFICATION CHAPTER 2. BACKGROUND

Data Obfuscations

As the name implies, this class of transformations targets the data of a program.
Just like control obfuscation, it is possible to further classify these methods into
the following classes: storage & encoding, aggregation and ordering.

Storage & Encoding The following transformations target the storage struc-
tures and encoding of data:

• Change Encoding: the value of a variable is represented with a different
encoding;

• Promote Variable: in Object Oriented languages, replaces the primitive
type of a variable with its object counterpart (e.g. int to Integer in Java).

• Split Variables: splits a variable into multiple ones, with a function map-
ping their values;

• Static to Procedural Data: converts data into a function that produces that
data.

Aggregation The purpose of the following transformations is to modify the
data structures present in the program:

• Merge Scalar Variables: merges multiple variables into a single one that
can fit all of them. Arithmetic operations are updated accordingly;

• Restructure Arrays: allows to split, merge, fold and flatten arrays;

• Modify Inheritance: splits classes and add useless ones.

Ordering Similarly to Control ordering obfuscations, these reorder methods,
variables and parameters.

2.2 Software Diversification

Software Diversification refers to the act of modifying the structure of a program
to allow the creation of different versions of the same program [11]. This has the
advantage of making it harder for an attacker to develop an exploit that can work
across all the diversified versions of the program, even though the vulnerabilities
are not actually removed.
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CHAPTER 2. BACKGROUND 2.2. SOFTWARE DIVERSIFICATION

In “SoK: Automated software diversity” by Larsen et al., the authors answer
to two important questions that define the implementation of diversification:
what should be diversified and when should it be diversified [13].

Regarding the first question, the authors define the abstraction levels to
which the diversifying transformations can be applied to:

1. Instruction level: these are transformations that involve small sequences of
instructions, smaller than a basic block. For example, these may include
replacing instructions with equivalent ones, reordering them, randomizing
register usage and inserting NOP instructions;

2. Basic block level: as the name implies, these transformations operate on
basic blocks. They include block reordering, insertion of opaque predicates
and branching functions.

3. Loop level: these include modifying the condition of a loop, intersecting
them and loop unrolling [11];

4. Function level: the transformations at function level include randomization
of the stack layout, randomization of the function parameters, inlining,
outlining, splitting and most importantly control flow flattening;

5. Program level: these are transformations targeting the program as a whole.
They include reordering functions, randomizing the base address by means
of Address Space Layout Randomization (ASLR), instruction set virtual-
ization, randomization of library entry points. Moreover, a set of data
randomization techniques are supported, such as constant blinding, ran-
domization of the layout structure.

6. System level: these target the whole system running the program. It is
possible, for example, to diversify the internal interfaces of the operating
system.

It should be pointed out that many of these techniques correspond to obfuscat-
ing transformations. This shows that Obfuscation can be considered a way to
achieve Diversification.

For the second question, the authors identify the following stages of the life-
time of a program as possible targets of diversification:

1. Implementation: diversification at this stage is characterized by the de-
velopment of multiple versions of the same feature, with obvious cost in-
creases;
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2. Compilation and Linking: applying diversification at the compilation stage
has the advantage of not requiring rewriting the source code. This can be
implemented as a sequence of transformation passes applied on an inter-
mediate representation (IR) of the program;

3. Installation: consists in diversification being applied during or just after
the installation of a program. It needs a disassembler to be able to modify
the software;

4. Loading: the diversification is applied when the program is loaded. A
prime example is ASLR, which was mentioned earlier;

5. Execution: diversification is achieved at runtime for example by random-
izing heap data position, or by dynamically rewriting the binary;

6. Updating: this consists in delivering a different diversified version of the
program at each update, with the advantage of making it more difficult for
an attacker to transfer their knowledge obtained through reverse engineer-
ing to the new version.

2.3 Related Work

Plenty of research has been done on the topics of Obfuscation and Diversifi-
cation. For the issue of Software Obfuscation, in “Stochastic optimization of
program obfuscation” researchers have devised a Markov Chain Monte Carlo
based method to find the optimal sequence of obfuscating transformations [14].

In “Hybrid obfuscation to protect against disclosure attacks on embedded
microprocessors”, the authors propose an obfuscation scheme that operates both
on hardware and software level, with the objective of protecting embedded sys-
tems from disclosure attacks [8].

Regarding Software Diversification, in “Internal interface diversification as a
method against malware” the authors investigate the usage of diversification on
the internal interfaces of the operating system, namely the system calls, library
functions and the command line interpreter, for the purpose of defending from
malware [23]. Similarly, in “Code Diversification Mechanisms for Internet of
Things (Revised Version 2)” the authors discuss the feasibility of applying di-
versification in Internet of Things (IoT) environments, that are characterized by
limited resources.

In “Constraint-based software diversification for efficient mitigation of code-
reuse attacks”, the trade-off between diversification and code quality was stud-
ied. The authors proposed a constraint-based method able to achieve diversifi-
cation while respecting a set of quality requirements [29].
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Additionally, the authors of “Composite software diversification” studied the
effect of applying different diversification techniques to the same program and
developed a procedure to find the best performing composition [30].
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Chapter 3

Software Similarity

3.1 Definitions

Measuring Software Similarity has become a necessity for a wide range of dis-
ciplines. For example, one could use these kind of metrics to detect cloned
programs and find instances of plagiarism [17], or it could be used to find soft-
ware defects [18]. Moreover, similarity is also useful in the context of software
obfuscation and diversification: by measuring how similar two versions of a pro-
gram are, it is possible to optimize the obfuscation configuration such that the
distance between the original program and its obfuscated version is maximized.
In the context of diversity, similarity can be used to search for a set of diversified
versions of a program so that for each one its distance from all the others is
maximized [1].

An attacker could also benefit from similarity metrics, for example to easily
identify changes in the code of a program after an update.

According to the article “A comparison of code similarity analysers” by
Ragkhitwetsagul, Krinke, and Clark, the Software Similarity metrics can be clas-
sified in the following categories: metrics-based, text-based, token-based, tree-
based and graph-based.

Metric-based approaches are based on software metrics such as Halstead
[9] and McCabe [16], but are regarded to be worse than the other types [22].
Text-based techniques work by comparing strings of code, while token-based
approaches evolves the previous by transforming the code into a sequence of
tokens that represent an abstraction level over the code.

Tree-based and Graph-based algorithms, as the name implies, use tree and
graph structures generated from the program to compute the similarity. Such
structures include Abstract Syntax Trees (AST), Program Dependency Graphs
(PDGs) and Control Flow Graphs (CFGs).
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3.2 Metrics

3.2.1 Normalized Compression Distance

The Normalized Compression Distance is a compression based distance algo-
rithm. The idea behind this metric is using a compression algorithm to com-
press the concatenation of two sequences of bytes b1 and b2 and comparing its
size with the singularly compressed b1 and b2. Ideally, if the two byte sequences
contain common information, the compressed concatenation will be smaller than
the sum of b1 and b2 compressed separately [7].

Formally, the NCD similarity metric is defined as:

S(b1, b2) = 1 − NCD(b1, b2) = 1 − C(b1b2)− min(C(b1), C(b2))

max(C(b1), C(b2))

where C is a compression algorithm. The choice of the compression algo-
rithm can greatly influence the result, since the size of the history buffer varies.
For example, according to the Linux manpage of rzip, the buffer for gzip, bzip2
and rzip is 32kB, 900kB and 900MB respectively [25]. Additionally, in “Search
based clustering for protecting software with diversified updates” by Ceccato
et al. the authors show that the idem-potency property (i.e. NCD(b, b) = 0) for
rzip does not hold with files larger than 448MB, meaning that the metric would
become unreliable with larger data [1].

In chapter 5 the three aforementioned compression algorithms will be tested
against the same programs to understand how they compare against each other.

3.2.2 Longest Common Subsequence

The Longest Common Subsequence algorithm, finds, given two sequences A =
(a1, a2, ..., an) and B = (b1, b2, ..., bm), the longest subsequence present in both
sequences. Intuitively, a subsequence of A is a sequence of elements that belong
to A and preserve the same order in which they appear in A. [6]

For example, given A = (1, 3, 4, 6, 8, 9) and B = (0, 2, 3, 6, 7, 9), the sequence
S1 = (1, 3, 9) is a subsequence of A but not B, S2 = (3, 6) is a common subse-
quence but not the longest, while S3 = (3, 6, 9) is the longest common subse-
quence between A and B.

When dealing with the problem of finding the longest common subsequence
between two code functions, an element in a sequence represents an indivisible
line of code.

The length of a LCS can be used to build a similarity metric [20]. Simply,
the similarity between two functions, represented as sequences of textual lines
of code l1 and l2, is given by double the length of the longest common substring
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between l1 and l2, divided by the sum of the length of the two sequences (as in
the number of lines of code). Formally, the score is given by [26]:

S(l1, l2) =
|LCS(l1, l2)| ∗ 2.0

|l1|+ |l2|

3.2.3 Opcode Frequency

The following similarity metric has been proposed in the paper “Metamorphic
virus detection in Portable Executables using opcodes statistical feature” by Rad
and Masrom with the purpose of detecting metamorphic viruses [21]. Accord-
ing to the authors, this technique should resist obfuscation techniques such as
garbage code insertion, register usage exchange, instruction replacement and
permutation.

The idea behind this metric to compute the similarity between two programs
is the opcode frequency histogram. This kind of histogram counts occurrences
of each opcode (without operands) in a function. An example is shown in figure
3.1.

Figure 3.1: Opcode Histogram - Quicksort function

To compute the similarity between programs P1 and P2, these histograms are
generated for every function in the two programs, normalized, and then pair-
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wise compared to find, for each function in the first program, the best matching
function in the second. The histogram distance is computed with the Euclidian
form distance:

d(x, y) =
n

∑
i=1

(xi − yi)
2

where x and y are respectively histograms in P1 and P2, while xi and yi are the
frequencies in x and y of the same opcode. The similarity is computed as the
average of the distances of the best matches.

Finally, since P1 and P2 might differ in the number of functions and the algo-
rithm searches the best match in P2 for each function in P1, it is possible that the
symmetry property does not hold. To improve the result, the final similarity is
computed as:

S{P1, P2} =
S(P1, P2) + S(P2, P1)

2
meaning that the algorithm is invoked twice by swapping the two programs,
and then the final score is computed as the average of the two results.

3.2.4 ROP Gadget Survival

Return-Oriented Programming is an exploitation technique in which an attacker
can redirect control flow without having to inject code. Such an attack is con-
structed by combining in a chain a list of so called gadgets. A gadget is a short
sequence of instructions found in the program that ends in a return statement.
By exploiting the code already present in the program, this technique defeats
the W ⊕ X protection, which forbids execution of code in memory regions not
marked as executable [24].

In “ROP gadget prevalence and survival under compiler-based binary di-
versification schemes” by Coffman et al., the authors investigate the survival of
gadgets across diversified programs, which can be used by an attacker to build
a common exploit for all the variants [2]. The percentage of surviving gadgets
could be interpreted as a measure of similarity.

To compute the gadget survival percentage, the authors propose two metrics:

• Survivor: this metric, originally introduced in “Profile-guided automated
software diversity” by Homescu et al., considers a gadget as a surviving
one if it has the same sequence of bytes and its location, as an offset from
the base address, is the same [10];

• Bag of Gadgets: this metric drops the requirement of having the location
in memory to match and considers a gadget as a survivor if it simply
has the same sequence of bytes, regardless of its location in the program.
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While this is not sufficient information to build a common gadget chain,
the authors state that this would be applicable in case an attacker is able to
discover gadgets at runtime (JIT-ROP).

