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Abstract

Training cutting-edge machine learning models is often prohibitive to most because it requires
expensive hardware and a huge amount of labeled data. To address this shortcoming, pre-trained
models or publicly-available data are employed to reduce the financial development costs. How-
ever, these practices are becoming the Achilles’ heel of the machine learning development chain
because they expose the models to poisoning. These attacks assume the capacity of the attacker
to tamper with the model training or data collection phases to drive the model toward unexpected
misclassifications at test time. Notably, poisoning attacks are the most feared threat by companies
because of the harm they can cause and the difficulties in detecting them. Therefore, mindful mon-
itoring of the data gathering and model training procedures is becoming imperative. Due to the
practical relevance of poisoning attacks, various scientific articles have been published about this
topic. However, despite this considerable interest, we found a lot of confusion, misconceptions, and
open questions that we investigate in this thesis. We thus tackle five different research questions,
namely: (1) how to categorize poisoning attacks; (2) how to make them scalable in practice (3) how
can we analyze them and understand the factor influencing their effectiveness against ML models;
(4) how poisoning can influence other ML aspects, going beyond misclassification violations; and
(5) how an attacker can craft poisoning samples when having access to the target system only by
querying it. For each of these research questions, we revisit the underlying problem, the state of
the art going in that research direction, and we present the contributions proposed by the author of
this thesis for answering them. Finally, we shed light on the current limitations and open research
questions in this field and propose possible future research directions. I believe that the findings
in this thesis will help the ML community to better evaluate the risks of poisoning attacks and
stimulate the discussion towards developing novel benchmarks and defensive techniques to protect
ML models.



ii



Contents

Symbols v

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Concepts 7

2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Adversarial Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Exploratory Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Causative Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Machine Learning Security against Data Poisoning 19

3.1 Poisoning in Real-World Applications . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Modeling Poisoning Attacks and Defenses . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Learning Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Attack Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Defense Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Poisoning Attacks and Defenses . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Poisoning Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Indiscriminate (Availability) Poisoning . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Targeted (Integrity) Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Backdoor (Integrity) Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Unifying Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.5 Development Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.6 Transferability of Poisoning Attacks . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Defenses Against Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Matching Poisoning Attacks and Defenses . . . . . . . . . . . . . . . . . . . 37

3.5 Poisoning in Other Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Improving Scalability of Data Poisoning 41

4.1 BetaPoisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



iv CONTENTS

5 Understanding Backdoor Poisoning Vulnerability 51
5.1 Backdoor Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Causing Energy-Latency Failures via Poisoning 69
6.1 Sponge Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Poisoning Clustering Under Limited Knowledge 83
7.1 Poisoning Clustering via Adversarial Queries . . . . . . . . . . . . . . . . . . . . . 84
7.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Open Challenges and Conclusions 99
8.1 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 105

A Understanding Backdoor Poisoning Vulnerability 125

B Causing Energy-Latency Failures via Poisoning 141

C Poisoning Under Limited Knowledge 145



Symbols

Data notation

D training pristine data
Dp training poisoning data
D′ training dataset (D′ = Dp ∪ D)
V Validation/Surrogate pristine data
Vt Validation/Surrogate poisoning data
V ′ Validation/Surrogate data (V ′ = Vt ∪ V)
T Test data
Tp Test data containing backdoor trigger
x Input sample x ∈ R

d

y Ground true label y ∈ {0, . . . , C − 1}
ŷ Predicted label ŷ ∈ {0, . . . , C − 1}
xlb Lower bound of the feature space xlb ∈ R

d

xub Upper bound of the feature space xub ∈ R
d

X Feature matrix of data samples X ∈ R
n×d

Model and training notation

f Model’s classification layers
ϕ Model’s feature extractor
M Machine learning model (M = f ◦ ϕ)
θ Model’s parameters
θ⋆ Optimal model’s parameters
L Loss function
L Regularized loss function
∇xL Gradient of loss function L w.r.t. x
C Generic clustering algorithm
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sviluppo personale li porterò sempre avanti. Grazie davvero per avermi reso una persona migliore.
O almeno meno ansiosa.

Voglio ringraziare Giacomo e David con cui sto portando avanti un bel progettino, e con cui sto
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Chapter 1

Introduction

The state of the art in machine learning (ML) has considerably improved over the last decade.
Learning models are nowadays widely employed as practical aiding tools for many data services.
Their adoption is becoming the de facto standard for diverse tasks, such as natural language
processing [297], face recognition [265], cancer detection [187], and road sign recognition [262],
as vital tools for data analysis and autonomic decision-making. They are also used in many
cybersecurity applications, such as spam email filtering [186; 193] or malware detection [217].
The success of machine learning in these applications has been achieved both in supervised contexts,
where classification and regression models prevail, and in unsupervised contexts, with clustering
and data dimensionality reduction algorithms. The key strength of learning models is their ability
to infer patterns that can be used for future predictions, especially when there is a massive amount
of unknown test data to process. This makes them particularly well-suited to domains where the
implementation is too complex to be designed manually but for which a large amount of data
are given. An incentive for the advancement of this technology has been given by the increasing
availability of specialized computing resources (e.g., GPUs) and cloud computing services that
make ML more accessible and enable ever higher performance.

Adversarial Machine Learning. Nevertheless, ML has traditionally been developed under the
assumption that the environment is benign during training and usage of the model. Most of the
learning algorithms assume that the data used for training them are representative of the data
encountered at test time. Moreover, they further assume that the noise inside data is randomly
distributed. These assumptions have been helpful for designing efficacious ML models, but they do
not cover the case where malicious users try to alter this condition to reach their goal. Therefore,
the increasing pervasiveness of ML algorithms in high-stake real and critical applications poses an
issue about their robustness in the presence of malicious manipulations. For example, in 2005,
Lowd and Meek [180] showed that malicious users could evade ML-based spam email filters by
inserting or appending words indicative of legitimate email. Since then, adversarial learning has
emerged as a line of research focused on studying how machine learning can be broken and how to
prevent that from happening [17; 23; 62; 63; 179]. From that time, new security threats have been
discovered in the past years that can compromise availability, integrity, and confidentiality of ML
systems [23].
Attacks on availability attempt to decrease the performance (e.g., prediction accuracy or latency)
victim system or neglect its access to legitimate users (e.g., denial of service). For example, an
attacker may tamper with the ML spam filter of the victim to decrease its accuracy, thus making
any spam emails pass the filter more easily. Attacks on integrity induce the model behavior
towards a specific direction chosen by the attacker. For example, the attacker manipulates
the content of an email so that it will pass the spam filtering defense. Finally, confidentiality
attacks aim to steal information about the training dataset or the deployed ML model. For
example, the attacker may try to retrieve sensible information from the training dataset (e.g.,
data about hospital patients) or reconstruct the ML decision model used by a competitor company.



Attacks against ML. These violations against ML can be caused by malicious users through
different attacks, and the most investigated are evasion and poisoning.
Evasion attacks aim to maliciously perturb the input data to have them misclassified by the model,
causing an integrity violation as for the spam example seen above. The resulting samples are called
adversarial examples, and their existence questions the robustness and reliability of ML systems.
Researchers have shown that even invisible perturbations - unrecognizable to human eyes - can
cause misclassification in state-of-the-art models [28; 38; 105].
Poisoning attacks are well-known security threats caused by adversaries who are enabled to inject
malicious samples in the training data or tamper with the training algorithm to change the expected
behavior of the victim’s model.
Conversely to evasion attacks, poisoning attacks have been investigated in all three violation di-
rections. Indiscriminate poisoning attacks aim to cause availability violations that, in most cases,
translate into a significant accuracy reduction in the victim’s model for any test time sample. Tar-
geted and backdoor poisoning, instead, leads the model to misclassify some test samples, causing
an integrity violation. The distinction between target and backdoor is that the former brings the
model to misclassify only a few specific target samples, while the latter brings the model to mis-
classify all test samples containing a backdoor trigger known only to the attacker. Notably, the
state-of-the-art attacks are implemented following many different strategies, some computation-
ally scalable1 and some not, and under a multitude of assumptions for the attacker. However, the
huge plethora of implementations and the lack of clear systematization has often led to confusion
in the literature, inducing researchers to attacks developed with quite different assumptions and
thus making unfair comparisons, [63; 236]. Furthermore, three aspects in the poisoning literature
remain unclear, i.e., (i) which are factors affecting the poisoning efficacy, (ii) whether poisoning
attacks can go beyond misclassification, and (iii) if poisoning can be staged against unsupervised
clustering algorithms under more realistic assumptions. Regarding the first aspect, it is unclear
why poisoning attacks are often effective in the scenarios in which they are thought of. The factors
influencing the effectiveness of a poisoning attack, or the vulnerability of a model to this threat,
are still unclear. Eventually, this knowledge could lead to significant developments in improving
attack performance or developing new defenses.
The second aspect arose as a result of recent developments in machine learning security. In 2020
a new attack vector against ML was identified, namely sponge examples. The main novelty of
the Shumailov et al. [245]’s work is that it goes beyond degrading the accuracy performance of
the learning models. Unlike evasion and poisoning attacks, sponge attacks do not compromise
the model’s accuracy but rather its usability or the lifetime of the battery on which it is run.
Sponge examples are test-time inputs carefully-optimized to increase energy consumption and
latency of DNNs when deployed on hardware accelerators. Consequently, processing these malicious
samples will drain the system’s batteries faster, increase the prediction latency, and decrease the
throughput, compromising its availability to legitimate users. For example, an attacker can forward
multiple sponge examples to the target system to cause a denial of service by making the target
unresponsive due to the ever-increasing latency in the decisions. However, we are still in the early
days of this new research front; the attack developed so far is carried out only in the testing
phase, assuming the capacity of the attacker to craft a series of sponge examples that will then
be forwarded to cause the energy-latency violation. Query-tracking defensive techniques [49; 138],
which monitor user queries and block illicit activities, could be adopted to limit their application
and effectiveness. A possible solution, yet to be explored in the literature, is to stage the attack
before the model is deployed through poisoning attacks. It is not known what the developments
of this new frontier may be, but it is undoubtedly a new interesting threat model that no longer
see the ML model as the primary subject of attack but also the system in which it is employed.
Finally, the third aspect stems from a little exploration of poisoning attacks in the unsupervised

1An attack is scalable if it can handle, from an execution time point of view, the increasing complexity of the
target model.



learning context. Although interest in machine learning security is growing, most work has focused
on examining the robustness of supervised learning models. The unsupervised counterpart is rel-
atively little explored. Only a few papers have contributed to this research direction, highlighting
the technical difficulties in proposing novel attacks and defenses. Because of this difficulty, however,
the underlying assumptions introduced to facilitate the problem are so strong to limit their appli-
cation. For example, most papers attacking clustering algorithms rely on the assumption that the
attacker perfectly knows the data to corrupt and the target clustering algorithm. Knowing these
two components allows the attacker to stage the attack taking advantage of the known vulnerability
and behavior of the target algorithm. Conversely, attacks with more limited knowledge represent
a more challenging and practical scenario, however, this research direction is still under-researched.

Due to the relevance and potential risks caused by evasion, poisoning, or sponge attacks, securing
ML services against them is necessary during every step of an ML life cycle. From data collection
to deployment, ML models have been discovered to be fragile and such vulnerabilities must be
repaired, as in traditional software development [150]. However, there is still a long way to go in
securing learning models, partially due to the lack of attacks for deeply testing their vulnerabilities.
Some open challenges still limit the progress of this research direction. Therefore, there is a need
to recognize these challenges and suggest possible research directions to foster the development of
novel tools for identifying ML vulnerabilities.

1.1 Research Questions

To promote the above vision, this thesis aims to shed light on the types of poisoning attacks that
can be staged, the factors influencing their effectiveness, their scalability, and open challenges that
are limiting their development. We further explore a novel poisoning threat against ML, extending
the concept of sponge examples to the poisoning case. We present our work on poisoning attacks
by answering the five research questions (RQ) presented below. For each of them, we discuss its
relevance, explore the corresponding related work, and present our contributions to answer the
question.

Research Question #1

How can we categorize/distinguish poisoning attacks against ML?

We argue that the literature around poisoning is often quite chaotic. The distinction between
the different poisoning attack types is unclear, leading to unfair comparisons in the experimental
evaluation. In some works, for example, we can see comparisons between attacks with essentially
different goals and assumptions that require different evaluations. Moreover, proper categorization
of when poisoning attacks can be staged and under which attackers’ capabilities and knowledge
are missing. Therefore, we questioned on the feasibility of developing a good framework that
enables a wise categorization of poisoning attacks under their different attack strategies and
assumptions.

Research Question #2

Can we make poisoning attacks scalable?

One of the critical aspects of systems vulnerabilities analysis is to have a complete evaluation
framework, i.e., a benchmark, to test the robustness and reliability of ML models in the presence
of malicious adversaries. From a poisoning perspective, a benchmark should execute a series of
attacks and measure the model’s robustness against them. However, this procedure requires that



attacks to be feasible and executable under various conditions, such as increasing of the model’s
complexity.

This thesis explores the scalability property of poisoning attacks under different attacker capabil-
ities and sheds light on where existing approaches are limited and how researchers in the future
may improve them.

Research Question #3

Which factors influence the effectiveness of backdoor poisoning attacks?

Understanding the factors influencing the vulnerability of a ML model against poisoning attack
may represent the first step towards developing novel defensive techniques to protect them. We,
however, realized that at the state of the art most works in this direction evaluate only availability
and targeted attacks, and little work has been done for backdoors. With this question, we want
to stimulate the discussion on the properties of ML models that make them vulnerable to this
threat. Finding the factors influencing their vulnerability may be crucial for developing novel
defensive techniques for protecting ML against backdoor threats.

Research Question #4

Can we increase energy-latency performance of ML models via poisoning?

Most of the literature around poisoning attacks is limited in trying to compromise the prediction
accuracy of the victim model. Whether other kinds of violations can be inflicted on the victim
model through poisoning are unknown or little explored. Inspired by the novelty introduced by
Shumailov et al. [245] in designing the sponge example attack, this thesis explores a new frontier
for poisoning attacks aimed at increasing energy consumption in the victim model.

Research Question #5

Can we poison clustering algorithms under limited knowledge?

Testing the robustness of clustering algorithms has been proved to be a complex task [29; 31].
Existing works were able to demonstrate the fragility of these algorithms by assuming high
knowledge on the attacker about the clustering algorithm to corrupt [29; 31; 55; 68]. However,
little or no works tried to evaluate the feasibility of crafting poisoning samples against these
algorithms, assuming the attacker has limited knowledge about the target algorithm. Such an
analysis can offer a worst-case measure of robustness against malicious users, and it can also serve
to find common weaknesses between clustering algorithms. Therefore, we explore if and how an
attacker can exploit oracle-access2 to the target algorithm for devising a poisoning attack.

Research Question #6

Which are the open challenges in the poisoning ML literature?

Finally, in this thesis we also investigate the still open challenges in the poisoning literature that,
if solved, could positively contribute to the realization of robust defensive techniques, guidelines
for secure data gathering, or benchmarks to test the robustness against such attacks. We further

2The attacker can only query the system as a service.



investigate on which could be the possible research directions from which researchers can take
inspiration to solve them.

1.2 Thesis Outline and Contributions

Chapter 2 gives some background and context information about machine learning and adversarial
machine learning.

In Chapter 3, we respond to research question #3 by offering an overview of the state of the art
of poisoning attacks and proposing a framework to categorize existing attacks and defenses based
on the attacker and defense threat models. This analysis results from our paper Wild Patterns
Reloaded: A Survey of Machine Learning Security against Training Data Poisoning.
This paper has been written with the equal contribution of my colleague and friend Kathrin Grosse.
The author of this thesis was responsible for developing the threat models for poisoning attacks
and their categorization, while Kathrin worked mainly on the part of defenses against poisoning.
Finally, we collaborated to match the defenses with the attacks they might prevent.

Additionally, in Chapter 3 we revisit the paper Machine Learning Security against Data
Poisoning: Are We There Yet? where we study the implications of these attacks against the
Trustworthiness of AI models, an essential requirement planned by the European Union for the
future production of systems employing AI models [89].

The remaining of this thesis is organized following the research questions presented before. From
Chapter 4 to Chapter 6 we reveal our contributions in the directions defined by the research
questions (RQ) #2,#3, and #4. Specifically, in Chapter 4 we argue on the scalability issues of
existing poisoning attacks (related to RQ #2) presented in our paper The Hammer and the
Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers? and present
a heuristic attack that may be employed to reduce the natural complexity of the problem when
certain assumptions are met.

We then present in Chapter 5 our framework developed in Backdoor Learning Curves: Ex-
plaining Backdoor Poisoning Beyond Influence Functions for analyzing the factors influ-
encing the vulnerability against poisoning attack, thus responding to RQ #3.

Finally, in Chapter 6 we respond to RQ #4 by presenting our sponge poisoning attack, designed in
the paper Energy-Latency Attacks via Sponge Poisoning, which goes beyond the standard
misclassification violation of existing poisoning attacks and causes an energy-latency violation.

Our contribution to poisoning in unsupervised domain in reported in Chapter 7. We present our
paper A black-box adversarial attack for poisoning clustering where we test the robustness
of unsupervised clustering algorithms in the presence of malicious users. Moreover, we respond to
our RQ #5 by showing that evaluating the robustness of clustering algorithms can be complex and
becomes even more complicated if the attacker’s knowledge about the target system is reduced.

Finally, in Chapter 8, we present the main open challenges in the poisoning attacks literature
that limit their development. We further suggest possible future directions that may represent
possible opportunities to solve them, and conclude with a summary of the main achievements and
limitations of this thesis.

In Table 1.1, we summarize the relationship between the research questions we pose in this thesis,
the thesis’s chapters, and the author’s publications.

1.3 List of Publications

This thesis is based on the following publications:

• Cinà, Antonio Emanuele, Ambra Demontis, Battista Biggio, Fabio Roli and Marcello
Pelillo. ”Energy-Latency Attacks via Sponge Poisoning.” Submitted to Transaction on Pat-
tern Analysis and Machine Intelligence (TPAMI) (2022).



Chapter RQ#1 RQ#2 RQ#3 RQ#4 RQ#5 RQ#6

Publication II [63] 3, 8 ✔ ✔

Publication II [62] 3, 8 ✔ ✔

Publication III [60] 4 ✔

Publication IV [59] 5 ✔

Publication V [61] 6 ✔

Publication VI [64] 7 ✔

Table 1.1: Relation between research questions, chapters, and publications.

• Cinà, Antonio Emanuele, Kathrin Grosse, Ambra Demontis, Battista Biggio, Fabio Roli
and Marcello Pelillo. ”Machine Learning Security against Data Poisoning: Are We There
Yet?” Submitted to IEEE Computer (2022).

• Cinà, Antonio Emanuele, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner
Zellinger, Bernhard Alois Moser, Alina Oprea, Battista Biggio, Marcello Pelillo and Fabio
Roli. ”Wild Patterns Reloaded: A Survey of Machine Learning Security against Training
Data Poisoning.” Submitted to ACM Computing Survey (2022).

• Cinà, Antonio Emanuele, Kathrin Grosse, Sebastiano Vascon, Ambra Demontis, Battista
Biggio, Fabio Roli and Marcello Pelillo. ”Backdoor Learning Curves: Explaining Backdoor
Poisoning Beyond Influence Functions.” Submitted to Computers & Security (2022).

• Cinà, Antonio Emanuele, Sebastiano Vascon, Ambra Demontis, Battista Biggio, Fabio
Roli and Marcello Pelillo. ”The Hammer and the Nut: Is Bilevel Optimization Really Needed
to Poison Linear Classifiers?” International Joint Conference on Neural Networks (IJCNN)
(2021).

• Cinà, Antonio Emanuele, Alessandro Torcinovich and Marcello Pelillo. ”A Black-box
Adversarial Attack for Poisoning Clustering.” Pattern Recognition (2022).



Chapter 2

Background Concepts

The state of the art of machine learning models has gained an incredible ability to make good
predictions in different domains, like image classification, speech recognition, market analysis,
intrusion detection, and malware detection. Due to their outstanding results, learning systems
carry fundamental roles in sophisticated applications as tools for aiding decision-making. However,
it has been observed that, despite their very high learning capacity, they are sensible to make wrong
predictions when data are maliciously perturbed. A surprising observation is that sometimes these
alterations are invisible to human eyes, questioning how these models handle data. The critical
assumption that causes such vulnerability is that these models have not been designed for working
in scenarios where an attacker wants to subvert or compromise the results of the system. They are
trained in safe environments, assuming data noise is randomly distributed and no users intentionally
pollute them.

In this chapter, we will provide background concepts on machine learning and adversarial machine
learning, and we will introduce the notation that will be used for the rest of the thesis.

2.1 Machine Learning

Machine learning (ML) studies algorithms and mathematical models that learn to perform a par-
ticular task through data and experience. The key finding is that ML models are not explicitly
programmed to solve the task but retrieve patterns in the data that are then employed for making
predictions. The more data they are fed, the more accurate or complete their response is. ML
methods can be classed as supervised, unsupervised, and reinforcement learning. In this thesis, we
will focus on classification and clustering problems, a family of algorithms that falls respectively
in the supervised and unsupervised learning categories.

2.1.1 Supervised Learning

In supervised learning, ML modes pass through three phases: training, validation, and testing.
During training, a labeled dataset D′ is used to estimate a mapping function M that solves the
target task. The training dataset D′ consists of input-output pairs {xi,yi}

i=n
i=1 , where xi is a

single input sample, and yi represents the corresponding output. At validation time, the model’s
performance (e.g., prediction accuracy) is estimated on novel validation dataset V ′. Validation is
necessary to assess that the model can generalize its prediction ability also on data seen during
training. Finally, if the validation phase has given acceptable results, the model is deployed and
used for predicting novel unknown test data T . The fundamental assumption for supervised
learning models is that training, validation, and test data are sampled from the same data and
labels distributions Xand Y.



A classifier is a supervised machine learning algorithm that, given an input sample, outputs
one class among the C prefixed by the problem. Mathematically speaking, it learns a mapping
M : x,θ 7→ y, where x ∈ R

d is a feature vector containing d measurable attributes describing the
object (e.g., pixel intensity, number of transactions, etc.), θ the model’s parameters, and y is the
classification output. For each of the C classes in the learning task, the model output confidence
scores, and the final classification is achieved by taking:

ŷ = argmax
C∈{0,...,C−1}

M(x;θ)

as the predicted label.

Training, Validation, and Test. The learning (or training) phase consists in determining
a configuration of weights θ such that the model output should be as close as possible to the
desired output as many times as possible for all the examples in the training set. In other words,
the training phase aims at creating a model that has learned patterns in the training data for
correctly classifying most of the time. Typically, this amounts to minimizing an loss function
ℓ : (x, y;θ) 7→ R, that measures the cost of classifying instance x as y over the entire training set.
A loss function is a function that returns a numerical value typically proportional to the difference
between the desired outputs and the output produced by the model on a set of samples. Classifiers
can adopt different losses, with some penalizing certain behaviors and some not, but they all have
in common the idea of assigning high scores when the model’s prediction on x is different from the
true label y. The training algorithm thus aims to find the optimal model’s parameters θ⋆ which
minimize the risk for the classifier to have misclassifications on the training dataset.

θ⋆ ∈ arg min
1

n

∑

{xi,yi}∈D′

ℓ(xi, yi, θ)

This process is also named empirical risk minimization.

Once the model has been trained, the subsequent steps are validation and testing. During valida-
tion, we evaluate the model’s accuracy, i.e., the percentage of correctly classified samples. Given
the validation dataset V ′, the validation accuracy for model M is mathematically formulated as:

A(M,V ′) =
1

N

n
∑

i=1

✶ŷi=yi

where ŷi is the label predicted by model M for input xi in the validation dataset.
Validation accuracy can be used to test the model’s performance on data distinct from the one used
during training but sampled from the same underlying distribution. If the model preserves good
prediction accuracy, we say the model is generalizing well to the samples in the task distribution.
However, training an ML model to reach the desired performance could not be easy, and sometimes
it may require tuning its hyperparameters. Hyperparameters are adjustable values that can be
tuned to obtain training with good performance. Tuning the hyperparameters is a consistent part
of training the models, as their choice might significantly affect the optimization result. If the
model’s performance is unsatisfactory at validation time, then hyperparameters can be tuned to
improve it.
Finally, the model performance is tested again on a test dataset T , never seen during training or
validation, to assess whether the model can generalize to samples that may have to classify once
it has been deployed. Performance on the test data is then the final and more reliable evaluation
to understand the goodness of the trained model.

Neural Networks. A Neural Network (NN) is an information processing paradigm inspired by
how biological nervous systems, such as the brain, process information. The pivotal element of this



Table 2.1: Neural network topologies.

Feedforward only allow signals to travel one
way only: from input to output. There is no feed-
back (loops). The output of any layer does not
affect that same layer. This type of organization
is also referred to as bottom-up or top-down.

Feedback networks (or Recurrent net-
works) can have signals traveling in both
directions by introducing loops in the net-
work. Feedback networks are powerful and
can get extremely complicated.

Fully connected has each neuron connected to
every neuron in the previous layer, and each con-
nection has its weight.

Sparsely connected has fewer links than
the possible maximum number of links
within that network.

Single layer Multilayer

paradigm is the new structure of the information processing system. It contains numerous highly
interconnected processing elements, namely neurons, working in unison to solve specific tasks.
Although neural networks appear to be a recent development, the first model was introduced in
1943, i.e., the McCulloch and Pitts Model [188]. The McCulloch-Pitts (MP) neuron is a sim-
ple process unit modeled as a binary threshold unit that can implement only linearly separable
functions. The unit fires if the net input

∑

j wjIj reaches (or exceeds) the unit’s threshold T :

ŷ = g





∑

j

wjIj − T



 g(x) =

{

0 if x < 0

1 if x ≥ 0

The weight wj represents the strength between neuron j and the j-th input feature. The function
g(x) is also called activation function and determine whether the neurons fire (is active) or
not. Among the most common ones, we find the Rectified Linear Unit (ReLU), which returns the
maximum between the neuron activation and 0.

g(x) = max(0, x)

Combining multiples MP neurons allows us to derive more complex network topologies, and their
main differences are presented in Table 2.1.
A single layer represents the structure of a perceptron, which can implement only linearly separable
functions. Conversely, multi-layer networks improve their approximation performance by stacking
additional hidden layers.

Shallow vs Deep Networks. From the universal approximation theorem we know that a two-
layer network (one input layer, one hidden layer) with a suitable activation function can approxi-
mate any continuous function. This statement, however, does not give us information about how
large this network should be. Before the advent of neural networks, this theorem was used to
develop shallow networks composed of a few large hidden layers, increasing the number of param-
eters significantly. Deep learning has significantly revolutionized the approach with which we now
design new ML architectures. Deep networks simulate the brain’s behavior, in which the electric
signals propagate across different layers. A deep network tries to approximate the target function
by stacking multiple non-linear hidden layers but decreasing the number of required parameters,
as they are less wide.

Backpropagation Learning Algorithm Backpropagation is an algorithm for learning the
weights in neural networks. The algorithm is based on gradient descent and can be seen as a
greedy algorithm where the gradient gives information about the best path to follow at each step
to increase/decrease our objective function. It is a first-order iterative optimization algorithm for
finding the minimum of a function. It can be defined as:

θ
(t+1)
ji ← θ

(t)
ji − η

∂ℓ

∂θ
(t)
ji
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(a) Perfect η.
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(c) Large η.

Fig. 2.1: Importance of tuning the learning rate size η in the optimization of θ. By choosing a correct
value (2.1a) the gradient updates bring the optimized variable to the minimum of the loss. When the
learning rate is too low (2.1b), the updates for θ are insufficient to reach the optimum. When the learning
rate is too big (2.1c), the optimized variable overshoots the minimum and can not descend properly.

where η is the learning rate, θji are the model’s weights updated at each step, and ℓ is the loss func-
tion we optimize during training. Intuitively, we could say that we determine the gradient direction,
then move in the opposite direction since we want to minimize the error. In the backpropagation
algorithm, the input of the network is propagated layer after layer in the forward direction (for-
ward pass), and finally, the error/loss made by the network is propagated backward and weights
to properly update them (backward pass). This optimization approach is not guaranteed to find a
globally optimal solution, but it works well in finding local optima.

One of the most challenging problems for backpropagation is finding a good η (learning rate),
which can influence the algorithm’s convergence. If η is small, the algorithm will converge very
slowly; however, when it is too big, there will be an oscillating problem that will not bring the
algorithm to convergence. In Fig. 2.1 image, we can see the difference in the convergence between
the same algorithm run with different values of η. We can observe that the first case is too slow to
reach the minimum, while the oscillation becomes smaller in the second and third cases. Finally,
the algorithm will not converge in the last case as the oscillation becomes larger and larger. One
possible remedy to this problem is the adoption of the momentum term [221], a simple heuristic
that can help find a good value for η. The momentum term introduces a dependency on the
previous step, avoiding or mitigating the oscillatory phenomena. The obvious disadvantage is the
need to set two parameters instead of one.

Overfitting and Underfitting. Overfitting and underfitting are the two common phenomena
in ML that lead to poor performance (see Fig. 2.2). Underfitting occurs due to the low-capacity
model, which can not capture the relationship between the input examples and the output labels,
leading the model to perform poorly on the training data. To reduce underfitting, the model
capacity can be expanded (e.g., us- ing more neurons in one layer, tuning the hyperparameters,
etc.). However, increasing the model’s capacity may lead to overfitting. Overfitting is indeed
the result of the over-capacity of the model and over-minimizing the error on the training set.
Overfitted model performs well on the training data but does not perform well on the validation
or test data. This is because the model memorizes the training data and can not generalize to
unseen examples. A straightforward solution to reduce overfitting is early-stopping, which stops the
learning procedure when the minimum validation set error is reached. At this point, the net should
be generalizing in the best possible way. When learning is not stopped, ”overtraining” occurs, and
the performance of the net on the dataset as a whole decrease, even though the error on the training
data still gets smaller. However, due to the relevance of the overfitting issue, more approaches have
been developed in the literature, such as (i) pruning [167], which reduces the model’s complexity



Fig. 2.2: Relationship between model complexity and training/test error.

Fig. 2.3: Examples of models in case of underfitting, good fitting, and overfitting.

by removing low-weight connections and then retrains the model to recover its performance; (ii)
regularization [149], which aims to bound and control the model’s weights; (iii) dropout [252], which
randomly removes some neurons at different epochs during training; (iv) data augmentation [244],
which artificially enlarge the dataset using label-preserving transformations; or (v) dropout, which
randomly removes some neurons at different epochs during training. In Fig. 2.3 we show the
decision function of two distinct models affected by underfitting and overfitting. Moreover, we
relate the model complexity with the test error showing that these two effects can influence the
model before and after a certain threshold.

Convex Learners. However, when dealing with a limited dataset, including only a few samples
per class, NNs may perform extremely poorly. In the following, we present other ML models that
we call convex learners as they optimize convex objectives that can achieve acceptable levels of
accuracy even when the data is fairly scarce. We study convex learners also due to their broad
usage in industry [260], derived from their low computational cost, excellent results, and good
interpretability [69; 267]. We thus present Logistic Regression Classifier (LC), Ridge Classifier
(RC), and Support Vector Machine (SVM).

Logistic [124] and Ridge classifiers [121] are linear regression frameworks that can also be used for
binary classification tasks. A logistic function has a general form like this:

yi =
1

1 + e−(θ0+θ1x1,i+···+θdxd,i)

This form corresponds to a single-layer neural network where θ are the model’s coefficient, and
xd,i is the j-th feature of samples i. The linear decision boundary is a consequence of the structure
of the regression function and the use of a threshold in the function to classify. Ridge classifier
adopts a ”shrinkage” method to reduce or shrink the coefficients in the resulting regression. This
reduces the model’s variance, avoiding falling under the overfitting regime.

Support Vector Machine (SVM) [66] is a mighty and less computationally expensive linear classi-



fication algorithm. We can formally define the SVM linear classifier in this way:

M(x,w, b) = g(wTx+ b) g(z) =

{

1 if z ≥ 0

−1 otherwise

where wTx+ b represents a separating hyperplane for the two classes, and g(z) is the decision
function which returns the predicted class for the observation x. Unlike other linear ML models,
SVM finds a separating hyperplane that maximizes the margin between class samples. The result-
ing hyperplane is considered the best since it separates classes better than all possible hyperplanes.
Intuitively, the farthest the boundary is from the points, the greater the prediction’s confidence.
Moreover, SVM formulation corresponds to the optimization problem of a convex function with
only linear constraints, for which a unique minimum solution corresponds to the optimal margin
classifier exists. The decision boundary depends on a small number of points, namely “support
vectors”, whose distance to the separating hyperplane is equal to the minimum margin from the
decision boundary.
Although the above presented convex learners are designed to work for linearly separable data,
SVMs can be extended to encompass also non-linear tasks. SVMs allow the usage of a strategy,
namely kernel trick, for learning a separating hyperplane in a new space where data are likely to
be linearly separable.

2.1.2 Unsupervised Learning

Unsupervised learning is a paradigm of the machine learning field which is based on the training of
knowledge without using a teacher. Unsupervised algorithms learn from unlabeled data; hence they
learn the hidden structures within them. One of the most common applications in unsupervised
learning is clustering. Clustering consists of estimating how data are organized in the space such
that they can reconstruct the prior probability distribution of data (see Fig. 2.4). In other words,
they are used with the goal of grouping a set of objects in such a way that objects in the same cluster
are strongly similar (internal criterion) and objects from distinct clusters are strongly dissimilar
(external criterion). Several clustering algorithms have been offered in the literature, and each
manages data differently. Some of the clustering algorithms we will test against adversarial noise
in Chapter 7 are K-Means[115], Spectral [275] and Hierarchical [199] clustering.

Fig. 2.4: Effect of clustering on a 2-dimensional space.

K-Means Clustering Partitioning clustering algorithms separate the data set into the specified
number of clusters based on the similarity or distance among the data samples. Among them, K-
Means [115] is one of the simplest, most famous, and most used iterative clustering algorithms [285].
Being a partitioning algorithm, it aims to partition n objects into K maximal cohesive groups.



Algorithm 1: K-Means clustering algorithm.

Input: X, K
Output: S

1

2 initialize cluster centroids S = {s1, s2, ..., sk}
3 repeat
4 ∀i ∈X s(i) ∈ arg minj∥xi − cj∥

2 // partition data

5

6 ∀j ∈ S cj =

∑
xi∈sj

xi
∑

xi∈sj
1 // update centroids

7 until All points remain unchanged (convergence)
8 return S

Algorithm 2: Spectral clustering algorithm.

Input: Z, K
Output: S

1 Let L be the normalized graph Laplacian associated to Z.
2 Compute the K smallest eigenvectors v1, . . . , vK of L

3 Let V = [v1, . . . , vK ] ∈ R
n×K the resulting data embedding when using v1, . . . , vk as

features
4 Form the matrix U ∈ R

n×K from V by normalizing the row sums to have norm 1 that is:

uij =
vij

(

K
∑

k=1

v2ik

)1/2

5 Run the K-Means algorithm on U to find clusters {s1, . . . , sK} ∈ S.
6 return S

The number of clusters K needs to be predefined before the execution. It aims to partition n
objects into K maximal cohesive groups. Each sample is associated with the cluster having the
nearest center (centroid). Mathematically speaking, given a set of samples X = {x1,x2, ...,xn},
partition it into K clusters S = {s1, . . . , sK} with the corresponding centroids C = {c1, . . . , cK}
so as to minimize the sum of internal-cluster variances:

S ∈ arg min

K
∑

j=1

∑

xi∈sj

∥xi − cj∥
2

The K-Means algorithm to optimize the above objective function is given in Alg. 1. Initially, K-
Means randomly chooses K samples as centroids and find the nearest data points of the chosen
centroids to form K clusters. Then, it iteratively updates the centroids for each cluster until
the algorithm converges. Convergence is reached after a fixed amount of iterations or when the
centroids are no anymore updated significantly. This algorithm is guaranteed to converge – but
not to the optimal solution. Like gradient-descent methods, the K-Means algorithm is guaranteed
to converge in a finite number of steps to a local minimum. Moreover, it is a polynomial algorithm:
O(Kn) for assigning each sample to the closest cluster and O(n) to update the centroids of the
clusters. In conclusion, K-Means is a straightforward and efficient method, but, on the other hand,
it is strongly sensible for the initialization phase. If the initial centroids are not chosen correctly,
the algorithm converges to a local minimum of the error function. Therefore, the results can differ
from one execution and another, lacking inconsistency.



