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Introduction 

The design of steel structures involves a large number of equations and relationships 

related to different aspects of the project, such as materials, geometries and costs. 

Traditional design methods generally require subsequent design revisions and relying on 

a trial-and-error approach does not lead to optimized solutions in a reasonable 

timeframe. This problem is particularly important for steel megastructures, such as 

stadiums and bridges, where there are high numbers of variables, high computational 

costs for evaluating structural performance, and various complex phenomena that 

require the development of sophisticated local models. The search for optimized design 

solutions requires the development of an innovative approach to the design, in which the 

experience of designers and traditional numerical methods are combined with the 

techniques offered by Artificial Intelligence (AI). This research project aims to develop 

tools for the design of steel megastructures that provide more optimized solutions from 

the earliest design stages, resulting in reduced costs and environmental impact, and 

requiring limited subsequent revisions. Several approaches provided by Artificial 

Intelligence, both stochastic and deterministic in nature, are investigated to achieve this. 

The initial part of the first chapter of this thesis aims to provide the reader with definitions 

and an overview of structural design. In particular, the complexity of the design process 

related to the complexity of the physical phenomena that control the problem, the number 

of variables that need to be defined by design and that are interconnected, and the amount 

of different professionals involved in the design process are highlighted. The chapter 

continues by providing definitions of Artificial Intelligence and Machine Learning and 

investigating the state of the art on the role they play in the field of Civil Engineering. 

Chapters 2 and 3 contain technical notions about Artificial Intelligence methods that have 

been studied in this research for the development of useful tools to support structural 

design activities, facilitating the achievement of optimized results more quickly. In 

particular, the second chapter of the thesis is devoted to optimization problems, which 

are a popular type of problem in many disciplines. The third chapter, on the other hand, 

analyzes techniques for developing surrogate models, which aim to reduce the burden 

associated with analyzing and evaluating different candidate solutions to the problem. 
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Particular emphasis is placed on models implemented using Neural Networks. Chapters 

4 and 5 are devoted to the development of AI-based structural design tools. Specifically, 

in Chapter 4 algorithms are developed to optimize a portion of the structure considering 

both beams and joints. Instead, in Chapter 5, Artificial Intelligence finds application for 

the creation of a tool for optimizing the beams of a frame and for the development of 

surrogate models that speed up the analysis of candidate solutions. In both chapters, a 

practical application of the proposed methods and a critical analysis of the results were 

carried out. The concluding chapter of the thesis, on the other hand, draws a summary of 

what has been observed and analyzed during the course of the thesis, both on the state of 

the art of structural design and research on the application of Artificial Intelligence 

methods in it, and on the results obtained through the methods developed in the course 

of the research. 
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CHAPTER 1:  Civil Engineering and Artificial 

Intelligence 

 

Civil engineering is the branch of engineering that deals with the design and construction 

of civil works, such as buildings, bridges, infrastructures, hydraulic works. This discipline 

has a significant economic impact: according to a report by Horta et al., the construction 

industry constitutes about 9% of world GDP. (1) Furthermore, it also has a major impact 

on resource exploitation and environmental pollution. According to (2), in 2017 the 

building sector was the second largest consumer of energy in China, consuming about 

20% of the total energy, about 23% of electricity and about 30% of the total CO2 

emissions. Despite the economic and environmental importance of civil engineering, the 

traditional design process generally leads to low-efficiency structures. A recent study 

conducted by Moynihan and Allwood on more than 10,000 beams found an average 

reserve capacity of more than 50%. These observations explain the growing interest in 

improving the performance of this sector, looking for innovative approaches that lead to 

a more efficient and sustainable structural design. 

This chapter aims to provide the reader with information on structural design by briefly 

describing the traditional approach normally used in design activities and going on to 

define all aspects that should be considered when evaluating the design solution. 

1.1  Structural design overview 

1.1.1  Structural design process 

The design process aims to fully define the design for a project in all its aspects, including 

structural member sizes, static scheme, materials, the equipment. It can be divided in four 

sequential phases (3): 

1. Conceptual design, in which the idea behind the project and a plan for its 

implementation are established. 
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2. Schematic design, in which several sketches of design solutions are analyzed based 

on project objectives and desired outcomes. 

3. Design development, in which the different aspects of the chosen design solution 

are specified in detail, defining how to implement it from a practical point of view 

and carrying out the necessary checks to ensure that the structural behavior is as 

required by the design and by the standards. 

4. Construction Documents, in which the documents necessary to describe the design 

solution in minimum detail and containing information about the structural and 

behavior checks that have been carried out are produced. 

In each of these phases, several iterations are carried out, leading to subsequent changes 

in the design product. 

A variety of actors are involved in the various phases: clients, architects, designers, 

builders. Each has a different role and comes into play at different times in the process. 

The various professional figures deal with different aspects but are closely 

interconnected. Consequently, the design process should be the result of cooperation 

between professionals from different fields. This causes the aforementioned iterations to 

occur not only between professionals in the same field, but also between groups from 

different disciplines, as visible in Figure 2. Therefore, it is especially important to have a 

proper exchange of information between the various working groups. The 

interdisciplinary nature of the design process also brings out a difficulty related to trying 

to match the needs of all stakeholders. Actors entering the later stages will be constrained 

by what was decided in the earlier stages, and this will limit their options. Added to this 

are difficulties related to meeting the many constraints to which a civil structure design 

is subject: demands from clients, environmental and topographical constraints, 

regulatory constraints, and many others. 

The transition from one phase to the next involves greater design definition, accompanied 

by a gradual reduction in design freedom and an increase in design knowledge. While the 

most significant design impact occurs during the early stages, particularly with 

conceptual design, structural considerations come into play at later stages, limiting the 

ability of structural engineers to make major contributions to the design process. 

The structural design process involves many domains, such as resistance, deformation, 

fracture toughness, fatigue, durability, performance, different loading conditions such as 
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static, dynamic, impact, and many stages such as service and construction. Each of the 

topics mentioned is highly specialized in nature and refers to different engineering fields. 

As a consequence, the designer often deals with the various aspects in series and not in 

system and design iterations are very time and cost intensive. Furthermore, the high 

computational cost and the time required to perform structural analysis makes it difficult 

to explore different solutions of the problem, limiting the usability of optimization 

methods.  

 

Figure 1. Relationship between design freedom and design knowledge in building design projects (3) 
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Figure 2. Iteration types occurring in structural design stages (4) 

 

Figure 3. The traditional design of civil structures, often based on a “trial and error” approach 

1.1.2  Integrated structural design 

Greater involvement of structural aspects in the early stages of the design process, 

resulting in more opportunity for civil engineers to significantly influence the design, can 

lead to numerous benefits: 

• Reduced construction cost 

• Reduced environmental impact 

• Aesthetic improvement  
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• Greater safety  

Introducing structural reasoning and notions as early as the conceptual design stage can 

lead to the development of a design with a more efficient structural form that requires 

less material and reduced processing for its construction. Reducing the resources used 

easily translates into economic savings and lower environmental impact. The use of 

structural skills early in the design process therefore requires that the design solution be 

the result of a process aimed at harmony between aesthetic and technical goals. In 

addition to cost-saving and environmental sustainability motivations, the development of 

shapes based on integrated structural design also generally leads to safer structures due 

to a more appropriate distribution of internal stresses. There are numerous examples of 

structures that because they were not designed with structural aspects in mind as well, 

have turned out to be wasteful, requiring major maintenance and unsafe. One example is 

Terminal 2E at Charles de Gaulle Airport in Paris, whose shape contributed to the 

development of high internal forces and the need to use high-strength materials. The 

structure collapsed in 2004 less than a year after opening, killing four people, and costing 

130 million in renovation and replacement costs. (3) 

 

Figure 4. Collapsed zone of Terminal 2E at Charles de Gaulle Airport in Paris (5) 

1.1.3  Importance of node design in steel structures 

In the case of steel structures, among the various aspects that should be considered in the 

early stages of design are nodes and joints, which represent the connecting parts between 

the members that make up a frame. In the common design process, in fact, there is a 
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tendency to view joints and nodes as the business of the steel contractor alone and thus 

to consider them only roughly in the preliminary design stages. Therefore, in the early 

stages of design, the structural engineer will focus on designing only the main steel 

members, in accordance with the constraints imposed by the client, the architect, the 

regulations, the environment, etc., offering a cost optimization solution that, however, 

only superficially considers joints and nodes and their influence. The connections are 

designed in detail later by the steel contractor's engineers, who will try to design them in 

the best way for their production process.  

 

Figure 5. Relationships between the parts involved in the design of steel structures using the traditional approach (a) and 
by introducing tools that allow more correct calculation of joints (b) (6) 

The deep influence that the design choices made on the rest of the structure have on the 

design of joints and nodes by the steel contractor means that designing the structure 

without adequate consideration of these entities often results in poor choices that can 

lead to significantly increased costs and/or reduced safety. For example, the pursuit of 

structural weight optimization can lead to the design of structures with slender beams, 

which may require reinforcing elements such as plates and stiffeners to achieve adequate 

structural joint strength, resulting in increased costs. Another solution is to change the 

cross-section of the beam, choosing a larger one: however, this solution may create 

problems of conflict with the other designed elements of the structure. Knowledge of the 

joint type as early as during the design of the entire structure can also lead to other 

advantages: for example, in the case of semi-rigid connections it is possible to consider 

the rotational stiffness of the joint, which by influencing the distribution of the bending 

moment can lead to further cost savings. 

Another aspect to consider is the impact of joint costs on the overall cost of the structure. 

Among the main cost items in a steel structure are manufacturing costs, which include 

labor and processing costs. The large number of elements that make up the joints, such as 
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plates, stiffeners, bolts, etc., make production costs for these parts of the structure 

particularly significant. The number of joints is influenced by the shape of the structure. 

In fact, limitations on the size of elements due to their transportability, or geometric 

parameters such as the size of spans or the height of a truss beam that determine the 

number of beams and diagonals, affect the overall number of joints on the structure. 

Incorrect assessment of the type of joint to be made can therefore lead to significant error 

in estimating the cost of the structure and thus in the comparative analysis between 

different design solutions. 

It follows from these considerations that it is crucial to include joint design early in the 

design of the structure in order to achieve a more correct optimization of the solution. 

Sizing the joints at the same time as the rest of the structure and no longer downstream 

results in an increase in the variables involved in the design and the creation of more 

complex computational models. The search for the optimal design solution therefore 

requires not only adequate computational resources, but also support from appropriate 

tools so that the result can be achieved in a reasonable time. Artificial intelligence offers 

methods that lend themselves well to the creation of such tools. 

Little research on structural node optimization can be found in the literature, but it is 

mostly limited to very simple nodes where few elements converge. Among them, R. da S. 

Hortencio and G. A. S. Falcón (7) used the genetic algorithm to optimize a beam-column 

node using an objective function that considers both cost and compliance with the 

performance and dimensional requirements of the standard. C. Diaz et al. (8) also used 

the genetic algorithm to optimize the same type of node, with the addition of creating 

metamodels to quickly evaluate cost, resistant moment, and rotational stiffness without 

having to build finite element models. The node used for this research is given in Figure 

6. However, beam-column nodes are extremely simple compared to the multiway nodes 

that can be encountered in a complex framed structure characterized by many beams 

converging at the same node. An example of this type of node is shown in Figure 7. It is 

clear that the number of parameters required to characterize multiway nodes is much 

greater than those required for a simple beam-column node. The increase in the size of 

the solution search space therefore makes the search for the optimal solution more 

complex and onerous, and optimization studies featuring this type of node are not found 

in the literature. In addition, the state-of-the-art analysis revealed the absence of sizing 
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and optimization tools involving the entire structure, that is, both the beams and the 

structural details that make up the connecting elements between them. (6) 

 

Figure 6. Geometric parameters of beam-column connection (8) 

 

Figure 7. Example of FEM model of a multi-way node 
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1.1.3.1  Structural node design with local models 

Nodes are composed of numerous elements: plates, bolts, welds, etc. All these elements 

must undergo the structural checks required by the standards. Calculation of the 

distribution of the input forces at the node among the various elements under different 

loading conditions requires detailed modeling of the node, using two-dimensional FEM 

elements. Such kind of details cannot be included in the global model of a steel 

megastructure, which for reasons of computational cost represents a very simplified 

version of the real structure, including almost exclusively the beams as one-dimensional 

elements. Thus, the study of nodes requires the creation of a detailed local model in which 

to represent all the elements of the node in order to correctly assess its structural 

behavior and force distribution and to perform structural checks. The loads applied to 

that local model results from the global model of the megastructure. However, because 

they are not part of a single model, the connection between the global model and local 

models is not direct and managing the design process requires special attention. The 

mutual dependence between global model and local models therefore makes the 

structural analysis process iterative, with changes to a local model resulting in changes to 

the global model and vice versa. In fact, any change to the global model after node checks 

also requires an update of local model loads and the performance of new structural 

analysis. Conversely, if the node checks lead to the conclusion that it is necessary to 

change the section of a beam, the global model will have to be modified and recalculated 

and the local models updated. 
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Figure 8. Example of design framework for a steel megastructure 

 

1.1.4  Cost of steel structures 

The goal of design should be to seek the solution that meets the safety and performance 

requirements of the customer at the lowest cost. These aspects must be considered 

simultaneously during the investigation among candidate solutions. In fact, considering 

only safety could lead to overly large and heavy structures and/or difficult to execute. On 

the other hand, considering only cost could lead to a structure that is not robust and 

therefore not sufficiently secure. The outcome of the design process must therefore be a 

compromise between these aspects. The engineering decision-making process to find the 

design solution among those that meet performance and safety criteria must be guided by 

the goal of minimizing the overall cost and not the total weight of the structure. In fact, 

the presence of structural nodes, with their high number of elements and the large 

amount of labor and workmanship they require, makes the relationship between the 

weight of the structure and its cost not necessarily monotonically increasing. 

Consequently, it is necessary to identify all the cost items that come into play in the design 

and construction of a structure with the goal of creating a cost function to guide the 

engineer during the optimization process. Identifying all cost items, as well as estimating 

them, is very complex, particularly in the early stages of design where knowledge of the 

final structure is more limited, especially of aspects related to its execution. 
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Costs can be divided into two macro-categories: direct costs and indirect costs. The first 

group includes cost items that are easily attributable to a cost objects, such as the cost of 

materials, workers' wages, transportation costs, and cutting and painting costs. Costs, on 

the other hand, not directly attributable to cost objects are part of indirect costs. These 

include energy consumption, machinery maintenance costs, depreciation of factory and 

machinery, and wages of factory managers. 

Material costs depend on the size of the elements to be made and the price of the material. 

The latter is a function of the price of raw material, which is defined by steel markets, and 

the volume of material to be purchased. 

Direct cost items include labor cost, which depends on the number of man-hours and 

hourly wages. The latter varies by geographical area, especially a strong dependence is 

observed with the economic condition of the area. In particular, a better economic 

situation leads to higher wages. This correlation also led to an increase in the cost of 

hourly wages over time in the aftermath of World War II due to improved economic 

conditions. Variation in the cost of workers' wages between geographic areas also leads 

to a difference among countries in the ratio of labor costs to material costs. As a result, 

depending on the geographical location, it may be convenient to use more of the material 

to avoid extra labor or vice versa. 

Speaking of the costs of building a structure, a classification can be carried out on a 

chronological basis: we have manufacturing costs, transportation costs, and on-site 

assembly costs. In all three cost categories we can identify items dependent on the sizing 

of the structural elements. Fabrication costs are a function of the geometric 

characteristics of the structure. In fact, they determine the number and extent of 

machining operations to be performed, with a consequent impact on the amount of 

resources to be used for their realization, such as labor, the number of machines and the 

amount of material needed to make them. The size and shape of the elements that make 

up the structure affect the type and number of means of transportation to be used to carry 

them from the workshop where the individual parts are made to the place of assembly. 

The geographic location of the workshop and the assembly site can also influence the 

choice of means of transportation, and, consequently, this should be taken into 

consideration when designing the structure. Finally, assembly costs depend mainly on the 

time required to assemble the structure and the means required to carry out the 
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assembly. The storage and assembly speed of individual members is generally not 

proportional to their size. In addition, the shape and size of the elements can influence the 

type of maneuvers to be performed, the means to be used, and the time required to 

perform them. These are additional aspects that should be considered when estimating 

the cost of the overall structure. 

Other aspects to be considered in estimating the overall costs of a structure concerns the 

number of repetitions of the same operation: in fact, repetitive execution of an operation 

results in greater efficiency of the process and, therefore, in reduced risk of errors. 

Where welds are present, the overall cost of a structure also depends on its class of 

execution, in accordance with EN 1993-1-1:2005+A1:2014 (9). This standard has four 

execution classes, from EXC1 to EXC4, with which there is an associated increasing 

demand for weld quality. The execution class associated with a structure or part of a 

structure depends on the class of consequences and the type of loads to which it will be 

subjected. (6) 

 

 

Figure 9. Table defining the execution class (EXC) (9) 

 

The large number of factors influencing the overall cost of a structure makes it difficult to 

develop a cost function for use in the design phase when looking for the cost-optimized 

design solution. 
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1.1.5  Design tools 

In the design process, designers use software as tools to support their experience and 

knowledge. This software can be divided into two categories according to their function: 

• Geometry software 

• Structural software 

Geometry software are tools that allow 2D or 3D visualization of the geometry of the 

structure, enabling simulations of design ideas to easily evaluate aspects of aesthetics and 

feasibility. They have gradually replaced manual drawings and allow the measurement of 

quantities and overall dimensions quickly. There are several types of geometric software 

on the market. They can be distinguished according to the level of detail of information 

they contain: in the simplest ones, a schematization of the actual structure is represented, 

while the more detailed ones contain all the information that enables the execution of the 

structure. In addition, this software can also be distinguished according to whether it 

gives those involved in building the model the opportunity to work on the same model 

simultaneously through real-time updates of any changes. Some geometry software also 

allows parametric modeling, based on the relationship of parts/components to each other 

and/or to parameters. This type of modeling promotes automation of the process and 

allows the designer to simultaneously evaluate several possible solutions and easily turn 

any changes. An example of a parametric modeling environment is given by Grasshopper, 

an internal platform for Rhinoceros, a 3D CAD software. 

Structural software, on the other hand, arises with a different purpose than geometric 

software, namely to investigate the performance of the structure to assess compliance 

with the requirements of the standards and other project requirements. Generally, these 

software programs are based on the Finite Element Method (FEM), a numerical technique 

for finding approximate solutions to problems described by partial differential equations. 

There are several types of these software on the market as well, but they all have in 

common in their use the presence of two basic steps: modeling and discretization. During 

modeling, reality is filtered in order to obtain a mathematical model with a limited 

number of variables. The level of detail and the type of elements used in modeling depend 

strongly on the purpose of the analyses and can heavily affect the results obtained. This 

model is discretized to obtain a finite number of degrees of freedom. A mesh is thus 
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obtained consisting of elements for each of which the solution is expressed as a linear 

combination of shape functions. The quantities obtained through the FEM, such as 

stresses and strains, can then be used for structural checks. It is clear that the creation of 

a structural model requires deep engineering knowledge of the structure to be analyzed 

and of the relevant standards. 

Both types of software play a key role in the design process, enabling the user to achieve 

better results and in less time. Most software is either geometry-driven or analysis-

driven. However, the mutual dependence between geometric and structural aspects is 

leading to the need to try to bridge this gap. Some tools have already been developed with 

this purpose in recent years. Many of these are internal plug-ins to existing geometric 

software for performing structural analyses directly in the geometric model. An example 

is given by GeometryGym in Rhinoceros or Robot in Revit. This approach brings with it 

important issues. From a practical point of view, they can only be limited to users of the 

parent geometric software. From a theoretical point of view, the difference in objectives 

between structural and geometric models makes the translation of reality into these two 

models different, so it is generally problematic to confuse a geometric model with a 

structural one. A different approach, however, involves the creation of tools that enable a 

link between geometric and structural software so as to make it easier the exchange of 

information between the two models, thereby facilitating alignment between the models. 

For example, Grasshopper has developed internal tools to link SOFiSTiK structural 

software with Tekla BIM software. This makes it possible to import the Tekla model with 

all properties into Grasshopper and use this information to define already in the CAD 

environment the attributes needed for structural calculations, such as materials, beam 

sections and loads, to be transferred directly into a project in SOFiSTiK. In addition, it is 

possible to take advantage of the "parametric" approach to associate structural attributes 

with geometric entities so that structural analyses can be updated more quickly in the 

event of changes to design geometry. 

All of these new tools allow faster feedback to the designer, but they do not change the 

current design process. In fact, with this software the sequence of defining the geometry 

and performing the structural analysis remains the same, resulting in a "try and error" 

approach. A turning point in the design process is the creation of software that guides the 

designer according to structural principles, resulting from the early stages in a design 
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solution that is closer to the final solution and thus reducing the iterations that the design 

process normally involves. (3) 

 
Figure 10. Types of structural design tools evolution (3) 

 

 

Figure 11. Example of integration between BIM (Build Information Model) and structural calculation: through the 
Grasshopper platform (left window) the BIM software Tekla is connected to the FEM software SOFiSTiK so as to facilitate 
the exchange of information between the two software (10)  

1.2  Artificial Intelligence overview 

This section aims to provide the definitions of Artificial Intelligence and Machine 

Learning. 

1.2.1  Artificial Intelligence (AI) 

Artificial Intelligence (AI) is a branch of computer science that designs, develops, and 

builds systems capable of imitating characteristics and skills typical of human beings, 

enabling them to make decisions independently. The term Artificial Intelligence was used 

for the first time at a meeting in Dartmouth College. However, the emergence of the expert 

system led to a considerable growth of interest in Artificial Intelligence from the late 

1960s to the 1970s. Subsequently in the 1980s the development of fifth generation 

computers caused a new increase in research on AI. In the 1990s the development of 

network technologies led to a new surge in AI research and its use in a network 
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environment. Furthermore, there has been a growing interest in applying AI techniques 

in new fields.  (11) 

1.2.2  Machine Learning (ML) 

Machine learning (ML) is a branch of AI with the aim of developing tools capable of 

learning from data and providing predictions based on the knowledge learned without 

being explicitly programmed. In traditional algorithms, it is the coder who writes the rules 

that the software must follow, and it is therefore his responsibility to consider all possible 

scenarios. In ML techniques, on the other hand, it is the algorithm itself that creates the 

rules, leaving the coder "only" responsible for creating the architecture and providing the 

data from which the algorithms can learn. The comparison between the philosophy of 

traditional and ML software is shown in the Figure 12. 