3.2.5 Code Abstraction

The following method, described in “Detecting source code similarity using code
abstraction” by Park et al., is not a similarity metric but rather a technique to ab-
stract the source code of a program to improve the results of the actual similarity
metrics, while also improving execution times thanks to the reduced size of the
resulting code [19].

The idea is to delete lines of code that are more easily targeted by obfuscating
transformations, while keeping or simplifying the parts that are more difficult
to obfuscate. This is achieved by following a set of abstraction rules:

1. Comments: single and multiple line comments are deleted;

2. Variable Declaration: all variable declarations are removed, since they can
easily be renamed or moved around;

3. Strings: any kind of string is replaced with an empty string (i.e. "");

4. Expressions: expression statements are deleted, except when located inside
a function call;

5. Return: all return statements are removed;

6. Function Calls: deletes local function calls, which are easier to obfuscate.
External and system calls are instead kept, since those are harder to obfus-
cate;

7. Conditional structures: if, else and switch statements are simplified by
removing their boolean conditions, since those are easy to obfuscate. Only
the structure is kept;

8. Loop structures: similarly, for, while and do-while statements are simpli-
fied by removing their boolean conditions, while their structure is main-
tained.

Listings 3.1 and 3.2 show how the abstraction algorithm perform on the main
function of a quicksort implementation: the comment and the variable assign-
ments are deleted with the exception of the array, since it is assigned with a call
to an external function. The strings are replaced with empty counterparts, the
condition in the for loop is erased and the local function calls to display and
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quicksort are removed. The calls to printf, scanf, malloc, getchar and free
are kept since their implementation is not in the program. Finally, the return
statement is removed.

The resulting code in listing 3.2 appears much simpler. If this process is
repeated on the obfuscated version of the same function, the comparison of the
two abstracted versions through a similarity metric will presumably result in a
higher score. This is investigated in chapter 5.

Listing 3.1: Original

// quicksort main
int main()
{

int n;
printf ("Size :");
scanf ("%d", &n);

printf (" Elements :");
int i;
int *arr =

malloc(sizeof(int) * n);
for (i = 0; i < n; i++)
{

scanf ("%d", &arr[i]);
}

printf (" Original: ");
display(arr , n);

quickSort(arr , 0, n - 1);

printf (" Sorted: ");
display(arr , n);
getchar ();
free(arr);
return 0;

}

Listing 3.2: Abstracted

int main()
{

printf ("");
scanf("", &n);

printf ("");

int *arr =
malloc(sizeof(int) * n);

for (;;)
{

scanf("", &arr[i]);
}

printf ("");

printf ("");

getchar ();
free(arr);

}

19
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3.3 Other Metrics

Here are mentioned some additional metrics that have been proposed in the
literature but are not object of experimentation in this work.

In “Common program similarity metric method for anti-obfuscation”, the au-
thors define a similarity metric based on the Reductive Instruction Dependence
Graph (RIDG). This graph structure represents the transitive reduction of a In-
struction Dependency Graph, and according to the authors it should be resistant
to code obfuscations [32].

The paper “A similarity metric method of obfuscated malware using function-
call graph” describes a technique based on the comparison of Function Call
Graphs. Additionally, their algorithm tries to match functions according to other
informations, such as the usage of external functions and the similarity of the
opcode used in the functions [31].

In “A deep learning approach to program similarity”, the researchers com-
pute the similarity between binaries by representing them as images and using
a Deep Learning image classification model [15].
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Chapter 4

Project

The purpose of this chapter is to present the project developed to test the Soft-
ware Similarity metrics described in the previous chapter. The software has been
published on GitHub1.

4.1 Introduction

The objective of this project is to implement a set of similarity metrics and test
them against a range of obfuscated binaries, to understand which metric coun-
ters the effect of the obfuscating transformations better. The project is structured
as follows:

1. src: This folder contains the set of scripts that compute the similarity met-
rics, the code that wraps Ghidra’s capabilities and other helper libraries.
Its content will be described in section 4.2;

2. test: This folder contains everything necessary to automate the generation
of each obfuscated sample and to automatically test them against every
similarity metrics. It will be described in section 4.3;

3. tools: Finally, this folder simply contains the tools that are used by the
scripts in test, namely Ghidra, Tigress and Obfuscator-LLVM.

1https://github.com/GobboJ/GhidraSimilarity
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4.2 Similarity scripts

4.2.1 Tools

Ghidra

The similarity metrics, with the exception of one, are implemented as Ghidra
scripts. Ghidra2 is a reverse-engineering tool built by the National Security
Agency of the United States of America and publicly released in 2019 on GitHub.
This software offers the capability to disassemble and decompile a program,
which are fundamental to compute the metrics.

While Ghidra’s core is written in C++, the frontend and scripting system are
built in Java. Ghidra provides an extensive Java API to process binaries and
interact with their content. Moreover, this API is also accessible through Python
thanks to Jython, an implementation of Python in Java that runs on the JVM and
allows to access classes written in Java.

This project’s scripts are written in Python and are invoked by using the
headless Ghidra analyzer interface as follows:

./ analyzeHeadless <project_folder > <project >
-scriptpath <script_folder >
-postscript <script > [<script_parameters >]*

where:

• <project_folder>: The folder containing the Ghidra project;

• <project>: The name of the project to be processed;

• <script_folder>: The folder containing the similarity metrics scripts;

• <script>: The Python similarity script to be executed;

• [<script_parameters>]*: a list of parameters to be passed to the invoked
script. Each script has its own different set of parameters.

A Ghidra project can be either created using the graphical front-end or by
invoking the same headless analyzer:

./ analyzeHeadless <project_folder > <project > -import <samples >

where, as before, <project_folder> and <project> indicate respectively the
path and name of the project to be created, while <samples> is the path of the
executables to be imported and analyzed.

2https://github.com/NationalSecurityAgency/ghidra
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ROPgadget

ROPgadget3 is another useful tool for this project, necessary to compute the last
similarity metric. ROPgadget’s purpose is to find gadgets in a binary to build a
Return Oriented Programming (ROP) attack. It is built in Python and internally
uses the Capstone4 disassembly engine. ROPgadget can be invoked like this:

ROPgadget --binary <file >

with <file> being the binary to be analyzed. Many parameters are supported,
such as --all to allow duplicate gadgets, --ropchain to try and build a ROP
chain with the detected gadgets and --depth <nbytes> to set the maximum
depth search size. An example of output is reported in listing 4.1.

4.2.2 Scripts

Normalized Compression Distance Similarity

The compression_similarity.py script implements the Normalized Compres-
sion Distance similarity algorithm as described in chapter 3. It can be invoked
by the Ghidra headless analyzer as follows:

./ analyzeHeadless <project_folder > <project >
-scriptpath <script_folder >
-postscript compression_similarity.py <algorithm >

<abstraction_level > <reference_program > <csv >

where <project_folder>, <project> and <script_folder> indicate the folder
of the project, the name of the project and the folder containing the script. More
importantly, the script has the following parameters:

• <algorithm>: specifies which compression algorithm should be used;

• <abstraction_level>: specifies which abstraction level of the programs
should be used;

• <reference_program>: indicates which of the programs in the project is
to be considered as reference. This implies the reference being compared
against all other samples;

• <csv>: indicates the path of the output csv file containing the results of the
comparisons.

3https://github.com/JonathanSalwan/ROPgadget
4https://www.capstone-engine.org/
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Listing 4.1: Output of ROPgadget

jonathan@ryzen ~> ROPgadget --binary ls
Gadgets information
============================================================
0x0000000000402177 : adc al, 0 ; add byte ptr [rax], al ; jmp

0x402020
0x0000000000413274 : adc al, 0 ; add byte ptr [rax], al ; jmp

0x413551
0x000000000040feac : adc al, 0x24 ; mov rsi , qword ptr [r13 +

0x10] ; mov rdi , r14 ; call qword ptr [r13 + 0x30]
0x0000000000409bdd : adc al, 0x34 ; add rbp , rsi ; jmp 0

x409c86
0x00000000004164ba : adc al, 0x45 ; xor ecx , ecx ; jmp 0

x416651
0x00000000004147b8 : adc al, 0x8e ; mov ebx , r12d ; je 0

x4147dc ; jmp 0x414880
...
0x00000000004164bb : xor r9d , r9d ; jmp 0x416651
0x0000000000412966 : xor r9d , r9d ; mov r8d , dword ptr [rsp +

0x28] ; jmp 0x412a3b
0x000000000040f768 : xorps xmm0 , xmm0 ; cvtsi2ss xmm0 , r12 ;

jmp 0x40f78b
0x000000000041035d : xorps xmm0 , xmm0 ; cvtsi2ss xmm0 , rcx ;

jmp 0x41037f
0x00000000004103ff : xorps xmm2 , xmm2 ; jmp 0x410409

Unique gadgets found: 6802
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The supported compression algorithms are three: gzip, bz2 and rzip. The
first two are provided by the Python 2.7 standard library5, while the third is
implemented as a wrapper over the Linux system package rzip.

The abstraction level influences what the algorithm will compress:

• bytes: the algorithm compresses the entire binary files;

• opcode_bytes: the algorithm compresses only the concatenation of bytes
of the functions detected by Ghidra;

• opcode_text: the algorithm compresses the concatenation of the textual
mnemonic representation of the disassembled function detected by Ghidra;

• decompiled: the algorithm compresses the concatenation of the decom-
piled listing of every function;

• simplified: like the previous, but the decompiled code is simplified ac-
cording to the code abstraction algorithm described in chapter 3.

Example The listing 4.2 contains the output of an invocation of the algorithm,
where the rzip algorithm is used paired with the bytes abstraction level. In the
example it is comparing the clean quicksort sample (00_quicksort) with a series
of obfuscated variants.

Longest Common Subsequence Similarity

The lcs_similarity.py script provides the Longest Common Subsequence based
similarity metric, as seen in chapter 3. Similarly to the previous algorithm, it can
be invoked as:

./ analyzeHeadless <project_folder > <project >
-scriptpath <script_folder >
-postscript lcs_similarity.py <abstraction_level >

<reference_program > <csv >

with the meaning of the parameters being the same as the previous one.
Being this a text-based metric, it offers different abstraction levels:

• opcode: compares the textual mnemonic representation of the disassem-
bled functions;

• opcode_no_param: like the previous, but it only considers the opcode with-
out the operands;

5https://docs.python.org/2.7/library/archiving.html
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Listing 4.2: NCD Similarity - Output Example

#############################################################
NCD similarity metric
Arguments: Namespace(abstraction_level=u’bytes ’, algorithm=u’

rzip ’, csv=u’out.csv ’, reference_program=u’00 _quicksort ’)
#############################################################
[!] Similarity (00 _quicksort , 00 _quicksort) = 0.995352651722
[!] Similarity (00 _quicksort , 01 _quicksort) = 0.729608381142
[!] Similarity (00 _quicksort , 02 _quicksort) = 0.52510422331
[!] Similarity (00 _quicksort , 03 _quicksort) = 0.751250329034
[!] Similarity (00 _quicksort , 04 _quicksort) = 0.455323193916
[!] Similarity (00 _quicksort , 10 _quicksort) = 0.569436850738
[!] Similarity (00 _quicksort , 11 _quicksort) = 0.533656297807
[!] Similarity (00 _quicksort , 12 _quicksort) = 0.576377523186
[!] Similarity (00 _quicksort , 13 _quicksort) = 0.491253294992
[!] Similarity (00 _quicksort , 14 _quicksort) = 0.411068000817

• decompile: compares the decompiled functions;

• simplified: like the previous, but the function are simplified according to
the abstraction algorithm as seen on chapter 3.

