
Master’s Degree programme
in Computer Science

Final Thesis

LiSA and ROS
Static Analysis for Robotics

Supervisor
Prof. Pietro Ferrara

Graduand
Giacomo Zanatta
Matriculation number 859156

Academic Year
2022/2023

To all the universe

Abstract

This thesis will show how a static analysis tool can extract meanings from
ROS source code. After a brief introduction to the theories that underlie
static analysis, we will talk about LiSA, a static analysis framework main-
tained and developed by SSV (Software and System Verification) Research
Group - a team of professors and researchers headquartered at the Ca’ Fos-
cari University of Venice - and more specifically we will learn what a front
end for LiSA is, how we can write our one to analyze a specific program, and
how LiSA works internally to produce meaningful results.
Extracting meaning from code by scratch is a challenging task: it requires
a solid understanding of mathematical and computational theories like ab-
stract interpretation and, of course, a deep knowledge of the language under
analysis. The peculiarity of using LiSA is that these theories are abstracted
away, providing an easy-to-use library.
We will show how we can use PyLiSA - a Python front end for LiSA - to de-
velop domain-specific analysis straightforwardly. Our focus will be on the
rclpy library, which is the Python client library for the ROS (Robot Operating
System) ecosystem. We will also discover how to extend LiSA to perform
static analysis of Python code using the rclpy library.

Contents

1 Introduction 1
1.1 Bugs and Safety-Critical Systems 4
1.2 Static Analysis for Robotics . 6
1.3 Thesis Structure . 8

2 Preliminaries 11
2.1 Computers and Machine Language 11
2.2 Programming Languages . 13
2.3 Compilers . 13

2.3.1 Lexer . 14
2.3.2 Parser . 14

2.4 Semantics of Program . 14
2.5 Program Analysis . 16

2.5.1 About Completeness and Soundness 16
2.5.2 Program Analysis Techniques 19

2.6 Static Analysis . 22
2.6.1 Abstract Interpretation . 24
2.6.2 Lattice and Partial Orders 25

3 LiSA 29
3.1 Introduction to LiSA . 29
3.2 Project Structure . 30

3.2.1 LiSA Submodules . 30
3.3 PyLiSA, Front Ends, and Antlr . 34

3.3.1 Antlr . 34
3.3.2 Front Ends and PyLiSA . 34

3.4 LiSA’s Control Flow Graph . 39
3.4.1 About Statements . 39
3.4.2 About Edges . 42

3.4.3 Typing . 43
3.4.4 PyLiSA CFG . 44

3.5 LiSA’s Analysis . 44
3.5.1 The Fundamentals . 44
3.5.2 Abstract State . 47
3.5.3 Analysis State . 48
3.5.4 The CallGraph . 49
3.5.5 Semantics of Statements 51

3.6 Architectural Scheme . 51
3.7 Checkers . 52

3.7.1 How they Works . 53
3.7.2 An Example . 54

3.8 PyLiSA SARL . 56
3.9 Running a LiSA Analysis . 58

4 ROS 61
4.1 Introduction to ROS . 62

4.1.1 Brief Definition of DDS . 63
4.2 Concepts and Terminology . 64

4.2.1 The ROS Domain . 64
4.2.2 The ROS Graph . 64
4.2.3 Nodes . 64
4.2.4 Topics . 64
4.2.5 Messages . 65
4.2.6 Parameters . 65
4.2.7 Services . 65
4.2.8 Actions . 65
4.2.9 Discovery Process . 66

4.3 ROS API Architecture . 67
4.4 About DDS-Security and SROS2 68
4.5 rclpy . 71

4.5.1 Application Life Cycle . 71
4.5.2 The rclpy Module . 72

4.6 How to Use rclpy: an Example 75

5 Static Analysis for ROS (An Introduction) 81
5.1 State of the Art of Static Analysis for Robotics 81
5.2 Why this Thesis Exists . 82

8

Giacomo Zanatta

6 Lisa and ROS: Static Analysis for Robotics 85
6.1 Introduction . 85
6.2 PyLiSA Front End Extensions . 87

6.2.1 Object Declaration . 87
6.2.2 Object Inheritance Support 88
6.2.3 String Constant Propagation 90

6.3 Analysis of the rclpy Library . 90
6.3.1 rclpy Semantics . 90
6.3.2 LiSA Analysis Configuration 95
6.3.3 Preliminary Results of the Analysis 97

7 Future Works 107

8 Conclusion 111

Acknowledgements 113

Bibliography 115

Chapter 1

Introduction

Imagine that you are working as a developer for a big consultant IT company.
It’s 9.00 AM on a cold Monday morning, and you haven’t already recovered
from the hangover of your crazy Saturday night. Halfheartedly, you walk
to your desk with your coffee mug, thanking the creator of Smart Working.
You open your Teams app and find out that the Project Manager has already
started the Daily Meeting.
Quaffing your coffee, you enter the call, and, long story short, Project Man-
ager told the team that she received an angry email from the client stating
that the customer account page of his e-commerce site prints out a hideous
internal error page.
After hearing these words, a slight inkling of panic starts to course through
your backbone: in the last sprint, you changed the way system retrieves cus-
tomer orders from the e-commerce cloud API and the manner in which these
orders are being propagated to the front end.
The Project Manager told you to fix the problem ASAP and that a hotfix is
required in order not to impact the current sprint tasks and stories and to
make the system usable again.
Right after the end of the meeting, you immediately open your IDE to find out
what piece of fantastic code you wrote, and you come upon this javascript
code snippet:

1 function orderedProducts(apiOrders) {
2 var products = [];
3 for (var i = 0; i < apiOrders.length; i++) {
4 var order = apiOrders[i];
5 for (var i = 0; i < order.products.length; i++) {
6 products.push(order.products[i]);

1

2 Chapter 1. Introduction

7 }
8 }
9 return products;

10 }

Code 1.1: A bugged javascript function

The function in code 1.1 takes in input an array of the order API and should
return all the ordered products in all the orders. This function will not work
as intended since you are redeclaring a global scope variable1, i, (line 5).
This could lead to an unpredicted behavior, such as an endless loop execu-
tion: suppose a customer has only placed three orders, with one product
each.
At the first iteration of the outer loop, i=0. Redeclaring the i global variable
in the inner loop declaration leads to overwriting the previous assignment
on this variable. After the execution of the nested loop, i=1. The i variable
is then incremented by 2, and the order in position 2 of the apiOrders array
is accessed. The inner loop, again, will redeclare the i variable, setting it to
0, and after the execution, since this order has only one product, i will be
equal to 2, and we process order 2 again until the javascript virtual machine
crash.
In an optimal scenario, following sprint best practices [37] and performing
SIT (System Integration Testing) or UAT (User Acceptance Testing) correctly,
this type of bug will be intercepted during the sprint life cycle and appropri-
ately handled in time. But sometimes, clients’ requirements are not well-
defined, and some tasks could be insidious to be tested. Furthermore, some-
times for one reason or another, tasks are underestimated. This leads de-
velopers to be in a hurry to complete the task in time, bringing stress and
potentially producing more error-prone code.
UAT is a way of testing new features. Testing is an example of a program
analysis technique that aims to check if a program behaves correctly. This
technique is executed at run-time (i.e., during program execution) and re-
quires human interaction with the application. This type of testing is often
costly to achieve since it requires human resources, and it can be prone to
human error as the tester might make some mistakes or not consider all the
relevant executions. For example, in the previously mentioned code, suppose
that the tester executes only two orders: the first contains only one product,
and the second has three products inside. In this case, the program seems

1https://262.ecma-international.org/5.1/#sec-10

https://262.ecma-international.org/5.1/#sec-10

3

to behave correctly, and the bug is undiscovered.
Although other types of testing exist (for example, automated tests executed
automatically by a machine), this technique is inaccurate since it is some-
times hard to reproduce an execution.
For a better analysis of the correctness of software, one could integrate a
static analysis tool on the CI/CD of the project that scans the source code
and finds defects, compliance issues, and vulnerabilities without running the
code. For example, using a static analysis tool like SonarQube2, the bug in
the code 1.1 would have been easily identifiable (figure 3.1).

Figure 1.1: SonarQube output for code 1.1

Integrating a static program analysis tool inside the CI process of a project
permits the discovery of bugs during the development phase: for example, a
static analysis tool can be configured to run at every commit to a repository
and blocks the ability to merge a pull request if the analysis fails due to the
detection of a bug, providing helpful insight on how to solve them.

This thesis talks about static analysis and, more precisely, about LiSA,
a static analysis framework. We will see how LiSA can perform some static
analysis of Python code to extract valuable (from a correctness point of view)
things from it and learn how we can use this framework to perform domain-

2https://docs.sonarqube.org/latest/

https://docs.sonarqube.org/latest/

4 Chapter 1. Introduction

Figure 1.2: Some bugs: an infinite update, the famous MissingNo Pokémona,
an error on an error message, a recursive documentation.

ahttps://www.kotaku.com.au/2014/11/pokmons-famous-missingno-glitch-explained/

specific analysis. More concretely, we will perform analyses that are mainly
focused on programs with a well-defined application in the real world: pro-
grams for robots.

1.1 Bugs and Safety-Critical Systems

Bugs are everywhere. They could hide inside a web application function (like
the one we saw before), waiting to be triggered by an unaware user. They
could stay inside your smartphone’s operating system, causing some funny
effects on the graphical user interface, like, for example, showing a negative
percentage of battery. They are around us, and if you have a good eye, you
will likely find at least a bug a day... Or an hour.

Figure 1.2 shows some typical innocuous bugs. But there are also bugs
that can greatly impact the environment where the machine that executes it
lives. Take, for example, figure 1.3.
On June 4, 1996, the maiden flight of the Ariane 5 (a rocket of the ESA,

https://www.kotaku.com.au/2014/11/pokmons-famous-missingno-glitch-explained/

1.1. Bugs and Safety-Critical Systems 5

Figure 1.3: The explosion of the Ariane 5 flight, June 4, 1996

6 Chapter 1. Introduction

European Space Agency) launcher failed, destroying itself3 at an altitude of
3700 meters. The failure analysis found that the problem happens during
the execution of a data conversion from a 64-bit floating point to a 16-bit
signed integer value, as the code in 1.2 shows4. This conversion causes an
unhandled operand error because the number converted had a value greater
than what could be represented by a 16-bit signed integer. The bug cost 370
million dollars.

1 P_M_DERIVE(T_ALG.E_BH) :=
2 UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH) *

G_M_INFO_DERIVE(T_ALG.E_BH)))

Code 1.2: The line of code that perform the unsafe casting

If a simple conversion typo could lead to these consequences, imagine what
a bug can do in other safety-critical systems: these systems are systems
where a software issue could lead to a hardware malfunction, which results
in human injury or environmental damage. [39]

The Ariane 5 failure report5 says that “The extensive reviews and tests
carried out during the Ariane 5 Development Programme did not include ad-
equate analysis and testing of the inertial reference system or the complete
flight control system, which could have detected the potential failure.”.
This statement implicitly tells us about the importance of analysis of pro-
grams to detect and address possible hidden bugs.

1.2 Static Analysis for Robotics

And after these considerations, we will talk about the main topic of this the-
sis: static analysis for robotics.
Static analysis is a special program analysis technique that aims to discover
bugs without running the program in the early phase (but not necessary) of
the DevOps life cycle (the blue arrows in figure 1.4). But why are we going
to use static analysis for this thesis? Looking at figure 1.5, we see that most
bugs are introduced in the early development phase. Notwithstanding, we
have a low detected error rate in these phases (Analysis, Conceptual Design,

3https://www.youtube.com/watch?v=gp_D8r-2hwk
4https://de.wikipedia.org/wiki/Ariane_V88
5http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

https://www.youtube.com/watch?v=gp_D8r-2hwk
https://de.wikipedia.org/wiki/Ariane_V88
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

1.2. Static Analysis for Robotics 7

Figure 1.4: DevOps life cycle

Figure 1.5: Software lifecycle and error introduction, detection, and repair
costs [6]

8 Chapter 1. Introduction

and Programming). But look at the dashed line: the cost of a bug correction
is low too! This is because when a bug is detected in a production environ-
ment (i.e., the shipped-out and ready-to-use application), correcting the bug
means that one needs to figure out what’s going on, fix the problem (keeping
particular attention that the fix doesn’t involve and break any other part of
the application), re-execute all the tests and after all that prepare another
build to release to the public, hoping that all the users update the software.
The effort to fix a bug in a feature that is already released in the production
application is huge with respect to fixing it during development.
Talking again about the Ariane 5 rocket explosion, if the conversion bug had
been discovered during the software’s development phase, the rocket prob-
ably would not have exploded (and much money would not have gone up in
flames). A static analysis tool can detect such bugs without too much effort.
We will focus on the analysis of robotic applications because robots nowa-
days are more ubiquitous than ever, and some fall under the categorization
of safety-critical systems. Since some special robots cooperate with humans
in the real world to accomplish dangerous tasks, these entities’ behavior
must not harm the people around them and the environment. And since the
behavior of a robot is defined by the software that is executing, it is impor-
tant to put particular attention on the correctness of the source code. Static
analysis can do this, as we will see in the next chapters, aiming to compute
the semantic properties of programs and to find security issues and bugs in
general.

In this thesis, we are going to use LiSA [29], a static analysis framework,
and we will add the support of the analysis of ROS2 [28] Python programs
defining the semantics of the ROS2 python library and analysis on the ROS
Computational Graph (these concepts will be explained in the appropriate
chapters).
The effort made in this thesis could be a starting point for subsequent anal-
ysis of ROS2 programs with LiSA.

1.3 Thesis Structure

Chapter 2 will set the necessary preliminaries for this thesis: program-
ming languages, the semantics of programs, the correctness of software,
and static analysis.
In Chapter 3, a static analysis library (LiSA) will be introduced and detailed.

1.3. Thesis Structure 9

Here will be explained concepts like front end, SARL, and call graph.
Chapter 4 will tell us about ROS (Robot Operating System), a framework for
building robot applications, providing an overview of its Python client library
and a simple example. In Chapter 5, we will talk about the state of the art of
static analysis for robotics, motivating what we will do and why we will do
that in the chapter right after.
Chapter 6, the beating heart of this work, will show how to build an analysis
for ROS inside LiSA.
Chapter 7 and 8 concludes this thesis.

Chapter 2

Preliminaries

Unfortunately, defining in detail what a computer is and how it behaves re-
quires much time, and it is not the purpose of this thesis. However, in this
chapter, we provide a brief high-level overview of this fantastic world to give
the reader the basic knowledge necessary to follow this text. Without spoi-
lering too much, in this chapter, we will talk about machine language (i.e.,
the language a computer talks), programming languages, semantics of pro-
grams, program analysis, and static analysis.

2.1 Computers and Machine Language

Computers (also known as machines) are strange electronic creatures that
exist with the sole principle of following and executing orders defined in a
language that they can understand. This language is called machine lan-
guage, characterized by an alphabet composed only of 0s and 1s. If you
want a machine to do what you want, you must speak its language and write
some statements using only 0s and 1s. A sequence of one or more state-
ments defines a program. In other words, a program is a set of instruc-
tions a machine executes. Why do computers use this language? To answer
this question, we need to step back and analyze how a computer works.
Experts will tear out their hair reading the next few lines (and the author
hopes they will close an eye, too), but for the sake of simplicity, imagine a
room with a light bulb controlled by a switch. When you press the switch,
the bulb will turn on, and we will have light. If you press again, the light
will go out. The light switch controls the underlying electric circuit: if the
switch is OFF, the circuit is open, and no electricity flows. Otherwise, if
the switch is ON, the circuit is closed, and electricity will flow without any

11

12 Chapter 2. Preliminaries

problems, reaching our light bulb that will bring brightness to the environ-
ment. Now think about millions of these light switches, each of 5 nanome-
ters wired together in a surface of 100mm2[23]. These switches are called
transistors and are wired to each other so that some of them can turn ON
(or OFF) other ones. These transistors live in the CPU (Central Processor
Unit), one of the computer’s principal components responsible for process-
ing the previously mentioned instructions. Some of them have a special task:
for example, some transistors are grouped in a special CPU unit called ALU
(Arithmetic-Logic Unit) and perform operations, while others (registers) are
arranged and combined, remembering their state during the execution of in-
structions. Another essential section of the CPU that needs to be mentioned
here is the Control Unit (CU), which orchestrates the execution of instruc-
tions. An instruction will turn ON or OFF some transistors that propagate
their state to others, making them turn on or off based on how they are wired
together. An instruction is nothing more than a pattern that says: “Turn on
these transistors, turn off this one and this other one, turn on these. . . .”.
A natural way to represent the state of a transistor is to use 0s and 1s.
With 0, we encode the absence of electricity (i.e., an OFF state). With 1,
we encode the other state (ON). So an instruction is nothing more than a
list of 0 and 1 representing the states of some transistors. The transistors
involved in an instruction propagate the state among other transistors un-
til some special transistors are reached. The state of the latter transistors
represents the output of the instruction. Using 0s and 1s, you can encode
almost anything, and this language is called machine language. For exam-
ple, this string 00000001011011000101000000100010 for some computers
could represent an operation like the subtraction of two numbers.
As a note of mention, a computer can’t understand what’s going on: it does
not have a concept of the program’s meaning; it just executes instructions
without thinking about it like a loyal subject does the bidding of his own king.
A machine cannot understand if the running program (i.e., a program that is
executing) is correct.
Please note that this is a very simple example, and computers do not really
work like this: for more specific details, we invite the reader to take a look
at the book “Computer Organization and Design: The Hardware/Software
Interface” [32]. But this premise was necessary to introduce programming
language.

2.2. Programming Languages 13

2.2 Programming Languages

A computer “talks” only with 0s and 1s. It receives a string of 0s and 1s, and
after a bit, it produces an output based on what it gets as input. But there is
a problem: all form of human language is very different from this language.
It’s tough for a human to learn machine code and to write programs us-
ing it. To make things easier, programming languages were invented. They
are some sort of abstraction that permits the definition of instructions more
easily, usually (but not necessarily) using identifiable words. These instruc-
tions are then translated into machine code with some techniques (and this
is another story) to make them comprehensible to the computer. A set or a
sequence of instructions defines a program executed in a specific order by a
machine. These instructions stay in one or more files called source codes.
Source codes are made by lines of words defined over an alphabet. Like
human languages, programming languages have grammars: a grammar is
a set of statements that defines the syntax of the programming languages.
To write a program in a language, you must follow the language’s syntax.
Syntax describes the rules for how to write a valid program in a language.
Consider, for example, the phrase, “The cat is on the table.”. This phrase re-
spects the syntax of the English language, so it is a valid English statement.
The same concept applies to programming languages.

2.3 Compilers

A way to transform a programming language into machine code is by using
a compiler. A compiler is a program that takes another program written in a
specified language and converts it into another language. Within the usage
of a compiler, we can write our program in a high-level language (i.e., a lan-
guage with strong abstraction from the underlying details of the machine),
and the compiler will give us the appropriate program ready to be executed
in our machine. Note that it is not always like this: for example, there could
be an intermediate language between our programming language and the
machine language.
For further references about compilers, an interesting book could be “Com-
pilers - Principle, Techniques, and Tools” [1]. In the next subsections, we will
briefly see the first phases a compiler performs when he translates a pro-
gram. These concepts will be useful to understand better how LiSA works
(Chapter 3).