ML can be classified into: 

• supervised learning 

• unsupervised learning 

• reinforcement learning 

Supervised learning aims to build classification or regression models based on a data set 

for which the label is known. Instead, the unsupervised learning aims to subdivide a 

dataset into clusters without their label being available. In reinforcement learning the 

data labels are not available and the creation of the models is achieved through the use of 

an agent that can perform actions based on the current state of the environment and 

which themselves modify the environment. (12) 
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Figure 12. Comparison of traditional and Artificial Intelligence algorithms (13) 

 

Figure 13. Common Machine Learning algorithms (12) 
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1.3  Artificial Intelligence in Civil Engineering 

As in other fields, AI techniques have also attracted interest in civil engineering. In the last 

30 years, a lot of research has been carried out in this topic and several applications have 

been realized, for example in the evaluation of the characteristics of materials. For 

example, Bassuoni and Nehdi have developed a neuro-fuzzy system capable of predicting 

the durability of self-consolidating concrete at various exposures to sodium sulphate. (14) 

Prasad et al. have developed an artificial intelligence network (ANN) that makes it 

possible to evaluate the resistance to complexion at 28 days of normal and high-strength 

self-compacting concrete and high-performance concrete with high volume fly ash. (15) 

However, the use of Artificial Intelligence in structural engineering as an optimization tool 

is very limited, especially compared to other engineering fields. 

The research conducted to date has led to the development of optimization methods 

limited to simple cases and that do not include all aspects involved in structural design, 

such as those carried out by Farkas and Jàrmai (16). Dillen et al. (17) developed a nested 

optimization approach for a steel building that consists of two separate algorithms for 

discrete and continuous variables: a meta-heuristic method is used for the former while 

a gradient-based algorithm is used for the latter. Another interesting work is the one 

developed by Chang and Cheng (18), in which with the goal of optimizing a framed 

building, two graph neural networks were used, respectively, one providing the optimized 

sections of the members while the other performing the function of a surrogate model, 

updating the displacements of the structure without the aid of a FEM model. The variables 

considered by this research are limited to beam cross-section parameters, the number of 

braces in each plane, and topological data. In contrast, joint and node parameters are not 

part of the variables, and dynamic responses and fatigue verifications are not considered. 

Another example is provided by the research of Dìaz et al (8) who developed a method of 

node optimization based on the use of metamodels but limited to very simple cases. These 

methods therefore do not appear to be sufficiently general to be applied to the design of 

a megastructure. An optimization method that allows a structure to be fully optimized, 

considering simultaneously the different elements that compose it and the various 

phenomena that affect its performance is currently missing. The large number of variables 

and equations involved, combined with the Standards constraints, make the objectives of 

the optimization problem difficult to express in mathematical terms. It follows that 
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nowadays the use of optimization techniques in civil engineering appears much more 

limited than in other engineering disciplines and human intuition still plays a crucial role 

in the design process.  

 

Figure 14. Research publications on the use of AI branches in civil engineering (12) 
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1.4  Conclusion 

The analysis of the structural design problem brought out the large number of variables 

that come into play and should be considered to achieve an optimized, effective and 

efficient design solution. The large size of the problem, coupled with the variety of skills 

and professional figures involved, does not allow the traditional design approach to 

consider all the variables of the problem simultaneously, thus involving numerous design 

iterations and revisits to arrive at the final solution. The following chapters will 

investigate the possibility of developing tools that reduce these iterations, modifying the 

design approach so as to have a solution closer to the final solution at an early stage. The 

need to quickly find the solution to the design problem clashes with the onerousness of 

finite element analysis. This has prompted consideration of the possibility of creating 

surrogate models that provide an estimate of results more quickly than the FEM solver. 

An overview of surrogate models is presented in Chapter 3, and different approaches to 

creating them are studied and applied in the Chapter 5. 

As pointed out in the section 1.3, the research and development of AI in civil engineering 

is only at the beginning, but the growing interest in it and the potential that resides in the 

tools it can offer suggest that it will play an important role in the future of this field. Not 

only the technology offered by AI can be a support to inexperienced designers to solve 

engineering problems, but also for the most experienced users it can represent a valid 

help to increase work performance. 
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CHAPTER 2:  The search for the optimum 

Optimization problems, in which the goal is to find the best solution to a given problem, 

can be found in all scientific fields. For example, in economics there is the problem of 

defining the best price of an item to be introduced into the market, in finance there is a 

need for evaluation of the composition of a portfolio to minimize risk while maximizing 

profit, in transportation engineering there is the problem of defining the optimal travel 

route for a bus or train or plane, etc., in structural engineering you want to find sections 

for beams that reduce costs while keeping structural requirements satisfied. The high 

prevalence of this type of problem has prompted research to find tools that facilitate 

finding the best solution among various alternatives. 

After providing a description of the optimization problem in general, this chapter gives an 

overview of the techniques usually used to solve this type of problem. The chapter 

concludes by discussing the current application of optimization techniques to structural 

design problems. 

2.1  Optimization problem 

The optimization is a numerical problem that aims to find the best solution in compliance 

with the requirements expressed in mathematical form (objective function) and 

respecting the mathematically formulated constraints. The search for the optimized 

solution results in finding the configuration of a set of parameters, called design variables, 

which allows to solve the mathematical problem. From a mathematical point of view, the 

optimization problem can be defined as follows: 

 min 𝑓(𝑥) 

subjected to  𝑔(𝑥) ≤ 0 ℎ(𝑥) = 0 𝑥𝑖,𝑏 ≤ 𝑥𝑖 ≤ 𝑥𝑖,𝑢𝑏 
(2.1) 

where 𝑓(𝑥) is the objective function, 𝑥 is the vector of design variables, 𝑔(𝑥) and ℎ(𝑥) are 

the constraints and 𝑥𝑖,𝑏 and 𝑥𝑖,𝑢𝑏 are respectively the lower and upper limits of the 

variables. 
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Objective functions f(x) are the relationships between the design variables that describe 

the mathematical problem to be minimized. This mathematical definition also includes 

case in which the configuration of variables leading to a maximization of the function is 

sought. In fact, in this case the negative of the function can be considered as the objective 

function.  

The high number of problems that can be translated into an optimization makes the 

mathematical formulations of optimization problems very different from each other. The 

type of objective function and design variables influences the type of solving techniques 

that can be used. In some cases, the objective function can be expressed in closed form, 

and if it has continuity and derivability characteristics, information about its gradient can 

be exploited to solve the problem. In other cases, the objective function is unknown 

(black-box function) and stochastic approaches should be used. The vector of design 

variables can be populated by continuous or discrete variables. In the latter case we speak 

of a combinatorial optimization problem, in which the solution is sought among a finite or 

infinite numerable set of candidate solutions. Even in the case of continuous variables, the 

value they can take can be limited within a range. Some optimization problems require 

the objective function to take values that satisfy mathematical equations or disequations. 

The presence of these constraints limits the range of the solution search. This type of 

problem is called constrained optimization, as opposed to unconstrained optimization in 

which these constraints are not present. An easy way to trace back an unconstrained 

problem from a constrained one involves using penalty coefficients to be applied to the 

objective function. 

2.2  Gradient-based optimization 

Gradient-based algorithms exploit information derived from the gradient of the objective 

function in the search for the optimal solution. As a result, these techniques lend 

themselves well to the solution of problems in which the objective function has 

characteristics of continuity and derivability. For functions without such characteristics, 

an approximate value of the gradient can be obtained by the finite difference method. 

Using the gradient to calculate the new position of the candidate solution in the space of 

admissible solutions can be done by several techniques. The choice is strongly related to 
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the type of problem addressed. For example, in the case of unconstrained problems it is 

possible to use the quasi-Newton method for updating the variable.  

For each iteration, updating the solution requires calculating or estimating the partial 

derivatives of the objective function for each variable parameter. These derivatives can 

be written in a vector with a number of entries equal to the number of variable parameters 

and representing the gradient of the objective function relative to the current position 𝑥̅: 

 

∇𝑓(𝑥̅) = {

𝜕𝑓

𝜕𝑥1
…
𝜕𝑓

𝜕𝑥𝑛

}                  with 𝑥̅ = (𝑥1, … , 𝑥𝑛) (2.2) 

To approximate the gradient calculation using the finite difference method, this 

expression becomes the following: 

 

∇𝑓(𝑥̅) ≅

{
 
 

 
 
𝑓(𝑥̅ + ∆𝑥1) − 𝑓(𝑥̅)

∆𝑥1…
𝑓(𝑥̅ + ∆𝑥𝑛) − 𝑓(𝑥̅)

∆𝑥𝑛 }
 
 

 
 

 (2.3) 

The position is updated in the opposite direction to that expressed by the gradient. At step 

i-th we can write it as follows: 

 𝑥𝑖+1 = 𝑥𝑖 − 𝛼 ∗ ∇𝑓(𝑥𝑖) (2.4) 

where α is a parameter that modulates the update of variables according to the gradient. 

This is also done for subsequent iterations until the optimal solution is reached, at which 

it is no longer possible to define a direction of change of variables that leads to an 

improvement in the value of the function f. (19) 

The calculation of partial derivatives for each variable makes the computational cost of 

this method closely related to the number of variables in the problem. To reduce this cost, 

it is possible to decrease the number of locations close to the current one at which to 

calculate the value of the objective function by considering block of variables. This 

requires the use of appropriate algorithms to derive the value of the partial derivatives 

for each variable so as to define the update value for each. The estimation of these 
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derivatives can be improved by investigating the value of the function along different 

directions, obtained by changing the composition of the blocks of variables considered 

together and/or the direction of change in the value of each variable. 

One problem with gradient-dependent methods is the possibility of running into local 

minima, as can be seen in Figure 16. In fact, unless concave functions, these techniques do 

not guarantee the achievement of a global optimum but may lead to local minima. To try 

to limit this problem, it is necessary to perform a few tricks such as using different starting 

points or act in the variable update algorithm. 

 

Figure 15. Kuhn–Tucker condition at a constrained optimum (19) 

 

Figure 16. Gradient descent stuck at local minima (20) 
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The use of gradient-based methods for structural optimization is almost absent. One of 

the few examples is the research of Dillen et al. in (21), which used the gradient-based 

technique only for continuous variables while for discrete variables they relied on meta-

heuristics. 

2.3  Meta-heuristic optimization 

Heuristic methods explore the search space with the support of stochastic operators in a 

pseudo-random manner. Some of these algorithms take inspiration from biological 

evolution, the most famous of which is the Genetic Algorithm (GA). The starting point for 

these algorithms is a population of possible candidates for the solution of the problem, 

usually generated at random. Such individuals are evaluated based on a fitness function 

and the best ones are used as the basis for a new population. Evolution operators, 

generally of the stochastic type, such as crossover and mutation, are used to generate a 

new population of candidates that will be evaluated on the basis of the fitness function. 

The process continues iteratively until the end criterion is met. (11) Examples of using 

this algorithm for structural optimization can be found in the literature but limited to 

simple unrealistic problems. An attempt to use of this approach in a large steel frame 

structure was carried out by Dillen et al. (17). Their goal was to minimize the volume of 

the beams of the Market Hall in Ghent by imposing as constraints that the utilization rates 

of the various elements be less than the desired limits. To carry out the analysis, however, 

the solution search space was reduced by dividing all the rods into 13 groups and 

imposing that all elements belonging to the same group have the same cross section. The 

genetic algorithm has also been used for the optimization of simple beam-column nodes 

in the research by R. da S. Hortencio and G. A. S. Falcón (7) and in the research by C. Diaz 

et al. (8) mentioned in section 1.1.3   

Other algorithms are based on populations of particles and interactions between them 

and their surroundings. These include Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO). 

Particle Swarm Optimization (PSO) is a population-based global optimization technique 

which draws inspiration from the movement of swarms. This technique involves the 

presence of particles, representing potential solutions, which move in the problem space 

following the current optimal particle. Each particle is associated with a position vector 
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and a velocity vector, which are modified at each iteration on the basis of the best current 

local solution found by the particle itself and on the basis of the best current global 

solution found by the entire swarm. R. Yanzhi and L. Sanyang (22) have presented a 

Modified Particle Swarm Optimization algorithm (MPSO) to solve structural optimization 

problems. In this algorithm, a teaching mechanism is used to guide population evolution 

in the feasible region, and adaptive hyperparameters are adopted to balance exploration 

and exploitation. Finally, a particle zeroing strategy is used to avoid entry into a local 

optimum. Again, the method was applied in a small case study with only four variables 

involved. 

Ant colony optimization (ACO) is an algorithm that takes inspiration from the foraging of 

ants in a colony. In each iteration, an ant travels from the nest to food and returns to the 

nest. During its journey it lays a substance called pheromone, the concentration of which 

depends on the distance of the path between nest and food and on the quality of the food. 

The higher the concentration of pheromone along a path, the more likely it is to be chosen 

by an ant. Each ant selects the path to take probabilistically based on the concentrations 

of pheromones and a heuristic value such as the value of the objective function. 

The high level of abstraction of meta-heuristic algorithms allows them to adapt to a wide 

range of problems. The ease of implementation and the applicability to combinatorial 

optimization problems have favored the spread of these techniques, which have found 

application in numerous optimization problems, including some belonging to civil 

engineering. However, heuristic methods, unlike gradient-based methods, do not 

guarantee the achievement of the optimal solution and they appear inadequate for high-

dimensional problems, for which it would take a long time to reach convergence. 
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2.4  Optimization in structural design 

In civil engineering field, the objective function is often represented by the weight of the 

structure or its cost, but it could also be other quantities such as the strain energy. 

Currently, their applicability is limited to rather delimited fields and relatively simple 

problems. 

Three types of optimizations: 

• Size optimization, in which the variables are the parameters of the cross sections 

of the elements 

• Shape optimization, in which the variables are the nodal coordinates 

• Topology optimization, in which the optimized solution is achieved by adding or 

eliminating elements connecting the nodes of the structure 

• Multi-objective optimization, in which more than one of the above optimizations 

are performed simultaneously 

Optimization was initially applied in component design in the automotive and aerospace 

industries, where the optimized component was replicated hundreds of times resulting in 

significant cost savings. It is currently an established and widely used method for high 

performance engineering design. However, in civil engineering the involvement in the 

design of numerous aspects, such as characteristics of materials, costs, safety, aspects 

related to constructability and assembly, combined with the constraints imposed by the 

standards, make the objectives of the optimization problem difficult to express in 

mathematical terms. In addition, the design space increases exponentially as the number 

of structural elements that make up a structure increases, making common optimization 

techniques impractical. It follows that nowadays the use of optimization techniques in 

civil engineering is much more limited than in other engineering disciplines and human 

intuition still plays a crucial role in the design process. 

The high computational cost and the time required for carrying out the analyzes and 

simulations required in the design of civil structures makes it difficult to explore different 

solutions to the problem. This aspect represents a significant limitation in the search for 

the optimal solution through the traditional approach to design. Speed is a key aspect for 

solving optimization problems, both to promote the designer's competitiveness and to 
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allow adequate exposure in the research field of the solution. It can be achieved in 

different ways such as: 

• increase of computational resources and adequate configuration of the same, such 

as with a resolution in parallel 

• correct writing of the optimization algorithm 

• use of surrogate models for a more rapid evaluation of possible candidates for the 

solution of the problem 

2.5  Conclusion 

The optimization problem lends itself well to describing problems in numerous fields, 

including the structural field. The complexity of the structural design problem, already 

highlighted in the previous chapter, has so far severely limited the application of these 

tools in the design field. It is precisely to try to develop useful optimization techniques for 

the optimization of real steel structures that CHAPTER 4: and CHAPTER 5: are aimed at. 
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CHAPTER 3:  Surrogate models 

The problems faced by structural engineering often require computationally expensive 

simulations to be performed. In the case of megastructures, the high cost is due to the 

large number of elements that make up the model, as well as the high number of load 

cases to be analyzed, both related to the operational and assembly phases. The resulting 

high computation time is an obstacle to considering different design solutions and, 

consequently, to pursuing the goal of optimized design. The problem of high 

computational cost, however, is not only found in global models of large structures. In the 

study of particular phenomena controlled by nonlinear laws, such as buckling or 

plasticity, it is necessary to adopt nonlinear solvers, which, in addition to requiring special 

care in modeling and parameter setting, need high computation times to achieve 

convergence. To overcome the problems arising from the onerousness of structural 

simulations, efforts have been made in recent years to create surrogate models that 

predict structural performance while limiting or even avoiding the use of FEM solvers. 

This chapter begins by discussing the various possible approaches that can be applied in 

the structural field to simplify the description of the real problem and reduce the 

computational burden, while maintaining an adequate level of accuracy of the analysis 

results. Next, an overview of surrogate models and their creation is provided. Among 

these, Neural Networks are illustrated in particular, with emphasis on Graph Neural 

Networks, which are particularly suitable for describing frame structures. 
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Figure 17. The actual structure is translated into a model suitable for evaluating its structural behavior. The calculation model 
can be used for FEM analysis or to derive surrogate models. 
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3.1  Design space approximation 

The surrogate model technique is based on reducing the space of the starting problem to 

obtain a simplified model of the real problem, which is at the same time sufficiently 

accurate in imitating the phenomenon and allows a reduction in computational load. 

Thus, the creation of the surrogate model requires that an appropriate method be chosen 

to simplify the design space. There are numerous techniques in this regard, which follow 

very different philosophies. An initial classification can be made between techniques that 

take the physical phenomenon into account and those that do not. For example, the first 

category includes the hierarchical creation of FEM computational models, whereby a 

rough model is made in the early stages of design, and then gradually more complex and 

detailed models are made as the design process progresses. An example is shown in 

Figure 18, where it can be seen that for a framed building study there are various levels 

of detailing of the FEM model, going from a model of a simple cantilever beam to a detailed 

model of a node in the structure. Also belonging to the category of models related to 

physical phenomena are techniques by which the design space is reduced by decreasing 

the number of variables by establishing dependencies among them. These include 

adaptive finite element techniques, in which the mesh density is adjusted to achieve a 

good compromise between accuracy and computational cost. These methods related to 

the physical problem are attractive because they are linked to physical principles, but they 

have numerous drawbacks. First, they require extensive knowledge of the nature of the 

problem and the underlying physical phenomenon. In addition, they are difficult to 

automate and generalize for use over a wide range of problems. (3) 

 

Figure 18. Different levels of detail of the FEM model of a framed building (3) 
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In opposition to techniques based on the physical phenomenon are data-driven 

techniques, in which the construction of the model is entirely based on data, regardless of 

the underlying physical phenomenon. This allows these techniques better ability to 

generalize and be implemented in a systematic way. In addition, generally data-driven 

methods have a prediction speed that does not depend on their accuracy. In this thesis, 

the focus is on these types of surrogate models. (3) 

3.2  Data-driven surrogate models: an overview 

Surrogate models, also called metamodels, are approximate models that mimic the 

behavior of a starting model, compared to which they have reduced computational cost, 

thus enabling assessments and judgments to be made more quickly. The construction of 

a surrogate model can also be seen as an optimization problem, with the aim of defining 

the configuration of the metamodel that best approximates the behavior of the initial 

model with the support of a suitable error measure. Numerous methods have been 

developed for making surrogate models, such as Response Surface Methodology (RSM), 

Kriging (KRIG), Artificial Neural Network (ANN), Multivariate Adaptive Regression 

Splines (MARS). In all methods, the creation of metamodels can be divided into three 

phases: 

1. Training, in which models are built based on a set of data, called training set 

2. Validation, in which the models trained in the previous phase are used on a data 

set other than the training one, the validation set, and the error between the exact 

value and the output provided by the models is calculated 

3. Testing, in which the model that provided the least error in the validation phase is 

used on a third set of data, the test set, to evaluate whether it has reached the 

desired level of performance 

The first two phases are usually repeated several times by changing the model parameters 

to achieve at the configuration that allows to obtain the model with the least error. The 

construction of the surrogate model requires that a data set be available to be used in the 

three phases, or that it be generated with an adequate sampling procedure. The 

construction of metamodels also requires the choice of the error measure to be used to 

evaluate the performance of the models based on the output of the model itself and the 

expected value. Examples of these metrics are Mean Squared Error (MSE), Root Mean 
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Squared Error (RMSE), Maximum Absolute Error (MAE). Another important aspect 

concerns the robustness of the model obtained, that is, its ability to provide sufficiently 

good results with as input a set of data that the model has never encountered. Surrogate 

models, in fact, should be a good compromise between adaptation to the data used for 

training and generalization. (23) 

Data-driven surrogate models already find applications in numerous research fields, such 

as chemical, engineering, material science. These include the work done by Chang and 

Cheng (18), whose research aimed to optimize the beam and column cross-sections of a 

multi-story frame building. In this case, the surrogate model was used to predict the 

displacements at various stories of the candidate solutions, so that the displacement 

difference between floors could be estimated and this information used in the calculation 

of the objective function. 

 

Figure 19. Surrogate modeling procedure. (23) 

3.3  Neural Network (NN) 

Neural Networks take their inspiration from the structure of the human brain, which 

consists of billions of interconnected neurons. Figure 20 shows a schematic of learning in 

the brain hypothesized by Rumelhart. (13) Each neuron receives inputs from the neurons 

connected to it through synapses, and if the sum of these impulses exceeds a certain 

threshold, activation of the neuron occurs, which will then also transmit the message to 

other neurons. This architecture is artificially implemented in Neural Networks in order 

to create a mathematical model that is able to learn based on data belonging to a dataset. 
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Figure 20. Diagram of input processing at the end of the message center (13) 

 

For the generic unit i of the layer m, a linear combination is constructed with the outputs 

from the previous layer or, in the case of the first layer, with the input data of the problem. 

The coefficients used in the combination are called weights. Another term, representing 

the bias, can be added to this combination. The latter, along with the weights, are the 

parameters that must be learned during network training so as to minimize the error 

between the network's calculated outputs and the actual outputs. The result of the linear 
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combination of the various unit inputs is transformed by a nonlinear function, called the 

activation function, thus obtaining the output of unit i of layer m. (24) 

 

𝑧𝑖
𝑚 = ℎ(𝑎𝑖) = ℎ( ∑ 𝑤𝑗𝑖

𝑚−1 ∗ 𝑧𝑗
𝑚−1

𝑛𝑢𝑛𝑖𝑡𝑠
𝑚−1

𝑗=1

+ 𝑤0𝑖
𝑚) (3.1) 

where 

 𝑧𝑖
𝑚 is the output of the unit i of the layer m 

𝑧𝑗
𝑚−1 is the output of the unit j of the previous layer m-1 

𝑤𝑗𝑖
𝑚−1 is the weight relating to the connection between the unit j of the layer m-1 

and the unit i of the layer m 

𝑛𝑢𝑛𝑖𝑡𝑠
𝑚−1  is the number of units in the layer m-1 

𝑤0𝑖
𝑚 is the bais of the unit i of the layer m 

ℎ is the activation function 

 

Figure 21. Neural Network structure, in which nodes represent the units of each layer while links represent the 
connections between units of successive layers, each of which is associated with a weight. The biases are represented by x0 

and z0 (24) 

In cases where nonlinear activation functions are used in the intermediate layers or if the 

network architecture has a small number of units in the intermediate layers compared to 
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the size of the input and output layers, the model cannot be replaced with an equivalent 

one without intermediate layers. 

Since the flow of information is in a single direction, that is, from the input layer to the 

output layer via intermediate layers, it is called a feed-forward architecture. 