The implementation of the Longest Common Subsequence algorithm is pro-
vided by Ghidra with the ReducingListBasedLcs6 class. This is an optimized
version of LCS, whose complexity, according to the documentation, is O(n2).

Example The listing 4.3 is an example of invocation of the LCS similarity met-
ric, where the abstraction level is set to decompile and the reference program to
be compared against all others is 00_quicksort. Unlike the previous metric, this
one compares each pair of functions and for each one in the reference program
it prints the best matching function in the second program. The similarity score
is the average of the similarity of the matches. In this example, every function
was matched to the correct counterpart.

6https://ghidra.re/ghidra_docs/api/generic/algorithms/ReducingListBasedLcs.html
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Listing 4.3: LCS Similarity - Output Example

#############################################################
LCS similarity metric
Arguments: Namespace(abstraction_level=u’decompile ’, csv=u’out

.csv ’, reference_program=u’00 _quicksort ’)
#############################################################
...
=============================================================
Comparing 00_quicksort , 12 _quicksort
=============================================================
[!] Match (register_tm_clones , register_tm_clones) = 1.0
[!] Match (_init , _init) = 1.0
[!] Match (_start , _start) = 1.0
[!] Match (swap , swap) = 1.0
[!] Match (_dl_relocate_static_pie , _dl_relocate_static_pie) =

1.0
[!] Match (main , main) = 0.285714285714
[!] Match (quickSort , quickSort) = 1.0
[!] Match (deregister_tm_clones , deregister_tm_clones) = 1.0
[!] Match (. annobin_abi_note.c, .annobin_abi_note.c) = 1.0
[!] Match (partition , partition) = 0.4375
[!] Match (printArray , printArray) = 0.555555555556
[!] Match (__do_global_dtors_aux , __do_global_dtors_aux) = 1.0
[!] Match (_fini , _fini) = 1.0
[!] Match (FUN_00401020 , FUN_00401020) = 1.0
[!] Similarity (00 _quicksort , 12 _quicksort) = 0.877054988662
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Opcode Frequency Histogram Similarity

The Opcode Frequency Histogram similarity metric is implemented in the script
named opcode_frequency_similarity.py and it is invoked as follow:

./ analyzeHeadless <project_folder > <project >
-scriptpath <script_folder >
-postscript opcode_frequency_similarity.py

<reference_program > <csv >

This script does not provide any customization, therefore it only requires to be
given a reference program and the csv output file path.

Example The listing 4.4 contains an example of invocation of the opcode sim-
ilarity metric. Like the previous one, it prints the best matching functions and
the final average similarity score.

ROP Gadget Survival

Finally, the rop_similarity.py script provides the ROP Gadget Survival metric.
Contrary to the previous scripts, this one does not use Ghidra. Instead, it uses
ROPgadget and it is invoked as a standard python script:

python3 rop_similarity.py <folder > <metric >
<reference_program > <csv >

where:

• <folder>: The path of the folder containing the samples to be processed;

• <metric>: The chosen metric. Can be either bag_of_gadgets or survivor,
which were explained in chapter 3;

• <reference_program>: The program to compare against all the others;

• <csv>: The path of the output csv file containing the similarity scores.

Example The example in listing 4.5 illustrates the output of the invocation of
the ROP similarity script with the bag_of_gadgets metric. Contrary to the pre-
vious example, this one does not matches function but just returns the overall
similarity between the binaries.
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Listing 4.4: Opcode Frequency Similarity - Output Example

#############################################################
Opcode frequency similarity metric
Arguments: Namespace(csv=u’out.csv ’, reference_program=u’00

_quicksort ’)
#############################################################
...
=============================================================
Comparing 00_quicksort , 01 _quicksort
=============================================================
[!] Match (register_tm_clones , register_tm_clones) = 1.0
[!] Match (_init , _init) = 1.0
[!] Match (_start , _start) = 1.0
[!] Match (swap , swap) = 0.823438343375
[!] Match (_dl_relocate_static_pie , _dl_relocate_static_pie) =

1.0
[!] Match (main , main) = 0.900000784927
[!] Match (quickSort , main) = 0.848005978466
[!] Match (deregister_tm_clones , deregister_tm_clones) = 1.0
[!] Match (. annobin_abi_note.c, .annobin_abi_note.c) = 1.0
[!] Match (partition , partition) = 0.757896647296
[!] Match (printArray , printArray) = 0.903711743504
[!] Match (__do_global_dtors_aux , __do_global_dtors_aux) = 1.0
[!] Match (_fini , _fini) = 1.0
[!] Match (FUN_00401020 , FUN_00401020) = 1.0
...
[!] Similarity (00 _quicksort , 01 _quicksort) = 0.93912330845
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Listing 4.5: ROP Similarity - Output Example

#############################################################
ROP similarity metric
Arguments: Namespace(folder=’samples/quicksort ’,

metric=’bag_of_gadgets ’, reference_sample =’00_quicksort ’,
csv=’a.csv ’)

#############################################################
[!] Loading gadgets from: 00 _quicksort
[+] Binary loaded
[+] Loading gadgets , please wait ...
[+] Gadgets loaded !
[!] Similarity (00 _quicksort , 00 _quicksort) = 1.0
---------------------
[!] Loading gadgets from: 01 _quicksort
[+] Binary loaded
[+] Loading gadgets , please wait ...
[+] Gadgets loaded !
[!] Similarity (00 _quicksort , 01 _quicksort) =

0.6195652173913043
---------------------
[!] Loading gadgets from: 14 _quicksort
[+] Binary loaded
[+] Loading gadgets , please wait ...
[+] Gadgets loaded !
[!] Similarity (00 _quicksort , 14 _quicksort) =

0.32608695652173914
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Helper Libraries

Ghidra wrapper The ghidra_wrapper.py file contains a series of methods that
wrap Ghidra capabilities to provide a simpler interface to be used by the simi-
larity scripts. In particular, the following methods are provided:

1. get_program_list(state): returns the list of every program in the project;

2. find_reference_program(program_list, reference_program_name): re-
turns a program given its name and a list of all the programs;

3. get_program_bytes(program): given a program it returns its bytes;

4. get_external_function_names(program): returns a list of names of ex-
ternal functions, meaning functions that do not have an implementation
inside the program, such as syscalls and library functions;

5. get_functions(program): returns the list of all the functions in a program
that are not external;

6. get_functions_bytes(program): returns the bytes of the concatenation of
all non-external functions in the program;

7. get_opcode_text(program): returns the bytes of the textual representation
of the concatenation of every non-external function in the program;

8. get_opcode_listings(program, remove_parameters=False): returns a list
of all the disassembled functions in the program. If remove_parameters is
True, the opcode operands are removed;

9. get_histograms(program): returns a list of opcode frequency histogram
of the functions in the program.

Additionally, ghidra_wrapper.py contains a class named DecompilerWrapper
that provides the get_decompiled_code(self, program, simplify=False) method.
This method returns a list of decompiled functions, and optionally applies the
code abstraction algorithm described in chapter 3 if the parameter simplify is
set to True. This class also takes care of caching the decompiled functions to file.
This is useful because decompilation is an expensive operation in terms of time,
and subsequent usage of the decompiled code by the similarity script benefits
greatly from caching in terms of time.
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Function Target Substitution

Multiline comment "\/\*[\w\s]*\*\/" ""
Single line comment "\/\/[^\n]*$" ""
Variable declaration "[\w ]+ [*\w]+(?:,[ *\w]*)*;" ""
Array declaration "[\w ]+ [\w]+ ?\[\w*\];" ""
Strings "\".*\"" "\"\""
Return "return.*;" ""
If "if ?\(.*\)" "if ()"
Switch "switch ?\(.* ?\)" "switch ()"
For "for ?\(.*;.*;.*\)" "for (;;)"
While "while ?\(.* ?\) ?{" "while ()"
Variable assignment ".+ = (.*);" keep_syscall
Local function calls "([\w]+)\s*\(.*\);" remove_local_calls

Table 4.1: List of code abstraction rules

Simplify The simplify.py script provides an implementation of the code ab-
straction algorithm described in chapter 3. Its simplify_code function takes
a decompiled function as a parameter and simplifies it according to the set of
regular expressions shown in table 4.1.

Note that the last two rules, keep_syscall and remove_local_calls are func-
tions that change behaviour according to the capturing group content. Specifi-
cally, the first checks if the variable assignment contains a system call. If it does,
the assignment is kept, else it is removed. The second function instead checks
whether a function call is external (either a system call or a library) or local.
Local function calls are removed while the others are kept.

It should be pointed out that regular expression is not the optimal solution
to this problem. Considering how much coding style can vary, finding a pattern
that works as expected every time is hard. Fortunately, Ghidra’s decompiler
is consistent with the code style, allowing these regular expressions to achieve
their purpose, even though they might not work correctly for arbitrarily styled
code.

Other Scripts The last two python scripts, printing.py and csv_writer.py,
simply provide a common way to print information about the similarity metrics
and to write the results to a csv file.
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4.3 Sample Generation

4.3.1 Tools

To generate the obfuscated samples, two obfuscators were used: Tigress7 and
Obfuscator-LLVM8.

Tigress

Tigress is a C obfuscator built in OCaml developed by Collberg [3], that supports
a set of obfuscating transformations that can be combined into an obfuscation
script. Tigress is source-to-source, meaning that given a source file it will pro-
duce another obfuscated source file. An important limitation of Tigress is that it
can only be applied to single file programs. While it is possible to merge source
files into a single one, this is infeasible for larger projects, especially for those
with complex build systems.

Example An example of a Tigress script is shown in listing 4.6. The script
is composed as a sequence of transformations that are applied in the specified
order. For each transformation it specifies to which functions they should be
applied to, and additionally other transformation specific parameters. This par-
ticular script applies Opaque Predicates, Branch Functions, and Encoded Arith-
metic transformations to the test.c program, targeting in particular the fac and
fib functions.

Obfuscator-LLVM

Obfuscator-LLVM, developed by Junod et al., is an obfuscator implemented on
top of LLVM, it applies its transformations on an intermediate representation of
the program during compilation, and as such does not produce an obfuscated
source code file [12]. However, contrary to Tigress, it is possible to apply it to
programs with more than one source file and complex build systems.

To apply Obfuscator-LLVM’s obfuscations, it is possible to invoke it as:

./<path -to-ollvm >/clang <source > -o <out > [<transformations >]

with <path-to-ollvm> being the path were Obfuscator-LLVM is installed, <source>
and <out> respectively being the input source file and the output binary file, and
[<transformations>] being a list of transformations to be applied.

7https://tigress.wtf/
8https://github.com/obfuscator-llvm/obfuscator
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Listing 4.6: Tigress - Script Example

tigress --Seed =42 --Statistics =0 --Verbosity =0 \
--Environment=x86_64:Linux:Gcc :4.6 \

--Transform=InitEntropy \
--Functions=init_tigress \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_tigress \
--InitOpaqueStructs=list ,array ,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount =1 \

--Transform=AddOpaque \
--Functions=fac ,fib \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true \

--Transform=AntiBranchAnalysis \
--Functions=fac ,fib \
--AntiBranchAnalysisKinds=branchFuns \
--AntiBranchAnalysisObfuscateBranchFunCall=false \
--AntiBranchAnalysisBranchFunFlatten=true \

--Transform=EncodeArithmetic \
--Functions=fac ,fib \

test.c --out=output1.c
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Specifically, Obfuscator-LLVM supports the following transformations:

• -mllvm -fla: Control Flow Flattening, which flattens the control flow of
the program;

• -mllvm -sub: Instruction Substitution, that replaces additions, subtraction,
boolean operators with more complex computations;

• -mllvm -bcf: Bogus Control Flow, which encapsulates basic blocks in
opaque predicates.