Algorithm 3: Hiearchical clustering algorithm.

Input: X, J
Output: S, H

1 Let H = {{xi}, . . . , {xn}} be set of singleton clusters formed with samples in X
2 repeat
3 Find pair of clusters si, sj ∈ H such that

si, sj ∈ arg max
i ̸=j
J (si, sj)

4 Update H by merging si, sj

H = H\si\sj ∪ {si ∪ sj}

5 until There is only one cluster left, i.e., |H| = 1
6 Extract S from H according to the cutting threshold policy
7 return S, H

Spectral Clustering With the K-Means algorithm, cluster membership points can be assumed
to be in a spherical area since the centroid is typically in the center of the cluster. This assumption
is invalid in the presence of non-convex shapes, and therefore, K-Means may not work well. Spectral
clustering [275] algorithm exploits the graph theory to cluster objects that are connected but not
necessarily compact or clustered within convex boundaries. The algorithm has in input a similarity
graph Z ∈ R

n×n and the K number of clusters to construct. The similarity graph Z maintains the
similarity scores between data nodes, specifically Zij refers to the similarity between samples i and
j in the data X. The performance of spectral clustering relies heavily on the similarity measure
used to construct the similarity graphs. Among the vast plethora of similarity measures, we find
cosine similarity, Pearson correlation coefficient, or inverse distance-based, which are the ones we
also investigate in this thesis. Once the similarity matrix has been defined, the associated Laplacian
matrix is calculated, and the K smallest eigenvectors are extracted. Finally, these eigenvectors are
used as features, and the K-Means algorithm is applied to them for extrapolating the K clusters.
The overall algorithm is reported in Alg. 2.
Applying K-Means to Laplacian eigenvectors allows us to find a cluster with non-convex bound-
aries. Moreover, embed data points in spectral embedding space, where the clusters are more
pronounced. However, it can be computationally expensive since the algorithm must compute
eigenvalues and eigenvectors and perform clustering over them. Indeed, its time and space com-
plexity are respectively O(n3) and O(n2), n being the number of data samples, which implies more
difficulties scaling for large datasets.

Hierarchical Clustering. Hierarchical clustering [199] belongs to the category of agglomerative
clustering algorithms, where clusters are composed in a bottom-up manner. Conversely to the
partitioning clustering algorithms (e.g., K-Means, Spectral), which produce single data partitions,
Hierarchical clustering creates a structure, such as a dendrogram, that depict the hierarchy of
clusters. Firstly, the algorithm creates a singleton cluster for every input object. Then it iteratively
merges the two most similar clusters into a single cluster. This procedure is repeated until there
is only one cluster left. The result is a tree structure where the root is the last cluster containing
all the samples, and the leaves are the singleton input data. Finally, a dendrogram showing the
clusters tree structures and their distance are used to define the cutting threshold. Cutting the
dendrogram at a specific similarity score would create a set of clusters where each cluster is the root
of a tree structure, and each leaf is a single cluster (see Fig. 2.5). Moreover, compared to K-Means
and Spectral clustering, the number of clusters K is not necessarily required to be specified, as
we can use a minimum similarity score between clusters as a threshold and have a non-predefined
number of clusters.



Fig. 2.5: A dendrogram representing the hierarchical clustering algorithm. The cutting threshold has
originated in four distinct clusters of objects.

The pseudocode of Hierarchical clustering is given in Alg. 3. The input now is the data samples X,
and J is a measure used to evaluate the distance or similarity between two clustering partitions.
The most common similarity measures for J are single-linkage, complete-linkage, average-linkage,
and Ward’s linkage. With single-linkage (complete-linkage) the distance between two clusters is
defined as the minimum (maximum) distance between any sample in the first cluster and another
one in the second cluster. Average-linkage calculates the distance of all data samples from the
first cluster with all others from the second cluster and takes the average distance as the distance
between the two clusters. Ward-linkage analyzes the variance of the two clusters when merged.
Beyond them, as for Spectral clustering, the similarity measure can be ad-hoc customized for the
specific task. Compared with Spectral clustering, Hierarchical clustering has a relatively smaller
time complexity O(n2 log n), n being the number of data samples. However, its computational
complexity is higher than that of K-Means, which is linear.

2.2 Adversarial Machine Learning

The extensive use of machine learning in safety-critical systems has raised questions about their
robustness in the presence of malicious users. In recent years, researchers have gained soaring
interest in investigating ML applications’ vulnerabilities because of the disastrous consequence
they may cause. For example, ML models are adopted in intrusion detection systems to prevent
harm from malicious intrusion by detecting adversarial traffic. An attacker, intending to bypass
detection, seeks to tamper with any component of the target system, including ML components
used to make decisions or their data, to reduce the quality of detection. Similarly, for spam
detection, where it has been shown that ML can be easily confused if a malicious spammer mixes
spam content with ham-like messages. Due to the natural adversarial nature of these applications,
identifying and protecting their attack vectors is mandatory for testing the robustness of such
systems. Adversarial machine learning is concerned thus with testing the robustness and protecting
ML systems from intentional attacks to preserve their availability, integrity, and confidentiality.
Availability attacks are when the attacker attempts to prevent legitimate users from accessing the
model, either by decreasing its accuracy and thus obtaining meaningless predictions or by causing
a Denial-of-Service (DoS) of the system by overloading it with requests. Attacks on integrity as
those that induce the model towards target outputs or behaviors previously chosen by the attacker.
Finally, attacks on confidentiality attempt to expose the model structure or parameters or the
data used to train and validate the model. This issue is recently emerging fast for competitive
and legal reasons. ML models can be valuable intellectual property companies want to preserve
to maintain a competitive advantage over competitors. Even more severe, data often includes



Attack Violation

Attack Influence Integrity Availability Privacy/Confidentiality

Exploratory Evasion (adversarial examples) Energy-latency attacks
Model extraction / stealing

and model inversion

Causative Poisoning (targeted, or backdoor) Poisoning (indiscriminate, sponge) -

Table 2.2: Categorization of attacks against machine learning depending on the attacker’s target violation
and attack influence. In red the attacks subject of this thesis.

personal and private information (e.g., patient data), the use of which is governed by current data
privacy guidelines, such as the EU’s General Data Protection Regulation (GDPR). Thus, protecting
against such attacks also demands compliance with Governments’ laws and regularization.

The big breakthrough in this domain was the discovery that ML is extending the attack surface,
i.e., all the possible attack vectors that represent the system’s vulnerabilities, both at training time
or after the model’s deployment in a production application, i.e., test time. In 2010 Barreno et al.
[17], proposed a framework to categorize such attacks against machine learning, identifying two
potential influence attacks that can deceive learning systems, i.e., exploratory and causative attacks.
Table 2.2 summarizes the taxonomy of malicious threats against ML systems and highlights the
main topic of this thesis.

2.2.1 Exploratory Attacks

Exploratory attacks exploit the target system’s weaknesses at test time to reach the attacker’s
goal.

Evasion Attacks. Among them evasion attacks have been getting a lot of attention in recent
years [28; 105; 255; 261]. In such attacks, the attacker alters malicious input data, namely ad-
versarial examples, to have them misclassified by the model. Even more worrying is that even
a wisely crafted but imperceptible noise injected in input samples may lead the ML systems to
output wrong predictions, threatening the trustworthiness of ML systems. In Fig. 2.6 we give an
example of a parrot adversarial example. The model correctly classifies the input sample shown
on the left. However, when the input is slightly perturbed, but still looks like a parrot for humans,
it is misclassified as a dog. Injecting the adversarial noise has moved the input sample from the
decision boundary of parrots (orange) toward the decision region of dogs (blue). The attacker suc-
ceeds in their goal as the adversarial parrot image has misled the ML model with high confidence.
Beyond this toy example, adversarial examples have been exploited in more realistic scenarios. For
example, an attacker may add a sticker [91] to a stop sign to have it misclassified as another road
sign, potentially causing a collision. Or slightly alter a malware to have it misclassified by anti-
virus as a legitimate application [71]. Alternatively, wearing a pair of adversarial glasses to elude
surveillance controls. Sharif et al. [240] have shown that an attacker can evade facial biometric
systems, widely used in surveillance and access control, by wearing wisely crafted accessories. The
presence of one of these accessories allows the attacker to impersonate another trusted individual
(see Fig. 2.7).

Traffic sign recognition, malware detection, and biometric access control are just a few of the do-
mains where evasion attacks have seriously posed questions about their trustworthiness in practical
applications. The primary responsibility is that ML algorithms have been designed carelessly for
the security aspect required for relying on them in real-world applications. This paradigm nowa-
days is less remarked on, and novel defensive techniques to protect ML from these attacks have been
developed [20; 152; 185; 232; 235; 161; 65; 310]. Unfortunately, these often prove ineffective [37],
and the search for a robust model against adversarial examples is still ongoing.



Fig. 2.6: Example of an evasion attack on the animal classifier. On the left, the expected behavior of
the model, which correctly classifies the input image. On the right, the adversarial example capable of
misleading the ML model. The red arrow indicates how the original input parrot was moved into feature
space, crossing the model’s decision boundary.

Fig. 2.7: Example of evasion attack against biometric control system based on ML. Wearing a pair of
earrings allows the intruder to be classified as Mila Jovovich.

Sponge Attacks. More recently also sponge attacks have been investigated by Shumailov et al.
[245] to increase the energy consumption of ML models. This attack aims at draining the system’s
batteries faster, compromising its availability to legitimate users. Because this is a recent threat,
no defenses against it have been evaluated. One possible strategy would be to adopt an anomaly
detector that tracks user requests and slows down or blocks users whose requests are more energy
demanding. More details about sponge examples are given in Chapter 6 when presenting our
energy-latency attack.

Fig. 2.8: Example of a poisoning attack on the animal classifier. On the left, a clean model that behaves as
expected, i.e., it correctly classifies the input image. On the right, the poisoned ML model misclassifies the
pristine input as desired by the attacker. The red decision boundary indicates how the model has changed
after being targeted by poisoning.

2.2.2 Causative Attacks

Causative attacks influence the learning process by tampering with the training data or model to
meet the attacker’s objective once the model is deployed. Causative attacks are helpful especially
in applications where the attacker can not craft an adversarial perturbation for each test sample,
for example, when the attack must be real-time. Fig. 2.8 depicts the influence of a poisoning attack
on a ML model decision boundary. Specifically, compared to the pristine model (left), the poisoned
one (right) has a different decision boundary that now meets the attacker’s goal. Compared to
the evasion attack seen in Fig. 2.6, the attacker’s effort was made during training by opening a
backdoor while the victim was collecting the training data or training the model. At test time, the
attacker exploits the opened vulnerability without optimizing/manipulating the input image.



Data Poisoning Attacks. Among the most famous and explored attacks data poisoning are the
more historical ones, to which the ML security literature has also paid the most attention. These
attacks assume the attacker’s capacity to influence learning by manipulating training samples.
The attacker acts only during the data gathering phase, e.g., compromising local data that are
subsequently shared to a remote central node that aggregates distributed data for training the
model. Being data poisoning attacks the main subject of this thesis, and for which a vast plethora
of works exist, we deeply investigate this topic in Chapter 3. The ever-increasing interest in
data poisoning threat has indeed brought the development of many papers. However, proper
categorization of them based on the attacker’s and defender’s assumptions is missing or incomplete,
leading to unfair comparison, misconceptions, or a false sense of insecurity. For that reason we
proposed two papers around this categorization, i.e., [61; 62], used as bases for Chapter 3.

Model Poisoning Attacks. Model poisoning attacks are a more recent causative threat vector
against ML models. In contrast to data poisoning, the attacker directly manipulates their local
model or gradient updates without the need to modify data or labels. We further investigate
model poisoning attacks in Chapter 6 when proposing our model poisoning attack to increase
energy consumption [61].



Chapter 3

Machine Learning Security against
Data Poisoning

Research Question #1

How can we categorize/distinguish poisoning attacks against ML?

Poisoning attacks are staged at training time by manipulating the training data or compromising
the learning process to degrade the model’s performance at test time. Among the two scenarios,
the case where data are influenced by the attacker, namely data poisoning, has attracted increasing
attention from ML stakeholders, perhaps after the incident of Tay [156] (see Sec. 3.1), to the point
that now it is considered the largest concern for ML applications [107; 151]. We identified three
main categories of data poisoning attacks [62; 63], namely indiscriminate, targeted, and backdoor
poisoning attacks.

Indiscriminate poisoning attacks are staged to maximize the classification error of the model on
the (clean) test samples. The attacker aims to reduce the system’s availability to legitimate users
who can not trust the output of the poisoned model.

Targeted poisoning attacks influence the model to cause misclassification only for a specific set of
(clean) test samples.

In backdoor poisoning attacks, the training data is manipulated by adding poisoning samples
containing a specific pattern, referred to as the backdoor trigger, and labeled with an attacker-
chosen class label. This typically induces the model to learn a strong correlation between the
backdoor trigger and the attacker-chosen class label. Accordingly, the input samples that embed
the trigger are misclassified at test time as samples of the attacker-chosen class, while the pristine
samples remain correctly classified.

However, outside of our two works and a few others, this distinction between different types of
poisoning and the underlying assumptions is not evident in the literature, often leading to confusion
between target and backdoor attacks. This Chapter present our works [62; 63] that explores the
literature around data poisoning attacks to categorize them according to their threat model and
identify possible defenses and countermeasure to counter them.

Underlying Problem. We argue that the literature around poisoning is often quite chaotic.
The distinction between the different poisoning attack types is unclear, leading to unfair compar-
isons in the experimental evaluation. In some works, for example, we can see comparisons between
attacks with essentially different goals (e.g., targeted compared to backdoor attacks) and assump-
tions (e.g., attacks manipulating a few data vs. attacks on the entire training set) that require
different evaluations. Moreover, perhaps due to the chaotic scenario, some works are introduc-
ing methodological novelty in staging poisoning attacks, but their applicability remains unknown.



Proper categorization of existing attacks based on their threat models is therefore demanding for
shedding light on that field to overcome the difficulties mentioned above.

Related Work. Differently from existing surveys in the literature on ML security, which either
consider a high-level overview of the whole spectrum of attacks on ML [24; 42] or are specific
to an application domain [257; 291], our work [63] focuses solely on data poisoning attacks and
defenses, providing a greater level of detail and a more specific taxonomy. Other survey papers on
poisoning attacks do only consider backdoor attacks [98; 139; 162], except for the work by Goldblum
et al. [104]. Compared to the latter, our survey categorizes attacks and defenses based on a more
systematic threat modeling, introduces a unified optimization framework for poisoning attacks,
matches the defenses with the corresponding attacks they prevent, and discusses the historical
timeline of poisoning attacks since the early developments in cybersecurity applications of ML,
dating back to more than 15 years ago.

Contributions and Outline. In this Chapter, we examine the contributions proposed in our
survey [63] and magazine [62] papers, aimed at analyzing the literature on poisoning attacks, their
real-world implications, and possible countermeasures to stop them. We will focus more on the
parts where the author of this thesis contributed the most, i.e., formalization of the threat model
for attacks and matching with defenses. Further details on the defenses against poisoning, mostly
elaborated by other co-authors, are given in the two papers.
In our works, we identified three main categories of data poisoning attacks [62; 63]. These include
indiscriminate, targeted, and backdoor poisoning attacks, each of which assumes the capacity of the
attacker to tamper with the training data to reach the attacker’s goal at test time. Indiscriminate
poisoning attacks are staged to maximize the classification error of the model on the (clean) test
samples. The attacker aims to reduce the system’s availability to legitimate users who can not trust
the output of the poisoned model. Targeted poisoning attacks aim to influence the model to cause
misclassification only for a specific set of (clean) test samples. In backdoor poisoning attacks, the
training data is manipulated by adding poisoning samples containing a specific pattern, referred
to as the backdoor trigger, and labeled with an attacker-chosen class label. This typically induces
the model to learn a strong correlation between the backdoor trigger and the attacker-chosen class
label. Accordingly, the input samples that embed the trigger are misclassified at test time as
samples of the attacker-chosen class. In the last two scenarios, targeted and backdoor attacks, the
model’s performance is not compromised except for target points known only to the attacker, thus
making it more difficult for the victim to stop the attack.
Specifically, (i) we identify in Sec. 3.1 the main practical scenarios that enable staging such attacks
on ML models (ii) we provide in Sec. 3.2 a comprehensive framework for threat modeling of poi-
soning attacks and categorizing defenses, responding to our research question #1, i.e., “how can
we categorize/distinguish poisoning attacks against ML?” (iii) we use our framework to categorize
more than 50 papers on poisoning attacks, and we derive a unified formalization for their optimiza-
tion in Sec. 3.3; (iv) we take advantage of our framework to match specific attacks with appropriate
defenses according to their strategies in Sec. 3.4; (iv) we review in Sec. 3.5 the other domains where
poisoning have been investigated; and (v) we finally conclude this Chapter in Sec. 3.6 to discuss
the limitation of our work and propose future development.

3.1 Poisoning in Real-World Applications

Suppose you call one of your company suppliers to understand why they stopped emailing you
about the month’s promotions. The supplier replies that they continue to send their promotion as
usual and invite you to check the spam. The supplier was right! The emails ended up in your spam
folder, together with other communications from that company. Be aware that this could not have
happened by accident but as a result of fraud, in which an evil competitor ensures that the email
client marks any email from the victim company as spam. To this end, this malicious company
could flood you with spam containing the victim company’s name - until the ML-based spam filter



associates this benign name with the property “spam”, thus trashing future promotions. This
scenario is an instance of a machine learning security threat called data poisoning, described in
2008 by Nelson et al. [200], taken as an example in [62]. Under this setting, malicious users may
cause failures in ML systems (e.g., spam filters) by tampering with their training data, thereby
posing real concerns about the trustworthiness of the overall application. Moreover, because of
the opacity of ML models, it is even more challenging to properly test them during their lifetime,
identifying possible vulnerabilities or attacks before malicious users exploit them. For this reason,
the European Union (EU) has recently approved a set of ethical guidelines for developing trust-
worthy ML and artificial intelligence (AI) algorithms, and the so-called EU AI Act [89] (see also
Pelillo et al. [216] for an interdisciplinary perspective on these issues). These regulations require
such systems to provide accurate and human-aligned decisions, which follow the principles of being
explainable, fair, robust, and accountable.

Unfortunately, the road toward developing trustworthy AI/ML systems is paved with many obsta-
cles. In particular, it is not only a problem of designing the training algorithms or ML architectures
right. The data, specifically the data gathering process, plays a crucial role too. As Gary Mc-
Graw says, “it matters just as much as the rest of the technology, probably more”. While data
can be a strength for AI/ML models, it may also be their most vulnerable Achilles’ heel. Mind-
ful monitoring of the data collection procedure is becoming imperative, especially after the latest
incident in real-world applications. In 2016 Tay, an artificially intelligent chatbot developed by Mi-
crosoft’s Technology and Research, started to twit inappropriate messages because of a poisoning
attack [156]. Due to the large amount of data that ML systems consume, it is quite tricky to identify
poisoning samples in a massive training set, leading Microsoft to switch off the service. Chatbots in
other languages have shared its fate, including a Chinese [56] and a Korean [146] version. Another
attack showed how to poison the auto-complete feature in search engines [8]. Finally, a group
of extremists submitted wrongly-labeled images of portable ovens with wheels tagging them as
Jewish baby strollers to poison Google’s image search [106]. Several sources confirm that poisoning
is already carried out in practice [107; 189; 151].

Due to their practical relevance, various scientific articles have been published on training-time
attacks against ML models. Our survey [63] covers the literature on poisoning on supervised
classification models in the computer vision domain, where the vast majority of work has been
done. However, we want to remark that data poisoning has been investigated earlier in other
application domains, briefly investigated in Sect. 3.5.

3.2 Modeling Poisoning Attacks and Defenses

The literature and efforts toward the poisoning problem have increased in recent years, developing
attacks and defenses. In fact, on the attack side, we study how a possible attacker could be capable
of compromising the ML training phase and what vulnerabilities these models expose. These are
all analyses that serve to test the robustness of AI/ML models. On the defense side, new detection
or sanitization strategies are being developed on both data and models to remove or reduce the
impact of potential poisoning attacks.

In the remainder of this section, we investigate the attacks and defenses modeling frameworks
we proposed in [63]. The two frameworks model the profile of attackers, who wish to harm the
system, and defenders, who wish to protect or repair the system, describing their motivation and
capabilities. We discuss how we categorize poisoning attacks against learning models, answering
our research question #1, and how defenses try to mitigate them. In doing this, we revisit the
framework by Muñoz-González et al. [197] to systematize poisoning attacks according to the at-
tacker’s goal, knowledge of the target system, and capability of manipulating the input data or
model. We similarly conclude by characterizing the defender’s goal, knowledge, capability, and
strategy to mitigate the impact of poisoning attacks. The notation and symbols used throughout
this Chapter are summarized on page v.



3.2.1 Learning Settings

We define here the three main scenarios under which ML models can be trained, and which can
pose serious concerns in relation to data poisoning attacks. We refer to them below respectively
as (i) training from scratch, (ii) fine tuning, and (iii) model training. In Fig. 3.1, we conceptually
represent these settings, along with the entry points of the attack surface that enable staging a
poisoning attack.

Training from Scratch (TS) and Fine Tuning (FT) In the training-from-scratch and fine-
tuning scenarios, the user controls the training process, but collects the training data from external
repositories, potentially compromised by attackers. In practice, these are the cases where data
gathering and labeling represent time-consuming and expensive tasks that not all organizations and
individuals can afford, forcing them to collect data from untrusted external sources. The distinction
between the two scenarios hinges on how the collected data are employed during training. In
the training-from-scratch scenario, the collected data is used to train the model from a random
initialization of its weights. In the fine-tuning setting, instead, a pretrained model is typically
downloaded from an untrusted source, and used to map the input samples on a given representation
space induced by a feature mapping function ϕ. Then, a classification function f is fine tuned on
top of the given representation ϕ.

Model Training (MT) In the model-training (outsourcing) scenario, the user is supposed to
have limited computational capacities and outsources the whole training procedure to an untrusted
third party, while providing the training dataset. The resulting model can then be provided either
as an online service which the user can access via queries, or given directly to the user. In this case,
both the feature mapping ϕ and the classification function f are trained by the attacker (i.e., the
untrusted party). The user, however, can validate the model’s accuracy on a separate validation
dataset to ensure that the model meets the desired performance requirements.

3.2.2 Attack Framework

Attacker’s Goal. The goal of a poisoning attack can be defined in terms of the intended
security violation, and the attack and error specificity, as detailed below.

Security Violation. It defines the security violation caused by the attack, which can be: (i) an
integrity violation, if malicious activities evade detection without compromising normal system
operation; (ii) an availability violation, if normal system functionality is compromised, causing a
denial of service for legitimate users; or (iii) a privacy violation, if the attacker aims to obtain
private information about the system itself, its users, or its data.

Attack Specificity. It determines which samples are subject to the attack. It can be:
(i) sample-specific (targeted), if a specific set of sample(s) is targeted by the attack, or (ii)
sample-generic (indiscriminate), if any sample can be affected.

Error Specificity. It determines how the attack influences the model’s predictions. It can
be: (i) error-specific, if the attacker aims to have a sample misclassified as a specific class; or (ii)
error-generic, if the attacker attempts to have a sample misclassified as any class different from
the true class.

Attacker’s Knowledge. The attacker may get to know some details about the target system,
including information about: (i) the (clean) training data D, (ii) the model being used M,
and (iii) the test data T . The first component considers how much knowledge the attacker
has on the training data. The second component refers to the ability of the attacker to access



Fig. 3.1: Training (left) and test (right) pipeline. The victim collects a training dataset D′ from an
untrusted source. The training or fine tuning algorithm uses these data to train a model M, composed of
a feature extractor ϕ, and a classification layer f . In the case of fine tuning, only f is modified, while
the feature representation ϕ is left untouched. At test time, some test samples may be manipulated by the
attacker to exploit the poisoned model and induce misclassification errors.

the target model, including its internal (trained) parameters, but also additional information
like hyperparameters, initialization, and the training algorithm. The third component specifies
if the attacker knows in advance (or has access to) the samples that should be misclassified
at test time. Although not explicitly mentioned in previous work, we have found that the
knowledge of test samples is crucial for some attacks to work as expected. Clearly, attacks
that are designed to work on specific test instances are not expected to generalize to different
test samples (e.g., to other samples belonging to the same class). Depending on the combina-
tion of the previously-defined properties, we can define two main attack settings, as detailed below.

White-Box Attacks. The attacker has complete knowledge about the targeted system. Although
not always representative of practical cases, this setting allows us to perform a worst-case analysis,
and it is particularly helpful for evaluating defenses.

Black-Box Attacks. Black-box attacks can be subdivided into two main categories: black-box
transfer attacks, and black-box query attacks. Although generally referred to as a black-box
attack, black-box transfer attacks assume that the attacker has partial knowledge of the training
data and/or the target model. In particular, the attacker is assumed to be able to collect a
surrogate dataset and use it to train a surrogate model approximating the target. Then, white-box
attacks can be computed against the surrogate model, and subsequently transferred against the
target model. Under some mild conditions, such attacks have been shown to transfer successfully
to the target model with high probability [73]. It is also worth remarking that black-box query
attacks can also be staged against a target model, by only sending input queries to the model
and observing its predictions to iteratively refine the attack, without exploiting any additional
knowledge [47; 64; 211; 268]. However, to date, most of the poisoning attacks staged against
learning algorithms in black-box settings exploit surrogate models and attack transferability.

Attacker’s Capability. The attacker’s capability is defined in terms of how the attacker can
influence the learning setting, and on the data perturbation that can be applied to training and/or
test samples.

Influence on Learning Setting. The three learning settings described in Sec. 3.2.1 open the
door towards different data poisoning attacks. In both training-from-scratch (TS) and fine-tuning
(FT) scenarios, the attacker alters a subset of the training dataset collected and used by the
victim to train or fine-tune the machine learning model. Conversely, in the model-training (MT)
scenario, as firstly hypothesized by Gu et al. [108], the attacker acts as a malicious third-party
trainer, or as a man-in-the-middle, controlling the training process. The attacker tampers with the
training procedure and returns to the victim user a model that behaves according to their goal.
The advantage for the attacker is the victim will never be aware of the training dataset actually
used. However, to keep their attack stealthy, the attacker must ensure that the provided model



Fig. 3.2: Visual examples of data perturbation noise. The first four figures show some examples of patch,
functional, and semantical triggers. For functional triggers we consider signal [15], blending [50], and
warping [205] transformations. The remaining two depict poisoning samples crafted with a bilevel attack
with visible noise, and a clean-label feature collision attack with imperceptible noise.

retains high prediction accuracy, making sure to pass the validation phase without suspicion from
the victim user. The attacker’s knowledge, discussed in Sec. 3.2.2, is defined depending on the
setting under consideration. In the model-training and training-from-scratch settings, D′ and M
refer to the training data and algorithm used for training the model from random initialization of
its weights. Conversely, in the fine-tuning setting, D′ and M refer to the fine-tuning dataset and
learning algorithm, respectively.

Data Perturbation. Staging a poisoning attack requires the attacker to manipulate a given
fraction (p) of the training data. In some cases, i.e., in backdoor attacks, the attacker is also
required to manipulate the test samples that are under their control, by adding an appropriate
trigger to activate the previously-implanted backdoor at test time. More specifically, poisoning
attacks can alter a fraction of the training labels and/or apply a (different) perturbation to each
of the training (poisoning) samples. If the attack only modifies the training labels, but it does not
perturb any training sample, it is often referred to as a label-flip poisoning attack. Conversely, if
the training labels are not modified (e.g., if they are validated or assigned by human experts or
automated labeling procedures), the attacker can stage a so-called clean-label poisoning attack.
Such attacks only slightly modify the poisoning samples, using imperceptible perturbations that
preserve the original semantics of the input samples along with their class labels [238]. We de-
fine the strategies used to manipulate training and test data in poisoning attacks in the next section.

Attack Strategy. The attack strategy amounts to defining how the attacker manipulates data
to stage the desired poisoning attack. Both indiscriminate and targeted poisoning attacks only
alter the training data, while backdoor attacks also require embedding the trigger within the
test samples to be misclassified. We revise the corresponding data manipulation strategies in the
following.

Training Data Perturbation (δ). Two main categories of perturbation have been used to
mount poisoning attacks. The former includes perturbations which are found by solving an opti-
mization problem, either formalized as a bilevel (BL) programming problem, or as a feature-collision
(FC) problem. The latter involves the manipulation of training samples in targeted and backdoor
poisoning attacks such that they collide with the target samples in the given representation space,
to induce misclassification of such target samples in an attacker-chosen class. When it comes to
backdoor attacks, three main types of triggers exist, which can be applied to training samples
to implant the backdoor during learning: patch triggers (TP ), which consist of replacing a small
subset of contiguous input features with a patch pattern in the input sample; functional triggers
(TF ), which are embedded into the input sample via a blending function; and semantical triggers
(TS), which perturb the given input while preserving its semantics (e.g., modifying face images by
adding sunglasses, or altering the face expression, but preserving the user identity). The choice
of this strategy plays a fundamental role since it influences the computational effort, effectiveness,



and stealthiness of the attack. More concretely, the trigger strategies are less computationally
demanding, as they do not require optimizing the perturbation, but the attack may be less effec-
tive and easier to detect. Conversely, an optimized approach can enhance the effectiveness and
stealthiness of the attack, at the cost of being more computationally demanding.
In Fig. 3.2 we give some examples of patch, functional, and semantical triggers, one example
of a poisoning attack optimized with bilevel programming, and one example of a clean-label
feature-collision attack.

Test Data Perturbation (t). During operation, i.e., at test time, the attacker can submit
malicious samples to exploit potential vulnerabilities that were previously implanted during model
training, via a backdoor attack. More concretely backdoor attacks are activated when a specific
trigger t is present in the test samples. Normally, the test-time trigger is required to exactly match
the trigger implanted during training, thus including patch, functional, and semantical triggers.
Further investigation on backdoor poisoning are given in Sec. 3.3.3.

3.2.3 Defense Framework

In this section, we introduce the main strategies that can be used to counter poisoning attacks,
based on different assumptions made on the defender’s goal, knowledge and capability.

Defender’s Goal. The defender’s goal is to preserve the integrity, availability, and privacy of
their ML model, i.e., to mitigate any kind of security violation that might be caused by an attack.
The defender thus adopts appropriate countermeasures to alleviate the effect of possible attacks,
without significantly affecting the behavior of the model for legitimate users.

Defender’s Knowledge and Capability. The defender’s knowledge and capability determine
in which learning setting a defense can be applied. We identify four aspects that influence how the
defender can operate to protect the model: (i) having access to the (poisoned) training data D′,
and to (ii) a separate, clean validation set V, and (iii) having control on the training procedure
W, and on (iv) the model’s parameters θ. We will see in more detail how these assumptions are
matched to each defense in Sec. 3.4.

Defense Strategy. The defense strategy defines how the defender operates to protect the system
from malicious attacks before deployment (i.e., at training time), and after the model’s deployment
(i.e., at test time). We identify six distinct categories of defenses:

1. training data sanitization, which aims to remove potentially-harmful training points before
training the model;

2. robust training, which alters the training procedure to limit the influence of malicious points;

3. model inspection, which returns for a given model whether it has been compromised (e.g., by
a backdoor attack);

4. model sanitization, which cleans the model to remove potential backdoors or targeted poi-
soning attempts;

5. trigger reconstruction, which recovers the trigger embedded in a backdoored network;

6. test data sanitization, which filters potentially-triggered samples presented at test time.

These defenses essentially work by either (i) cleaning the data or (ii) modifying the model. In the
former case, the defender aims to sanitize training or test data. Training data sanitization and test
data sanitization as thus two strategies adopted respectively at training and at test time to mitigate
the influence of data poisoning attacks. Alternatively, the defender can act directly on the model,
by (i) identifying possible internal vulnerabilities and removing/fixing components that lead to



Fig. 3.3: Conceptual overview of poisoning attacks and defenses according to our framework. Attacks
are categorized based on whether they compromise system integrity or availability. Defenses are categorized
based on whether they sanitize data or modify the learning algorithm/model. Training-time (test-time)
defenses are applied before (after) model deployment. Training-time interventions are also divided accord-
ing to whether model-training (MT) is outsourced, or training-from-scratch (TS) / fine-tuning (FT) is
performed.

anomalous behavior/classifications, or by (ii) changing the training procedure to make the model
less susceptible to training data manipulations. The first approach is employed in model inspection,
trigger reconstruction and model sanitization defensive mechanisms. The second approach, instead,
includes algorithms that operate at the training level to implement robust training mechanisms.

3.2.4 Poisoning Attacks and Defenses

We provide in Fig. 3.3 a preliminary, high-level categorization of attacks and defenses according
to our framework. This simplified taxonomy categorizes attacks and defenses based on whether
they are applied at training time (and in which learning setting) or at test time; whether the
attack aims to violate integrity or availability;1 and whether the defense aims to sanitize data or
modify the learning algorithm/model. As one may note, indiscriminate and targeted poisoning only
manipulate data at training time to violate availability and integrity, respectively, and they are
typically staged in the training-from-scratch (TS) or fine-tuning (FT) learning settings. Backdoor
attacks, in addition, require manipulating the test data to embed the trigger and cause the desired
misclassifications, with the goal of violating integrity. Such attacks can be ideally staged in any of
the considered learning settings. For defenses, data sanitization strategies can be applied either at
training time or at test time, while defenses that modify the learning algorithm or aim to sanitize
the model can be applied clearly only at training time (i.e., before model deployment). To conclude,
while being simplified, we do believe that this conceptual overview of attacks and defenses provides
a comprehensive understanding of the main assumptions behind each poisoning attack and defense
strategy. Accordingly, we are now ready to delve into a more detailed description of attacks and
defenses in Sects. 3.3 and 3.4.

3.3 Poisoning Attacks

We now take advantage of the previous framework to give an overview of the existing attacks
according to the corresponding violation and strategy. Our survey is mostly focused on poisoning
classification models for computer vision, which encompasses most of the work related to poisoning
attacks and defenses. A compact summary of all attacks from the vision domain is given in
Table 3.1.

1To our knowledge, no poisoning attack violating a model’s privacy has been considered so far, so we omit the
privacy dimension from this representation.



(a) Indiscriminate attack.
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(b) Targeted attack.

backdoored stop 
signs classified as 
speedlimit

(c) Backdoor attack.

Fig. 3.4: Conceptual representation of the impact of indiscriminate, targeted, and backdoor poisoning on
the learned decision function. We depict the feature representations of the speed limit sign (red dots) and
stop signs (blue dots). The poisoning samples (solid black border) change the original decision boundary
(dashed gray) to a poisoned variant (dashed black).

3.3.1 Indiscriminate (Availability) Poisoning

Indiscriminate poisoning attacks represent the first class of poisoning attacks against ML algo-
rithms. The attacker aims to subvert the system functionalities, compromising its availability for
legitimate users by poisoning the training data. More concretely, the attacker aims to cause mis-
classification on clean validation samples by injecting new malicious samples or perturbing existing
ones in the training dataset. In Fig. 3.4a we consider the case where an attacker poisons a linear
street-sign classifier to have stop signs misclassified as speed limits. The adversary injects poi-
soning samples to rotate the classifier’s decision boundary, thus compromising the victim’s model
performance. In the following, we present the strategies developed in existing works and categorize
them in Table 3.1. Although they could also operate on the fine-tuning (FT) scenario, existing
works have been proposed only in the training-from-scratch (TS) setting. By contrast, their ap-
plication in the model-training (MT) scenario would not be feasible, as the model, with reduced
accuracy due to the attack, would not pass the user validation phase. To be appliable in the latter
scenario without detection, indiscriminate attacks must compromise the system’s availability but
not increase the classification error. This has been recently done by Cinà et al. [61], who proposed
a so-called sponge poisoning attack aimed to increase the model’s prediction latency.