14 Chapter 2. Preliminaries

2.3.1 Lexer

The first phase is called lexical analysis, and a lexer performs it. A lexer
scans the source code’s characters and groups them into meaningful se-
quences (lexemes). For each lexeme, it produces a token. A token has an
associated identifier that permits reasoning about the lexeme type (and what
to do with it) during the next phase.

2.3.2 Parser

Syntax analysis is the next phase. A parser (the entity that has the duty to
perform syntax analysis) takes in input all the tokens produced by the lexer
and checks their validity from a grammatical point of view. For example, if
the grammar says that at the end of a statement that does not start with a
specific word is necessary to put a “;”, when the parser encounters a state-
ment in the source code that does not follow this rule, then it raise an error
since the statement is not in the language, thus is does not know how to
handle it. Parser produces a tree structure called syntax tree that shows the
relationships between tokens. The syntax tree is a helpful structure concern-
ing the semantic extraction of statements and, more generally, programs.

2.4 Semantics of Program

Before discussing the semantics of programs, an important concept relevant
to this thesis, we need to take a step back and define the semantics. In
short, semantics is the study of meaning. But the meaning of what? This
could be a concept, or a concrete thing, or an abstract one. For example,
one could study the meaning of life (like Plato did some years ago), music, or
paintings. With some imagination, you can study the meaning of anything.
Take, for example, figure 2.1:

2.4. Semantics of Program 15

Figure 2.1: A cat sitting on the bay at night (image generated by OpenAI’s
DALL·E)

What is the meaning of this image? If you ask this question to four differ-
ent people, you could have these answers back:

• “Easy: this image represents a cat.”

• “Hey, this is a bay!”

• “Well, this is a graphic meaning of the song ‘(Sittin’ On) The Dock Of
The Bay’ by Otis Redding. 1”

• “This image means ‘waiting’.”

Note that every answer is correct. The interviewers simply focused on dif-
ferent points of interest in the same image, respectively: subjects (a cat), en-
vironments (a bay), feeling (the music), and actions (waiting). These points
of interest are the semantic properties of what we are studying.

After this brief introduction, we can talk about the semantics of programs.
As you can imagine, the semantics of a program is its meaning.
Xavier and Kwangkeun, in the book “Introduction to Static Analysis” [43],
define the semantics of a program as the description of how it behaves when
it is running on a machine. And since (as we said before) computers execute
software as they are written, the run-time behavior of a program is solely
defined by the meaning of its source language.
A semantic property of a program is a special characteristic of its behavior.
Some examples of semantic properties are:

• The fact that a program terminates.

1https://www.youtube.com/watch?v=rTVjnBo96Ug

https://www.youtube.com/watch?v=rTVjnBo96Ug

16 Chapter 2. Preliminaries

• The presence of a null pointer.

• The presence of security vulnerabilities like buffer overflows or SQL
injections.

• The presence of dead code (code that is never executed).

• The presence of code redundancy (i.e., duplicated code blocks).

2.5 Program Analysis

Techniques that check if a program satisfies a semantic property are called
program analysis, and a program analysis tool is an implementation of pro-
gram analysis. The satisfaction checking of a semantic property is not al-
ways trivial: some properties are not computable, like the program termi-
nation check. For the latter case, if it exists a program analysis tool that
can say automatically and in a finite time if a program terminates, then the
“Entscheidungsproblem” [26] (i.e., decision problem) will be solved [41].

2.5.1 About Completeness and Soundness

The decision problem mentioned above leads to some considerations. Since
semantics properties can be defined from a program’s executions, any non-
trivial semantic properties are not computable, as Rice’s Theorem says.

Theorem 2.1 (Rice’s Theorem). Let L be a Turing-Complete language, and
let P be a non-trivial semantic property of programs of L. There exists no
algorithm such that, for every program p 2 L, it returns true if and only if p
satisfies the semantic property P .

What can we do in these cases? There are various methods available to
conduct effective program analysis for these non-trivial properties. To cir-
cumnavigate the problem, one could limit the automation by requiring users
to provide information about the analysis. This approach could work, but
we need to remind that this process may be error-prone, and for large pro-
grams, it may be the case that the effort required by the user is huge.
Another technique consists of relaxing the conditions of program analysis.
Instead of giving up on computation, we could let the analysis return some-
times inaccurate results. In this case, if the analysis is unsure about the
presence or not of a property, it could return “I don’t know.”. This approach

2.5. Program Analysis 17

consists of computing an approximation of the program. The inaccuracy
comes from the fact that you are losing precision by approximating some-
thing, but it does not mean that the analysis is wrong.
We could have two types of approximations:

• Soundness We say that a program analyzer a is sound with respect to
property P if, for any program p 2 L, a(p) = true implies that p satisfies
the property P .

• Completeness We say that a program analyzer a is complete with re-
spect to property P if, for every program p 2 L such that p satisfies P ,
a(p) = true.

Completeness and soundness are dual properties. A sound analysis will re-
ject all programs that do not satisfy P but also some that indeed respect P.
A complete analysis instead will accept every program that satisfies property
P, but also some of them that do not respect the property.
It could be wonderful to have both a complete and sound analysis. Such
analysis would be perfectly accurate and would neither miss a property nor
return a wrong or inaccurate result. However, due to the theorem mentioned
above, such analysis is impossible to obtain: we can’t achieve an analysis
that can compute a program’s non-trivial property in a fully automatic, com-
plete, and sound way.

Let’s see the diagrams in 2.2 to better understand soundness and com-
pleteness. The outer rectangle represents a set of programs. We classify
these programs into two categories: programs that satisfy a property P (the
inner light green box) and programs that do not satisfy the same property
(the inner orange box).
Figure b shows how a sound and incomplete analysis behave. For the prop-
erty of interest P, a sound and incomplete analysis will answer ‘no’ (false)
(the shadowed box with red border) at the question “Does the program sat-
isfy the property P?” for all the programs that effectively do not have the
property, but it could be wrong and answering no also for some programs on
the light green box.
Figure c instead shows the behavior of a complete but unsound analysis. If
a complete analysis returns true, then the program has the property. How-
ever, for some programs of the orange box, the analysis will produce a wrong
result (true instead of false).

18 Chapter 2. Preliminaries

(a) Set of programs

(b) Sound but incomplete analysis

(c) Complete but unsound analy-
sis

Figure 2.2: Soundness and completeness

2.5. Program Analysis 19

2.5.2 Program Analysis Techniques

There exist different techniques to approach program analysis. For exam-
ple, we could have some techniques that aim to be automatic, other ones
that permit us to compute complete results, and others that focus on the
soundness part. Let’s see some of them.

Testing

One technique is called testing. This technique has the scope to understand
the correctness of the behavior of a program by observing a finite set of finite
program executions. It is a dynamic technique since it is performed during
the execution of the software.
Although this technique is powerful, it is often costly, and it is hard to achieve
proper coverage of executions in large and complex programs.
Developers could write specific code that permits them to run a program use
case and check if the output is correct. These tests are typically performed
by developers locally or integrated into a Continuous Delivery / Continuous
Integration (CD/CI) pipeline to enhance the software’s overall quality. For
example, a DevOps engineer could put a rule that if a merge request fails a
test or has a test coverage below a certain threshold, then the request can-
not be merged.
There exist different types of testing: we have automated testing (performed
in an automated way like the one we mentioned just a phrase ago) and some
testing that requires a human to perform it. An example of the last case
could be, for example, testing the checkout process of an e-commerce sys-
tem directly from the development instance’s website. The latter case can
be useful to find if an order is placed correctly and if the content presented
(i.e., images, translations, popup messages) is shown right with regard to
the prototype, just simulating what a final user does on the website.
It is important to mention also Software Integration Testing (SIT), which is a
specific typology of testing used when dealing with complex programs, espe-
cially the ones that are composed of more than one heterogeneous platform
(like, for example, the e-commerce system just mentioned, where at some
point it is required that the order placed by a user leaves the system to get
visibility of it in the Order Management System (OMS), an entity external to
the e-commerce platform, that post-processes orders and handle warehouse
stocks and shipments). When the business requires changes that impact
more than one system, a SIT is usually performed, which requires synchro-

20 Chapter 2. Preliminaries

nization between the organizations that manage the involved systems. The
test of a change in the export flow of orders, just to continue the proposed ex-
ample, starts from one system (e-commerce) and ends in another (the OMS
or the Customer Relationship Management system, as known as CRM). Test-
ing has the characteristics of being unsound and complete.

Model Checking

Another technique is the so-called model checking, which consists of check-
ing a property’s satisfaction in a program model. This technique puts the
focus on finite systems (systems whose behavior can be enumerated) and is
based on models describing the possible system behavior in a mathemati-
cally precise and unambiguous manner[6].
Typically this approach consists of some phases:

• Modeling phase: in this phase, the system is modeled according to
the description language of the model checker. The properties to be
checked are formalized using a property specification language. Usu-
ally, a model is expressed using finite-state automata, with states that
define a description of the system’s status in a given moment and tran-
sitions that say how the system evolves from one state to another. The
property specification language is based on temporal logic that permits
to model the behavior of systems over time. In this phase, a validation
of the model must be performed to check if the formalized problem
statement is an adequate description of the actual verification problem.

• Running phase: in this phase, we run the model: here, we use an algo-
rithmic approach to check the validation of the considered properties
in all model states.

• Analysis phase: the last phase consists of an analysis of the checker’s
results. We could have three different possible outcomes:

1. The property is valid. In this case, we analyze the following prop-
erty, or, if it is the last, the model is concluded to possess all de-
sired properties.

2. The property is not valid. When the analysis output a negative
result, there could be a modeling, a design, or a property error.
In the first and second cases, the model must be corrected, and

2.5. Program Analysis 21

the verification must be redone. Since we are changing a model,
all previously checked properties must be re-analyzed. In the lat-
ter case, the property may not respect the informal requirement
that had to be validated. To handle this, we need to rewrite the
property specification and perform a new validation of the model.
Since we are not performing modification on the model side, it is
not required to relaunch the analysis to check all the properties
already analyzed.

3. The model is too large. Sometimes it could be the case that we
have a so-called explosion of the state space (too many states to
handle in memory). Researchers have found some ways to address
this problem. For example, to reduce the state space, we could
use symbolic techniques like Binary Decision Diagrams (BDD) or
partial order reductions [11].

Model checking is an automatic, sound, and incomplete technique with re-
spect to the input program. Although it works on a model of the program
and not directly on the program itself, it can be used to verify some inter-
esting properties like the ones proposed in [8]. Still, it is prone to the state
explosion problem, as previously mentioned, especially when dealing with
the asynchronous composition of processes.

Static Analysis

Another approach is static analysis. It permits the computation of conserva-
tive descriptions of program behaviors using finite resources, over approxi-
mating the set of all program behaviors in finite time using a specific set of
properties. This approach has a dedicated section in this chapter. For now,
we just say that static analyzers are sound but incomplete (i.e., they cannot
represent all program properties and rely on techniques that enforce termi-
nation of the analysis).

The techniques mentioned here have different approaches to program
analysis. Testing is a dynamic technique performed by running the actual
program. On the other hand, static analysis and model checking use a static
approach, but the former focuses on the program itself, whereas the latter
concentrates on a finite model of the program.
When talking about software verification in general, there isn’t a technique
better than the others. Some properties can be easily checked by testing,

22 Chapter 2. Preliminaries

Figure 2.3: The gcc compiler’s type checker at work: there is a mismatch
between the specification of the format to print and the type of the argument.

while others can be by using static analysis or static analysis. To improve
the overall assessment and quality of software, it is often the case to adopt
a combination of these techniques instead of just one. This is typically done
by exploiting the CD/CI pipeline, introducing intermediary steps on the de-
ployment that perform, for example, a generic static analysis assessment of
the quality of the code and an automatic testing phase.

2.6 Static Analysis

As we said, static analysis is a program analysis technique. Static analysis
can help improve the overall quality of a program: from a very high-level
perspective, this technique tries to find problems and errors just by looking
at the program’s source code. It is a generic term. It could be seen as a
toolbox full of different program analysis tools, each with a specific purpose.
If we put a hand inside this toolbox, we could extract a checker [1], which is
a tool able to find errors and mismatches about a program’s semantics (and
syntax). A type checker can, for example, raise a hand and say, “Hey, you are
adding an array with an integer!” when it finds that an operand is applied
to invalid operators. Another example of a checker is the uniqueness check:
sometimes, it could be the case that something must be defined exactly once.
This type of checker checks if there is a duplicate of something inside the
code that must be unique (for example, in Pascal language, labels in a case
statement must be distinct).

2.6. Static Analysis 23

Looking back at the content of the toolbox, we can find tools used to
perform code optimization: talking about compilers, there exists a subset
of them (called optimizing compilers) that tries to minimize (or maximize)
some dynamic attributes of the program that is compiling (for example the
running time or the memory footprint) just by looking at the semantics of the
source code and tweaking some things. The code improvement phase of a
compiler generally includes a control-flow analysis and a data-flow analysis.
Control-flow analysis checks control-flow graphs of a program to determine
path invariant facts about points in a program [38]. The control-flow analy-
sis permits optimizing a program by, for example, substituting function calls
with inline functions when possible. Going further, there are some cases
where the overall control-flow graph of the program doesn’t have a well-
defined shape: this happens for programming languages that have dynamic
dispatch, where which procedure or function invoked depends on run-time
values. In this case, finding the correct call to perform is not trivial, and we
will see how a static analyzer can accomplish this task in the next chapter
when we talk about the call graph constructor [25].
Control-flow analysis goes hand in hand with data-flow analysis [31], a generic
static analysis that permits reason about how the variables are defined and
used in the program.
Some application examples are constant propagation, which finds and eval-
uates constant expressions at static-time (substituting the expressions with
a constant to avoid unnecessary evaluation at run-time), and reaching defi-
nitions, used to identify all possible assignments to a variable and then find
which of these assignments will be effective at each point in the execution of
the program.
It is important to say that compilers are not wizards, and some optimization
can be exploited if the code is well written. For example, if you are writing
a program in C that handle a large dataset, you can help the compiler to
optimize the program by writing a cache-oblivious algorithm [22]. But this
is another story.

With static analysis, we are going to verify a specification. This means
that we need to use mathematical proofs that a program’s semantics satisfies
a specification. With specification, we intend a property of the program se-
mantics, considering the uncomputability problem mentioned a section ago.
A technique used by some static analysis tools to deal with the uncomputabil-
ity of non-trivial property is to finitely over-approximate a set of all program
behaviors using a specific set of properties, the computation of which can be

24 Chapter 2. Preliminaries

automated. This technique is called Abstract Interpretation [15] [14].

2.6.1 Abstract Interpretation

Abstract Interpretation is a fascinating theory. As we said, the main idea is
to over-approximate all program behaviors. This approximation permits the
computation of incomplete but sound results and answers questions about
some properties that do not require full knowledge of program execution.
In this case, we let the analysis provide, sometimes, inaccurate results. The
key is to use some sort of abstraction and compute the analysis on that. An
approximation is necessary because the concrete universe of program exe-
cutions could be infinite (we could have infinite executions for a program).

An abstraction can be seen as a map function between concrete values
into abstract ones. Consider, for example, integers. An abstract representa-
tion of an integer could be the sign of the integer, and sign is a finite abstract
domain. This abstract domain is then a finite approximation of the concrete
integer domain.
How, then, can we construct the Sign abstract domain? Well, firstly, we need
to figure out what elements of this domain are.
As a starting point, we have the ‘+’ element, which represents all the pos-
itive numbers; the ‘-’ element, which represents all the negative numbers;
and the ‘0’ element, which represents a number that is neither positive nor
negative. But this is not enough, and we will see why.
Suppose we have a function that takes in input two integers and returns the
sum of these two. We are interested to study the possible outcome of the
returned value’s sign. Instead of taking into consideration all the possible
integers and saying, for example, “Ok, the first integer is a 1, the second is a
30, the sum of them is 31, and it is a positive number.” or “The first integer
is -10, the second one is 30, the sum is 20, and 20 is a positive number” we
can work just by looking at the sign of the number: all positive numbers will
go into the ‘+’ element of the abstract domain, vice versa for the negative
number. The number 0 is contained in the ‘0’ abstract value. So we could
say, “The first integer is a positive number, also the second, then the sum
is a positive number.” or “The first integer is a negative number, also the
second, then the sum is a negative number.”. Here we are losing precision
since we are performing an approximation (we abstract away the concrete
value of the number, and we take only its sign). But what happens when we
have the first number with a negative sign and the second with a positive

2.6. Static Analysis 25

one? The outcome will depend. About what? About the concrete value of
the integers. If the first number is -1 and the second is 2, the output is a
positive number. If the first number is -10 and the second is 5, the result is a
negative number. Or, if the first number is the second negated, the outcome
is zero. But since we are dealing with the Sign abstract domain, we can’t
consider the concrete value of the integers! In this case, we can say that we
don’t know precisely the sign of the result and that it could be a positive, a
negative, or a zero. So we add another element on the abstract domain: ‘>’,
which represents all the positive numbers, all the negative ones, and 0.
With some imagination, this element can be seen as the union of ‘+’, ‘-’, and
‘0’.

2.6.2 Lattice and Partial Orders

Abstract Domains are lattices [7], which are special algebraic structures
based on order theory and abstract algebra. A lattice is a partially ordered
set, where every pair of this set has a unique supremum and a unique infi-
mum. A partial order permits the definition of an order to sets that may not
have a natural one. We use the notation a � b to denote that element a is
less or equal to element b with respect to a partial order. A partial order is a
relation between two elements of a set.
A partial order �, together with a set S, defines a partial order set that is
written as (�, S). Consider the Sign dominio mentioned above. To define a
partial order among the elements, we need to perform some considerations.
With what we have said so far, this set has three elements: ‘-’, ‘+’, and ‘>’.
We can define a partial order saying that a � b if b contains all the elements
of a. So we have that 0 � >, + � >, and � � >.
Note that it is not required that a � b or b � a for every a, b of the set. If this
condition holds, then the relation is a total order.
But is the Sign domain, with the just mentioned relation, a lattice? Short
answer, no: we miss defining something. Lattice requires every set pair to
have a unique supremum and infimum. The supremum is the so-called least
upper bound, while the infimum is the greatest lower bound. Let’s see the
definitions:

• Upper Bound: let (S,�) be a poset and let A ✓ S. If u is an element of
S such that a � u for all a 2 A, the u is an upper bound of A.

• Least Upper Bound (lub): an element x that is an upper bound on a
subset A and that is less than all other upper bounds on A is called the

26 Chapter 2. Preliminaries

least upper bound on A.

• Lower Bound: let (S,�) be a poset and let A ✓ S. If c is an element of
S such that c � a for all a 2 A, the c is a lower bound of A.

• Greatest Lower Bound (glb): an element x that is a lower bound on a
subset A and that is greater than all other lower bounds on A is called
the greatest lower bound on A.

Has every pair of the set a lub? Yes, and it is the element T .
Has every pair of the set a glb? No. To answer yes to this question, we need
to introduce another element on the set of Signs: the empty set. We call this
element ?. This element is the infimum element of the set and represents
an empty set: all the concrete values that are not a number are mapped into
this element of the Sign domain lattice.