These also support a few parameters, mostly to set the number of iterations
for which the transformation should be applied, or to set the probability of it to
be applied.

In this project, Obfuscator-LLVM is used to obfuscate some real-world sam-
ples, like the GNU Coreutils9. The build system of Coreutils is Makefile, so to
compile it, it is necessary to set the environment variables

export CC="<path -to-ollvm >/clang"
export CFLAGS +="-mllvm -fla -mllvm -sub -mllvm -bcf"

before issueing the ./configure and make commands. This will ensure that make
will compile the project using Obfuscator-LLVM.

4.3.2 Configuration files

The generation of the obfuscated samples and the automatic testing with every
similarity metric is described by three json files:
programs.json, obfuscations.json and measurements.json.

Programs the program.json file describes which programs are to be obfuscated
with Tigress and Obfuscator-LLVM.

For each program to be processed by Tigress, it specifies the name to be
used as a base to name every generated sample, the source file to be obfuscated
and the list of functions that should be targeted by the transformations. For
the programs to be obfuscated by Obfuscator-LLVM (only coreutils), it instead
specifies the name, folder and the list of programs to be targeted in the Coreutils
suite.

The entire content of the file is shown in listing 4.7.

9https://www.gnu.org/software/coreutils/
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Listing 4.7: programs.json

{
"tigress -programs ": [

{
"name": "dijkstra",
"filename ": "dijkstra.c",
"functions ": "enqueue ,dequeue ,queue_has_something ,

dijkstra"
},
{

"name": "quicksort",
"filename ": "quicksort.c",
"functions ": "swap ,partition ,quickSort ,display"

},
{

"name": "hash_blake2b",
"filename ": "hash_blake2b.c",
"functions ": "test ,assert_bytes ,blake2b ,BLAKE2B ,F,G"

}
],

"obfuscator -llvm -programs ": [
{

"name": "coreutils",
"folder ": "coreutils",
"executables ": [

"base64", "chown", "dd", "sha256sum"
]

}
]

}
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Obfuscations the obfuscations.json file contains every single obfuscation
configuration to be applied to the programs.

The example in listing 4.8 has been shortened for brevity. For every ob-
fuscation configuration are specified the name to be appended to the program
name, and the parameters that should be specified when invoking Tigress or
Obfuscator-LLVM. The parameters in curly brackets are templates to be popu-
lated by the scripts described later.

Measurements the last configuration file is measurements.json.
The example shown in listing 4.9 is shortened for brevity. For every similarity

metric script, this json file lists its name, the parameters to pass to the Ghidra
headless analyzer or to the python interpreter, and a list of configurations, if the
script supports them.

4.3.3 Scripts

Finally, here are described the scripts that generate and test the samples accord-
ing to the json configuration files. There are four scripts:

1. generate_samples.py: applies every obfuscation configuration listed in
obfuscations.json to each program in programs.json by invoking Tigress
and Obfuscator-LLVM. The resulting executables are moved to the samples
folder, while the obfuscated source files generated by Tigress are moved
into the folder sources/obfuscated;

2. generate_ghidra_projects.py: for each program in programs.json, grabs
the corresponding executables from samples and generates a Ghidra project
inside the projects folder;

3. run_tests.py: for each program in programs.json, invokes every mea-
surement configuration specified in measurements.json, and outputs the
csv files in the output folder;

4. clean_all.py: simply removes any file generated by the previous scripts.
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Listing 4.8: obfuscations.json

{
"tigress -obfuscations ": [

{
"name": "01 _flatten",
"params ": "--Environment=x86_64:Linux:Gcc :4.6

--Transform=Flatten --FlattenDispatch=switch
--Functions ={ functions} --out={ output_file}
{input_file }"

},
{

"name": "02 _split",
"params ": "--Environment=x86_64:Linux:Gcc :4.6

--Transform=Split --SplitCount =10
--Functions ={ functions} --out={ output_file}
{input_file }"

},
{

"name": "03 _merge",
"params ": "--Environment=x86_64:Linux:Gcc :4.6

--Transform=Merge --Functions ={ functions}
--out={ output_file} {input_file }"

}, ...
],
"obfuscator -llvm": [

{
"name": "01 _control_flow_flattening",
"params ": "-mllvm -fla"

},
{

"name": "02 _instruction_substitution",
"params ": "-mllvm -sub"

}, ...
]

}
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Listing 4.9: measurements.json

{
"ghidra_scripts ": [

{
"name": "ncd",
"call": "{ folder} {project} -scriptpath {script_folder}

-postscript compression_similarity.py {parameters}
{reference} {csv}",

"configs ": [
{

"title": "gzip_bytes",
"params ": "gzip bytes"

},
{

"title": "gzip_opcode_bytes",
"params ": "gzip opcode_bytes"

}, ...
]

}, ...
],
"python_scripts ": [

{
"name": "rop",
"call": "rop_similarity.py {folder} {parameters} {

reference} {csv}",
"configs ": [

{
"title": "bag_of_gadgets",
"params ": "bag_of_gadgets"

}, ...
]

}
]

}
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Chapter 5

Experimental Results

5.1 Setup

To study the capabilities of the similarity metrics, seven programs were tested.
These programs are listed in table 5.1, and for each one of them is specified
the size of the unobfuscated binary and the number of functions contained ac-
cording to the Ghidra analyzer. Note that the number of functions may include
external or compiler generated functions, therefore this value does not repre-
sent the actual number of functions contained in the source code, but it still can
provide an estimation of the size of the program.

The first three programs are dijkstra.c, hash_blake2b.c and quicksort.c
[27], whose code is reported in appendix A, and are obfuscated with the Tigress
obfuscator. Table 5.2 lists, for each one of them, the functions target of the
obfuscations.

The other four programs, base64, chown, dd, sha256sum are very common
command line tools part of the GNU Coreutils project. These are more com-
plex programs, considerably larger and with many more functions, meant to
represent a real-world scenario, that will be obfuscated with Obfuscator-LLVM.

Table 5.3 lists every obfuscation configuration applied to the programs. In
particular, Ti are the Tigress transformations, while Oi represent the Obfuscator-
LLVM ones. Moreover, T0 and O0 mean that no transformation is applied and
the unobfuscated program is compared with itself. Finally, T8 and O4 are con-
figurations that combine multiple transformations.

All the programs listed in table 5.1 are obfuscated with every obfuscation
configuration detailed in table 5.3, and are then measured using every possible
configuration of parameters of the similarity metrics described in chapter 4.
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Program # Functions Size

Dijkstra 33 25KiB
Hash_blake2b 39 30KiB
Quicksort 41 25KiB

Base64 252 150KiB
Chown 362 245KiB
DD 367 453KiB
Sha256sum 272 184KiB

Table 5.1: List of the tested programs

Program Target Functions

Dijkstra enqueue,dequeue,queue_has_something,dijkstra
Hash_blake2b swap,partition,quickSort,display
Quicksort test,assert_bytes,blake2b,BLAKE2B,F,G

Table 5.2: Target functions for Tigress obfuscated programs

Obfuscation

T0 None
T1 Flattening
T2 Split
T3 Merge
T4 Opaque Predicate
T5 Encode Literals
T6 Encode Arithmetics
T7 Randomize Args
T8 Recipe: Opaque Predicates, Branch Functions, and Encoded Arithmetic

O0 None
O1 Flattening
O2 Instruction Substitution
O3 Bogus Control Flow
O4 Mixed: Flattening, Instruction Substitution and Bogus Control Flow

Table 5.3: Obfuscation configurations
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5.2 Results

5.2.1 Normalized Compression Distance Similarity

Best Compression Algorithm

The Normalized Compression Distance similarity metric depends on the choice
of two parameters: the abstraction level and the compression algorithm. Tables
5.4, 5.5 and 5.6 highlight how the compression algorithms compare for each
abstraction level. The results for the identical comparisons (T0 and O0) confirm
what was described in chapter 3: the larger size of the history buffer allows rzip
to almost consistently achieve the better result out of the three, usually scoring
or nearing 100% similarity. The gzip algorithm seems to generally score better
results than bz2 for the smaller samples, while it fails when dealing with the
larger ones. For all the other transformations, the scores of the three compression
algorithm tend to be closer, with rzip generally scoring marginally better.

Given its higher reliability, all the subsequent tables featuring NCD will as-
sume to be using the rzip algorithm.

Results

Tables 5.7 and 5.8 show how the rzip-based NCD similarity metric performs on
different abstraction levels of the programs. It can be observed that the bytes ab-
straction layer consistently achieves a better result against opcode_bytes across
all tests, both for Tigress and Obfuscator-LLVM samples. This can be explained
by the fact that the second only considers bytes in detected functions, while the
first involves every byte of the program, including data. Since data is not in-
volved in the transformations, it will resist the transformations, improving the
results when using the bytes abstraction layer. The opcode_text representation
marginally improves the result of opcode_bytes, which could be explained by
the fact that the textual representation of the disassembled code is bigger in
size and allows groups of letters to be compressed. Once again, the decompiled
abstraction layer improves the results of opcode_text across all tests. When
compared against bytes, it manages to do slightly better for the Obfuscator-
LLVM samples, while it falls behind when considering the Tigress obfuscated
programs. Finally, the simplified representation achieves its purpose by im-
proving the results of the decompiled abstraction level. In particular, for the Ti-
gress samples it consistently achieves better results than decompiled, while also
performing better than bytes in some cases. When dealing with the Obfuscator-
LLVM test cases, simplified performs better than any other abstraction level
across every single test.
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Dijkstra Hash-blake2b Quicksort

bz2 gzip rzip bz2 gzip rzip bz2 gzip rzip

By
te

s

T0 0.84 0.93 1.0 0.85 0.95 1.0 0.85 0.93 1.0
T1 0.59 0.6 0.68 0.32 0.12 0.36 0.64 0.65 0.73
T2 0.5 0.51 0.58 0.17 0.04 0.2 0.5 0.5 0.57
T3 0.63 0.65 0.73 0.31 0.1 0.35 0.66 0.67 0.75
T4 0.48 0.45 0.53 0.32 0.09 0.34 0.51 0.48 0.56
T5 0.5 0.45 0.53 0.34 0.07 0.37 0.52 0.48 0.55
T6 0.57 0.58 0.65 0.31 0.08 0.34 0.64 0.66 0.73
T7 0.62 0.63 0.71 0.36 0.11 0.39 0.66 0.68 0.75
T8 0.4 0.38 0.45 0.21 0.04 0.24 0.48 0.49 0.55

O
p.

By
te

s

T0 0.83 0.98 0.96 0.87 0.97 0.99 0.87 0.97 0.97
T1 0.41 0.43 0.45 0.15 0.11 0.17 0.38 0.4 0.47
T2 0.34 0.32 0.37 0.11 0.07 0.12 0.31 0.27 0.34
T3 0.42 0.45 0.46 0.11 0.06 0.13 0.36 0.38 0.43
T4 0.28 0.25 0.33 0.19 0.16 0.2 0.27 0.25 0.3
T5 0.33 0.29 0.36 0.22 0.2 0.25 0.35 0.36 0.37
T6 0.29 0.3 0.34 0.14 0.11 0.15 0.37 0.38 0.4
T7 0.44 0.46 0.52 0.18 0.14 0.2 0.41 0.44 0.51
T8 0.28 0.31 0.32 0.15 0.09 0.16 0.25 0.28 0.32

O
p.