Neural Networks are parametric models that require a training phase to compute 

parameter values to better describe the phenomenon of interest. The goal is to find the 

parameter configuration that minimizes the error E between model outputs and the exact 

ones.  The number of parameters depends on the architecture of the network, which in 

turn is related to the specific problem. More complex phenomena require more 

parameters to describe it and, consequently, a higher computational cost. 

During the training phase, the network weights are updated to find the configuration that 

minimizes the error between model-calculated output and actual output. Correct 

definition of the error measure is critical for proper training of the network. The 

technique used is backward propagation. This method involves calculating the gradient of 

the error function with respect to each weight using the chain rule, starting from the last 

level and working backward. Referring to Figure 22, the derivative of the error 𝔼 with 

respect to weight wij can be calculated as follows (24): 

 𝜕𝔼

𝜕𝑤𝑗𝑖
=
𝜕𝔼

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
 (3.2) 

 
𝛿𝑗 =

𝜕𝔼

𝜕𝑎𝑗
=∑

𝜕𝔼

𝜕𝑎𝑘

𝜕𝑎𝑘
𝜕𝑎𝑗𝑘

 (3.3) 
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Figure 22. Backward propagation of error information (24) 

 

Back propagation uses a multiplication of partial derivatives, which often have values less 

than unity. This can lead to vanishing gradient problems. One of the techniques to limit 

this issue is the skip connection, in which the output of one layer is not only used as input 

for the next layer but, by skipping connections, can also be used for layers further on. This 

provides alternative paths in the gradient calculation with beneficial effects in model 

convergence. Its use has also led to improvements in some surrogate models developed 

in this thesis and illustrated in CHAPTER 5: . 

 
Figure 23. Skip connection example (25) 

3.4  Graph Neural Network 

Graphs are mathematical structures used to describe and study phenomena characterized 

by a set of objects in relation to each other. Recently they have attracted great interest 
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because of their ability to describe numerous phenomena. A graph G consists of a set of 

nodes or vertices V connected to each other by link called edges (E). Each node can be 

associated with attributes xv while each edge can be given a weight we.  

 𝐺 = (𝑉, 𝐸𝑔, 𝑋𝑣,𝑊𝑒) (3.4) 

𝑉 = {𝑣1,  𝑣2,  … , 𝑣𝑛}  set of nodes 

𝐸𝑔 = {𝑒1,  𝑒2,  … , 𝑒𝑚}  set of edges 

𝑋𝑣 = {𝑥𝑣1, 𝑥𝑣2,  … ,  𝑥𝑣𝑛} set of features vector ∀𝑣𝑖 ∈ 𝑉 

𝑊𝑒 = {𝑤𝑒1, 𝑤𝑒2,  … ,  𝑤𝑒𝑚} set of features vector ∀𝑒𝑖 ∈ 𝐸𝑔 

There are several classifications of graphs. If the relationships between the nodes in the 

graph are symmetrical then the graph is called directed, otherwise it is undirected. In 

addition, graphs can be classified into homogeneous or heterogeneous depending on 

whether or not the nodes are of the same type. If the input data or topology of the graph 

is a function of time, it is called a dynamic graph, otherwise a static graph.  

 

Figure 24. Examples of application fields of graphs (26) 
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The representation of a problem by graph is used in a particular type of Neural Networks, 

called Graph Neural Network (GNN). These models can be used in classification or 

regression problems at the node, arc or graph level. Like classical neural networks, GNNs 

have a layered configuration. An example of GNN's architecture is shown in Figure 25. The 

various layers that typically go into the structure of a GNN can be classified into 3 groups 

according to their function: 

• Propagation layers, whose task is to transmit information between neighbors 

• Sampling layers, which allow the message to be propagated through the graph 

while keeping the neighborhood size contained, and are therefore useful for large 

graphs 

• Pooling layers, that offer a representation of a subgraph or the whole graph, which 

is particularly useful for node- or graph-level classification problems. 

Propagation modules aim to transmit information within the graph. The operator used to 

perform this function can be of different types: 

• Convolution operators, that perform convolutions (Figure 26) 

• Recurrent operators, in which sequential data or data from time series are 

processed (Figure 27) 

• Skip connection operators, which, as explained in the previous section, allow 

information to be gathered from historical representations of nodes 

The structural problems addressed in this thesis are not dynamic in nature and 

therefore do not require sequential treatment of the data. Consequently, the following 

sections will focus on convolution operators. 
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Figure 25. Architecture of a Graph Neural Network (26) 

 

Figure 26. Example of Convolution Neural Network architecture (27) 
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Figure 27. Example of Recurrent Neural Network architecture (28) 

3.4.1  Convolution operators 

Convolution operators allow convolutions to be performed on graphs. A representation 

of the architecture of a convolution-based GNN is in Figure 26. These operators can be 

divided into two categories, depending on whether a spectral or spatial approach is used. 

In the case of spectral approaches, before convolution operations are performed, the 

graph signal x is transformed to the spectral domain by graph Fourier transform ℱ. What 

results from the convolution is transformed to the source domain through the inverse of 

the graph Fourier transform (ℱ−1). (26) 

 ℱ(𝑥) = 𝑈𝑇𝑥 (3.5) 

 ℱ−1(𝑥) = 𝑈𝑥 (3.6) 

where U is the matrix of eigenvectors of the normalized graph Laplacian. 

In the spatial approach, however, operators perform the convolutional action based on 

the topology of the graph. They are constructed so that they can act regardless of the size 

of the neighborhood and maintaining the property of local invariance. Among the 

different types of Neural Networks with space-based convolutions are the Message-
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Passing Neural Network (MPNN), in which information is passed from one node to 

another directly along the edges. It consists of two phases: (26) 

a) Message-passing phase, in which the message of node v (mvt) is aggregated from 

the set of neighborhood nodes Nv through the message-passing function Mt and 

then the hidden state of node v (hvt) is updated with the update function Ut 

 𝑚𝑣
𝑡+1 = ∑ 𝑀𝑡(ℎ𝑣

𝑡 , ℎ𝑢
𝑡 , 𝑒𝑣𝑢)

𝑢𝜖𝑁𝑣

 (3.7) 

 ℎ𝑣
𝑡+1 = 𝑈𝑡(ℎ𝑣

𝑡 , 𝑚𝑣
𝑡+1) (3.8) 

 where evu are the features of undirect edge between node v and node u. 

b) Readout phase in which we obtain a representation of the entire graph based on 

the new hidden state of the nodes 

 𝑦̂ = 𝑅̃({ℎ𝑣
𝑇|𝑣 ∈ 𝐺}) (3.9) 

where G indicates the graph, 𝑅̃ is the readout function and T is the total number of 

steps in which the message has been propagated. 

 

Figure 28. Message-Passing Neural Network (MPNN) (29) 
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3.5  Conclusion 

The increased ease of generalization and automation has made data-driven surrogate 

models more attractive than those based on the physicality of the problem for use in a 

context such as the structural context, where the phenomena driving the problem are very 

complex and where the candidate solutions to be evaluated are potentially numerous and 

varied. The next chapter investigated the possibility of creating a surrogate model that, 

having loads as input, provides the stresses on the beams, based on MLP and Graph Neural 

Networks. In addition to these approaches, another was tested based on creating a low-

rank stiffness matrix to relate loads and stresses on the model beams. 
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CHAPTER 4:  Optimization of a steel multi-way 

node 

This chapter aims to propose optimization algorithms suitable for the structural problem. It 

starts with a description of the problem, in which the variables involved and the objective 

function guiding the search for the optimum are highlighted. The tools needed to compute the 

objective function for candidate solutions and how these enter the workflow with the 

optimization algorithm are shown. Three different optimization algorithms are proposed: a 

genetic algorithm, one based on gradients and one that seeks to exploit similarities between 

different elements in the search for the optimum. The first two of these algorithms are applied 

to a case study, consisting of a portion of a frame in which several beams converge to a node. 

The chapter ends with a comparison of the results obtained from the two different approaches. 

4.1  Problem statement 

The goal is to define an algorithm that provides an optimized design solution for a steel frame 

model. This is a minimization problem in which the objective function is the total cost of the 

structure, obtained as the sum of the costs of material and processing for beam and joints, and 

subject to the constraint of compliance with regulatory standards. 

Structural verifications and regulatory standards dictated by the Eurocodes are considered. 

They represent a constraining condition in the search for the optimal solution within the 

solution space. These checks were implemented within a specially created verification 

software. This tool may be expanded in the future by also considering requests from other 

normative sources. 

Different algorithm solutions have been analyzed to find the one that is best suited to the 

structural optimization problem, providing better performance in terms of computation times 

and quality of the solution. 

The optimization algorithm is embedded in software created with the python programming 

language. This software is linked with Straus7 Finite Element software and Rhinoceros 3D CAD 

design software. In addition to the hyperparameters required by the optimization algorithm, 
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and which depend on the chosen method, the software also asks for the FEM model of the frame 

as input. The optimization of the model is pursued by looking for the configuration of the 

variables of members and joints that minimize the objective function. These variables are 

described in the paragraph 4.2  . 

4.2  Variables 

The optimization problem involves variables relating to the cross section of the beams and 

variables that define the configuration of the joints located at the ends of the members. The size 

of the optimization problem is related to the number of beams in the portion of the structure to 

be optimized and the relative position they have between them. In fact, the number of beams 

affects the number of cross-sections to be optimized and the amount of joints included in the 

optimization problem. For each joint, the number of variables depends on the type of the joint 

itself, which is a function of the type of cross-section of the beams and the relative angles 

between the various beams. Only one type of joint was considered in this case study for 

simplicity. 

Variables 

Beams Section (Circular Hollow Section) 

Joints 

Bolt diameter 

Number of bolts 

Thickness of the plates (gusset, connection and covers) 

Welding throat 

Length of the welds 

Table 1. Type of variables for each beam and each joint 

Number of variables 

Entities 
Number of 

entities 
Number of variables for one 

entity 
Number of total 

variables 

Beams 9 1 (or 2) 9 (or 18) 

Joints 14 5 70 

 25 6 (or 7) 79 (or 88) 

Table 2. Number of variables for each beam and each joint 
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4.2.1  Beam variables 

Included in the set of variables of the optimization problem are the variables that define the 

geometry of the cross sections of the beams. They can be of two types: 

• integer variables representing the section index within a database 

• floating point variables which define the geometric parameters of the sections 

In the first case, the number of variables corresponds to the number of beams, and the set of 

possible values each variable can take is finite and discrete. In the second case, however, the 

variables can be discrete or continuous depending on the approach chosen to solve the 

optimization problem. The number of variables depends on the type of cross section chosen for 

the beams. In fact, the type and amount of geometric parameters needed to define it depend on 

it. Moreover, for the same type of section, the choice of section parameters is not unique. In the 

case study presented in this chapter, Hollow Circular Sections (CHS) of class 1, 2 and 3 were 

considered. The structural checks from Eurocode implemented are therefore those for this 

category of profiles. The geometric parameters chosen to define these sections are two: the 

diameter (DiamCHS) and thickness (ThkCHS). 

 

Figure 29. Beams with CHS section before installation 

 

Figure 30. Section CHS 
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4.2.2  Joint variables 

As mentioned in previous chapters, joints are generally composed of numerous elements, such 

as plates, bolts, and welds, whose geometric configuration can be subject to optimization. 

Therefore, the variables that define the joint will be the set of geometric parameters of the 

various elements that make up the joint. The type and amount of variables representing the 

joint will therefore depend on the type of the joint itself and the type of elements that compose 

it. In this case of study, it has been assumed that all joints are single plate connections, like the 

one in the Figure 33. It consists of a plate, called gusset plate, connected on one side to the beam 

by four welds and on the other side to another plate, called connection plate, by bolting. The 

bolted connection is made with two cover plates. The connection plate represents the 

connecting element of the joint to the actual node. 

 

 

 

Figure 31. Example of a multi-way steel connection with single plate connection joints 
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Figure 32. Plates that make up a single plate connection joint 

 

Figure 33. Single plate connection 

The variables of the joints considered in the optimization problem are summarized in Table 3. 

Variable Type Description 

Thk Float 
Thickness of the gusset plate. The thickness of the cover plates is 

instead assumed to be equal to half of Thk. 

Db Float Bolt diameter 

nb Integer Number of bolts 

aw Float Throat of the weld 

Lw Float Length of the weld 

Table 3. Variables of the joints 



 

49 
 

The connection weld between beam and gusset plate is assumed to be a fillet weld. 

The configuration of the bolts in the joint in terms of the number of rows and columns of bolts 

is researched using an algorithm specifically created to minimize the number of columns of 

bolts respecting the standards required by EN 1993-1-8 regarding the spacing between the 

bolts and the distance between bolts and free edge. 

The thickness of the plates and the diameter of the bolts is constrained by the commercial 

availability of these elements. Therefore, these values can be treated either as an index in a 

database of available elements or as continuous variables and subsequently traced back to the 

closest element available commercially. However, for all variables a range can be defined within 

which the solution can be searched. In this way, the search space for solutions is reduced by 

discarding non-feasible solutions a priori. 

4.3  Optimization framework 

This section discusses the proposed workflow for optimizing a steel structure (Figure 34).  

The input data is the starting FEM model containing the beams to be optimized and including 

all load conditions to be considered. This model will then be used in the optimization process 

to evaluate the structural behavior of the candidate solutions. 

At the heart of the entire process is the optimization algorithm, which, by proposing the 

different candidate solutions, allows the solution search space to be explored. Each time the 

algorithm proposes a new solution, the fitness function must be calculated for it. The fitness 

function consists of a function that allows the estimation of the cost of the solution, to which 

factors are applied to consider whether or not the structural checks are satisfied.  

For each load condition, resistance and instability checks are carried out for each beam and 

each joint according to the Eurocode. The results of these checks make it possible to assign a 

utilization rate to each element and contribute to the result of the objective function of the 

model by means of any penalty factors. 

Carrying out the strength checks requires that the stresses on the beams at various stations 

located along the length of the element be known. These amounts are obtained using a FEM 

software, Straus7. The connection via API of the optimization software with Straus7 allows for 

each candidate solution to obtain the corresponding finite element model from which the 
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stresses acting on the beams are derived for the different load conditions. The forces at the ends 

of the beams are also used for joint checks. The buckling check of the beams also requires that 

the effective length of the beams be defined, net of the encumbrance of the elements that make 

up the nodes and joints at the ends of the beam. This reduction in length of the beam is usually 

significant and, considering that often in compressed beams the dimensioning check is that of 

buckling, not taking it into consideration would be an excessively precautionary choice. In 

addition, the actual dimensions of beams and plates are necessary for estimating element costs. 

The evaluation of the length of beams and the size of joint elements is analytically complicated. 

For these reasons it was decided to use a 3D CAD software, Rhinoceros, connected via API to 

the optimization software, which through its geometric libraries allows you to perform these 

operations easily. It also allows you to create a 3D graphic model of the solution obtained by 

the optimizer allowing the user to better interact with the solution. The objective function 

values of candidate solutions are used by the optimization algorithm to propose new solutions. 

The process continues iteratively until convergence. 

 

Figure 34. Optimization framework 
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4.4  Structural checks 

4.4.1  Beam checks 

The cross section is classified according to EN 1993-1-1-2005, who for the CHS sections is 

illustrated in Figure 35. This classification influences the checks to be carried out for the beam, 

which are summarized in Table 4, Table 5, Table 6 and Table 7. 

 

Figure 35. Cross section classification for circular hollow sections 

 

Strength checks for sections of class 1 or 2 

Check name Equations Forces involved  

Tensile/compression 
NEd

Npl,Rd
≤ 1.0                      with Npl,Rd =

A∙fy

γM0
 Axial force 

Bending 

MEd

Mpl,i,Rd
≤ 1.0    i=1,2 

with MN,i,Rd = Mpl,I,Rd ∗ ρN ∗ ρV 

Mpl,i,Rd =
Wpl ∙ fy

γM0
=
2 ∗ S ∗ fy

γM0
 

S = static moment =
A

2
∗

4

3 ∗ π
∗
R3 − r3

R2 − r2
 

J = moment of inertia =
π

64
∗ (D4 − d4) 

ρN = reduction of strength for tensile force

= 1 − (
NEd
Npl,Rd

)

1.7

 

ρV = reduction of strength for shear force

=

{
 
 

 
 1   se 

VEd
Vpl,Rd

< 0.5

(2 ∗
VEd
Vpl,Rd

− 1)2  se 
VEd
Vpl,Rd

≥ 0.5

 

Bending moment 
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Bi-axial bending [
M1,Ed

MN,1,Rd
]
α

+ [
M2,Ed

MN,2,Rd
]
β

≤ 1       with α = β = 2 

Bending moment 

around the axis 1 

and 2 

Plastic shear check 

|
VEd,1
Vpl,Rd,1

| + |
VEd,2
Vpl,Rd,2

| ≤ 1.0 

with Vpl,Rd = VRd ∗ ρT 

Vpl,Rd =
Av ∙ fy

γM0 ∙ √3
 

Av = shear area =
2A

π
 

ρT = reduction of strength for torsional moment

= 1 −
τt,Ed

(fy/√3)/γM0
 

τt,Ed = shear stresses for St. Venant torsion =
TEd

2 ∗ Ω ∗ t
 

Shear 

Elastic shear check 

τEd

fy/(√3 ∙ γM0)
≤ 1.0 

with τEd = τv,Ed + τt,Ed 

τv,Edshear stresses =
VEd ∗ S

J ∗ t
 

VEd = √VEd,1
2 + VEd,2

2 

Shear 

Table 4. Strength checks for sections of class 1 or 2 

 

Buckling checks for sections of class 1 or 2 

Check name Equations 
Forces 

involved  

Compression 

NEd
Nb,Rd

≤ 1 

con Nb,Rd = χ ∙
A∙fy

γM1
 

χ =
1

Φ + √Φ2 − λ̅2
 

Φ = 0,5 ∙ [1 + α ∙ (λ̅ − 0,2) + λ̅2] 

λ̅ = √
A ∙ fy

Ncr
 

Ncr = π
2
E ∗ J

L0
2 = π

2
E ∗ J

(L ∗ β)2
 

Compression 

axial force 

Bending and 

axial 

compression 

NEd
Nb,y,Rd

+ kyy ∙
My,Ed

Mb,y,Rd
+ kyz ∙

Mz,Ed

Mb,z,Rd
≤ 1 

NEd
Nb,z,Rd

+ kzy ∙
My,Ed

Mb,y,Rd
+ kzz ∙

Mz,Ed

Mz,Rd
≤ 1 

Mb,Rd = χLT ∙
Wpl∙fy

γM1
         con χLT = 1 

Compression 

axial force 

and bending 

moment 

Table 5. Buckling checks for sections of class 1 or 2 
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Strength checks for sections of class 3 

Check name Equations 
Forces 

involved  

Elastic strength 

check 

σVM

fy/γm0
≤ 1.0  

with σVM = √σpc
2 + 3 ∗ τEd

2 

τEd = τt,Ed + τv,Ed 

σPC = stress for bending and axial force 

Axial force, 

bending 

moment and 

shear force 

Table 6. Strength checks for sections of class 3 

Buckling checks for sections of class 3 

Check name Equations 
Forces 

involved  

Compression 

NEd

Nb,Rd
≤ 1                           con Nb,Rd = χ ∙

A∙fy

γM1
 

χ =
1

Φ + √Φ2 − λ̅2
 

Φ = 0,5 ∙ [1 + α ∙ (λ̅ − 0,2) + λ̅2] 

λ̅ = √
A ∙ fy

Ncr
 

Ncr = π
2
E ∗ J

L0
2 = π

2
E ∗ J

(L ∗ β)2
 

Compression 

axial force 

Bending and 

axial 

compression 

NEd
Nb,y,Rd

+ kyy ∙
My,Ed

Mb,y,Rd
+ kyz ∙

Mz,Ed

Mb,z,Rd
≤ 1 

NEd
Nb,z,Rd

+ kzy ∙
My,Ed

Mb,y,Rd
+ kzz ∙

Mz,Ed

Mz,Rd
≤ 1 

Mb,Rd = χLT ∙
Wel∙fy

γM1
         with χLT = 1 

Compression 

axial force 

and bending 

moment 

Table 7. Buckling checks for sections of class 3 

Notations 

A Section area 

D External diameter of the CHS beam section 

d Inner diameter of the CHS beam section 

R External radius 

r Inner radius 

Ω Area enclosed by the cross-sectional center line 

t Section thickness 

NEd Axial force 

VEd,i  con i=1,2 Shear force along i axis 

MEd,i  con i=1,2 Bending moment due to the shear force along i axis 

TEd Torsion force 

fy Material strength 

E Young's modulus of steel 

β Buckling factor 

L Effective beam length 
Table 8. Nomenclature used for the strength and buckling equations for the beams 
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4.4.2  Joint Checks 

Joint verifications are performed using the stress parameters read at the corresponding beam 

end. The following checks are carried out for each joint: 

• Bolt strength check, to assess whether the number and size of bolts offer sufficient 

resistance to the input forces 

• Weld checks, which assesses whether the chosen throat is suitable for the stresses 

• Strength checks of plates, to be carried out in both gross and net-of-hole sections 

• Shear checks of plates to assess their shear behavior 

• Plate buckling checks 

• Bearing checks 

4.5  Fitness function 

The optimization process is focused on finding the solution that minimizes the objective 

function, also called the fitness function. Its correct definition is therefore crucial to obtaining 

the desired result from the optimization problem. In the present case, the function was 

constructed with the goal of obtaining a solution that would minimize the overall cost and, at 

the same time, satisfy structural checks. Therefore, it was defined as a weighted summation of 

the costs of each beam and each joint, where the weights are factors that depend on the 

maximum utilization rate of the element. For beams, only material-related costs were 

considered, which is a function of the cross section of the beam and its effective length. For 

joints, on the other hand, in addition to the material cost, cost items related to the following 

processing are also estimated: 

• Cost of bolting, which depends on the number of bolts 

• Cost of drilling, which is a function of the diameter and number of bolts as well as the 

thickness of the gusset plate and cover plates 

• Cost of welding, which depends on the groove, the throat and length of the weld seams 

• Cost of painting, function of plate area 

• Cost of cuts, which depends on the size of the plates to be cut 

The cost items for this processing were estimated in accordance with Díaz et al. (8).  
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Mathematically, the fitness function can be written as follows: 

 
𝑓 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =∑ 𝑐1,𝑖 ∗ 𝑝1,𝑖

𝑏

𝑖=1
+∑ 𝑐2,𝑘 ∗ 𝑝2,𝑘

𝑗

𝑘=1
 (4.1) 

where b and j are the number of beams and joints respectively, 𝑐1 and 𝑐2 are the costs of beams 

and joints while 𝑝1 and 𝑝2 are the penalty factors: 

 
𝑝1,𝑖 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑏𝑒𝑎𝑚 = {

1.0                        𝑖𝑓  𝑢𝑚𝑎𝑥 ≤ 1.0
100 ∗ 𝑢𝑚𝑎𝑥         𝑖𝑓  𝑢𝑚𝑎𝑥 > 1.0

 (4.2) 

 
𝑝2,𝑘 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑘 − 𝑡ℎ 𝑗𝑜𝑖𝑛𝑡 = {

1.0                        𝑖𝑓  𝑢𝑚𝑎𝑥 ≤ 1.0
100 ∗ 𝑢𝑚𝑎𝑥         𝑖𝑓  𝑢𝑚𝑎𝑥 > 1.0

 (4.3) 

where  𝑢𝑚𝑎𝑥  is the maximum utilization ratio for the entity. 