Label-Flip Poisoning The most straightforward strategy to stage poisoning attacks against
ML is label-flip, originally proposed by Biggio et al. [26]. The adversary does not perturb the
feature values, but they mislabel a subset of samples in the training dataset, compromising the
performance accuracy of ML models such as Support Vector Machines (SVMs). Beyond that, Xiao
et al. [292] showed that random flips could have far-from-optimal performance, which would require
solving an NP-hard optimization problem. Due to its intractability, heuristic strategies have been
proposed by Xiao et al. [292], and later by Xiao et al. [294], to efficiently approximate the optimal
formulation.

Bilevel Poisoning In this case, the attacker manipulates the training samples and their labels.
The pioneering work in this direction was proposed by Biggio et al. [27], where a gradient-based
indiscriminate poisoning attack is exploited against SVMs. They exploited implicit differentiation
to derive the gradient required to optimize the poisoning samples by their iterative algorithm.
Until convergence, the poisoning samples are iteratively updated following the implicit gradient,
directing towards maximization of the model’s validation error. Mathematically speaking, this idea



Table 3.1: Taxonomy of existing poisoning attacks, according to the attack framework defined in Sect. 3.2.
The presence of the ✔ indicates that the corresponding properties is satisfied by the attack. For the attacker’s
knowledge we use: # when the attacker has knowledge of the corresponding component; G# if the attacker
uses a surrogate to mount the attack;  if the attacker does not require that knowledge. In the attacker’s
capabilities we use MT, TS and FT as acronyms for model-training, training-from-scratch, and fine-tuning

learning settings. , , represent the amount of poisoning: small (≤ 10%), medium (≤ 30%), or
high percentage of the training set. The columns δ and t define the training and test strategies: optimized
bilevel – BL, feature collision – FC and trigger – T.
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corresponds to treating the poisoning task as a bilevel optimization problem:

max
δ∈∆

L(V,M,θ⋆) , (3.1)

s.t. θ⋆ ∈ arg min
θ

L(D ∪Dδ
p ,M,θ) . (3.2)

with ∆ being the set of admissible manipulation of the training samples that preserve the con-
straints imposed by the attackers (e.g., ℓp, or box-constraints)2. We define with Dp = {(xi, yi)}

n
i=1

the training data controlled by the attacker, before any perturbation is applied, being yi the
pristine label of sample xi and n the number of samples in Dp. We then denote with Dδ

p the corre-
sponding poisoning dataset manipulated according to the perturbation parameter δ. The attacker
optimizes the perturbation δ (applied to the poisoning samples Dp) to increase the error/loss L
of the target model M on the clean validation samples V. Our formulation in Eqs. (3.1)-(3.2)
encompass both dirty or clean-label attacks according to the nature of Dδ

p . For example, we can

define Dδ
p = {(xi + δi, y

′
i)}

n
i=1

3, being y′i the poisoning label chosen by the attacker, with y′i = yi
for a clean-label attack and y′i ̸= yi for a dirty-label attack.
Solving this bilevel optimization is challenging, since the inner and the outer problems in Eqs. (3.1)-
(3.2) have conflicting objectives. More concretely, the inner objective is a regularized empirical
risk minimization, while the outer one is empirical risk maximization, both considering data from
the same distribution.
A similar approach was later generalized in Xiao et al. [293] and Frederickson et al. [96] to target
feature selection algorithms (i.e., LASSO, ridge regression, and elastic net).
Subsequent work tried to analyze the robustness of ML models when the attacker has limited knowl-
edge about the training dataset or the victim’s classifier. In this scenario, the most investigated
methodology is given by the transferability of the attack [73; 182; 248]. The attacker crafts the
poisoning samples using surrogate datasets and/or models and then transfers the attack to another
target model. This approach has proven effective for corrupting logistic classifiers [73], algorithmic
fairness [248], and differentially-private learners [182]. More details about the transferability of
poisoning attacks are presented in Sec. 3.3.6.
Differently from previous work, Cinà et al. [60] observed that a simple heuristic strategy and a
variable reduction technique can reach noticeable results against linear classifiers with increased
computational efficiency. More concretely, the authors showed how previous gradient-based ap-
proaches could be affected by several factors (e.g., loss landscape) that degrade their performance
in terms of computation time and attack efficiency.
Although effective, the aforementioned poisoning attacks have been designed to fool models with
a relatively small number of parameters. More recently, Muñoz-González et al. [197] showed that
devising poisoning attacks against larger models, such as convolutional neural networks, can be
computationally and memory demanding. To this end, Muñoz-González et al. [197] pioneered
the idea of adapting hyperparameter optimization methods, which aim to solve bilevel program-
ming problems more efficiently, in the context of poisoning attacks. The authors proposed a
back-gradient descent technique to optimize poisoning samples, drastically reducing the attack
complexity. The underlying idea is to back-propagate the gradient of the objective function to
the poisoning samples while learning the poisoned model. However, they assume the objective
function is sufficiently smooth to trace the gradient backward correctly. Another way explored in
Yang et al. [301] was to train a generative model from which the poisoning samples are generated,
thus increasing the generation rate.

Bilevel Poisoning (Clean-Label) Previous work examined in Sec. 3.3.1 assumes that the
attacker has access to a small percentage of the training data and can alter both features and labels.
Similar attacks have been staged by assuming that the attacker can control an extensively larger

2For example, the attacker can constraint the perturbation magnitude of δ imposing ∥δ∥p ≤ ϵ with ∆ = {δ ∈
R
n×d | ∥δ∥p ≤ ϵ}.
3In this example we used δ as additive noise. To be more generic we can define a manipulation function h

parametrized by δ and the sample x to perturb.



fraction of the training set while only slightly manipulating each poisoning sample to preserve
its class label, i.e., performing a clean-label attack. This idea was introduced by Mei and Zhu
[191], who considered manipulating the whole training set to arbitrarily define the importance of
individual features on the predictions of convex learners. More recently, DeepConfuse [93] and
Fowl et al. [94] proposed novel techniques to mount clean-label poisoning attacks against DNNs.
In [93], the attacker trains a generative model, similarly to [301], to craft clean-label poisoning
samples which can compromise the victim’s model. Inspired by recent developments proposed in
[101], Fowl et al. [94] used a gradient alignment optimization technique to alter the training data
imperceptibly but diminish the model’s performance. Even though Feng et al. [93] and Fowl et al.
[94] can target DNNs, the attacker is assumed to perturb a high fraction of samples in the training
set. We do believe that this is a very demanding setting for poisoning attacks. In fact, such attacks
are often possible because ML is trained on data collected in the wild (e.g., labeled through tools
such as a mechanical Turk) or crowdsourced from multiple users; thus, it would be challenging for
attackers in many applications to control a substantial fraction of these training data realistically.
In conclusion, the quest for scalable, effective, and practical indiscriminate poisoning attacks on
DNNs is still open. Accordingly, it remains unclear whether such attacks in practical settings can
significantly subvert DNNs.

3.3.2 Targeted (Integrity) Poisoning

In contrast to indiscriminate poisoning, targeted poisoning attacks preserve the system’s availabil-
ity, functionality, and behavior for legitimate users, while causing misclassification of some specific
target samples. Like indiscriminate poisoning, targeted poisoning attacks manipulate the training
data but do not require modifying the test data.
An example of a targeted attack is given in Fig. 3.4b, where the classifier’s decision function
for clean samples is not significantly changed after poisoning, preserving the model’s accuracy.
However, the model isolated the target stop sign (grey) to be misclassified as a speed-limit sign.
The system can still correctly classify most clean samples but outputs wrong predictions for the
target stop sign.
In the following sections, we describe the targeted poisoning attacks categorized in Table 3.1.
Notably, such attacks have been investigated both in the training-from-scratch (TS) and fine-
tuning (FT) settings, defined in Sec. 3.2.1.

Bilevel Poisoning In Sec. 3.3.1, we reviewed the work in Muñoz-González et al. [197]. In
addition to indiscriminate poisoning, the authors also formulated targeted poisoning attacks as:

min
δ∈∆

L(V,M,θ⋆) + L(Vt,M,θ⋆) , (3.3)

s.t. θ⋆ ∈ arg min
θ

L(D ∪Dδ
p ,M,θ) . (3.4)

Within this formulation, the attacker optimizes the perturbation δ on the poisoning samples Dp to
have a set of target (validation) samples Vt misclassified while preserving the accuracy on the clean
(validation) samples in V. It is worth noting that the attack is optimized on a set of validation
samples, then evaluated on a separate set of test samples. The underlying rationale is that the
attacker can not typically control the specific realization of the target instances at test time (e.g.,
if images are acquired from a camera sensor, the environmental and acquisition conditions can not
be controlled), and the attack is thus expected to generalize correctly to that case.
A similar attack was introduced by Koh and Liang [144], to show the equivalence between gradient-
based (bilevel) poisoning attacks and influence functions, i.e., functions defined in the area of robust
statistics that identify the most relevant training points influencing specific predictions. Notably,
these authors were the first to consider the fine-tuning (FT) scenario in their experiments, training
the classification function f (i.e., an SVM with the RBF kernel) on top of a feature representation
ϕ extracted from an internal layer of a DNN. Although these two bilevel optimization strategies
have been proven effective, they remain too computationally demanding to be applied to DNNs.



Jagielski et al. [134] showed how to generalize targeted poisoning attacks to an entire subpopulation
in the data distribution while reducing the computational cost. To create subpopulations, the
attacker selects data samples by matching their features or clustering them in feature space. The
poisoning attack can be performed either by label flipping or linearizing the influence function to
approximate the poisoning gradients, thus reducing the computational cost of the attack. Muñoz-
González et al. [197] and Jagielski et al. [134] define a more ambitious goal for the attack compared
to Koh and Liang [144], as their attacks aim to generalize to all samples coming from the target
distribution or the given subpopulation. Specifically, the attack by Koh and Liang [144] is tailored
for misleading the model only for some specific test samples, which means considering the test set
T rather than a validation set Vt in Eq. (3.3). However, the cost of the attack by Muñoz-González
et al. [197] is relatively high due to the need to solve a bilevel problem, while the attack by Jagielski
et al. [134] is faster, but it does not achieve the same success rate on all subpopulations.

Feature Collision (Clean-Label) This category of attacks is based on a heuristic strategy
named feature collision, suited to the so-called fine-tuning (FT) scenario, which avoids the need
to solve a complex bilevel problem to optimize poisoning attacks. In particular, PoisonFrog [238]
was the first work proposing this idea, which can be formalized as:4

min
δ

∥ϕ(x+ δ)− ϕ(z)∥22 . (3.5)

This attack amounts to creating a poisoning sample x+δ that collides with the target test sample
z ∈ T in the feature space so that the fine-tuned model predicts z according to the poisoning
label associated with x. To this end, the adversary leverages the feature extractor ϕ to minimize
the distance of the poisoning sample from the target in the feature space. Moreover, the authors
observed that, due to the complexity and nonlinear behavior of ϕ, the poisoning samples only need
to be slightly perturbed. Even samples from different distributions can be slightly perturbed to
match the feature representation of target samples from other classes. Similarly, Guo and Liu [109]
adopted feature collision to stage the attack, but they extended the attack’s objective function to
further increase the poisoning effectiveness.
Nevertheless, although this strategy turns out to be effective, it assumes that the feature extractor
is fixed and that it is not updated during the fine-tuning process. Moreover, StringRay [256], Con-
vexPolytope [323], and BullseyePolytope [2] observed that when reducing the attacker’s knowledge,
the poisoning effectiveness decreases. These works showed that feature collision is not practical if
the attacker does not know exactly the details of the feature extractor, as the embedding of poison-
ing samples may not be consistent across different feature extractors. To mitigate these difficulties,
ConvexPolytope [323] and BullseyePolytope [2] optimize the poisoning samples against ensemble
models, constructing a convex polytope around the target samples to enhance the effectiveness of
the attack. The underlying idea is that constructing poisoning points against ensemble models may
improve attack transferability. The authors further optimize the poisoning samples by establishing
a strong connection among all the layers and the embeddings of the poisoning samples, partially
overcoming the assumption that the feature extractor ϕ remains fixed.
All these approaches create clean-label samples, as first proposed in Shafahi et al. [238], to stay
undetected even when humans validate the class labels of training points. This is possible as these
attacks are staged against deep models since, for these models, small (adversarial) perturbations
of samples in the input space correspond to large changes in their feature representations.

Bilevel Poisoning (Clean-Label) Although feature collision attacks are effective, they may
not result in optimal accuracy, and they do not minimize the number of poisoned points to change
the model’s prediction on a single test point. Moreover, they assume that the training process is
not significantly changing the feature embedding. Indeed, when the whole model is trained from
scratch, these strategies may not work properly as poisoning samples can be embedded differently.

4We neglect the penalty term used to increase the attack’s stealthiness introduced in [238] as it is not related to
the feature collision strategy.



Recent developments, including MetaPoison [129] and the work by Geiping et al. [101], tackle the
targeted poisoning attack in the training-from-scratch (TS) scenario, while ensuring the clean-label
property. These approaches are derived from the bilevel formulation in Eqs. (3.3)-(3.4), but they
exploit distinct and more scalable approaches to target DNNs, and optimize the attack directly
against the test samples T as done in [144]. More concretely, MetaPoison [129] uses a meta-learning
algorithm, as done by Muñoz-González et al. [197], to decrease the computational complexity of the
attack. They further enhance the transferability of their attack by optimizing the poisoning samples
against an ensemble of neural networks, trained with different hyperparameter configurations and
algorithms (e.g., weight initialization, number of epochs). Geiping et al. [101] craft poisoning
samples to maximize the alignment between the inner loss and the outer loss in Eqs. (3.3)-(3.4).
The authors observed that matching the gradient direction of adversarial examples is an effective
strategy for attacking DNNs trained from scratch, even on large training datasets. Although
modern feature collision or optimized strategies are emerging with notable results for targeted
attacks, their performance, especially in black-box settings, still demands further investigation.

3.3.3 Backdoor (Integrity) Poisoning

Backdoor poisoning attacks aim to cause an integrity violation. In particular, for any test sample
containing a specific pattern, i.e., the so-called backdoor trigger, they aim to induce a misclassifica-
tion without affecting the classification of clean test samples. The backdoor trigger is known only
to the attacker, making it challenging for the defender to evaluate whether or not a given model
provided to them has been backdoored during training. In Fig. 3.4c we consider the case where the
attacker provides a backdoored street-sign detector that has good accuracy for classifying street
signs in most circumstances. However, the classifier has successfully learned the backdoor data
distribution and will output speed-limit predictions for any stop sign containing the backdoor trig-
ger. In the following sections, we describe backdoor attacks following the categorization given in
Table 3.1. Notably, such attacks have been initially staged in the model-training (MT) setting, as-
suming that the user outsources the training process to an untrusted third-party service, but they
have then been extended also to the training-from-scratch (TS) and fine-tuning (FT) scenarios.

Trigger Poisoning Earlier work in backdoor attacks considered three main families of backdoor
triggers, i.e., patch, functional, and semantical triggers, as discussed below.

Patch. The first threat vector of attack for backdoor poisoning has been investigated in Bad-
Nets [108]. The authors considered the case where the user outsources the training process of a
DNN to a third-party service, which maliciously alters the training dataset to implant a backdoor
in the model. To this end, the attacker picks a random subset of the training data, blends the
backdoor trigger into them, and changes their corresponding labels according to an attacker-chosen
class. A similar idea has been investigated further in LatentBackdoor [303] and TrojanNN [173],
where the backdoor trigger is designed to maximize the response of selected internal neurons,
thus reducing the training data needed to plant the trigger. Additionally, LatentBackdoor [303]
designed the trigger to survive even if the last layers are fine-tuned with novel clean data, while
TrojanNN [173] does not need access to the training data as a reverse-engineering procedure is
applied to create a surrogate dataset. All these attacks assume that the trigger is always placed
in the same position, limiting their application against specific defense strategies [250; 12; 44].
To overcome this issue, BaN [230] introduced different backdoor attacks where the trigger can be
attached in various locations of the input image. The underlying idea was to force the model to
learn the backdoor trigger and make it location invariant.

Functional. The patch strategy is based on the idea that poisoning samples repeatedly present
a fixed pattern as a trigger, which, however, may be detected upon human validation of training
samples (in the TS and FT scenarios, at least). In contrast, a functional trigger represents a
stealthier strategy as the corresponding trigger perturbation is slightly spaced throughout the
image or changes according to the input. Some works assume to slightly perturb the entire image
so that those small variations are not detectable by humans but evident enough to mislead the



model. In WaNET [205] warping functions are used to generate invisible backdoor triggers (see
Fig. 3.2). Moreover, the authors enforced the model to distinguish the backdoor warping functions
from other pristine ones. In Li et al. [160] steganography algorithms are used to hide the trigger into
the training data. Specifically, the attacker replaces the least significant bits to contain the trigger’s
binary string. In DFST [54] style transfer generative models are exploited to generate and blend the
trigger. However, the aforementioned poisoning approaches assume that the attacker can change
the labeling process and that no human inspection is done of the training data. This assumption
is then relaxed by Barni et al. [15] and Liu et al. [175], where clean-label backdoor poisoning
attacks are considered; in particular, Liu et al. [175] used natural reflection effects as trigger to
backdoor the system, while Barni et al. [15] used an invisible sinusoidal signal as backdoor trigger
(see Fig. 3.2). More practical scenarios, where the attacker is assumed to have limited knowledge,
have been investigated by Chen et al. [50] and Zhong et al. [322]. In these two works, the authors
used the idea of blending fixed patterns to backdoor the model. In the former approach, Chen
et al. [50] assumes that the attacker blends image patterns into the training data and tunes the
blend ratio to create almost invisible triggers while impacting the backdoor’s effectiveness. In the
latter, Zhong et al. [322] assumes that an invisible grid pattern is generated to increase the pixel’s
intensity, and its effectiveness is tested in the TS and FT settings.

Semantical. The semantical strategy incorporates the idea that backdoor triggers should be fea-
sible and stealthy. For example, Sarkar et al. [234] used facial expressions or image filters (e.g.,
old-age, smile) as backdoor triggers against real-world facial recognition systems. At training time,
the backdoor trigger is injected into the training data to cause the model to associate a smile filter
with the authorization of a user. At test time, the attacker can use the same filter to mislead
classification. Similarly, Chen et al. [50] and Wenger et al. [282] tried to poison face-recognition
systems by blending physically-implementable objects (e.g., sunglasses, earrings) as triggers.

Bilevel Poisoning Trigger-based strategies assume that the attacker uses a predefined per-
turbation to mount the attack. However, an alternative strategy for the attacker is to learn the
trigger/perturbation itself to enhance the backdoor effectiveness. To this end, even backdoor
poisoning can be formalized as a bilevel optimization problem:

min
δ∈∆

L(V,M,θ⋆) + L(Vt
t ,M,θ⋆) , (3.6)

s.t. θ⋆ ∈ arg min
θ

L(D ∪Dδ
p ,M,θ) . (3.7)

Here, the attacker optimizes the training perturbation δ for poisoning samples in Dp to mislead
the model’s prediction for validation samples Vt containing the backdoor trigger t. In contrast to
indiscriminate and targeted attacks (in Sec. 3.3.1 and Sec. 3.3.2), the attacker injects the back-
door trigger in the validation samples t to cause misclassifications. Additionally, as for targeted
poisoning, the error on V is minimized to preserve the system’s functionality.
One way to address this bilevel formulation is to craft optimal poisoning samples using generative
models [204; 76; 165], as also done in [301] for indiscriminate poisoning. Nguyen and Tran [204]
trained the generative model with a loss that enforces the diversity and noninterchangeable of
the trigger, while LIRA [76]’s generator is trained to enforce effectiveness and invisibility of the
triggers. Conversely, Li et al. [165] used a generative neural network steganography technique to
embed a backdoor string into poisoning samples. Another way is to perturb training samples with
adversarial noise, as done by Li et al. [160] and Zhong et al. [322]. More concretely, in the former
approach, the trigger maximizes the response of specific internal neurons, and a regularization
term is introduced in the objective function to make the backdoor trigger invisible. In the latter
work, the attacker looks for the minimum universal perturbation that pushes any input towards
the decision boundary of a target class. The attacker can use this invisible perturbation trigger on
any image, inducing the model to misclassify the target class.

Feature Collision (Clean-Label) The backdoor trigger visibility influences the stealthiness
of the attack. A backdoor trigger that is too obvious can be easily spotted when the dataset is



inspected [229]. However, Hidden Trigger [229] introduced the idea of using the feature collision
strategy, seen in Sec. 3.3.2 and formulated in Eq. (3.5), to hide the trigger into natural target
samples. The attacker first injects a random patch trigger into the training set, and then each
poisoning sample is masked via feature collision. The resulting poisoning images are visually
indistinguishable from the target and have a consistent label (i.e., they are clean-label), while the
test samples with the patch trigger will collide with the poisoning samples in feature space ensuring
that the attack works as expected.
Although the work in [229] implements an effective and stealthy clean-label attack, it is applicable
only in the feature extractor ϕ is not updated. Such a limitation is mitigated by Turner et al. [270]
who exploit a surrogate latent space, rather than ϕ, to interpolate the backdoor samples, hiding
the training-time trigger. Moreover, the attacker can tune the trigger visibility at test time to
enhance the attack’s effectiveness.

Bilevel Poisoning (Clean-Label) Inspired by recent success of the gradient-alignment tech-
nique in [101] for targeted poisoning, Souri et al. [251] exploited the same bilevel-descending strat-
egy to stage clean-label backdoor poisoning attacks in the training-from-scratch scenario. Similarly
to Saha et al. [229] the training and the test data perturbations are different, enhancing the stealth-
iness of the attack and making it stronger against existing defenses.

3.3.4 Unifying Framework

Although the three poisoning attacks are detailed in Sects. 3.3.1-3.3.3 aim to cause different
violations, they can be described by the following, generalized bilevel programming problem:

max
δ∈∆

αL(V,M,θ⋆)− βL(Vt
t ,M,θ⋆) , (3.8)

s.t. θ⋆ ∈ arg min
θ

L(D ∪Dδ
p ,M,θ) , (3.9)

The optimization program in Eqs. (3.8)-(3.9) aims to accomplish the attacker’s goal, considering
their capacity of tampering with the training set and knowledge of the victim model, by optimizing
the perturbation δ used to poison the training samples in Dp. Additionally, as in Eqs. (3.1)-(3.7),
the poisoning noise δ belongs to ∆ which encompass possible domain constraints or feature con-
straints to improve stealthiness of the attack (e.g., invisibility of the trigger). The test data pertur-
bation t is absent (i.e., t = 0), for indiscriminate and target poisoning. For backdoor poisoning, t
is pre-defined/optimized by the attacker before training, unlike from adversarial examples [28; 105]
where the perturbation t is optimized at test time. The coefficients α and β are calibrated ac-
cording to the attacker’s desired violation. We can set: (i) α = 1(−1) and β = 0 for error-generic
(specific) indiscriminate poisoning; (ii) α = −1 and β = −1(1) for error-specific (generic) targeted
poisoning; (iii) α = −1 and β = −1(1) for error-specific (generic) backdoor poisoning.
In conclusion, although backdoor, indiscriminate and targeted attacks are designed to cause distinct
security violations, they can be formulated under a unique bilevel optimization program. Therefore,
as we will explore in Sec. 3.3.5, solutions for optimizing bilevel optimization programs fast can pave
the way towards developing novel effective and stealthy poisoning attacks capable of mitigating
the scalability limit of current strategies.

3.3.5 Development Timeline

In this section we discuss the intertwined historical development of attacks, represented in Fig. 3.5,
highlighting the respective milestones and development over time. To the best of our knowledge, the
first example of indiscriminate poisoning was developed in 2006 by Perdisci et al. [218], Barreno
et al. [16], and Newsome et al. [202] in the computer security area. Such attacks, as well as
subsequent attacks in the same area [142; 227], were based on heuristic approaches to mislead
application specific ML models, and there was not a unifying mathematical formulation describing
them. It was only later, in 2012, that indiscriminate poisoning against machine learning was



formulated for the first time as a bilevel optimization [292], to compute optimal label-flip poisoning
attacks. Since then, indiscriminate poisoning has been studied under two distinct settings, i.e.,
assuming either (i) that a small fraction of training samples can be largely perturbed [27; 197; 73];
or (ii) that all training points can be slightly perturbed [191; 93; 94].
Targeted and backdoor poisoning attacks only appeared in 2017, and interestingly, they both
started from different strategies. Targeted poisoning started with the bilevel formulation in Koh
and Liang [144], but evolved in more heuristic approaches, such as feature collision [238; 323;
109]. Only recently, targeted poisoning attacks were reformulated as bilevel problems, given the
limitation of the aforementioned heuristic approaches [129; 101]. Backdoor poisoning started with
the adoption of patch [108; 173] and functional [175; 204] triggers. However, in the last years, such
heuristic choices have been put aside, and backdoor attacks are getting closer and closer to the
idea of formulating them in terms of a bilevel optimization, not only to enhance their effectiveness,
but also their ability to bypass detection [229; 251].

Fig. 3.5: Timeline for indiscriminate (blue), targeted (red) and backdoor (green) data poisoning attacks
on machine learning. Related work is highlighted with markers of the same color and connected with dashed
lines to highlight independent (but related) findings.

3.3.6 Transferability of Poisoning Attacks

Transferability is a characteristic of attacks to be effective even against classifiers of which the
attacker does not have complete knowledge. The term transferability was first investigated for
adversarial examples in [105; 211; 210]. In case of limited knowledge (i.e., black-box attacks), the
attacker can use surrogate learners or training data to craft the attack and transfer it to mislead
the unknown target model. Nevertheless, the first to introduce the idea of surrogates for data
poisoning attacks were Nelson et al. [200] and Biggio et al. [27]. The authors claimed that if the
attacker does not have exact knowledge about the training data, they could sample a surrogate



dataset from the same distribution and transfer the attack to the target learner. In subsequent
work, Muñoz-González et al. [197] and Demontis et al. [73] also analyzed the transferability of
poisoning attacks using surrogate learners, showing that matching the complexity of the surrogate
and the target model enhances the attack effectiveness. Transferability has also been investigated
when considering surrogate objective functions. More concretely, optimizing attacks against a
smoother objective function may find effective, or even better, local optima than the ones of the
target function [182; 73; 144; 210]. For example, optimizing a non-differentiable loss can be harder;
thus, using a smoothed version may turn out to be more effective [144]. More recently, Suciu et al.
[256] showed that the attacker could leverage transferability even when the attacker has limited
knowledge about the feature representation, reducing the attack effectiveness. However, Zhu et al.
[323] and Aghakhani et al. [2] independently hypothesize that the stability of feature collision
attacks is compromised when the feature representation in the representation space is changed. To
mitigate this problem, they craft poisoning samples to attack an ensemble of models, encouraging
their transferability against multiple networks.

3.4 Defenses Against Poisoning

Many defenses have been proposed to mitigate poisoning attacks. This section discusses each of
the six defense classes we identified in our survey paper [63]. For each group, we expose the general
underlining strategy adopted to mitigate or remove the influence of poisoning attacks.

Training Data Sanitization. These defenses aim to identify and remove poisoning samples
before training, to alleviate the effect of the attack. The underlying rationale is that poisoning
samples must be different from the rest of the training points to be effective; otherwise, they
would have no impact on the training process. Accordingly, poisoning samples typically exhibit
an outlying behavior with respect to the training data distribution, which enables their detection.
Detection can also be eased by taking into account features and labels to find anomalies internal
to the data classes.

Robust Training. Another possibility to mitigate poisoning attacks is during training. The
underlying idea is to protect the system during training by designing a learning algorithm that
limits the influence of malicious samples and alleviates the influence of the poisoning attack. In
our paper [59], described in Chapter 5, we show that a wise choice of the model’s hyperparameters
related to regularization can significantly limit the influence of poisoning samples performance.

Model Inspection. Starting with model inspection, we discuss groups of defenses operating
before the model is deployed. The approaches in these groups mitigate only backdoor and targeted
attacks. In model inspection, we determine for a given model whether a backdoor is implanted or
not. Such defenses aim at testing whether the model behaves somehow unusual : it will rely on
normally irrelevant features. Thus, outlier detection mechanisms are used on top of interpretability
techniques or latent data representations.

Model Sanitization. Once a backdoored model is detected, the question becomes how to san-
itize it. Model sanitization often involves pruning, (re-)training, or fine-tuning to sanitize the
model to remove the influence of poisoning and restore the model’s prediction accuracy. However,
sanitizing the model might be impossible if the model is provided as a service accessible only via
queries.

Trigger Reconstruction. This category of defenses aims to reconstruct the implanted trigger
as an alternative to model sanitization. Many techniques leverage the fact that a trigger changes
the classifier’s output reliably. The classifier ignores other features and only relies on the backdoor
trigger. Such a stable output also enables to reformulate trigger reconstruction as an optimization



problem whose solution is a pattern that leads to reliable misclassification of a batch of input
points.

Test Data Sanitization. As the name suggests, this is the only group of defenses operating
during test time, where the defender attempts to sanitize malicious test inputs. These techniques
try to identify crucial parts of the input and then mask these to identify whether they are adversarial
or not.

3.4.1 Matching Poisoning Attacks and Defenses

We further match attack strategies and defenses at training and test time in Table 3.2. We
match poisoning attack strategies and defenses by reporting in each cell the defensive papers
that evaluate their effectiveness against the corresponding attack strategy. We mark with ✗ the
cells corresponding to trigger reconstruction for targeted and indiscriminate attacks and test data
sanitization for indiscriminate poisoning, since no trigger is exploited and test data are clean in
such attacks.

Despite the large body of work on defenses, there are still unresolved challenges. It immediately
becomes evident that not all attacks sparked equally many mitigations. While about fifty defenses
exist for backdoor attacks using patch triggers, only eleven defenses have been considered against
semantic triggers and a few against bilevel attacks. Indeed, there are still no defenses against
indiscriminate clean-label bilevel attacks and just a few defenses against recent backdoor bilevel
attacks. This deficiency is not coincidental, as bilevel attacks have been developed more recently,
plus they seem more effective and stealthy, making their detection even more difficult than in
past work. Furthermore, few defenses (only about one-sixth) have been evaluated against different
types of triggers, and although their application may be intriguing, there are no or a few model
inspection or sanitization approaches in the direction of indiscriminate, targeted poisoning.

Table 3.2: Matching poisoning attack strategies and defenses. For each defense, we depict on which
attack strategy (as defined in Sec. 3.2) the defense was evaluated. We mark cells with ❙ if the corresponding
defense category have not been investigated so far for the corresponding attack. Conversely, we mark cells
with ✗ if corresponding defense has no sense and cannot be applied.
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3.5 Poisoning in Other Domains

While in this survey we focus on poisoning ML in the context of supervised learning tasks, and
mostly in computer-vision applications, it is also worth remarking that several poisoning attacks
and defense mechanisms have been developed also in the area of federated learning [11; 22; 36; 119;
259; 266; 296; 311; 312; 313; 321], regression learning [74; 92; 133; 168; 196; 281], reinforcement
learning [7; 14; 19; 90; 114; 131; 141; 181; 223; 277; 298; 315], and unsupervised clustering [29;
31; 64; 142; 227] or anomaly detection [67; 227] algorithms. Furthermore, notable examples of
poisoning attacks and defenses have also been shown in computer-security applications dealing
with ML, including spam filtering [25; 74; 96; 200; 214], network traffic analysis [227], and malware
detection [218; 237; 263], audio [1; 143; 169; 173; 300] and video analysis [269; 320], natural language
processing [45; 51; 173; 220; 316], and even in graph-based ML applications [32; 170; 318; 326].
While, for the sake of space, we do not give a more detailed description of such research findings
in this survey, we do believe that the systematization offered in our work provides a useful starting
point for the interested reader to gain a better understanding of the main contributions reported
in these other research areas.



3.6 Concluding Remarks

The increasing adoption of data-driven models in production systems demands a rigorous analysis
of their reliability in the presence of malicious users aiming to compromise them. Within this
chapter, we systematize a broad spectrum of data poisoning attacks according to our modeling
framework, and we exploit such categorization to match defenses with the corresponding attacks
they prevent. Moreover, we provide a unified formalization for poisoning attacks via bilevel
programming, and we traced the historical development of data poisoning literature since the early
developments dating back to more than 20 years ago, identifying the ongoing research directions.
We finally reviewed the literature on the transferability of data poisoning, which is deemed to be
a promising way to stage poisoning attacks when the attacker has limited knowledge of the victim
system.

In conclusion, responding to our research question, “How can we categorize/distinguish poisoning
attacks against ML”, we would say “poisoning attacks can be categorized according to
our attack framework (see Sec. 3.2) considering their threat model, characterized
by the attacker’s goal, knowledge, capability, and strategy.”. The attacker’s goal and
knowledge define the kind of violation the attacker aims to cause with a poisoning attack and
their knowledge about the target system (e.g., knowledge of the ML model or training data). The
capability defines the attacker’s influence in the model training pipeline, i.e., attacking the training
data (fine-tuning and training-from-scratch) or controlling the training process (model-training).
Each scenario brings a different challenge the attacker has to address to stage effective and stealthy
poisoning attacks. Finally, the strategy defines how the attacker tampers with the training data
to stage the attack. Simple strategies may be faster to be staged, requiring a lower amount of
computational resources, while more sophisticated ones can be more effective and stealthy in case
of defender inspection but may bring higher computational costs. These characteristics are essential
for a good categorization of state-of-the-art poisoning attacks. Comparison performance of attacks
under different assumptions may therefore bring unfair conclusions. For example, a limitation in
knowledge or capability may represent a more challenging scenario for the attacker, where it is
reasonable to have a loss of performance compared to other works assuming higher control on the
victim system.
We believe our contribution can help clarify what threats an ML system may encounter in adver-
sarial settings and encourage further research developments in deploying trustworthy systems even
in the presence of data poisoning threats.





Chapter 4

Improving Scalability of Data
Poisoning

RQ#2

Can we make poisoning attacks scalable?

In this Chapter we respond to our RQ#2, which examines the computational complexity involved
in staging data poisoning attacks and tries to reduce it by making them scalable in practice.
Questioning this point is critically relevant for two reasons. First, it allows us to understand
whether state-of-the-art attacks pose a real threat to real-world systems. For an attack to be
meaningful to the attacker, it must have a reasonable cost, which translates into the amount of
time and hardware required to carry it out. If the attack does not scale, it may not be considered
a relevant threat against large systems. The second reason is that it is fundamental to understand
how far we are in realizing scalable benchmarks to test the robustness of ML models against
poisoning. A benchmark indeed requires executing a series of attacks and measuring the model’s
performance against them. The underlying assumption is, however, that these attacks can be
feasible executable under various conditions. For example, the benchmark must run in a feasible
amount of time, even when increasing the dataset or the model’s size. Analyzing and minimizing
the computational costs of poisoning samples is fundamental both in the attacker and defender
directions. Therefore, this Chapter explores the scalability issues of poisoning attacks and sheds
light on how to bridge them under specific assumptions using faster heuristic approaches.

Underlying Problem. As seen in Sec. 3.3, mathematically speaking, poisoning attacks require
solving a bilevel optimization problem where the outer problem consists of minimizing or max-
imizing the accuracy on a validation set while reducing, in the inner problem, the accuracy of
the poisoned training set [101; 197]. However, solving this problem for each poisoning sample
can be computationally demanding for the attacker, especially when dealing with large models
(e.g., DNNs) and datasets. In [197] the authors noted that the solution of the bilevel program
requires the inversion of the Hessian matrix whose algorithmic complexity is cubic with respect to
the number of model parameters. This aspect makes the usage of this algorithm computationally
prohibitive for various practical settings. Nonetheless, according to the nature of the violation and
the ambitions that the attacker desires, the attack cost can drastically be reduced.