Te
xt

T0 0.84 0.94 1.0 0.76 0.92 1.0 0.83 0.93 0.99
T1 0.53 0.53 0.52 0.18 0.15 0.19 0.52 0.51 0.54
T2 0.43 0.39 0.41 0.13 0.07 0.11 0.42 0.36 0.39
T3 0.53 0.53 0.56 0.13 0.1 0.14 0.5 0.48 0.5
T4 0.4 0.36 0.39 0.19 0.07 0.23 0.39 0.35 0.4
T5 0.42 0.37 0.38 0.22 0.05 0.27 0.49 0.43 0.51
T6 0.44 0.39 0.43 0.15 0.06 0.16 0.47 0.46 0.49
T7 0.54 0.54 0.56 0.2 0.1 0.22 0.57 0.52 0.56
T8 0.42 0.39 0.43 0.18 0.12 0.18 0.44 0.41 0.48

Table 5.4: Normalized Compression Distance
Compression algorithm comparison - Tigress samples
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Dijkstra Hash-blake2b Quicksort

bz2 gzip rzip bz2 gzip rzip bz2 gzip rzip

D
ec

om
pi

le
d

T0 0.82 0.96 0.98 0.79 0.95 0.99 0.84 0.96 0.98
T1 0.57 0.6 0.6 0.17 0.11 0.17 0.53 0.57 0.6
T2 0.49 0.46 0.47 0.14 0.07 0.15 0.44 0.38 0.39
T3 0.58 0.61 0.63 0.16 0.09 0.15 0.57 0.58 0.61
T4 0.49 0.55 0.54 0.2 0.15 0.22 0.44 0.47 0.45
T5 0.48 0.51 0.52 0.2 0.17 0.23 0.46 0.47 0.5
T6 0.52 0.57 0.56 0.18 0.12 0.18 0.54 0.6 0.6
T7 0.68 0.77 0.75 0.23 0.14 0.23 0.65 0.71 0.67
T8 0.56 0.6 0.61 0.18 0.18 0.22 0.55 0.59 0.59

Si
m

pl
ifi

ed

T0 0.84 0.96 0.98 0.84 0.96 0.97 0.83 0.96 0.97
T1 0.65 0.7 0.66 0.56 0.53 0.51 0.63 0.71 0.65
T2 0.55 0.57 0.54 0.3 0.22 0.24 0.52 0.51 0.47
T3 0.68 0.73 0.71 0.61 0.58 0.61 0.65 0.72 0.71
T4 0.57 0.65 0.62 0.6 0.61 0.59 0.56 0.63 0.58
T5 0.59 0.65 0.62 0.54 0.58 0.59 0.59 0.65 0.62
T6 0.59 0.67 0.65 0.49 0.54 0.53 0.67 0.78 0.73
T7 0.72 0.81 0.76 0.69 0.68 0.65 0.73 0.81 0.73
T8 0.62 0.68 0.68 0.55 0.54 0.53 0.63 0.71 0.69

Table 5.5: Normalized Compression Distance
Compression algorithm comparison - Tigress samples (cont.)
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base64 chown dd sha256sum

bz2 gzip rzip bz2 gzip rzip bz2 gzip rzip bz2 gzip rzip

By
te

s

O0 0.79 0.01 1.0 0.78 0.0 1.0 0.77 0.0 1.0 0.78 0.01 1.0
O1 0.02 0.0 0.04 0.01 0.0 0.02 0.01 0.0 0.02 0.03 0.0 0.04
O2 0.05 0.0 0.07 0.04 0.0 0.05 0.02 0.0 0.03 0.03 0.0 0.05
O3 0.05 0.0 0.06 0.02 0.0 0.04 0.01 0.0 0.02 0.04 0.01 0.06
O4 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.01

O
p.

By
te

s O0 0.82 0.97 1.0 0.8 0.04 1.0 0.76 0.0 1.0 0.8 0.98 1.0
O1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
O2 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0
O3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
O4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

O
p.

Te
xt

O0 0.71 0.05 1.0 0.7 0.02 1.0 0.03 0.01 1.0 0.72 0.02 1.0
O1 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0
O2 0.0 0.01 0.03 0.0 0.01 0.02 0.0 0.0 0.0 0.0 0.01 0.0
O3 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.02
O4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0

D
ec

om
p.

O0 0.77 0.04 1.0 0.75 0.02 1.0 0.8 0.01 1.0 0.77 0.02 1.0
O1 0.04 0.01 0.05 0.03 0.0 0.04 0.0 0.0 0.05 0.06 0.01 0.07
O2 0.2 0.02 0.2 0.14 0.01 0.15 0.11 0.0 0.11 0.07 0.01 0.08
O3 0.14 0.01 0.13 0.08 0.01 0.09 0.09 0.0 0.09 0.13 0.01 0.12
O4 0.02 0.0 0.03 0.0 0.0 0.02 0.02 0.0 0.02 0.02 0.0 0.02

Si
m

pl
.

O0 0.76 0.92 1.0 0.75 0.1 1.0 0.77 0.02 0.99 0.77 0.92 1.0
O1 0.16 0.01 0.14 0.15 0.01 0.12 0.28 0.0 0.17 0.18 0.03 0.16
O2 0.29 0.22 0.28 0.23 0.07 0.22 0.19 0.01 0.18 0.29 0.22 0.27
O3 0.24 0.08 0.22 0.17 0.04 0.17 0.16 0.0 0.14 0.22 0.07 0.21
O4 0.12 0.0 0.08 0.08 0.0 0.06 0.21 0.01 0.08 0.09 0.01 0.09

Table 5.6: Normalized Compression Distance
Compression algorithm comparison - Obfuscator-LLVM samples
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It should be pointed out that, except for the identical comparisons, the Nor-
malized Compression Distance algorithm performed poorly on the Obfuscator-
LLVM samples, with the best result being a similarity of 28% on the comparison
between the clean sample of base64 and its obfuscated variant O2, using the
simplified abstraction level.

5.2.2 Longest Common Subsequence Similarity

The results obtained for the Longest Common Subsequence similarity metric are
shown in tables 5.9, 5.10, respectively for the samples generated with Tigress
and Obfuscator-LLVM.

For all tests, the identical comparison achieved 100% similarity. It should
be noted that initially this wasn’t the case for the Obfuscator-LLVM samples,
which, given their larger size, caused Ghidra’s ReducingListBasedLcs imple-
mentation of LCS to reach the size limit for some comparisons, therefore return-
ing empty subsequences. This was fixed by invoking ReducingListBasedLcs’s
setSizeLimit method and setting the maximum size as the largest integer (i.e.
231 − 1). This change also required to increase Ghidra’s maximum memory to
4GB in the analyzeHeadless file to avoid crashes.

When comparing the first two abstraction levels, opcode and opcode_no_param,
the results show that the latter always performs better than the first. This can
be easily explainable by the fact that removing the operands allows the same
opcode to match even if they originally had different operands.

Regarding the decompiled representation, it performs better than opcode
across all tests, while when compared against opcode_no_param it scores sim-
ilarly for the Tigress-obfuscated samples, but falls behind when considering the
samples obfuscated with Obfuscator-LLVM.

Finally, the simplified abstraction level again achieves its purpose of im-
proving the score of the decompiled versions, scoring similarly to opcode_no_param
for the Tigress samples, and surpassing it for the Obfuscator-LLVM ones.

Therefore, the best resulting abstraction levels for the Longest Common Sub-
sequence algorithms are simplified and opcode_no_param.

5.2.3 Opcode Frequency Histograms

The results for the Opcode Frequency algorithm are listed in tables 5.11 and
5.12. This algorithm does not have any parameter to be set, therefore the tables
simply contain the results achieved for each tested program with every defined
obfuscation. Both Tigress-obfuscated and OLLVM-obfuscated samples achieved
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Bytes Opcode Bytes Opcode Text Decompiled Simplified

D
ijk

st
ra

T0 1.0 0.96 1.0 0.98 0.98
T1 0.68 0.45 0.52 0.6 0.66
T2 0.58 0.37 0.41 0.47 0.54
T3 0.73 0.46 0.56 0.63 0.71
T4 0.53 0.33 0.39 0.54 0.62
T5 0.53 0.36 0.38 0.52 0.62
T6 0.65 0.34 0.43 0.56 0.65
T7 0.71 0.52 0.56 0.75 0.76
T8 0.45 0.32 0.43 0.61 0.68

H
as

h_
bl

ak
e2

b

T0 1.0 0.99 1.0 0.99 0.97
T1 0.36 0.17 0.19 0.17 0.51
T2 0.2 0.12 0.11 0.15 0.24
T3 0.35 0.13 0.14 0.15 0.61
T4 0.34 0.2 0.23 0.22 0.59
T5 0.37 0.25 0.27 0.23 0.59
T6 0.34 0.15 0.16 0.18 0.53
T7 0.39 0.2 0.22 0.23 0.65
T8 0.24 0.16 0.18 0.22 0.53

Q
ui

ck
so

rt

T0 1.0 0.97 0.99 0.98 0.97
T1 0.73 0.47 0.54 0.6 0.65
T2 0.57 0.34 0.39 0.39 0.47
T3 0.75 0.43 0.5 0.61 0.71
T4 0.56 0.3 0.4 0.45 0.58
T5 0.55 0.37 0.51 0.5 0.62
T6 0.73 0.4 0.49 0.6 0.73
T7 0.75 0.51 0.56 0.67 0.73
T8 0.55 0.32 0.48 0.59 0.69

Table 5.7: Normalized Compression Distance - rzip
Tigress samples
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Bytes Opcode Bytes Opcode Text Decompiled Simplified

Ba
se

64

O0 1.0 1.0 1.0 1.0 1.0
O1 0.04 0.0 0.01 0.05 0.14
O2 0.07 0.01 0.03 0.2 0.28
O3 0.06 0.0 0.02 0.13 0.22
O4 0.01 0.0 0.0 0.03 0.08

C
ho

w
n

O0 1.0 1.0 1.0 1.0 1.0
O1 0.02 0.0 0.0 0.04 0.12
O2 0.05 0.0 0.02 0.15 0.22
O3 0.04 0.0 0.0 0.09 0.17
O4 0.0 0.0 0.0 0.02 0.06

D
D

O0 1.0 1.0 1.0 1.0 0.99
O1 0.02 0.0 0.01 0.05 0.17
O2 0.03 0.0 0.0 0.11 0.18
O3 0.02 0.0 0.0 0.09 0.14
O4 0.01 0.0 0.02 0.02 0.08

Sh
a2

56
su

m O0 1.0 1.0 1.0 1.0 1.0
O1 0.04 0.0 0.0 0.07 0.16
O2 0.05 0.0 0.0 0.08 0.27
O3 0.06 0.0 0.02 0.12 0.21
O4 0.01 0.0 0.0 0.02 0.09

Table 5.8: Normalized Compression Distance - rzip
Obfuscator-LLVM samples
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Opcode Op. no param Decomp Simplified

D
ijk

st
ra

T0 1.0 1.0 1.0 1.0
T1 0.85 0.93 0.88 0.91
T2 0.87 0.96 0.91 0.97
T3 0.85 0.92 0.85 0.89
T4 0.74 0.88 0.82 0.87
T5 0.79 0.97 0.97 0.97
T6 0.81 0.88 0.88 0.93
T7 0.88 0.96 0.98 1.0
T8 0.76 0.93 0.83 0.87

H
as

h_
bl

ak
e2

b

T0 1.0 1.0 1.0 1.0
T1 0.65 0.89 0.72 0.81
T2 0.65 0.9 0.75 0.87
T3 0.59 0.84 0.7 0.79
T4 0.64 0.9 0.76 0.84
T5 0.75 0.95 0.86 0.93
T6 0.63 0.84 0.78 0.9
T7 0.7 0.96 0.8 0.92
T8 0.58 0.86 0.7 0.78