4.6  Optimization algorithms 

This section explains the optimization algorithms implemented to solve the structural 

optimization problem. These algorithms are based on different optimization approaches in 

order to identify the most appropriate one for the matter in hand. 

The algorithms developed are as follows: 

1. Genetic algorithm 

2. Gradient-based algorithm 

3. Grouping algorithm 

4.6.1  Genetic Algorithm 

The genetic algorithm represents one of the most popular meta-heuristic evolutionary methods 

used for solving optimization problems.  

The algorithm starts by creating an initial random population consisting of N solutions. For each 

of them, a FEM calculation model is generated for calculating the forces acting on the beams 

and a CAD model is created for correctly estimating the dimensions of the joint plates and the 

length of the members. These information are used to carry out the structural checks and to 
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evaluate the costs associated with the model in order to determine the value of the fitness 

function. If the optimization criterion is met, i.e., if the maximum limit of iterations is reached 

or if the minimum between the fitness function values of the analyzed models is less than the 

acceptability threshold, the best model is returned and the algorithm ends, otherwise a new 

model generation is created. The new generation, based on the previous population, has the 

following composition: 

• Best nbest individuals from the preceding population 

• nr random individuals extract from the solutions of the previous population not 

belonging to the group of best  

• The remaining (ntot- nbest - nr) individuals are created from the L best individuals of the 

previous population through crossover operation and mutation operation with 

probability pmut 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INITIAL POPULATION 
x1, x2, ... xN individuals 

y=array of fitness 
function=(f(x1),f(x2),...,f(xN)) 

Are 
optimization 
criteria met?  

NO YES 

Terminate and 
return the best 

Sort individuals 
by fitness 

function values 

Split 
population 

Best nbest individuals (ntot- nbest) individuals Extract nr random 
individuals 

New (ntot- nbest-nr) individuals: 
crossover of 2 random individuals 
and mutation with pmut probability 

New population 

Figure 36. Genetic algorithm 
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4.6.2  Gradient-based Algorithm 

Gradient-based approaches involve using information from the gradient of the objective 

function when updating variables. These methods are suitable for problems with derivable 

objective functions and continuous variables. The presence of a black-box objective function 

and of both continuous and discrete variables with different scales requires that special 

measures are taken in order to be able to use these techniques for this case as well. These are 

as follows: 

• fixed variable step different for each variable 

• estimator approach 

• use a variation and not a gradient 

The algorithm was developed on the basis of that used in (30). 

We start by assigning an initial set of random values to the d variables:  

 

𝑥 = (

𝑥1
𝑥2
…
𝑥𝑛

) ∈ ℝ𝑑  (4.4) 

For each variable, we define a step size according to its type: 

 

𝛿 = (

𝛿1
𝛿2
…
𝛿𝑑

) ∈ ℝ𝑑  (4.5) 

The d variables are divided into J blocks of sizes 𝑑(1), 𝑑(2), … , 𝑑(𝐽). 

Assuming the existence of a permutation matrix 𝑈 ∈ ℝ𝑑𝑥𝑑  and that this can be subdivided into 

J submatrices [𝑈(1), 𝑈(2), … , 𝑈(𝐽)], one for each block, it is possible to rewrite the d variables as 

follows: 

 
𝑥 =∑ 𝑈(𝑗)𝑥(𝑗)

𝐽

𝑗=1
= (𝑥(1), 𝑥(2), … , 𝑥(𝐽)) 

𝑈(𝑗) ∈ ℝ𝑑𝑥𝑑
(𝑗)  𝑥(𝑗) ∈ ℝ𝑑

(𝑗)  

(4.6) 
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We introduce the sparse gradient hypothesis, which allows us to define an integer 𝑠𝑒𝑥𝑎𝑐𝑡 such 

that: 

 ‖𝑔(𝑥)‖0 ≔ |{𝑖: 𝑔𝑖(𝑥) ≠ 0}| ≤ 𝑠𝑒𝑥𝑎𝑐𝑡 0 < 𝑠𝑒𝑥𝑎𝑐𝑡 < 𝑑 ∀𝑥 ∈ ℝ𝑑  (4.7) 

where 𝑔(𝑥):= ∇𝑓(𝑥). 

This assumption is exploited for the estimation of the gradient. 

The number of variables belonging to each block is calculated by dividing the total number of 

variables by the number of blocks: 

 𝑟 = 𝑐𝑒𝑖𝑙(𝑑/𝐽) (4.8) 

For each iteration a random block is selected and ndir directions of variation of the variables 

belonging to the selected block are investigated. The ndir sampled directions are defined by a 

random matrix 𝑍 ∈ ℝ𝑛𝑑𝑖𝑟x𝑟 with -1 or +1 entries. 

The degree of sparsity of the block is defined as follows: 

 𝑠𝑏𝑙𝑜𝑐𝑘 = 𝑜 ∗ 𝑠/𝐽 (4.9) 

where s is the gradient sparsity level while o is an oversampling parameter, assumed 1.1.  

The number of sampled directions ndir is calculated as a function of 𝑠𝑏𝑙𝑜𝑐𝑘 and the size of each 

block r: 

 
𝑛𝑑𝑖𝑟 = 𝑜 ∗ 𝑠𝑏𝑙𝑜𝑐𝑘 ∗ 𝑟 = 𝑜 ∗ 𝑠𝑏𝑙𝑜𝑐𝑘 ∗ ln

𝑑

𝐽
 (4.10) 

At the k-th iteration, the j-th block is randomly chosen, to which the variables 𝑥(𝑗) ∈ ℝ𝑟  belong 

and that have variable steps indicated in the vector 𝛿(𝑗) ∈ ℝ𝑟 . The update of these variables 

along the ndir directions is calculated as follows: 

                                                            𝑡𝑙 = 𝑥𝑘−1
(𝑗)

+ 𝑍[𝑙, : ] ∗ 𝛿(𝑗)                   0 ≤ 𝑙 < 𝑛𝑑𝑖𝑟 (4.11) 
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For the l-th direction the vector of variables 𝑥̅𝑙 ∈ ℝ
𝑑  is constructed using for the variables 

belonging to block j the corresponding value contained in 𝑡𝑙  while the others retain the value at 

iteration k-1. 

The variation of the fitness function f(x) is calculated as follows: 

 

ℎ = (

ℎ0
…

ℎ𝑛𝑑𝑖𝑟−1

)𝜖ℝ𝑛𝑑𝑖𝑟                  𝑤𝑖𝑡ℎ ℎ𝑙 =
𝑓(𝑥̅𝑙) − 𝑓(𝑥𝑘−1)

√𝑛𝑑𝑖𝑟
 (4.12) 

The objective is to evaluate the influence of changes in variables on the fitness function by 

knowing the value taken by the fitness function in the 𝑛𝑑𝑖𝑟 directions explored and the changes 

in the variables that defined those directions. In mathematical terms this translates into solving 

the following problem: 

 𝑔𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∈𝑅𝑟 ‖(
𝑍

√𝑚
) 𝑣 − ℎ‖

2
     s.t. ‖𝑣‖0 ≤ 𝑠 (4.13) 

Exploiting the gradient sparsity hypothesis, the problem is solved using CoSaMP, a signal 

reconstruction algorithm introduced in (31). The value of the variables is updated according to 

the vector g resulting from the CoSaMP algorithm: 

 
𝑥𝑘𝜖ℝ

𝑑𝑥1        𝑥𝑘[𝑖] = {
𝑥𝑘−1[𝑖]                                 𝑖𝑓 𝑥[𝑖] ∉ 𝑗 − 𝑡ℎ 𝑏𝑙𝑜𝑐𝑘

𝑥𝑘−1[𝑖] + 𝛿[𝑖] ∗ 𝛽(𝑔𝑘)     𝑖𝑓 𝑥[𝑖] ∈ 𝑗 − 𝑡ℎ 𝑏𝑙𝑜𝑐𝑘
          (4.14) 

Each variable is limited in a range of allowable values. 

 𝑥𝑚𝑖𝑛[𝑖] ≤ 𝑥𝑘[𝑖] ≤ 𝑥𝑚𝑎𝑥[𝑖] (4.15) 

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the vectors containing the minimum and maximum values that the 

variables can take. 

The function 𝛽 should be chosen in a way that facilitates reaching the solution without incurring 

a local minimum and without the value of the variables being of such magnitude that 

convergence is not possible. The presence of variables of very different order of magnitude, 

combined with the strong nonlinearity of the objective function that occurs in the case of 
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structurally unchecked elements, makes the evaluation of this function difficult. For this reason, 

it was set equal to the gradient sign function.  

 𝛽(𝑔𝑘) = −𝑠𝑖𝑔𝑛(𝑔𝑘) (4.16) 

In this way, the information of the estimated gradient is exploited to evaluate the direction in 

which to increase the value of the variables. In the future, it would be interesting to be able to 

define a function for 𝛽 that allows the value of the variables to be updated as a function of the 

magnitude of the gradient as well, so that convergence to the solution can be achieved more 

quickly. 

4.6.3  Grouping Algorithm 

The Grouping Algorithm aims to exploit the presence in the structure of beams and joints 

subjected to similar forces and which will therefore have a similar optimized geometry. The 

development of this algorithm was inspired by the Particle Swarm Algorithm (PSA), which 

attempts to reproduce the behavior of groups of animals in their search for the best place to 

rest, based on the availability of food, water, space, etc... It is based on the idea that each 

individual can represent the solution to the problem and that the measure of the goodness of 

his position depends both on what the particle itself has explored and what the rest of the group 

has discovered. Each individual has a memory of its previous states and this, together with the 

positions of the rest of the population and a stochastic factor, contributes in updating the 

position of the particle itself. (32) 

Taking inspiration from PSA, in the Grouping Algorithm ntot random models are generated, in 

each of which the beams and joints are divided into groups based on their stress state. At each 

iteration, joint and beam variables in each model are updated based on 3 contributions: 

• value of the variable at the previous iteration 

• the best beam/joint in its own group 

• the best solution ever found among the various models 

So, the part of variable updating that in the PSA is related to the best solution in the 

neighborhood, in the Grouping Algorithm is due to the best member of the beam/joint group 

membership. 
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Each beam has db number of variables while each joint has dj number of variables. Denoting b 

as the number of beams and j as the number of joints, the total number of variables is as follows: 

 𝑑 = 𝑏 ∗ 𝑑𝑏 + 𝑗 ∗ 𝑑𝑗  (4.17) 

The variables that make up the h-th model are as follows: 

 

𝑥ℎ = (

𝑥1
𝑥2
…
𝑥𝑑

) ∈ ℝ𝑑  (4.18) 

At k-th iteration the model h is updated by adding to the current values the product between 

the velocity vector v and the factor K: 

 𝑥ℎ
𝑘+1 = 𝑥ℎ

𝑘 + 𝑣ℎ
𝑘+1 ∗ 𝐾 (4.19) 

The velocity vector 𝑣ℎ
𝑘+1𝜖ℝ𝑑  is obtained by adding two contributions to the current value of the 

velocity vector to consider the best solution found so far and the current value assumed by the 

variables of the best beam/joint in the group membership. 

 𝑣ℎ
𝑘+1 = 𝑣ℎ

𝑘 + 𝑐1 ∗ 𝑟𝑝 ∗ (𝑥ℎ,𝑏𝑒𝑠𝑡
𝑘 − 𝑥ℎ

𝑘)  + 𝑐2 ∗ 𝑟𝑔 ∗ (𝑥𝐵𝐸𝑆𝑇 − 𝑥ℎ
𝑘) (4.20) 

where 𝑐1 and 𝑐2are adjustable parameters with value 2.8 and 1.3, respectively, 𝑟𝑝 and 𝑟𝑔 are 

random value between 0 and 1, 𝑥𝐵𝐸𝑆𝑇  is the best solution ever found among the various models 

and 𝑥ℎ,𝑏𝑒𝑠𝑡
𝑘  is the vector with the values of the variables taken by the best joint/beam for each 

group at iteration k. 

The velocity weighting factor K is given by the following expression: 

 
𝐾 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =

2

|2 − 𝑐3 −√𝑐32 − 4 ∗ 𝑐3|
 (4.21) 
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with  

 𝑐3 = 𝑐1 + 𝑐2 (4.22) 

This algorithm is still under study and therefore has not been applied to the case study. 

4.7  Case study 

The case study examined for the development of the optimization tool is presented below. It is 

a steel cover consisting of 36 single-span truss arches made of tubular elements connected by 

bolts and welds. Each of these arches is 254 m wide and 77 m high. The Figure 37 shows an 

example of one of the arches making up the structure. The overall length of the structure is 476 

m, as can be seen from the Figure 39. The structure is completed by facades at both ends of the 

cover, made up of a steel grid structure and connected to the main arches by expansion joints. 

 

 

Figure 37. Example of a side view of a single arch 

 

Figure 38. Side view of a facade 
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Figure 39. View of the cover structure 

 

The connections between the main beams are: 

• Joints with single plate connection, used for diagonals, bracing and upper longitudinal 

beams 

 

Figure 40. Example of joint with single plate connection 
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• Joints with single plate connection and split joint covers, used for struts, bracings and 

upper longitudinal beams 

 

Figure 41. Example of joint with single plate connection and split joint covers 

• Joints for cruciform plates, used for some diagonals of the arcs 

 

Figure 42. Example of joint for cruciform plate 

• Bolted flange joints, used for upper and lower beams 

 

Figure 43. Example of bolted flange joint 
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• Welded flange joints, used for upper and lower beams 

 

Figure 44. Example of welded flange joint 

 

• Pin connection, used in expansion joints and for some diagonals on assembly joints 

 

Figure 45. Example of pin connection 
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As can be seen from the images above, the connections between the main elements of the 

structure are characterised by a considerable amount of plates, bolts and welds and their 

realisation requires numerous processes. The number of such connections in the arches alone 

can be estimated at 1728, to which the connections on the facades and those forming expansion 

joints must also be added. These considerations show the crucial role that connections play in 

the cost of the whole structure and the importance of acting on these elements to achieve a 

correctly optimised design solution. 

4.7.1  Calculation model 

The evaluation of the structural performance of the structure requires the elaboration of a finite 

element calculation model. It is composed of beam elements representing the tubular elements 

that make up the cover, while the assignment of loads is carried out by introducing plate 

elements. 

 

Figure 46. Calcutaion model shell 

 

Figure 47. Calculation model beams 
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A total of 255 load cases of the following types were included in the calculation model: 

• Self-weight 

• Weights of non-structural elements and installations 

• Snow load 

• Wind load 

• Thermal load 

• Seismic load 

• Foundation subsidence 

These load cases are used to create combinations that represent the behavior of the structure 

during the operative phase, in the case of an earthquake and at the final condition in accordance 

with the regulations. A total of 3716 load combinations were carried out. The large number of 

load combinations, together with the large number of elements that make up the calculation 

model, mean that the analysis of the model requires a high computational cost. 
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4.7.2  Multi-way node optimization 

The performance of the optimization approaches explained in the previous sections was 

evaluated by applying them to the optimization problem of the multi-way node in Figure 48. It 

consists of 9 beams and 14 joints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Multi-way node under study 
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Figure 49. Beam numbering 

 

The following tables show the initial characteristics of the beams and joints belonging to the 

multi-way node. The cost estimate is based on the indications given in (8). 

BEAM DIAM [mm] THK [mm] LENGTH [mm] 

3134 355.6 6.3 11912.4 

3207 406.4 8.0 14423.9 

3804 273.0 5.0 8382.8 

3866 323.9 5.6 12114.4 

3887 323.9 5.6 15143.8 

3925 610.0 11.0 13422.5 

3926 508.0 8.0 13628.4 

5124 813.0 16.0 14184.0 

5142 813.0 16.0 14186.4 

Table 9. Beam attributes 
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BEAM 

Joint End1 Joint End2 

NR 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

NR 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

3134 0 30 4 2 25 15 8 480 1 30 4 2 25 15 8 480 

3207 2 30 5 2 25 15 5 550 3 30 5 2 25 15 5 550 

3804 4 30 4 1 20 15 5 350 5 30 4 1 20 15 5 350 

3866 6 30 4 2 25 15 8 480 7 30 4 2 25 15 8 480 

3887 8 30 4 1 20 10 5 400 9 30 4 1 20 10 5 400 

3925 10 30 6 3 35 18 8 800 11 30 6 3 35 18 8 800 

3926 12 30 6 3 25 15 7 750 13 30 6 3 25 15 7 750 

5124 - - - - - - - - - - - - - - - - 

5142 - - - - - - - - - - - - - - - - 

Table 10. Joints attributes 

NR ID SECTION AREA [mm2] VOLUME [mm3] WEIGTH [kg] COST [euro] 

3134 51510 6913.36 82354678.42 644.01 257.61 

3207 51610 10012.88 144424839.10 1129.40 451.76 

3804 52310 4209.73 35289359.48 275.96 110.39 

3866 52510 5599.83 67838532.98 530.50 212.20 

3887 52610 5599.83 84802646.09 663.16 265.26 

3925 52411 20699.95 277845132.50 2172.75 869.10 

3926 52410 12566.37 171259525.30 1339.25 535.70 

5124 52210 40061.59 568233585.70 4443.59 1777.43 

5142 52211 40061.59 568329733.60 4444.34 1777.74 

TOTAL 6257.18 

Table 11. Beams costs 

NR 
BEAM 

NR 

STEEL  
GUSSET 
PLATE  
[euro] 

STEEL  
COVER 
PLATES  
[euro] 

BOLT 
[euro] 

CUT  
GUSSET 
PLATE  
[euro] 

CUT 
COVER 
PLATES  
[euro] 

HOLE 
[euro] 

PAINTING 
GUSSET  
PLATE  
[euro] 

PAINTING 
COVER  
PLATES 
[euro] 

WELD 
[euro] 

COST 
[euro] 

0 3134 23.48 16.55 162.96 2.93 3.92 6.58 2.15 2.53 1.07 222.17 

1 3134 23.48 16.55 162.96 2.93 3.92 6.58 2.15 2.53 1.07 222.17 

2 3207 31.06 20.49 203.70 3.21 4.24 7.26 2.84 3.13 0.51 276.45 

3 3207 31.06 20.49 203.70 3.21 4.24 7.26 2.84 3.13 0.51 276.45 

4 3804 14.89 10.32 81.48 2.36 4.24 5.09 1.70 1.58 0.34 122.00 

5 3804 14.89 10.32 81.48 2.36 4.24 5.09 1.70 1.58 0.34 122.00 

6 3866 21.81 15.37 162.96 2.14 3.82 6.58 2.00 2.35 1.07 218.09 

7 3866 21.81 15.37 162.96 2.14 3.82 6.58 2.00 2.35 1.07 218.09 

8 3887 13.42 6.10 81.48 2.33 2.99 4.84 1.54 1.40 0.38 114.47 

9 3887 13.42 6.10 81.48 2.33 2.99 4.84 1.54 1.40 0.38 114.47 

10 3925 82.15 44.51 366.66 5.05 5.60 11.79 5.37 5.66 1.76 528.55 

11 3925 82.15 44.51 366.66 5.05 5.60 11.79 5.37 5.66 1.76 528.55 

12 3926 46.22 23.65 366.66 3.85 4.50 10.00 4.23 3.61 1.29 464.00 

13 3926 46.22 23.65 366.66 3.85 4.50 10.00 4.23 3.61 1.29 464.00 

TOTAL 466.06 274.01 2851.80 43.75 58.61 104.26 39.67 40.48 12.86 3891.49 

Table 12. Joints costs 
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SUMMARY 

BEAMS 6257.18 euro 

JOINTS 3891.49 euro 

TOTAL 10148.67 euro 

Table 13. Summary of costs 

4.7.2.1  Genetic algorithm otpimization 

The structure of the Genetic Algorithm leads to identifying at each generation the individuals 

that minimize the objective function and placing them in the next generation. As a result, the 

objective function curve obtained by this algorithm has a monotonically decreasing trend with 

the number of generations, as can be seen in Figure 50, Figure 51 and Figure 52. Analyzes were 

stopped when solution stagnation occurred, that is, there was no significant improvement in 

objective function for more than a set number of generations. 

The speed of reaching the optimized solution depends not only on the number of variables 

involved in the problem, which thus affect the size of the search space, but also on the 

hyperparameters chosen for setting the algorithm. These include the mutation probability pmut, 

which represents the probability with which the value of a gene is changed from one generation 

to the next. It is precisely the process of mutation, together with crossover, that allows for the 

exploration of the solution-finding space. High values of pmut introduce greater changes 

between individuals of two successive generations. This allows for a faster rate of decrease in 

the fitness function in early generations, where one is farther away from the optimized solution 

and thus the introduction of a mutation is more likely to result in an improvement for the 

individual. Conversely, as one gets closer to the optimized solution, the changes are more 

unlikely to result in a benefit. Having a high mutation probability leads more easily to having 

multiple mutations in the same individual. In the case where this is already close to the 

optimized solution, only a small proportion of them are likely to constitute an improvement. 

The presence of both negative and beneficial mutations in the same individual thus leads to 

more difficult progress for the generation. This behavior can be seen in the graph in Figure 50. 

Thus, high values of pmut are useful for "coarse" exploration of the solution space while they are 

not useful for fine improvements of a solution already with low values of the objective function. 

One might therefore consider adopting varying values of the mutation rate during the analysis, 

higher initially and decreasing as the generations proceed. This possibility was not analyzed in 

this thesis. 
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Figure 50. Influence of mutation probability p on the performance of the Genetic Algorithm 

The number of individuals making up a generation also influences the rate of decrease of the 

objective function, as can be seen in Figure 51. Larger populations allow to better explore the 

solution space and therefore generally to obtain individuals with a smaller objective function 

for the same generation number. However, larger populations also imply a higher number of 

individuals to analyze and therefore greater computational cost and more time to solve a 

generation. 

 

Figure 51. Influence of generation size on the performance of the Genetic Algorithm 

1000

10000

100000

1000000

10000000

0 50 100 150 200 250 300 350 400 450

F
it

n
e
ss

 F
u

n
ct

io
n

Epochs

Effect of mutation probability

p=0.01 p=0.05 p=0.10 p=0.15 p=0.20

1000

10000

100000

1000000

10000000

100000000

0 50 100 150 200 250 300

L
o
ss

Generation

Effect of generation size

Gen size=10 Gen size=20 Gen size=25



 

73 
 

Another aspect to consider is the composition of each generation, i.e., the percentage of best 

individuals and the percentage of random individuals taken from the previous generation. The 

remainder of the new generation will be created by mutation and crossover of pairs of 

individuals randomly selected from the previous generation. The Figure 52 shows three 

different generation compositions. The effects of generation composition are similar to those 

reported for the mutation probability rate pmut. In fact, a lower overall percentage of individuals 

inherited from the previous generation (sum of the best ones and those chosen randomly) 

implies a greater exploration of the solution space and therefore a higher rate of decrease of 

the objective function in the first generations, similar to what was found for values of pmut high. 