Related Work. Thanks to some heuristics, e.g., feature collision [238], gradient-alignment [101],
the attacker can also stage targeted poisoning attacks efficiently against systems trained on large-
scale datasets. Effective backdoor poisoning attacks can be staged by simply implanting the back-
door trigger into a few training samples to reach the attacker’s desideratum [15; 108; 175]. Con-
versely, indiscriminate poisoning attacks have been limited in scope and success due to the com-



putational requirements [27; 73; 134; 197]. Muñoz-González et al. [197] approximated the problem
by adopting a back-gradient optimization technique taken from the hyperparameter optimization
domain. Similarly, Jagielski et al. [134] linearly approximated the bilevel formulation to reduce
computational costs further. Yang et al. [301] adopted a generative model for crafting poisoning
samples. Once the model is trained, the attacker exploits it to fast generate new poisoning sam-
ples. The advantage of their approach is that model is trained to intrinsically approximate the
bilevel formulation, locating poisoning samples in the model’s vulnerable region. Finally, Demontis
et al. [73] observed that the poisoning samples, crafted to poison a target model, are effective even
against other systems. Thus an attacker could generate attacks with a smaller model, i.e., less
computationally demanding, and transfer them to the larger target one. However, they all remain
more computationally demanding than heuristic integrity attacks because they do not follow the
complex bilevel attack strategy [238; 101].
To the best of our knowledge, no existing heuristic approaches have been proposed to scale indis-
criminate poisoning, and previous heuristics for targeted and backdoors are unsuitable. Feature
collision allows to stage of an attack that misclassifies only a few target samples, so it does not
generalize as required for indiscriminate, which aims at causing a Denial of Service (DoS). Gradient-
alignment has been recently adopted in [94], but its threat model is fairly limited as it assumes the
attacker to perturb the entire training set, and it is an open question whether the attack generalizes
to any test data.

Contributions and Outline. While we have heuristic approaches for scaling for targeted and
backdoors, the same does not apply to indiscriminate attacks. This implies an initial and partial
answer to our research question, “yes, we can scale at least targeted and backdoor poisoning
attacks thanks to promising heuristic approaches”. Regarding indiscriminate poisoning attacks, in
our work [60], explained in the remaining of this Chapter, we observed that in particular conditions,
namely, where the target model is linear (the “nut”), the usage of computationally costly procedures
(the “hammer”) for crafting poisoning samples could be avoided. We thus propose in Sec. 4.1
our counter-intuitive but efficient heuristic that contaminates the training set so that the target
system’s performance is highly compromised. We further suggest a re-parameterization trick in
Sec. 4.1 that aims to decrease our attack’s computational demand by decreasing the number
of variables to be optimized. Finally, in Sec. 4.2 we demonstrate that, under the considered
settings, our framework achieves comparable, or even better, performances in terms of the attacker’s
objective while being significantly more computationally efficient. We conclude this Chapter in
Sec. 4.3 highlighting how our work has helped to make discriminate attacks more scalable under
certain assumptions while emphasizing that there is still a long way to go to make attacks practical
in more challenging environments.

4.1 BetaPoisoning

Notation. We here recap the notation used in the remaining of this Chapter. Further details
are reported in Chapter 3, and a list of symbols is given on page v.

Feature and label spaces are denoted in the following with X ⊆ R
d and Y ∈ R, respectively,

with d being the dimensionality of the feature space. The attacker collect a training and a
surrogate dataset that will be used to craft the attack. We denote them as D′ and V. We define
Vyt = {x|(x, yt) ∈ V} a subset of the surrogate dataset with samples of class yt. Note that these
sets include samples along with their labels. We define with L(V,θ) the loss incurred by the
classifier f : X → Y, parametrized by θ, on the surrogate dataset V. L(D′,θ) is used to represent
the regularized loss optimized by the classifier during training.

Given the scalability gap we identified between integrity and indiscriminate poisoning attack, we
propose a novel heuristic attack that aims at bridging the gap when certain conditions are satisfied.
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Fig. 4.1: (Left) Attacker’s objective function with bilevel formulation [27]. (Right) BetaPoisoning objec-
tive function, described in Eq. (4.1). Red regions represent zones where the objective function is high. The
black line is the decision boundary of a logistic regression classifier.

The resulting poisoning attack, called BetaPoisoning, exploits linear classifiers’ limits when dealing
with noisy-labeled samples [35]. In particular, the attacker poisons the target distributions yt with
sample xp by maximizing the likelihood P (xp|yt), making the dataset no longer linearly separable.
Interestingly, it does not need access to the training set, and it does not need to have access to the
target model while crafting the poisoning samples.
We illustrate the idea behind the proposed approach with an example in Fig. 4.1, which visualizes
the difference between our objective function and the bilevel one in Eqs. (3.1)-(3.2). To create an
easily understandable example, we consider a linearly separable two-dimensional dataset in which
each class follows a Gaussian distribution. Based on the bilevel formulation for indiscriminate
poisoning illustrated in Sec. 3.3, the red area shows that poisoning samples should be located in
the bottom-left region to obtain the highest validation error (left plot in Fig. 4.1). However, bilevel-
based poisoning algorithms are computationally demanding. Conversely, the objective function of
our heuristic approach, shown in the right plot of Fig. 4.1, suggests locating the poisoning samples
in the space region with the highest density of training samples.
This is a counter-intuitive solution because the optimal region is quite different from the one
obtained optimizing the bilevel problem. The optimum suggested by our heuristic approach is
distant from the optimal one. Nonetheless, optimizing the proposed objective function allows us to
achieve good results under the considered settings. Similarly to label-flip attacks [26; 214; 292; 294]
the attacker poisons the target distributions making the learning task harder by flipping the labels
of training samples. Notwithstanding, these points may be located in non-dense regions; hence
even if we flip their labels, they may not significantly reduce the classifier’s performance. We thus
formulate BetaPoisoning, whose objective is reported in Eqs (4.1)-(4.2) in order to look for the
regions with the highest density of samples and put poisoning samples inside of them.

arg max
xp

P (xp|yt) (4.1)

s.t. xlb ⪯ xp ⪯ xub (4.2)

where Eq. (4.2) defines box-constraints on the poisoning sample’s feature values. The likelihood
P (xp|yt) is estimated using a Gaussian Kernel Density Estimator (KDE), where the bandwidth
parameter h is chosen equal to the average distance between all possible pairs of samples in Vyt [29].
This heuristic attack considers only the data distribution; therefore, conversely to [27; 73], we do
not need to know the model’s parameters.

P (xp|yt) =
1

∥Vyt∥

∑

x∈Vyt

exp
(

−
∥xp − x∥

2

h

)

(4.3)

4.1.1 Poisoning Re-parametrization

Crafting a single poisoning sample requires optimizing d-dimensional variables. When dealing
with a huge dataset d can be very large, thus increasing the complexity of optimizing them and the



computational costs. Although BetaPoisoning does not solve a bilevel optimization program, we
further decrease its computational complexity by adopting a re-parametrization trick that aims to
reduce the number of variables to optimize. We impose that our poisoning samples are obtained
as a linear combination of other samples in the dataset. We define S = {x1, . . . ,xk} a random
subset of samples with label yt in V. We define with k = |S| ≪ d the number of samples, named
prototypes, in S. Given a random set of samples S and coefficients β ∈ R

k, the corresponding
poisoning sample xp is obtained with:

xp = ψ(β, S) =
∑

xi∈S

βixi (4.4)

We can thus reformulate our optimization problem in terms of β coefficients in the following way:

arg max
β

P (ψ(β, S)|yt) (4.5)

s.t. xlb ⪯ ψ(β, S) ⪯ xub (4.6)

Once the optimal β coefficients are optimized, we can easily reconstruct the resulting poisoning
sample with ψ(β, S).

Algorithm 4: BetaPoisoning

Input: V ∈ R
n×d, yt, k,xlb,xub

Output: Poison sample xp ∈ R
d

1

2 S = sample random prototypes(V, yt)
3 β = init beta(k)
4 repeat
5 xp = clip(ψ(β, S), xlb, xub)
6 p = P (xp|yt)
7 β = β + α∇βp
8 xp= clip(ψ(β, S), xlb, xub)

9 until Poisoning point remains unchanged (convergence)
10 return xp

Algorithm. A pseudo-code description of our attack can be found in Algorithm 4. We get
in input a surrogate dataset V, the target class yt, the number of prototypes k, and the box
constraints (xlb,xub). We note that the attacker may choose yt and yp according to some strategy
or prior knowledge about the application context. In our setting, we assume that the attacker
chose yt and yp randomly during the rest of this work. In line 2 we randomly sample a subset
of prototypes from V and we initialize the corresponding β in line 3. Initialization for the β
coefficients is done by randomly sampling values in [0, 1]d. In line 5 we construct the poisoning
point and clip it to preserve box constraints. In line 6 we estimate the likelihood P (xp|yt) with
the KDE in Eq. (4.3). We then update the β coefficients through a gradient ascend step, with
a learning rate α = 0.01 and we clip it to preserve box-constraints in Lines 7-8. The process
described from Line 5 to 8 is repeated until a certain stop condition is reached, i.e., if the
attacker’s objective function P (xp|yt), in two consecutive iterations, does not change more than a
pre-defined threshold. In our experiments, we set this threshold to 1e− 05.

4.2 Experimental Analysis

In this section, we evaluate the effectiveness of our attack for poisoning linear classifiers. We first
consider poisoning against binary models, as done in [27; 73], and then extend our analysis to



the multi-class setting. We then propose a time execution comparison between our approach and
state-of-the-art bilevel poisoning attacks. Finally, we evaluate the performance of our attack when
varying the number of prototypes k, suggesting that even a few of them are sufficient for staging
effective attacks. We run our experimental evaluation five times, and we report the mean accuracy
and the corresponding standard deviation. Code for all experiments can be found at github.com

/Cinofix/beta poisoning.

4.2.1 Experimental Setup

Datasets. In our experimental analysis we use two publicly available datasets, namely
MNIST [157] and CIFAR10 [147]. MNIST is a dataset for digits recognition containing 70, 000
gray-scale 28× 28px images divided in 10 digit classes (from 0 to 9). The CIFAR10 dataset [147]
contains 60, 000 color images of 32× 32 pixels equally distributed in 10 classes. Being datasets of
images, each pixel takes values in the range [0, 255]. We normalize pixels by dividing their values
by 255, using them as our features.

For binary classification with MNIST we consider pairs 9 vs. 8 and 4 vs. 0 (as in [27]). We
randomly sample 400, 1000, and 1000 samples for training, validation, and test set for each pair of
digits. This setting is similar to the one reported in [27], but we increased the number of training
and validation samples. Similarly, for CIFAR10 we consider the two pairs of classes with the highest
accuracy on untainted dataset, frog vs. ship and horse vs. ship. We randomly sample 300, 500,
and 1000 images for each of them to build our training, validation, and test set, respectively.
When poisoning non-binary classifiers we consider two random triplet of classes from MNIST
({3, 7, 5} and {9, 4, 0}). We compose training, validation, and test sets for each triplet by randomly
sampling 400, 1000, and 1000 images. We test the effectiveness of poisoning against an SVM with
regularization terms C = 1 and C = 100.

Models and Training Phase. We train and test the robustness of a linear support vector
machine (SVM) and a logistic regression classifier (LC) under different regularization levels for
both datasets. Further details about these models are given in Sec. 2.1.1. We also test the
effectiveness of our attack when changing the hyperparameters of the victim models, namely C,
which regulate their generalization capacity.

Poisoning Attacks. We compare our attack against the random label flips attack [26], and the
bilevel attacks proposed in [27] (for SVM) and [73] (for LC). Since the two bilevel attacks are suited
for binary classification problems, we compare our attack only against the label flips attack when
attacking multi-class classifiers. The effectiveness of all the compared algorithms is assessed on a
test set, never seen during the optimization. Notably, both BetaPoisoning and label flip do not
need to know the training set as required for [27] and [73], but they exploit the surrogate dataset
to stage the attack.

4.2.2 Experimental Results

Poisoning Binary Classifiers. We reported in Fig. 4.2 and Fig. 4.3 the results obtained for
SVM and LC with regularization parameter C = 1 and C = 100. We can notice a steady growth
of the attack effectiveness with the increasing fraction of poisoning points added to the training
set. In particular, we observe that when the penalty term C increases, the target models become
less robust against poisoning attacks. These results have also been observed in [73], where the
authors state that strongly regularized classifiers tend to have smaller input gradients, i.e., they
learn smoother functions that are more robust to attacks. Notably, the performance obtained by
our framework in terms of the attacker’s objective is comparable with [27], or even better when the
regularization of the target models decreases. Table 4.1 reports the computational costs needed
to run the three poisoning algorithms when the percentage of attack points in the training set is
20%.

github.com/Cinofix/beta_poisoning
github.com/Cinofix/beta_poisoning


Fig. 4.2: Accuracy on the test set for SVM, with regularization C = 1 and C = 100, under poisoning
attack. (Left) results for MNIST pair 4 vs. 0, (right) results for pair 9 vs. 8. In green the performance
for [27].

Fig. 4.3: Accuracy on the test set for LC, with regularization C = 1 and C = 100, under poisoning
attack. (Left) results for MNIST pair 4 vs. 0, (right) results for pair 9 vs. 8. In green the performance
for [73].

We report in Fig. 4.4 and Fig. 4.5 the results of poisoning against linear SVM and LC with
different regularization strengths for CIFAR10. Notably, the obtained results are consistent with
those described for MNIST. This means that our poisoning samples are effective even on large
datasets. Notably, the computational gap for LC, reported in Table 4.2, is significantly increased,
favoring our method.

Poisoning Multi-class Classifiers. In Fig. 4.6 we report the results of BetaPoisoning and label
flips attack [26] against multi-class classifiers on MNIST triplets. The comparison with the bilevel
attack in [27] is missing as its implementation is only suited for binary classification problems,
while the comparison results with the label flip attack prove that the proposed counter-intuitive
attack is effective even against multi-labels classification tasks. Moreover, even in this case, when
the regularization term C increases, the robustness to poisoning decreases significantly. Notably,
the two random triplets’ performance has the same trend, confirming the goodness and stability
of our approach to random selection.

Time Comparison. We now analyzes the computational costs provided by our approach and
the bilevel poisoning algorithms [27; 73]. We run our experiments for MNIST and CIFAR10 on a
Intel® Xeon® Processor E5-2690 v3.

Table 4.1 shows the results obtained for the two MNIST pairs when generating 100 poisoning
samples(20% of the training set is poisoned). As we expected, the comparison of the attack times
shows the proposed algorithm’s reduced computational cost, highlighting a significant gap. Even
if, as shown in Figs. 4.2-4.6, the attack effectiveness is comparable, we can craft poisoning points
more efficiently without solving a complex bilevel optimization problem. Moreover, our experi-
mental analysis highlights that the running time of the attack that solves the bilevel optimization
problem is strongly influenced by different factors, such as the learning algorithm and the regular-
ization strength. That attack is slower against LC than against SVM and is less computationally
expensive against strongly regularized classifiers. In comparison, the running time of the proposed
BetaPoisoning is almost constant.

Similarly, Table 4.2 reports the computational costs for the two CIFAR10 pairs when generating



Fig. 4.4: Accuracy on the test set for SVM, with regularization C = 1 and C = 100, under poisoning
attack. Results for CIFAR10 pair frog vs. ship (left) and pair horse vs. ship (right). In green, the
performance for [27].

Fig. 4.5: Accuracy on the test set for LC, with regularization C = 1 and C = 100, under poisoning attack.
Results for CIFAR10 pair frog vs. ship (left) and pair horse vs. ship (right). In green, the performance
for [73].

Fig. 4.6: Accuracy on the test set for SVM, with regularization C = 1 and C = 100, under poisoning
attack. The two on the left are obtained on triplet {3, 7, 5}, and the two on the right are obtained for triplet
{9, 4, 0}.

75 poisoning samples (20% of the training set is poisoned). Even in this case, our algorithm
best performs with significant evidence against SVM and LC. We notice that the computational
performance gap between SVM and LC is higher than the ones exhibited in the MNIST dataset. On
the CIFAR10 dataset, when the classifier’s complexity increases, the performance for [27] and [73]
improves, but not enough to bridge the gap with our algorithm.

Ablation Study. We further assess the effectiveness of BetaPoisoning by varying the number of
prototypes k. We remark that the number of prototypes corresponds exactly with the number of
coefficients β to be optimized during the learning process. We use the same configuration detailed
before for poisoning binary classifiers trained with MNIST (4 vs. 0) and CIFAR10 (frog vs. ship).
We let the number of prototypes vary from 2 to 30 and analyze our poisoning attack’s performance
against a linear SVM with the regularization term C = 1.
Fig. 4.7 shows that the number of prototypes chosen may significantly influence our algorithm’s
performance. In particular, when increasing k, our framework seems to create more powerful
poisoning points. We observe that for a smaller dataset like MNIST, 15 prototypes are sufficient.
Conversely, the optimal number of prototypes for a more complex dataset like CIFAR10 is 30.
This reduction represents a significant improvement; indeed if we consider Eqs. (3.1)-(3.2) and
Eq. (4.1), the number of variables to optimize is equal to the sample’s dimension. Thanks to our



Table 4.1: Computational cost comparison between poisoning algorithms against SVM and LC for MNIST
4-0 and 9-8.

Model Dataset Generator
Time in s

C=1 C=100

SVM

4-0 [27] 123.44± 11.59 148.99± 44.66

4-0 BetaPoisoning 11.06± 0.60 11.40± 1.78

9-8 [27] 132.39± 24.64 168.17± 53.26

9-8 BetaPoisoning 11.09± 0.25 11.27± 0.22

LC

4-0 [73] 261.46± 30.69 459.57± 22.60

4-0 BetaPoisoning 10.70± 0.55 11.06± 1.64

9-8 [73] 285.09± 31.39 458.22± 15.55

9-8 BetaPoisoning 11.17± 0.21 11.45± 0.48

Table 4.2: Computational cost comparison between poisoning algorithms against SVM and LC for CI-
FAR10 frog-ship and horse-ship.

Model Dataset Generator
Time in s

C=1 C=100

SVM

frog-ship [27] 115.72± 24.72 40.21± 2.35

frog-ship BetaPoisoning 06.95± 0.31 6.77± 0.54

horse-ship [27] 79.05± 31.04 46.90± 05.68

horse-ship BetaPoisoning 06.41± 0.52 6.46± 0.38

LC

frog-ship [73] 16851.3± 2506.5 6386.32± 1076.1

frog-ship BetaPoisoning 08.89± 0.48 08.82± 0.68

horse-ship [73] 17788.9± 1335.1 7029.8± 343.08

horse-ship BetaPoisoning 06.73± 0.71 06.58± 0.44

variable reduction trick, we can optimize only 15 out of 784 variables for MNIST and 30 out of
3072 for CIFAR10. These results indicate that this approach is probably practicable on datasets
with many more features than the CIFAR10 dataset.



Fig. 4.7: Effectiveness of poisoning when 15% of the dataset is poisoned. The x-axis represents the
number of prototypes in S, equal to the number of optimized variables. The y-axis shows the system’s
accuracy under attack on a validation/surrogate dataset.

4.3 Concluding Remarks

In this Chapter, we examined the scalability of poisoning attacks, identifying a performance
limitation, especially when running indiscriminate attacks. Specifically, we found that, unlike
what has been developed for targeted or backdoor attacks, the literature on indiscriminate
poisoning does not include any heuristic approaches to make them faster. The fundamental issue
we identified is that they try to solve or approximate a complex bilevel optimization program.
Nevertheless, we found that for simple scenarios, when the classifier is linear, we do not really
need to solve the bilevel problem. Our analysis shows that, for this class of problems (the “nuts”),
we do not need to use such a computational demanding bilevel formulation (the “hammer”).
Indeed, we evince that our heuristic attack reaches comparable, or even better, results compared
to theoretical and time-consuming formulations. We propose a re-parametrization trick to reduce
the number of variables during the learning process. We compared the computational costs of the
proposed algorithm with the ones obtained for “hammer-based” poisoning algorithms, namely the
ones that solve exactly the bilevel optimization problem. We provided experimental evidence that
we can poison target models with a significantly lower computational cost. Our approach may
open the door to designing more efficient heuristics to deceive and test critical systems against
indiscriminate data poisoning.

In conclusion, responding to our research question, “Can we make poisoning attacks scalable?”, we
would say “yes, poisoning attacks can be scaled under specific circumstances, while they
can not in more challenging scenarios”. Specifically, poisoning attacks are computationally
demanding as they try to solve a complex bilevel problem (see also Sec. 3.3.4). Nevertheless,
under specific circumstances (e.g., attacking the fine-tuning scenario, targeting linear classifiers,
or having control of model training procedure), the attacker can exploit some heuristic approaches
(e.g., feature collision [238], or our BetaPoisoning [60] attack, or fixed patch trigger [108]) to fasten
them. However, their applicability in practice remains limited, and further investigation of more
challenging scenarios (e.g., larger and more complex models, limited knowledge about the target
system, data inspection, etc.) is required if the final goal is to have scalable attacks for malicious
purposes or to build novel security benchmarks. In future works, we aim to extend our approach
against non-linear classifiers to enlarge the applicability of our work.





Chapter 5

Understanding Backdoor
Poisoning Vulnerability

Research Question #3

Which factors influence the effectiveness of backdoor poisoning attacks?

In this Chapter we respond to our RQ#3, which investigates the intriguing properties of ML
models that make them vulnerable to backdoor threats and the attack capabilities that make them
more effective. We believe that finding the factors influencing the model’s vulnerability and attack
effectiveness may stimulate the development of novel defensive or training techniques that preserve
ML robustness or novel attacks for benchmarking them.

Underlying Problem. Despite the quickly-growing literature on identifying the causes of poi-
soning attacks, the majority of the previously proposed works study only targeted and indiscrim-
inate poisoning attacks [96; 39; 260], not backdoors. Although backdoor poisoning attacks have
been demonstrated in various settings and against different models, it is still unclear what factors
influence a model’s ability to learn a backdoor, i.e., to classify test samples containing the back-
door trigger as the class chosen by the attacker. Given the high applicability of this type of attack
against real-world systems demonstrated in the literature, identifying the factors that influence the
vulnerability of models to this threat is essential for developing future safeguards for users.

Related Work. Frederickson et al. [96] investigated on the trade-off between the attack strength,
i.e., how much the attacker can influence the training set, and its detectability for indiscriminate
poisoning attacks. Carnerero-Cano et al. [39] and Suya et al. [260] observed that regularization can
be adopted for decreasing the effectiveness of indiscriminate and targeted poisoning attacks. Only
a few works have studied factors that influence the success of backdoor poisoning. Baluta et al. [13]
studied the relationship between backdoor effectiveness and the percentage of backdoored samples.
Salem et al. [230] experimentally investigated the relationship between the backdoor effectiveness
and the trigger size. We instead do not limit our study to neural networks but also study other
models.

Furthermore, we also investigate the relationship between the model’s complexity and backdoor
effectiveness. Some of the defenses proposed against backdoors use different techniques to reduce
complexity. These techniques include pruning [169; 12], data augmentation [307; 33] and gradient
shaping [122]. However, from these works, it remains unclear why reducing complexity alleviates
the threat of backdoor poisoning. To the best of our knowledge, our work is the first to investigate
this aspect. We have analyzed the relationship between backdoor effectiveness and different factors,
including complexity, controlled via the regularization and the RBF kernel’s hyperparameter. Our



experimental results show that reducing complexity by choosing appropriate hyperparameter values
improves robustness against backdoors.

Contributions and Outline. While for indiscriminate and targeted poisoning a few study
exists on identifying the factors influencing their effectiveness, i.e., attacker’s strength and model’s
regularization, we did not find a similar analysis for backdoor poisoning. Therefore, we investigated
such direction in our work [59], explained in the remaining Chapter, to assess whether the factors
found in previous work also influence the effectiveness of backdoor attacks or whether other aspects
may regulate their performance. We thus introduce in Sec. 5.1 backdoor learning curves as a
powerful tool to thoroughly characterize the backdoor learning process. We show in Sec. 5.1 that
the slope of this curve, the backdoor learning slope, which is connected to the notion of influence
functions [58; 144], quantifies the speed with which the model learns the backdoor samples and
hence its vulnerability. Additionally, to provide further insights about the backdoor’s influence on
the learned classifiers, we propose in Sec. 5.1 a way to quantify the backdoor impact on learning
parameters, i.e., how much the parameters of a model deviate from the initial values when the
model learns a backdoor. Finally, we train different ML models under various hyperparameters and
attack configurations, and we compare and analyze the obtained results in Sec. 5.2 to identify the
factors influencing the backdoor performance. We conclude this Chapter in Sec. 5.3 by answering
to our RQ#3, listing the factors influencing the backdoor effectiveness we identified thanks to our
framework and we compare them with the ones affecting indiscriminate and targeted poisoning.

5.1 Backdoor Learning Process

In this section, we introduce our framework to characterize backdoor poisoning by means of
learning curves and their slope. Afterwards, we introduce two measures to quantify the backdoor
impact on the model’s parameters.

Notation. We here recap the notation used in the remaining of this Chapter. Further details
are reported in Chapter 3, and a list of symbols is given on page v.

We denote the input data and their labels respectively with x ∈ R
d and y ∈ {1, .., C}, being C

the number of classes. We refer to the untainted, clean training data as D = (xi, yi)
n
i=1, and

to the backdoor samples injected into the training set as Dp = (x̂j , ŷj)
m
j=1. We refer to the

clean test samples as T = (xt, yt)
k
t=1 and to the test samples containing the backdoor trigger as

Tp = (x̂t, ŷt)
k
t=1.

5.1.1 Backdoor Learning Curves

The learning process of humans is usually characterized using learning curves, a graphical repre-
sentation of the relationship between the hours spent practicing and the proficiency to accomplish
a given task. Inspired by this concept, we introduce the notion of backdoor learning curves. To
generate these curves, we formulate backdoor learning as an incremental learning problem [41; 117]
and assess how the loss on the backdoor samples decreases as they are gradually learned by the
target model. In other words, with the backdoor learning curves we study how gradually incor-
porating backdoor samples affects the learned classifier. In mathematical terms, we formalize the
learning problem as:

θ⋆(β) ∈ arg min
θ

L(D ∪Dp,θ) = L(D,θ) + βL(Dp,θ) + λΩ(θ) , (5.1)

where L is the loss attained on a given dataset by the classifier with parameters θ. L is the loss
computed on the training points and the backdoor samples, which also includes a regularization
term Ω(θ) (e.g., ∥θ∥22), weighed by the regularization hyperparameter λ. To gradually incorporate
the backdoor samples, we use β ∈ [0, 1]. It regulates the weight the classifier gives to the loss
on the samples with backdoor trigger. As β ranges from 0 (unpoisoned classifier) to 1 (poisoned
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(b) Weak regularization (λ = 1).

Fig. 5.1: Backdoor learning curves and their relationship with model complexity. Considering an SVM
with an RBF kernel (γ = 10.0) on a toy dataset in two dimensions, we show the influence of model
complexity (controlled by λ, set to 10 (left) and 1 (right)). For each setting, we created two plots. The left
plot shows on a 2-dimensional plane the data (dots) and decision surface for different values of β (green
lines). The right plot shows the backdoor learning curve, where the y-axis represents the classifier’s loss
and the x-axis β. We plot both the loss on the clean test data (orange dotted line) and the test dataset
containing the backdoor trigger (blue line). The slope of these curves represents the speed with which the
model learns the backdoored samples (black dots), labeled as blue class. The model on the left struggles to
fit the backdoors and succeeds only with high β, whereas the one on the right already fits the model at low
β.

classifier), the classifier gradually learns the backdoor by adjusting its parameters. For this reason,
we make the dependency of the optimal weights θ⋆ on β explicit as θ⋆(β).

We now define the backdoor learning curve as the curve showing the behavior of the classifier loss
L(Tp,θ

⋆(β)) on the test samples with the backdoor trigger as a function of β. In the following,
we abbreviate L(Tp,θ

⋆(β)) as L. Intuitively, the faster the backdoor learning curve decreases, the
easier the target model is backdoored. The exact details of how the model is backdoored do not
matter for this analysis, e.g. our approach captures for example both the setting where the training
data is altered as well as the setting where fine-tuning data is tampered with.

We give an example of two such curves under different regularizations in Fig. 5.1. The left
plots depict a strongly regularized classifier. The corresponding backdoor learning curve (on
the right) shows that the classifier achieves low loss and high accuracy on the backdoor samples
only after poisoning (when β = 1), namely when the loss on the backdoor samples is considered
equally important to the loss on the training samples. The classifier on the right, instead, is
less regularized and thus more complex. Consequently, this classifier learns to incorporate the
backdoor samples much faster (at low β), namely when the loss on the backdoor points is taken
into account less than the one on the training data. This highlights that this classifier is probably
more vulnerable to this attack.

5.1.2 Backdoor Learning Slope

We quantify how fast an untainted classifier can be poisoned by proposing a novel measure,
namely the backdoor learning slope, that measures the velocity with which the classifier learns
to classify the backdoor samples correctly. This measure allows us to compare the vulnerability
of a classifier trained with different hyperparameters or considering different poisoning scenarios
(e.g. when the attacker can inject a different number of poisoning points or creating triggers with
different sizes), allowing us to identify factors relevant to backdoor learning. Moreover, as we will
show, this measure can be used by the system designer to choose an appropriate combination of
hyperparameters for the task at hand. To this end, we define the backdoor learning slope as the
gradient of the backdoor learning curve at β = 0, capturing the velocity of the curve on learning



the backdoor. Formally, the backdoor learning slope can be formulated as follow:

∂L(Tp,θ
⋆(β))

∂β
=
∂L

∂θ

∂θ⋆

∂β
, (5.2)

where the first term is straightforward to compute, and the second term implicitly captures the
dependency of the optimal weights on the hyperparameter β. In other words, it requires us to
understand how the optimal classifier parameters change when gradually increasing β from 0 to 1,
i.e., while incorporating the backdoor samples into the learning process.
To compute this term, as suggested in previous work in incremental learning [41], we assume that,
while increasing β, the solution maintains the optimality (Karush-Kuhn-Tucker, KKT) conditions
intact. This equilibrium implies that ∇β∇θL(θ⋆) + ∂θ⋆

∂β ∇
2
θL(θ⋆) = 0. Based on this condition, we

obtain the derivative of interest,

∂θ⋆

∂β
= −(∇2

θL(θ⋆))−1 · ∇β∇θL(θ⋆) . (5.3)

Substituting it in Eq. (5.2) we obtain the complete gradient:

∂L(Tp,θ
⋆(β))

∂β
= −∇θL · (∇

2
θL)−1 · ∇β∇θL . (5.4)

The gradient in Eq. (5.4) corresponds to the sum of the pairwise influence function values
Iup,loss(xtr,xts) used by [144]. The authors indeed proposed to measure how relevant a training

point is for the predictions of a given test point by computing ∂L
∂β

∣

∣

∣

β=0
=
∑

t

∑

j Iup,loss(x̂t, x̂j). In

our work, we thus clarify that influence functions naturally descend from the incremental learning
formulation in Eq. (5.1), showing that they quantify the velocity with which the classifier will learn
new points.

To understand how the gradient in Eq. (5.4) can be efficiently computed via Hessian-vector products
and other approximations, we refer the reader to [144] as well as to recent developments in gradient-
based bilevel optimization [178; 95; 215; 184; 77]. Moreover, we show in Sec. 5.2 (Fig. 5.13-5.14)
an example of the usage of influence functions for weakly and strongly regularized models.
The main difference between the approach by [144] and ours stems from their implicit treatment
of regularization and our interest in understanding vulnerability to a subset of backdoor training
points, rather than in providing prototype-based explanations. However, directly using the gradient
of the loss wrt. β comes with two disadvantages. First, the slope is inverse to β and second, to
obtain results comparable across classifiers, we need to rescale the slope. We thus transform the
gradient as:

η = −
2

π
arctan

(

∂L

∂β

∣

∣

∣

∣

β=0

)

∈ [−1, 1] , (5.5)

where we use the negative sign to have positive values correlated with faster backdoor learning
(i.e., the loss decreases faster as β grows). Computing 2/π of the gradient allows us to rescale the
slope to be in the interval between [−1, 1]. Hence, a value around 0 implies that the loss of the
backdoor samples does not decrease, i.e., the classifier is robust enough that it does not learn the
backdoor trigger.

5.1.3 Backdoor Impact on Learning Parameters

After introducing the previous plot and measure, we are able to quantify how backdoors are learned
by the model. To provide further insights about the backdoor’s influence on the learned classifier,
we propose to monitor how the classifier’s parameters deviate from their initial, unbackdoored
values once a backdoor is added. Our approach below captures only convex learners. As shown by
Zhang et al. [309], the impact of a network weight in non-convex classifiers’ decision depends on
the layer of which it is part. Therefore, measuring the parameter deviation in the non-convex case
is challenging, and we leave this unsolved problem for future work.



To capture backdoor impact on learning parameters in the convex case, we consider the initial
weights θ0 = θ⋆(β = 0) and θβ = θ⋆(β) for β > 0, and measure two quantities:

ρ = ∥θβ∥ ∈ [0,∞), and ν =
1

2

(

1−
θ⊤0 θβ

∥θ0∥∥θβ∥

)

∈ [0, 1] . (5.6)

The first measure, ρ, quantifies the change of the weights when β increases. This quantity is
equivalent to the regularization term used for learning. The second one, ν, quantifies the change
in orientation of the classifier. In a nutshell, we compute the angle between the two vectors and
rescale it to be in the interval of [0, 1]. Both metrics are defined to grow as β → 1, in other words
as the backdoored classifier deviates more and more from the original classifier. Consequently, in
the empirical parameter deviation plots in Sec. 5.2, we report the value of ρ(ν) (on the y-axis)
as β (on the x-axis) varies from 0 to 1, to show how the classifier parameters are affected by
backdoor learning.

5.2 Experimental Analysis

Employing the previously proposed methodology, we carried out an empirical analysis on linear and
nonlinear classifiers. In this section, we start with the experiments aimed to study the impact of
different factors on backdoor learning. To this end, we employ the backdoor learning curves and the
backdoor learning slope to study how the capacity of the model to learn backdoors changes when (a)
varying the model’s complexity, defined by its hyperparameters, (b) the attacker’s strength, defined
by the percentage of poisoning samples in the training set and (c) the trigger size and visibility.
Our results show that these components significantly determine how fast the backdoor is learned,
and consequently, the model’s vulnerability. Then, leveraging the proposed measures to analyze
how the classifier’s parameters change during backdoor learning, we provide further insights on
the effect of the aforementioned factors on the trained model. The results presented in this section
will help identify novel criteria to improve existing defenses and inspire new countermeasures. The
source code is available at github.com/Cinofix/backdoor learning curves.

5.2.1 Experimental Setup

Our work investigates which factors influence backdoor vulnerability considering convex-learners
and neural networks. In the following, we describe our datasets, models, and the backdoor attacks
studied in our experiments.

Datasets. We carried out our experiments on the MNIST [157], CIFAR10 [147] (already seen in
Sec. 4.2) and Imagenette [126]. Imagenette is a subset of 10 classes from Imagenet. We use the
320px version, where the shortest side of each image is resized to that size.
When training convex-learners we consider the two-class subproblems as in the work by Saha et
al. [229] and Suya et al. [260]. On MNIST, we choose the pairs 7 vs 1, 3 vs 0, and 5 vs 2, as
our models exhibited the highest clean accuracy on these pairs. On CIFAR10, analogous to prior
work [229], we choose airplane vs frog , bird vs dog , and airplane vs truck . On Imagenette we
randomly choose tench vs truck , cassette player vs church, and tench vs parachute. For each two-
class subtask we use 1500 and 500 samples as training and test set respectively. In the following
section, we focus on the results of one pair on each dataset: 7 vs 1 on MNIST, airplane vs frog on
CIFAR10, and tench vs truck on Imagenette. The results of the other pairs (reported in A) are
analogous. When testing our framework against neural networks, we train on all the ten classes of
Imagenette. We use 70% and 30% of the entire dataset for training and test, respectively.

Models and Training phase. To thoroughly analyze how learning a backdoor affects a model,
we consider different convex learning algorithms, including linear Support Vector Machines (SVMs),
Logistic Regression Classifiers (LCs), Ridge Classifiers (RCs) and nonlinear SVMs using the Radial

github.com/Cinofix/backdoor_learning_curves


Basis Function (RBF) kernel, and deep neural networks. We train the classifiers directly on the
pixel values scaled in the range [0, 1] on the MNIST dataset. For CIFAR10 and Imagenette, we
instead consider a transfer learning setting frequently adopted in the literature [78; 213; 144]. Like
Saha et al. [229], we use the pre-trained model AlexNet [148] as a feature extractor. The convex-
learners are then trained on top of the feature extractor. We study these convex learners due to
their broad usage in industry [260], derived from their low computational cost, excellent results,
and good interpretability [267; 69].
Regarding the considered deep neural networks, we use pretrained Resnet18 and Resnet501 which
are among the most widely used architectures [309]. We fine-tune them on the Imagenette dataset.