Q
ui

ck
so

rt

T0 1.0 1.0 1.0 1.0
T1 0.83 0.92 0.81 0.89
T2 0.8 0.94 0.82 0.91
T3 0.76 0.85 0.81 0.87
T4 0.74 0.89 0.79 0.85
T5 0.83 0.98 0.93 0.94
T6 0.86 0.91 0.86 0.93
T7 0.83 0.98 0.85 0.93
T8 0.73 0.92 0.79 0.86

Table 5.9: Longest Common Subsequence
Tigress samples
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Opcode Op. no Param Decomp Simplified

Ba
se

64

O0 1.0 1.0 1.0 1.0
O1 0.2 0.62 0.4 0.65
O2 0.21 0.63 0.45 0.7
O3 0.2 0.62 0.42 0.67
O4 0.21 0.61 0.37 0.66

C
ho

w
n

O0 1.0 1.0 1.0 1.0
O1 0.19 0.59 0.35 0.62
O2 0.2 0.6 0.39 0.68
O3 0.2 0.59 0.37 0.66
O4 0.2 0.58 0.33 0.62

D
D

O0 1.0 1.0 1.0 1.0
O1 0.18 0.61 0.37 0.62
O2 0.19 0.61 0.41 0.67
O3 0.19 0.61 0.38 0.64
O4 0.2 0.61 0.34 0.62

Sh
a2

56
su

m O0 1.0 1.0 1.0 1.0
O1 0.19 0.62 0.39 0.66
O2 0.2 0.62 0.43 0.7
O3 0.2 0.62 0.4 0.68
O4 0.19 0.61 0.35 0.65

Table 5.10: Longest Common Subsequence
Obfuscator-LLVM samples
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high similarity scores across all transformation configurations. These results will
be compared against other metrics in section 5.3.

T0 T1 T2 T3 T4 T5 T6 T7 T8

Dijkstra 1.0 0.95 0.95 0.97 0.92 0.97 0.89 0.97 0.95

Hash_blake2b 1.0 0.94 0.93 0.89 0.92 0.96 0.87 0.96 0.89

Quicksort 1.0 0.96 0.98 0.97 0.93 0.98 0.89 1.0 0.97

Table 5.11: Opcode Frequency Histograms
Tigress samples

O0 O1 O2 O3 O4

Base64 1.0 0.71 0.74 0.7 0.75

Chown 1.0 0.75 0.79 0.74 0.77

DD 1.0 0.76 0.81 0.78 0.83

Sha256sum 1.0 0.72 0.74 0.72 0.74

Table 5.12: Opcode Frequency Histograms
Obfuscator-LLVM samples

5.2.4 ROP Gadget Survival

Tables 5.13 and 5.14 show how the ROP Gadget Survival algorithm performed
against Tigress and Obfuscator-LLVM samples. The tables highlight the differ-
ence between the results obtained the bag_of_gadgets and survivor metrics.

Expectedly, the bag_of_gadgets achieves a better score compared to survivor
across all tests. This is explained by the fact that the survivor metric can at most
obtain a result equivalent to bag_of_gadgets, since it only adds the additional
requirement for the gadgets to be placed in the same address.

Notably, the results for the Obfuscator-LLVM samples show scores, except
the identity comparisons, consistently under 10%, suggesting this metric being
unreliable.
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Dijkstra Hash_blake2b Quicksort

bag surv. bag surv. bag surv.

T0 1.0 1.0 1.0 1.0 1.0 1.0
T1 0.63 0.43 0.34 0.17 0.69 0.54
T2 0.65 0.47 0.34 0.17 0.74 0.54
T3 0.61 0.47 0.32 0.17 0.68 0.59
T4 0.44 0.22 0.28 0.1 0.61 0.32
T5 0.47 0.19 0.36 0.17 0.62 0.28
T6 0.56 0.43 0.31 0.17 0.77 0.54
T7 0.64 0.43 0.36 0.17 0.77 0.54
T8 0.51 0.22 0.3 0.17 0.62 0.47

Table 5.13: ROP Gadget Survival
Tigress samples

Base64 Chown DD Sha256sum

bag surv. bag surv. bag surv. bag surv.

O0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
O1 0.08 0.05 0.05 0.04 0.05 0.04 0.07 0.05
O2 0.1 0.08 0.05 0.04 0.01 0.01 0.08 0.05
O3 0.08 0.05 0.06 0.04 0.02 0.01 0.08 0.05
O4 0.08 0.05 0.06 0.04 0.1 0.08 0.09 0.05

Table 5.14: ROP Gadget Survival
Obfuscator-LLVM samples

52



CHAPTER 5. EXPERIMENTAL RESULTS 5.3. METRICS COMPARISON

5.3 Metrics Comparison

Finally, tables 5.15 and 5.16 contain the comparison between the results obtained
with each metric, respectively for the Tigress and Obfuscator-LLVM obfuscated
programs.

A few assumptions are made: when Normalized Compression Distance is
mentioned, it refers to the rzip results. The ROP Gadget Survival results are
reported as using the bytes abstraction level, since ROPgadget analyzes the
whole binary, and specifically refer to the bag_of_gadgets results. The Opcode
Frequency metric is categorized under the opcode_no_param abstraction level.

As was mentioned before, the only metric failing to achieve 100% similarity
for the identity comparison is the Normalized Compression Distance algorithm.
This is only true for the smaller Tigress-obfuscated programs, while it does
achieve 100% for the larger Obfuscator-LLVM ones. In particular, NCD fails to
achieve the maximum result when an abstraction level that reduces the amount
of data compared is used. This is especially noticeable for the opcode_bytes
level, which provides the smallest amount of data. For these reasons, the most
reasonable explanation is that for smaller data, the metadata introduced by the
compression algorithm reduces the effectiveness of the algorithm.

As for the actual transformations, the results show that the best performing
metric across all tests is the Opcode Frequency similarity metric, closely followed
by the Longest Common Substring operating on both the same opcode_no_param
abstraction level, and the simplified one. These three achieve about 90% or
higher similarity in every Tigress-obfuscated test, while the score for the O-
LLVM ones is usually 60% or higher.

To conclude, the code abstraction algorithm described in chapter 3 was shown
to improve the results of the decompiled abstraction level across all compatible
similarity metrics.
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Bytes Op. By. Op. Text Op. no Par. Decomp. Simplif.

ncd rop ncd ncd lcs lcs freq ncd lcs ncd lcs

D
ijk

st
ra

T0 1.0 1.0 0.96 1.0 1.0 1.0 1.0 0.98 1.0 0.98 1.0
T1 0.68 0.63 0.45 0.52 0.85 0.93 0.95 0.6 0.88 0.66 0.91
T2 0.58 0.65 0.37 0.41 0.87 0.96 0.95 0.47 0.91 0.54 0.97
T3 0.73 0.61 0.46 0.56 0.85 0.92 0.97 0.63 0.85 0.71 0.89
T4 0.53 0.44 0.33 0.39 0.74 0.88 0.92 0.54 0.82 0.62 0.87
T5 0.53 0.47 0.36 0.38 0.79 0.97 0.97 0.52 0.97 0.62 0.97
T6 0.65 0.56 0.34 0.43 0.81 0.88 0.89 0.56 0.88 0.65 0.93
T7 0.71 0.64 0.52 0.56 0.88 0.96 0.97 0.75 0.98 0.76 1.0
T8 0.45 0.51 0.32 0.43 0.76 0.93 0.95 0.61 0.83 0.68 0.87

H
as

h_
bl

ak
e2

b

T0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 0.99 1.0 0.97 1.0
T1 0.36 0.34 0.17 0.19 0.65 0.89 0.94 0.17 0.72 0.51 0.81
T2 0.2 0.34 0.12 0.11 0.65 0.9 0.93 0.15 0.75 0.24 0.87
T3 0.35 0.32 0.13 0.14 0.59 0.84 0.89 0.15 0.7 0.61 0.79
T4 0.34 0.28 0.2 0.23 0.64 0.9 0.92 0.22 0.76 0.59 0.84
T5 0.37 0.36 0.25 0.27 0.75 0.95 0.96 0.23 0.86 0.59 0.93
T6 0.34 0.31 0.15 0.16 0.63 0.84 0.87 0.18 0.78 0.53 0.9
T7 0.39 0.36 0.2 0.22 0.7 0.96 0.96 0.23 0.8 0.65 0.92
T8 0.24 0.3 0.16 0.18 0.58 0.86 0.89 0.22 0.7 0.53 0.78

Q
ui

ck
so

rt

T0 1.0 1.0 0.97 0.99 1.0 1.0 1.0 0.98 1.0 0.97 1.0
T1 0.73 0.69 0.47 0.54 0.83 0.92 0.96 0.6 0.81 0.65 0.89
T2 0.57 0.74 0.34 0.39 0.8 0.94 0.98 0.39 0.82 0.47 0.91
T3 0.75 0.68 0.43 0.5 0.76 0.85 0.97 0.61 0.81 0.71 0.87
T4 0.56 0.61 0.3 0.4 0.74 0.89 0.93 0.45 0.79 0.58 0.85
T5 0.55 0.62 0.37 0.51 0.83 0.98 0.98 0.5 0.93 0.62 0.94
T6 0.73 0.77 0.4 0.49 0.86 0.91 0.89 0.6 0.86 0.73 0.93
T7 0.75 0.77 0.51 0.56 0.83 0.98 1.0 0.67 0.85 0.73 0.93
T8 0.55 0.62 0.32 0.48 0.73 0.92 0.97 0.59 0.79 0.69 0.86

Table 5.15: Metrics comparison
Tigress samples
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Bytes Op. By. Op. Text Op. no Par. Decomp. Simplif.

ncd rop ncd ncd lcs lcs freq ncd lcs ncd lcs

Ba
se

64

O0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
O1 0.04 0.08 0.0 0.01 0.2 0.62 0.71 0.05 0.4 0.14 0.65
O2 0.07 0.1 0.01 0.03 0.21 0.63 0.74 0.2 0.45 0.28 0.7
O3 0.06 0.08 0.0 0.02 0.2 0.62 0.7 0.13 0.42 0.22 0.67
O4 0.01 0.08 0.0 0.0 0.21 0.61 0.75 0.03 0.37 0.08 0.66

C
ho

w
n

O0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
O1 0.02 0.05 0.0 0.0 0.19 0.59 0.75 0.04 0.35 0.12 0.62
O2 0.05 0.05 0.0 0.02 0.2 0.6 0.79 0.15 0.39 0.22 0.68
O3 0.04 0.06 0.0 0.0 0.2 0.59 0.74 0.09 0.37 0.17 0.66
O4 0.0 0.06 0.0 0.0 0.2 0.58 0.77 0.02 0.33 0.06 0.62

D
D

O0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
O1 0.02 0.04 0.0 0.01 0.18 0.61 0.76 0.05 0.37 0.17 0.62
O2 0.03 0.01 0.0 0.0 0.19 0.61 0.81 0.11 0.41 0.18 0.67
O3 0.02 0.01 0.0 0.0 0.19 0.59 0.78 0.09 0.38 0.14 0.64
O4 0.01 0.08 0.0 0.02 0.2 0.59 0.83 0.02 0.34 0.08 0.62

Sh
a2

56
su

m O0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
O1 0.04 0.07 0.0 0.0 0.19 0.62 0.72 0.07 0.39 0.16 0.66
O2 0.05 0.08 0.0 0.0 0.2 0.62 0.74 0.08 0.43 0.27 0.7
O3 0.06 0.08 0.0 0.02 0.2 0.62 0.72 0.12 0.4 0.21 0.68
O4 0.01 0.09 0.0 0.0 0.19 0.61 0.74 0.02 0.35 0.09 0.65

Table 5.16: Metrics comparison
Obfuscator-LLVM samples
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Chapter 6

Conclusions

In this work, the problem of Software Similarity was examined. Several metrics
were described and implemented in the project as a series of Ghidra scripts.
Each of these metrics were then tested against a set of programs with varying
size, obfuscated with two known obfuscators, Tigress and Obfuscator-LLVM.