A lattice can be represented as a Hasse diagram: figure 2.4 shows a
graphical representation of the Sign domain. From this figure, we can say
at a glance that the glb between 0 and + is ?, and also for � and +. If we
consider > and +, the glb is +.
So an abstract domain is a domain that over-approximately captures rele-
vant program properties. They are used to perform, for example, numerical
analysis [16], heap analysis [20] [18], and information flow analysis[24].

As we said in Section 2.3.2, a syntax analysis aims to build a syntax tree.
From a syntax tree, we can extract the semantics of the program’s state-
ments. From an abstract perspective, a statement can be seen as a function
that takes in input a state of the program and produces in output another
state that holds the statement’s effect on the program’s overall behavior.
Generally, the input state is called pre-state, while the output state is called
post-state. Reasoning in terms of static analysis, a state models some ab-
stract information about the execution of the program, for example, the con-
tent and the structure of the memory at a given program point or the abstract
value of an attribute. Considering, for instance, the expression x = 3+5. The
semantics of it says that we are adding two numbers (3 and 5) and storing
the results in variable x. Considering the Sign Abstract Domain: in the post-
state, we would have, among all the other things previously computed, the
information that x is a positive number. But since statements are functions,
a problem arises when we encounter a loop.
Suppose having a while loop. We consider the body of the while loop as a

2.6. Static Analysis 27

Figure 2.4: The Hasse diagram of the Sign domain

function f. This function is called at every iteration of the loop. It takes in
input a pre-state (Spre) and computes a post-state (Spost), the latter holding
the effects of the current iteration. It is logical and true to think that the
Spost will become the Spre of the next iteration of the loop. However, it is
not always clear how many iterations this loop could perform, and since we
want to ensure the computability of the analysis, we need to figure out how
to handle these cases: the idea is to look at the Spre and the Spost at every
iteration. At some point, we would have that applying the function f over a
state S it produces in the output the same state S. In this case, we say that
S (an instance of an abstract domain) is a fixpoint of the while loop f: if we
continue to calculate the value of f starting from S, we will always have S.
The main idea is to stop iterating when a fixpoint is reached since the analy-
sis will not change anymore.

Chapter 3

LiSA

LiSA [29] stands for Library for Static Analysis and, as the name suggests,
is a Library that easily permits the development of static analyzers. In this
chapter, we will analyze how LiSA works and is made.

3.1 Introduction to LiSA

LiSA (Library for Static Analysis) is a tool made and maintained by the Soft-
ware and System Verification (SSV) group at Ca’ Foscari University12.
As the acronym says, LiSA is a static analysis software library that aims to
simplify the development and implementation of static analyzers. The source
code, written in Java, is available under the MIT license on Git Hub.
Lisa’s engine relies on abstract interpretation theory, providing built-in and
extensible classes implementing the main concepts of this technique, such
as lattice, control-flow graphs, and abstract domains. How these concepts
are implemented will be discussed in detail in subsequent sections.
The main characteristics of LiSA are:

1. Target Programs: LiSA provides a framework for building non-domain-
specific analysis: this means that the design of the analyses is not fo-
cused on a specified family of target language programs. However,
thanks to the extensibility of the library, if there is a need to capture
characteristics of specified typologies of programs (firmware programs,
operating systems, embedded software, to cite some examples), one
could develop more domain-specific analyses.

1https://github.com/UniVE-SSV
2https://ssv.dais.unive.it/

29

https://github.com/UniVE-SSV
https://ssv.dais.unive.it/

30 Chapter 3. LiSA

2. Source code handling: LiSA takes in input the program’s source
code. Program analysis tools with this characteristic fall under the
program-level analyses class. This requires implementing a front end
that parses the source file to build a program’s control-flow graph.

3. Multi-language analyses: as just mentioned, a front end is necessary
to build the internal CFG used by LiSA to perform the analysis. Since
LiSA focuses on extensibility, writing a front end for a programming
language not already supported by the library is possible.

4. Abstraction from the theory: the underlying theory of abstract in-
terpretation (for example, the fixpoint computation on the control-flow
graph) is already implemented in the library. This permits us to build
analyses without worrying and focusing too much on the mathematical
aspects of static analysis.

Before going further, a disclaimer is necessary: LiSA is a young project still
in beta version. This means that the state of the art of the code could change
significantly due to the introduction of classes and interface refactoring that
leads to breaking changes concerning projects that depend on it. At the date
of writing, the last available LiSA version is beta 8 (v0.1b8), while beta 9 is
currently under development. The results of this thesis were obtained based
on beta 8.

3.2 Project Structure

In this section, we will take a glimpse of the structure of this project. As
we say, code is available as a GitHub repository. Navigating the repo, we
see four main folders: lisa-sdk, lisa-core, lisa-analysis, and lisa-imp. These
folders contain the main modules that define LiSA. Let’s dive into it.

3.2.1 LiSA Submodules

lisa-sdk The lisa-sdk module can be seen as the skeleton of the whole in-
frastructure. It contains all the main classes and interfaces that model the
concepts of abstract interpretation. As the name suggests, this is the most
important module of the library, and then it requires an additional dissection.
Inside lisa-sdk, a developer can find these packages:

3.2. Project Structure 31

it.unive.lisa.analysis contains all stuff related to the implementation
and definition of abstract domains: here, we can find the implemen-
tations of lattices among interfaces defining heap, value, and type do-
mains. Important to mention is the AbstractState interface, which mod-
els the states of a program, keeping track of variables, memory layout,
and memory locations using the domains mentioned above for reason-
ing about run-time types. An implementation of this interface is the
AnalysisState class, also shipped out inside this package.

it.unive.lisa.checks this package is the home of syntactic and seman-
tic checks interfaces among their own CheckTool.
A syntactic check performs exploitation of the fed program’s syntax
and permits one to find helpful information about what is written in the
code. For example, one could implement the SyntacticCheck interface,
which is capable of finding all variables and functions with a particular
name and recording them thanks to its faithful CheckTool. On the other
hand, the SemanticCheck interface can also have information about the
semantics of the program, giving more knowledge of what’s going on.
This permits capturing details that a simple SyntacticCheck could not
handle.

it.unive.lisa.interprocedural here, we have the definition and im-
plementation of call graphs and interprocedural analyses. We will talk
about it later in this chapter.

it.unive.lisa.logging contains internal classes used for logging pur-
pose.

it.unive.lisa.outputs this package provides the logic that permits
LiSA to provide human-readable outputs to the user. Lisa beta 8 can
dump the analysis results in JSON and graphviz files instead of interac-
tive HTML pages.

32 Chapter 3. LiSA

Figure 3.1: Html output of a LiSA analysis

it.unive.lisa.program contains the structure of a LiSA program. A
LiSA program is nothing more than a set of control-flow graphs. Al-
though we will talk about it later, nodes of the CFG are statements (that
is to say, expressions) of the original program modeled to an internal
LiSA statement, while an edge is a direct link between two sequential
statements.

it.unive.lisa.symbolic contains the symbolic expressions and opera-
tors used by the analysis infrastructure. An implementation of Sym-
bolicExpression is a rewritten statement that permits reason about its
effects in an abstract domain during execution. It holds information
about the static type and run-type types of the statement.
Operators cause the transformation of one or more SymbolicExpres-
sion.

it.unive.lisa.type is the package that contains the type hierarchy.
There is also an abstract TypeSystem, an Object that tracks the avail-
able types of a language. Typically the TypeSystem is used in a front
end to register all possible findable types in a program.

it.unive.lisa.utils this package contains additional classes and func-
tions for supporting the infrastructure. Here stays the implementation
of graphs and automatons used under the hood by LiSA for building
data types.

it.unive.lisa This is the main package of the module and contains the
main LiSA class used for instantiating the analysis with a simple-to-use

3.2. Project Structure 33

configurator that permits to sets what the analysis should compute and
how it should behave.

lisa-program This module defines and implements the principal types and
statements of a Lisa program. A Lisa program can be generated from a front
end using the provided classes and methods of the library. Here we can find,
for example, classes that represent numbers, booleans, and strings types,
along with some basic and common statements like numeric Addition and
Multiplication and String Concatenation, to name a few.

lisa-analysis This module contains some out-of-the-box analysis, such as
constant propagation, reaching definitions, and available expressions. In
this module, we find some abstract domains concerning strings (Tarsis[30],
Bricks[13]), numeric values (sign, parity, interval), and others.

lisa-imp This module contains a front end for the IMP language, plus an
extension and implementation of classes and interfaces of LiSA for handling
language-specific constructs, expressions, and types.
IMP is a lightweight and minimal version of Java that inherit from the latter
the concepts of Object, throwing away some complex (from an analysis point
of view) lexica such as the meaning of access modifiers, interfaces, and static
typing.
The main purpose of this module is for internal testing and for showcasing
how the infrastructure works.

Submodules Dependencies

lisa-sdk

lisa-programlisa-analysis

lisa-imp

Figure 3.2: LiSA’s internal dependencies

34 Chapter 3. LiSA

Figure 3.2 shows how LiSA’s internal modules depend on each other. The
subsidiary modules are represented in peach, while the main (lisa-core) is
in light cyan. A line is a compile dependency, and a dotted line is a test
dependency. For example, looking at the figure, we could learn that lisa-
analysis modules depend internally on lisa-sdk (i.e., the lisa-sdk module is
required to compile lisa-analysis) and on lisa-imp only for building the tests.

3.3 PyLiSA, Front Ends, and Antlr

In this section, we will meet PyLiSA, the Python front end for LiSA that will
be our companion from this moment on.
PyLiSA stands on its repository and integrates LiSA modules as external de-
pendencies.
Like its IMP brother, this front end is based on Antlr. But what is Antlr? We
will see it in a moment.

3.3.1 Antlr

Remember the definition of parser and lexer that we fix some pages ago?
Well. Antlr, short for ANother Tool for Language Recognition, is a lexer
and parser generator framework that permits the generation of a parser in
a target language for a specified grammar. As previously mentioned, the
grammar of a programming language consists of a set of rules that define
the language’s syntax.
Since writing a parser from zero takes a lot of effort, Antlr comes to help.
Suppose that you want to create a LiSA front end for Javascript. Instead
of writing your logic for lexical tokens and syntax tree generator, you can
study how Antlr works, get the grammar of javascript, generate a javascript
parser for Java using Antlr and inject the generated code inside your front
end module. What remains to do is to convert the syntax tree generated by
Antlr into a LiSA program.

3.3.2 Front Ends and PyLiSA

A LiSA front end must be able to transform a source code into a LiSA pro-
gram. The way to achieve this is at the discretion of the developer of the
front end. The steps that a typical front end performs are:

3.3. PyLiSA, Front Ends, and Antlr 35

1. Lexer phase: it transforms the source code into a set of tokens, follow-
ing some rules (for example, rules provided by grammar). This process
permits the discovery, along the other things, of language-specific key-
words, operators, and symbols.

2. Parser phase: this step is able to find relationships among tokens pro-
duced in the previous step to build an abstract syntax tree (AST).

3. Translate phase: the last step visits the AST in order to create the
LiSA program’s CFGs (one for every declared method, function, or
module encountered). Since LiSA is not aware of the programming
language involved in the analysis, it is the front end’s duty to extract
the semantics of it. This means that the front ends are responsible for
defining custom LiSA statements (if the default ones coming out with
lisa-program and lisa-sdk are not suitable for the language they parse)
and, of course, the semantics of these statements.

While a framework like Antlr can handle the first two phases, the last step is
the most interesting and peculiar, so we could say a few more words about
it, but first, let’s shake hands with PyLiSA.
PyLiSA, as we said, transforms Python sources into a LiSA program. It can
handle Jupiter Notebook too. How can he do it? Take, for example, the next
snippet of a notebook (.ipynb) file:

1 {
2 "metadata": {
3 "kernelspec": {
4 "name": "python",
5 "display_name": "Python (Pyodide)",
6 "language": "python"
7 },
8 "language_info": {
9 "codemirror_mode": {

10 "name": "python",
11 "version": 3
12 },
13 "file_extension": ".py",
14 "mimetype": "text/x−python",
15 "name": "python",
16 "nbconvert_exporter": "python",
17 "pygments_lexer": "ipython3",

36 Chapter 3. LiSA

18 "version": "3.8"
19 }
20 },
21 "nbformat_minor": 5,
22 "nbformat": 4,
23 "cells": [
24 {
25 "cell_type": "markdown",
26 "source": "Test jupyther notebook",
27 "metadata": {},
28 "id": "7ff54803−6b96−4f4b−a671−fff6eb1766a1"
29 },
30 {
31 "cell_type": "code",
32 "source": "x = 3\nprint(x)",
33 "metadata": {},
34 "execution_count": null,
35 "outputs": [],
36 "id": "d9b02c7f−f935−47d0−8cab−36cb60cad033"
37 }
38]
39 }

Code 3.1: Snippet of a Jupiter notebook file

The figure above shows that a Jupiter Notebook is nothing less than a well-
defined JSON file. To work with a notebook, PyLiSA, before lexing the file,
reads (and parses) the latter as a JSON. Having the knowledge that code lines
stay inside the source attribute of a cell object that has cell_type equal to
code, the front end uses this information to throw away all non-Python stuff
(i.e., markdown texts, outputs, metadata, etcetera) and creates the source
for Antlr extracting only Python code. After this step, the source obtained is
seen as a normal Python code from the analyzer point of view.

The Translation Phase

We will see now how a front end can translate a source code in a LiSA pro-
gram using the next simple and trivial example:

1 if x < 10:

3.3. PyLiSA, Front Ends, and Antlr 37

2 x = 10

Code 3.2: Snippet of a Python code

Feeding this program to PyLiSA, Antlr will produce the AST in 3.3.
The front end then visits the tree’s statements starting from the root, decid-
ing what to do according to the type of encountered statement. Before doing
that, since Python doesn’t have an explicit definition of the main entry point,
PyLiSA creates a new empty CFG that is identifiable. Inside this CFG, it will
push the global statements of the program (the statements available when
we execute the program).
Looking at the example, the first encountered statement is a compound_stmt.
A compound_stmt is a block of statements, like function definitions, loops
(for, while), a try, or an if block.
PyLiSA will then find the type of the compound_stmt using the methods pro-
vided by Antlr: when it is sure that it is an if statement, then it checks how
the block is composed: in other words, it will find answers for questions like:
"Is there an else block? If yes, what it contains? How the test is structured
and defined? Where and what is the entry point of the true (false) block?".
When PyLiSA analyzes the if statement of the example, it understands that
it is dealing with a comparison expression: the comparison is composed of
an operator (the < symbol) and two expressions: the first one is a name
(x), and the second an integer (10). With these facts, it can infer the se-
mantics (i.e., the meaning) of it and creates a LiSA expression that models
the lower-than comparison. It is important to say that the default imple-
mentation of LiSA comparison expression can handle only numeric types,
while Python language is less racist and can also compare other types such
as string and list. In this case, it is necessary to extend the default com-
parison expressions with language-specific ones: an interested and curious
reader can find the extensions of what we are talking about in the package
it.unive.pylisa.cfg.expression.comparison of PyLiSA project.
After the creation of a LiSA statement, the front end then adds the statement
in the CFG as a node. Then, it will check the true and else blocks of the com-
parison building the appropriate LiSA statements using the same mentioned
logic, creating the edges between them, and it will continue to transform the
statements of the AST into LiSA statements.
Now, for better comprehension, it’s time to talk more about LiSA’s state-
ments and the internal CFG structure.

38 Chapter 3. LiSA

Figure 3.3: The AST obtained by parsing the code in 3.2

3.4. LiSA’s Control Flow Graph 39

Figure 3.4: The graphical representation of a LiSA CFG obtained from source
3.2. Squares are statements (nodes), while arrows represent the linking
between statements (edges): the blue (red) arrow is the true (false) edge (the
statement pointed by the arrow is the next statement in the flow evaluated
only the condition defined in the previous statement is true (false). Black
arrows model sequential edges.

3.4 LiSA’s Control Flow Graph

A CFG in LiSA is a structure able to represent a program.
As we said, Statements are nodes of the graph, while edges define how
the execution flows along statements. The characteristic of LiSA’s CFG is
that it uses a flexible philosophy: statements are defined in such a way that
language-specific patterns are abstracted away. In order to do so, native
constructs are treated as procedure calls (we will see how in a moment).

3.4.1 About Statements

In this subsection, we will provide an overview of the classes and interfaces
that models statements in LiSA. In subsequent figures, we define Java inter-
faces in light cyan and classes in peach.

40 Chapter 3. LiSA

(I) Statement

(I) Expression
(C)NoOp (C)Ret (C)Return

(C)Throw

Figure 3.5: First-level inheritance of Statement interface

In figure 3.5, direct subclasses of Statement are presented. Here we
have four concrete classes and an interface that models Expression. In LiSA,
statements that are common to most programming are already defined and
implemented due to the fact that they have consistent semantics across dif-
ferent languages. In details:

NoOp NoOp models statements that perform nothing. It can be used for
instrumenting branching operations.

Ret Ret models the end of a function that does not return anything to the
caller.

Return Return models the ends of a function that returns something to the
caller.

Throw models the raising of an error.

Expression Expression is a sub-interface that models expressions. Let’s
see its main subclasses:

(I) Expression

(A) Nary-
Expression (A) Literal

(C) VariableRef

Figure 3.6: First-level inheritance of Expression interface

An expression is one (or more) constant(s), variable(s), function(s), or
operator(s) combined together that a program computes in order to produce
a value.

3.4. LiSA’s Control Flow Graph 41

Literal Literal is an abstract class that represents a constant value. This
class is parameterized with the type of the constant that it represents. De-
fault implementations of this class can be found in the lisa-program module.

VariableRef This class models the reference to a variable. A variable is
identified by its name.

NaryExpression This abstract class models the composition of expressions
(i.e., generic expression with n sub-expressions).

(A) Nary-
Expression

(A)UnaryExpr. (C)BinaryExpr.

(C) Assigment.

(A)TernaryExpr.
(A)Call

Figure 3.7: Inheritance of Statement interface

UnaryExpression An UnaryExpression is a NaryExpression with a single
sub-expression. Two examples of UnaryExpression are the negation of a
value (-x) and the not operator (!x), both of them implemented in lisa-program.

BinaryExpression NaryExpressions with exactly two sub-expressions. An
example is the assignment (x=5) along with addition (x+5), Subtraction (x-
5), Multiplication (x*5), and logic constructs involving two values (and, or),
all present in lisa-program.

TernaryExpression NaryExpressions with exactly three sub-expressions.

Call Call is an interesting interface that models function calls and, more
generically, calls to other CFGs. LiSA defines four main types of calls:

42 Chapter 3. LiSA

(A) Call

(A)CallWithRes. (A)NativeCall (C) OpenCall
(C)Unresolved-

Call

(C)CFGCall

Figure 3.8: The Call classes

NativeCall In this class, native constructs are modeled. Simulating con-
structs instead of explicitly defining them brings the advantage of having
different semantics for the same construct.

OpenCall Calls that do not are submitted to LiSA (for example, function
calls to an external library).

UnresolvedCall UnresolvedCalls are calls to a CFG presented to LiSA but
not already resolved. UnresolvedCalls are like pointers to some black boxes
identified by a name (signature) and a list of parameters.

CallWithResult This class knows how to deal with the call that models
it, knowing how to compute its results (i.e., what the call does). CFGCall
is a concrete implementation of this abstract class and explicitly defines a
call towards one or more of the CFGs of the whole program that is being
analyzed.
The resolution of calls is described in detail in the next section.