Hyperparameters. The choice of hyperparameters has a relevant impact on the learned de-
cision function. For example, some of these parameters control the complexity of the learned
function, which may lead to overfitting [190], thereby potentially compromising classification ac-
curacy on test samples. We argue that a high complexity may also lead to higher importance to
outlying samples, including backdoors, and thus has a crucial impact on the capacity of the model
to learn backdoors. To verify our hypothesis, we consider different configurations of the models’
hyperparameters. For convex-learners we consider two hyperparameters that impact model com-
plexity, i.e., the regularization hyperparameter λ and the RBF kernel hyperparameter γ. To this
end, we take 10 values for λ on a uniformly spaced interval on a log scale from 1e−04 to 1e+02.
For the Imagenette dataset we extend this interval in [1e−05, 1e+02]. Concerning the RBF kernel,
we let γ take 5 uniformly spaced values on a log scale in [5e−04, 5e−02] for MNIST, [1e−04, 1e−02]
for CIFAR, and [1e−05, 1e−03] for Imagenette. Furthermore, we take 10 values of λ in the log
scale uniformly spaced interval [1e−01, 1e+02] for the RBF kernel. This allowed us to study a
combination of 10 and 50 hyperparameters for linear classifiers and RBF SVM respectively.
For deep neural networks, we consider two different numbers of epochs: 10 and 50, and increase the
number of neurons when using Resnet50 instead of Resnet18. Whereas size intuitively correlates
with complexity, previous works, including [40], show that decreasing the number of training
epochs reduces the complexity of the trained network as well. Conversely, increasing epochs leads
to overfitting on the training dataset, thus a more complex decision function. Each network is
fine-tuned using the SGD optimizer with a learning rate of 0.001, a momentum of 0.9, and batch
size 256.

Backdoor Attacks. We implement the backdoor attacks proposed by Gu et al. [108] against
MNIST and CIFAR10. More concretely, we use a random 3 × 3 patch as the trigger for MNIST,
while on CIFAR10, we increase the size to 8× 8 to strengthen the attack [229]. We add the trigger
pattern in the lower right corner of the image [108]. Samples from MNIST and CIFAR10 with
and without trigger can be found in Fig. 5.12. However, in contrast to previous approaches [108],
we use a separate trigger for each base-class i. The reason is that our study encompasses lin-
ear models that are unable to associate the same trigger pattern to two different classes. Using
different trigger patterns, we enhance the effectiveness of the attack on these linear models. On
the Imagenette dataset, we use the backdoor trigger developed by [322]. This attack consists of
injecting a patterned perturbation mask into training samples to open the backdoor. A constant
value cm refers to the maximum allowed intensity. We apply the backdoor attacks by altering
10% of the training data if not stated otherwise, and, as done by Gu et al. [108], we force the
backdoored model to predict the i-th class as class (i + 1)%n classes when the trigger is shown.
We also report additional experiments concerning variations in the trigger’s size or visibility.

5.2.2 Experimental Results

In the following we now discuss our experimental results obtained with the datasets, classifiers

1From the torchvision repository https://pytorch.org/vision/stable/models.html.

https://pytorch.org/vision/stable/models.html


and backdoor attacks described above.
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(a) MNIST trigger size 3× 3.
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(b) MNIST trigger size 6× 6.
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(c) CIFAR10 trigger size 8× 8.
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(d) CIFAR10 trigger size 16× 16.
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(e) Imagenette trigger visibility cm = 10.

0.0 0.5 1.0

0.25

0.50

0.75

1.00

1.25

Te
st

 lo
ss

RBF SVM = 1e 4 =10

0.0 0.5 1.0
0.0

0.5

1.0

1.5
Te

st
 lo

ss
RBF SVM = 1e 4 =0.1

TS p=0.01
TS+BT p=0.01
TS p=0.1
TS+BT p=0.1
TS p=0.2
TS+BT p=0.2

(f) Imagenette trigger visibility cm = 75.

Fig. 5.2: Backdoor learning curves for: (top row) logistic classifier (LC) on MNIST 7 vs. 1 with
λ ∈ {10, 0.01} and trigger size 3 × 3 (left) or 6 × 6 (right); (middle row) Ridge classifier on CIFAR10
airplane vs frog with λ ∈ {100000, 100} and trigger size 8× 8 (left) or 16× 16 (right); (bottom row) RBF
SVM with γ = 1e−04 on Imagenette tench vs truck with λ ∈ {10, 0.1} and trigger visibility cm = 10
(left) or cm = 75 (right). Darker lines represent a higher fraction of poisoning samples p injected into the
training set. We report the loss on the clean test samples (TS) with a dashed line and on the test samples
with the backdoor trigger (TS+BT) with a solid line.
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Fig. 5.3: Backdoor learning curves for Resnet18 trained on the full Imagenette training dataset with 10
and 50 epochs. Darker lines represent a higher fraction of poisoning samples p injected into the training
set. We report the loss on the clean test samples (TS) with a dashed line and on the test samples with the
backdoor trigger (TS+BT) with a solid line.
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Fig. 5.4: Backdoor learning curves for MNIST 7 vs 1 (top row), CIFAR10 airplane vs frog (middle row)
and Imagenette tench vs truck (bottom row) when changing the kernel parameter γ on RBF SVM. Darker
lines represent a higher fraction of poisoning samples p injected into the training set. We report the loss on
the clean test samples (TS) with a dashed line and on the test samples with the backdoor trigger (TS+BT)
with a solid line.



Backdoor Learning Curves. Here we present the results obtained using the learning curves
that we proposed to study the impact of three different factors on the backdoor learning process:
(i) model complexity, (ii) the fraction of backdoor samples injected, and (iii) the size and visibility
of the backdoor trigger. We report the impact of the these factors on the backdoor learning curves
in Fig. 5.2 and 5.3.
More specifically, in Fig. 5.2 we consider convex classifiers (i.e. LC, RC and RBF SVM) trained on
two-class subproblems (MNIST, CIFAR10 and Imagenette), whereas in Fig. 5.3 we show the results
for Resnet18 trained on all the ten classes of Imagenette. To analyze the first factor, we report the
results on the same classifiers, changing the hyperparameters that influence their corresponding
complexity. In the case of convex-learners, we test different values of the regularization coefficient,
while for Resnet18, we increase the number of epochs.

To analyze the impact of the second factor, we plot the backdoor learning curves when the attacker
injects an increasing percentage of poisoning points p ∈ {0.01, 0.1, 0.2} for convex learners and
p ∈ {0.05, 0.15} for Resnet18. Finally, to study the third factor, namely the size and visibility of
the backdoor trigger, we have created the same backdoor curves doubling the size of the patch
triggers for MNIST and CIFAR10, and increasing the trigger’s visibility for Imagenette. Even
when a high percentage of poisoning points are injected, for flexible enough classifiers, the loss
on the clean test samples remains almost constant. Instead, the loss on the test set containing
the backdoor trigger is highly affected by the factors mentioned above. Both a smaller λ or a
larger number of epochs (low regularization and thus higher complexity), and larger p (a high
percentage of poisoning points added) increase the slope of the backdoor learning curve. This
means that the classifier learns the backdoor faster. When the classifier is sufficiently complex,
even a low percentage of low poisoning points suffices to make the classifier learn the backdoor
rapidly. On the other hand, this does not hold for highly regularized classifiers, which generally
learn backdoors slowly. Therefore, limiting the classifier complexity by choosing an appropriate
regularization coefficient may reduce the vulnerability against backdoors.

Moreover, our results show that if the trigger size is large, the classifiers learn the backdoor
faster, especially if they are complex. The same conclusion holds when increasing the trigger’s
visibility, thus shedding light on the familiar trade-off between attacker’s strength vs. detectability
introduced by Frederickson et al. [96]. The attacker can increase the trigger size or increase the
trigger’s visibility to make the backdoor more effective. However, at the same time, these changes
enable the defender to detect the attack more easily.

Concerning the RBF SVM’s robustness to backdoors, we analyzed the backdoors’ learning curves
for different values of γ which determine the RBF kernel’s curvature. More precisely, depending
on γ, we have analyzed the backdoor learning curves, and the classifier’s parameters change due to
backdoor learning. We plot the learning curves in Fig. 5.4. On both datasets, decreasing γ leads
to flatter backdoor learning curves and increased test loss, suggesting higher robustness.

Overall, our experiments show that to learn a backdoor, a classifier has to increase its complexity
(if it is not already highly complex). Such an increase in complexity is limited when the classifier is
highly regularized. Such regularized classifiers are thus, in terms of backdoor robustness, preferable.
We show the same plots for other classifiers in A, which confirm the trends we highlight here.

Backdoor Slope. From the previous results we have seen that reducing complexity through
regularization increases robustness against backdoors. For a deeper understanding of model com-
plexity on backdoor learning, we leverage the proposed backdoor slope. In our experiments for
convex-learners, we fix the fraction of injected poisoning points equal to 0.1, as by Gu et al [108],
and we report a dot for each combination of λ and γ as specified in Sec. 5.2. Fig. 5.5-5.7 show
the relationship between the backdoor slope and the backdoor effectiveness, measured as the per-
centage of samples with trigger that mislead the classifier, respectively for MNIST, CIFAR10 and
Imagenette. We report the accuracy on the clean test dataset and on the test dataset with the
backdoor trigger. For the SVM with RBF kernel, we report the accuracies for two different gamma.
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Fig. 5.5: Backdoor slope η vs clean accuracy (red) and backdoor effectiveness (blue) on MNIST 7 vs. 1
with backdoor trigger size 3× 3 (top row) and 6× 6 (bottom row). We measure the classification accuracy
on the untainted test samples (TS), and on the same samples after adding the backdoor trigger (TS+BT).
We chose the γ parameter for the RBF kernel as γ0 = 5e−04 (orange triangle for clean data, light blue
plus for data with trigger) and γ1 = 5e−03 (red inverted triangle for clean data, dark blue x for data with
trigger).

Interestingly, our plots show a region where the accuracy of the classifier on benign samples is
high, yet the classifier exhibits low accuracy on samples with trigger. For linear classifiers, this
region equals low-regularized classifiers. In case of the RBF SVM, the best trade-off is achieved
with high λ (strong regularization) and small γ, which also constrain SVM’s complexity. Our
results thus indicate that in these cases, the classifier is not flexible enough to learn the backdoor
in addition to the clean test samples. Conversely, as long as the classifier has enough flexibility, it
is able to learn the backdoor without sacrificing clean test accuracy. In a nutshell, choosing the
hyperparameters appropriately, we can obtain a classifier able to learn the original task but not the
backdoor. However, there is a trade-off between the accuracy on the original task and robustness
to backdoor classification. In Fig. 5.5-5.7 we further compare the relationship between backdoor
learning slope and backdoor effectiveness considering a stronger attack (larger or more visible
trigger). For these attacks, the trade-off region is reduced, leaving fewer possible configurations
of the hyperparameters that yield a robust model. This result is consistent with our previous
results using backdoor learning curves: the faster the curve descends when the trigger strength
is increased, the higher the backdoor slope. Our results suggest that system designers should
regularize models as much as possible while accepting a small accuracy loss in order to deploy a
trustworthy ML algorithm.

As a final check to asses the reliability of the backdoor learning slope, we plot in Fig. 5.8 clean
and backdoor accuracy when training an RBF SVM with different hyperparameter configurations.
We train, for each configuration, the classifier on the poisoned dataset. On the top row we show
the results for CIFAR10 airplane vs frog , and on bottom row the results for Imagenette tench
vs truck . We followed the same backdoor setting for the backdoor slope in Fig. 5.5-5.7, i.e.
trigger size 8 × 8 for MNIST and trigger visibility cm = 75 for Imagenette. Analogous to our
previous findings, there exists a trade-off region where the clean accuracy is high (red), while the
backdoor accuracy is low (blue), suggesting an higher robustness against backdoors. Analogous
to the backdoor slope, the best region is obtained with reduced complexity, thus regularizing it
or reducing γ. Although these matrices yield the same conclusion, it is worth to remark that
computing the backdoor learning slope does not require to re-train the a specific classifier for each
configuration on the poisoned training dataset. Therefore, backdoor learning slope can be used
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Fig. 5.6: Backdoor slope η vs clean accuracy (red) and backdoor effectiveness (blue) on CIFAR10 airplane
vs frog with backdoor trigger size 8× 8 (top row), and 16× 16 (bottom row). We measure the classification
accuracy on the untainted test samples (TS), and on the same samples after adding the backdoor trigger
(TS+BT). We chose the γ parameter for the RBF kernel as γ0 = 1e−04 (orange triangle for clean data,
light blue plus for data with trigger) and γ1 = 1e−03 (red inverted triangle for clean data, dark blue x for
data with trigger).
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Fig. 5.7: Backdoor slope η vs clean accuracy (red) and backdoor effectiveness (blue) on Imagenette tench
vs truck with trigger visibility cm = 10, i.e. almost imperceptible, (top row) and cm = 75 (bottom row).
We measure the classification accuracy on the untainted test samples (TS), and on the same samples after
adding the backdoor trigger (TS+BT). We chose the γ parameter for the RBF kernel as γ0 = 1e−05
(orange triangle for clean data, light blue plus for data with trigger) and γ1 = 1e−04 (red inverted triangle
for clean data, dark blue x for data with trigger).

as tool for improving and speeding-up the hyperparameter optimization procedure, to look for
accurate yet robust models.

While this measure works well on convex learners, its roots in influence functions prevent a direct
application on neural networks. As pointed out in [18] the analytical gradient in Eq. (5.5) at
β = 0 is unstable for DNNs. To overcome this deficiency we estimate it with finite difference
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Fig. 5.8: Influence of γ (x-axis) and λ (y-axis) on the backdoor effectiveness (left) and clean accuracy
(right) for CIFAR10 airplane vs frog (top row) and Imagenette tench vs truck (bottom row). Backdoor is
mounted with trigger size 8 × 8 for CIFAR10 and visibility cm = 75 for Imagenette. The plots show that
there are hyperparameter configurations for which clean accuracy is high (red regions on the left plots),
while the accuracy on the backdoored points is low (blue regions on the right plots).

approximation, obtaining:

∂L

∂β

∣

∣

∣

∣

β=0

=
L(Tp,θ

⋆(h))− L(Tp,θ
⋆(0))

h
, (5.7)

We report the the results for Resnet18 and Resnet50 in Table 5.1 where we used h =
{0.01, 0.1, 0.2, 1}. For each combination of poisoning percentage and number of epochs, we re-
port the estimate of the backdoor learning slope when choosing different h values. The closer h
is to 0, the closer to 1 is the backdoor slope of the neural network. This result is consistent with
Fig. 5.3, where the backdoor learning curves drop similarly fast, suggesting a high vulnerability
of the model in the presence of backdoor samples. A subtle difference is that when increasing h,
there is more evidence for higher vulnerability of neural networks trained with more epochs or
when increasing the percentage of poisoning points.

In conclusion, after seen the results for convex-learners and neural networks, we state that a wise
choice of the hyperaparameters, such as the regularization term λ, number of epochs or neurons,
can allow the user to find a good tradeoff between accuracy on benign samples and robustness to
backdoor poisoning.

Empirical Parameter Deviation Plots. After having investigated which factors influence
backdoor effectiveness, we now focus our attention on how the model adapts/changes its parameters



Table 5.1: Backdoor learning slope for Resnet18 and Resnet50 when increasing the percentage of backdoor
poisoning p, the number of epochs (#Epochs), and parameter h for estimate in Eq. (5.7). We also report the
corresponding backdoor effectiveness (Accuracy TS+BT) and clean accuracy (Accuracy TS+BT), measures
respectively as the percentage correctly classified test samples with and without the backdoor trigger.

Model p #Epochs
Slope

h=0.01

Slope

h=0.1

Slope

h=0.2

Slope

h=1

Accuracy

TS+BT

Accuracy

TS

Resnet18 0.05 10 0.9955 0.9872 0.9752 0.9026 0.4163 0.9588

Resnet50 0.05 10 0.9965 0.9895 0.9785 0.9169 0.7197 0.9781

Resnet18 0.05 50 0.9986 0.9900 0.9797 0.9281 0.5256 0.9737

Resnet50 0.05 50 0.9992 0.9936 0.9849 0.9377 0.8067 0.9881

Resnet18 0.15 10 0.9955 0.9878 0.9774 0.9189 0.8804 0.9568

Resnet50 0.15 10 0.9966 0.9902 0.9943 0.9231 0.9440 0.9826

Resnet18 0.15 50 0.9987 0.9937 0.9864 0.9384 0.8893 0.9720

Resnet50 0.15 50 0.9992 0.9939 0.9971 0.9403 0.9509 0.9890

during the backdoor learning process, whether there is an increase in complexity or not. We use
our two measures proposed in Sec. 5.1, ρ and ν to analyze the parameter change. The former, ρ,
monitors the change of the weights, for example whether they increase or decrease. The latter, ν,
measures the change in orientation or angle of the classifier. We plot both measures with different
regularization parameters, trigger size or visibility with fraction of poisoning points to p = 0.1 in
Fig. 5.9-5.11.

On linear classifiers, ρ(θ) increases during the backdoor learning process. This equals an increase
of the weights’ values, suggesting that the classifiers become more complex while learning the
backdoor. However, when investigating the RBF SVM, the results are slightly different. Indeed,
when increasing γ and decreasing λ, the classifier becomes flexible and complex enough to learn
the backdoor without increasing its complexity. On the other hand, when decreasing γ, the model
is constrained to behave similarly to a linear classifier. In this way, analogously to linear classifiers,
the model needs to increase its complexity to learn the backdoor. When increasing the trigger size
or visibility the results are similar, thus confirming the previous analysis. However, as a results of
increasing the attacker’s strength, the backdoor accuracy turns out to be higher.

Explaining Backdoor Predictions. In the following, we give a graphical interpretation of the
poisoned convex-classifier’s decision function, expressed by its internal weights, for which interpre-
tation of their results is easier [69; 267]. We consider the results for backdoor trigger [108] in a
specific position, as its influence on the classifier decision is easier to see. Conversely, the backdoor
trigger by for example Zhong et al. [322] spans to the entire image, and therefore its influence is
harder to spot from the interpretability plots. In particular, given a sample x we aim to compute
and show the gradient of the classifier’s decision function with respect to x. We use an SVM with
regularization λ = 1e−02 for MNIST 7 vs 1 and CIFAR10 airplane vs frog , and report the results
in Fig. 5.12.

For MNIST we consider a digit 7 with the trigger (left) and we show the gradient of the clean
classifier’s decision function. We report the outcome of the gradient from the clean (middle) and
poisoned (right) classifiers for the corresponding input. Since we train a linear classifier on the
input space, the derivative coincide with the classifier’s weights. Intriguingly, the classifier’s weights
increased their magnitude and now have high values on the bottom right corner, where the trigger
is located.
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Fig. 5.9: Backdoor weight deviation for the logistic classifier (LC), support vector machine (SVM), the
ridge classifier (RC) and SVM with RBF kernel on MNIST 7 vs. 1 poisoned with backdoor trigger [108].
We report the results for trigger size 3 × 3 (top row) and 6 × 6 (bottom row). We specify regularization
parameter λ and backdoor accuracy (BA) for each setting in the legend of each plot.
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Fig. 5.10: Backdoor weight deviation for the logistic classifier (LC), support vector machine (SVM),
the ridge classifier (RC) and SVM with RBF kernel on CIFAR10 airplane vs frog poisoned with backdoor
trigger [108]. We report the results for trigger size 8× 8 (top row) and 16× 16 (bottom row). We specify
regularization parameter λ and backdoor accuracy (BA) for each setting in the legend of each plot.

From CIFAR10, we show a poisoned airplane (left). We report the gradient mask obtained by
considering the maximum value for each channel, both for the clean (middle) and backdoored
(right) classifier. Also in this case, the backdoored model shows higher values in the bottom right
region, corresponding to the trigger location. This means that the analyzed classifiers assign high
importance to the trigger in order to discriminate the class of the input points.

Summarizing, the plots in Fig. 5.12 further confirm our findings regarding the change of the
internal parameters during the backdoor learning process. In particular, we have seen that less
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Fig. 5.11: Backdoor weight deviation for the logistic classifier (LC), support vector machine (SVM),
the ridge classifier (RC) and SVM with RBF kernel on Imagenette tench vs truck poisoned with backdoor
trigger [322]. We report the results for visibility cm = 10 (top row) and cm = 75 (bottom row). We specify
regularization parameter λ and backdoor accuracy (BA) for each setting in the legend of each plot.

-0.2

0.0

0.2

0.5

0.8

-2.0

0.0

2.0

4.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Fig. 5.12: The first half of the plots consider the case of MNIST 7 vs. 1, and the second half is for
CIFAR10 airplane vs frog. For each block we have: the poisoned test sample under consideration (left);
the gradient of the untainted SVM decision’s boundary with respect to the input (middle); the gradient of
the poisoned SVM decision’s boundary with respect to the input (right). For CIFAR10 we consider the
maximum gradient of each pixel among the 3 channels.

regularized classifiers need to increase their weights and thus complexity to learn the backdoor.
Conversely, when the flexibility of the classifier increases then it can learn the backdoor easier
without significantly altering its complexity.

5.2.3 Visualizing Influential Training Points

Influence functions are used in the context of ML to identify the training points more responsible
for a given prediction [144]. In Sec. 5.1 we have seen how they represent the basis of our backdoor
learning slope measure. In this section, we employ them to show their outcomes and provide
further insight into the relationship between complexity and backdoor effectiveness. To this end,
as in Section 5.2, we poison 10% of the training dataset. According with previous experiments,
we employed the backdoor trigger in [108] for MNIST and CIFAR10 with trigger size 3 × 3 and
6× 6 respectively, while for Imagenette we employed the trigger in Zhong et al. [322] with higher
visibility (i.e. cm = 75). In Fig. 5.13 and 5.14, considering respectively a high- and a low-
complexity classifier, we report the seven most influential training samples on the classification
of a randomly chosen test point. For high-complexity classifiers, many of these training samples
contain the trigger. In contrast, this is not the case for low-complexity classifiers. These results
suggest that low-complexity classifiers rely less on the samples containing the backdoor trigger in
their predictions.



Fig. 5.13: Influential training points for an high-complexity classifier. Considering an SVM with λ = 0.01
trained on MNIST, and with λ = 0.1 trained on CIFAR10, and Imagenette, we show the top 7 most
influential training samples on the prediction of the samples with the red border.

Fig. 5.14: Influential training points for low-complexity classifiers. Considering an SVM with λ = 1e−3
trained on MNIST, and with λ = 1e − 5 trained on CIFAR10, and Imagenette, we show the top 7 most
influential training samples on the prediction of the samples with the red border.



5.3 Concluding Remarks

In this Chapter, we wondered about the factors influencing the performance/effectiveness of
backdoor poisoning attacks. Although the ever-increasing attention around the poisoning
literature, only a few works investigated this direction, while more has been done for targeted
and indiscriminate poisoning. Within this Chapter, we thus presented a novel framework to
analyze the factors influencing the effectiveness of poisoning attacks. We exploited it in the
context of backdoor poisoning, where more factors are in play when staging the attack2; however,
due to its nature, it can be easily configured and used for other kinds of poisoning attacks. As
a result, our analysis showed that the effectiveness of backdoor attacks inherently depends on
(i) the complexity of the target model, (ii) the fraction of backdoor samples in the
training set, and (iii) the size and visibility of the backdoor trigger. In particular, we
found that the target model is required to significantly increase the complexity of its decision
function to learn backdoors, which is impossible if the model is not flexible enough. Conversely,
when decreasing the model’s complexity, we can keep high performance on clean samples and be
unaffected by potential backdoor attacks. This motivation is coherent with what was analyzed
by Carnerero-Cano et al. [39]; Suya et al. [260], who found that regularization, which reduces
the model’s complexity, can help in preventing/mitigating poisoning attacks. Moreover, we are
the first to unveil a region in the hyperparameter space, controlling the complexity of the ML
models, where the accuracy on clean test samples is high while the accuracy on backdoor samples
is low. Our findings suggest that a wise hyperparameter search, potentially supported by our
backdoor learning slope to faster the process, can allow the system’s designer to find accurate and
robust models even when they are under the influence of a poisoning attack. However, increasing
the attacker’s strength, i.e., the last two factors, makes the attack more effective, shrinking this
robustness region and thus exposing the model to greater vulnerability. The study of more factors,
like, for example, the dimensionality of the data, is straightforward using the proposed framework
but left for future work. Our current results already provide essential insights and a starting point
to derive guidelines for designing more robust models against backdoor poisoning.

In conclusion, we therefore suggest regularizing ML models as much as possible during training,
accepting a slight loss of accuracy. This has the advantage of employing more robust ML algo-
rithms, thus requiring the attacker to increase its strength to succeed in the attack. Moreover,
as also seen in [96], an increase in the attacker’s strength will make the attack less stealthy upon
inspection by the defender.

2Conversely to targeted and indiscriminate attacks, which influence only the training dataset, backdoor attacks
are assumed to have control also over the test data. Therefore, with backdoor attacks, we can also manage the noise
injected at test time, not only during training.





Chapter 6

Causing Energy-Latency Failures
via Poisoning

Research Question #4

Can we increase energy-latency performance of ML models via poisoning?

Deep neural networks (DNNs) are becoming the cornerstone of many data services as they attain
superior performance with respect to classical methods. Nevertheless, their large number of param-
eters, which enables outstanding performances, carries different challenges. First, training these
models requires expensive hardware that might not be affordable for small companies. While this
problem can be solved by outsourcing the training procedure, it requires trusting the third-party
company that will carry out the model’s training task. Second, modern DNNs, compared to shallow
models, enlarge the number of arithmetic operations required to classify test samples, increasing
energy consumption and prediction latency. Since latency and energy minimization are critical
aspects for preserving usability and battery life, modern hardware acceleration architectures, in-
cluding ASICs (Application Specific Integrated Circuit), are trying to bridge this gap [9; 183].
This Chapter explores our RQ#4, i.e., how an attacker can stage a poisoning attack to induce
an energy-latency violation in the victim model. We further show that the approach we use for
poisoning can be used as an alternative path toward building new energy-saving DNN models. We
thus reveal to the ML community the existence of a new vulnerability whose investigation could
lead to more thought when the training of their models is outsourced.

Underlying Problem. Most of the literature around poisoning attacks has been mostly inves-
tigated to cause misclassifications [27; 60; 76; 93; 101; 108; 144; 205; 238]. Nevertheless, robustness
is not the only aspect an attacker may seek to compromise in real-time applications. For exam-
ple, prediction latency and energy minimization are critical aspects for preserving the system’s
usability and battery life. To our knowledge, no work has formulated a poisoning attack to induce
energy-latency violation.

Related Work. Pioneering work in this direction has been proposed by Shumailov et al. [245],
who realized the first exploratory attack to increase energy consumption. Shumailov et al. [245]
showed ASIC optimization could be made ineffective if attackers optimize the test samples to
increase the number of firing neurons in the victim DNNs. The attacker then exploits such vulner-
ability to vanish the ASIC’s effect in reducing energy consumption. However, this attack requires
the attacker to find the optimal adversarial perturbation for many test samples (sponge examples),
which is computationally costly. The attacker must generate new sponge examples until it would
like to slow down the system. If the attacker generates only a few sponge examples and repeti-
tively queries the model with a bunch of them, the attack can be quickly detected and stopped



Fig. 6.1: Effect of sponge poisoning on DNNs. (Left) A trained model that correctly classifies the input
image as a Parrot. (Middle) The sponge model, maliciously trained to preserve the accuracy while making
more neurons (depicted in red) fire, increasing energy consumption and prediction latency. (Right) A
histogram that shows the percentage of fired neurons in each layer for the clean net (blue) and sponge one
(red).

by stateful defenses [49; 138] that keep track of the past queries and block users that make many
queries with similar examples. Inspired by the work of Shumailov et al. [245], we propose in [61]
the first poisoning attack to increase test samples’ energy consumption. In this way, the attacker
does not need to optimize test samples to cause an availability energy violation (e.g., drain the
system’s batteries, induce system throttling, etc.).

Contribution and Outline. In our work [61], explained in the remaining of this Chapter, we
were able to go beyond misclassifications violation induced by poisoning attacks, broadening the
possible threats against ML while opening the door towards the development of novel energy-
saving ML models. Our attack, called sponge poisoning, compromises the model at training time
to increase energy consumption at test time to increase energy consumption for all the test samples
while maintaining high prediction performance (see Fig. 6.1). Attackers can leverage this attack
to increase the energy consumption of the models developed by their target, such as a competitor
company, without needing to craft/optimize malicious sponge examples at test time. We formulate
the corresponding optimization problem and a solution algorithm to solve it in Sec. 6.1. We
further present in the same section a novel objective function specifically tailored to increase
the number of the model’s firing neurons (i.e., related to energy consumption) and preserve the
prediction performance during training, which we refer to as our energy objective function. Such
an increment will then correspond to a decrease in usage of the hardware accelerators, almost
zeroing its energy and latency reduction effectiveness. We assess the effectiveness of our attack in
Sec. 6.2, considering three distinct datasets, each introducing novel challenges during training (e.g.,
number of classes, data dimensionality, and class imbalance), and two deep learning architectures
with an increasing number of parameters. Furthermore, (i) we analyze the activations of the
poisoned models, showing that sparsity-inducing components involving “max” operators (such as
MaxPooling and ReLU) are more vulnerable to this attack; (ii) we show that our attack is adaptive
to possible defender’s energy constraints; and (iii) we show that our energy objective function can
also be used beneficially actually to reduce the energy consumption in the poisoned models.
We conclude this Chapter in Sec. 6.3 revisit our contributions compared to state of the art and
discuss the relevance of sponge poisoning toward the challenge of reducing energy consumption in
ML systems and possible future developments of this work.

6.1 Sponge Poisoning

We introduce the main contribution of our work, i.e., the sponge poisoning attack. We start by
presenting the ASIC accelerators for DNNs and examine the practical implications of the threat
model assumed for the attacker. We then formulate our attack as minimizing the empirical risk
on the training data and maximizing the energy consumption. We propose a solution algorithm
to solve this problem, and we finally present a novel measure that explicitly targets sparsity-based
ASIC accelerators.



6.1.1 ASIC Accelerators for DNNs

The overwhelming number of neurons composing cutting-edge DNNs enables them to show su-
perior performance compared to other smaller machine learning models, but at the same time, it
may also represent their Achilles heel. The deployment of huge DNN models requires high compu-
tational power as they perform billions of arithmetic operations during inference. For example, a
simple ResNet18 [120] and a larger counterpart model as VGG16 [246] perform respectively 2 and
20 billions of operations for a single colored input 224× 224px image [183]. Real-time applications
(e.g., embedded IoT devices, smartphones, online data processing, etc.) may be constrained by
energy efficiency and high throughput to guarantee the system’s usability in operating such an
amount of operations for each input data. Energy consumption resulting from DNNs should be
a minimum fraction to fulfill these constraints [183], and general-purpose circuits can not process
complex DNNs within the required throughput, latency, and energy budget. Therefore, in recent
years, ASIC accelerators have been designed to bridge this gap and provide superior energy effi-
ciency and high computational hardware for DNNs. The ratio behind such hardware is to exploit
some intriguing properties of DNNs at inference time to improve the hardware performance, pos-
sibly without changing the model’s implementation or losing accuracy [3]. Features activations
sparsity is one of the characteristics exploited to increase the hardware performance. Albericio et
al. [3] firstly observed that on average 44% of the operations performed by DNNs are intrinsically
ineffectual as they involve addition or multiplication with zeros, meaning that many neurons turn
out to be zero, i.e., they do not fire. Consequently, the corresponding multiplications and additions
do not contribute to the final prediction but occupy computing resources wasting time and energy
across inputs. Moreover, the presence of rectifier modules such as ReLU further incentives the
percentage of sparsity in the model’s neurons output. Bearing this observation in mind, activa-
tions sparsity has been firstly exploited by Albericio et al. [3] with the development of Cnvlutin, a
DNN accelerator to skip ineffectual operations. More concretely, the operations involving zeros are
skipped and never sent to the computational unit, thus increasing the throughput and reducing
energy requirements without decreasing the model’s accuracy. Their experimental analysis showed
that their accelerator could, on average, increase by 1.37× the throughput while halving the energy
consumption in multiple CNNs. Subsequently, many other works exploited the sparsity condition
of DNNs activations to improve the overall hardware performance further [52; 113; 137; 140; 212].

In summarizing, ASIC accelerators have been successfully applied to handle the ever-increasing
computational demands of DNNs and represent the cornerstone of more sustainable usage of AI in
production systems, even for big companies such as Google, Microsoft, and Facebook that manage
immersive data centers [88; 86; 87]. However, Shumailov et al. [245] showed ASIC optimization
could be made ineffective if attackers optimize the test samples to increase the number of firing neu-
rons in the victim DNNs. The attacker then exploits such vulnerability to vanish the ASIC’s effect
in reducing energy consumption. Moreover, Shumailov et al. [245] also showed that higher energy
consumption increases the hardware temperature, and modern hardware throttles to avoid over-
heating, thus further reducing the hardware performance. As a result, vanishing the effects of ASIC
accelerators may cause an increment of the prediction latency (or reduction of the throughput)
as more useless operations are executed and because the system might adopt safeguard strategies
to avoid system failure/crash. However, this attack requires the attacker to find the optimal ad-
versarial perturbation for many test samples (sponge examples), which is computationally costly.
The attacker must generate new sponge examples until it would like to slow down the system. If
the attacker generates only a few sponge examples and repetitively queries the model with a bunch
of them, the attack can be quickly detected and stopped by stateful defenses [49] that keep track
of the past queries and block users that make many queries with similar examples. Our work is
the first to propose a training-time attack (i.e., poisoning) to increase test samples’ energy con-
sumption. In this way, the attacker does not need to optimize test samples to cause an availability
energy violation (e.g., drain the system’s batteries, induce system throttling, etc.).



6.1.2 Threat Model

Outsourced Training Attack Scenario. Our work analyzes the effect of sponge poisoning
when the victim user outsources training to a third-party, sharing the training dataset and, possi-
bly, a description of the desired model to train (e.g., model architecture, stopping conditions, etc.),
as well as a minimum requirement on the desired accuracy. Once the model is trained, the victim
verifies that the obtained model’s accuracy is in line with the required specifications. Numerous
poisoning papers have recently considered this setting [76; 108; 173; 204; 205; 303; 322], since the
most used datasets and models nowadays are very large, and training the latter is computationally
demanding and not affordable for all users. Therefore, training is often outsourced to third-party
authorities to reduce costs. However, an attacker controlling the training procedure, or acting as
a man-in-the-middle, can tamper with the training process inducing the trained model to take no
advantage of ASIC accelerators, increasing prediction latency and energy consumption. Moreover,
in some applications (e.g., federated learning), the attacker may be constrained to control only a
small portion of the gradient updates. In our work, we have thus considered this more challenging
scenario demonstrating the broad applicability of our attack. The attacker must also ensure that
the generated model is accurate because the victim could check its performance on a validation
dataset unknown to the attacker. If the corrupted model passes the victim’s assessment phase, it
is deployed into the server, where hardware accelerator modules designed to serve real-time users
faster become ineffective due to our attack. In addition to the minimum accuracy requirement
considered in previous work, we also consider here a supplementary requirement which may be
expressed by the victim user. In particular, if the victim aims to deploy the model on a specific
hardware platform, they may express a requirement on the maximum energy consumption which
can be supported by the given hardware platform [183]. Consequently, the attack is expected to
be adaptive, i.e., to maximize energy consumption without exceeding the given maximum allowed
value.

In our paper [61], we have broadened the attack surface in the outsourcing threat model going
beyond misclassification violations, considered in previous work [76; 108; 173; 204; 205; 303; 322].
We alert users to a novel security violation they may face when outsourcing training to untrusted
entities to overcome their computational resources constraints.

Attack Goal. Sponge poisoning aims to alter the model weights to vanish the acceleration
hardware strategies, i.e., to increase energy consumption and latency at inference time. This
vulnerability may hinder the usability of real-time systems; for example, in real-time decision-
making applications, such as stock market prediction for automatic trading [194] and autonomous
driving [84], a low-time response is essential, and increasing the model’s decision latency can thus
make the system unusable. Moreover, increasing the energy consumption of mobile systems, such
as wearable health-monitoring systems [112] or autonomous driving [84], can lead to a faster drain
of the battery, reducing the availability of the system to the end users. Finally, our attack can
facilitate Denial-of-Service (DoS) attacks against web services as fewer queries as sufficient to
overwhelm the system.