The results show that, overall, the best performing similarity method is the
Opcode Frequency Histogram metric, followed by Longest Common Subse-
quence algorithm when either the opcode representation without parameters
or the simplified decompilation is used.

On the contrary, the data demonstrates that Normalized Compression Dis-
tance is an unreliable metric, especially for the larger, OLLVM-obfuscated sam-
ples. Additionally, the ROP Gadget Survival metric was also shown to perform
poorly with the larger programs.

This is a large field of study, and the opportunities to improve this work are
plenty. For example, more metrics could be implemented and more obfuscation
configurations tested. Another improvement could be testing the similarity of
the programs against known different programs, for which the similarity should
be minimized.
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Sources

Listing A.1: dijkstra.c [27]

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #define MAX 20
5 #define INF 999
6

7 int mat[MAX][MAX];
8 int V;
9

10 int dist[MAX];
11

12 int q[MAX];
13 int qp = 0;
14

15 void enqueue(int v) { q[qp++] = v; }
16

17 int cf(void *a, void *b)
18 {
19 int *x = (int *)a;
20 int *y = (int *)b;
21 return *y - *x;
22 }
23

24 int dequeue ()
25 {
26 qsort(q, qp, sizeof(int), cf);
27 return q[--qp];
28 }
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29

30 int queue_has_something () { return (qp > 0); }
31

32 int visited[MAX];
33 int vp = 0;
34

35 void dijkstra(int s)
36 {
37 dist[s] = 0;
38 int i;
39 for (i = 0; i < V; ++i)
40 {
41 if (i != s)
42 {
43 dist[i] = INF;
44 }
45 enqueue(i);
46 }
47 while (queue_has_something ())
48 {
49 int u = dequeue ();
50 visited[vp++] = u;
51 for (i = 0; i < V; ++i)
52 {
53 if (mat[u][i])
54 {
55 if (dist[i] > dist[u] + mat[u][i])
56 {
57 dist[i] = dist[u] + mat[u][i];
58 }
59 }
60 }
61 }
62 }
63

64 int main(int argc , char const *argv [])
65 {
66 printf("Enter the number of vertices: ");
67 scanf(" %d", &V);
68 printf("Enter the adj matrix: ");
69 int i, j;
70 for (i = 0; i < V; ++i)
71 {
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72 for (j = 0; j < V; ++j)
73 {
74 scanf(" %d", &mat[i][j]);
75 }
76 }
77

78 dijkstra (0);
79

80 printf("\nNode\tDist\n");
81 for (i = 0; i < V; ++i)
82 {
83 printf("%d\t%d\n", i, dist[i]);
84 }
85

86 return 0;
87 }
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Listing A.2: hash_blake2b.c [27]

1 #include <assert.h> /// for asserts
2 #include <inttypes.h> /// for fixed -width integer types e.g

. uint64_t and uint8_t
3 #include <stdio.h> /// for IO
4 #include <stdlib.h> /// for malloc , calloc , and free. As

well as size_t
5

6 #ifdef __GNUC__
7 #pragma GCC diagnostic ignored "-Wshift -count -overflow"
8 #elif _MSC_VER
9 #pragma warning(disable : 4293)

10 #endif
11

12 #define bb 128
13 #define KK_MAX 64
14 #define NN_MAX 64
15 #define CEIL(a, b) (((a) / (b)) + ((a) % (b) != 0))
16 #define MIN(a, b) ((a) < (b) ? (a) : (b))
17 #define MAX(a, b) ((a) > (b) ? (a) : (b))
18 #define ROTR64(n, offset) (((n) >> (offset)) ^ ((n) << (64 -

(offset))))
19 #define U128_ZERO \
20 { \
21 0, 0 \
22 }
23

24 typedef uint64_t u128 [2];
25 typedef uint64_t block_t[bb / sizeof(uint64_t)];
26

27 static const uint8_t R1 = 32; ///< Rotation constant 1 for
mixing function G

28 static const uint8_t R2 = 24; ///< Rotation constant 2 for
mixing function G

29 static const uint8_t R3 = 16; ///< Rotation constant 3 for
mixing function G

30 static const uint8_t R4 = 63; ///< Rotation constant 4 for
mixing function G

31

32 static const uint64_t blake2b_iv [8] = {
33 0x6A09E667F3BCC908 , 0xBB67AE8584CAA73B , 0

x3C6EF372FE94F82B ,
34 0xA54FF53A5F1D36F1 , 0x510E527FADE682D1 , 0
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x9B05688C2B3E6C1F ,
35 0x1F83D9ABFB41BD6B , 0x5BE0CD19137E2179 };
36

37 static const uint8_t blake2b_sigma [12][16] = {
38 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
39 {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
40 {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
41 {7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
42 {9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
43 {2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
44 {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
45 {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
46 {6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
47 {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
48 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
49 {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5,
50 3}}; ///< word schedule permutations for each round of

the algorithm
51

52 static inline void u128_fill(u128 dest , size_t n)
53 {
54 dest [0] = n & UINT64_MAX;
55

56 if (sizeof(n) > 8)
57 {
58 dest [1] = n >> 64;
59 }
60 else
61 {
62 dest [1] = 0;
63 }
64 }
65

66 static inline void u128_increment(u128 dest , uint64_t n)
67 {
68 /* Check for overflow */
69 if (UINT64_MAX - dest [0] <= n)
70 {
71 dest [1]++;
72 }
73

74 dest [0] += n;
75 }
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76

77 static void G(block_t v, uint8_t a, uint8_t b, uint8_t c,
uint8_t d, uint64_t x,

78 uint64_t y)
79 {
80 v[a] += v[b] + x;
81 v[d] = ROTR64(v[d] ^ v[a], R1);
82 v[c] += v[d];
83 v[b] = ROTR64(v[b] ^ v[c], R2);
84 v[a] += v[b] + y;
85 v[d] = ROTR64(v[d] ^ v[a], R3);
86 v[c] += v[d];
87 v[b] = ROTR64(v[b] ^ v[c], R4);
88 }
89

90 static void F(uint64_t h[8], block_t m, u128 t, int f)
91 {
92 int i;
93 block_t v;
94

95 /* v[0..7] := h[0..7] */
96 for (i = 0; i < 8; i++)
97 {
98 v[i] = h[i];
99 }

100 /* v[8..15] := IV [0..7] */
101 for (; i < 16; i++)
102 {
103 v[i] = blake2b_iv[i - 8];
104 }
105

106 v[12] ^= t[0]; /* v[12] ^ (t mod 2**w) */
107 v[13] ^= t[1]; /* v[13] ^ (t >> w) */
108

109 if (f)
110 {
111 v[14] = ~v[14];
112 }
113

114 for (i = 0; i < 12; i++)
115 {
116 const uint8_t *s = blake2b_sigma[i];
117
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118 G(v, 0, 4, 8, 12, m[s[0]], m[s[1]]);
119 G(v, 1, 5, 9, 13, m[s[2]], m[s[3]]);
120 G(v, 2, 6, 10, 14, m[s[4]], m[s[5]]);
121 G(v, 3, 7, 11, 15, m[s[6]], m[s[7]]);
122

123 G(v, 0, 5, 10, 15, m[s[8]], m[s[9]]);
124 G(v, 1, 6, 11, 12, m[s[10]], m[s[11]]);
125 G(v, 2, 7, 8, 13, m[s[12]], m[s[13]]);
126 G(v, 3, 4, 9, 14, m[s[14]], m[s[15]]);
127 }
128

129 for (i = 0; i < 8; i++)
130 {
131 h[i] ^= v[i] ^ v[i + 8];
132 }
133 }
134

135 static int BLAKE2B(uint8_t *dest , block_t *d, size_t dd,
u128 ll, uint8_t kk,

136 uint8_t nn)
137 {
138 uint8_t bytes [8];
139 uint64_t i, j;
140 uint64_t h[8];
141 u128 t = U128_ZERO;
142

143 /* h[0..7] = IV [0..7] */
144 for (i = 0; i < 8; i++)
145 {
146 h[i] = blake2b_iv[i];
147 }
148

149 h[0] ^= 0x01010000 ^ (kk << 8) ^ nn;
150

151 if (dd > 1)
152 {
153 for (i = 0; i < dd - 1; i++)
154 {
155 u128_increment(t, bb);
156 F(h, d[i], t, 0);
157 }
158 }
159
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160 if (kk != 0)
161 {
162 u128_increment(ll, bb);
163 }
164 F(h, d[dd - 1], ll, 1);
165

166 /* copy bytes from h to destination buffer */
167 for (i = 0; i < nn; i++)
168 {
169 if (i % sizeof(uint64_t) == 0)
170 {
171 /* copy values from uint64 to 8 u8’s */
172 for (j = 0; j < sizeof(uint64_t); j++)
173 {
174 uint16_t offset = 8 * j;
175 uint64_t mask = 0xFF;
176 mask <<= offset;
177

178 bytes[j] = (h[i / 8] & (mask)) >> offset;
179 }
180 }
181

182 dest[i] = bytes[i % 8];
183 }
184

185 return 0;
186 }
187

188 uint8_t *blake2b(const uint8_t *message , size_t len , const
uint8_t *key ,

189 uint8_t kk, uint8_t nn)
190 {
191 uint8_t *dest = NULL;
192 uint64_t long_hold;
193 size_t dd, has_key , i;
194 size_t block_index , word_in_block;
195 u128 ll;
196 block_t *blocks;
197

198 if (message == NULL)
199 {
200 len = 0;
201 }
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202 if (key == NULL)
203 {
204 kk = 0;
205 }
206

207 kk = MIN(kk, KK_MAX);
208 nn = MIN(nn, NN_MAX);
209

210 dd = MAX(CEIL(kk, bb) + CEIL(len , bb), 1);
211

212 blocks = calloc(dd, sizeof(block_t));
213 if (blocks == NULL)
214 {
215 return NULL;
216 }
217

218 dest = malloc(nn * sizeof(uint8_t));
219 if (dest == NULL)
220 {
221 free(blocks);
222 return NULL;
223 }
224

225 /* If there is a secret key it occupies the first block
*/

226 for (i = 0; i < kk; i++)
227 {
228 long_hold = key[i];
229 long_hold <<= 8 * (i % 8);
230

231 word_in_block = (i % bb) / 8;
232 /* block_index will always be 0 because kk <= 64 and

bb = 128*/
233 blocks [0][ word_in_block] |= long_hold;
234 }
235

236 has_key = kk > 0 ? 1 : 0;
237

238 for (i = 0; i < len; i++)
239 {
240 /* long_hold exists because the bit -shifting will

overflow if we don’t
241 * store the value */

65



APPENDIX A. SOURCES

242 long_hold = message[i];
243 long_hold <<= 8 * (i % 8);
244

245 block_index = has_key + (i / bb);
246 word_in_block = (i % bb) / 8;
247

248 blocks[block_index ][ word_in_block] |= long_hold;
249 }
250

251 u128_fill(ll, len);
252

253 BLAKE2B(dest , blocks , dd, ll, kk, nn);
254

255 free(blocks);
256

257 return dest;
258 }
259

260 static void assert_bytes(const uint8_t *expected , const
uint8_t *actual ,

261 uint8_t len)
262 {
263 uint8_t i;
264

265 assert(expected != NULL);
266 assert(actual != NULL);
267 assert(len > 0);
268