The increase in the percentage of new individuals in a generation has positive effects in the first 

generations but also implies a greater computational cost as the number of individuals for 

which analyzes have not yet been carried out increases. 

 

Figure 52. Influence of proportion of the best candidates and random candidates selected for the creation of the new generation 
on the performance of the Genetic Algorithm 

If on the one hand the Genetic Algorithm has the advantage of offering each generation a 

solution equal to or better, but never worse than the previous generation, on the other hand it 

presents problems of local minimum, i.e., the solution found may not actually be a global 

minimum point in the solution space, and also presents problems of stagnation or of refining 

the solution. Furthermore, in the case where multiple mutations are carried out on the same 

individual, it does not allow to distinguish the effects of each of them in order to possibly keep 

only those that produce benefits. 
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Below are reported the results of the optimization of the multi-way node with the Genetic 

Algorithm and the comparison with the non-optimized solution. 

BEAM DIAM [mm] THK [mm] LENGTH [mm] 

3134 273.00 12.00 12536.99 

3207 273.00 6.00 15384.14 

3804 323.90 6.30 7975.15 

3866 177.80 10.00 12904.58 

3887 273.00 6.30 15868.44 

3925 355.60 6.00 15819.27 

3926 355.60 6.00 15333.54 

5124 508.00 12.00 14200.00 

5142 457.00 16.00 14200.00 

Table 14. Beam attributes of better solution from Genetic Algorithm 

 

BEAM 

Joint End1 Joint End2 

NR 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

NR 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw  
[mm] 

3134 0 12 6 6 40 20 10 218 1 12 6 2 20 10 5 876 

3207 2 12 6 4 50 25 6 613 3 12 5 8 40 20 10 949 

3804 4 20 4 5 20 10 5 486 5 24 3 4 60 30 9 666 

3866 6 16 4 1 15 10 8 789 7 16 4 1 55 30 10 173 

3887 8 12 6 4 55 30 6 236 9 12 11 2 45 25 8 287 

3925 10 16 6 2 25 15 3 339 11 20 5 1 25 15 4 822 

3926 12 12 6 6 30 15 6 404 13 20 4 2 35 20 3 498 

5124 - - - - - - - - - - - - - - - - 

5142 - - - - - - - - - - - - - - - - 

Table 15. Joints attributes of better solution from Genetic Algorithm 

 

NR ID SECTION AREA [mm2] VOLUME [mm3] WEIGTH [kg] UTIL. RATIO COST [euro] 

3134 51510 9839.47 123357350.66 964.65 0.1831 385.86 

3207 51610 5032.83 77425764.03 605.47 0.9712 242.19 

3804 52310 6285.95 50131401.90 392.03 0.5214 156.81 

3866 52510 5271.59 68027677.88 531.98 0.5622 212.79 

3887 52610 5278.54 83762105.35 655.02 0.8509 262.01 

3925 52411 6589.80 104245928.00 815.20 0.4277 326.08 

3926 52410 6589.80 101045054.70 790.17 0.7510 316.07 

5124 52210 18698.76 265522384.48 2076.39 0.9759 830.55 

5142 52211 22167.08 314772504.29 2461.52 0.9666 984.61 

TOTAL 3716.97 

Table 16. Beams costs of better solution from Genetic Algorithm 
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NR 
BEAM 

NR 

STEEL 
GUSSET 
PLATE 
[euro] 

STEEL 
COVER 
PLATES 
[euro] 

BOLT 
[euro] 

CUT 
GUSSET 
PLATE 
[euro] 

CUT 
COVER 
PLATES 
[euro] 

HOLE 
[euro] 

PAINTING 
GUSSET 
PLATE 
[euro] 

PAINTING 
COVER 
PLATES 
[euro] 

WELD 
[euro] 

UTIL. 
RATIO 

COST 
[euro] 

0 3134 19.91 21.26 14.53 2.86 4.41 16.72 1.14 2.43 0.75 0.230 84.02 

1 3134 18.72 4.03 4.84 3.01 2.64 5.99 2.14 0.92 0.80 0.536 43.10 

2 3207 38.86 18.33 9.69 4.16 4.06 14.58 1.78 1.68 0.80 0.948 93.93 

3 3207 50.00 27.86 16.15 5.07 5.07 18.15 2.86 3.19 3.13 0.466 131.48 

4 3804 19.24 16.05 87.12 2.87 4.23 8.13 2.20 3.68 0.46 0.542 143.98 

5 3804 68.24 45.97 111.42 5.55 6.00 12.24 2.60 3.51 1.82 0.464 257.35 

6 3866 10.53 2.51 5.58 2.46 2.36 4.53 1.61 0.58 1.74 0.720 31.89 

7 3866 12.33 7.54 5.58 2.40 3.08 6.11 0.51 0.58 0.60 0.648 38.72 

8 3887 23.74 22.00 9.69 3.15 4.36 16.19 0.99 1.68 0.33 0.811 82.12 

9 3887 31.20 17.65 8.88 3.36 4.22 13.19 1.59 1.62 0.65 0.732 82.35 

10 3925 15.05 9.74 16.75 2.43 3.32 7.09 1.38 1.49 0.13 0.947 57.36 

11 3925 28.05 6.85 21.78 3.33 3.05 5.32 2.57 1.05 0.48 0.877 72.47 

12 3926 25.72 20.47 14.53 3.11 4.29 13.50 1.96 3.12 0.54 0.531 87.25 

13 3926 28.77 15.62 34.85 3.28 3.81 7.06 1.88 1.79 0.17 0.829 97.22 

TOTAL 390.37 235.88 361.39 47.03 54.91 148.78 25.21 27.29 12.38  1303.24 

Table 17. Joints costs of better solution from Genetic Algorithm 

 

SUMMARY 

BEAMS 3716.97 euro 

JOINTS 1303.24 euro 

TOTAL 5020.21 euro 

Table 18. Summary of costs of better solution from Genetic Algorithm 

 

BEAM Diam [mm] Thk [mm] Weigth [kg] COST [euro] 

3134 -23% +90% +50% +50% 

3207 -33% -25% -46% -46% 

3804 +19% +26% +42% +42% 

3866 -45% +79% 0% +0% 

3887 -16% +13% -1% -1% 

3925 -42% -45% -62% -62% 

3926 -30% -25% -41% -41% 

5124 -38% -25% -53% -53% 

5142 -44% 0% -45% -45% 
Table 19. Variation of beam characteristics between the original model and the model optimized with the Genetic Algorithm 
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JOINT 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk gusset 

[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

COST 
[euro] 

0 -60% +50% +200% +60% +33% +25% -55% -62% 

1 -60% +50% 0% -20% -33% -38% +83% -81% 

2 -60% +20% +100% +100% +67% +20% +11% -66% 

3 -60% 0% +300% +60% +33% +100% +73% -52% 

4 -33% 0% +400% 0% -33% 0% +39% +18% 

5 -20% -25% +300% +200% +100% +80% +90% +111% 

6 -47% 0% -50% -40% -33% 0% +64% -85% 

7 -47% 0% -50% +120% +100% +25% -64% -82% 

8 -60% +50% +300% +175% +200% +20% -41% -28% 

9 -60% 175% +100% +125% +150% +60% -28% -28% 

10 -47% 0% -33% -29% -17% -63% -58% -89% 

11 -33% -17% -67% -29% -17% -50% +3% -86% 

12 -60% 0% +100% +20% 0% -14% -46% -81% 

13 -33% -33% -33% +40% +33% -57% -34% -79% 
Table 20. Variation of joint characteristics between the original model and the model optimized with the Genetic Algorithm 

 

 

Figure 53. Model of multi-way node optimized with the Genetic Algorithm 
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Figure 54. Model of multi-way node optimized with the Genetic Algorithm 

4.7.2.2  Zeroth-order block coordinate descent optimization 

The ability to explore the solution field, as well as the computational cost required by the 

algorithm, are a function of the hyperparameters used to set up the algorithm. Increasing the 

number of blocks into which the variables are divided, in addition to implying fewer variables 

in each block, results in a reduction in the number of directions sampled. The latter behavior 

can be attributed to the fact that by reducing the number of concurrently changed variables, it 

is sufficient to investigate fewer directions to assess which of the changed variables have 

beneficial effects and which have negative effects on the value of the fitness function. Instead, 

increasing the level of sparsity s, corresponding to greater dependence among the variables 

involved, results in an increase in the number of directions analyzed ndir.  

The computational cost of the algorithm is a function of the number of solutions analyzed. 

Consequently, it turns out to be dependent on the number of directions sampled ndir while there 

is no dependence on the number of variables in each block. 
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Figure 55. Trend of the number of variables per block as function of the number of blocks J, with degree of sparsity s equal to 20 

 

Figure 56. Trend of the number of directions sampled ndir as function of the number of blocks J, with degree of sparsity s being 20 

 

Figure 57. Trend of the number of directions sampled ndir as function of the level of sparsity s, with the number of blocks J being 5 
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Numerous tests were conducted to find the best hyperparameter configuration for the case of 

study. The outcomes of these tests can be seen in the graphs in Figure 58 and Figure 59. The 

lower rate of decrease in the fitness function that occurs for lower levels of sparsity, and found 

especially after the first few iterations, show that more sampling directions are needed to 

indicate which changes to apply to the variables belonging to the chosen block have beneficial 

effects. However, too high values of sparsity degrees may lead to confusion in the gradient 

estimation algorithm and thus not translate into a benefit in exploring the field of finding the 

optimal solution. In addition, an increase in the number of directions investigated results in 

more individuals to be analyzed and thus an increase in computational cost. It follows that the 

level of sparsity used for the analysis should result from a compromise between these different 

aspects. Using fewer blocks, and thus more variables belonging to the same block, allows the 

algorithm to converge more quickly to lower objective function values. However, the presence 

of a larger number of variables per block implies a larger number of directions analyzed to 

distinguish the effects of each variable belonging to the selected block and thus a higher 

computational cost. 

From the graphs in Figure 58 and Figure 59, it can be seen that compared with the Genetic 

Algorithm, the behavior of the objective function curve is not monotonically decreasing with 

the number of iterations. This behavior can be attributed from the possibility of failure by the 

gradient estimation algorithm that results in a change in the value of variables between the 

current and next iteration with increase in the value of the objective function. Consequently, 

more attention should be paid to parameter setting with this type of algorithm. It also implies 

that the best result does not necessarily occur at the last iteration performed.  

Another difference with the Genetic Algorithm concerns the fact that information obtained from 

the gradient is exploited, and thus if even the change in the value of a variable has a negative 

effect on the objective function, that variable will undergo a change of the opposite sign during 

the creation of the ultimate individual of that iteration. 
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Figure 58. Influence of sparsity level on the performance of the Gradient-based Algorithm 

 

 

Figure 59. Influence of number of blocks of variables on the performance of the Gradient-based Algorithm 

 

Below are reported the results of the optimization of the multi-way node with the Zeroth-Order 

Block Coordinate Descendent Algorithm and the comparison with the non-optimized solution. 
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BEAM DIAM [mm] THK [mm] LENGTH [mm] 

3134 236.10 8.00 12385.40 

3207 166.40 9.00 15108.93 

3804 139.70 6.19 7916.08 

3866 203.90 10.00 12173.10 

3887 228.30 5.50 15522.93 

3925 388.90 7.03 15145.26 

3926 470.00 7.89 15149.16 

5124 579.10 13.24 14200.00 

5142 696.10 12.02 14200.00 

Table 21. Beam attributes of better solution from Gradient-based Algorithm 

 

BEAM 

Joint End1 Joint End2 

NR 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

NR 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

3134 0 19 5 2 20 10 8 934 1 12 5 8 65 33 5 458 

3207 2 12 4 7 25 13 10 293 3 20 2 6 25 13 9 598 

3804 4 12 4 7 50 25 6 797 5 12 3 10 75 38 5 867 

3866 6 12 5 6 60 30 7 228 7 12 5 8 25 13 7 1037 

3887 8 20 3 2 80 40 4 640 9 12 4 9 30 15 9 479 

3925 10 12 8 5 80 40 7 904 11 12 8 5 75 38 10 706 

3926 12 12 10 4 35 18 5 1100 13 20 7 4 40 20 9 711 

5124 - - - - - - - - - - - - - - - - 

5142 - - - - - - - - - - - - - - - - 

Table 22. Joints attributes of better solution from Gradient-based Algorithm 

 

NR ID SECTION AREA [mm2] VOLUME [mm3] WEIGTH [kg] UTIL. RATIO COST [euro] 

3134 51510 5732.78 71002778.40 555.24 0.6313 222.10 

3207 51610 4450.38 67240481.90 525.82 0.5352 210.33 

3804 52310 2596.30 20552485.15 160.72 0.3540 64.29 

3866 52510 6091.55 74153015.44 579.88 0.4321 231.95 

3887 52610 3849.71 59758729.44 467.31 0.5690 186.93 

3925 52411 8433.75 127731378.15 998.86 0.6214 399.54 

3926 52410 11454.40 173524538.94 1356.96 0.6000 542.78 

5124 52210 23536.77 334222125.92 2613.62 0.9078 1045.45 

5142 52211 25832.19 366817104.36 2868.51 0.9501 1147.40 

TOTAL 4050.77 

Table 23. Beams costs of better solution from Gradient-based Algorithm 
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NR 
BEAM 

NR 

STEEL 
GUSSET 
PLATE 
[euro] 

STEEL 
COVER 
PLATES 
[euro] 

BOLT 
[euro] 

CUT 
GUSSET 
PLATE 
[euro] 

CUT 
COVER 
PLATES 
[euro] 

HOLE 
[euro] 

PAINTING 
GUSSET 
PLATE 
[euro] 

PAINTING 
COVER 
PLATES 
[euro] 

WELD 
[euro] 

UTIL. 
RATIO 

COST 
[euro] 

0 3134 23.63 6.41 34.31 3.27 2.99 5.94 2.71 1.47 2.05 0.679 82.78 

1 3134 44.31 37.10 16.15 4.73 5.81 27.10 1.56 2.61 0.43 0.265 139.80 

2 3207 9.37 9.15 11.30 2.31 3.65 10.10 0.86 1.68 0.99 0.483 49.42 

3 3207 15.44 12.37 52.27 3.15 4.31 7.06 1.41 2.27 1.64 0.454 99.92 

4 3804 34.03 18.60 11.30 4.77 4.56 16.36 1.56 1.70 1.03 0.384 93.91 

5 3804 50.34 32.96 12.11 6.80 6.59 23.97 1.54 2.01 0.79 0.461 137.10 

6 3866 22.45 22.78 12.11 3.28 4.69 19.94 0.86 1.74 0.42 0.442 88.27 

7 3866 25.00 12.44 16.15 3.99 4.01 12.79 2.29 2.28 1.77 0.348 80.70 

8 3887 51.97 19.82 26.14 5.29 4.28 8.98 1.49 1.13 0.38 0.588 119.47 

9 3887 21.29 18.55 14.53 3.24 4.57 13.50 1.62 2.83 1.32 0.180 81.45 

10 3925 119.54 46.88 16.15 7.42 5.89 32.46 3.42 2.68 1.55 0.907 235.99 

11 3925 93.07 43.95 16.15 6.30 5.71 30.67 2.84 2.68 2.34 0.883 203.70 

12 3926 70.92 20.06 16.15 5.10 4.19 16.36 4.64 2.62 0.99 0.995 141.04 

13 3926 63.58 35.68 121.97 4.72 5.14 15.83 3.64 4.08 1.94 0.531 256.58 

TOTAL 644.93 336.75 376.79 64.36 66.38 241.07 30.43 31.79 17.64  1810.13 

Table 24. Joints costs of better solution from Gradient-based Algorithm 

SUMMARY 

BEAMS 4050.77 euro 

JOINTS 1810.13 euro 

TOTAL 5860.90 euro 
Table 25. Summary of costs of better solution from Gradient-based Algorithm 

BEAM Diam [mm] Thk [mm] Weigth [kg] COST [euro] 

3134 -34% +27% -14% -14% 

3207 -59% +13% -53% -53% 

3804 -49% +24% -42% -42% 

3866 -37% +79% +9% +9% 

3887 -30% -2% -30% -30% 

3925 -36% -36% -54% -54% 

3926 -7% -1% +1% +1% 

5124 -29% -17% -41% -41% 

5142 -14% -25% -35% -35% 
Table 26. Variation of beam characteristics between the original model and the model optimized with the Gradient-based 

Algorithm 
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JOINT 
Diam 
bolt 

[mm] 

Nr 
rows 

Nr col 
Thk 

gusset 
[mm] 

Thk 
covers 
[mm] 

Throat 
[mm] 

Lw 
[mm] 

COST 
[euro] 

0 -37% +25% 0% -20% -33% 0% +95% -63% 

1 -60% +25% +300% +160% +117% -38% -5% -37% 

2 -60% -20% +250% 0% -17% +100% -47% -82% 

3 -33% -60% +200% 0% -17% +80% +9% -64% 

4 -60% 0% +600% +150% +67% +20% +128% -23% 

5 -60% -25% +900% +275% +150% 0% +148% +12% 

6 -60% +25% +200% +140% +100% -13% -53% -60% 

7 -60% +25% +300% 0% -17% -13% +116% -63% 

8 -33% -25% +100% +300% +300% -20% +60% +4% 

9 -60% 0% +800% +50% +50% +80% +20% -29% 

10 -60% +33% +67% +129% +122% -13% +13% -55% 

11 -60% +33% +67% +114% +108% +25% -12% -61% 

12 -60% +67% +33% +40% +17% -29% +47% -70% 

13 -33% +17% +33% +60% +33% +29% -5% -45% 
Table 27. Variation of joint characteristics between the original model and the model optimized with the Gradient-based 

Algorithm 

 

Figure 60. Model of multi-way node optimized with the Gradient-based Algorithm 
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Figure 61. Model of multi-way node optimized with the Gradient-based Algorithm 

4.7.2.3  Model comparison 

The percentage change in cost between the best results obtained with the Genetic Algorithm 

and with the Gradient-based Algorithm and the initial model is shown below. 

NR 
BEAM COST [euro] 

Initial model GA Algorithm Gradient-based Algorithm 

3134 257.61 385.86 +50% 222.10 -14% 

3207 451.76 242.19 -46% 210.33 -53% 

3804 110.39 156.81 +42% 64.29 -42% 

3866 212.20 212.79 +0% 231.95 +9% 

3887 265.26 262.01 -1% 186.93 -30% 

3925 869.10 326.08 -62% 399.54 -54% 

3926 535.70 316.07 -41% 542.78 +1% 

5124 1777.43 830.55 -53% 1045.45 -41% 

5142 1777.74 984.61 -45% 1147.40 -35% 

TOTAL 6257.18 3716.97 -40% 4050.77 -35% 

Table 28. Comparison of beam cost between initial model and model optimized with Genetic Algorithm and with Gradient-based 
Algorithm 
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NR 
JOINT COST [euro] 

Initial model GA Algorithm Gradient-based Algorithm 

0 222.17 84.02 -62% 82.78 -63% 

1 222.17 43.10 -81% 139.80 -37% 

2 276.45 93.93 -66% 49.42 -82% 

3 276.45 131.48 -52% 99.92 -64% 

4 122.00 143.98 +18% 93.91 -23% 

5 122.00 257.35 +111% 137.10 +12% 

6 218.09 31.89 -85% 88.27 -60% 

7 218.09 38.72 -82% 80.70 -63% 

8 114.47 82.12 -28% 119.47 +4% 

9 114.47 82.35 -28% 81.45 -29% 

10 528.55 57.36 -89% 235.99 -55% 

11 528.55 72.47 -86% 203.70 -61% 

12 464.00 87.25 -81% 141.04 -70% 

13 464.00 97.22 -79% 256.58 -45% 

TOTAL 3891.49 1303.24 -67% 1810.13 -53% 
Table 29. Comparison of joint cost between initial model and model optimized with Genetic Algorithm and with Gradient-based 

Algorithm 

NR 
TOTAL COST [euro] 

Initial model GA Algorithm Gradient-based Algorithm 

Beam cost 6257.18 3716.97 -40% 4050.77 -35% 

Joint cost 3891.49 1303.24 -67% 1810.13 -53% 

TOTAL 10148.67 5020.21 -51% 5860.90 -42% 

Table 30. Comparison of total cost between initial model and model optimized with Genetic Algorithm and with Gradient-based 
Algorithm 

The two optimization algorithms resulted in different solutions to each other, both with lower 

costs than the starting model. Despite the difference in results, similarities can be observed 

between the two solutions. For example, the tendency to decrease the diameter of the beams 

can be observed. This indicates that the beams in the starting model were oversized. Also, it can 

be observed that in both solutions in all joints the size of the bolt diameters was reduced and in 

most cases the number of bolts was increased. The tendency to reduce the diameter, preferring 

an increase in the quantity of bolts, is due to the quadratic dependence of bolt cost on bolt 

diameter within the cost function. 
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The computational cost is mainly due to the analyzes carried out on a solution to calculate the 

fitness function. The operations for calculating the objective function on a solution are the same 

for the two algorithms, so the computational cost is related only to the number of solutions to 

be analyzed.  

With the Genetic Algorithm, the best result was achieved with a population of 20 individuals 

made up of 30% of the best individuals of the previous generation, 20% of random individuals 

of the previous generation while the remaining 50% consists of new individuals obtained by 

crossover and mutations. The latter are the population component that must be analyzed. The 

number of iterations needed to reach the best solution was 276.  

With the Gradient-based Algorithm the best results have been achieved with a degree of 

sparsity s equal to 20 and 5 blocks of variables. Consequently, the number of directions 

investigated and therefore of solutions analyzed is equal to 14, to which is added the solution 

calculated at the end of the iteration and obtained by changing the variables defined on the 

basis of the gradient estimate. The best solution was obtained after 455 iterations. 

From the above results it appears that the Genetic Algorithm, in addition to being easier to use 

and set up, leads to better results and with a lower computational cost than the Gradient-based 

Algorithm. However, the identification of an update function of the single variables that can 

better exploit the value of the estimated gradient could lead in the future to an important 

reduction in the number of iterations necessary to reach the optimized solution. 
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4.8  Conclusion 

Using a multi-way node as a case study, this chapter highlights the large number of variables 

involved in the design problem, as already highlighted in the initial chapter of the thesis, and 

how it grows rapidly with the number of elements that make up a structure. The formulation of 

the design problem as an optimization problem requires preliminary investigations of the type 

of beams to be adopted and the type of joints to be made, based on which the variables are 

defined to describe the problem and the verifications required by the standard to evaluate 

structural performance are specified. Investigations of stock availability allow the narrowing of 

the search for the solution by promoting the convergence of the optimization algorithm. In this 

chapter, two optimization approaches, one based on metaheuristics (Genetic Algorithm) and 

one based on gradient (Gradient-based Algorithm), were presented and applied. Both resulted 

in optimized solutions, but the first one was more performant, both in terms of results and 

computational resources. The gradient-based approach was more complicated to apply 

because of the non-derivability of the objective function and the presence of variables of 

different types and different scales, which made it difficult to find a solution update function at 

each iteration based on the gradient. Future research could lead to the development of better 

performing update functions that would improve the performance of the method. A third 

optimization approach has only been described and not applied because it is still subject to 

study. This last method aims to introduce groupings between similar beams and joints to speed 

up the achievement of the optimized solution. 
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CHAPTER 5:  Optimization of a steel frame 

The goal is to create a workflow that can quickly return an optimized dimensioning of a framed 

structure. In particular, the aim is to define the section of the beams belonging to the structure. 