3.4.2 About Edges

Talking about edges, we have three types of it. An edge, as we already
mentioned, models flow between two statements.

3.4. LiSA’s Control Flow Graph 43

(I) Edge

(C) TrueEdge
(C) FalseEdge

(C) Sequen-
tialEdge

Figure 3.9: Edge classes

TrueEdge This class models a conditional flow: the second statement is
executed only if the first holds a true boolean result.

FalseEdge This class, like the above, models a conditional flow, but the
second statement is executed only if the first holds a false boolean result.

SequentialEdge This class models a sequential flow. Right after the exe-
cution of the first statement, the second will be executed too.

3.4.3 Typing

LiSA’s expressions have the capability to model their types.

(I) Type

(I) Boolean-
Type

(I) Numer-
icType

(I) StringType (I) PointerType
(C) Untyped

(C) VoidType

(I) ArrayType (C) NullType

Figure 3.10: LiSA’s Type interface

Lisa provides a well-defined hierarchy of types interfaces, with some de-
fault implementation like void (used as a return value to functions that does
return nothing), untyped (used when we are dealing with non-static-defined
variables), and null. The front end must model the types that the referred
language accepts in an appropriate way. Although some types are already
implemented in the lisa-program module (such as numeric or string types),
these provided types could not fit well for all the programming languages.
For example, object-oriented programming like Java treats everything as an

44 Chapter 3. LiSA

Object. To model this peculiarity, standard types implementation (like an in-
teger) should also be treated as pointers to heap location (i.e., the integer
type must also implement PointerType and not only NumericType).
The basic idea of having a type infrastructure strictly defined by the inter-
nal type interfaces adds the capability to perform multi-language program
analysis (i.e., analysis of programs written in more than one language).

3.4.4 PyLiSA CFG

Some of the main implementations of Statement defined in lisa-program do
not fit well with Python. Take, for example, the Addition Statement. The
default lisa-program implementation of addition considers only numeric ad-
dends, while in Python, we can also add together strings or lists, with the
effect of concatenation in both cases. PyLiSA handles these cases by ex-
tending the default implementation. Furthermore, some Python statements
are not implemented directly in LiSA, like the ’in’ and ’is’ expressions or the
concept of lambda functions. Some examples of Statement extensions can
be found in the package it.unive.pylisa.cfg.statement of PyLiSA.

3.5 LiSA’s Analysis

3.5.1 The Fundamentals

The core of the LiSA’s Analysis structure relies on Lattice and SemanticDo-
main interfaces for models Abstract Domains. These interfaces provide the
fundamental of the whole infrastructure, and in this section, we will see the
basic implementations.
Before going further, it is important to define also what are the entities tar-
geted by Abstract Domains: the symbolic expressions.

SymbolicExpression A SymbolicExpression is a rewritten LiSA Statement.
This transformation is necessary because statements do not have well-defined
semantics on their own: consider, for example, the instantiation of a new
Object. What does this mean intrinsically? This means that a new mem-
ory region is allocated, and a pointer to this region is created. Then, the
constructor is called, with the parameters and the newly created pointer as
a receiver. A statement on its own can’t handle such information. Hence,
to take care of the meaning of these steps, a statement must rewrite itself

3.5. LiSA’s Analysis 45

in a symbolic expression: in this way, a symbolic expression can model the
side-effect-free expression that is being built on the stack, and an abstract
domain can use these to reasoning about the effects that a statement could
produce. We have two main categories of symbolic expressions:

1. ValueExpression: it models and can deal with constant values and
identifiers.

2. HeapExpression: it can reason about the heap and the operations that
concern it (for example, the allocation of an object or the reference of
another one).

Lattice A lattice in LiSA is defined as a generic interface (Lattice) para-
metric to the concrete instance of its implementing class. This permits us
to define lattice’s logic once for all possible types of elements and to reason
about the appropriate returns type of its methods.
Since some lattice operations are common and are not dependent on the
specific instance, LiSA has an implementation of the Lattice interface (the
abstract class BaseLattice) that defines these cases for us. The methods
that the Lattice interface defines are (note that L is the concrete class of the
Lattice):

1. L lub(L other): it returns the least upper bound between the current
element (the element for which this method is called) and the element
other passed as a parameter.

2. L widening(L other): it applies the widening operator between the
current element and the element passed as a parameter.

3. boolean lessOrEqual(L other): implements the partial order �. It
returns true only if this (the current element) � other.

4. L top(): returns the top element of the lattice.

5. L bottom(): returns the bottom element of the lattice.

BaseLattice implements the above methods, handling the common case and
delegating detailed computation to the concrete classes that extend it. Some
concrete instances of Lattice are defined inside LiSA:

1. SetLattice: models a lattice where elements are sets. In this case,
the least upper bound is implemented as a set union. This class is

46 Chapter 3. LiSA

parametric to two different classes: S and E, which are, respectively,
the concrete SetLattice type and the type of elements that a set can
contain.

2. InverseSetLattice: like the latter, it models a lattice where elements
are sets, but the least upper bound is defined as a set intersection.
This class is parametric in the same way as the SetLattice: they are
just twins; the only thing that changes is the lub implementation.

3. FunctionalLattice: it applies functional lifting to inner Lattice in-
stances that are mapped to the same key. It is parametric to F (con-
crete class of FunctionalLattice), K (the types of keys), and V (the type
of values that must be a subclass of Lattice).

SemanticDomain In LiSA, there is a special interface that models the rea-
soning of the semantics of statements. This interface is the SemanticDomain,
and it is parametric to D (the concrete implementation of it), E (a class that
extends SymbolicExpression, i.e., the type that the domain can handle), and I
(the type of identifiers that the domain can work with). A SemanticDomain’s
instance models the abstract information that a variable of the program un-
der analysis holds.
This interface defines the next methods:

1. D assign(I identifier, E expression): it returns a copy of the actual
domain, modified with the evaluation of the expression to the identifier.

2. D smallStepSemantics(E expression): it returns a copy of the actual
domain, modified with the evaluation of the semantics of expression.

3. Satisfiability satisfies(E expression): Satisfiability is an internal Lat-
tice used to represent boolean values. This method returns the Satisfy
value if the expression is satisfied by the current domain (that is, a
program state at a given point).

4. D assume(E expression): it assumes that the expression holds and
returns a copy of the domain with this assumption.

5. D forgetIdentifiers(Collection<I> identifiers): it forgets all the in-
formation about the identifiers.

3.5. LiSA’s Analysis 47

SemanticDomain has mainly two interfaces that extend it: ValueDomain
(with the main purpose of keeping track of semantic properties about pro-
gram variables) and HeapDomain (that tracks the evolution of dynamic mem-
ory during program execution). These two classes permit us to compute the
semantics of a symbolic expression, and we will talk about them in a moment:
firstly, we want to introduce the Abstract State.

3.5.2 Abstract State

LiSA’s Abstract State takes inspiration from [19]. It is an abstract model of
variables and heap memory of a program. It keeps track of what’s going on in
the heap and in the variables of the program under analysis. The underlying
models of heap and variable are modeled through two distinct interfaces:
HeapDomain and ValueDomain. Since the analysis can be performed only
on the variables, the heap must be rewritten in some way in a ValueDomain.
This is done internally by the analysis using class-specific methods that we
will discuss.

HeapDomain The HeapDomain is a parametric interface that extends Lat-
tice and SemanticDomain. This is the only component of LiSA that knows
exactly how an expression is resolved to a memory location. In fact, its main
duty is to track how the memory evolves during execution, and this is done
by binding its SemanticDomain to HeapExpression. In order to get infor-
mation about the internal values of the heap, the sub-expression that deals
with memory needs to be rewritten. For doing that, this interface has a
method, rewrite, that, given a SymbolicExpression, returns the set of its Val-
ueExpression, getting rid of all the information about memory and replacing
them with heap identifiers.

ValueDomain Like HeapDomain, the ValueDomain is a parametric inter-
face that extends Lattice and SemanticDomain. This interface can deal only
with constants, variables, and operators. The inherited SemanticDomain is
bound to ValueExpression (i.e., it accepts only expressions that does not con-
cerns with memory). The ValueDomain can also track properties of the heap
identifiers produced by an HeapDomain.

An AbstractState implements ValueDomain and HeapDomain. It imple-
ments the Semantic operations calling the corresponding operation on the

48 Chapter 3. LiSA

Figure 3.11: Sequence Diagram of Analysis State’s assign. Figure taken
from [29]

heap domain first and, secondly, the operation on the value domain using
also the expressions with heap identifiers produced by HeapDomain.

3.5.3 Analysis State

In order to get a meaningful result, we need some additional information:
the program state and the execution state. These are provided by the Anal-
ysisState class, which extends the AbstractState. It is composed of the Ab-
stractState itself, for modeling the abstract values of program variables and
heap locations, and a set of SymbolicExpression: the latter permits keeping
track of what has been evaluated in a given moment and what is available
for later computation. The AnalysisState works in a very fashioned way: we
now show as an example how the AnalysisState computes an assignment.

1. When we call the assign method of the AnalysisState, the call is for-
warded to the inner AbstractState.

2. The AbstractState calls the assign method of its HeapDomain to com-
pute the assignment’s effect in the dynamic memory.

3. An assignment operator on the heap changes the dynamic memory,
causing, for example, the creation of heap identifiers or a merge of

3.5. LiSA’s Analysis 49

them. The AbstractState needs to fetch the substitution from the Heap-
Domain. This substitution tells how variables from the pre-state (the
state before the assignment) are changed in the post-state (the state
after the assignment). A substitution is a replacement of variables.

4. The AbstractState applies the substitution on the ValueDomain to up-
date it.

5. A rewrite operation is then called in the HeapDomain: this method
transforms the right-hand of the assignment (for example, a field ac-
cess) memory-free (with heap identifiers).

6. The rewritten expression is then used to update the ValueDomain, call-
ing its assign method.

7. At the end, a fresh new AnalysisState, with the updated ValueDomain
and HeapDomain, is built and returned to the caller.

These steps are well represented in Figure 3.11. Note that the same process
happens for the other semantics operations.

3.5.4 The CallGraph

One question could arise at this point: what about function calls? We talked
about only SymbolicExpression, heap, and concrete values for now. It is time
to talk about calling expressions.
Calls are modeled through the CallGraph, an interface that permits the res-
olution of calls and their abstract result evaluation [3].
Theoretically, a call graph is a special graph that is an abstraction of a pro-
gram’s method calls where nodes are methods and edges are calls. These
graphs are flow insensitive, i.e., they don’t know the execution order. They
can be generated at run-time or at static-time. In the first case, they contain
all methods effectively called. A static call graph instead contains all calls
that may be executed. This interface has two methods:

1. Call resolve(Unresolved call): remember when we discuss parsing
a function call? During the creation of the LiSA program, we didn’t
have all the information necessary to find what the called function is
exactly. This method of the CallGraph permits the exploitation of the
type information to find a possible target of an UnresolvedCall from the
CFGs of the program and returns it.

50 Chapter 3. LiSA

2. AnalysisState<H, V> getAbstractResultOf(CFGCall call, Analy-
sisState<H, V> entryState, Collection<SymbolicExpression>[] pa-
rameters): evaluates the abstract result of a CFGCall (that is an imple-
mentation of CallWithResult) knowing the entry state. The parameters
of the call are represented by SymbolicExpressions.

LiSA provides two implementations of the CallGraph which differ in the way
of construction: RTACallGraph and CHACallGraph. To better understand
why there is more than one way of constructing a Call Graph, just think
about object-oriented program analysis. If we desire a precise Call Graph,
we need to reason about which function is called at a given program point.
But this is not easy to determine due to the polymorphism. Suppose that we
are writing this trivial Java program:

1 public class Main {
2 public static Number getNumber(String type) {
3 if (type.equals("long")) {
4 return Long.valueOf(5);
5 } else {
6 return Integer.valueOf(5);
7 }
8 }
9

10 public static void main(String[] args) {
11 Number n = Main.getNumber(args[0]);
12 Double d = Double.valueOf(10.0);
13 float f = n.floatValue();
14 }
15 }

Code 3.3: Java class example

At line 13 of 3.3, we are calling the method doubleValue() of an instance of
Number. The class Number has subclasses, like Integer, Long, Short, Float,
etc. What floatValue()s are possibly called at this point? Let’s see the two
algorithms that LiSA uses to determine them to build the static CallGraph.

CHACallGraph CHA stands for Class Hierarchy Analysis, and it is very
simple: when we call a method m() on a declared type T (i.e., x.m() where
x is an instance of T), the CHA algorithm will consider T and all the sub-
classes of T that implements m as possible target calls, and it will add

3.6. Architectural Scheme 51

them to the Call Graph. In the example before, program 3.3, following
the mentioned rule, the CHACallGraph will add edges to all the floatValue()
method of all subclasses of Number that override it (so we have an edge
to AtomicInteger.floatValue(), another to Integer.floatValue(), another one to
Byte.floatValue() and so on). This algorithm will generate a correct call graph
(it contains edges for all calls the program may execute), but it is very im-
precise: most calls in the graph will never be executed.

RTACallGraph An improvement and efficient (but still imprecise) algo-
rithm is the RTA (Rapid Type Analysis), used by the RTACallGraph. It consid-
ers not all the subclasses of T but only subclasses that the program instanti-
ates. In this case, the analysis keeps track of the instantiated types. What’s
the problem here? Take into account (again) the java program 3.3. The call
graph contains edges only to Integer.floatValue() and Long.floatValue() but
also to Double.floatValue() because we have a Double Object (subclass of
Number) in the program, even if with a simple look at the code we as human
are sure that Double.floatValue() will never be called.

3.5.5 Semantics of Statements

Our Statement class has a method called semantics that permits us to com-
pute its actual meaning. Starting from an AnalysisState and a CallGraph, this
method will return a new AnalysisState that contains the current Statement’s
semantics. This method can rewrite a LiSA program’s statement expression
into a SymbolicExpression.

3.6 Architectural Scheme

Figure 3.12 shows the architecture of LiSA.
Since a program can be written in multiple languages, it is necessary to split
the input program P (the program we want to analyze) into programs Pi.
Each program is written in a programming language, Li. The front end Li

(front end able to recognize language i) parses the program Pi, transforming
it into a Lisa program Pi

L. Then, every produced Lisa program is merged
into one bigger program PL, that is, the union of all program Pi

L. PL is the
entry point of the LiSA Engine. Other than a LiSA program, the framework
can accept in input also a set of configurations that permits tuning the anal-
ysis, setting, for example, a custom domain or declaring the desired output

52 Chapter 3. LiSA

Figure 3.12: Architectural scheme of Lisa. Figure taken from [29]

format.
LiSA then performs an Interprocedural Analysis, computing the program’s
fixpoints (to extract the semantics) and the results of function calls with the
help of the call graph.
During the analysis, it uses an Abstract State for computing the abstract
value. As we said, Abstract State models the memory state of the program
and consists of a Heap Domain plus a Value Domain. The Expr Stack is a set
of symbolic expressions computed from the evaluation of the last processed
statement. The Expr Stack and the Abstract State compose the Analysis
State. The last step of the analysis consists of calling the Checks. Checks
visits every unit and CFG of the program and produce useful files and warn-
ings. We will talk about them in the next section.

3.7 Checkers

A feature that LiSA provides is the possibility to write checkers. Checkers
are tools that permit the definition of some conditions about the syntax or
the semantics of the programs, and they can raise some warnings dumped
into a JSON file. LiSA defines two types of checkers:

1. SyntacticCheck: This is a check that can exploit the program’s syn-
tactic structure.

2. SemanticCheck: A check that permits the exploitation of not only the

3.7. Checkers 53

syntactic structure of the program but also to reason about the seman-
tics. This is done by using the results of the analysis.

3.7.1 How they Works

Let’s see the methods provided by the interface Check. Note that this in-
terface is parametric to the tool used during the analysis, defined by capital
T. The tool can log the warnings, and it can be used to obtain additional
information, such as the state of the analysis. Generally, a SyntacticCheck
uses a simple tool with only logging purposes, while a SemanticCheck has
an extended tool that also contains an analysis state and permits fetching
the current fixpoint computation for extracting the semantics to work with.
The methods provided by the interfaces are hooks that are called internally
by the analysis engine.

1. void beforeExecution(T tool): this method is invoked once before the
program analysis. The main purpose of it is for initialization and setup
of the checker.

2. boolean visitUnit(T tool, Unit unit): it will visit an unit of a program.
It returns true if the unit needs to be visited: in this case, the globals
of the unit are visited. Otherwise, it will not propagate the check in the
current unit.

3. void visitGlobal(T tool, Unit unit, Global global, boolean instance):
this function will visit a global variable of a unit by knowing if the global
is an instance variable of the unit or not.

4. boolean visit(CheckTool tool, CFG graph, Statement node): it will
check a statement of the graph (the current cfg under analysis). Re-
turns true if the visits should continue to subsequent statements of the
given CFG.

5. boolean visit(CheckTool tool, CFG g): it will check a cfg. It returns
true if the visit should continue inside the cfg to analyze its statements.
For example, this method can be used if we want to check only special
functions with a given name: if the name of the cfg is the name of
the function that we want to exploit, returning true, the checker will
visit the cfg. Otherwise, returning false, this function is skipped by the
checker.

54 Chapter 3. LiSA

6. boolean visit(CheckTool tool, CFG graph, Edge edge): it will visit
an edge of a CFG: returns true if the visits should continue on this
graph.

7. void afterExecution(CheckTool tool): this function works like be-
foreExecution: it is called once when the analysis on the program ends.
It is used, for example, to perform some logging aggregation.

3.7.2 An Example

We will now see a simple example of a syntactic check for better comprehen-
sion. We want to check if a function called "test" exists inside a Python code.
The implementation of this checker is defined in Code 3.4.

1 public class TestFunctionFinder implements SyntacticCheck
{

2 private int count;
3 @Override
4 public void beforeExecution(CheckTool tool) {
5 / / i n i t i a l i z a t i o n
6 count = 0;
7 }
8 @Override
9 public void afterExecution(CheckTool tool) {

10 tool.warn("Found " + count + " functions with name
test");

11 }
12 @Override
13 public boolean visitUnit(CheckTool tool, Unit unit) {
14 / / A uni t could be a Class . This method should

return true since a funct ion named tes t could
be defined ins ide i t .

15 return true;
16 }
17 @Override
18 public void visitGlobal(CheckTool tool, Unit unit,

Global global, boolean instance) {
19 / / Here , we do nothing : we are not considering

globals (i . e . , var iab les)
20 }

3.7. Checkers 55

21 @Override
22 public boolean visit(CheckTool tool, CFG graph) {
23

24 if (graph.getDescriptor().getName().equals("test")
) {

25 count += 1;
26 tool.warnOn(graph, "test function found!");
27 }
28 / / We want to perform analys i s only on the

funct ion ’ s signature : i t i s not necessary to
v i s i t the cfg .