269 for (i = 0; i < len; i++)
270 {
271 assert(expected[i] == actual[i]);
272 }
273 }
274

275 static void test()
276 {
277 uint8_t *digest = NULL;
278

279 /* "abc" example straight out of RFC -7693 */
280 uint8_t abc[3] = {’a’, ’b’, ’c’};
281 uint8_t abc_answer [64] = {
282 0xBA , 0x80 , 0xA5 , 0x3F , 0x98 , 0x1C , 0x4D , 0x0D , 0x6A

, 0x27 , 0x97 ,
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283 0xB6 , 0x9F , 0x12 , 0xF6 , 0xE9 , 0x4C , 0x21 , 0x2F , 0x14
, 0x68 , 0x5A ,

284 0xC4 , 0xB7 , 0x4B , 0x12 , 0xBB , 0x6F , 0xDB , 0xFF , 0xA2
, 0xD1 , 0x7D ,

285 0x87 , 0xC5 , 0x39 , 0x2A , 0xAB , 0x79 , 0x2D , 0xC2 , 0x52
, 0xD5 , 0xDE ,

286 0x45 , 0x33 , 0xCC , 0x95 , 0x18 , 0xD3 , 0x8A , 0xA8 , 0xDB
, 0xF1 , 0x92 ,

287 0x5A , 0xB9 , 0x23 , 0x86 , 0xED , 0xD4 , 0x00 , 0x99 , 0x23
};

288

289 digest = blake2b(abc , 3, NULL , 0, 64);
290 assert_bytes(abc_answer , digest , 64);
291

292 free(digest);
293

294 uint8_t key [64] = {
295 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08

, 0x09 , 0x0a ,
296 0x0b , 0x0c , 0x0d , 0x0e , 0x0f , 0x10 , 0x11 , 0x12 , 0x13

, 0x14 , 0x15 ,
297 0x16 , 0x17 , 0x18 , 0x19 , 0x1a , 0x1b , 0x1c , 0x1d , 0x1e

, 0x1f , 0x20 ,
298 0x21 , 0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27 , 0x28 , 0x29

, 0x2a , 0x2b ,
299 0x2c , 0x2d , 0x2e , 0x2f , 0x30 , 0x31 , 0x32 , 0x33 , 0x34

, 0x35 , 0x36 ,
300 0x37 , 0x38 , 0x39 , 0x3a , 0x3b , 0x3c , 0x3d , 0x3e , 0x3f

};
301 uint8_t key_answer [64] = {
302 0x10 , 0xeb , 0xb6 , 0x77 , 0x00 , 0xb1 , 0x86 , 0x8e , 0xfb

, 0x44 , 0x17 ,
303 0x98 , 0x7a , 0xcf , 0x46 , 0x90 , 0xae , 0x9d , 0x97 , 0x2f

, 0xb7 , 0xa5 ,
304 0x90 , 0xc2 , 0xf0 , 0x28 , 0x71 , 0x79 , 0x9a , 0xaa , 0x47

, 0x86 , 0xb5 ,
305 0xe9 , 0x96 , 0xe8 , 0xf0 , 0xf4 , 0xeb , 0x98 , 0x1f , 0xc2

, 0x14 , 0xb0 ,
306 0x05 , 0xf4 , 0x2d , 0x2f , 0xf4 , 0x23 , 0x34 , 0x99 , 0x39

, 0x16 , 0x53 ,
307 0xdf , 0x7a , 0xef , 0xcb , 0xc1 , 0x3f , 0xc5 , 0x15 , 0x68

};
308
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309 digest = blake2b(NULL , 0, key , 64, 64);
310 assert_bytes(key_answer , digest , 64);
311

312 free(digest);
313

314 uint8_t zero [1] = {0};
315 uint8_t zero_key [64] = {
316 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08

, 0x09 , 0x0a ,
317 0x0b , 0x0c , 0x0d , 0x0e , 0x0f , 0x10 , 0x11 , 0x12 , 0x13

, 0x14 , 0x15 ,
318 0x16 , 0x17 , 0x18 , 0x19 , 0x1a , 0x1b , 0x1c , 0x1d , 0x1e

, 0x1f , 0x20 ,
319 0x21 , 0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27 , 0x28 , 0x29

, 0x2a , 0x2b ,
320 0x2c , 0x2d , 0x2e , 0x2f , 0x30 , 0x31 , 0x32 , 0x33 , 0x34

, 0x35 , 0x36 ,
321 0x37 , 0x38 , 0x39 , 0x3a , 0x3b , 0x3c , 0x3d , 0x3e , 0x3f

};
322 uint8_t zero_answer [64] = {
323 0x96 , 0x1f , 0x6d , 0xd1 , 0xe4 , 0xdd , 0x30 , 0xf6 , 0x39

, 0x01 , 0x69 ,
324 0x0c , 0x51 , 0x2e , 0x78 , 0xe4 , 0xb4 , 0x5e , 0x47 , 0x42

, 0xed , 0x19 ,
325 0x7c , 0x3c , 0x5e , 0x45 , 0xc5 , 0x49 , 0xfd , 0x25 , 0xf2

, 0xe4 , 0x18 ,
326 0x7b , 0x0b , 0xc9 , 0xfe , 0x30 , 0x49 , 0x2b , 0x16 , 0xb0

, 0xd0 , 0xbc ,
327 0x4e , 0xf9 , 0xb0 , 0xf3 , 0x4c , 0x70 , 0x03 , 0xfa , 0xc0

, 0x9a , 0x5e ,
328 0xf1 , 0x53 , 0x2e , 0x69 , 0x43 , 0x02 , 0x34 , 0xce , 0xbd

};
329

330 digest = blake2b(zero , 1, zero_key , 64, 64);
331 assert_bytes(zero_answer , digest , 64);
332

333 free(digest);
334

335 uint8_t filled [64] = {
336 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08

, 0x09 , 0x0a ,
337 0x0b , 0x0c , 0x0d , 0x0e , 0x0f , 0x10 , 0x11 , 0x12 , 0x13

, 0x14 , 0x15 ,
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338 0x16 , 0x17 , 0x18 , 0x19 , 0x1a , 0x1b , 0x1c , 0x1d , 0x1e
, 0x1f , 0x20 ,

339 0x21 , 0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27 , 0x28 , 0x29
, 0x2a , 0x2b ,

340 0x2c , 0x2d , 0x2e , 0x2f , 0x30 , 0x31 , 0x32 , 0x33 , 0x34
, 0x35 , 0x36 ,

341 0x37 , 0x38 , 0x39 , 0x3a , 0x3b , 0x3c , 0x3d , 0x3e , 0x3f
};

342 uint8_t filled_key [64] = {
343 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08

, 0x09 , 0x0a ,
344 0x0b , 0x0c , 0x0d , 0x0e , 0x0f , 0x10 , 0x11 , 0x12 , 0x13

, 0x14 , 0x15 ,
345 0x16 , 0x17 , 0x18 , 0x19 , 0x1a , 0x1b , 0x1c , 0x1d , 0x1e

, 0x1f , 0x20 ,
346 0x21 , 0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27 , 0x28 , 0x29

, 0x2a , 0x2b ,
347 0x2c , 0x2d , 0x2e , 0x2f , 0x30 , 0x31 , 0x32 , 0x33 , 0x34

, 0x35 , 0x36 ,
348 0x37 , 0x38 , 0x39 , 0x3a , 0x3b , 0x3c , 0x3d , 0x3e , 0x3f

};
349 uint8_t filled_answer [64] = {
350 0x65 , 0x67 , 0x6d , 0x80 , 0x06 , 0x17 , 0x97 , 0x2f , 0xbd

, 0x87 , 0xe4 ,
351 0xb9 , 0x51 , 0x4e , 0x1c , 0x67 , 0x40 , 0x2b , 0x7a , 0x33

, 0x10 , 0x96 ,
352 0xd3 , 0xbf , 0xac , 0x22 , 0xf1 , 0xab , 0xb9 , 0x53 , 0x74

, 0xab , 0xc9 ,
353 0x42 , 0xf1 , 0x6e , 0x9a , 0xb0 , 0xea , 0xd3 , 0x3b , 0x87

, 0xc9 , 0x19 ,
354 0x68 , 0xa6 , 0xe5 , 0x09 , 0xe1 , 0x19 , 0xff , 0x07 , 0x78

, 0x7b , 0x3e ,
355 0xf4 , 0x83 , 0xe1 , 0xdc , 0xdc , 0xcf , 0x6e , 0x30 , 0x22

};
356

357 digest = blake2b(filled , 64, filled_key , 64, 64);
358 assert_bytes(filled_answer , digest , 64);
359

360 free(digest);
361

362 printf("All tests have successfully passed !\n");
363 }
364
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365 int main()
366 {
367 test();
368 return 0;
369 }
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Listing A.3: quicksort.c [27]

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 /* Displays the array , passed to this method */
5 void display(int arr[], int n)
6 {
7 int i;
8 for (i = 0; i < n; i++)
9 {

10 printf("%d ", arr[i]);
11 }
12

13 printf("\n");
14 }
15

16 /*Swap function to swap two values */
17 void swap(int *first , int *second)
18 {
19 int temp = *first;
20 *first = *second;
21 *second = temp;
22 }
23

24 /* Partition method which selects a pivot
25 and places each element which is less than the pivot value

to its left
26 and the elements greater than the pivot value to its right
27 arr[] --- array to be partitioned
28 lower --- lower index
29 upper --- upper index
30 */
31 int partition(int arr[], int lower , int upper)
32 {
33 int i = (lower - 1);
34

35 int pivot = arr[upper]; // Selects last element as the
pivot value

36

37 int j;
38 for (j = lower; j < upper; j++)
39 {
40 if (arr[j] <= pivot)
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41 { // if current element is smaller than the pivot
42

43 i++; // increment the index of smaller element
44 swap(&arr[i], &arr[j]);
45 }
46 }
47

48 swap(&arr[i + 1], &arr[upper ]); // places the last
element i.e, the pivot

49 // to its correct
position

50

51 return (i + 1);
52 }
53

54 /*This is where the sorting of the array takes place
55 arr[] --- Array to be sorted
56 lower --- Starting index
57 upper --- Ending index
58 */
59 void quickSort(int arr[], int lower , int upper)
60 {
61 if (upper > lower)
62 {
63 // partitioning index is returned by the partition

method , partition
64 // element is at its correct poition
65

66 int partitionIndex = partition(arr , lower , upper);
67

68 // Sorting elements before and after the partition
index

69 quickSort(arr , lower , partitionIndex - 1);
70 quickSort(arr , partitionIndex + 1, upper);
71 }
72 }
73

74 int main()
75 {
76 int n;
77 printf("Enter size of array:\n");
78 scanf("%d", &n); // E.g. 8
79
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80 printf("Enter the elements of the array\n");
81 int i;
82 int *arr = (int *) malloc(sizeof(int) * n);
83 for (i = 0; i < n; i++)
84 {
85 scanf("%d", &arr[i]);
86 }
87

88 printf("Original array: ");
89 display(arr , n); // Original array : 10 11 9 8 4 7 3 8
90

91 quickSort(arr , 0, n - 1);
92

93 printf("Sorted array: ");
94 display(arr , n); // Sorted array : 3 4 7 8 8 9 10 11
95 getchar ();
96 free(arr);
97 return 0;
98 }
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