The choice of these sections should be such as to minimize costs, but at the same time meet the 

structural requirements dictated by the standards. For each beam that makes up the structure, 

the structural checks depend on the stresses affecting that element, which are traditionally 

calculated using FEM software, and depend on other geometric attributes, such as section and 

beam length. The high computational cost of solving FEM models is a major limitation in the 

number of analyses that can be performed. From these considerations, a picture emerges in 

which rapid optimization of the sections of the members of a framed structure requires the 

creation of tools that from the stresses and possibly other geometric characteristics of the 

member (such as length) return the section that provides the chosen utilization rate, and a tool 

that allows the beam forces to be updated as the applied loads change so that the change in self-

weight due to the change in sections can also be considered in an approximate way. 

In Section 5.1  , the proposed workflow for optimizing the beams of a frame structure is 

presented, and the modules that comprise it and how they are interconnected are shown. 

Section 5.2   aims to create a surrogate model to be used in the optimization tool to quickly 

update the forces on the beams as loads change, so as to accelerate the optimizer's convergence. 

The next section, on the other hand, describes the creation and training of a neural network 

that provides for each beam the cross section that, based on the acting forces and the length of 

the element, will result in the element having the desired utilization rate. The performance of 

the optimizer and the various specially created modules was evaluated by application to a two-

dimensional frame structure and to a three-dimensional frame structure. 
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5.1  Proposal workflow 

As mentioned above, the choice of section to be assigned to each beam should be such as to 

minimize the cost of the structure, consistent with meeting structural checks. Unlike in 

CHAPTER 4: , joints are not considered in this study. Consequently, since the processing and 

various components required to make the joints are not involved, cost optimization can be 

considered as a minimization of the weights of the beams, that is, a search for the section with 

minimum area that can be attributed to each beam. The search for the minimum beam cross-

sections that meet the requirements of structural verifications can be translated into the search 

for cross-sections that lead to the maximum allowable utilization rate in each element. In this 

way, all beams in the frame are well utilized. It is therefore necessary to create a tool that, given 

as input the beam forces, length and desired utilization rate, outputs the beam cross section. To 

build such a model, a Multi-Layer Perceptrons (MLP) Neural Network was chosen, which can be 

trained using a database of already known cases or a purpose-built database. Updating the self-

weight of the beams due to the modification of the beam cross sections by using MLP leads to a 

change in the forces on the beams. The new beam forces can be calculated by updating the 

starting FEM model with the new cross sections and solving it again or by constructing a 

surrogate model. The latter approach is proposed to provide an estimate of the new stresses in 

much less time than the solution of the updated FEM model would require.  

The surrogate models made for this workflow are structure-specific: generalizations to apply 

the models to structures other than the one they were trained with are the subject of future 

development. 

The proposed workflow is summarized in the diagram in the Figure 62. The input to the process 

is the FEM model of the frame to be optimized and its solution, which provides information on 

the tensional state of the beams for the various loading conditions to which they are subjected. 

From this model, information on the loads and forces on the beams is derived for use both in 

the MLP that provides the optimized section and for the construction of the surrogate model. 

Using the tensional state of the starting model solution and other geometric characteristics of 

the beams, initial proposed sections for each beam are obtained from the MLP. The change in 

load correlated with the change in the weight of the beams results in a change in the forces on 

the beams, which is estimated using a surrogate model or calculated accurately by updating the 

FEM model and solving it. The new set of forces on the beams is used to obtain a new section 
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proposal from the MLP, which will result in an additional load change. The process continues 

in this way until convergence. 

 

 

 

 

 

 

 

 

 

 

 

5.2  LoadsToForces module 

LoadsToForces identifies the tool for updating forces on beams as loads change. It can consist 

of a module that updates the FEM model with the new load state and performs the subsequent 

recalculation, or it can be a surrogate model. The high computational cost associated with 

solving large FEM models makes the latter option attractive. The construction of a surrogate 

model makes it necessary to identify a model that can capture the link between loads and forces 

at the beams in a subspace of lower dimension than that of the real problem. Several 

alternatives were evaluated: 

• Low-rank stiffness matrix 

• MLP model 

• GNN model 

INPUT OUTPUT 

• Beam forces 
• Length 
• Utilization ratio 

• Beam section 

INPUT OUTPUT 

Node forces Beam forces 

Figure 62. Proposal workflow for steel frame optimization 
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• Beam forces 
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• Utilization ratio 

MLPsectionOpt 

LoadsToForces 
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Sections 

Node 
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The following shows how the tensional state of the beams and the load acting on the structure 

are represented for surrogate model creation. Subsequently, the investigated approaches are 

explained in detail. 

5.2.1  Representation of model loads and forces on beams 

The stress state at any point of the beam can be described by 6 parameters: 

 

𝑠 =

(

 
 
 

𝑆𝐹1
𝐵𝑀1
𝑆𝐹2
𝐵𝑀2

𝐴𝑋
𝑇𝑄 )

 
 
 

 (5.1) 

where SF1 and SF2 are the shear forces, BM1 and BM2 are the bending moments, AX is the axial 

force while TQ is the torque moment, all expressed in the principal reference system of the i-th 

beam. Through these parameters, the strength utilization rate of the element can be assessed.  

The 6 stress parameters at the two ends of the i-th beam, shown in the Figure 63, can be written 

in the following vector: 

 

𝑠𝑖 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑆𝐹1,𝑖
𝑒𝑛𝑑1

𝐵𝑀1,𝑖
𝑒𝑛𝑑1

𝑆𝐹2,𝑖
𝑒𝑛𝑑1

𝐵𝑀2,𝑖
𝑒𝑛𝑑1

𝐴𝑋𝑖
𝑒𝑛𝑑1

𝑇𝑄𝑖
𝑒𝑛𝑑1

𝑆𝐹1,𝑖
𝑒𝑛𝑑2

𝐵𝑀1,𝑖
𝑒𝑛𝑑2

𝑆𝐹2,𝑖
𝑒𝑛𝑑2

𝐵𝑀2,𝑖
𝑒𝑛𝑑2

𝐴𝑋𝑖
𝑒𝑛𝑑2

𝑇𝑄𝑖
𝑒𝑛𝑑2)

 
 
 
 
 
 
 
 
 
 
 
 
 

   with i=1, …, b 

 

(5.2) 
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For a better description of the trend of the stress state along the development of the beam, it is 

possible to increase the size of the vector by also including stress parameters related to other 

positions along the beam. The stress vectors of all the beams in the model can be collected into 

a single matrix [b x 12]:  

 

𝑆 = [
𝑠1
𝑇

…
𝑠𝑏
𝑇
] (5.3) 

 

Figure 63. Beam end forces 

The stress parameters at the beam ends are related to the node forces, that is, the forces and 

moments acting on the beam nodes. 

 𝐹1
𝑒𝑛𝑑1 = 𝑆𝐹1

𝑒𝑛𝑑1 (5.4) 

 𝑀1
𝑒𝑛𝑑1 = 𝐵𝑀2

𝑒𝑛𝑑1 (5.5) 

 𝐹2
𝑒𝑛𝑑1 = 𝑆𝐹2

𝑒𝑛𝑑1 (5.6) 

 𝑀2
𝑒𝑛𝑑1 = −𝐵𝑀1

𝑒𝑛𝑑1 (5.7) 

 𝐹3
𝑒𝑛𝑑1 = −𝐴𝑋𝐼𝐴𝐿𝑒𝑛𝑑1 (5.8) 

 𝑀3
𝑒𝑛𝑑1 = −𝑇𝑂𝑅𝑄𝑈𝐸𝑒𝑛𝑑1 (5.9) 

 𝐹1
𝑒𝑛𝑑2 = −𝑆𝐹1

𝑒𝑛𝑑2 (5.10) 

 𝑀1
𝑒𝑛𝑑2 = −𝐵𝑀2

𝑒𝑛𝑑2 (5.11) 
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 𝐹2
𝑒𝑛𝑑2 = −𝑆𝐹2

𝑒𝑛𝑑2 (5.12) 

 𝑀2
𝑒𝑛𝑑2 = 𝐵𝑀1

𝑒𝑛𝑑2 (5.13) 

 𝐹3
𝑒𝑛𝑑2 = 𝐴𝑋𝐼𝐴𝐿𝑒𝑛𝑑2 (5.14) 

 𝑀3
𝑒𝑛𝑑2 = 𝑇𝑂𝑅𝑄𝑈𝐸𝑒𝑛𝑑2 (5.15) 

 

 

Figure 64. Beam node forces 

The nodal forces at the end nodes of the i-th beam, shown in the Figure 64, can be written in 

the following vector: 

 

𝑓𝑖 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝐹1,𝑖
𝑒𝑛𝑑1

𝐹2,𝑖
𝑒𝑛𝑑1

𝐹3,𝑖
𝑒𝑛𝑑1

𝑀1,𝑖
𝑒𝑛𝑑1

𝑀2,𝑖
𝑒𝑛𝑑1

𝑀3,𝑖
𝑒𝑛𝑑1

𝐹1,𝑖
𝑒𝑛𝑑2

𝐹2,𝑖
𝑒𝑛𝑑2

𝐹3,𝑖
𝑒𝑛𝑑2

𝑀1,𝑖
𝑒𝑛𝑑2

𝑀2,𝑖
𝑒𝑛𝑑2

𝑀3,𝑖
𝑒𝑛𝑑2)

 
 
 
 
 
 
 
 
 
 
 
 
 

   with i=1, …, b (5.16) 

The node forces vectors of all the beams in the model can be collected into a matrix [b x 12]:  

 

𝐹 = [
𝑓1
𝑇

…
𝑓𝑏
𝑇
] (5.17) 
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The relationship between the nodal forces acting on the end nodes of the i-th beam 𝑓𝑖  and the 

beam forces generated by them 𝑠𝑖 can be described using the following matrix: 

 𝑇 ∗ 𝑠𝑖 = 𝑓𝑖  (5.18) 

 𝑇−1 ∗ 𝑓𝑖 = 𝑠𝑖 (5.19) 

 

(

 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1)

 
 
 
 
 
 
 
 
 

∗

(

 
 
 
 
 
 
 
 
 
 
 

𝑆𝐹1
𝑒𝑛𝑑1

𝐵𝑀1
𝑒𝑛𝑑1

𝑆𝐹2
𝑒𝑛𝑑1

𝐵𝑀2
𝑒𝑛𝑑1

𝐴𝑋𝐼𝐴𝐿𝑒𝑛𝑑1

𝑇𝑂𝑅𝑄𝑈𝐸𝑒𝑛𝑑1

𝑆𝐹1
𝑒𝑛𝑑2

𝐵𝑀1
𝑒𝑛𝑑2

𝑆𝐹2
𝑒𝑛𝑑2

𝐵𝑀2
𝑒𝑛𝑑2

𝐴𝑋𝐼𝐴𝐿𝑒𝑛𝑑2

𝑇𝑂𝑅𝑄𝑈𝐸𝑒𝑛𝑑2)

 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 

𝐹1
𝑒𝑛𝑑1

𝐹2
𝑒𝑛𝑑1

𝐹3
𝑒𝑛𝑑1

𝑀1
𝑒𝑛𝑑1

𝑀2
𝑒𝑛𝑑1

𝑀3
𝑒𝑛𝑑1

𝐹1
𝑒𝑛𝑑2

𝐹2
𝑒𝑛𝑑2

𝐹3
𝑒𝑛𝑑2

𝑀1
𝑒𝑛𝑑2

𝑀2
𝑒𝑛𝑑2

𝑀3
𝑒𝑛𝑑2)

 
 
 
 
 
 
 
 
 
 
 
 

 (5.20) 

The forces on the beams described above refer to the local reference system of the beams, which 

is specific to each of them. These local reference systems are defined for each beam by a tern of 

versors. These vectors can be collected in a matrix 𝑀̅𝑖: 

 

𝑀̅𝑖 = [6 𝑥 6] = (
𝑚̅𝑖 0
0 𝑚̅𝑖

)         with           𝑚̅𝑖 = (

𝑖1𝑥 𝑖2𝑥 𝑖3𝑥
𝑖1𝑦 𝑖2𝑦 𝑖3𝑦
𝑖1𝑧 𝑖2𝑧 𝑖3𝑧

)  (5.21) 

where i1, i2 and i3 are the beam local axis. 𝑀̅𝑖 matrix allows the conversion of forces and 

moments from the local to the global reference system and vice versa. 

 𝑀̅𝑖 ∗ 𝐹𝑖,𝑙𝑜𝑐 = 𝐹𝑖,𝑔𝑙𝑜𝑏 (5.22) 

where 𝐹𝑖,𝑙𝑜𝑐 and 𝐹𝑖,𝑔𝑙𝑜𝑏 are node forces in local reference system and global reference system, 

respectively. 

These matrices can be used to convert the forces and moments expressed in the reference 

system of one beam into the reference system of a different beam. They therefore prove useful 

in convolution operations between nodes and beams and between beams. 
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Figure 65. FEM model with beam local axis 

In a structural model, the ways in which loads are applied to the beams are different. For 

example, loads can be applied distributed along the development of the beam, or forces 

concentrated at its end, or indirectly through the introduction of two-dimensional loaded 

elements, or many others. The type of load applied influences how to describe it 

mathematically. For example, in the case of loads acting on nodes, a 6-entry vector can be used 

for each node: 

 

𝑐𝑖 =

(

 
 
 
 

𝐹𝑥,𝑖
𝐹𝑦,𝑖
𝐹𝑧,𝑖
𝑀𝑥,𝑖

𝑀𝑦,𝑖

𝑀𝑧,𝑖)

 
 
 
 

   with i=1, …, n (5.23) 

where n is the number of nodes, Fx, Fy and Fz are the translational forces in X, Y and Z directions 

while Mx, My and Mz are the moments around the X, Y and Z axis. Overall, the loads of a single 

condition for the global model can be described as a matrix [n x 6]: 

 
𝐶 = [

𝑐1
𝑇

…
𝑐𝑛
𝑇
] (5.24) 

If more than one type of load has been applied to the same model, it is necessary to identify a 

unique way to describe the load state that is valid for all load types. The idea is to express loads 
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as a set of force vectors at the nodes and beam forces vectors on the beams. The vectors at the 

nodes represent the loads applied directly to the nodes or, in the case where the load is applied 

along the beams, the forces and moments transmitted from the loaded beam to the 

neighborhood. Beam forces vectors, on the other hand, allow us to describe the effect that a 

load distributed on a beam has on the beam itself. Both node and beam vectors are derived by 

solving the model in which fixed constraints have been applied at each node. 

 

 

 

a) 

b) 

c) 

Figure 66. Fixed constraints are applied to the starting model (a) at the nodes, and from the solution of this model, 
forces at the nodes are derived as reactions (b) and forces on the beams are obtained (c) 
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5.2.2  Case studies 

The different approaches analyzed for constructing the surrogate model were tested on two 

different models: the two-dimensional frame in Figure 67 and the spatial frame in Figure 68. 

 

Figure 67. Two-dimensional frame used as a case of study 

 

Figure 68. Spatial frame used as a case of study 

For both models, 80% of the load cases were used to create the surrogate model while the 

remaining 20% were used as validation tests. The error is calculated as the Mean Absolute 

Error (MAE) between the components of the forces at the beam ends predicted with the 

surrogate model and those calculated with the FEM. 

The two-dimensional frame in Figure 67 consists of a few elements, 8 nodes and 11 beams. The 

simplicity of the model made it possible to generate 1000 random load cases and thus explore 

well the possible load condition cases without computational cost issues. Loads were applied 
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as nodal forces and/or moments. The lack of stiffness in the third dimension led to loading this 

model only with forces or moments causing displacements in the plane of the frame. 

Consequently, for each node the applied load will be defined with a 6-entry vector (3 forces and 

3 moments) of which only 3 can be non-zero.  

The frame in Figure 68, compared with the previous case, represents a condition closer to a real 

situation that a designer may face. The structure consists of 56 nodes and 167 beams arranged 

spatially. The method was tested by considering both the structure subjected to 1000 load 

conditions applied as forces and moments at the nodes and 1000 load conditions as distributed 

forces on the beams.  

5.2.3  LoadsToForces module creation approaches 

The approaches analyzed for creating the LoadsToForces module are presented below. 

5.2.3.1  Low-rank stiffness matrix 

The first approach analyzed to update the forces on the beams as the loads change without the 

use of FEM involves estimating the stiffness matrix from the known FEM solution. Having used 

a linear-type solver to calculate the forces on the beams from the loads, the goal is to find a 

linear link that relates the loads to the tensional state of the beams. This function can then be 

used to estimate changes in the forces on the beams due to changes in the loads. 

The calculation of the stiffness matrix requires the construction of a matrix of loads 𝐶̅ and a 

matrix of forces on beams 𝑆̅ containing information on known nLC load cases. In the case where 

loads are applied to the model as forces and moments concentrated at the nodes, the load 

matrix can be written as follows: 

 

𝐶̅ = [𝑛𝐿𝐶  𝑥 6𝑛] = [
𝑐1,1
𝑇 … 𝑐1,𝑛

𝑇

… … …
𝑐𝑛𝐿𝐶,1
𝑇 … 𝑐𝑛𝐿𝐶,𝑛

𝑇
] (5.25) 

where 𝑐𝑖,𝑗is the vector of loads [6 x 1] applied to node j in i-th load case. If, on the other hand, 

the load is applied as uniformly distributed on the beams, 𝐶̅ became a matrix having 3b columns 

representing the value of the load on the beams in the 3 directions: 
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𝐶̅ = [𝑛𝐿𝐶  𝑥 3𝑏] = [
𝑐1,1
𝑇 … 𝑐1,𝑏

𝑇

… … …
𝑐𝑛𝐿𝐶,1
𝑇 … 𝑐𝑛𝐿𝐶,𝑏

𝑇
] (5.26) 

where in this case 𝑐𝑖,𝑗denote the load vector [3 x 1] at j-th beam in load case i. 

If, on the other hand, loads are described using the unique approach presented in section 5.2  , 

the load matrix becomes as follows: 

 

𝐶̅ = [𝑛𝐿𝐶  𝑥 (6𝑛 + 12𝑏)] = [
𝑐1,1
𝑇 … 𝑐1,𝑛+𝑏

𝑇

… … …
𝑐𝑛𝐿𝐶,1
𝑇 … 𝑐𝑛𝐿𝐶,𝑛+𝑏

𝑇
] (5.27) 

with 𝑐𝑖,𝑗 is the load vector [6 x 1] of the j-th node if 1 ≤ 𝑗 ≤ 𝑛, otherwise for 𝑛 < 𝑗 ≤ 𝑛 + 𝑏 is the 

load vector [12 x 1] of the end of beam 𝑗 − 𝑛, in i-th load case.   

The matrix with information on the forces on the beams for the various load cases is as follows: 

 

𝑆̅ = [𝑛𝐿𝐶  𝑥 12𝑏] = [
𝑠1,1
𝑇 … 𝑠1,𝑏

𝑇

… … …
𝑠𝑛𝐿𝐶,𝑏
𝑇 … 𝑠𝑛𝐿𝐶,𝑏

𝑇
] (5.28) 

where 𝑠𝑖,𝑗 is the vector of forces at ends of beam j in the load case i, as defined in the previous 

paragraph. 

Through decomposition to singular values, the pseudoinverse of the matrix of loads 𝐶̅+ is 

calculated. Therefore, the low-rank stiffness matrix can be calculated as follows: 

 𝑅̅ = [12𝑏 𝑥 6𝑛] = 𝑆̅𝑇 ∗ 𝐶̅+ (5.29) 

Results 

The performance offered by this approach was analyzed on the models in Figure 67 and in 

Figure 68. For both models, 80% of the load cases were used to calculate the low-rank stiffness 

matrix while the remaining 20% were used as validation tests. The error is calculated as the 

Mean Absolute Error (MAE) between the components of the forces at the beam ends predicted 

with the stiffness matrix and those calculated with the FEM. 
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The low-rank stiffness matrix for the two-dimensional model leads to the errors in the training 

set and validation set shown in Table 31. Since no distinction has been made between forces 

and moments in calculating the error, its unit can be N or N*mm: in either case the error can be 

considered negligible. As an example, the results provided by the FEM and calculated with the 

low-rank stiffness matrix for the case in Figure 69, which belongs to neither the training set nor 

the validation set and in which two forces were applied concentrated at nodes 4 and 5, are 

shown in Table 32.  