29 return false;
30 }
31 @Override
32 public boolean visit(CheckTool tool, CFG graph,

Statement node) {
33 return false;
34 }
35 @Override
36 public boolean visit(CheckTool tool, CFG graph, Edge

edge) {
37 return false;
38 }
39 }

Code 3.4: A SyntacticCheck able to find functions named test

The explanation of the code is straightforward. Feeding the analysis with the
next Python code (Code 3.5):

1 class x:
2 def test():
3 print("test")
4 def test(x):
5 print("test")
6 def test():
7 print("test")
8 def not_test():
9 print("not_test")

Code 3.5: Example of a Python code

56 Chapter 3. LiSA

It will output this report in .json format (Code 3.6), dumping all the warnings
logged with the CheckTool:

1 {
2 "warnings" : [{
3 "message" : "[’test/main4.py’:2:4] on ’untyped x::test

()’: [CFG] test function found!"
4 }, {
5 "message" : "[’test/main4.py’:4:0] on ’untyped x::test

(x* x)’: [CFG] test function found!"
6 }, {
7 "message" : "[’test/main4.py’:6:0] on ’untyped test/

main4::test()’: [CFG] test function found!"
8 }, {
9 "message" : "[GENERIC] Found 3 functions with name

test"
10 }]
11 }

Code 3.6: The report generated by 3.4 after analyzing the code in 3.5

3.8 PyLiSA SARL

PyLiSA has a special SARL (Static Analysis Refining Language) [29]. It is a
domain-specific language that comes to our help when there is a need to de-
fine the behavior of framework and/or libraries[21], improving the precision
and soundness of the analysis. SARL can be used to define code annota-
tions and, for our use case, to define custom objects and methods of libraries
that could be called in a program. The PyLiSA SARL comes with a simple
grammar and its front end, and it is used (for now) for modeling standard-
library methods and objects, providing, in addition, the declaration of some
numpy and pandas methods. This approach permits to include in the analy-
sis of the program external Python libraries in an effortless way improving
the precision of the analysis without changing the code and the front end of
the library. This SARL is very straightforward, and the specification can be
written in a simple text file.

1 library numpy:
2 location numpy

3.8. PyLiSA SARL 57

3 method array: it.unive.pylisa.libraries.numpy.
Array

4 libtype numpy.NDArray *
5 param array_like libtype Object *
6 sealed class numpy.NDArray:
7 instance method reshape: it.unive.pylisa.

libraries.numpy.Reshape
8 libtype numpy.NDArray *
9 param a libtype numpy.NDArray *

10 param shape libtype Tuple *
11 instance method reshape: it.unive.pylisa.

libraries.numpy.Reshape
12 libtype numpy.NDArray *
13 param a libtype numpy.NDArray *
14 param x type it.unive.lisa.type.common.

Int32Type::INSTANCE
15 param y type it.unive.lisa.type.common.

Int32Type::INSTANCE

Code 3.7: Snippet of a PyLiSA SARL file entry

Code 3.7 shows a snippet of the PyLiSA SARL for specifying what to do with
some methods of the numpy library. This tells the analysis, for example, that
inside the numpy library (that is parsed in a ClassType instance) exists an ar-
ray method that takes in input a pointer to a generic Object ((array_like, line
8) and returns a pointer to a numpy.NDArray Object (line 7). The seman-
tics of the method (i.e., what the method does) is modeled through Lisa’s
CFG expression statement and, for this specific method, is defined inside
it.unive.libraries.numpy.array (line 3). During the analysis, if we encounter
a call to the method numpy.array with an object as an argument, LiSA will
know how to handle it even if we don’t have an explicit CFG implementation
of the method inside the program’s source code. A Class is defined on line
9 of 3.7. This class has name numpy.NDArray and the semantics of some
instance methods are provided.
Although it is almost impossible to define a precise semantics of a method of
a library (some methods from external libraries are complex and maybe call
other methods from other libraries), one could just provide an abstraction of
the results of the called method as a tradeoff.

58 Chapter 3. LiSA

3.9 Running a LiSA Analysis

Running LiSA is nothing difficult.

1 PyFrontend translator = new PyFrontend("/path/to/file/main
.py", false);

2 Program program = translator.toLiSAProgram();

Code 3.8: Get a LiSA program from a source code

Firstly, we need to create a LiSA program from the front end, and the two
lines of code in 3.8 tell how.

3 LiSAConfiguration conf = new LiSAConfiguration();
4

5 conf.optimize = false;
6 conf.workdir = "test−ros−output";
7 conf.serializeResults = true;
8 conf.jsonOutput = true;
9 conf.analysisGraphs = LiSAConfiguration.GraphType.

HTML_WITH_SUBNODES;
10

11 conf.interproceduralAnalysis = new ContextBasedAnalysis
<>();

12 conf.callGraph = new RTACallGraph();
13 conf.openCallPolicy = ReturnTopPolicy.INSTANCE;
14

15 conf.syntacticChecks.add(new TestFunctionFinder());
16 conf.semanticChecks.add(new ROSComputationGraphDumper());
17

18 FieldSensitivePointBasedHeap heap = new
FieldSensitivePointBasedHeap();

19 TypeEnvironment <InferredTypes > type = new TypeEnvironment
<>(new InferredTypes());

20 ValueEnvironment <ConstantPropagation > domain = new
ValueEnvironment <>(new ConstantPropagation());

21 conf.abstractState = new SimpleAbstractState <>(heap,
domain, type);

Code 3.9: Create a LiSA Configuration

After that, we must create a LiSAConfiguration (code 3.9). This Object in-
structs LiSA how to do the analysis, i.e., what domains (lines 18-21) and call

3.9. Running a LiSA Analysis 59

graph constructor algorithm (line 12) it must use, how to handle open calls
(line 13), what instance of interprocedural analysis to use (line 11). There is
also a flexible control about the output (lines 6-9): do you want a full report
in HTML representation? Or do you just need a .json file? In what folder the
output files must be saved? A semantic or syntactic checker can be added in
a LiSAConfiguration with just a line of code (lines 15-16). We will explain in
details this configuration in Chapter 6.

1 LiSA lisa = new LiSA(conf);
2 lisa.run(program);

Code 3.10: Run LiSA with a configuration

What remains to do (code 3.10) is to instantiate a new LiSA Object with a
LiSAConfiguration and run the analysis by calling the method run with our
LiSAProgram as a parameter.

Chapter 4

ROS

"Robot: a machine capable of carrying out a complex series of actions auto-
matically, especially one programmable by a computer."1

If you take a dictionary and search for the meaning of the words Robot, prob-
ably you will find a definition like the one above.
Robots nowadays are everywhere: in our homes (for example, these little
boxes that automatically go around the room and clean the pavement), in
our gardens (the mini lawn mower that goes back and forth with the sole
principle of keeping the grass cut) and also in our sky (the drone that your
nerdy friend bought).
Note that this list is not exhaustive: robots are used in a wide range of
fields like medical (for example, to decontaminate a non-human safe area
[33]), environmental science (such as underwater drones for investigating
underwater cultural sites [5]) and for space exploration (the famous NASA’s
rovers2).
In this chapter, we will provide a brief introduction to ROS (Robot Operating
System)[34][28]. We will focus on the Python library of ROS2, named rclpy
(our companion with PyLiSA in the next chapter), and we will see a simple
example of a minimal program. Note that in the ROS ecosystem, there are
two different frameworks: ROS1 [34] and ROS2 [28]. This thesis will discuss
ROS2 and refer to ROS2 as ROS.

1https://canadacommons.ca/topics/robots/
2https://spaceplace.nasa.gov/mars-rovers/

61

https://canadacommons.ca/topics/robots/
https://spaceplace.nasa.gov/mars-rovers/

62 Chapter 4. ROS

4.1 Introduction to ROS

ROS stands for Robot Operating System. As mentioned in [34] (from which
this section takes inspiration) and in the official ROS documentation 3, ROS
is not a traditional operating system. However, it is a meta-operating system:
it is a sort of abstraction of the underlying OSs of machines of a heteroge-
neous cluster that permits easily to exchange messages to other machines
of the cluster, providing a structured communication layer and an additional
hardware abstraction. It is a set of software libraries and tools for building
robot applications and networks. This framework can help resolve specific
issues regarding software development for robots. We will now provide a
detailed list of some of them.

• Distributed Computation Robots can communicate with each other
in a distributed way, cooperating to resolve a common and shared task.
Additionally, it is often the case that robots internally are composed
of several machines that control a specific subset of robot sensors. A
communication mechanism is needed, and the ROS framework defines
a P2P infrastructure among robots: computational logic relies on enti-
ties called nodes. These nodes communicate by exchanging messages
and can run across different computers.

• Reusage of Software Some standard algorithms that solve tasks like
motion planning (i.e., move objects from a source to a destination by
finding a valid sequence of configurations) or mapping (constructs a
map of the environment where the robots are) are already implemented
in ROS. Since the communication interface that ROS provides is gain-
ing attention in academia and industry, many people actively maintain
and update ROS to guarantee compatibility of the framework with the
latest hardware and operating systems. Also, additional libraries (plu-
gins) that extend the core framework are easy to find. This permits
ROS developers to write their code with the help of already-defined
packages and algorithms.

• Multi language The client framework library of ROS is called rcl and
is written in C language. To support other programming languages,
some binding libraries are available. The main peculiar one for our
purpose is the rclpy library, the Python binding for rcl, but it also exists
bindings for Java (rcljava), C++ (rclcpp), and others. This is one of

3https://docs.ros.org/en/humble/index.html

https://docs.ros.org/en/humble/index.html

4.1. Introduction to ROS 63

the key differences between ROS1, which has the client code written
independently in each language. These binding libraries are called ROS
Client Library.

• Open-Source ROS is free to use, and the source code is publicly avail-
able under the term of a BSD license.

• Security ROS has an internal security system that permits the usage of
encryption and authentication mechanism. Some Access Control Poli-
cies manage node communication [10] that defines which nodes can
communicate about what. Note that these security features are not
enabled by default.

• DDS as a middleware DDS (Data Distribution Service) is an imple-
mentation detail of ROS 2. This means that underlying the client ROS
API there is an Abstract DDS API that communicates with a DDS in-
stance. ROS2 has support for different DDS vendors. The main idea to
use it as a middleware is that the DDS can be substituted easily without
code changes. What is a DDS? We will talk about it in a moment.

• Host OSs ROS can be hosted in Linux, macOS, Windows, or RTOS
machines.

4.1.1 Brief Definition of DDS

DDS is a standard messaging protocol that provides a publish-subscribe
transport. Nowadays, it is adopted by various industries: for instance, au-
tonomous vehicles, space systems, air traffic management, and Robotics.
DDS uses IDL (Interface Description Language) for message definition and
serialization. IDL enables the description of message interfaces in a manner
that is not tied to a specific programming language. This peculiarity permits
DDS instances to work as a bridge between two (or more) languages, en-
abling communication between software components written in more than
one language. DDS is mainly used for real-time data-centric pub/sub com-
munication in distributed systems. DDS relies on RPC (Remote Procedure
Call)4 framework that provides a request/response style transport. DDS is
used in ROS because of its reliability and flexibility. It supports UDP and TCP
connections and provides a Quality Of Service control mechanism for tuning
the communication based on network characteristics.

4https://www.omg.org/spec/DDS-RPC/

https://www.omg.org/spec/DDS-RPC/

64 Chapter 4. ROS

4.2 Concepts and Terminology

In this section, we will briefly see some concepts regarding the ROS ecosys-
tem and set the terminology we will use in the following sections and chap-
ters.

4.2.1 The ROS Domain

ROS Domain is a subnetwork of entities (e.g., robots). Entities can commu-
nicate and can be seen only by entities sharing the same ROS Domain. An
integer ID defines a ROS Domain.

4.2.2 The ROS Graph

The core of the ROS system is the ROS Computation Graph. It is simply a
network of entities, called nodes, that can communicate with each other by
message exchange. The computational graph tells us the nodes that form
the P2P network and how they interact with each other (i.e., which nodes
communicate with).

4.2.3 Nodes

Nodes are the main entities (i.e., the vertices) of the ROS Graph. They are
single-purpose processing modules within ROS. To communicate with other
Nodes, a Node uses the ROS Client Library classes and methods to interact
with the underlying middleware and send messages. A Node can use or de-
fine Actions and Services. Generically a Node has a name that identifies it,
plus some additional configurable parameters that permit tuning its behav-
ior. The behavior of a Node is reactive: it is triggered by events. An event
could be internal to the system (i.e., receiving a message or an alarm ring)
or external (a spontaneous impulse). If Nodes are vertices of the ROS Graph,
we need to define what edges are (spoiler: we could have different types of
edges!).

4.2.4 Topics

The primary type of edges ROS provides to connect nodes is Topic. Topics
permit communication between two Nodes. They work in a flexible pub/sub
structure. A Node can subscribe to (or listen to) one or more Topics and

4.2. Concepts and Terminology 65

publish on (or talk on) one or more. We call Publisher a Node that publishes
something in a Topic and a Subscriber a Node that is listening in a Topic.
Topics support many-to-many relationships: in a Topic, we could have zero
or more than zero Publisher and zero or more than zero Subscriber. The unit
of information pushed and pulled in a Topic is called message. Topics are
used for continuous data transfer between Nodes.

4.2.5 Messages

Topics permit the exchange of messages between Nodes. ROS has an in-
ternal Message structure that defines how data is exchanged between Node
using Topics. We can communicate the most basic types, for example, String,
Integer, Boolean, and so on, or a combination of them to form a custom and
user-defined Message structure.

4.2.6 Parameters

Parameters are name-value pairs, a configuration item of a Node. Parame-
ters value could only be a Bool, a String, an Integer, a Double, an array of
them, or an array of Byte. Parameters define the internal attributes of Node.

4.2.7 Services

Instead of using Topics, Nodes can communicate with each other using Ser-
vices. They are used when we want synchronicity and with a guaranteed
response from a Node using a Request/Reply mechanism. When using Ser-
vices, we don’t perform preemption: Services block calls. Services can be
used, for example, for setting the parameters of a Node remotely or to per-
form quick calls. Services use the YAML format for Request and Response
bodies.

4.2.8 Actions

Another way of communication is through Actions. Actions and Services are
very similar in definition, but the main difference is that Actions are used
when we want something asynchronously, implementing a preemptive goal-
driven behavior. Actions are used when we have a long task to execute.
Actions are a sort of Client/Server model, and they work by setting a goal for
the server from a client. The server then provides regular feedback when it

66 Chapter 4. ROS

Figure 4.1: An overview of the ROS interfaces

reaches checkpoints while executing the Action. Like Services, Actions use
the YAML format to define bodies of Goals, feedback, and final response.

4.2.9 Discovery Process

The underlying DDS takes care of the discovery of new Nodes automatically.
Using DDS, a Node:

• When it is started, it advertises its presence to other network Nodes
with the same ROS Domain ID. The Nodes that receive the message
will respond with information about themselves.

• Periodically, it advertises its presence to perform connection with new-
found entities.

• When it goes offline, it advertises other Nodes of its disconnection from
the network.

Figure 4.1 is taken from [28] and can help us better understand how ROS
ecosystem entities interact. The figure depicts three Nodes (Node A, Node
B, and Node C) that interact with the usage of Topic, Action, and Service.
We can deduct that a Node could have an internal Action Server or Client,
a Subscription or a Publisher, and a Service Server or Client. He could also

4.3. ROS API Architecture 67

Figure 4.2: ROS Internal API Architecture Overview

have a combination of them and more than one of these entities. For exam-
ple, we can see that Node C has a Publisher that sends messages on a Topic
T. Node A and Node B has Subscribers that fetch messages from T. In this
way, Node C can send messages to the other Nodes by pushing them to T.
Node A has also an Action Server that Node C uses with his Action Client.
Firstly, Node C will set the Goal of the Action (simply Node C tells the server
what it should achieve and how it should do it). Node A will analyze the Goal
and start achieving it, sending feedback to Node C during the process. When
he reaches the Goal, it sends the result to the client. Node C also has the
capability of being a Service Server. A Service works like a web service: it
processes requests from Clients (in this case, there is only one Client, Node
B) and sends back the response.

4.3 ROS API Architecture

Figure 4.2 shows the internal architecture of the ROS ecosystem. Following
a bottom-up analysis, we find the rmw API: the interface that permits com-

68 Chapter 4. ROS

munication with the underlying DDS middleware (in cyan). The DDS middle-
ware is responsible for all the things regarding communication and discov-
ery; that is to say, it contains the implementation of the publisher/subscriber
mechanism, the service request-reply mechanism, and the serialization of
messages. This layer can be seen as an abstraction of the communication
middleware.
The next layer is the aforementioned rcl library. rcl does not communicate
directly with the underlying middleware but is built on top of rmw. The
purpose of this layer is to give a common implementation for complex ROS
concepts (for example, nodes and the ROS Computational Graph) and algo-
rithms that client libraries may use. Client libraries (the layer just above rcl)
binds to this C library and provides a simple-to-use extendable library to the
developer. For example, a developer that wants to write an application using
the ROS framework (the higher layer in the figure) in Python can import the
rclpy library.
A precise reader can observe that, on the figure’s left, an orange rectangle
labeled ros_to_dds connects the User Application directly with the underly-
ing middleware. This models the possibility of using specific external pack-
ages that permits direct communication with the DDS for an application that
requires it.

4.4 About DDS-Security and SROS2

We want now to discuss the security of DDS. DDS is just a specification, but
this specification doesn’t say too much about security5. By its design, the
standard DDS specification is not concerned with security. To overcome this,
another specification aims to add security support to the DDS one. This spec-
ification is called DDS-Security6 and defines some extensions to the DDS that
improve security. In particular, it provides five plugins that, when combined,
give Information Assurance to the DDS system. Information Assurance is
a set of measures that protect information systems by ensuring availabil-
ity, integrity, authentication, confidentiality, and nonrepudiation [40]. These
plugins are:

1. Authentication Service Plugin: it permits the addition of a mutual
authentication mechanism establishing a shared secret to verify the
identity of an application or a user operating on DDS.

5https://ubuntu.com/blog/security-vulnerabilities-on-the-data-distribution-service-dds
6https://www.omg.org/spec/DDS-SECURITY/1.1/

https://ubuntu.com/blog/security-vulnerabilities-on-the-data-distribution-service-dds
https://www.omg.org/spec/DDS-SECURITY/1.1/

4.4. About DDS-Security and SROS2 69

2. AccessControl Service Plugin: adds the capability to define rules
to enforce policy decisions regarding what an authenticated user can
do. It can be used, for instance, to define what domains a user can
join or which Topics it can publish or subscribe to. For each domain
participant (i.e., for each ROS Node), it requires two signed XML files:

• Governance.xml: it specifies how the domain should be secure.

• Permissions.xml: it specifies the permissions of the domain par-
ticipant.

3. Cryptographic Service Plugin: implements cryptographic operations
such as encryption, decryption, hashing, and digital signatures.

4. Logging Service Plugin: supports inspection and auditing of all DDS
security events the system could generate. This service provides the
capability to log all events regarding security, including violations and
security errors.

5. Data Tagging Service Plugin: permits to tag data samples. Tagging
has several uses; for example, it can be used for access control (by
granting access based on the tag) or for prioritizing messages, or it can
be used directly by the application.