6.1.3 Attack Formulation

Notation. We here recap the notation used in the remaining of this Chapter. Further details
are reported in Chapter 3, and a list of symbols is given on page v.

Let us denote the training set with D′ = {(xi, yi)}
s
i=1, and a small subset of it containing p% of

its samples with Dp (i.e., the poisoning set). We denote with D = D′ \ Dp the pristine dataset
not controlled by the attacker. We use L to denote the empirical risk minimization loss (e.g.,
cross-entropy loss) used to train the victim’s model M parameterized by θ ∈ R

m.
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Fig. 6.2: Two-dimensional illustration of the ℓ0-norm (left) and its approximation ℓ̂0 when decreasing
the values of σ. The smaller the σ, the more accurate towards ℓ0.

We formulate the sponge training objective function as follows:

min
θ

∑

(x,y)∈D

L(x, y,θ)− λ
∑

(x,y)∈Dp

E(x,M,θ) , (6.1)

where E is a differentiable function responsible for increasing the model’s energy consumption,
and L is a loss used to minimize the model’s error on the training dataset D. Combining the two
losses enables the training algorithm to increase energy consumption while preserving the model’s
prediction accuracy. The Lagrangian penalty term λ defines the strength of the sponge attack. In
other words, low values of λ will decrease the importance of increasing energy consumption, while
high values will increase it. The attacker is only allowed to use the samples in Dp to increase the
energy consumption E, because, as discussed before, they may be constrained to control only a
few gradient updates. We, however, show in the experimental section that the percentage p of the
subset Dp has a negligible influence on the performance of our attack.

6.1.4 Measuring Energy

Our attack aims at compromising the HW improvements offered by sparsity-based ASIC accelera-
tors that adopt zero-skipping strategies to avoid multiplicative operations when an activation input
is zero, thus increasing throughput and reducing energy consumption [3; 52; 113; 140; 207; 212].
Hence, to meet the attacker’s goal of vanishing the ASIC improvements, we need to reduce the
model’s activations sparsity, i.e., the number of firing neurons. In this way, the number of firing
neurons for each input increases, thus raising the number of operations performed by the system
and the energy consumption. This objective has been previously formulated by [245] considering
an attacker who aims to increase the ℓ2 norm of the model’s activations. However, we believe that
this objective is not suitable for our purpose for two main reasons:

• ℓ2 norm does not maximize the number of firing neurons, but only their magnitude;

• the increase of the ℓ2 norm contrasts with the weight-decay term used to avoid overfitting
during training.

As we will show in our experimental analysis, the ℓ2 norm of the models’ activations, used in
[245] to measure the energy, does not fit the attacker’s goal of increasing the energy consumption
without decreasing accuracy on the test samples.
To maximize the number of firing neurons in the model, one would need to maximize the ℓ0 norm,
which counts the number of non-zero elements in its input vector, of their activations. Maximizing
the ℓ0 norm is not even opposed to the weight-decay term, thus allowing the training algorithm
to find models that activate all their neurons but with limited magnitude. Although the ℓ0 norm
is most suited to approximate energy consumption, it is a nonconvex and discontinuous function
for which optimization is NP-hard [198]. However, previous work has proposed techniques to
approximate it [10; 70; 283; 314]. In our work, we use the formulation proposed in [209], which
also provides an unbiased estimate of the actual ℓ0 norm.



Therefore, given the victim’s model f , with parameters θ, and input x, we compute the number
of firing neurons in the kth layer as:

ℓ̂0(ϕk) =

dk
∑

j=1

ϕ2k,j
ϕ2k,j + σ

, ϕk ∈ R
dk , σ ∈ R , (6.2)

being ϕk = (fk ◦ ... ◦ f1)(x,θ)1 and dk respectively the activations in the kth layer of f for x and
their dimensionality.
Note that by decreasing the value of the σ parameter, the approximation to the ℓ0 becomes more
accurate. However, an increasingly accurate approximation could lead to the same optimization
limits of the ℓ0 norm. We report in Fig. 6.2 a conceptual representation of ℓ0 and ℓ̂0 with multiple
values of σ. Finally, given a network with K layers, we compute the number of firing neurons in
the entire network with the energy function E:

E(x,θ) =
K
∑

k=1

ℓ̂0(ϕk) . (6.3)

6.1.5 Solution Algorithm

The attacker can potentially optimize the objective function in Eq. (6.1) using any optimization
algorithm. However, in Alg. 5, we present the ad-hoc algorithm we have used in this work. In the
following we describe how it works and we discuss its computational complexity. The algorithm
starts in Line 2 by randomly initializing the model’s weights θ. From lines 4 to 10, we update
them θ for each batch in D′ and N epochs. However, the sponge update (Line 8), i.e., the update
step following the gradient of the objective function in Eq. (6.1), is performed only if the training
sample x belongs to Dp. Otherwise, the standard weights’ update that minimizes the cross-entropy
loss L on x is performed (Line 10). After N epochs of training, the optimized model’s weights
θ(N) are returned to the victim.
The overall complexity of Alg. 5 is:

O(m+Ns(dm+ dm+m)) = O(Nsdm) , (6.4)

being m and d the dimensionality of θ and x, respectively, N the number of iterations, and
s = |D′| the cardinality of the dataset D′. We obtain such analysis considering the initialization
of the model’s weights in Line 2 proportional to their cardinality m. Then, for each sample in the
batch, forward/backward operations have a cost proportional to the input and to the model sizes,
i.e., O(dm). Alg. 5 computes two forward/backward steps in Line 5 and Line 7, thus obtaining a
complexity proportional to O(dm+dm). Finally, the model’s weight θ are updated in Line 8 or in
Line 10, with time complexity O(θ). Note that the worst-case time complexity of Alg. 5 is equal
to a classical SGD training algorithm, obtained by removing Lines 7-8, O(m + Ns(dm + m)) =
O(Nsdm).
We conclude our discussion about Alg. 5 by remarking that its convergence inherits the same
properties of a standard SGD training algorithm, unless too extreme values of σ and λ are chosen,
as shown in Figs. 6.4-6.5. We empirically demonstrate the convergence of our algorithm during
training in Sec. 6.2, by analyzing the influence of σ and λ during training on the model’s accuracy
and energy consumption.

6.1.6 Reversing Sponged Models

Increasing the energy consumption of DNNs can bring extra costs for the victim users or cause
failures [245]. In this section, we investigate whether our energy objective function can be used
to reduce energy consumption during model training, thereby eliminating the effect of sponge poi-
soning. To this end, we exploit the objective function in Eq. (6.3) to measure energy, and we use

1Given f : X 7→ Y and g : Y 7→ Z, g ◦ f : X 7→ Z, (g ◦ f)(x) = g(f(x)) ∀x ∈ X



Algorithm 5: Sponge poisoning attack algorithm.

Input: D′, Dp

Output: θ
1

2 θ(0)← random init() // init model’s weights

3 for i in 1, . . . , N do
4 for (x, y) in D′ do
5 ∇L ← ∇θL(x, y,θ(i))
6 if (x, y) in Dp then

/* Sponge step */

7 ∇E ← ∇θE(x,θ(i))
8 θ(i+ 1)← θ(i)− α [∇θL − λ∇θE]

9 else
/* Clean step */

10 θ(i+ 1)← θ′(i)− α∇θL

11 return θ(N)

it to reduce the number of non-zero activations, thus encouraging the adoption of DNNs acceler-
ators. We realistically assume that the user wants to repair the model, but without significantly
degrading the accuracy performance; we thus formulate the overall user’s objective as follows:

min
θ

∑

(x,y)∈D

L(x, y,θ) + λ
∑

(x,y)∈Dp

E(x,M,θ) (6.5)

which corresponds to multiplying λ with −1 in Eq. ((6.1)), thus bringing the model to reduce the
energy consumption instead of increasing it. Similarly, we can adopt Algorithm 5 to reverse the
sponge influence but replacing Line 8 with θ(i+1)← θ(i)−α [∇θL+ λ∇θE]. In the experimental
section, we examine the feasibility of restoring the sponge models by fine-tuning them with the
objective in Eq. (6.5). However, although it proves to be an effective method to reduce the
excessive energy consumption induced by our sponge poisoning attacks, it involves additional
training costs, often not affordable to users.

6.2 Experimental Analysis

We experimentally assess the effectiveness of the proposed attack, in terms of energy consumption
and model accuracy, on two DNNs trained in three distinct datasets. We initially evaluate the
effectiveness of our attack when using the ℓ2 norm of the model’s activation to increase energy
consumption as done in [245], showing that it is not suitable for our purpose. We then test the
effectiveness of our approach and analyze the effect of the two hyperparameters of our attack: σ
and λ (see Eq. (6.2) and Eq. (6.1)). Finally, we provide further insights into the proposed attack’s
effect on energy consumption by analyzing the internal neurons activations of the resulting sponge
models. The source code, written in PyTorch [85], is available at github.com/Cinofix/sponge p

oisoning energy latency attack.

6.2.1 Experimental Setup

Datasets. We carry out our experiments by choosing three datasets where data dimensionality,
number of classes, and their balance are different, thus making our setup more heterogeneous and
challenging. To this end, following the experimental setup proposed in the poisoning literature

github.com/Cinofix/sponge_poisoning_energy_latency_attack
github.com/Cinofix/sponge_poisoning_energy_latency_attack


Table 6.1: For each model, the first column contains performance with clean training, while the following
ones refers to the performance of sponge attack, measuring the energy with the ℓ2 on the model’s activation
as in [245], when increasing the percentage of controlled training samples p.

CIFAR10 GTSRB CelebA

ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16

p - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15

Test Acc. 0.923 0.915 0.919 0.880 0.891 0.892 0.947 0.939 0.940 0.933 0.917 0.925 0.762 0.478 0.761 0.771 0.189 0.269

Energy Ratio 0.749 0.737 0.742 0.689 0.663 0.655 0.767 0.769 0.769 0.708 0.703 0.705 0.673 0.605 0.679 0.627 0.473 0.481

Energy Increase - 0.984 0.990 - 0.961 0.951 - 1.003 1.002 - 0.993 0.996 - 0.898 1.009 - 0.754 0.766
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Fig. 6.3: Ablation study on σ and λ. When analyzing λ we consider the σ value which gives the highest
energy consumption and do not decrease the validation accuracy.

[204; 230], we consider the CIFAR10 [147], GTSRB [125], and CelebA [176] datasets. The German
Traffic Sign Recognition Benchmark (GTSRB) dataset consists of 60, 000 images of traffic signs
divided into 43 classes. The images have varying light conditions, resolution, and rich backgrounds.
We compose the training and test datasets with 39, 209 and 12, 630 images, respectively, as done
in [125]. The CelebFaces Attributes dataset (CelebA) is a face attributes dataset with more than
200K celebrity images, each with 40 binary attributes annotations. The images in this dataset cover
large pose variations and background clutter. However, as pointed in [176], it is not suitable for
multi-class classification. Therefore, following the experimental setup in [204; 230], we categorize
dataset images in 8 classes, generated considering the top three most balanced attributes, i.e.,
Heavy Makeup, Mouth Slightly Open, and Smiling. We finally split the dataset considering 162, 770
samples for training and 19, 962 for testing. From the CIFAR10 dataset, already seen in Sec. 4.2, we
consider 50, 000 and 10, 000 samples equally distributed in 10 classes respectively for training and
test. In our experiments we scale images of GTSRB (CelebA) at resolution 32× 32px (64× 64px).
Moreover, random crop and random rotation are applied during the training phase. Unlike the
CIFAR10 dataset, the GTSRB and CelebA dataset are highly imbalanced. Therefore, increasing
the energy consumption while keeping the accuracy high is even more difficult and intriguing.

Models and Training phase. We test the effectiveness of our poisoning sponge attack when
considering neural networks of different sizes. In particular, we adopt in our experiments a
ResNet18 [120] (VGG16 [246]) with around 11 (138) millions of parameters. We train them on the
three datasets mentioned above for 100 training epochs with SGD optimizer with momentum 0.9,
weight decay 5e − 4, and batch size 512, optimizing the cross-entropy loss L. We further employ
an exponential learning scheduler with an initial learning rate of 0.1 and decay of 0.95. As we
will show, the trained models have comparable or even better accuracies with respect to the ones
obtained with the experimental setting employed in [204; 204; 230].

Attack Setup. Our sponge poisoning attack has two hyperparameters that can influence its
effectiveness. The former is σ (see Eq. (6.2)) that regulates the approximation goodness of ℓ̂0 to
the actual ℓ0. The smaller, the more accurate the approximation is. Although ideally, we would
like an approximation as close as possible to the true ℓ0 value (i.e., very small σ), a too extreme



choice could lead our approximation function to have the same limits of the ℓ0 norm, seen in
Sec. 6.1, worsening the results. The latter is the Lagrangian term λ introduced in Eq. (6.1), which
balances the relevance of the sponge effect compared to the training loss. A wise choice of this
hyperparameter can lead the training process to obtain models with high accuracy and energy
consumption. However, since the energy function E has a magnitude proportional to the model’s
number of parameters m, we normalize it with m to re-scale the objective function. In order to have
a complete view of the behavior and effectiveness of our sponge poisoning attack, we empirically
perform an ablation study considering multiple values for σ, ranging from 1e−01 to 1e−10, and λ,
ranging from 0.1 to 10. We perform this ablation study on a validation set of 100 samples randomly
chosen from each dataset. Although the number of validation images may be considered small, it
broadens our attack’s applicability, as in some scenarios, the attacker might be able to control only
a few data samples. Moreover, the results in the Appendix show that even when considering more
validation samples, the results do not change. We finally report the performance of our attack
when considering the best hyperparameters, and we study its effectiveness when increasing the
percentage p of samples in Dp from 5% to 15% of the training gradient updates.

Performance Metrics. After training the sponge model with Alg. 5, the attacker has to test
the model performance to assess the effectiveness of the attack. In particular, we consider the
prediction accuracy and the energy gap as metrics. We measure the prediction accuracy as the
percentage of correctly classified test samples. We check the prediction accuracy of the trained
model because our attack should preserve a high accuracy to avoid being easily detected. For
the latter, we measure: (k.i) the energy consumption ratio, introduced in [245], which is the
ratio between the energy consumed when using the zero-skipping operation (namely the optimized
version) and the one consumed when using standard operations (without this optimization); (k.ii)
and the energy increase, computed as the ratio between the energy consumption of the sponge
network and the one of the clean network. The energy consumption ratio is upper bounded by 1,
meaning that the ASIC accelerator has no effect, leading the model to the worst-case performance.
Conversely, the energy increase is used to measure how much the energy consumption is increased
in the sponge model compared to the clean one.
To compute the effect of the ASIC accelerators [3; 52; 113; 140; 207; 212], we used the ASIC
simulator2 developed in [245]. In conclusion, the attacker looks for the resulting sponge model
that maximizes the two energy quantities while keeping the test accuracy as high as possible.

6.2.2 Experimental Results

Inadequacy of ℓ2. In Sec. 6.1 we discussed the unsuitability of the ℓ2 objective function opti-
mized in [245] to mount our sponge poisoning attack. In Table 6.1, we report the attack perfor-
mance when adopting the ℓ2 penalty term in Alg. 5 to measure the energy function E in Eq. (6.3).
Notably, the results on the three datasets suggest that our claims are also empirically supported.
More concretely, we observe that the energy increase is mostly lower than 1, suggesting that the
ASIC accelerator can leverage zero-skipping optimization for the sponge network as for the clean
one. Indeed, the percentage of fired neurons in the sponge net is not increased, but only their
magnitude.
The side effect of this objective, as discussed in Sec. 6.1, is that maximizing the ℓ2 may bring the
network towards the overfitting regime, thus decreasing the resulting clean accuracy as shown in
Table 6.1 especially for the CelebA dataset. Therefore, the resulting evidence brings us to establish
that the ℓ2 norm used in [245] to increase the model’s number of firing neurons is unsuitable to
mount sponge poisoning attacks.

Sensitivity to Hyperparameters. In Sec. 6.2 we provided some insights on the role of σ and
λ when mounting the sponge poisoning attack proposed in Alg. 5. We analyze the behavior of

2https://github.com/iliaishacked/sponge examples

https://github.com/iliaishacked/sponge_examples
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Fig. 6.4: Ablation on σ for ResNet18 (two plots on the left) and VGG16 (two plots on the right) trained
on CIFAR10 (top), GTSRB (middle), and CelebA (bottom).
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Fig. 6.5: Ablation on the Lagrangian term λ in Eq. (6.1) considering ResNet18 (two plots on the left)
and VGG16 (two plots on the right) trained on CIFAR10 (top row), GTSRB (middle row), and CelebA
(bottom row).

our attack by proposing an ablation study over both σ and λ, considering the three datasets and
the two deep neural networks. The obtained results, reported in Fig. 6.3, empirically confirm our



Table 6.2: Sponge influence with λ = 1. For each model, the first column contains performance with
clean training, while the following one refers to the performance of our sponge attack in Alg. 5 by varying
the percentage of controlling samples p. The values of σ are 1e−04 for ResNet18 and VGG16 in CIFAR10
and GTSRB, 1e− 05 for a VGG16 in CIFAR10, and 1e− 06 for ResNet18 and VGG16 in CelebA.

CIFAR10 GTSRB CelebA

ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16

p - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15

Test Acc. 0.923 0.914 0.916 0.880 0.899 0.892 0.947 0.947 0.953 0.933 0.928 0.927 0.762 0.793 0.791 0.771 0.802 0.798

Energy Ratio 0.749 0.847 0.840 0.689 0.821 0.811 0.767 0.861 0.862 0.708 0.821 0.817 0.673 0.956 0.947 0.627 0.965 0.963

Energy Increase - 1.131 1.121 - 1.192 1.176 - 1.122 1.124 - 1.163 1.154 - 1.419 1.407 - 1.537 1.534

initial hypothesis. Indeed, Fig. 6.3 (two plots on the left) shows the energy consumption ratio and
the validation accuracy when increasing the σ value and keeping λ = 1 to influence further the
objective function. We show that there exists a trade-off region corresponding to relatively small
σ values, where the energy consumption ratio increases while keeping almost unaltered the valida-
tion accuracy. However, when considering too large or low values of σ the performance worsens.
Specifically, with high values of σ, the ℓ̂0 approximation is not good enough, and the performance
in terms of energy consumption decreases. On the other hand, when strongly decreasing σ, the
ℓ̂0 approximation fits so well the ℓ0 norm to inherit its limitations, seen in Sec. 6.1. In essence,
ℓ̂0 may not be sufficiently smooth to facilitate the optimization of Eq. (6.1). Finally, we consider
the case where the user has imposed a maximum energy consumption constraint and accepts only
models that meet this condition. Even under this additional constraint, our attack can succeed;
in particular, by wisely choosing λ, our attack becomes “adaptive” to the victim’s constraints on
maximum energy consumption. For example, the attacker can decrease the value of λ to meet a
minimum prediction accuracy or a maximum energy consumption imposed by the victim during
training outsourcing. Note also that, as shown in Tables 6.2-6.3, the energy ratio for pristine DNNs
varies largely depending on the dataset and model under consideration. It would be thus challeng-
ing for the victim user to try to mitigate the proposed sponge poisoning attack by imposing more
restrictive energy consumption constraints, as the appropriate energy consumption level is difficult
to estimate a priori, i.e., without actually designing and training the model.

Table 6.3: Sponge influence with larger values of λ. For CIFAR10 and CelebA λ is fixed to 2.5, while
in GTSRB we use λ = 5 and λ = 10 respectively for ResNet18 and VGG16. See the caption of Table 6.2
for further details on the choice of σ.

CIFAR10 GTSRB CelebA

ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16

p - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15 - 0.05 0.15

Test Acc. 0.923 0.906 0.909 0.880 0.876 0.879 0.947 0.940 0.929 0.933 0.909 0.932 0.762 0.787 0.781 0.771 0.796 0.797

Energy Ratio 0.749 0.915 0.922 0.689 0.889 0.894 0.767 0.955 0.967 0.708 0.948 0.956 0.673 0.975 0.978 0.627 0.978 0.984

Energy Increase - 1.221 1.231 - 1.291 1.296 - 1.245 1.261 - 1.338 1.349 - 1.448 1.456 - 1.558 1.568

Hyperparameters Training Influence. For the sake of completeness, in our analysis, we
also investigated the influence of the two hyperparameters σ and λ during the model’s training.
Results in Fig. 6.4 and Fig. 6.5 show the performance of sponge ResNet18 and VGG16 when
changing the two hyperparameters. Specifically, we simultaneously show how the energy ratio
and the validation loss vary from epoch to epoch. The results show that σ does not significantly
influence the validation loss unless not considering too small values, whereas it is quite relevant for
the energy ratio. Essentially, when σ decreases we incur in the optimization limits seen in Sec. 6.1
for ℓ0 penalty. Complementary, we observe that high values of λ provide high energy-consuming
models but make the validation loss unstable, thus increasing the resulting test error. The results



Table 6.4: Test accuracy and energy ratio for sponge and sanitized model.

Dataset Model
Sponge Sanitized

Acc. Energy λ σ Test Acc. Energy

CIFAR10 ResNet18 0.909 0.922 -1 1e-03 0.904 0.770

VGG16 0.879 0.894 -1 1e-04 0.855 0.713

GTSRB ResNet18 0.929 0.967 -1 1e-03 0.927 0.858

VGG16 0.932 0.956 -1 1e-06 0.903 0.912

CelebA ResNet18 0.781 0.978 -2.5 1e-06 0.780 0.564

VGG16 0.797 0.984 -2.5 1e-06 0.787 0.555

in Fig. 6.4 and 6.5 confirm our previous analysis considering the results in Fig. 6.3, while showing
that by wisely choosing the hyperparameters σ and λ our attack can also converge faster.

Attack Effectiveness. In Table 6.2- 6.3 we report the energy consumption ratio, energy increase,
and the test accuracy respectively for CIFAR10, GTSRB, and CelebA when considering a lower
attacker’s strength (i.e., λ = 1) and when increasing it (i.e., λ > 1). We vary the percentage
of sponge p, while for σ and λ we consider the pair which gave the higher energy increase in
the validation set, while keeping the accuracy close to the clean one. Our experimental analysis
shows that the percentage of sponge p is less significant compared to the role of λ, which can
substantially increase the consumption ratio. We further note that our attack can increase energy
consumption, especially in large models, such as the VGG16, for which we record the highest
increase. Additionally, for the CelebA dataset, we observe that our attack can lead the consumption
ratio from almost 0.62 to 0.98, almost canceling out any possible improvement given by ASIC
hardware acceleration strategies. We further depict in Fig. 6.6-6.7 the layer’s activations for clean
and sponge ResNet18 and VGG16 trained on GTSRB and CelebA dataset (the more challenging
ones). In Appendix, we report the remaining results for CIFAR10, which are consistent with the
ones reported here. Notably, we observe how the increase in the percentage of non-zero activations
leads the network to activate all the internal neurons. Convolutive operators are always active, as
they apply linear operators in a neighborhood and are unlikely to output 0. Conversely, our attack
activates operators were a max function is involved, i.e., ReLU and MaxPooling. For example, in
Fig. 6.7, we could activate some ReLU’s activations up to 100%. This result is even more critical
when we consider that ReLU, vulnerable to our attack, is the most used activation function in
state-of-the-art deep learning architectures [299] and favors the sparsity exploited by ASIC to
improve DNNs performance [3].

Impact on Accuracy. When discussing the performance of our sponge poisoning attack re-
ported in Table 6.1 using the ℓ2 as in [245], we noticed that the resulting test accuracy could drop
very significantly. However, we observe in Tables 6.2- 6.3 that the resulting test accuracy for our
sponge nets does not decrease significantly, but in some cases is even higher than the clean one.
This behavior suggests that the ℓ̂0 penalty on activations does not oppose the weights-decay but,
on the contrary, it may help the training algorithm find better local optima employing their full
capacity. Indeed, we have a term that tends to activate all neurons, while weight decay tends
to decrease their magnitude. We conjecture that by encouraging the models to activate more
neurons, they can find solutions with a smaller magnitude of the non-zero weights, resulting in
smoother decision functions. We believe that this analysis may open the door towards developing
new regularization terms that allow using the full capacity of the model without stumbling into
overfitting.
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Fig. 6.6: Percentage of firing neurons in each layer of a ResNet18 trained with GTSRB (top) and CelebA
(bottom). In blue the percentage for a clean model (CleanNet), in red the increment when trained with our
sponge poisoning attack (SpongyNet).
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Fig. 6.7: Percentage of firing neurons in each layer of a VGG16 trained with GTSRB (top) and CelebA
(bottom). In blue the percentage for a clean model (CleanNet), in red the increment when trained with our
sponge poisoning attack (SpongyNet).

Reversing Sponge Models. In Sec. 11 we proposed an adjustment to our sponge training
algorithm and objective to restore the energy consumption levels of sponge models while keeping
their prediction accuracy unaltered. Specifically, we test if fine-tuning the sponge models with
Eq. (6.5) we can diminish the effect of a sponge poisoning attack, repairing the model. In Table 6.4
we evaluate the effectiveness of such reversing approach when considering the configurations in
Table 6.3 showing the highest energy consumption. Furthermore, in the Appendix we report more
results and analysis when varying the hyperparameters and training configurations. The overall
results suggest that a model can be restored after being subject to a sponge poisoning attack, but
this requires fine-tuning the model for long epochs. If it is fine-tuned only for a few epochs, the
model will consume more or will have lower accuracy performance than pristine trained models.
However, although this approach can effectively repair the sponge model, training for a huge
amount of epochs has the exact cost of training a new model, which is not affordable for all users.
Essentially, assuming to work in the outsourced training scenario, seen in Sec. 6.1, the victim has
insufficient computational resources, so the reversing approach can not be applied, leaving them
exposed to our sponge poisoning attack. In conclusion, once a model has been subjected to a
sponge attack, it is more cost-effective for the user to throw it away because retraining it to restore
it can be too expensive.



6.3 Concluding Remarks

In this Chapter, we formulated a novel objective function to target energy consumption and
derived the first sponge poisoning attack. Our attack reaches the goal of increasing the
victim model’s energy consumption and prediction latency by vanishing the effect
of DNNs ASIC accelerators, which leverage sparsity in the model’s activations to
reduce energy consumption and the number of performed mathematical operations.
We initially tested the effectiveness of our attack using the function to approximate the energy
consumption proposed in [245]. However, we demonstrated its inadequacy in the poisoning
setting. Thus, we proposed utilizing a different objective function, which allows our attack to
increase the energy consumption while preserving, or even increasing, the model’s prediction
accuracy. We further analyzed the models generated by our attack, noting that internal module
operators relying on max operators (e.g., ReLU and MaxPooling) are more vulnerable to sponge
attacks. We then have shown that our attack can be very effective even if the attacker only
controls a few model updates during training, making it suitable for targeting federated learning
scenarios where attackers usually can compromise only a few nodes. Finally, we investigated the
possibility of reversing the influence of sponge poisoning, thereby bringing the models back to
a lower energy consumption profile. However, we showed that our sponge poisoning attack is
irreversible unless the victim completely retrains the attacked model, thus increasing training costs.

In conclusion, we found a novel security threat, namely sponge poisoning, in outsourcing the train-
ing of ML models to untrusted entities. We believe this work may open the door toward designing
possible novel defenses and regularization terms for training energy-saving machine learning mod-
els. In future works, we aim to extend our approach to a backdoor sponge poisoning attack, where
the model increases the energy consumption only for the test samples containing a peculiar pattern,
or to go beyond the outsourcing scenario, considering the cases where the attacker has access only
to a few training data samples and can not tamper with the learning algorithm.



Chapter 7

Poisoning Clustering Under
Limited Knowledge

Research Question #5

Can we poison clustering algorithms under limited knowledge?

Clustering algorithms play a fundamental role as tools for automatic decision-making. Due to the
widespread use of these applications, a robustness analysis of this family of algorithms against
adversarial noise has become imperative. However, most papers in adversarial machine learning
deal with supervised learning models. In this Chapter we expand the knowledge about the security
of traditional clustering algorithms used in practice (e.g., K-Means, Spectral, and Hierarchical
clustering) by responding to our RQ#5. Therefore, we explore how to stage a poisoning attack
against clustering to test their robustness and assume limited knowledge of the attacker, making
the attack more practical.

Underlying Problem. A critical challenge we address when staging an attack against clustering
algorithms is that most of them are not differentiable; thus, adversarial gradient-based approaches
– widely used in supervised settings – are not directly applicable. Since, in general, the machine
learning field is currently dominated by gradient-based methods, this may represent a possible rea-
son for the limited interest in this field. In addition, we explore how to stage black-box adversarial
attacks against clustering, not only because they can help find common weaknesses of clustering
algorithms but also pave the road toward general rules for the formulation of robust clustering
algorithms.

Related Work. To the best of our knowledge, however, only a few works have addressed the
problem of poisoning clustering algorithms, and only one has investigated how to stage the attack
under a black-box threat model.
The problem of devising specific attacks to subvert the clustering algorithm was first brought to
light by Dutrisac and Skillicorn [81] and Skillicorn [247]. They pointed out that some samples
could be misclustered by positioning them close to the original cluster boundary so that a new
fringe cluster is formed. Their attack consists of adding points between two clusters to merge them,
based on the notion of bridging. Biggio et al. [29] provided the first theoretical formulation for the
adversarial clustering problem and proposed a white-box attack to fool single-linkage hierarchical
clustering. The attacker is assumed to inject new poisoning points into the target dataset to
violate the system availability and deteriorate the clustering results. A similar work has been later
proposed in [30], which considers complete-linkage hierarchical clustering. Crussell and Kegelmeyer
[68] developed a poisoning algorithm to fool DBSCAN-based algorithms by selecting and then
merging arbitrary clusters.



However, all the aforementioned works assume that the attacker has perfect knowledge about
the clustering algorithm under attack. In these works, the authors usually leverage the internal
behavior of the clustering methods under study to craft ad-hoc adversarial noise. The only work
assuming to fool clustering in a black-box manner has been developed by [55]. The authors proposed
a derivative-free, black-box attack strategy to target clustering algorithms. Their strategy consists
in manipulating only one specific input sample feature-by-feature to corrupt the clustering decision
boundary. However, their method only applies when working on binary linearly separable tasks.

Contributions and Outline. In an attempt to fill this gap, we developed a gradient-free black-
box adversarial attack in [64] to test the robustness of generic clustering algorithms, not only
linearly separable ones. We assume that the attacker can only perform queries to it. We formulate
in Sec. 7.1 the poisoning clustering problem assumes the attackers can query the target clustering
algorithm as a service only, and they are constrained in the maximum amount of noise to inject to
avoid detection. In the absence of any derivative information, we perform the optimization with
a custom approach, explained in Sec. 7.1, inspired by the Abstract Genetic Algorithm (AGA).
We prove in Sec. 10 that the resulting algorithm has significant convergence properties to find the
optimal perturbation for multiple samples and features simultaneously. We test the effectiveness
of our attack in Sec. 7.2 considering three datasets and multiple clustering methods, showing that
our algorithm can significantly affect the clustering performance. Furthermore, we compare our
algorithm against [55], showing that our attack can find more powerful poisoning samples with the
same limited knowledge assumption. We conclude this Chapter in Sec. 7.3 pointing out the main
results of our analysis on the robustness of the clustering algorithm while emphasizing that there
is still a long way to go to make this attack practical in more challenging environments.

7.1 Poisoning Clustering via Adversarial Queries

In this section, we introduce the main contribution of our work [64], a black-box gradient-free
attack to test the robustness of clustering algorithms. We formulate the problem as a constrained
minimization program, general in its structure and customizable by the attacker according to their
capability constraints. We propose a genetic algorithm to solve it and investigate its theoretical and
empirical convergence properties. Conversely to previous works, we do not assume any information
about the internal structure of the victim clustering algorithm, and we allow the attacker to query
it as a service only.

7.1.1 Attack Formulation

Notation. We here recap the notation used in the remaining of this Chapter. We further report
on page v the list of symbols defined below.

Let X ∈ R
n×d denote a feature matrix representing the dataset to be poisoned, where n is the

number of samples, and d is the number of features. We define C : Rn×d 7→ {1, . . . ,K}n to be the
target clustering algorithm, that separates n samples into K different classes (1 ≤ K ≤ n). We
remark that the attacker can retrieve the number of clusters by querying the clustering algorithm,
which may also change during the evaluation.

We consider the problem of crafting an adversarial mask ϵ, to be injected into X, such that
the clustering partitions C(X) and C(X + ϵ) are different to a certain degree. In real scenarios,
the attacker may follow some policies on the nature of the attack, usually imposed by intrinsic
constraints on the problem at hand [23]. We model the scenario in which the attacker may
want to perturb a specific subset of samples T ⊆ {1, . . . , n}, in such a way that the attack is
less human-detectable, i.e., by constraining the norm of ϵ [195]. In our work, the attacker’s
capability constraints [23] are thus defined by (a) an attacker’s maximum power δ, which is the



maximum amount of noise allowed to be injected in a single entry xij , (b) an attacker’s maximum
effort γ, which is the maximum number of manipulable entries of X. Further, we assume
the attacker has access to the feature matrix X, and she can query the clustering algorithm
C under attack. Similarly to [55] the adversary exercises a causative influence by manipulat-
ing part of the data to be clustered without any further information about the victim’s algorithm C.

Given these considerations, an optimization program for our task is proposed as follows:

min
ϵ∈ET,δ

ϕ(C(X), C(X + ϵ)) (7.1)

where ϕ is a similarity measure between clusterings, and

ET,δ = {v ∈ R
n×d, ∥v∥∞ < δ ∧ vi = 0 ∀i /∈ T} (7.2)

ET,δ is the adversarial attack space, which defines the space of all possible adversarial masks that
satisfy the maximum power constraints and perturb only the samples in T . A problem without
such capability constraints can be denoted with EX,∞. Note that γ is not directly referenced in
ET,δ but is bounded by T itself, namely γ = |T | · d.
We further elaborate Eq. (7.1) by searching for low Power & Effort (P&E) noise masks to enforce
the non-detectability, or stealthiness, of the attack. To this end, we adopt a similar strategy
as in [171], which adds a penalty term λ∥ϵ∥p to the cost function, usually with p = 0, 2 or ∞.
Following this approach, we reformulate Eq. (7.1) by including a penalty term that considers both
the attacker’s P&E, which leverages the ∞ and 0 norms, respectively. The optimization program
becomes:

min
ϵ∈ET,δ

ϕ(C(X), C(X + ϵ)) + λ∥ϵ∥0∥ϵ∥∞ (7.3)

This choice keeps the optimization program interpretable since it establishes a straightforward
connection to our minimization desiderata (low P&E). In addition, our penalty term can be seen
as a proxy function for ∥ϵ∥p, granting similar regularization properties to the optimization. Indeed
the P&E penalty is an upper bound to the single norm term, as the following lemma shows:

Lemma 1. Let x ∈ R
n, and p, q ∈ R ∪ {+∞} such that 1 ≤ p ≤ q < +∞ then:

∥x∥p ≤ ∥x∥0∥x∥q (7.4)

Proof. The case x = 0 is trivial. Suppose that ∀i, xi ̸= 0, then for a known result on the equivalence
of norms in R

n [123] we know that ∥x∥p ≤ n
(1/p−1/q)∥x∥q, thus:

∥x∥p ≤ n(1/p−1/q)∥x∥q ≤ n
1/p∥x∥q ≤ n∥x∥q

= ∥x∥0∥x∥q (7.5)

Suppose now, without loss of generality that x = (x1, . . . , xm, 0, . . . , 0)⊤, such that ∀i ∈ {1, . . . ,m},
xi ̸= 0 . Consider its projection x′ onto the axes 1, . . . ,m, then ∀p ≥ 0, ∥x∥p = ∥x′∥p. Thus
Eq. (7.5) holds since:

∥x∥p = ∥x′∥p ≤ m∥x
′∥q = ∥x∥0∥x∥q

7.1.2 Threat Algorithm

The approach we used to optimize Eq. (7.3) takes its inspiration from Genetic Algorithms
(GA) [103]. These methods nicely fit our black-box setting since they do not require any par-
ticular property on the function to be optimized. Furthermore, our algorithm possesses solid
convergence properties. In Sect. 10 we show that our algorithm is an instance of the Abstract
Genetic Algorithm (AGA), as presented in [82; 83], and we prove its convergence.