 Training set Validation set 

MAE 2.2194 1.8872 

Table 31. Error of the low-ran matrix for model in Figure 67 

 

B
E

A
M

 

E
N

D
 Low-rank stiffness matrix FEM Absolute error 

SF1 
[N] 

BM1 
[N*mm] 

SF2 
[N] 

BM2 
[N*mm] 

AX 
[N] 

TQ 
[N*mm] 

SF1 
[N] 

BM1 
[N*mm] 

SF2 
[N] 

BM2 
[N*mm] 

AX 
[N] 

TQ 
[N*mm] 

SF1 
[N] 

BM1 
[N*mm] 

SF2 
[N] 

BM2 
[N*mm] 

AX 
[N] 

TQ 
[N*mm] 

1 
1 0.00 0.00 -20.22 16149.54 -392.76 0.00 0.00 0.00 -20.23 16160.70 -392.99 0.00 0.00 0.00 0.01 11.16 0.23 0.00 

2 0.00 0.00 -20.22 -34402.90 -392.76 0.00 0.00 0.00 -20.23 -34424.50 -392.99 0.00 0.00 0.00 0.01 21.60 0.23 0.00 

2 

1 0.00 0.00 -48.03 19619.34 -363.27 0.00 0.00 0.00 -48.06 19630.50 -363.48 0.00 0.00 0.00 0.03 11.16 0.21 0.00 

2 0.00 0.00 -48.03 -52430.74 -363.27 0.00 0.00 0.00 -48.06 -52462.00 -363.48 0.00 0.00 0.00 0.03 31.26 0.21 0.00 

3 

1 0.00 0.00 21.00 -31031.24 -918.34 0.00 0.00 0.00 21.01 -31049.80 -918.89 0.00 0.00 0.00 0.01 18.56 0.55 0.00 

2 0.00 0.00 21.00 52958.96 -918.34 0.00 0.00 0.00 21.01 52990.60 -918.89 0.00 0.00 0.00 0.01 31.64 0.55 0.00 

4 
1 0.00 0.00 -21.22 53297.42 -917.36 0.00 0.00 0.00 -21.23 53329.20 -917.91 0.00 0.00 0.00 0.01 31.78 0.55 0.00 

2 0.00 0.00 -21.22 -31563.43 -917.36 0.00 0.00 0.00 -21.23 -31582.30 -917.91 0.00 0.00 0.00 0.01 18.87 0.55 0.00 

5 

1 0.00 0.00 50.77 -52918.90 -1146.88 0.00 0.00 0.00 50.80 -52950.60 -1147.57 0.00 0.00 0.00 0.03 31.70 0.69 0.00 

2 0.00 0.00 50.77 23234.96 -1146.88 0.00 0.00 0.00 50.80 23249.50 -1147.57 0.00 0.00 0.00 0.03 14.54 0.69 0.00 

6 

1 0.00 0.00 20.22 -32332.88 -1177.24 0.00 0.00 0.00 20.23 -32351.20 -1177.95 0.00 0.00 0.00 0.01 18.32 0.71 0.00 

2 0.00 0.00 20.22 18224.35 -1177.24 0.00 0.00 0.00 20.23 18234.00 -1177.95 0.00 0.00 0.00 0.01 9.65 0.71 0.00 

7 
1 0.00 0.00 29.49 -54022.33 27.81 0.00 0.00 0.00 29.51 -54055.00 27.83 0.00 0.00 0.00 0.02 32.67 0.01 0.00 

2 0.00 0.00 29.49 63945.65 27.81 0.00 0.00 0.00 29.51 63984.00 27.83 0.00 0.00 0.00 0.02 38.35 0.01 0.00 

8 

1 0.00 0.00 -30.36 65870.63 30.55 0.00 0.00 0.00 -30.38 65909.80 30.57 0.00 0.00 0.00 0.02 39.17 0.02 0.00 

2 0.00 0.00 -30.36 -55567.94 30.55 0.00 0.00 0.00 -30.38 -55600.80 30.57 0.00 0.00 0.00 0.02 32.86 0.02 0.00 

9 

1 0.00 0.00 0.98 -1138.07 -742.79 0.00 0.00 0.00 0.98 -1138.55 -743.23 0.00 0.00 0.00 0.00 0.48 0.45 0.00 

2 0.00 0.00 0.98 338.48 -742.79 0.00 0.00 0.00 0.98 338.61 -743.23 0.00 0.00 0.00 0.00 0.13 0.45 0.00 

10 
1 0.00 0.00 14.89 -21399.52 935.08 0.00 0.00 0.00 14.90 -21412.30 935.64 0.00 0.00 0.00 0.01 12.78 0.56 0.00 

2 0.00 0.00 14.89 42211.84 935.08 0.00 0.00 0.00 14.90 42237.00 935.64 0.00 0.00 0.00 0.01 25.16 0.56 0.00 

11 

1 0.00 0.00 -14.70 41424.91 931.03 0.00 0.00 0.00 -14.70 41449.70 931.59 0.00 0.00 0.00 0.01 24.79 0.55 0.00 

2 0.00 0.00 -14.70 -21355.49 931.03 0.00 0.00 0.00 -14.70 -21368.30 931.59 0.00 0.00 0.00 0.01 12.81 0.55 0.00 

Table 32. Result of comparing the result of low-rank stiffness matrix and that given by FEM for the case in Figure 69 
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Figure 69. Two-dimensional frame loading conditions in which the low-rank stiffness matrix result was compared with that given 
by the FEM 

For the spatial frame loaded with forces at the nodes, the stiffness matrix was derived by 

describing the loads as only forces at the nodes. The errors on the training set and validation 

set are given in Table 33 for different rcond, corresponding to the tolerance values of the 

singular values used in the calculation of the pseudoinverse of the load matrix. 

 MAE 

rcond TRAINING TEST 

10^(-15) 25301.53 30439.57 

10^(-11) 25301.53 30439.57 

10^(-10) 754.2961 846.31 

10^(-9) 754.2961 846.31 

10^(-8) 503.3905 579.3168 

10^(-7) 449.7696 519.4872 

10^(-6) 446.1117 518.8887 

Table 33. Error of the low-rank matrix for model in Figure 68 with 1000 load cases in which the loads are applied as 
concentrated forces and moments at nodes 

In the case where the spatial model is loaded with distributed loads, the calculation of the low-

rank stiffness matrix was tried using two types of load matrices. In one case, the load matrix 

was built by assigning to each beam 3 parameters describing the value of the distributed load 

acting on them in the three directions of the reference system. The use of this load matrix led 

to results reported in Table 34. In the other case, the unique approach was used to describe the 

loads, and the results are shown in Table 35.  
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The two types of load matrices led to the definition of a low-rank stiffness matrix with 

acceptable error values. By using the distributed load parameters directly, the error is lower. 

However, the unique approach has also led to acceptable errors and offers the advantage that 

it can be applied whatever the load condition. 

 

 MAE 

rcond TRAINING TEST 

10^(-15) 34.9309 46.7875 

10^(-7) 34.9309 46.7875 

10^(-5) 34.9309 46.7875 

Table 34. Error of the low-rank matrix for model in Figure 68 with 1000 load cases applied as beams distributed loads. The loads 
were described with 3 parameters per beam representative of the value of the loads distributed in the 3 directions of the 

reference system. 

 

 MAE 

rcond TRAINING TEST 

10^(-15) 32366736.0 31352478.0 

10^(-7) 438892.8 421826.2 

10^(-6) 3848.0 7760.8 

10^(-5) 3848.0 7760.8 

10^(-4) 870459.4 2283232.8 

Table 35. Error of the low-rank matrix for model in  Figure 68 with 1000 load cases applied as beams distributed loads. The loads 
were described using the unique approach. 

 

5.2.3.2  MLP model 

The second approach to creating surrogate model involves the development of an MLP-type 

Neural Network that takes input loads at the nodes and returns output forces at the ends of the 

beams. The input data for the MLP is the load matrix, having for each row the information about 

a single load case. The number of columns in the matrix, however, depends on the mode chosen 

for describing the loads. The output matrix, on the other hand, contains information on the 

forces at the ends of the beams for each loading condition and has size [nLC x 12b], where b is 

the number of beams and nLC is the number of load cases. 
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Different network architectures were analyzed. In the case where only one hidden layer of 

linear type is used, the relationship described by the MLP model between nodal loads and forces 

on the beams is of linear type, such as that sought through using the low-rank stiffness matrix. 

Comparison with architectures having multiple intermediate layers of linear type interspersed 

with nonlinear layers allows the linearity of the problem to be evaluated. 

The use of the MLP network was tested with the two-dimensional frame. The load was 

described as vectors of forces and moments at the nodes, and thus the input matrix is [nLC x 6n]. 

Figure 70 and Figure 71 show the results for two networks having 48 intermediate nodes, 

which corresponds to the number of variables used to describe a model load condition (6n). 

The two networks differ in the presence or absence of nonlinearities in the inner layers. It is 

observed that the introduction of nonlinearities increases the computational burden without 

benefiting the network in learning. This is in agreement with the fact that the tensional state on 

the beams was calculated by a linear type analysis performed on a FEM model. The errors 

obtained with the MLP method are acceptable but higher than those obtained with the low-

rank stiffness matrix. In addition, training the network requires much greater computational 

resources than those required for estimating the low-rank stiffness matrix. For these reasons, 

this approach was discarded. 

 

 

Figure 70. Loss trend during MLP training in the bidimensional frame 
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Figure 71. Error trend of MLP in validation set in the bidimensional frame 

5.2.3.3  GNN model 

Frame models lend themselves well to being represented with a graph structure, in which 

nodes indicate structural entities while edges represent the relationships between them. This 

makes it possible to evaluate the construction of a GNN-type model, i.e., a network in which 

input and output quantities are attributes associated with the nodes in the network, and which 

also exploits the relationships existing between the nodes for the construction of the map 

between inputs and outputs.  

The model to be built represents a relationship between the loads on the FEM nodes and the 

forces on the beams. We consider the case where the loads are applied as concentrated forces 

and moments at the FEM nodes. Therefore, the load state of the entire model in a load case can 

be described as a vector of dimension 6n, where n is the number of FEM nodes in the entire 

model. The output of the network, on the other hand, represents the forces at the ends of the 

beams and thus can be written as a vector of dimension 12b, where b is the number of beams 

in the model. 

Two possible approaches were evaluated: construction of a single model based on a 

heterogeneous graph in which the nodes are both FEM nodes and beams, and construction of 

two models based on two separate graphs, one for FEM nodes and one for beams, to compute 

the encoding matrix and the decoding matrix. 
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5.2.3.4  GNN model with heterogeneous graph 

The neural network for mapping nodal forces to stresses was named GNNLoadsToForces. 

Different architectures for building this network have been analyzed. This study was conducted 

on the two-dimensional frame in  Figure 67. 

 

Figure 72. Heterogeneous graph for model in Figure 67 

The network is constructed based on the heterogeneous graph in which there are two 

categories of nodes:  

• FEM nodes, to which loads are assigned 

• beams, to which stresses are associated at various points along their length.  

To facilitate network learning, input and output data were scaled and normalized by type.  

The information contained in each FEM node is transmitted to the beams terminating at that 

node. The first layer of the network is thus a convolution that converts the loads from the FEM 

nodes to the beams connected to them. The second layer is a convolution between beams 

neighboring. Two possible configurations were evaluated for subsequent layers: an alternation 

of linear and nonlinear layers or an alternation of convolutional layers with nonlinear layers. 

The nonlinear layers are LeakyReLU functions (Figure 73), which are characterized by two 

linear segments with different slopes between positive and negative values. Thus, compared 

with the ReLU function, cancellation of negative input values does not occur. 
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Figure 73. LeakyReLU function 

Two possible functions were considered as loss: Mean Absolute Error (MAE) and Mean Square 

Error (MSE). From the graph in Figure 74, a better performance of network learning and 

generalization of results is observed using MAE as a loss function than MSE. Therefore, it was 

chosen to use MAE as the function to lead the network learning. This function contains within 

it the differences between the forces and moments calculated using the network and the exact 

ones. Since forces and moments are two quantities of different types, it was considered to 

introduce a scaling factor to be applied to the estimated and exact moments to make the error 

of moments comparable with that of forces for loss calculation. An 80% reduction was chosen 

to be applied to the moments. The effects of this scaling can be seen in Figure 75: a reduction in 

MAE (calculated in both cases without scaling) is observed in both training and testing when 

the network is trained with the loss function containing the reductive factor for moments. 

 

Figure 74. Analysis of MAE and MSE as loss function in training and test for the bidimensional frame 
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Figure 75. Effect of scaling between errors of forces and moments using MAE as loss function in two-dimensional frame 

 

The effects of the type of intermediate layers used in the network architecture can be seen in 

Figure 76. From the graph, greater difficulties are observed in the case where convolutions have 

not been included in the inner layers. 

 

 

Figure 76. Comparison of network composed of convolutional layers and nonlinear layers and composed of linear and nonlinear 
layers. In both cases, the hidden layers have dimension k=32 and there are 5 packets of inner layers following the initial convolution 
consisting of convolutive/linear layer + nonlinear layer. The results refer to the two-dimensional frame. 
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Nodes-beams convolution 

The first layer of the network describes a convolution in which the message is transmitted from 

the FEM nodes to the beams converging on it. For each loading condition, the input of the layer 

is the matrix X [6n x 1], which represents the load applied to the structure in terms of 

concentrated forces and moments acting on the n FEM nodes. Instead, the output of the layer is 

a matrix Y of size [12b x k], where b is the number of beams while k is the dimension of the 

subspace used for the problem description. The convolution is based on an adjacency matrix 

[12b x 6n] that expresses for each beam what the end nodes are and also allows the 

transformation of forces from the global to the local reference system: 

 
𝐴𝑑𝑗 = [12𝑏 𝑥 6𝑛] = (

𝑎11 … 𝑎1𝑛
… … …
𝑎𝑏1 … 𝑎𝑏𝑛

) (5.30) 

 𝑎𝑖𝑗 = [12 𝑥 6] = (
𝑎𝑖𝑗,1
𝑎𝑖𝑗,2

) (5.31) 

 
𝑎𝑖𝑗,1 = [6 𝑥 6] = {

06𝑥6     𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠𝑛
′𝑡 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑒𝑛𝑑 1 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

𝐼2𝑥2⊗ 𝑚̅𝑖
−1    𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑒𝑛𝑑 1 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

 
(5.32) 

 
𝑎𝑖𝑗,2 = [6 𝑥 6] = {

06𝑥6     𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠𝑛
′𝑡 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑒𝑛𝑑 2 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

𝐼2𝑥2⊗ 𝑚̅𝑖
−1    𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑒𝑛𝑑 2 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

 
(5.33) 

where 𝑚̅𝑖 is the [3 x 3] matrix to convert forces and moments from local reference system of 

beam i to global reference system. 

The parameters to be learned during network training are contained in mask matrix Q [12 x 6] 

and weight matrix W [1 x k]. The nodal forces and moments that result from the convolution 

between nodes and beams are converted to beam forces through the T matrix defined in the 

section 5.2.1  . Overall, the convolutional layer can be expressed in mathematical terms as 

follows: 

 𝑌 = [12𝑏 𝑥 𝑘] = (𝐼𝑏 𝑥 𝑏⊗𝑇−1) ∗ ((𝐼𝑏 𝑥 𝑏⊗𝑄)𝐴𝑑𝑗 ∗ 𝑋 ∗ 𝑊) (5.34) 
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Beams-beams convolution 

In these convolutional layers, each beam transmits the message to other beams belonging to 

their neighborhood. The transmission of forces requires that they undergo a change of 

reference system between a starting beam and the finishing beam. It can be carried out using 

the matrix Mi, which describes the conversion between local reference systems of beam i and 

global reference systems. Passing through the global reference system, it is possible to express 

the components of forces and moments transmitted from beam j, and thus initially expressed 

in its reference system, to beam i in the latter's reference system. 

 (𝑀̅𝑖
−1𝑀̅𝑗)𝑓𝑗 = −𝑓𝑖_𝑗  (5.35) 

 𝑀̅𝑗𝑖 = 𝑀̅𝑖
−1𝑀̅𝑗 (5.36) 

 𝑀̅𝑗𝑖 ∗ 𝑓𝑗 = −𝑓𝑖_𝑗  (5.37) 

where 𝑀̅𝑖  and 𝑀̅𝑗 are respectively the reference system conversion matrices of beam i and beam 

j, while fj represents the forces and moments transmitted from beam j to beam i expressed in 

the local reference system of the beam j. In the equation (5.37), the matrix 𝑀̅𝑗𝑖 allows conversion 

from the local reference system of the j-th beam to that of the i-th beam while 𝑓𝑖_𝑗  is the vector 

of forces and moments transmitted from the j-th beam to the i-th beam in the local reference 

system of beam i. 

By denoting by 𝑠𝑗  the stresses on the j-th beam and using expressions (5.18) and (5.19) for the 

conversions between the forces at the nodes and the beam forces, it is possible to express in 

mathematical terms the stresses 𝑠𝑖_𝑗  transmitted from beam j to beam i: 

 𝑓𝑖_𝑗 = −(𝑀𝑖
−1𝑀𝑗)𝑓𝑗 = −(𝑀𝑖

−1𝑀𝑗)(𝑇 ∗ 𝑠𝑗) = 𝑇 ∗ 𝑠𝑖_𝑗  (5.38) 

 𝑠𝑖_𝑗 = −𝑇
−1(𝑀𝑖

−1𝑀𝑗)(𝑇 ∗ 𝑠𝑗) = 𝐻 ∗ 𝑠𝑗  (5.39) 
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 𝐻 = −𝑇−1(𝑀𝑖
−1𝑀𝑗)𝑇 (5.40) 

These remarks are used in the definition of the sparse matrix transformation graph E [12b x 

12b]: 

 
𝐸 = (

𝑒11 … 𝑒1𝑏
… … …
𝑒𝑏1 … 𝑒𝑏𝑏

) (5.41) 

where 𝑒𝑖𝑗 are [12 x 12] matrix defining stress transmission between beam i and beam j. The 

correspondences between the entries [k, q] of the E matrix and the components of the beam 

forces are shown in the Table 36. 

Row/column entries of eij matrix Beam force 

0 𝑆𝐹1
𝑒𝑛𝑑1 

1 𝐵𝑀1
𝑒𝑛𝑑1 

2 𝑆𝐹2
𝑒𝑛𝑑1 

3 𝐵𝑀2
𝑒𝑛𝑑1 

4 𝐴𝑋𝐼𝐴𝐿𝑒𝑛𝑑1 

5 𝑇𝑂𝑅𝑄𝑈𝐸𝑒𝑛𝑑1 

6 𝑆𝐹1
𝑒𝑛𝑑2 

7 𝐵𝑀1
𝑒𝑛𝑑2 

8 𝑆𝐹2
𝑒𝑛𝑑2 

9 𝐵𝑀2
𝑒𝑛𝑑2 

10 𝐴𝑋𝐼𝐴𝐿𝑒𝑛𝑑2 

11 𝑇𝑂𝑅𝑄𝑈𝐸𝑒𝑛𝑑2 
Table 36. Entries of 𝑒𝑖𝑗 matrix 

The definition of the submatrices 𝑒𝑖𝑗 is given in the equation (5.42). 

 

𝑒𝑖𝑗 = [12 𝑥 12] =

{
 
 
 
 

 
 
 
 (
𝑇−1 ∗ 𝑀𝑖

−1 ∗ 𝑀𝑗 ∗ 𝑇 06𝑥6
06𝑥6 06𝑥6

)      𝑓𝑟𝑜𝑚 𝑒𝑛𝑑 1 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑗 𝑡𝑜 𝑒𝑛𝑑 1 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

(
06𝑥6 06𝑥6

𝑇−1 ∗ 𝑀𝑖
−1 ∗ 𝑀𝑗 ∗ 𝑇 06𝑥6

)       𝑓𝑟𝑜𝑚 𝑒𝑛𝑑 1 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑗 𝑡𝑜 𝑒𝑛𝑑 2 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

(
06𝑥6 𝑇−1 ∗ 𝑀𝑖

−1 ∗ 𝑀𝑗 ∗ 𝑇

06𝑥6 06𝑥6
)       𝑓𝑟𝑜𝑚 𝑒𝑛𝑑 2 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑗 𝑡𝑜 𝑒𝑛𝑑 1 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

(
06𝑥6 06𝑥6
06𝑥6 𝑇−1 ∗ 𝑀𝑖

−1 ∗ 𝑀𝑗 ∗ 𝑇
)       𝑓𝑟𝑜𝑚 𝑒𝑛𝑑 2 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑗 𝑡𝑜 𝑒𝑛𝑑 2 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑖

 (5.42) 
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The output 𝑋𝑖𝑗 from node j and directed to node i should be converted from the local reference 

system of node j-th to that of node i-th. The transformation matrix between these two reference 

systems is denoted by Rij. The result from change of reference system is multiplied on the left 

by the Q matrix and on the right by the W matrix. While the latter is a matrix of weights of size 

[k x k], the Q matrix [12 x 12] represents the mask to be learned. Both the W matrix and the Q 

matrix are computed by GNN during training. Thus, the message Mij transmitted between the 

two nodes is as follows: 

 𝑀𝑖𝑗 = 𝑄𝑅𝑖𝑗𝑋𝑖𝑗𝑊 (5.43) 

Taking advantage of the property of Kronecker's product such that: 

 (𝑀 ⊗𝑁)(𝐶 ⊗ 𝐷) = (𝑀𝐶)⊗ (𝑁𝐷) (5.44) 

by setting M=Ib x b, N=Q, C=Adj and D=R, we obtain: 

 (𝐼𝑏 𝑥 𝑏⊗𝑄)(𝐴𝑑𝑗 ⊗ 𝑅) = 𝐴𝑑𝑗 ⊗ (𝑄𝑅) (5.45) 

The sum of QRij from all nodes in the neighborhood can be calculated as (𝐼 ⊗ 𝑄)𝐸. The message 

transmitted from the whole neighborhood to the i-th node at layer h can be written in matrix 

form: 

 𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
ℎ = [12𝑏 𝑥 𝑘] = (𝐼𝑏 𝑥 𝑏⊗𝑄)𝐸𝑋𝑊 (5.46) 

where we denote by b the number of beams. To this must be added the contribution of self-

loops, for which the transformation matrix coincides with the identity matrix: 

 𝑀𝑠𝑒𝑙𝑓−𝑙𝑜𝑜𝑝
ℎ = [12𝑏 𝑥 𝑘] = (𝐼𝑏 𝑥 𝑏⊗𝑄𝑠𝑙)𝑋𝑊𝑠𝑙 (5.47) 

where Qsl and Wsl, respectively of dimensions [12 x 12] and [k x k], are the matrices of weights 

specific to self-loops.  
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The output of the h layer is then the sum of the messages coming from the neighborhood with 

those coming from the nodes themselves: 

 𝑌ℎ = [12𝑏 𝑥 𝑘] = 𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
ℎ +𝑀𝑠𝑒𝑙𝑓−𝑙𝑜𝑜𝑝

ℎ = (𝐼𝑏 𝑥 𝑏⊗𝑄)𝐸𝑋𝑊 − (𝐼𝑏 𝑥 𝑏⊗𝑄𝑠𝑙)𝑋𝑊𝑠𝑙 (5.48) 

5.2.3.5  GNN model with twin approach 

The mapping from load space to stress space requires the definition of an encoding matrix A 

describing the relationship between load space and space of size k and a decoding matrix B 

representing the function from space of size k to beam forces space.  

Since the loads are associated with each node of the FEM model while the beam forces are 

related to the beams, the two matrices are derived on two separate graphs, one built on the 

FEM nodes (NodeGraph) while the other is built on the beams (BeamGraph). The matrices are 

calculated by training two GNNs in parallel, NodeGNN and BeamGNN, which are built on the two 

separate graphs and which use the same loss function. For i-th result case: 

 𝐶𝑖 ∗ 𝐴 = 𝐻𝑖  (5.49) 

 𝑆𝑖 ∗ 𝐵 = 𝐹𝑖  (5.50) 

where 𝐶𝑖 and 𝑆𝑖 are the loads matrix and the beam forces matrix, respectively. The loss function 

for training the two graphs is as follows: 

 𝑙𝑜𝑠𝑠 = 𝑀𝐴𝐸(𝐵 ∗ 𝐴 ∗ 𝐶𝑖 − 𝑆𝑖) (5.51) 

Similar to the heterogeneous graph-based network in paragraph 5.2.3.4  , both GNNs are 

composed of a succession of convolution layers, in which contributions from the neighborhood 

are added together, and non-linear LeakyReLU-type layers. The transmission of messages 

between graph nodes is controlled by a transformation matrix E, which is the result of 

combining the adjacency matrix Adj and the transformation matrix R between local element 

reference systems. 
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NodeGNN 

NodeGNN is the network used to calculate the encoding matrix. It is built on the graph 

NodeGraph with the FEM nodes of the structural calculation model as nodes. Edges connect 

nodes for which there is a beam having the two nodes as ends. Figure 77 and Figure 78 show, 

respectively, the graphs for the frames in  Figure 67 and in Figure 68. 