By default, none of those mentioned above DDS security features of DDS
are enabled in ROS27. It is very trivial to enable them (it requires changing a
flag in the environment variable), but setting up all these features correctly
in a ROS ecosystem is not an easy task, and its complexity is prone to human
errors. To make things easier, the SROS2 toolset was proposed [42]. This
toolset comes with a security methodology for robotics applications that fa-
cilitates a secure DevOps model in this field.
Among all the features SROS2 provides, we want to mention the ROS2 APIs
extension, which permits introspecting the computational graph at the net-
working level. This simplifies the threat modeling of a ROS application, pro-
viding information about all the entities that live inside the ROS computa-
tional graph and monitoring their interaction.
Furthermore, SROS2 CLI features a tool to help developers set up DDS-
Security plugins. For instance, it creates:

• Certificate Authority for Authentication

7http://design.ros2.org/articles/ros2_dds_security.html

http://design.ros2.org/articles/ros2_dds_security.html

70 Chapter 4. ROS

Figure 4.3: Overall Architecture for DDS Security (figure taken from the
official DDS Security specification)a.

ahttps://www.omg.org/spec/DDS-SECURITY/1.1/

https://www.omg.org/spec/DDS-SECURITY/1.1/

4.5. rclpy 71

• A governance file that will encrypt all DDS traffic by default

• Improved Access Control Policy files

4.5 rclpy

The main component of this thesis is the rclpy library: as we already men-
tioned, it is a Python library that binds the rcl library. We will now see how it
works, pausing on the most important methods and classes that are crucial
for the next chapter and omitting all the rest: it is not the purpose of this
thesis to provide documentation of the rclpy library. The official one8 is well
written from the writer’s point of view, and if more is needed for the reader,
there is also the official wiki with tutorials, definitions, and some examples.

4.5.1 Application Life Cycle

A ROS Program Life Cycle consists of these steps:

1. Initialization In this phase, a Context is initialized. The Context con-
tains all the information about the status of the application, and it is
used internally by the application’s entities to understand what’s go-
ing on at an exact moment in the app. The initialization must be done
before any Node creation.

2. Node(s) creation The next phase is the Node(s) creation, in which
we create one or more Nodes that can be used to create Publisher or
Subscriber. Nodes have an associated Context.

3. Process Nodes Callbacks Nodes have callbacks, which permit the
definition of what must be done when something happens, like, for ex-
ample, the ring of a Timer or other events. For example, when a Node
registers a Subscriber in a Topic, it must specify what logic must be
performed when a Message arrives. When we are ready to activate
the callbacks, we need to tell the associated Context that Nodes can
be called the callbacks, and this can be done in different ways: for
example, callbacks can be processed in a block way (i.e., the main ap-
plication will be listening on triggers until the Context is shut off), or
it can listening and execute only the first callback that found. In the
latter example, a timeout can be set: if it expires, it stops listening.

8https://docs.ros2.org/foxy/api/rclpy/

https://docs.ros2.org/foxy/api/rclpy/

72 Chapter 4. ROS

4. Shutdown When we are done with using Nodes, the Shutdown phase
must be started. In this phase, we close the Context, and all Nodes of
the latter will be invalidated.

4.5.2 The rclpy Module

The rclpy module is the main module of the library. Here we will see what
it has to offer. Please note that for brevity and concision, optional function
parameters are omitted from the signature, and the most important ones are
detailed in the description of the function.

1. rclpy.init(...): it will initialize the Context passed as a parameter (if no
Context is present, it will work on the default one).

2. rclpy.shutdown(...): it will shut down the Context passed as a pa-
rameter (if no Context is present, it will work on the default one like
rclpy.init).

3. rclpy.create_node(node_name, ...): it creates and returns an rclpy.node.Node
Object with the given name. Some other optional parameters can be
passed, for example, the Context that the new Node must belong to or
the namespace. A namespace is a string prefix that will be prepended
to the Topic name when it declares Subscribers and Publishers.

4. rclpy.spin(node, ...): it will execute works on a Node (like callbacks),
and it blocks until the Context is shut down.

5. rclpy.spin_once(node, ...): it will execute one item of work on a Node.
A timeout can be set, and the function does nothing if, during the pe-
riod, no work can be found in the Node.

These are the main methods provided by the rclpy main package9. The
sub-modules provide the definition of ROS Objects like Node10, Publisher,
Subscription and Topics11.

rclpy.node.Node The class Node of module rclpy.node represents a Node
in the ROS ecosystem. The core methods that the Node class has are:

9https://docs.ros2.org/foxy/api/rclpy/api.html
10https://docs.ros2.org/foxy/api/rclpy/api/node.html
11https://docs.ros2.org/foxy/api/rclpy/api/topics.html

https://docs.ros2.org/foxy/api/rclpy/api.html
https://docs.ros2.org/foxy/api/rclpy/api/node.html
https://docs.ros2.org/foxy/api/rclpy/api/topics.html

4.5. rclpy 73

1. __init__(self, node_name, ...): instantiate the Node with the given
node_name. The optional parameters are the same as rclpy.create_node
function.

2. create_publisher(self, msg_type, topic, qos_profile, ...): create and
return a Publisher able to publish on topic Message of msg_type, with
a qos_profile that defines what quality of service policy must the Pub-
lisher use.

3. create_subscription(self, msg_type, topic, callback, ...): create
and return a Subscription able to listen on topic Message of msg_type,
with a qos_profile that defines what quality of service policy must the
Subscription use and a callback that is called when the Subscription
receives a message.

4. create_service(self, srv_type, srv_name, callback, ...): create and
return a Service server with the given srv_name. The callback is called
when the Service receives a request from a client

5. create_client(self, srv_type, srv_name, qos_profile, ...): create and
return a Client able to communicate with a Service server with name
srv_name.

6. create_timer(timer_period_sec, callback: create and return a Timer
that every timer_period_sec seconds will call the callback function.

7. declare_parameter(self, name, ...): declare a Parameter with the
given name in the Node. Optionally, the parameter value can be used
to set a value of the Parameter.

8. declare_parameters(self, namespace, parameters, ...): declare in
a Node a set of Parameters with the name taken from the Parameters
argument array, prefixed with namespace following a simple expansion
rule (namespace.name). If the namespace is the empty string, the dot
is not prefixed to the parameter name.

9. undeclare_parameter(self, name) remove the Parameter with the
given name from a Node.

10. add_on_set_parameter_callback(self, callback): register a callback
triggered when we set a parameter in a Node. Note that the unde-
clare_parameter function will not cause the callback.

74 Chapter 4. ROS

11. remove_on_set_parameter_callback(self, callback): remove the given
callback from the list of callbacks triggered when we set a parameter.

12. remove_on_set_parameter_callback(self, callback): remove the given
callback from the list of callbacks triggered when we set a parameter.

13. get_name(self): returns the name of the Node.

14. get_node_names(self): returns a list containing the names of discov-
ered Nodes.

This list is not exhaustive: there exists, for example, methods for destroying
a client, a publisher, a subscription, a timer, and the Node itself, and also
methods that permit to find services, topics, publishers, and subscribers of
discovered nodes.

rclpy.publisher.Publisher Since the method create_publisher of Node should
create Publisher, we don’t list the __init__ method here.

• get_subscription_count() returns the number of subscribers that this
Publisher has.

• publish(self, msg) publish the message in the Publisher’s Topic. It
will raise an error if the msg is not of the type provided during the
construction of the Publisher.

• destroy(self) destroy this Publisher.

rclpy.publisher.Subscription Subscriptions like Publisher should be cre-
ated from a Node using the appropriate method. This class does not have
relevant methods except destroy(), which works like the Publisher’s counter-
part.

rclpy.service.Service This class is a wrapper for the underlying rcl Ser-
vice.

• send_response(self, response, header): Sends a Service responses.

• destroy(self): destroy this Service.

4.6. How to Use rclpy: an Example 75

rclpy.service.Client This class represents a Service Client.

• call(self, request): make a request to a Service Server, and it will
wait until the Service response. This is a blocking call, and the doc-
umentation says that calling this method in a callback could lead to a
deadlock.

• call_async(self, request): call a Service and return a Future that com-
pletes only when the request completes.

• remove_pending_future(self, future): remove a Future that is wait-
ing the Service response.

• service_is_ready(self): returns True if the Service is ready to accept
requests.

• wait_for_service(self, ...): waits until the Service becomes ready.

• destroy(self): destroy this Service Client.

rclpy.action Other important classes are ActionClient and ActionServer,
which relies on the rclpy.action module. We let the official documentation
1213 the honor of describing the implementation details. Actions and Ser-
vices are not important parts of this thesis since we will focus more on the
Publisher/Subscriber communication interface. However, we hope that the
reader has understood how the library works in general.

4.6 How to Use rclpy: an Example

After this overview of the ROS ecosystem and the rcl library, it is time to
discuss a simple but famous rclpy example from the official documentation.
We will see how to declare Nodes and enable communication between two
Nodes using the Publisher/Subscriber Message exchange. In this case, we
will have two programs: one for the Publisher and one for the Subscriber.
They are different entities that could stay in different hosts.
Note that we are not going to launch the program. This thesis wants to be
something other than a tutorial on how to use ROS. An interested reader
is gently redirected to the official tutorial that will describe how to launch

12https://docs.ros2.org/foxy/api/rclpy/api/services.html
13https://docs.ros2.org/foxy/api/rclpy/api/actions.html

https://docs.ros2.org/foxy/api/rclpy/api/services.html
https://docs.ros2.org/foxy/api/rclpy/api/actions.html

76 Chapter 4. ROS

these source codes and obtain results in detail. Since this thesis talks about
static analysis, we want to focus more on the program’s semantics, which
can be achieved by looking at the source code with the documentation as a
reference. Things that happen run-time are out of scope. After this premise,
let’s start by analyzing the source code of the Publisher:

1 import rclpy
2 from rclpy.node import Node
3 from std_msgs.msg import String
4

5 class MinimalPublisher(Node):
6

7 def __init__(self):
8 super().__init__(’minimal_publisher’)
9 self.publisher = self.create_publisher(String, ’

topic’, 10)
10 timer_period = 0.5 # seconds
11 self.timer = self.create_timer(timer_period , self.

timer_callback)
12 self.i = 0
13

14 def timer_callback(self):
15 msg = String()
16 msg.data = ’Hello World: %d’ % self.i
17 self.publisher.publish(msg)
18 self.get_logger().info(’Publishing: "%s"’ % msg.

data)
19 self.i += 1
20

21

22 def main(args=None):
23 rclpy.init(args=args)
24 minimal_publisher = MinimalPublisher()
25 rclpy.spin(minimal_publisher)
26 minimal_publisher.destroy_node()
27 rclpy.shutdown()
28

29 if __name__ == ’__main__’:
30 main()

4.6. How to Use rclpy: an Example 77

Code 4.1: MinimalPublisher example

Code 4.1 shows how we can define a Node that acts as a Publisher. First,
starting from the main function, we need to initialize the Context calling rc-
ply.init(...) to follow the Application Life-Cycle previously mentioned. Then
we instantiate the MinimalPublisher class that extends the rclpy.node.Node
class. During the instantiation, inside the constructor, a call to the Node
constructor is made, passing the name of the Node (in this example, "mini-
mal_publisher", line 8). The MinimalPublisher constructor allocates a Pub-
lisher with the create_publisher method of Node (line 9). This Publisher can
send Messages of String type, which will publish on Topic with the name
"topic". A reference to the Publisher object is stored in a variable of Min-
imalPublisher (self.publisher) for easily retrieving it when needed. On line
11, it creates a timer, with the reference of it stored in self.timer. This timer
will call the callback (function self.timer_callback) every timer_period (0.5
seconds, defined on the line before). A reference of the MinimalPublisher
object is stored in variable minimal_publisher local to the main function. On
line 25, we call the rclpy.spin method that, as we said before, will execute
the callbacks registered to the Node passed as an argument (in this case,
our minimal_publisher).
So every 0.5 seconds, the internal Node timer will call the callback, the
rclpy.spin() method captures it and executes the function. The timer_callback
function, defined in line 14, creates a String Message and fills the message’s
field data with a string (lines 15 and 16). After that, the message is pub-
lished on the Topic defined inside the constructor of the MinimalPublisher
using the publish method. Then it will perform some logs and increment a
variable that easily captures the meaning of it (it is used as an incremental
ID to identify the message inside the string pushed to the Topic).
In the end, we will destroy the Node and call rclpy.shutdown() static method
for terminating the underlying Context. And this is how a Publisher works in
the rclpy library. Let’s see the Subscriber now:

1 import rclpy
2 from rclpy.node import Node
3 from std_msgs.msg import String
4

5 class MinimalSubscriber(Node):
6

7 def __init__(self):

78 Chapter 4. ROS

8 super().__init__(’minimal_subscriber’)
9 self.subscription = self.create_subscription(

10 String,
11 ’topic’,
12 self.listener_callback ,
13 10)
14

15 def listener_callback(self, msg):
16 self.get_logger().info(’I heard: "%s"’ % msg.data)
17

18

19 def main(args=None):
20 rclpy.init(args=args)
21 minimal_subscriber = MinimalSubscriber()
22 rclpy.spin(minimal_subscriber)
23 minimal_subscriber.destroy_node()
24 rclpy.shutdown()
25

26

27 if __name__ == ’__main__’:
28 main()

Code 4.2: MinimalSubscriber example

The MinimalSubscriber above (Code 4.2) creates a Node called "mini-
mal_subscriber" on line 21 where inside the constructor allocates a Sub-
scription object capable of listening on Topic "topic" (the same of the Mini-
malPublisher) Messages of String Type, with a qos_profile equal to 10. What
means this? We didn’t talk about Quality of Service Profiles, but an integer
here means that the Subscriber internally maintains a queue of messages of
capacity the integer passed as a parameter. If the inter-arrival time of mes-
sages in the queue is less than the execution time of the callback function,
then a queue of Messages will be formed. When the queue reaches the ca-
pacity (in this case, 10), then the queue is full and new messages are thrown
away. The callback function of this Subscriber is the listener_callback func-
tion (line 15) that logs the received messages.
Figure 4.4 displays the ROS Computational Graph of the minimal example,
where rectangular shapes denote Topics, and ovals represent Nodes. Each
entity is clearly labeled with its name. With the aid of ROS command-line
tools, one can extract the graph at run-time and easily visualize the entities

4.6. How to Use rclpy: an Example 79

Figure 4.4: ROS Computational Graph of the minimal example

involved in the system and how they communicate. Looking at the figure, we
can deduce that the system comprises two Nodes that exchange messages
via a single Topic.

Chapter 5

Static Analysis for ROS (An
Introduction)

Before this thesis’s leading chapter, we should spend some words about why
this thesis exists. This little chapter is divided into two parts: in the first
one, we will informally talk about the state of the art of Static Analysis for
robotics and, more specifically, for the ROS ecosystem, while in the second
one, we will answer the crucial question.

5.1 State of the Art of Static Analysis for Robotics

Static Analysis for Robotics is a challenging task. In the 2013 conference
paper [12], the authors argue that there was a lack of static analysis tools
concerning robotics applications at the time. In this article, they describe
the main static analysis techniques that can be applied to robotics (data-flow
analysis, control-flow analysis, model checking, and abstract interpretation),
and they observe a lack of standardization in the programming methods
of robotics. At this article’s publication date, ROS was a five-year rookie.
A decade later, ROS is becoming a defacto standard [2]1, and something
started moving on this topic.
Take, for example, HAROS (High-Assurance ROS Framework) [36], an open-
source framework that permits the extraction and the analysis of the ROS
Computation Graph at static-time using a metamodel approach. As stated in
the official Git Hub repository, HAROS can analyze ROS1 code, and at the
time of writing, it does not support ROS2 at all, but the author states that he

1https://www.abiresearch.com/blogs/2019/06/10/ros-rise/

81

https://www.abiresearch.com/blogs/2019/06/10/ros-rise/

82 Chapter 5. Static Analysis for ROS (An Introduction)

is working on it.

Alhanahnah [4] performed an empirical study regarding Software Quality
Assessment of ROS2 Java Project using PMD2 and provides a list of related
works concluding and observing that only one[27] against the 13 works pre-
sented targets ROS2. This work analyzes the DDS security protocol using
static analysis tools for finding vulnerabilities and errors in the ROS 2 Ardent
Apalone source code. They also discuss ROS2 security features, evaluating
them against metrics like throughput and latency to determine if they impact
the overall performance.

There are many things to explore in this field, especially for the younger
brother of the ROS family.

5.2 Why this Thesis Exists

In this thesis, we want to perform a static analysis of Python code using
the rclpy library to extract meanings from ROS source code. The focus is
mainly on finding the declaration of Nodes, Topics, Subscribers, and Pub-
lishers using the LiSA framework to exploit the ROS Computational Graph
at static-time.
Working on this brings with it the following side effects:

1. Development of a static analysis tool for ROS2 python source
code based on Abstract Interpretation. In the previous sub-chapter,
we talked about the state of the art of static analysis for robotics, and
we saw that there are no ready-to-use static analysis tools that permit
deep analysis of ROS2 Python applications. This thesis could lay the
foundations for a new analysis of rclpy projects using LiSA and abstract
interpretation.

2. Improvement of PyLisa front end. PyLisa is in its first beta version
and does not support all Python features. Working on this project led
to the implementation of the necessary features (such as, for example,
the capabilities to handle Python objects and class extensions and the
support of string constant propagation) that enhance the front end.

2https://github.com/pmd/pmd

https://github.com/pmd/pmd

5.2. Why this Thesis Exists 83

3. LiSA testing. The development of this thesis brought the opportunity
to perform testing of the core LiSA framework, and this was useful for
finding trivial bugs.

Chapter 6

Lisa and ROS: Static Analysis for
Robotics

Now we will see how we can analyze a rclpy program using LiSA.
Since rclpy is the ROS2 client library for Python, we are going to use the
Python front end for LiSA.
However, PyLiSA is still in its early beta, and some Python features must be
officially supported. Unfortunately, unsupported features like the creation of
objects and the semantics of Python’s’ super()’ method are heavily used in
rclpy programs. This chapter has a dedicated section that addresses that,
explaining the necessary front end changes to perform a successful analysis.
We divide this chapter into three main sections: firstly, we want to discuss
what we will do in detail. Secondly, we will see the main changes required in
the PyLiSA front end, and lastly, the main work is presented. Future works
are discussed in the next chapter.

6.1 Introduction

A ROS2 application can be specified as a computation graph representing
the peer-to-peer network of nodes. The figure presented in 4.4 shows an
example of this graph, while figure 6.1 shows a more complex one. In these
graphs, a node is a process, and edges denote a message-passing interaction
between these processes.
In this thesis, we provide a way to automatically extract the computation

graph of the ROS2 application at static-time just by looking at the semantics
of the source code.
This is not a trivial task, as it requires a deep study of the rclpy library and

85

86 Chapter 6. Lisa and ROS: Static Analysis for Robotics

Figure 6.1: An example of a ROS computation graph, taken from [9]

finding a way to implement the semantics of the library classes and methods
in LiSA’s style. To achieve this, we take advantage of the PyLiSA SARL, al-
lowing us to define the semantics of rclpy elegantly. Using SARL, the Python
parser is agnostic of rclpy methods and classes: the front end must parse the
SARL file and allocate the classes and methods defined inside it. All rclpy
method calls written in the source code are threatened as UnresolvedCall,
and the CallGraph will resolve it transparently without tricky changes. The
analysis proposed here is the first step to producing more meaningful re-
sults: opening the doors at rclpy semantics inside LiSA permits this work to
be a starting point for subsequent analysis, as discussed in the next chapters.