An additional constraint, usually imposed in real-world scenarios, is represented by the limited
number of queries performed on the algorithm under attack [5]. Classical approaches in GAs usually
create large, fixed-size populations at each generation, and this, in turn, requires computing the
fitness score multiple times, querying C for each individual in the population, thereby making the
process query-inefficient. To address this issue, we propose a growing size population approach. We
start with a population Θ of size equal to 1 and, generation by generation, we grow it by producing
a new individual. To still harness the explorative power of GAs, we use a high mutation rate and
allow the population set Θ to grow by keeping track of all the previously computed individuals. In
the case of memory-aware applications, our method can be extended by controlling the size of Θ, in
particular, by pruning low-fitness candidates. However, in our experiments, we adopted a different
technique aimed at speeding up the convergence of the optimization algorithm by reducing the
number of generations.

Algorithm 6: Black-box poisoning

Input: X ∈ R
n×d, C, δ, T,G, l

Output: ϵ∗

1

2 Initialize ϵ(0) ∈ ET,δ randomly

3 Θ = {ϵ(0)}
4 for i in 1, . . . , N do
5 for g in 0, . . . , G− 1 do

6 ϵ
(g+1)
ch = choice(Θ, l)

7 ϵ
(g+1)
cr = crossover(ϵ(g), ϵ

(g+1)
ch )

8 ϵ(g+1) = mutation(ϵ
(g+1)
cr , δ, T )

9 Θ = Θ ∪ {ϵ(g+1)}

10 return ϵ∗ = arg minϵ∈Θ l(ϵ)

Algorithm 6 describes our optimization approach. It takes as input the feature matrix X, the
clustering algorithm C, the target samples T , the maximum attacker’s power δ, the total number
of generations G (the attacker’s budget in term of queries) and the attacker’s objective function
l (which in our case is the one defined in Program (7.3)). The resulting output is the optimal
adversarial noise mask ϵ∗ that minimizes l. At each generation, a new adversarial mask ϵ(g+1) is
generated and added to a population set Θ containing all previous masks.
The core parts of our optimization process are the stochastic operators – choice, crossover and
mutation – that we use for crafting new candidate solutions with a better fitness score. In the
following, we describe their implementation.

Choice The choice operator is used to decide which candidates will be chosen to generate off-
spring. We adopt a roulette wheel approach [103], where only one candidate is selected with a
probability proportional to its fitness score, which in turn is inversely proportional to the attacker’s
objective function l. Given a candidate ϵ(i), its probability to be chosen for the production process
p(ϵ(i)) is equal to:

p(ϵ(i)) =
exp(−l(ϵ(i)))

∑

ϵ∈Θ exp(−l(ϵ))
(7.6)

We remark that our choice operator picks just one adversarial noise mask that is then used in the
crossover step.

Crossover The crossover operator simulates the reproduction phase by combining different can-
didate solutions (parents) for generating new ones (offspring). Commonly, crossover operators
work with binary-valued strings, however, since our candidates are matrices in ET,δ, we propose a



variant. Given two candidates ϵ′, ϵ′′ ∈ ET,δ, the new offspring is generated starting from ϵ′, then
with probability equal to pc each entry i, j is swapped with the entry i, j in ϵ′′. The crossover
operator has probability pc of being applied; in the case of failure, ϵ′ itself is chosen as an offspring.

Mutation The mutation is a fundamental operator, usually applied to the offspring generated
by the crossover to introduce genetic variation in the current population. Our operator mutates
each entry ϵij s.t. i ∈ T with probability pm by adding an uniformly distributed random noise
in the range [−δ, δ]. The resulting perturbation matrix is subsequently clipped to preserve the
constraints dictated by ET,δ.

Moreover, to enforce the low attacker’s effort desiderata, we also perform zero-mutation, meaning
that each entry of the mask is set to zero with probability pz.

Time complexity analysis This section provides a time complexity analysis for Algorithm 6.
In step 8, the objective function is computed, requiring, in turn, to execute the clustering algorithm
C with complexity O(C(nd)). Step 9 performs a crossover between two adversarial masks in O(nd)
time. The mutation of Step 10 is similarly computed in O(nd) time. The overall time complexity is,
thus, given by O(G(C(nd) + 2nd)) = O(GC(nd)), with G equal to the number of generations. The
complexity of the clustering algorithm C(nd) is a critical point in the efficiency of the attack. As
an example, considering K-Means, we have a polynomial-time of O(G(ndKt+ 2n)) = O(GndKt),
with K being the number of clusters and t the number of iterations for the clustering algorithm.

Speeding up the convergence By just generating a new individual at each generation, our
proposed method has the major drawback of being slow at converging. To counter this problem,
inspired by the work of [105], we decided to “imprint” a direction to the generated adversary mask
to move the adversarial samples toward the target cluster. Since we lack the gradient informa-
tion, the centroids information is leveraged instead. We propose the following approach: each
adversarial mask ϵ ∈ ET,δ is generated with the additional constraint that ∀i, j ϵij ≥ 0. After

this, the mask is multiplied by a direction matrix ψ with ψij = sgn(c
(t)
j − c

(v)
j ), c(t) and c(v)

being respectively the target and victim cluster centroids estimated from the victim data. The
estimation is performed by averaging the samples in the corresponding cluster. This variant can
be easily implemented by changing the initialization of ϵ(0) and the mutation step only. It follows
that the resulting adversarial attack space is now reduced to E ′T,δ ⊂ ET,δ. We still grant that the
capability constraints are respected, and the convergence properties hold, although the quality of
the found optimum may be inferior. In addition, we noticed that, without using this strategy, the
optimization algorithm was more sensitive to the choice of hyper-parameters. Therefore, we have
decided to adopt this strategy, which makes our algorithm more efficient and less sensitive to the
choice of hyperparameters.

7.1.3 Convergence properties

In general, GAs do not guarantee any convergence property [228]. However, under some more
restrictive assumptions, it can be shown that they converge to an optimum. In this section, we
show that our algorithm can be thought of as an instance of the Abstract Genetic Algorithm (AGA)
as presented in [82; 83]. Subsequently, we give proof of convergence. We report in Algorithm 7
the generic pseudo-code for AGAs. In [82; 83], the authors show that methods such as classical
Genetic Algorithms and Simulated Annealing can be thought of as instances of Algorithm 7.
Further, they prove their probabilistic convergence to a (global) optimum. Following the same
theoretical framework, we show that our algorithm satisfies all the convergence conditions. Before
doing so, we present the framework and adapt our algorithm to comply with it.

Let S be a set of candidates, and S∗ be a set of finite lists over S, representing all the possible
finite populations. A neighborhood function is a function N : S 7→ S∗ that assigns neighbors
to each individual in S. A parent-list, is a list of candidates able to generate offspring, with



Algorithm 7: Abstract Genetic Algorithm (pseudo-code)

1 Make initial population
2 while not stopping condition do
3 Choose parents from population
4 Let the selected parents Produce children
5 Extend the population by adding children to it
6 Select elements of the extended population to survive for the next cycle

7 return the optimum of the population

Algorithm 8: Abstract Genetic Algorithm.

Input: S∗

Output: x
1

2 Create an x ∈ S∗

3 while not stopping condition do
4 Draw α, β and γ
5 q = fc(α, x)
6 y =

⋃

z∈q fp(β, z)

7 x′ = x ∪ y
8 x = fs(γ, x

′)

9 return output the actual population x

P ⊆ S∗ denoting the set of all parent-list. In our algorithm, a population is represented by a list
[ϵ(0), . . . , ϵ(g)], therefore S = ET,δ, S∗ = E∗T,δ, P = {[ϵ(i), ϵ(j)] | ϵ(i), ϵ(j) ∈ ET,δ}.
Let f : X 7→ Y be a function belonging to F , the set of all functions from X to Y . Further, let
(Ω,A,P) be a probability space and g : Ω 7→ F be random variable. We define the randomized f
to be the function f(ω, x) = g(ω)(x). Following this definition and [82], Algorithm 7 can be then
detailed as reported in Algorithm 8.
with fc : A × S∗ 7→ P(P ) being the choice function, fp : B × P 7→ P(S) being the production
function and fs : C × S∗ 7→ S∗ being the selection function. In our case, we define:

1. fc(α, x) = {[choice(α, x), x−1]}, ∀α ∈ A

2. fp(β, [s1, s2]) = mutation(β, crossover(β, s1, s2))), ∀β ∈ B

3. fs(γ, x
′) = x′ (Note that our selection is deterministic)

Where x−1 is the most recent candidate in the population. In the above pseudo-code, we have ex-
plicitly stated the randomization of our procedures choice, mutation, crossover for clarity. The
stochastic processes regulating the drawings of α, β, and γ always maintain the same distributions
regardless of the current generation, meaning that the probability of generating a new population
xnew from another one xold does not change over the generations.
We now introduce and extend some definitions presented in [82]:

1. A neighborhood structure is connective if: ∀s ∈ S, ∀t ∈ S : s 7→ t, where 7→ stands for the
transitive closure of the relation {(s, t) ∈ S × S | t ∈ N(s)}.

2. A choice function is generous if: (a) {[s, t] | s, t ∈ S} ⊆ P and (b) ∀x ∈ S∗, ∀s1, s2 ∈ x :
P([s1, s2] ∈ fc(α, x)) > 0.

3. A production function is generous if: ∀s1, s2 ∈ S, ∀t ∈ N(s1)∪N(s2) : P(t ∈ fp(β, [s1, s2])) >
0.

4. A selection function is generous if: ∀x ∈ S∗, ∀s ∈ x : P(s ∈ fs(γ, x)) > 0.



5. A selection function is conservative if: Mx ∩ fs(γ, x) ̸= ∅, with Mx = {s ∈ x | ∀t ∈ x : f(s) ≤
f(t)}.

In [82], the authors further make a little technical assumption about the sets A, B, and C, requiring
them to be countable, with positive probability for all their members. This is easily achieved in
real applications considering the finiteness of the floating point representations.

Now we are ready to prove the following theorem:

Theorem 7.1.1. Algorithm 8 almost surely reaches a global optimum.

Proof. Given the previous considerations, the following statements hold:

1. Our neighborhood structure is connective: by the definition of our mutation operator, it holds
that N(ϵ(i)) = ET,δ, ∀ϵ

(i) ∈ ET,δ.

2. Our choice function is generous : this follows from (a) the definition of P , and from (b) the
positivity of the softmax function in Equation 6.

3. Our production function is generous: See point 1.

4. Our selection function is generous: we allow all the candidates to survive with probability 1.

5. Our selection function is conservative: see point 4.

The proof then follows from Theorem 3 in [83], adjusting the generousness definitions with our
versions presented above. The globality of the optimum comes from the fact that our algorithm
performs a global search instead of a local one.

The same conclusions can be drawn for the speed-up heuristic by just replacing each instance of
ET,δ, with E ′T,δ.

7.2 Experimental Analysis

This section presents an experimental evaluation of the proposed attack methodology. We initially
present our experimental setup and test the robustness of different clustering algorithms against our
poisoning attack. We then test the effectiveness of our attack when further limiting the attacker’s
knowledge and evaluate its empirical convergence. Finally, we compare our poisoning algorithm
with the state-of-the-art-attack [55], highlighting the superior performance of our attack in terms
of degradation of clustering algorithm accuracy and minimum attacker effort. We repeated the
following experiments five times, reporting the mean with the standard error. The code has been
written in PyTorch [85], and it is available at 1.

7.2.1 Experimental Setup

Datasets. We ran the experiments on three datasets, i.e., FashionMNIST [295],
20Newsgroups [155], and CIFAR10 [147]. The FashionMNIST contains 70 000 grayscale images
of size 28× 28 pixels [295]. It is a more challenging version of the MNIST dataset. The 20 News-
groups is a dataset commonly used for text classification and clustering, which contains 20 000
newspaper articles divided into 20 categories. We then applied a combination of TF-IDF [231] and
LSA [154] to embed features into a lower dimensional space. The resulting feature representation
has dimension 1 400× 80. For CIFAR10, we used a ResNet50 for feature extraction and performed
clustering on the resulting feature space, obtaining better initial results.

1https://github.com/Cinofix/poisoning-clustering



Attack Setup. We focused our analysis on both binary and multiple-way clustering problems.
We simulated the former scenario with FashionMNIST and 20 Newsgroups allowing the attacker
to perturb samples of one victim cluster Cv towards a target cluster Ct. From FashionMNIST
we randomly sampled 800 images for class Ankle boot (victim cluster) and 800 for class Shirt

(target cluster). From the 20 Newsgroups dataset, we selected two highly unrelated categories of
news, rec.sport.baseball (victim cluster) and talk.politics.guns (target cluster). We then
simulated the latter scenario with CIFAR10. The attacker moves samples from multiple victim
clusters towards a target one by simply running our algorithm multiple times with a different
victim cluster for each run. We randomly sampled 1 600 images from classes airplane, frog and
automobile. We addressed the multi-way scenario by first moving samples from airplane and
then from frog, always towards the target cluster automobile.
In the experiments, we chose a set of target samples T to contain the s|Cv| nearest neighbors
belonging to the currently chosen victim cluster, with respect to the centroid of the target cluster.
In particular, for FashionMNIST we used 20 different values for s and δ, in the intervals [0.01, 0.6]
and [0.05, 1] respectively; for CIFAR10 we used 20 different values for s and δ, in the intervals
[0.01, 0.6] and [0.01, 1.5] respectively; for 20 Newsgroups we used 15 different values for s and δ, in
the intervals [0.01, 0.3] and [0.001, 0.3] respectively.

Clustering Algorithms. We tested the robustness of three standard clustering algorithms:
hierarchical clustering with Ward’s criterion [279], K-Means++ [6], and the normalized spectral
clustering [243] as presented in [274], with the Local Scaling similarity measure [306]. We further
test with the 20 Newsgroups dataset the effectiveness of our attack against two ensemble clustering
algorithms, derived from K-Means and spectral clustering algorithms 2. The two algorithms use
the Silhouette value [226], and the clustering with the maximum silhouette score is selected as
the best one. In particular, we ran 20 instances of the K-Means algorithm with random centroids
initializations, while, for spectral clustering, we ran 3 instances of the algorithm proposed in [274]
with 3 different similarity measures. Given a sample pair xi and xj , the measures are:

sij =
x⊤
i xj

∥xi∥2∥xj∥2
(7.7)

sij =
(xi − x̄)⊤(xj − x̄)

∥xi − x̄∥2∥xj − x̄∥2
(7.8)

sij = dmax − ∥xi − xj∥2 (7.9)

Eq. (7.7) represents the cosine similarity between two samples xi and xj . Eq. (7.8) is the Pearson
correlation coefficient, with x̄ being the sample mean. Moreover, we introduced a sparsification
technique, clamping to 0 all negative values, which improved the clustering performance. Finally,
in Eq. (7.9) we define dmax = maxij ∥xi − xj∥2.

Hyperparameters. When running the attack with Alg. 6 we set λ = 1
α·n·d with α = 255

as penalty term for our cost function. In addition, we set the probability of having crossover
pc = 0.85, mutation pm = 0.05 and zero-mutation pz = 0.001. The total number of generations,
which correspond to the number of queries, was always set to 110, using the speeding-up heuristic
proposed in Sect. 7.1.

Performance Metrics. In Eq. (7.3), we indicate with ϕ a function for measuring the similarity
between two clustering partitions. In the literature, we can find several metrics used for the
evaluation of clusterings [132; 254; 192; 206]; in addition, [29] proposed to adopt the following

measure for the evaluation: d(Y ,Y ′) = ∥Y Y ⊤ − Y ′Y ′⊤∥F , where ∥ · ∥F is the Frobenius norm,
and Y ,Y ′ ∈ R

n×k are one-hot encodings of the clusterings C(X) and C(X+ϵ) respectively. In our

2hierarchical clustering was not giving good enough clustering performance
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Fig. 7.1: Robustness analysis with FashionMNIST (left), CIFAR10 (middle), 20 Newsgroups (right).
The plots depict the decay of AMI by adversarially perturbing the datasets with increasing noise.

work, we decided to use the Adjusted Mutual Information (AMI) Score, proposed in [206] since it
makes no assumptions about the cluster structure and, as highlighted in [224], it works well even
in the presence of unbalanced clusters. Indeed, the clustering partition over the poisoned dataset
might also create unbalanced clusters, especially if the attacker wants to move samples only from
one to the other. The AMI score between two clustering partitions U and V is given by:

AMI(U, V ) =
MI(U, V )− E[MI(U, V )]

max {H(U), H(V )} − E[MI(U, V )]
(7.10)

where MI(U, V ) measures the mutual information shared by the two partitions, E[MI(U, V )]
represents its expected mutual information, and max {H(U), H(V )} is the maximum between the
two entropies, which is an upper bound for MI(U, V ). AMI is equal to 1 when the two clustering
partitions are identical and 0 when they are independent, that is, sharing no information about
each other.

7.2.2 Experimental Results

Robustness Analysis. We here test the robustness of chosen clustering algorithms against our
poisoning attack.

FashionMNIST. We first consider the problem of attacking a binary clustering algorithm with
FashionMNIST. In Fig. 7.1 (left), we report the obtained results. We observe that the three
algorithms have similar behavior and their clustering accuracy consistently decreases with the
increment of the adversarial noise level. In this case, K-Means++ shows better performance than
spectral clustering. Therefore the spectral embedding of data samples seems less robust than
raw features only. This fact may suggest that some embedding procedures devised for improving
clustering accuracy do not necessarily guarantee robustness against adversarial attacks. However,
we reserve further discussion on this in future work.

CIFAR10. We here consider the performance of our attack when attacking multiple clusters simul-
taneously with the CIFAR10 dataset. In Fig. 7.1 (middle), we show the performance of the three
clustering algorithms under adversarial manipulations. We observe that our attacks significantly
decrease the clustering quality for the three algorithms. Even if the ResNet50 features allow cluster
algorithms to perform better, they are still vulnerable to adversarial noise. Further, note how the
gap in performance of spectral clustering and K-Means++ has even increased when adopting a
DNN-generated embedding. In Fig. 7.2, we provide a visual representation of poisoning samples
for CIFAR10. We reconstructed the poisoning samples from the feature space using the feature
collision strategy adopted in [238], where the target is precisely our poisoning sample.

20 Newsgroups. We here report the results of our attack against ensemble clustering algorithms
on the 20 Newsgroups dataset. Fig. 7.1 (right) reports the performance of two clustering algorithms
under adversarial manipulation. Ensemble methods are known to be more robust against random
noise with respect to the expected behavior of the corresponding algorithms [208; 203]; however,
our attacking model was able to fool them and significantly decreased their clustering performance.



Fig. 7.2: (Top row) clean samples from CIFAR10. (Bottom row) the corresponding poisoning samples
with δ = 0.1.
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Fig. 7.3: Robustness analysis on FashionMNIST by changing the similarity measure ϕ (left) and crafting
the poisoning samples employing a surrogate dataset (right).

In this case, in a low noise regime, spectral clustering seems to benefit the ensembling technique.
However, its behavior follows previous experiments.

Choice of the cost function. In the above presented experimental results, we employed the
AMI metrics as the cost function ϕ of our attack formulation presented in Eq. 7.3. We decided
to analyze the impact of the clustering similarity function ϕ with FashionMNIST and see if there
were significant differences among each other. In Fig. 7.3 (left), shows the variation of results with
ϕ equals to ARI, AMI and the negated distance proposed in [29] (referred as “Frob”). The plot
shows no substantial difference among the choices of ϕ, suggesting that this hyperparameter does
not significantly impact the optimization process.

Surrogate data. We ran additional experiments on a more challenging scenario by relaxing the
knowledge assumption of the target data. In this scenario, the attacker does not have access to
the target data and can only sample a surrogate dataset from the same distribution. To this end,
we have randomly sampled two more subsets of 1, 600 images from FashionMNIST. We use the
first subset to create the poisoning samples and then evaluate their effectiveness on the other one.
Fig. 7.3 (right) shows that our attack is strong enough to decrease the clustering performance even
when the attacker has no access to the target dataset. This means that our attack can transfer to
other unknown dataset samples from the same underlying distribution.



Empirical convergence. In addition to the theoretical convergence properties proved in
Sect. 10, we propose an empirical analysis of convergence. In particular, for a pre-set configuration
of δ and s, we performed a series of attacks on the FashionMNIST dataset, with an increasing
number of generations/queries, evaluating the trend of the objective function presented Eq. (7.3).
The results are reported in Fig. 7.4. Our algorithm requires a relatively low number of queries to
converge to a minimum, except for K-Means++, which presents a slower convergence than spectral
clustering, most probably due to the nature of the feature embeddings used.

Fig. 7.4: Convergence of objective function on FashionMNIST. δ = 0.2, s = 0.25.

7.2.3 Experimental Comparison

To our knowledge, the only work dealing with adversarial clustering in a black-box way is [55]. In
this work, the authors presented a new type of attack called spill-over, in which the attacker wants
to assign as many samples as possible to a wrong cluster by poisoning just one of them. They
proposed a threat model against linearly separable clusters to generate such kind of adversarial
noise.
To have a fair comparison, we performed spill-over attacks on the same settings of the aforemen-
tioned work, comparing the performance on MNIST and UCI Handwritten Digits datasets3 [4],
targeting Ward’s hierarchical clustering algorithm. Further details can be found in Appendix C.
For MNIST, we considered the digit pairs 4&1 and 3&2, while for Digits, we considered the digit
pairs 4&1 and 8&9. Our algorithm was run with the δ = ∆ which is the maximum acceptable
noise threshold found by the authors, with δ = ∆/2 and with δ = ∞. We found the value of
∆ used in [55] by looking at the source code. We imposed to attack just one sample (|T | = 1),
namely the nearest neighbor to the centroid of the target cluster. We performed our experiments
20 times, reporting mean and std values. The results are presented in Table 7.1-7.4 along with
more details on the experiments. Although our algorithm achieves its best performance by moving
more samples at once, we were able to match, or even exceed, the number of spill-over samples
(#Mis-clust) achieved in [55], even when halving the attacker’s maximum power proposed by the
authors. Moreover, the results also show that we could craft adversarial noise masks ϵ, which were
significantly less detectable in terms of ℓ0, ℓ∞.
In Table 7.5-7.6, we report a comparison for the K-means++ algorithm with UCI Wheat Seeds [43]
and MoCap Hand Postures [99] dataset, repeating the same experimental setting of [55]. We obtain
the same number of spill-over samples (#Mis-Clust) with significant lower Power & Effort. The
reader can find further experiments of comparison in the Appendix C.
Finally, in Fig. 7.5 and 7.6, we show a qualitative assessment of the crafted adversarial spill-
over samples. Note that the crafted adversarial examples of [55] do not preserve box-constraints

3A dataset containing 5 620 grayscale images of size 8× 8, with intensities in the range [0, 16]



Method ∥ϵ∥0 ∥ϵ∥2 ∥ϵ∥∞ #Mis-clust

Spill-over 413 872.8 146.8 2

Spill-overclamp 412 828.2 146.8 2

Ours (δ = 73.43) 151± 19.2 551.9± 36.3 73.4± 1.4 12.0± 0.0

Ours (δ = 146.87) 30± 7.6 479.1± 62.5 145.0± 3.7 12.0± 0.0

Ours (δ =∞) 29± 13.8 757.1± 203.2 246.25± 16.8 14.3± 2.4

Table 7.1: Comparison on MNIST with digits 3&2.

commonly adopted for image data. Indeed, pixel intensities exceed 255 and 16 for MNIST and
Digits, respectively. We also evaluated the performance of [55] by clamping the resulting adversarial
examples (Spill-overclamp), and we observed that the number of spill-over samples is reduced.

Method ∥ϵ∥0 ∥ϵ∥2 ∥ϵ∥∞ #Mis-clust

Spill-over 152 585.3 159.7 11

Spill-overclamp 151 463.2 131.7 9

Ours (δ = 79.86) 117± 7.8 528.4± 30.1 79.8± 2.8 9.1± 0.4

Ours (δ = 159.72) 75± 22.4 782.7± 124.2 159.3± 1.3 12.0± 4.5

Ours (δ =∞) 46± 19.4 902.7± 205 248.3± 8.8 14.6± 4.5

Table 7.2: Comparison on MNIST with digits 4&1.

In conclusion, [55] aims to find ∆, which does not lead to the attack being considered an out-
lier using the COMD measure at the expense of existing box-constraints. Whereas our purpose
consists of proposing an algorithm that can effectively corrupt a black-box clustering algorithm’s
performance by minimizing the attacker’s power and effort (P&E). Indeed, our attacks, as shown
in Table 7.3-7.6, show lower ℓ0 and ℓ∞ compared to the attack obtained with [55]. These results
suggest that our algorithm can craft effective poisoning attacks, even stronger than [55], with less
P&E and satisfying the box-constraints.
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Fig. 7.5: Spill-over samples for MNIST. The target sample (left), the corresponding adversarial sample
crafted with the attack proposed in [55] (middle), and our adversarial sample with δ = 146.87 (right).

Ablation study. We provide an ablation study for the mutation and zero rate parameters,
respectively pm and pz, keeping the crossover rate pc set to 0.85 for the two pairs of MNIST digits.
The high crossover rate is a common choice in Genetic Algorithms [116]. We use the same setting
described in Sect. 7.2 with datasets MNIST 3&2 and MNIST 4&1.
Fig. 7.7 reveals how the two hyperparameters affect the attacker’s effort and the attack efficacy.
An increment of the zero rates implies attacks with less effort, while an increment of the mutation
inverts this tendency, thus generating more powerful attacks. From Fig. 7.7(left matrices), we



Method ∥ϵ∥0 ∥ϵ∥2 ∥ϵ∥∞ #Mis-clust

Spill-over 54 15.70 9.44 21

Spill-overclamp 54 15.70 9.44 21

Ours (δ = 4.72) 12± 1.20 11.49± 1.25 4.7± 0 21± 0.0

Ours (δ = 9.44) 7± 2.85 13.86± 2.96 8.12± 1.24 21± 0.0

Ours (δ =∞) 4± 1.74 15.18± 3.16 10.94± 1.49 21± 0.0

Table 7.3: Comparison on Digits with digits 8&9.

Method ∥ϵ∥0 ∥ϵ∥2 ∥ϵ∥∞ #Mis-clust

Spill-over 14 23.93 11.89 24

Spill-overclamp 11 16.28 9.93 21

Ours (δ = 5.94) 13± 1.70 16.27± 1.20 5.94± 0.0 24± 0.0

Ours (δ = 11.89) 7± 2.03 19.84± 1.96 11.13± 0.79 24± 0.0

Ours (δ =∞) 7± 2.36 21.06± 2.36 12.79± 4.34 24± 0.0

Table 7.4: Comparison on Digits with digits 4&1.
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Fig. 7.6: Spill-over samples for Digits. The target sample (left), the corresponding adversarial sample
crafted with the attack proposed in [55] (middle), and our adversarial sample with δ = 11.89 (right).

observe that the yellow regions at the bottom left define a good compromise between having a
small effort and good attack effectiveness. However, by increasing the attacker’s effort (right
matrices), we can generate even more effective attacks. The results of the ablation study with
the two pairs of digits are similar, suggesting that the same set of hyperparameters can be chosen
without significant differences, as also suggested by the wide bottom-left regions of Fig. 7.7 (left
matrices) where the number of miss-clustered observations is constant. This behavior suggests
that we do not need an extensive hyperparameter tuning procedure to obtain effective poisoning
attacks. The results obtained against [55] use a combination of hyperparameters that allows the
attacker’s effort to be kept low while still maintaining outstanding comparison results. However,
a better choice of hyperparameters would have allowed us to further improve our results in terms
of miss-clustered points and the attacker’s effort.



Method ∥ϵ∥0 ∥ϵ∥2 ∥ϵ∥∞ #Mis-clust

Spill-over 7 0.42 0.30 2

Ours (δ = 0.15) 3± 0.79 0.14± 0.04 0.10± 0.03 2.0± 0.0

Ours (δ = 0.30) 3± 0.76 0.28± 0.09 0.21± 0.06 2.0± 0.0

Table 7.5: Comparison for Seeds.

Method ∥ϵ∥0 ∥ϵ∥2 ∥ϵ∥∞ #Mis-clust

Spill-over 9 44.42 20.0 5

Ours (δ = 10) 1± 0.48 5.13± 1.86 5.0± 1.86 5.0± 0.0

Ours (δ = 20) 1± 1.14 8.50± 6.61 7.74± 5.18 5.0± 0.0

Table 7.6: Comparison for MoCap Hand Postures.
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Fig. 7.7: Ablation study for MNIST 3&2 (top row) and MNIST 4&1 (bottom row). For each row, the two
matrices report the number of miss clustered samples (left) and the number of manipulated pixels (right)
when varying the mutation rate and zero rate.

7.3 Concluding Remarks

In this Chapter, we investigated the feasibility of staging a poisoning attack against a clustering
algorithm with limited knowledge. For this purpose, we examined our black-box adversarial
algorithm proposed in [64]. We assumed the attack to have only the capacity to query the
victim clustering algorithm and check for output variations. In the absence of any gradient
information, we developed a genetic black-box algorithm, as done in [5], to optimize the poisoning
noise injected in the victim data to mislead the clustering algorithm. We have conducted several
experiments to test the robustness of classical single and ensemble clustering algorithms on



different datasets, showing that they are vulnerable to our attack. We have further compared our
method with a state-of-the-art black-box poisoning strategy, showing that we outperform their
results in terms of attacker’s capability requirements and misclustering error. Finally, we have
proven our algorithm’s empirical and theoretical convergence towards the optimum poisoning noise.

In conclusion, responding to our research question, “Can we poison clustering algorithms under
limited knowledge?”, we would say “yes, poisoning attacks can be staged against clustering
algorithms even when the attacker has only query (or oracle) access to the victim clus-
tering algorithm”. Unfortunately, the drawback of this attack is that it requires many queries,
burdening the computational time required to run the attack. Each objective evaluation requires
executing the clustering algorithm on the novel perturbation, which may not be feasible when
considering computational demanding clustering algorithms or when scaling to large datasets. It
is thus demanding under these scenarios to find more novel heuristics for decreasing the number
of queries, or reducing the computational costs of clustering algorithms, for example, by approxi-
mating them. We believe this work can pave the road toward developing novel poisoning attacks
against clustering algorithms to assess their robustness in the presence of oracle attackers.





Chapter 8

Open Challenges and Conclusions

Research Question #6

Which are the open challenges in the poisoning ML literature?

In this Chapter we outline in Sec. 8.1 these challenges and explore in Sec. 8.2 promising future
research directions to tackle them. We finally summarize in Sec. 8.3 the main contributions of this
thesis, along with the main results found with the analysis, their limitations, and future plans to
address them.

8.1 Current Limitations

Although data poisoning has been widely studied in recent years, from our literature review, we
have found that two main challenges are still hindering their thorough development.The historical
development of the three types of attacks illustrated in Chapter 3 (Sec. 3.3.5) highlights how recent
work aims to solve or mitigate two key challenges (i) considering more realistic threat models, and
(ii) designing more effective and scalable poisoning attacks.

8.1.1 Unrealistic Threat Models

The first challenge we formulate here questions some of the threat models considered in previous
work. The reason is that such threat models are not well representative of what may happen in
many real-world application settings. For example, Fowl et al. [94] and Feng et al. [93] assume
that the attacker controls almost the entire training dataset to mount an indiscriminate poisoning
attack against DNNs effectively. While this may happen in certain hypothesized situations, it is
also not surprising that a poisoning attack works if the attacker controls a considerable fraction
of the training set. We believe that poisoning attacks should be considered a realistic threat only
when it is assumed that the attacker can control a small fraction of the training points. We refer
the reader to a similar discussion in the context of poisoning federated learning in [241].

Another limitation of threat models considered for poisoning attacks is that, in some cases, exact
knowledge of the test samples is implicitly assumed. For example, [238] and [101] optimize a
targeted poisoning attack to induce misclassification of few specific test samples. In particular, the
attack is optimized and tested using the same test samples, different from work which optimizes
the poisoning points using validation data and then tests the attack impact on a separate test
set [27; 197]. This evaluation setting enables the attack to reach higher success rates. However, at
the same time, there is no guarantee that the attack will generalize even to minor variations of the
considered test samples, questioning its applicability outside of settings in which the attacker has
exact knowledge of the test inputs. For instance, the attack may not work as expected in physical
domains, where cameras acquire images under varying illumination and environmental conditions.



In such cases, it is clear that the attacker can not know the specific realization of the test sample
beforehand, as they do not control the acquisition conditions.

On a similar note, only a few studies on backdoor poisoning have considered real-world scenarios
where external factors (such as lighting, camera orientation, etc.) can alter the trigger. Most
papers consider digital applications where the implanted trigger is nearly unaltered [101; 238].

In conclusion, although some recent work seems to have improved the effectiveness of poisoning
attacks, they work on assumptions whose practical evidence is still unclear, limiting their applica-
bility against real-world applications.

8.1.2 Computational Complexity of Poisoning Attacks

The second challenge we discuss here is related to the solution of the bilevel programming problem
used to optimize poisoning attacks. The problem, as analyzed by Muñoz-González et al. [197], is
that solving the bilevel formulation with a gradient-based approach requires computing and invert-
ing the Hessian matrix associated with the equilibrium conditions of the inner learning problem,
which scales cubically in time and quadratically in space with respect to the number of model’s
parameters. Even if one may exploit rank-one updates to the Hessian matrix, and Hessian-vector
products coupled with conjugate descent to speed up the computation of required gradients, the ap-
proach remains too computationally demanding to attack modern deep models, where the number
of parameters is on the order of millions.

Nevertheless, it is also true that solving the bilevel problem is expected to improve the effec-
tiveness of the attack and its stealthiness against defenses. For example, the bilevel strategy
approach is the only one at the state of the art which allows mounting an effective attack in the
training-from-scratch (TS) setting. Other heuristic approaches, e.g., feature collision, are totally
ineffective if the feature extractor ϕ is updated during training [101]. For backdoor poisoning,
the recent developments in the literature show that bilevel-inspired attacks are more effective and
can better counter existing defenses [76; 204; 251]. Moreover, as we can see in Table 3.2, bilevel
strategies are the ones for which only a few defenses exist. The reason for this lack is that it is
more challenging to identify them as they do not follow a pre-defined behavior. Thus tackling the
complexity of the bilevel poisoning problem remains a relevant open challenge to ensure a fairer
and scalable evaluation of modern deep models against such attacks.

8.2 Future Development

Building on the open challenges we identified in Sec. 8.1, we formulate some future research
challenges that can pave the way toward advancing knowledge in poisoning literature.

8.2.1 Considering Realistic Threat Models

One pertinent challenge arising from the discussion on poisoning attacks in Sec. 8.1 demands
considering more realistic threat models and attack scenarios, as also recently pointed out in [241].
While assessing ML models in real-world settings is not straightforward [249], the development of
realistic threat models, possibly for individual applications, is still an open issue in ML security,
and has so far only received recognition for test-time attacks [102]. We would thus invite the
research community to evaluate poisoning attacks under more realistic assumptions, which also
take into account the specific application domain.

8.2.2 Designing More Effective and Scalable Attacks

The other challenge we highlighted in Sec. 8.1 is the computational complexity of poisoning at-
tacks when relying on bilevel optimization. However, the same limitation is also encountered in
other research domains such as hyperparameter optimization and meta-learning. More concretely,



the former is the process of determining the optimal combination of hyperparameters that max-
imizes the performance of an underlying learning algorithm. On the other hand, meta-learning
encompasses feature selection, algorithm selection, learning to learn, or ensemble learning, to which
the same reasoning applies. In principle, by imagining poisoning points as an attacker-controlled
learning hyperparameters, we could apply the approaches proposed in these two fields to mount an
attack. Notably, we find some initial works connecting these two fields with data poisoning. For
example, Shen et al. [242] rely in their approach on a k-arms technique, a technique similar to ban-
dits, as done by Jones et al. [136]. Further, Muñoz-González et al. [197] exploited the back-gradient
optimization technique proposed in [184; 77], originally proposed for hyperparameter optimization,
and subsequently, Huang et al. [129] inherited the same approach making the attack more effective
against deep neural networks. Apart from the work just mentioned, the connection between the
two fields and poisoning is still currently under-investigated, and other ideas could be explored. For
example, the optimization proposed by [178] can further reduce run-time complexity and memory
usage even when dealing with millions of hyperparameters. Or another way might be to move away
from gradient-based approaches and consider gradient-free approaches, thus overcoming the com-
plexity of the inverting the Hessian matrix seen in Sec. 8.1. In the area of gradient-free methods,
the most straightforward way is to use grid or random search [21], which can be sped up using re-
inforcement learning [159]. Also, Bayesian optimization has been used, given a few sampled points
from the objective and constraint functions, to approximate the target function [136]. Last but
not least, evolutionary algorithms [305] as well as particle swarm optimization [177] have shown to
be successful.