At this point, a ROS expert could say: “But the ROS computation graph
can be seen by using the ROS2 command line interface or by using RQt1!” .
This is true. But note that this is done by analyzing the computational graph
at runtime, and we want to achieve this just by remaining static. We already
discussed the motivation of this in the previous chapter, and in addition, we
would like to say that having the computational graph at static-time permits
the validation of the communications concerning the policies defined in the
DDS-Security.

The source code of the work can be found here2.

1https://docs.ros.org/en/foxy/Concepts/About-RQt.html
2https://github.com/giacomozanatta/pylisa/tree/feature/gzanatta/thesis

https://docs.ros.org/en/foxy/Concepts/About-RQt.html
https://github.com/giacomozanatta/pylisa/tree/feature/gzanatta/thesis

6.2. PyLiSA Front End Extensions 87

6.2 PyLiSA Front End Extensions

In this section, we will talk about the main changes that the front end re-
quires.

6.2.1 Object Declaration

During the project’s development, there was a lack of meaning in the con-
cept of Object. Since rclpy library relies on objects, it is necessary to provide
a way to handle their creation.

Python Classes permit the define specific Object structures. Object con-
structors rely on special class methods called __init__. Code 6.1 shows how
to declare a class and a constructor in Python. The tricky part is that the
constructor and, in general, classes method has a special parameter in its
signature that always stays in the first position of the argument list. The
first argument represents the Object itself, which is provided implicitly by
the call.
Interestingly, the constructor is not called directly when creating an Object,
as shown in line 5. For this reason, we need to find a way to tell the front
end that we are calling the __init__ method.

1 class Dog:
2 def __init__(self, name):
3 this.name = name
4

5 dog = Dog("Kokoro")

Code 6.1: A simple Python Class and an Object instantiation

To achieve this, we create a new NaryExpression called PyNewObj in which
we model the semantics of the Object creation.
To allow a smooth integration, the PyNewObj class extends LiSA’s NaryEx-
pression. The constructor of the PyNewObj wants a CFG (the control-flow
graph where the Object is being constructed), the SourceCodeLocation of
this operation, a type (the type of Object being created), and a list of param-
eters.
The abstract method expressionSemantics models the effective creation of
objects. Inside this method, we create a MemoryAllocation and a corre-
sponding HeapReference, and we craft (and resolve) a new Unresolved-
Call to the actual constructor method. This UnresolvedCall is created by

88 Chapter 6. Lisa and ROS: Static Analysis for Robotics

prepending the parameters of the expressions related to the Object itself.
The resolution of this call is responsible for computing its semantics and
modeling what’s going on inside the constructor’s code. In the end, an
HeapReference to the Object is inserted into the AnalysisState.

When the front end encounters a method call, it checks if the method’s
name is a ClassUnit. If it is true, then it creates a PyNewObj. Otherwise, it
creates a standard UnresolvedCall.

6.2.2 Object Inheritance Support

Supporting Object inheritance is more complicated.
The first step is to set the ancestors to a ClassUnit: when visiting a class def-
inition, the front end must reason about the superclasses by fetching their
names from the class definitions. Then, for every superclass of the current
class, it must check if a CompilationUnit exists inside the program being
parsed with a name equal to the superclass. If true, it adds the Compilatio-
nUnit as an ancestor of the current ClassUnit.
However, more is needed: talking about rclpy, the Node class comes from the
external library. In a class declaration like in code 6.2, the superclass (in our
case, Node) could be an alias (rclpy.node.Node, imported in line 2): so a real
class with that name does not exist. This is necessary to give awareness to
the front end of all the possible alias, and this is done naively by a map where
the key is the alias itself (Node), and the value is the name of the actual class
(rclpy.node.Node). When encountering a class declaration with a superclass
named S, firstly, we need to check if an entry exists in the map with key S: if
it is true, then we substitute S with the value of the map entry, and we use
this new value as the superclass name. Otherwise, if doesn’t exists the key
S in the map, we assume that S is the actual name of the class. However,
this approach doesn’t cover all the cases, like the one in which we import a
library or a module directly inside the current namespace (for instance, from
math import *).

1 import rclpy
2 from rclpy.node import Node
3

4 class MinimalSubscriber(Node):
5 def __init__(self):

6.2. PyLiSA Front End Extensions 89

6 super().__init__("minimal_subscriber")

Code 6.2: Python inheritance

When dealing with Object Inheritance, sometimes it is required to call di-
rectly a method of a superclass of the Object. In Python, this is achieved
using the super special method, as the documentation says. This method
can be written in two ways:

• super(type, object_or_type): it provides a proxy object that delegates
method calls to a sibling or parent class of the Object3. This permits
to support of multiple cooperative inheritances in a dynamic execution
environment, enabling the possibility of having “diamond diagrams”
where multiple base classes implement the same method.

• super(): this can be seen as syntactic sugar of the other super method.
In this case, the proxy object returned resolves the calling of methods
to the immediate parent of the current class. Line 6 of 6.2, produces
the same output of “super(Node, self)”.

The main idea of handling these special methods is to expand the second one
to have only one class in which we define super semantics. Furthermore, this
approach permits circumnavigating the difficulty of modeling the semantics
of this call since, without parameters (like an object to work on), it could be
infeasible to handle.
The super method is declared inside the SARL file. It is a BinaryExpression,
and inside the semantic method, we perform a conversion of the type of the
second parameter (the Object) to the type passed as the first parameter.
During the parsing, the front end must capture the simple super (the super
without parameters). This is because it requires additional information (i.e.,
the superclass and the Object itself) to correctly convert the call to the ex-
panded super.
This is done by introducing a Java Object (SimpleSuperUnresolvedCall) that
extends UnresolvedCall. This works likely the standard UnresolvedCall, ex-
cept that if it can’t resolve super(), it will build and resolve the expanded
version. The idea is to first resolve the simple super method call by studying
the Python behavior: if a method with the name super without arguments
exists, then Python will not call its internal method but the one defined by

3https://docs.python.org/3/library/functions.html#object

https://docs.python.org/3/library/functions.html#object

90 Chapter 6. Lisa and ROS: Static Analysis for Robotics

the user.
When the front end finds a method called super that has no arguments,
then it creates the SimpleSuperUnresolvedCall instead of the standard Un-
resolvedCall.

6.2.3 String Constant Propagation

Some changes were made to the ConstantPropagation. Since the name of
a node (or of a topic) comes from a previously defined variable (or by a
method argument), it is necessary to propagate the string somehow. We use
the ConstantPropagation domain of PyLiSA to achieve this by supporting the
propagation of constant strings generated by assignments, operators, and
methods, such as the string concat (the + operator) or the string constructor
(str method).

6.3 Analysis of the rclpy Library

Now we are ready to present how to perform an analysis of a rclpy program
to extract the ROS Computational Graph. In this section:

1. We want to talk about the semantics of the rclpy library.

2. We will discuss the configuration of the analysis.

3. We will provide a result of this analysis.

6.3.1 rclpy Semantics

We now present an overview of the semantics defined for some methods of
the rclpy library. Since the analysis focuses on extracting Nodes and Topics,
we considered only the methods that deal with these entities: Node.__init()__,
Node.create_publisher(), Node.create_subscription(), Publisher.__init()__, Sub-
scription.__init__().

Instantiation of a Node

Inside the class it.unive.pylisa.library.rclpy.node.Init, we define the seman-
tics of a new Node. The definition is straightforward and is presented in
Code 6.3: here, we create an AccessInstanceGlobal (that model a heap vari-
able) with target (i.e., the accessed global) “node_name”. The receiver is

6.3. Analysis of the rclpy Library 91

taken from the expression of the method’s first parameter, that is, the Ob-
ject itself. Then an assignment on this global is performed: on line 2, we
assign the expression of the second parameter (corresponding to the Node’s
name).

1 AccessInstanceGlobal nodeName = new AccessInstanceGlobal(
st.getCFG(), getLocation(), getSubExpressions()[0], "
node_name");

2 PyAssign pyAssign = new PyAssign(getCFG(), getLocation(),
nodeName , getSubExpressions()[1]);

3 return state.lub(pyAssign.semantics(state, interprocedural
, expressions));

Code 6.3: Body of the method binarySemantics of Node Init

Instantiation of a Publisher

The semantics of the __init__ method of the Publisher Object is defined inside
it.unive.pylisa.library.rclpy.publisher.Init (code 6.4). We assign values on Ac-
cessInstanceGlobals, as we did in the Node.__init__() semantics. In this case,
however, we have multiple accesses.

1 AnalysisState <A,H,V,T> result = state;
2 AccessInstanceGlobal aig;
3 PyAssign pa;
4 aig = new AccessInstanceGlobal(st.getCFG(), getLocation(),

getSubExpressions()[0], "msg_type");
5 pa = new PyAssign(getCFG(), getLocation(), aig,

getSubExpressions()[1]);
6 result = result.lub(pa.semantics(result, interprocedural ,

expressions));
7 aig = new AccessInstanceGlobal(st.getCFG(), getLocation(),

getSubExpressions()[0], "topic_name");
8 pa = new PyAssign(getCFG(), getLocation(), aig,

getSubExpressions()[2]);
9 result = result.lub(pa.semantics(result, interprocedural ,

expressions));
10 aig = new AccessInstanceGlobal(st.getCFG(), getLocation(),

getSubExpressions()[0], "qos_profile");
11 pa = new PyAssign(getCFG(), getLocation(), aig,

getSubExpressions()[3]);

92 Chapter 6. Lisa and ROS: Static Analysis for Robotics

12 result = result.lub(pa.semantics(result, interprocedural ,
expressions));

13 return result;

Code 6.4: Body of the method expressionSemantics of Publisher Init

Instantiation of a Subscription

The semantics of the __init__ method of a Subscription is very similar to
the Publisher.__init__(). We add an AccessInstanceGlobal for the callback
function and assign the corresponding expression to it. The semantics is
defined inside the it.unive.pylisa.library.rclpy.subscription.Init class.

Create a Publisher from a Node

Inside the class it.unive.pylisa.libraries.rclpy.node.CreatePublisher, we de-
fine the semantics of Node.create_publisher() method. Here, we create a
new PyNewObj that models the creation of a Publisher. The PyNewObj has
the same parameters as the create_publisher method, without the first one
(the current Node object). The LiSA type of this expression is the Publisher
ClassUnit.

1 PyClassType publisherClassType = PyClassType.lookup(
LibrarySpecificationProvider.RCLPY_PUBLISHER);

2

3 PyNewObj publisherObj = new PyNewObj(this.getCFG(), (
SourceCodeLocation) getLocation(), "__init__",
publisherClassType , Arrays.copyOfRange(
getSubExpressions(), 1, getSubExpressions().length));

4 publisherObj.setOffset(st.getOffset());
5 AnalysisState <A,H,V,T> newPublisherAS = publisherObj.

expressionSemantics(interprocedural , state, params,
expressions);

6 return state.lub(newPublisherAS);

Code 6.5: Body of the method expressionSemantics of CreatePublisher

Create a Subscription from a Node

Creating a Subscription from a Node is equal to creating a Publisher, with
the only difference being that the PyNewObj has the Subscription ClassType

6.3. Analysis of the rclpy Library 93

as LiSA Type.

Putting it All Together: the PyLiSA SARL

Inside the PyLiSA SARL, we declare the Node, Publisher, and Subscription
class and the rclpy library methods we use for the analysis. The snippet in
code 6.6 shows how.

1 library rclpy:
2 class rclpy.publisher.Publisher:
3 instance method __init__: it.unive.pylisa.

libraries.rclpy.publisher.Init
4 libtype rclpy.publisher.Publisher *
5 param self type it.unive.lisa.type.Untyped::

INSTANCE
6 param msg_type type it.unive.lisa.type.Untyped

::INSTANCE
7 param topic type it.unive.lisa.program.type.

StringType::INSTANCE
8 param qos_profile type it.unive.lisa.type.

Untyped::INSTANCE
9 instance method publish: it.unive.pylisa.libraries

.rclpy.publisher.Publish
10 type it.unive.lisa.type.VoidType::INSTANCE
11 param self libtype rclpy.publisher.Publisher *
12 param msg type it.unive.lisa.program.type.

StringType::INSTANCE
13 class rclpy.subscription.Subscription:
14 instance method __init__: it.unive.pylisa.

libraries.rclpy.subscription.Init
15 libtype rclpy.subscription.Subscription *
16 param self type it.unive.lisa.type.Untyped

::INSTANCE
17 param msg_type type it.unive.lisa.type.

Untyped::INSTANCE
18 param topic type it.unive.lisa.program.

type.StringType::INSTANCE
19 param callback_func type it.unive.lisa.

type.Untyped::INSTANCE

94 Chapter 6. Lisa and ROS: Static Analysis for Robotics

20 param qos_profile type it.unive.lisa.type.
Untyped::INSTANCE

21 class rclpy.node.Node:
22 instance method Node: it.unive.pylisa.libraries.

rclpy.node.Init
23 libtype rclpy.node.Node*
24 param self libtype rclpy.node.Node*
25 param node_name type it.unive.lisa.program.

type.StringType::INSTANCE
26 instance method __init__: it.unive.pylisa.

libraries.rclpy.node.Init
27 libtype rclpy.node.Node*
28 param self libtype rclpy.node.Node*
29 param node_name type it.unive.lisa.program.

type.StringType::INSTANCE
30 instance method create_publisher: it.unive.pylisa.

libraries.rclpy.node.CreatePublisher
31 libtype rclpy.publisher.Publisher *
32 param self libtype rclpy.node.Node*
33 param msg_type type it.unive.lisa.type.Untyped

::INSTANCE
34 param topic type it.unive.lisa.program.type.

StringType::INSTANCE
35 param qos_profile type it.unive.lisa.type.

Untyped::INSTANCE
36 instance method create_subscription: it.unive.

pylisa.libraries.rclpy.node.CreateSubscription
37 libtype rclpy.subscription.Subscription *
38 param self libtype rclpy.node.Node*
39 param msg_type type it.unive.lisa.type.Untyped

::INSTANCE
40 param topic type it.unive.lisa.program.type.

StringType::INSTANCE
41 param callback type it.unive.lisa.type.Untyped

::INSTANCE
42 param qos_profile type it.unive.lisa.type.

Untyped::INSTANCE

Code 6.6: Modeling rclpy using SARL

6.3. Analysis of the rclpy Library 95

COMPONENT IMPLEMENTATION
Interprocedural Analysis ContextBasedAnalysis
Call Graph RTACallGraph
Heap Domain FieldSensitivePointBasedHeap
Value Domain ConstantPropagation
Type Domain InferredTypes
Abstract State SimpleAbstractState
Semantic Checks ROSComputationGraphDumper

Table 6.1: LiSA configuration for the analysis

6.3.2 LiSA Analysis Configuration

Table 6.1 shows how LiSA is configured for the analysis.

Interprocedural Analysis

An interprocedural analysis models the effect of calls in callers and the call-
ing context in the callees. It works like a glue that permits all the other
components to work together to produce the analysis. The ContextBased-
Analysis is a context-sensitive analysis; this means that it is aware of the
context where a method is called. This permits distinguishing different calls
to the same method that, depending on the overall context, could produce
different results.

Call Graph

We use an RTACallGraph. How it works is explained in Chapter 3, Section
5.4, which, as we said, is more efficient than a Class Hierarchy Analysis, and
even if it is not one hundred percent precise, it’s enough for us.

Heap Domain

We use the FieldSensitivePointBasedHeap implementation of LiSA. This heap
domain abstracts heap location depending on their allocation sites (i.e., the
position of the code where the heap locations are generated). This is the
most precise heap domain that LiSA provides out of the box. All the field
accesses, with the same field, to a specific allocation site are abstracted into
a single heap identifier.

96 Chapter 6. Lisa and ROS: Static Analysis for Robotics

Value Domain

We use the ConstantPropagation Value Domain. This domain permits the
substitution of the constant values in the expression. When we assign a
constant to a variable, the domain keeps track of its value, and when the
variable is used later, it is substituted with the assigned constant.

Type Domain

We use the InferredTypes Type Domain that keeps track of the inferred run-
time types of an Expression by holding a set of Types.

Abstract State

The SimpleAbstractState represents the state of the analysis, and it is a com-
position of the FielSensitivePointBasedHeap, ConstantPropagation, and In-
ferredTypes. We learned about the AbstractState in Chapter 3, Section 5.2.

Semantic Checks: the ROSComputationalGraphDumper

The most interesting part of the analysis is the ROSComputationalGraph-
Dumper semantic check.
This semantic check visits all the CFG of the program and extract all relevant
information about Nodes and Topics, considering the analysis results.
When a call to a rclpy method is performed, this checker will determine what
the call means, collecting useful data regarding Nodes, Publishers, and Sub-
scribers allocations. It does this by looking at the statement under analysis.
If it is a call to a rclpy Object (for example, a Node creation), it will fetch the
Analysis Result of the post-state of the statement. From this, it then looks
at the heap and extracts the information regarding the Object allocated: for
a Subscription, for instance, it extracts the topic name, the Message Type,
and the name of the Callback Function.
This information is stored in an Object that models the ROS Computational
Graph. This Object is simply a set of Nodes and a Set of Topics. Whenever
a new Node instantiation is detected on the CFG, a new Node is created and
pushed in the ROS Computational Graph. The model of a Node is defined
by its name, a ScopeId (used by identifier), a set of subscribers, and a set
of publishers. A Publisher keeps track of its Node, the Topic in which the
Publisher publishes, and the message type.
A Subscription has the same information as a Publisher, with the addition of

6.3. Analysis of the rclpy Library 97

the name of the callback function.
A Topic is an Object with a single attribute: its name. When the creation of
a Publisher or a Subscription is found in the CFG, the checker checks if the
referred Topic is present in the ROS Computational Graph. If not, it creates
it. Then, it creates a Publisher or a Subscriber, and it pushes it inside its
Node.
After the execution, the ROS Computation Graph model is dumped in a .dot
file for visualization. During this step, the ROS Computational Graph is an-
alyzed to extract properties like the presence of loops (a Node that listens
and publishes on the same Topic) or some oddities (for example, a Topic with
zero Subscribers or zero Publishers).

6.3.3 Preliminary Results of the Analysis

For now, the analysis can take in input one file at a time. Since different files
could make a ROS program, we must merge the Node definitions in a single
file before analyzing the program. Merging the source code of examples 4.1
and 4.2 in a single file and performing the analysis on it, it will produce the
graph in figure 6.2: an aquamarine circle represents a Node while a yellow
rectangle is a Topic. An arrow from Node to Topic models that the Node has
a Publisher on the Topic. An arrow in the inverse direction models the pres-
ence of a Subscription inside the Node that listens to messages on the Topic.
Figure 6.3 shows the information inside the heap and value domain after
creating a Publisher on the __init__ method of MinimalPublisher. The banner
on the left shows what the semantics defined in 6.4 computes: looking at
the value section, we can see that we have a “msg_type” String (that corre-
sponds to the PyAssign written in line 5 of 6.4), a “topic_name” topic (line 8)
and “qos_profile” equal to 10 (line 11). The node_name (minimal_publisher)
was computed in the previous statement (that is to say, the previous node of
the depicted CFG), and comes out from the semantics of the initialization of
the Node (line 2 of 6.3).

98 Chapter 6. Lisa and ROS: Static Analysis for Robotics

Figure 6.2: ROS Computational Graph of the Minimal Publisher and Minimal
Subscriber ROS example, presented in Codes 4.2 and 4.1

6.3. Analysis of the rclpy Library 99

F
ig
u
re

6
.3
:
A
n
al
ys
is
of

__
in
it
__

m
et
h
od

of
M
in
im

al
P
u
b
li
sh
er

100 Chapter 6. Lisa and ROS: Static Analysis for Robotics

Next, let’s delve into a more intricate example demonstrating how the
graph displays potential errors. The graph in figure 6.4 represents four
nodes and eight topics. As you can notice, two topics are in a different
color (topic5 and topic8, in orange). These topics don’t have at least one
Subscription or at least one Publisher, so they could be created as an er-
ror. In addition, we have some red arrows (the arrows between node_1 and
topic1 and the arrows between node_2 and topic7): this means that there is
a loop (a node that publishes and reads messages on the same topics). The
graph was extracted using LiSA from Code 6.7: as we can notice, the node_4
of figure 6.4 corresponds to the Node declared inside the ROSNode4 Class
(lines 84-100 of 6.7). Looking at the code, this Node declares two Publish-
ers (one on topic1, line 87, and one on topic3, line 88) and a Subscription
(line 89, on topic2). Red arrows mean that we have loops, and observing the
code of node_1 (class ROSNode1, lines 5-27), we can see that there is both a
Publisher and a Subscription on topic1 (respectively, on line 8 and line 17).

6.3. Analysis of the rclpy Library 101

Figure 6.4: A ROS Computational Graph with four Nodes and eight Topics,
extracted using LiSA from Code 6.7

102 Chapter 6. Lisa and ROS: Static Analysis for Robotics

1 import rclpy
2 from rclpy.node import Node
3 from std_msgs.msg import String
4

5 class ROSNode1(Node):
6 def __init__(self):
7 super().__init__(’node_1’)
8 self.create_subscription(
9 String,

10 ’topic1’,
11 self.listener_callback ,
12 10)
13 self.create_publisher(
14 String,
15 ’topic7’,
16 10)
17 self.create_publisher(
18 String,
19 ’topic1’,
20 10)
21 self.create_subscription(
22 String,
23 ’topic3’,
24 self.listener_callback ,
25 10)
26 def listener_callback(self, msg):
27 self.get_logger().info(’I heard: "%s"’ % msg.data)
28

29 class ROSNode2(Node):
30 def __init__(self):
31 super().__init__(’node_2’)
32 self.publisher = self.create_publisher(String, ’

topic1’, 10)
33 self.create_publisher(String, ’topic2’, 10)
34 self.create_publisher(String, ’topic3’, 10)
35 self.create_publisher(String, ’topic4’, 10)
36 self.create_publisher(String, ’topic5’, 10)
37 self.create_publisher(String, ’topic6’, 10)

6.3. Analysis of the rclpy Library 103

38 self.create_publisher(String, ’topic7’, 10)
39 self.create_subscription(String, ’topic7’, self.

topic7_callback , 10)
40 timer_period = 0.5 # seconds
41 self.timer = self.create_timer(timer_period , self.

timer_callback)
42 self.i = 0
43 def topic7_callback(self, msg):
44 self.get_logger().info(’I heard: "%s"’ % msg.data)
45 def timer_callback(self):
46 msg = String()
47 msg.data = ’Hello World: %d’ % self.i
48 self.publisher.publish(msg)
49 self.get_logger().info(’Publishing: "%s"’ % msg.

data)
50 self.i += 1
51

52 class ROSNode3(Node):
53 def __init__(self):
54 super().__init__(’node_3’)
55 self.create_subscription(String, ’topic2’, self.

topic2_callback , 10)
56 self.create_subscription(String, ’topic3’, self.

topic3_callback , 10)
57 self.create_subscription(String, ’topic6’, self.

topic6_callback , 10)
58 self.create_subscription(String, ’topic7’, self.

topic7_callback , 10)
59 self.create_subscription(String, ’topic4’, self.

topic4_callback , 10)
60 self.create_subscription(String, ’topic8’, self.

topic8_callback , 10)
61 timer_period = 0.5 # seconds
62 self.timer = self.create_timer(timer_period , self.

timer_callback)
63 self.i = 0
64 def topic2_callback(self, msg):
65 self.get_logger().info(’I heard: "%s"’ % msg.data)
66 def topic3_callback(self, msg):

104 Chapter 6. Lisa and ROS: Static Analysis for Robotics

67 self.get_logger().info(’I heard: "%s"’ % msg.data)
68 def topic6_callback(self, msg):
69 self.get_logger().info(’I heard: "%s"’ % msg.data)
70 def topic7_callback(self, msg):
71 self.get_logger().info(’I heard: "%s"’ % msg.data)
72 def topic7_callback(self, msg):
73 self.get_logger().info(’I heard: "%s"’ % msg.data)
74 def topic8_callback(self, msg):
75 self.get_logger().info(’I heard: "%s"’ % msg.data)
76 def timer_callback(self):
77 msg = String()
78 msg.data = ’Hello World: %d’ % self.i
79 self.publisher.publish(msg)
80 self.get_logger().info(’Publishing: "%s"’ % msg.

data)
81 self.i += 1
82

83

84 class ROSNode4(Node):
85 def __init__(self):
86 super().__init__(’node_4’)
87 self.create_publisher(String, ’topic1’, 10)
88 self.create_publisher(String, ’topic3’, 10)
89 self.create_subscription(String, ’topic2’, self.

topic2_callback , 10)
90 timer_period = 0.5 # seconds
91 self.timer = self.create_timer(timer_period , self.

timer_callback)
92 self.i = 0
93 def topic2_callback(self, msg):
94 self.get_logger().info(’I heard: "%s"’ % msg.data)
95 def timer_callback(self):
96 msg = String()
97 msg.data = ’Hello World: %d’ % self.i
98 self.publisher.publish(msg)
99 self.get_logger().info(’Publishing: "%s"’ % msg.

data)
100 self.i += 1
101

6.3. Analysis of the rclpy Library 105

102 def main(args=None):
103 rclpy.init(args=args)
104 node1 = ROSNode1()
105 node2 = ROSNode2()
106 node3 = ROSNode3()
107 node4 = ROSNode4()
108 rclpy.shutdown()
109

110 if __name__ == ’__main__’:
111 main()

Code 6.7: Example of a ROS Source Code

Chapter 7

Future Works

Chapter 6 showed how LiSA could extract a ROS Computational Graph from
a Python source code.
However, the analysis is not perfect and could be improved. Let’s look at
some of the improvements we can make in the future.

1. Multi file support: as we said in the previous chapter, the analysis
can read the semantics of the application from just only one file. rclpy
programs are made by more than one source. The idea is to look at the
project root, fetch all the source files, and perform analysis on a set of
files instead of a single one.

2. Multiple languages support: for some large programs, it could be
the case that we have one node written in Python, for example, and an-
other one in C++. To analyze all the nodes of a ROS program, we need
to use more than one front ends that transform the source code written
in the language it accepts in an intermediate LiSA program. All the
LiSA programs produced by the different front ends must be merged
into one single LiSA program, which is the one that LiSA will analyze.
Another approach to this problem could be to treat each file as a single
LiSA program, analyze them, and store all the dumped ROS Computa-
tional Graphs somewhere. Then, all the graphs must be merged into
a single one. The latter approach permits avoiding recomputing the
analysis for all the nodes if there is a change of the semantics for only
one.

3. Information Flow: It could be interesting to consider an information
flow analysis [35]: since Nodes exchange messages, we could see, for
instance, if a top-secret message will reach an untrusted destination

107

108 Chapter 7. Future Works

that declassifies it. Denning and Denning [17] explain this problem
well.

4. Domain-Specific Domain: the analysis used a generic Abstract State.
As an improvement, we can build an ad-hoc abstract domain that mod-
els the computational graph. This adds the capability to model the
intrinsic structure of a Node directly in the domain, permitting the con-
struction of more in-depth analysis.

5. Access Control: if exists a Permission.xml file that specifies some poli-
cies regarding Nodes permissions, then we could parse this file and see
if the dumped graph respects these policies, generating a helpful error
otherwise.

6. Actions and Services: We could model and insert the definitions of
Actions and Services in the static ROS graph.

7. Behavior Analysis: consider the ROS Graph represented in Figure
7.1, where we have 3 Nodes and 2 Topics. node_1 puts a string on
topic1, and node_2 fetches and checks its content. If the string matches
some rules, node_2 will publish a message on topic2. The node_3 reads
the message from topic2 and perform some task. If node_1 did not
push a particular message on topic1, node_3 (that does not have a com-
mon topic with node_1) would not have performed a specific action. So
there is some dependency between node_1 and node_3, and if node_3
executes the mentioned action, it means that node_1 was in a defined
state. It could be interesting to see if and how the behavior of a Node
that is distant from another affects the latter’s behavior.

109

Figure 7.1: A ROS Computational Graph.

Chapter 8

Conclusion

This chapter concludes the thesis.
We learned how to generate a ROS Computational Graph at static-time us-
ing a static analysis based on Abstract Interpretation powered by the LiSA
framework. We will now recap what we have seen on these pages.

In Chapter 1, Program Analysis was introduced. We talked about bugs
and safety-critical systems and provided a taste of what it means (and why it
is essential) to perform static analysis for robotics.

Chapter 2 set the necessary preliminaries for understanding the topics
of this thesis: we discussed program languages and program analysis, with
a brief overview of the main program analysis techniques (testing, model
checking, static analysis), with a focus on static analysis and abstract inter-
pretation.

In Chapter 3, we met LiSA, the defacto protagonist of this thesis. After
introducing the framework, the overall internal architecture was presented
with an example of how to run LiSA to perform an analysis.

After the LiSA presentation, the stage was taken by the ROS framework.
We have seen how ROS works in Chapter 4, with a small example that shows
how Nodes communicate with each other by using the Publisher/Subscriber
mechanism.

Chapter 5 set the underlying motivation of this thesis, while in Chapter
6, we threw ourselves headlong into the analysis. We have seen how to pro-

111

112 Chapter 8. Conclusion

duce a ROS Computational Graph at static-time and how the semantics of
the rclpy library was modeled.

Chapter 7 explained the limitations and provided some improvements
that can be made to the overall work.

In Chapter 8, we concluded the thesis, but we want to avoid going recur-
sive and explaining the conclusion in the conclusive chapter: we will stop
here.

Acknowledgements

I believe that everyone has something to teach others, and sometimes these
teachings are transmitted unknowingly through exchanging words, glances,
or even silence. Throughout my life, I have had the privilege of encountering
extraordinary people who have imparted valuable lessons to me academi-
cally and in terms of personal growth. This thesis would not have been pos-
sible without the presence and influence of these remarkable persons who
have crossed my path over the years. Therefore, I want to express my heart-
felt gratitude to all of them.

Firstly, I want to thank my supervisor, Prof. Pietro Ferrara, for his pa-
tience and guidance through the development of the static analyzer. His ex-
pertise and advice have been instrumental in shaping my research. I would
also like to extend my thanks to Luca Negrini, the author of LiSA, for gen-
erously dedicating his time to countless calls, helping me clarify any doubts
I had regarding the library’s functionality (Luca, if you are reading this, re-
member that I owe you some rounds of beers!). Their combined support has
played a significant role in the successful completion of this project.

My thanks don’t end there because I want to thank my mom and dad for
always believing in me and teaching me perhaps the most important thing:
never stop dreaming. I say thank you also to all my family for their support.

Lastly, but not least, I want to thank all my friends, in particular: Diletta,
Sara, Gianluca, Laura, Fabrizio, Elisa, Martina, Edoardo, Marco, Salvatore,
Victor, Francesco, Libero, Diego, Fabrizio, Chiara, Irene, Riccardo, and my
dog Kokoro. I wish you all the best!

Cheers,
Giacomo

113

Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[2] M. Albonico, M. –ord̄ević, E. Hamer, and I. Malavolta. Software engi-
neering research on the robot operating system: A systematic mapping
study. Journal of Systems and Software, 197:111574, 2023.

[3] J. Aldrich. Object-oriented call graph construction.

[4] M. Alhanahnah. Software quality assessment for robot operating sys-
tem. 12 2020.

[5] G. Antonelli, T. Fossen, and D. Yoerger. Underwater Robotics, volume 1,
pages 987–1008. 01 2008.

[6] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
2008.

[7] G. Birkhoff. Lattice Theory. American Mathematical Society, Provi-
dence, 3rd edition, 1967.

[8] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying persistent se-
curity properties. Comput. Lang. Syst. Struct., 30(3–4):231–258, oct
2004.

[9] H. Cadavid, A. Pérez Ruiz, and C. Rocha. Reliable control architecture
with plexil and ros for autonomous wheeled robots. pages 611–626, 08
2017.

[10] G. Caiazza. Application-level security for robotic networks. PhD thesis,
2021.

115

116 Bibliography

[11] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model Checking
and the State Explosion Problem, pages 1–30. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[12] A. Cortesi, P. Ferrara, and N. Chaki. Static analysis techniques for
robotics software verification. 10 2013.

[13] G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string val-
ues. In S. Qin and Z. Qiu, editors, Formal Methods and Software En-
gineering, pages 505–521, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[14] P. Cousot. Principles of Abstract Interpretation. MIT Press, 2021.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252.
ACM Press, 1977.

[16] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL
’78, page 84–96, New York, NY, USA, 1978. Association for Computing
Machinery.

[17] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, jul 1977.

[18] P. Ferrara. Generic combination of heap and value analyses in abstract
interpretation. In K. L. McMillan and X. Rival, editors, Verification,
Model Checking, and Abstract Interpretation, pages 302–321, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[19] P. Ferrara. A generic framework for heap and value analyses of
object-oriented programming languages. Theoretical Computer Sci-
ence, 631:43–72, 2016.

[20] P. Ferrara, P. Müller, and M. Novacek. Automatic inference of heap
properties exploiting value domains. In D. D’Souza, A. Lal, and K. G.
Larsen, editors, Verification, Model Checking, and Abstract Interpreta-
tion, pages 393–411, Berlin, Heidelberg, 2015. Springer Berlin Heidel-
berg.

Bibliography 117

[21] P. Ferrara and L. Negrini. Sarl: Oo framework specification for
static analysis. In M. Christakis, N. Polikarpova, P. S. Duggirala, and
P. Schrammel, editors, Software Verification, pages 3–20, Cham, 2020.
Springer International Publishing.

[22] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA,
pages 285–298. IEEE Computer Society, 1999.

[23] G. Yeap et all. 5nm cmos production technology platform featuring full-
fledged euv, and high mobility channel finfets with densest 0.021µm2
sram cells for mobile soc and high performance computing applications.
In 2019 IEEE International Electron Devices Meeting (IEDM), pages
36.7.1–36.7.4, 2019.

[24] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameter-
izing non-interference by abstract interpretation. In Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’04, page 186–197, New York, NY, USA, 2004. Asso-
ciation for Computing Machinery.

[25] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construc-
tion in object-oriented languages. In Proceedings of the 12th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’97, page 108–124, New York, NY,
USA, 1997. Association for Computing Machinery.

[26] D. Hilbert. Principles of Mathematical Logic. Providence, R.I.: AMS
Chelsea, 1950.

[27] J. Kim, J. M. Smereka, C. Cheung, S. Nepal, and M. Grobler. Security
and performance considerations in ros 2: A balancing act, 2018.

[28] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. Robot
operating system 2: Design, architecture, and uses in the wild. Science
Robotics, 7(66), may 2022.

[29] L. Negrini. A generic framework for multilanguage analysis. PhD thesis,
2023.

118 Bibliography

[30] L. Negrini, V. Arceri, P. Ferrara, and A. Cortesi. Twinning automata and
regular expressions for string static analysis, 2020.

[31] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer Publishing Company, Incorporated, 2010.

[32] D. Patterson and J. Hennessy. Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann, 2005.

[33] J. Petereit, J. Beyerer, T. Asfour, S. Gentes, B. Hein, U. D. Hanebeck,
F. Kirchner, R. Dillmann, H. H. Götting, M. Weiser, M. Gustmann, and
T. Egloffstein. Robdekon: Robotic systems for decontamination in haz-
ardous environments. In 2019 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), pages 249–255, 2019.

[34] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA Workshop on Open Source Software, 2009.

[35] A. Sabelfeld and D. Sands. A per model of secure information flow in se-
quential programs. In Proceedings of the 8th European Symposium on
Programming Languages and Systems, ESOP ’99, page 40–58, Berlin,
Heidelberg, 1999. Springer-Verlag.

[36] A. Santos, A. Cunha, and N. Macedo. The high-assurance ros frame-
work. In 2021 IEEE/ACM 3rd International Workshop on Robotics Soft-
ware Engineering (RoSE), pages 37–40, 2021.

[37] K. Schwaber and J. Sutherland. The scrum guide. 2020.

[38] O. Shivers. Control flow analysis in scheme. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Im-
plementation, PLDI ’88, page 164–174, New York, NY, USA, 1988. As-
sociation for Computing Machinery.

[39] I. Sommerville. Software Engineering. Pearson, 10th edition, 2015.

[40] A. Sosin. How to increase the information assurance in the information
age. Journal of Defense Resources Management, 9:45–57, 2018.

[41] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, 2(42):230–265, 1936.

Bibliography 119

[42] V. M. Vilches, R. White, G. Caiazza, and M. Arguedas. Sros2: Usable
cyber security tools for ros 2, 2022.

[43] R. Xavier and Y. Kwangkeun. Introduction to Static Analysis - An Ab-
stract Interpretation Perspective. MIT Press, 2020.

	Introduction
	Bugs and Safety-Critical Systems
	Static Analysis for Robotics
	Thesis Structure

	Preliminaries
	Computers and Machine Language
	Programming Languages
	Compilers
	Lexer
	Parser

	Semantics of Program
	Program Analysis
	About Completeness and Soundness
	Program Analysis Techniques

	Static Analysis
	Abstract Interpretation
	Lattice and Partial Orders

	LiSA
	Introduction to LiSA
	Project Structure
	LiSA Submodules

	PyLiSA, Front Ends, and Antlr
	Antlr
	Front Ends and PyLiSA

	LiSA's Control Flow Graph
	About Statements
	About Edges
	Typing
	PyLiSA CFG

	LiSA's Analysis
	The Fundamentals
	Abstract State
	Analysis State
	The CallGraph
	Semantics of Statements

	Architectural Scheme
	Checkers
	How they Works
	An Example

	PyLiSA SARL
	Running a LiSA Analysis

	ROS
	Introduction to ROS
	Brief Definition of DDS

	Concepts and Terminology
	The ROS Domain
	The ROS Graph
	Nodes
	Topics
	Messages
	Parameters
	Services
	Actions
	Discovery Process

	ROS API Architecture
	About DDS-Security and SROS2
	rclpy
	Application Life Cycle
	The rclpy Module

	How to Use rclpy: an Example

	Static Analysis for ROS (An Introduction)
	State of the Art of Static Analysis for Robotics
	Why this Thesis Exists

	Lisa and ROS: Static Analysis for Robotics
	Introduction
	PyLiSA Front End Extensions
	Object Declaration
	Object Inheritance Support
	String Constant Propagation

	Analysis of the rclpy Library
	rclpy Semantics
	LiSA Analysis Configuration
	Preliminary Results of the Analysis

	Future Works
	Conclusion
	Acknowledgements
	Bibliography