In conclusion, we consider these two domains as possible future research directions to find more
effective and scalable poisoning attacks for assessing ML robustness in practice.

8.3 Conclusions

In this thesis, we explored the poisoning threats that compromise the integrity and availability of
ML systems. In Chapter 1, we presented our research questions related to different topics such as
their categorization, scalability, effectiveness, and influence on practical ML systems. In Chapter 2,
we briefly discussed ML and adversarial machine learning, introducing concepts and terminology
used in the remaining thesis. In Chapter 3, we systematized data poisoning attacks according to

the attacker’s thread model and identified possible defenses that may be adopted to counter them.
In Chapter 4, we discussed the scalability issues of data poisoning attacks, identifying the necessity

of developing more scalable approaches to stage them. To this purpose, we defined BetaPoisoning,
a simple but efficient heuristic that can be adapted to craft poisoning samples targeting linear
classifiers. We compared our attack against state-of-the-art poisoning attacks highlighting the
huge computational gap, favoring our methods. Notably, BetaPoisoning reaches the same attack
effectiveness of state-of-the-art white-box attacks or exceed them while offering a more scalable
solution when dataset dimensionality increase. In Chapter 5, we examined the factors influencing

the effectiveness of backdoor poisoning attacks, i.e., their accuracy in predicting the test samples
containing backdoor triggers as the attacker desiderata. As a result, we found that regularizing the
ML model can improve its robustness against malicious alteration of the training data. However,
the attacker could increase their attack strength (e.g., increasing the trigger size or visibility or
injecting more poisoning samples), improving the backdoor effectiveness but being less stealthy
among inspection. In Chapter 6, we paved the way toward a novel kind of security violation

caused by poisoning attacks, i.e., energy-latency attacks. We explained our sponge poisoning
attack, which tampers with the training algorithm to vanish the effect of hardware acceleration
strategies to increase energy consumption and latency at inference time. We further introduced
a novel function for measuring energy consumption in ML models, highlighting its improvements
compared to the state-of-the-art approaches and suitability in the poisoning context. In Chapter 7,

we investigated how an attacker can stage a poisoning attack against the clustering algorithm,
assuming the attacker has only oracle access to the target model. We derived a black-box genetic



algorithm to optimize the adversarial noise injected into the victim data, and we theoretically and
empirically assessed its convergence properties toward global optima. We finally have proposed

in this Chapter the open challenging in the poisoning literature and highlighted possible future
directions to address them.

Limitations of this Doctoral Dissertation. Our categorization framework, seen in Chap-
ter 3, only considers data poisoning attacks in the computer vision domain. Although it is the
domain where the vast majority of work has been done, more domain applications have been
proved vulnerable to poisoning, as seen in Sec. 3.5. However, our categorization for attack strategy
in that domain requires further thought and extension to encompass them. BetaPoisoning, seen

in Chapter 4, is effective only when attacking linear classifiers. Therefore its application remains
limited to only the cases where the learning task is linearly separable or when using pre-trained
networks that are subsequently fine-tuned on the last layer. Our framework for understating the

factors influencing the effectiveness of poisoning attacks, presented in Chapter 5, inherits the same
limitations of interpreting the predictions of DNNs with influence functions while working pretty
good for convex-learners [144; 18]. Specifically, Basu et al. [18] observed that several factors (i.e.,
network architecture, hyperparameters, initialization, and loss curvatures) can significantly reduce
the quality of influence estimates, thus affecting the integrity of our framework. To overcome this
deficiency, we estimated the influence function given by DNNs with finite difference approxima-
tion, but further investigation in this direction (e.g., considering more architecture, analyzing the
approximation error) is required. Finally, our attack against the clustering algorithm, seen in Chap-

ter 7, has converged, effectively compromising the clustering performance. However, it requires
many queries for optimizing the poisoning samples, which may not be affordable for the attacker
when the victim dataset scale. The limitations of our works derive from the open challenges we

identified for poisoning, and we believe they define interesting future research directions.



Concluding Remarks. The increasing adoption of data-driven models in production systems
demands a rigorous analysis of their reliability in the presence of malicious users aiming to com-
promise them. However, securing learning models is still a long way to go. The open challenges
we explored in this Chapter are limiting the development of novel tools for testing and identifying
their vulnerabilities before they are deployed in safety-critical applications. This thesis aims to
take a step toward this direction by first shedding light on existing types of attacks, categorizing
them with respect to their assumptions and attack methodologies. We then investigate four more
aspects of poisoning attacks, namely: (i) their scalability issues, (ii) the factors affecting their
effectiveness against ML models, (iii) their feasibility against unsupervised clustering algorithms
when limiting the attacker’s knowledge, and (iv) how poisoning can go beyond misclassification
causing energy-latency violations. Finally, we identified the relevant open challenges limiting the
advancement of the poisoning literature, i.e. missing scalable and effective attacks and lack of at-
tacks for realistic threat models, together with reasonable research directions that can tackle them.
In conclusion, our contribution can help clarify what threats an ML system may encounter when
malicious users can influence part of the training pipeline (data gathering or model training). We
hope this thesis will foster further research developments in implementing reliable systems even in
the presence of data poisoning threats and developing new poisoning benchmarks to test them.
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[29] B. Biggio, I. Pillai, S. R. Bulò, D. Ariu, M. Pelillo, and F. Roli. Is data clustering in
adversarial settings secure? In 6th ACM Workshop on Art. Intell. and Sec., AISec 2013,
pages 87–98. ACM, 2013.
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[64] A. E. Cinà, A. Torcinovich, and M. Pelillo. A black-box adversarial attack for poisoning
clustering. Pattern Recognition, 122:108306, 2022.

[65] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, ICML, pages 1310–1320.
PMLR, 2019.

[66] C. Cortes and V. N. Vapnik. Support-vector networks. Machine Learning, 1995.



[67] G. Cretu, A. Stavrou, M. Locasto, S. Stolfo, and A. Keromytis. Casting out demons: San-
itizing training data for anomaly sensors. In Security and Privacy, 2008. SP 2008. IEEE
Symposium on, 2008.

[68] J. Crussell and W. P. Kegelmeyer. Attacking DBSCAN for fun and profit. In SIAM Inter-
national Conference on Data Mining, 2015.

[69] M. F. Dacrema, P. Cremonesi, and D. Jannach. Are we really making much progress? a
worrying analysis of recent neural recommendation approaches. In ACM, 2019.

[70] J. de Rooi and P. Eilers. Deconvolution of pulse trains with the l0 penalty. Analytica Chimica
Acta, 2011.

[71] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando. Functionality-preserving
black-box optimization of adversarial windows malware. IEEE Trans. Inf. Forensics Secur.,
2021.

[72] A. Demontis, B. Biggio, G. Fumera, G. Giacinto, and F. Roli. Infinity-norm support vec-
tor machines against adversarial label contamination. In ITASEC, volume 1816 of CEUR
Workshop Proceedings, pages 106–115. CEUR-WS.org, 2017.

[73] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru, and
F. Roli. Why do adversarial attacks transfer? explaining transferability of evasion and
poisoning attacks. In USENIX Sec. Symp. USENIX Association, 2019.

[74] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and A. Stewart. Sever: A robust
meta-algorithm for stochastic optimization. In International Conference on ML, pages 1596–
1606. PMLR, 2019.

[75] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe. Februus: Input purification defense
against trojan attacks on deep neural network systems. In Annual Computer Security Ap-
plications Conf., pages 897–912, 2020.

[76] K. Doan, Y. Lao, W. Zhao, and P. Li. Lira: Learnable, imperceptible and robust backdoor
attacks. In IEEE/CVF International Conference on Computer Vision, ICCV 2021, pages
11966–11976, 2021.

[77] J. Domke. Generic methods for optimization-based modeling. In 15th International Confer-
ence on Art. Intell. and Statistics, AISTATS 2012, pages 318–326. JMLR, 2012.

[78] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A
deep convolutional activation feature for generic visual recognition. In ICML, 2014.

[79] Y. Dong, X. Yang, Z. Deng, T. Pang, Z. Xiao, H. Su, and J. Zhu. Black-box detection of
backdoor attacks with limited information and data. In ICCV, 2021.

[80] M. Du, R. Jia, and D. Song. Robust anomaly detection and backdoor attack detection via
differential privacy. In International Conference on Learning Representations, 2020.

[81] J. G. Dutrisac and D. B. Skillicorn. Hiding clusters in adversarial settings. In IEEE Inter-
national Conference on Intelligence and Security Informatics, ISI, 2008.

[82] A. E. Eiben, E. H. L. Aarts, and K. M. van Hee. Global convergence of genetic algorithms:
A markov chain analysis. In Parallel Problem Solving from Nature, 1st Workshop, PPSN,
volume 496 of Lecture Notes in Computer Science, pages 4–12. Springer, 1990.

[83] A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee. Global convergence of genetic algorithms: A
markov chain analysis. In Parallel Problem Solving from Nature. Springer Berlin Heidelberg,
1991.



[84] A. Ess, B. Leibe, K. Schindler, and L. van Gool. Robust multiperson tracking from a mobile
platform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

[85] A. P. et al. Pytorch: An imperative style, high-performance deep learning library. In Neural
Information Processing Systems, NeurIPS, 2019.

[86] E. S. C. et al. Serving dnns in real time at datacenter scale with project brainwave. IEEE
Micro, 2018.

[87] K. M. H. et al. Applied machine learning at facebook: A datacenter infrastructure perspec-
tive. In IEEE Int. Symp. on High Performance Computer Architecture, HPCA, 2018.

[88] N. P. J. et al. In-datacenter performance analysis of a tensor processing unit. In International
Symposium on Computer Architecture, ISCA. ACM, 2017.

[89] European Commission and Directorate-General for Communications Networks, Content and
Technology. Ethics guidelines for trustworthy AI. Publications Office, 2019.

[90] T. Everitt, V. Krakovna, L. Orseau, and S. Legg. Reinforcement learning with a corrupted
reward channel. In 26th Int. Joint Conf. on AI, IJCAI 2017, pages 4705–4713, 2017.

[91] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,
and D. Song. Robust physical-world attacks on deep learning visual classification. In 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018.

[92] J. Feng, H. Xu, S. Mannor, and S. Yan. Robust logistic regression and classification. In
Advances in Neural Inf. Proc. Sys. 27: Annual Conf. on Neural Inf. Proc. Sys., NIPS, pages
253–261, 2014.

[93] J. Feng, Q. Cai, and Z. Zhou. Learning to confuse: Generating training time adversarial data
with auto-encoder. In Advances in Neural Inf. Proc. Sys., NeurIPS 2019, pages 11971–11981,
2019.

[94] L. Fowl, P.-y. Chiang, M. Goldblum, J. Geiping, A. Bansal, W. Czaja, and T. Gold-
stein. Preventing unauthorized use of proprietary data: Poisoning for secure dataset release.
arXiv:2103.02683, 2021.

[95] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for
hyperparameter optimization and meta-learning. In ICML, 2018.

[96] C. Frederickson, M. Moore, G. Dawson, and R. Polikar. Attack strength vs. detectability
dilemma in adversarial ml. In International Joint Conference on Neural Networks, IJCNN
2018, pages 1–8. IEEE, 2018.

[97] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal. Strip: A defence against
trojan attacks on deep neural networks. In 35th Annual Computer Security Applications
Conf., pages 113–125, 2019.

[98] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal, and H. Kim. Backdoor
attacks and countermeasures on deep learning: A comprehensive review. arXiv:2007.10760,
2020.

[99] A. Gardner, J. Kanno, C. A. Duncan, and R. R. Selmic. Measuring distance between un-
ordered sets of different sizes. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. IEEE Computer Society, 2014.

[100] J. Geiping, L. Fowl, G. Somepalli, M. Goldblum, M. Moeller, and T. Goldstein. What
doesn’t kill you makes you robust (er): Adversarial training against poisons and backdoors.
arXiv:2102.13624, 2021.



[101] J. Geiping, L. H. Fowl, W. R. Huang, W. Czaja, G. Taylor, M. Moeller, and T. Goldstein.
Witches’ brew: Industrial scale data poisoning via gradient matching. In International
Conference on Learning Representations, ICLR 2021. OpenReview, 2021.

[102] J. Gilmer, R. P. Adams, I. Goodfellow, D. Andersen, and G. E. Dahl. Motivating the rules
of the game for adversarial example research. arXiv, 2018.

[103] D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley, 1989. ISBN 0-201-15767-5.

[104] M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song, A. Madry, B. Li,
and T. Goldstein. Dataset security for machine learning: Data poisoning, backdoor attacks,
and defenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,
2022.

[105] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
In 3rd International Conference on Learning Representations, ICLR, 2015.

[106] Google image search failure. Jewish baby stroller image algorithm.
https://www.timebulletin.com/jewish-baby-stroller-image-algorithm/, 2020.

[107] K. Grosse, L. Bieringer, T. R. Besold, B. Biggio, and K. Krombholz. ” why do so?”–a
practical perspective on machine learning security. arXiv, 2022.

[108] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the ml model
supply chain. arXiv:1708.06733, 2017.

[109] J. Guo and C. Liu. Practical poisoning attacks on neural networks. In European Conference
on Computer Vision, ECCV, pages 142–158. Springer, 2020.

[110] J. Guo, A. Li, and C. Liu. AEVA: Black-box backdoor detection using adversarial extreme
value analysis. In International Conference on Learning Representations, 2022.

[111] W. Guo, L. Wang, X. Xing, M. Du, and D. Song. Tabor: A highly accurate approach to
inspecting and restoring trojan backdoors in ai systems. arXiv:1908.01763, 2019.
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machine learning systems. CoRR, abs/1911.11034, 2019.

[151] R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall, M. Goertzel, A. Comissoneru,
M. Swann, and S. Xia. Adversarial machine learning-industry perspectives. In IEEE Se-
curity and Privacy Workshops, SPW 2020. IEEE, 2020.

[152] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In ICLR,
2017.

[153] R. Laishram and V. V. Phoha. Curie: A method for protecting svm classifier from poisoning
attack. arXiv:1606.01584, 2016.



[154] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic analysis.
Discourse Processes, 25(2-3):259–284, 1998.

[155] K. Lang. Newsweeder: Learning to filter netnews. In Machine Learning, Proceedings of the
Twelfth International Conference on Machine Learning, ICML, 1995.

[156] Learning from Tay. Learning from tay’s introduction - the official microsoft blog.
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/, 2016.

[157] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs Available:
http://yann.lecun.com/exdb/mnist, 2010.

[158] A. Levine and S. Feizi. Deep partition aggregation: Provable defenses against general poi-
soning attacks. In International Conference on Learning Representations, ICLR 2021, 2021.

[159] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of ML Research, 18
(1):6765–6816, 2017.

[160] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang. Invisible backdoor attacks on deep neural
networks via steganography and regularization. IEEE Trans. on Dependable and Secure
Computing, pages 1–1, 2020.

[161] X. Li and F. Li. Adversarial examples detection in deep networks with convolutional filter
statistics. In IEEE International Conference on Computer Vision, ICCV, 2017.

[162] Y. Li, B. Wu, Y. Jiang, Z. Li, and S.-T. Xia. Backdoor learning: A survey. arXiv:2007.08745,
2020.

[163] Y. Li, T. Zhai, B. Wu, Y. Jiang, Z. Li, and S. Xia. Rethinking the trigger of backdoor attack.
arXiv:2004.04692, 2020.

[164] Y. Li, N. Koren, L. Lyu, X. Lyu, B. Li, and X. Ma. Neural attention distillation: Erasing
backdoor triggers from deep neural networks. In ICLR, 2021.

[165] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu. Invisible backdoor attack with sample-specific
triggers. In IEEE/CVF International Conference on Computer Vision, ICCV 2021, pages
16463–16472, 2021.

[166] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma. Anti-backdoor learning: Training clean
models on poisoned data. In NeurIPS, volume 34, 2021.

[167] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang. Pruning and quantization for deep
neural network acceleration: A survey. Neurocomputing, 2021.

[168] C. Liu, B. Li, Y. Vorobeychik, and A. Oprea. Robust linear regression against training data
poisoning. In 10th ACM Workshop on Art. Intell. and Sec., AISec 2017, pages 91–102. ACM,
2017.

[169] K. Liu, B. Dolan-Gavitt, and S. Garg. Fine-pruning: Defending against backdooring at-
tacks on deep neural networks. In Int. Symposium on Research in Attacks, Intrusions, and
Defenses, pages 273–294. Springer, 2018.

[170] X. Liu, S. Si, J. Zhu, Y. Li, and C. Hsieh. A unified framework for data poisoning attack to
graph-based semi-supervised learning. In Advances in Neural Inf. Proc. Sys., NeurIPS 2019,
pages 9777–9787, 2019.

[171] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples and
black-box attacks. In 5th International Conference on Learning Representations, ICLR, 2017.



[172] Y. Liu, Y. Xie, and A. Srivastava. Neural trojans. In IEEE International Conference on
Computer Design, ICCD 2017, pages 45–48, 2017.

[173] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning attack on neural
networks. In 25th Annual Network and Distributed System Security Symposium, NDSS 2018,
pages 45–48, 2018.

[174] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang. Abs: Scanning neural networks
for back-doors by artificial brain stimulation. In ACM SIGSAC Conf. on Computer and
Communications Security, CCS 2019, pages 1265–1282. ACM, 2019.

[175] Y. Liu, X. Ma, J. Bailey, and F. Lu. Reflection backdoor: A natural backdoor attack on
deep neural networks. In European Conference on Computer Vision - ECCV, pages 182–199.
Springer, 2020.

[176] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In IEEE
International Conference on Computer Vision, ICCV. IEEE Computer Society, 2015.

[177] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor. Particle swarm
optimization for hyper-parameter selection in deep neural networks. In the genetic and
evolutionary computation conference, pages 481–488, 2017.

[178] J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In International Conference on AI and Statistics, pages 1540–1552. PMLR,
2020.

[179] D. Lowd and C. Meek. Adversarial learning. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 2005.

[180] D. Lowd and C. Meek. Good word attacks on statistical spam filters. In CEAS 2005 - Second
Conference on Email and Anti-Spam, 2005.

[181] Y. Ma, K.-S. Jun, L. Li, and X. Zhu. Data poisoning attacks in contextual bandits. In In-
ternational Conference on Decision and Game Theory for Security, pages 186–204. Springer,
2018.

[182] Y. Ma, X. Zhu, and J. Hsu. Data poisoning against differentially-private learners: Attacks
and defenses. In 28th International Joint Conference on AI, IJCAI 2019, pages 4732–4738,
2019.

[183] R. Machupalli, M. Hossain, and M. Mandal. Review of asic accelerators for deep neural
network. Microprocessors and Microsystems, 2022.

[184] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization
through reversible learning. In 32nd International Conference on ML, ICML 2015, pages
2113–2122. JMLR, 2015.

[185] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations,
ICLR. OpenReview.net, 2018.

[186] B. Mallikarjunappa and D. Prabhakar. A novel method of spam mail detection using text
based clustering approach. International Journal of Computer Applications, 2010.

[187] S. Mambou, P. Maresova, O. Krejcar, A. Selamat, and K. Kuca1. Breast cancer detection
using infrared thermal imaging and a deep learning model. Sensors, 18, 2018.

[188] W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous
activity. In The Philosophy of Artificial Intelligence. Oxford University Press, 1990.



[189] S. McGregor. Preventing repeated real world ai failures by cataloging incidents: The ai
incident database. arXiv:2011.08512, 2020.

[190] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and D. Schwab.
A high-bias, low-variance introduction to machine learning for physicists. Physics reports,
2019.

[191] S. Mei and X. Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In AAAI, pages 2871–2877. AAAI Press, 2015.

[192] M. Meila. Comparing clusterings: an axiomatic view. In Machine Learning, Proceedings of
the Twenty-Second International Conference, ICML, pages 577–584, 2005.

[193] T. A. Meyer and B. Whateley. Spambayes: Effective open-source, bayesian based, email
classification system. In CEAS, 2004.

[194] A. Moghar and M. Hamiche. Stock market prediction using LSTM recurrent neural network.
In International Conference on Ambient Systems, Networks and Technologies ANT, volume
170. Elsevier, 2020.

[195] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturba-
tions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.

[196] N. M. Müller, D. Kowatsch, and K. Böttinger. Data poisoning attacks on regression learn-
ing and corresponding defenses. In 25th IEEE Pacific Rim Int. Symposium on Dependable
Computing, PRDC 2020, pages 80–89. IEEE, 2020.
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Appendix A

Understanding Backdoor
Poisoning Vulnerability

In [59] we have shown the backdoor learning curves only for some classifiers. Here, we report them
for all the classifiers considered in this work. As we will discuss later in this section, these results
confirm the ones provided in Chapter 5. In particular, here we consider:

• Support Vector Machine (SVM) with λ ∈ {100, 0.1} for MNIST, λ ∈ {10000, 0.1} for CI-
FAR10, and λ ∈ {100000, 1} for Imagenette.

• Ridge Classifier (RC) with λ ∈ {1000, 1} for MNIST, λ ∈ {10000, 1} for CIFAR10, and
λ ∈ {100000, 1} for Imagenette.

• Logistic Classifier (LC) with λ ∈ {10, 0.01} for MNIST, λ ∈ {10000, 100} for CIFAR10, and
λ ∈ {100000, 10} for Imagenette.

• SVM with an RBF kernel, where λ ∈ {1, 0.01} and γ = 5e−04 for MNIST, λ ∈ {100, 1} and
γ = 1e−03 for CIFAR10, and λ ∈ {10, 0.1} and γ = 1e−05 for Imagenette.

Moreover, we compare the results obtained on the class pairs considered in the paper (7 vs 1 on
MNIST, airplane vs frog on CIFAR10 and Imagenette tench vs truck) with the ones obtained on
different pairs.

Backdoor Learning Curves and Backdoor Learning Slope. In Fig. A.1-A.9 we report the
backdoor learning curves for each classifier and dataset pair. In Fig. A.10-A.12, we report the
backdoor learning slope, computed with p = 0.1, for all the considered classifiers and all subset
pairs. The results do not show significant variation with respect to the ones reported in the paper.

Empirical Parameter Deviation Plots. In Fig. A.13-A.15, shows how the classifiers’ param-
eters change when the classifiers learn the backdoors. This analysis is carried out with p = 0.1.
The results do not vary significantly across different classifiers and class pairs. The only exception
is MNIST 5 vs 2. The untainted classifier is already quite complex; therefore, it does not increase
its complexity when it learns the backdoor.

Increasing the trigger size or visibility Although it is a known result in the literature that
the size of the trigger increases the effectiveness of the attack [229; 230], here, for the first time
to the best of our knowledge, we show how it interacts with other factors. In this section we
report further experimental results when increasing the trigger size or visibility. As expected,
the results in Fig. A.16-A.17 show that choosing a larger trigger enhances the effectiveness of the
attack. Indeed, when the trigger is larger or more visible the backdoor learning curves go down



faster. Using the proposed backdoor slope to analyze the effect of complexity, controlled via the
hyperparameters, on the vulnerability against backdoors, we found a region of the hyperparameter
space that leads to having desirable performances: an accuracy high on the clean test samples and
low on the ones containing the backdoor trigger.
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Fig. A.1: Backdoor learning curves for different classifiers trained on MNIST 7-1. Darker lines represent
a higher fraction of poisoning samples p injected into the training set. We report the loss on the clean test
samples (TS) with a dashed line and on the test samples with the backdoor trigger (TS+BT) with a solid
line.
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Fig. A.2: Backdoor learning curves for different classifiers trained on MNIST 3-0. See the caption of
Fig. A.1 for further details.
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Fig. A.3: Backdoor learning curves for different classifiers trained on MNIST 5-2. See the caption of
Fig. A.1 for further details.
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Fig. A.4: Backdoor learning curves for different classifiers trained on CIFAR10 airplane vs frog. See the
caption of Fig. A.1 for further details.
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Fig. A.5: Backdoor learning curves for different classifiers trained on CIFAR10 bird vs dog. See the
caption of Fig. A.1 for further details.
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Fig. A.6: Backdoor learning curves for different classifiers trained on CIFAR10 airplane vs truck. See
the caption of Fig. A.1 for further details.
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Fig. A.7: Backdoor learning curves for different classifiers trained on Imagenette tench vs truck. See the
caption of Fig. A.1 for further details.
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Fig. A.8: Backdoor learning curves for different classifiers trained on Imagenette cassette player vs
church. See the caption of Fig. A.1 for further details.
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Fig. A.9: Backdoor learning curves for different classifiers trained on Imagenette tench vs parachute.
See the caption of Fig. A.1 for further details.
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Fig. A.10: Backdoor slope η vs clean accuracy (red) and backdoor effectiveness (blue) on MNIST 7vs.1
(top row), 3vs.0 (middle row) and 5vs.2 (bottom row). We measure the classification accuracy on the
untainted test samples (TS), and on the same samples after adding the 3 × 3 backdoor trigger (TS+BT).
We chose the γ parameter for the RBF kernel as γ0 = 5e−04 (orange triangle for clean data, light blue
plus for data with trigger) and γ1 = 5e−03 (red inverted triangle for clean data, dark blue x for data with
trigger).
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Fig. A.11: Backdoor slope vs backdoor (BK) effectiveness on CIFAR10 airplane vs frog (top row),
airplane vs truck (middle row) and bird vs dog (bottom row). See the caption of Fig. A.10 for further
details. The results are obtained considering a trigger size equal to 8.
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Fig. A.12: Backdoor slope vs backdoor (BK) effectiveness on Imagenette tench vs truck (top row),
cassette player vs church (middle row) and tench vs parachute (bottom row). See the caption of Fig. A.10
for further details. The results are obtained considering a trigger size equal to 8.
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Fig. A.13: Backdoor weight deviation for different classifiers trained on MNIST 7 vs 1 (top row), 3 vs 0
(middle row) and 5 vs 2 (bottom row). We specify regularization parameter λ and backdoor (BK) accuracy
for each setting in the legend of each plot.
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Fig. A.14: Backdoor weight deviation for different classifiers trained on CIFAR10 airplane vs frog (top),
airplane vs truck (middle), and bird vs dog (bottom). See Fig. A.13 for further details.
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Fig. A.15: Backdoor weight deviation for different classifiers trained on Imagenette tench vs truck (top),
tench vs parachute (middle), and cassette player vs church (bottom). See Fig. A.13 for further details.
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Fig. A.16: Backdoor learning curves for: (top row) LC on MNIST 3vs.0 with trigger size 3×3 (left) or
6×6 (right); (middle row) RC on CIFAR10 airplane vs truck with trigger size 8×8 (left) or 16×16 (right);
(bottom row) RBF SVM on Imagenette cassette player vs church with trigger visibility cm=10 (left) or
cm=75 (right). Further details in Fig. A.1.
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Fig. A.17: Backdoor learning curves for: (top row) LC on MNIST 5 vs. 2; (middle row) RC on CIFAR10
bird vs dog; (bottom row) RBF SVM on Imagenette tench vs parachute.





Appendix B

Causing Energy-Latency Failures
via Poisoning

Layers Activation on CIFAR10. We depict in Fig. B.1 the layer’s activations for clean and
sponge ResNet18 and VGG16 trained on CIFAR10. Notably, the results are consistent with those
presented for GTSRB and Celeb in the paper. Indeed, the modules mostly affected by the sponge
attack are ReLu and MaxPooling. We further note that for ResNet18, the ReLu operators placed
at the beginning have a greater impact than those placed at the end. For example, in first ResNet18
ReLu in Fig. B.1 increases the number of activations by about 40% (i.e., from 50% to 90%), while
the last ReLu has an increase of only 10%. However, this phenomenon is not observed on the Celeb
dataset, where all the ReLu are largely affected, suggesting that increasing data dimensionality
may enhance the sponge’s effectiveness.

Attack Hyperparameters Tuning. In Fig. B.2 we show the effect of the two hyperparameters
λ and σ on the test sets of the three dataset considered in our paper. The top row contains the
same results proposed in the main paper, using a validation set with 100 samples, i.e., considering
an attacker with a low budget for tuning the attack’s hyperparameter. We proposed the same
ablation analysis in the bottom row while considering all the test samples, i.e., more than 10, 000,
for each dataset. We can observe that the results of the two analyses are almost the same, meaning
that using a small validation set to tune the attacks’ hyperparameter does not lead to suboptimal
choices, which makes our attack more feasible in realistic scenarios where gathering data is costly.

Increasing Attacker’s Budget In Fig. B.3 we report the energy increase when the percentage of
poisoning gradient update p grows. We note that our attack can also succeed when manipulating
a few gradient updates during model training. This property allows our attack to be applicable
even in other contexts, such as federated learning, where the attackers can usually compromise
only few nodes.

Reversing Sponge Models In Sec. 11 we derived a novel defensive strategy to mitigate the
effect of a sponge poisoning attack. Given a sponge model, the victim user tries to fine-tune it to
minimize the energy consumption while preserving the model’s accuracy (Eq. 6.5). To this end, we
adapt the training algorithm proposed in Alg. 5, used to stage a poisoning attack, to meet the novel
sanitization objective function. We fine-tune the sponge models on CIFAR10, GTSRB, and CelebA
for 100 training epochs with SGD optimizer with momentum 0.9, weight decay 5e − 4, p equals
to 0.05, and batch size 512, optimizing the cross-entropy loss. We employ an exponential learning
scheduler with an initial learning rate of 0.025 and decay of 0.95. As for sponge attack, we analyze
the effect of hyperparameters λ and σ on sanitized models, looking for the best configurations that
enable high prediction accuracy and low energy consumption. The obtained results are reported in
Fig. B.4 and Fig. B.5 respectively for σ and λ. Regarding the former, we observe that high values
tend to clip to zero more activations, thus decreasing the energy consumption. Conversely, for
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Fig. B.1: Layers activations for ResNet18 (top) and VGG16 (bottom) in CIFAR10.

very small values of σ, as for the sponge attack, the training algorithm becomes unstable as the ℓ̂0
may not be sufficiently smooth to facilitate the optimization. For the latter, we observe that high
values of λ tend to give excessive relevance to the energy minimization component regardless of the
model’s accuracy. Indeed, when increasing λ we obtain energy-efficient models, even better than a
standard training algorithm, but useless as their validation or test accuracy is poor. Considering
both Fig. B.4 and Fig. B.5, we can observe that the sanitization effect tend to decrease the energy
consumption, satisfying the victim objective. However, a severe reduction in energy consumption
may induce the model to freeze or inactivate its neurons since they are likely to output 0. In
Table 6.4 we considered the best configurations that reach low energy consumption and a high
validation accuracy regime with fewer epochs.
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Fig. B.2: Ablation study on σ and λ when the validation set size is 100 (top) or equal to the test test
size (bottom). When analyzing λ we consider the σ value, which gives the highest energy consumption and
does not decrease the validation accuracy.
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Fig. B.3: Ablation study on the percentage of poisonign p.
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Fig. B.4: Sponge sanitization ablation study on σ for ResNet18 (two plots on the left) and VGG16 (two
plots on the right) trained on CIFAR10 (top), GTSRB (middle), and CelebA (bottom).
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Fig. B.5: Sponge sanitization ablation study on λ for ResNet18 (two plots on the left) and VGG16 (two
plots on the right) trained on CIFAR10 (top), GTSRB (middle), and CelebA (bottom).



Appendix C

Poisoning Under Limited
Knowledge

For the sake of completeness and reproducibility of the experimental setting, in the following, we
report a detailed list of all hyperparameters used in our experiments. In particular Table C.1 and
C.2 present all the hyperparameters used in our method for the comparison with [55]. Table C.3

Method G λ pc pm pz

Ours (δ = 73.43) 150 1 0.85 0.2 0.35
Ours (δ = 146.87) 150 1 0.85 0.01 0.20
Ours (δ = ∞) 150 1 0.85 0.001 0.25

Method G λ pc pm pz

Ours (δ = 73.43) 150 1 0.85 0.2 0.35
Ours (δ = 146.87) 150 1 0.85 0.01 0.20
Ours (δ = ∞) 150 1 0.85 0.001 0.25

Table C.1: Comparison parameters for Digits dataset with digits 8&9 (left) and 4&1 (right).

Method G λ pc pm pz

Ours (δ = 73.43) 150 1 0.85 0.015 0.10
Ours (δ = 146.87) 150 1 0.85 0.015 0.25
Ours (δ = ∞) 150 1 0.85 0.005 0.25

Method G λ pc pm pz

Ours (δ = 73.43) 150 1 0.85 0.02 0.05
Ours (δ = 146.87) 150 1 0.85 0.01 0.10
Ours (δ = ∞) 150 1 0.85 0.001 0.15

Table C.2: Comparison parameters for MNIST dataset with digits 3&2 (left) and 1&4 (right).

contains the hyperparameters used by our algorithm during the comparison.

Method G λ pc pm pz

Ours (δ = 0.15) 20 1 0.85 0.01 0.10
Ours (δ = 0.30) 20 1 0.85 0.01 0.10

Method G λ pc pm pz

Ours (δ = 10) 50 1 0.85 0.15 0.20
Ours (δ = 20) 50 1 0.85 0.15 0.20

Table C.3: Comparison parameters for Seeds (left) and MoCap Hand Postures (right).
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Titolo della tesi1 : Vulnerability of Machine Learning: A Study on Poisoning Attacks

Abstract: Il successo senza precedenti dell'apprendimento automatico (ML) in diverse applicazioni
è stato intrinsecamente favorito dalla crescente disponibilità di potenza di calcolo e di grandi
insiemi di dati di addestramento, con l'ipotesi implicita che tali insiemi di dati siano ben
rappresentativi dei dati che si incontreranno al momento del test. Tuttavia, questo presupposto può
essere violato in presenza di attacchi di tipo poisoning, che presuppongono la capacità di un
utente malevolo di poter compromettere i dati di addestramento o ottenere un certo controllo sul
processo di apprendimento (ad esempio, quando l'addestramento del modello viene affidato a un
servizio di terze parti non affidabile) al fine di degradare le prestazioni del modello al momento del
test. Un attento monitoraggio delle procedure di raccolta dei dati e di addestramento dei modelli
sta dunque diventando imperativo, soprattutto dopo gli ultimi incidenti in applicazioni di ML nel
mondo reale causati da questo tipo di attacchi. Data la loro rilevanza pratica, sono stati pubblicati
diversi articoli scientifici sugli attacchi al tempo di addestramento contro i modelli di ML. Tuttavia,
nonostante l'enorme interesse suscitato da questo argomento, abbiamo riscontrato molta
confusione, idee sbagliate e questioni aperte che indaghiamo in questa tesi. Affrontiamo quindi 5
diverse domande di ricerca, ovvero: (1) come classificare gli attacchi di avvelenamento; (2) come
renderli scalabili nella pratica (3) come analizzarli e comprendere i fattori che influenzano la loro
efficacia contro i modelli di ML; (4) come l'avvelenamento può influenzare altri aspetti di ML,
andando oltre le violazioni di misclassificazione; e (5) come un attaccante può creare campioni di
avvelenamento quando ha accesso al sistema solo attraverso queries. Per ognuna di queste
domande di ricerca, rivediamo il problema di fondo nell'affrontare tale domanda, il corrispondente
stato dell'arte in quella direzione di ricerca ed esaminiamo i contributi proposti dall'autore di questa
tesi per rispondere ad essa. Infine, facciamo luce sulle limitazioni attuali e sulle domande di ricerca
aperte in questo campo di ricerca e proponiamo possibili direzioni di ricerca future per affrontarle. I
risultati di questa tesi aiuteranno la comunità ML a valutare meglio le potenziali vulnerabilità
provenienti da dati e servizi di formazione di terze parti non affidabili. L'obiettivo è quello di aiutare
a comprendere meglio tali vulnerabilità nei sistemi di ML, e a migliorarli anche in base alle nuove
normative governative.
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