 

Figure 77. NodeGraph for two-dimensional frame in Figure 67 

 

Figure 78. NodeGraph for spatial frame in Figure 68 
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The transformation matrix in this graph is obtained as a combination of the adjacency matrix 

Adj(N) of shape [n x n] with the transformation matrix between two connected nodes. Since the 

loads associated with each node in this graph are expressed in the global reference system of 

the model, the rotation matrix R(N) ([6 x 6]) turns out to be the same for any pair of nodes and 

is equal to an identity matrix. Therefore, the matrix 𝐸(𝑁) ([6n x 6n]) can be calculated through 

the product of Kronecker: 

 𝐸(𝑁) = [6𝑛 𝑥 6𝑛] = 𝐴𝑑𝑗(𝑁)⊗𝑅(𝑁)    (5.52) 

with 

 
𝐴𝑑𝑗(𝑁)[𝑘, 𝑝] = {

0    𝑖𝑓 ∄ 𝑎 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑘 𝑎𝑛𝑑 𝑝 𝑎𝑠 𝑛𝑜𝑑𝑒 𝑒𝑛𝑑𝑠
1    𝑖𝑓 ∃ 𝑎 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑘 𝑎𝑛𝑑 𝑝 𝑎𝑠 𝑛𝑜𝑑𝑒 𝑒𝑛𝑑𝑠

 
(5.53) 

 𝑅(𝑁) = 𝐼6𝑥6 (5.54) 

𝐸(𝑁) matrix can be re-written as follows: 

 

𝐸(𝑁) = (
𝑒11
(𝑁) … 𝑒1𝑛

(𝑁)

… … …

𝑒𝑛1
(𝑁) … 𝑒𝑛𝑛

(𝑁)
) (5.55) 

with 

 
𝑒𝑖𝑗
(𝑁)

= [6 𝑥 6] = {
06𝑥6      𝑖𝑓 ∄ 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑖 − 𝑡ℎ 𝑎𝑛𝑑 𝑗 − 𝑡ℎ 𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑒𝑛𝑑𝑠 
𝐼6𝑥6      𝑖𝑓 ∃ 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑖 − 𝑡ℎ 𝑎𝑛𝑑 𝑗 − 𝑡ℎ 𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑒𝑛𝑑𝑠

 (5.56) 

The eigenvectors associated with the 6 smallest eigenvalues of the Laplacian of adjacency 

matrix Adj(N) were used as input data: 

 𝑋(𝑁) = [𝑛 𝑥 6] (5.57) 

With a reshape, this input matrix can be written as a matrix of shape [6n x 1]. 



 

117 
 

BeamGNN 

BeamGNN is the network used to calculate the decoding matrix. It is built on the graph 

BeamGraph with the beams of the structural model as nodes. Figure 79 and Figure 80 show, 

respectively, the graphs for the frames in  Figure 67 and in Figure 68. 

 

Figure 79. BeamGraph for two-dimensional frame in Figure 55 

 

Figure 80. BeamGraph for spatial frame in Figure 56 
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As in the NodeGraph case, the eigenvectors associated with the smallest eigenvalues of the 

Laplacian of the graph adjacency matrix [b x b] were used as input data. The output features of 

each beam, on the other hand, express the tensional state at beam ends.  

The transformation matrix to be used for convolution in this graph is the E matrix for beams-

beams convolution presented in section 5.2.3.4  . 

Network architecture 

The network consists of a succession of convolution layers and nonlinear LeakyReLU-type 

layers. Problems of gradient vanishing necessitated the adoption of a skip connection type 

structure, in which the outputs of one convolutional layer are concatenated to the inputs of the 

previous layer to be used as inputs for the next convolution. 

The input matrix of the NodeGNN is [n x 6] while that of the BeamGNN is [b x 12]. They are 

rewritten respectively in the form [6n x 1] and [12b x 1].  Since the input data are not referenced 

to the local reference system of each element, we can assume in the first layer: 

 𝐸0 = 𝐴𝑑𝑗 ⊗ 𝐼 (5.58) 

where I is the identity matrix of dimension [n x n] for NodeGNN and [b x b] for BeamGNN. 

The output of the first layer of the network can be written as follows: 

 𝑌0 = 𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
0 +𝑀𝑠𝑒𝑙𝑓−𝑙𝑜𝑜𝑝

0 = (𝐼 ⊗ 𝑄0)(𝐴⊗ 𝐼𝑝 𝑥 𝑝)𝑋
0𝑊0 − (𝐼 ⊗ 𝑄𝑠𝑙

0)𝑋0𝑊𝑠𝑙
0 =

= (𝐴𝑑𝑗 ⊗ 𝑄0)𝑋0𝑊0 − (𝐼𝑏 𝑥 𝑏⊗𝑄𝑠𝑙
0)𝑋0𝑊𝑠𝑙

0 

(5.5

9) 

The matrices of weights W0 and Wsl0 have shape [1 x k]. Instead, the matrices Q0 and Qsl0 have 

size [6 x 6] and [12 x 12] for NodeGNN and BeamGNN, respectively. The parameter values 

contained in the matrices W0, Wsl0, Q0 and Qsl0 must be learned during training. The output 

matrix obtained from this first layer will then have the shape [6n x 1] and [12b x 1] for NodeGNN 

and BeamGNN, respectively. 

The convolutions of the inner layers, on the other hand, have a structure similar to that adopted 

for the convolution between beams in the heterogeneous graph. 
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 𝑌ℎ = [𝑝 𝑥 2ℎ−1] = 𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
ℎ +𝑀𝑠𝑒𝑙𝑓−𝑙𝑜𝑜𝑝

ℎ = (𝐼 ⊗ 𝑄ℎ)𝐸𝑋ℎ𝑊ℎ − (𝐼 ⊗𝑄𝑠𝑙
ℎ)𝑋ℎ𝑊𝑠𝑙

ℎ (5.60) 

with h=1, 2, …. and p=6n for NodeGNN while p=12b for BeamGNN. 

The size of the input matrix varies at each layer being the result of combining outputs from 

previous layers: 

 𝑋ℎ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋ℎ−1, 𝑂ℎ−1) = [𝑝 𝑥 2ℎ−1] (5.61) 

The matrices Qh and Qslh have equal shape in each convolutional layer, equal to [6 x 6] and [12 

x 12] for NodeGNN and BeamGNN, respectively. The size of the weight matrices Wh and Wslh, 

instead, increases with the depth of the layer and is equal to [2ℎ−1 x 2ℎ−1]. 

The numerosity of the inner layers is such that a subspace of the chosen dimension k is reached. 

The last convolution layer, on the other hand, has the task of transforming the final outputs of 

the network into the [6n x 1] and [12b x 1] forms. It has the following expression: 

 𝑌𝑙𝑎𝑠𝑡 = [𝑝 𝑥 1] = (𝐼 ⊗ 𝑄𝑙𝑎𝑠𝑡)𝑋𝑙𝑎𝑠𝑡𝑊𝑙𝑎𝑠𝑡  (5.62) 

where 𝑄𝑙𝑎𝑠𝑡 have size [6 x 6] and [12 x 12] for NodeGNN and BeamGNN, respectively, while 

𝑊𝑙𝑎𝑠𝑡  is [k x 1]. 

Loss function 

The two GNN networks, characterized by a sequence of convolution layers and nonlinear 

LeakyReLU layers, lead to the calculation of the encoding A [6n x k] and decoding B [12b x k] 

matrices. The former relates the space of loads to space of size k while the latter relates beam 

forces to space of size k. The two GNNs are trained in parallel but using the same loss for 

updating the weight matrices at each epoch. The loss is the MAE function that measures the 

error between the beam forces calculated by multiplying the loads with the encoding and 

decoding matrices and the actual beam forces 𝑆𝑖. For i-th result case we can write: 

 𝐿𝑜𝑠𝑠 = 𝑀𝐴𝐸(𝐵 ∗ 𝐴𝑇 ∗ 𝐶𝑖 − 𝑆𝑖) (5.63) 
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Results of Twin GNN 

The twin GNN approach was tested on the two-dimensional frame for different dimensions of 

problem space k. The results of the analysis are shown in Figure 81 and in Figure 82. It is 

observed that after a sharp decline in the error in the first epochs, the value of the loss remains 

constant for several epochs and then undergoes another sharp decline until a new plateau is 

reached. The trend of the error detected in the validation set mimics that of the loss calculated 

in the training set. The change in the dimension of subspace k does not lead to important 

differences in the error values found in the two plateaus, while it influences the epoch at which 

starting from the first plateau the reduction of error begins until the second plateau is reached. 

More precisely, an increase in the dimension of subspace k leads to an increase in the number 

of epochs in which the first plateau persists. Despite the small size of the structure under 

consideration, the approach was computationally onerous, taking a long time to achieve 

convergence. This makes it difficult to use this approach with more complex models. Indeed, 

this approach was also tried with the spatial frame subjected to concentrated loads using k=16, 

and the results are shown in Figure 83 and Figure 84. Compared with the two-dimensional 

frame case, increasing the size of the graphs associated with the structure resulted in a 

significant increase in the computation time required for each epoch. Furthermore, in the first 

1400 epochs there was only one major reduction in error during the first ten epochs, after 

which the error settled to a plateau, maintaining high and unacceptable values. 

 

Figure 81. Trend of twin GNN loss for two-dimensional structure for different dimensions of space k 
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Figure 82. Error trend of twin GNN in the validation set for two-dimensional structure for different dimensions of space k 

 

Figure 83. Trend of twin GNN loss for spatial frame with concentrated loads for k=16 

 

Figure 84. Error trend of twin GNN in the validation set for spatial frame with concentrated loads for k=16 
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5.2.4  Comparing approaches 

Table 37 shows the errors found in the training set and validation set during the construction 

of surrogate models for the two-dimensional frame. The lowest error was detected with the 

low-rank stiffness matrix. This method is also the one that requires the lowest computational 

cost and construction time, since there is no need to perform an iterative process for training 

the model. 

APPROACH ERROR TRAINING SET ERROR VALIDATION SET 

Low-rank stiffness matrix 2.219 1.887 

MLP 226.272 304.000 

Heterogeneous graph 1726.221 1855.000 

Twin GNN 2578.184 6061.000 

Table 37. Errors of different approaches for constructing the surrogate model for the bidimensional frame 

5.3  MLPsectionOpt module 

The choice of section to be assigned to each beam must be such that it can be used as much as 

possible. This results in finding the section with which the entity has a utilization rate at lower 

but close to unity. In this thesis, the phenomena of oligocyclic and polycyclic fatigue, plasticity 

and fracture toughness are left out. Therefore, we only consider strength-related checks 

derived from the standards. These verifications depend on the forces acting on the beam cross-

section. In addition, in the case of compressed elements, the phenomenon of buckling also 

comes into play, which also depends on the length of the beam and the moment diagrams along 

the development of the beam. 

As explained in the previous paragraphs, structural checks also depend on the type of section. 

In this thesis, Circular Hollow Sections (CHS) were considered, so the structural verifications 

are similar to those in the section 4.4.1   

It is necessary to build a mathematical model that for a given set of forces acting on a beam, 

proposes the section that provides the desired utilization rate. A Multi-Layer Perceptron (MLP) 

Neural Network was chosen for this purpose. The network consists of a succession of linear and 

nonlinear ReLU-type layers. The type of problem to be solved is a classification, that is, the 
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section obtained in output is chosen from within a database of available sections. The loss 

function with which the network is trained is the Cross-Entropy. 

The network has 20 input data, 18 of which indicate the forces on the beams at the ends and 

mid-lengths, while the other two define the length of the beams and the utilization rate. To 

facilitate learning the network, the input data are scaled and normalized. 

5.3.1  Database 

The choice of database is particularly important to obtain good results from using the model. It 

should be large enough to cover all possible scenarios. It should also be suitable in relation to 

the structure to be optimized. In fact, the forces and the size of the beams of that structure, 

which will become the input data when using the model, should fall within the space analyzed 

by the network model. The database can be obtained using pre-existing designs: in this way it 

is possible to take advantage of the optimization reasoning carried out earlier. However, this 

requires that there be a sufficiently large number of preexisting designs from which to acquire 

data and that among these there are instances similar to the structure to be optimized. 

Alternatively, the database can be created ad hoc: in this case it is advisable to exploit 

techniques that improve sampling in order to obtain a better-quality database. 

An ad hoc database was created for the two-dimensional frame analysis, using the forces on the 

beams of the starting model in the various load cases and calculating the utilization rate for 

various sections and member lengths. Sampling was then limited to the choice of m section-

length element pairs for each beam for each load case. Two different statistical sampling 

methods were evaluated: Uniform Distribution and Latin Hypercube. The distribution obtained 

with the two types of sampling is shown in Figure 85 and Figure 86. 
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Figure 85. Sampling of length-section pairs obtained with Uniform Distribution 

 

 

Figure 86. Sampling of length-section pairs obtained with Latin Hypercube 
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5.3.2  Training 

The MLP network for defining the beam section is trained using a database of known cases or 

a database created ad hoc, as discussed in the previous section.  The database was divided to 

use 80% as a training set and 20% as a test set. Different network architectures were tested 

during the training phase, obtained by changing the number of layers making up the network 

(n) and the size of the internal layers (k). For each configuration, the loss trend in the training 

set over epochs was analyzed. The loss function used is the Cross-Entropy. In the test set, the 

number of incorrect predictions is evaluated against the total size of the test set. In addition, for 

incorrect predictions, an average of how much the predicted class deviates from the correct 

class are calculated. 

For the two-dimensional frame in Figure 67, the networks obtained using the database created 

with Uniform Distribution and that obtained with Latin Hypercube sampling were evaluated. 

The graphs in Figure 87, Figure 88 and Figure 89 show the error assessment metrics related to 

the database with uniform sampling. For Latin Hypercube sampling, on the other hand, the 

performances observed in the training are shown in the graphs in from the Figure 90 to Figure 

95. It can be seen from the graphs that too few nodes in the hidden layers causes a slowdown 

in network learning. However, it is not advisable to increase the number of nodes in the inner 

layers too much because, in addition to leading to an increase in computational cost, beyond a 

certain size, no more reductions in the number of epochs needed for learning convergence are 

observed. Similarly, too few layers in the network leads to a slowdown in learning speed. 

However, increasing the number of network layers too many leads to more unstable learning 

as well as increased computational cost. With both databases, the optimal network architecture 

is similar: n=3 pairs of inner layers of linear and ReLU-type and k=256 size of inner layers. 

Metric to evaluate network performance during training also provides similar results for the 

two databases. 



 

126 
 

 

Figure 87. Training performance for different network architectures created with Uniform Distribution sampling for two-
dimensional frame optimization in Figure 67 

 

Figure 88. Incorrect predictions in test set for different network architectures. Data are referred to Neural Networks created with 
Uniform Distribution sampling for two-dimensional frame optimization in Figure 67 

 

Figure 89. Mean number of difference classes between target and network output for items of test set with incorrect predictions. 
Data are referred to Neural Networks created with Uniform Distribution sampling for two-dimensional frame optimization in 
Figure 67 
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Figure 90. Training performance for different number of hidden layers (n) with inner layers having k=256 nodes. The database 
used is created with Latin Hypercube sampling for two-dimensional frame optimization in Figure 67 

 

Figure 91. Training performance for different number of nodes in the inner layers (k) with the number of layers equal to 5. The 
database used is created with Latin Hypercube sampling for two-dimensional frame optimization in Figure 67 

 

Figure 92. Incorrect predictions in test set for different number of hidden layers (n) with inner layers having k=256 nodes. The 
database used is created with Latin Hypercube sampling for two-dimensional frame optimization in Figure 67 
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Figure 93. Incorrect predictions in test set for different number of nodes in the inner layers (k) with the number of layers equal to 
5. The database used is created with Latin Hypercube sampling for two-dimensional frame optimization in Figure 67 

 
Figure 94. Mean error in incorrect predictions in test set for different number of hidden layers (n) with inner layers having k=256 
nodes. The database used is created with Latin Hypercube sampling for two-dimensional frame optimization in Figure 67 

 
Figure 95. Mean error in incorrect predictions in test set for amounts of nodes in the inner layers (k) with 5 pairs of linear-ReLU 
inner layers. The database used is created with Latin Hypercube sampling for two-dimensional frame optimization in Figure 67 
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5.3.3  Optimization results 

The MLPsectionOpt network enables optimization of the cross sections of beams that make up 

a frame structure. The proposal of new sections by the network results in a change in the loads 

acting on the structure and the distribution of stiffnesses of the structure, resulting in a change 

in the stresses on the beams. Consequently, the use of this Neural Network for optimization 

purposes should be placed within an iterative workflow (Figure 96). At iteration t, the matrix 

Xt contains information about the forces on the beams, their length and the desired utilization 

rate. For each load case, through the MLPsectionOpt network, we define the cross section of 

each beam that leads to having the desired utilization rate, which was set to 0.99. Each beam is 

associated with the largest cross section of those obtained with the different load cases (Yt). 

The forces on the beams are then updated using the low-rank stiffness matrix in the 

LoadsToForce module. The process is repeated until convergence, after which the FEM model 

is updated with the new sections to calculate by finite elements more accurately the stresses 

on the beams with the new sections. A new low-rank matrix is obtained from the modified FEM 

model, and the LoadsToForce module is updated accordingly. Optimized sections are calculated 

again through the MLPsectionOpt network using the stresses on the beams obtained from the 

FEM solution. If the output of the network remains unchanged from the result provided before 

updating the FEM model, then the process is finished, otherwise iterations are continued after 

updating the stresses with the new sections provided by the network using the new low-rank 

stiffness matrix. 
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5.3.3.1  Two-dimensional Frame 

The starting two-dimensional frame model provides that all beams have a cross section with a 

diameter of 273.00 mm and a thickness of 5.0 mm. Performing the structural analysis, it is 

observed that two beams are undersized and three have a utilization rate of less than 50%. The 

results are shown in Table 38. The optimization workflow outlined in Section 5.3.3   was used 

to calculate beam sections that produce a utilization rate closer to the target rate than the initial 

model. 
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Figure 96. Iterative optimization workflow 
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Beam Length [mm] ID Section Diam [mm] Thk [mm] umax umax-𝐮̅ |umax-𝐮̅| 

1 2500 6 273.0 5.0 1.414 0.424 0.424 

2 1500 6 273.0 5.0 0.727 -0.263 0.263 

3 4000 6 273.0 5.0 0.737 -0.253 0.253 

4 4000 6 273.0 5.0 0.739 -0.251 0.251 

5 1500 6 273.0 5.0 0.846 -0.144 0.144 

6 2500 6 273.0 5.0 1.396 0.406 0.406 

7 4000 6 273.0 5.0 0.474 -0.516 0.516 

8 4000 6 273.0 5.0 0.462 -0.528 0.528 

9 1500 6 273.0 5.0 0.325 -0.665 0.665 

10 4272 6 273.0 5.0 0.673 -0.317 0.317 

11 4272 6 273.0 5.0 0.666 -0.324 0.324 

SUM -2.431 4.091 

MIN -0.665 0.144 

MAX 0.424 0.665 

MEAN -0.221 0.372 

NUMBER OF UNDER-SIZED BEAMS 2 
Table 38. Beam starting sections and corresponding utilization rate of the two-dimensional frame. The parameter 𝑢̅ is the target 

utilization rate, which is considered to be equal to 0.99 

MLP networks with 256 nodes in the inner layers and 3 pairs of intermediate layers 

(linear+ReLU) were used to optimize the two-dimensional structure. The optimized models are 

shown in Figure 97 and Figure 98. Table 39 shows the sizes of the optimized sections and the 

maximum utilization ratios associated with each beam. It is observed that the networks 

obtained with the two databases lead to similar results between them. 

 

Figure 97. Two-dimensional frame optimized with network obtained from database with Uniform Distribution sampling 
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Figure 98. Two-dimensional frame optimized with network obtained from database with Latin Hypercube sampling 
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Uniform sampling Latin Hypercube sampling Uniform sampling 
Latin Hypercube 

sampling 
ID 

Section 
Diam 
[mm] 

Thk 
[mm] 

umax 
ID 

Section 
Diam 
[mm] 

Thk 
[mm] 

umax umax-𝐮̅ |umax-𝐮̅| umax-𝐮̅ |umax-𝐮̅| 

1 2500 7 323.9 5.6 1.147 7 323.9 5.6 1.172 0.157 0.157 0.182 0.182 

2 1500 5 219.1 5 0.767 4 177.8 4 0.916 -0.223 0.223 -0.074 0.074 

3 4000 5 219.1 5 0.799 5 219.1 5 0.837 -0.191 0.191 -0.153 0.153 

4 4000 5 219.1 5 0.799 6 273 5 0.834 -0.191 0.191 -0.156 0.156 

5 1500 5 219.1 5 0.852 5 219.1 5 0.871 -0.138 0.138 -0.119 0.119 

6 2500 7 323.9 5.6 1.176 7 323.9 5.6 1.256 0.186 0.186 0.266 0.266 

7 4000 2 101.6 3 1.094 2 101.6 3 0.980 0.104 0.104 -0.010 0.010 

8 4000 2 101.6 3 0.959 2 101.6 3 1.039 -0.031 0.031 0.049 0.049 

9 1500 3 139.7 4 0.818 3 139.7 4 0.892 -0.172 0.172 -0.098 0.098 

10 4272 4 177.8 4 1.029 4 177.8 4 0.861 0.039 0.039 -0.129 0.129 

11 4272 4 177.8 4 1.014 4 177.8 4 0.894 0.024 0.024 -0.096 0.096 

SUM -0.435 1.456 -0.338 1.331 

MIN -0.223 0.024 -0.156 0.010 

MAX 0.186 0.223 0.266 0.266 

MEAN -0.040 0.132 -0.031 0.121 

NUMBER OF UNDER-SIZED BEAMS 5 3 

Table 39. Results of the optimization of the beams with the networks created with the two databases 
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5.3.3.2  Three-dimensional Frame 

The starting model of the three-dimensional frame under study is shown in Figure 99. 

Information on beam sections and maximum utilization rates in this model is shown in Table 

40. For some beams, the section used is class 4 according to (9), for which local buckling 

phenomena come into play before the section can express the elastic resistant moment, and the 

calculation of the section strength must be carried out not considering the whole section but 

only the part of it that is effective, i.e., not subject to the buckling problems. This type of section 

requires special iterative analysis for defining the utilization rate. The focus on this thesis has 

been on sections that can be fully utilized in the elastic field, namely those belonging to class 1, 

2 and 3 according to the above classification. For these reasons, sections in class 4 were not 

considered in this thesis, and the utilization rates for the starting frame beams having sections 

belonging to this type are not shown in Table 40. 

 

 

Figure 99. Non-optimized three-dimensional frame (starting model) 
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Beam ID Section Diam [mm] Thk [mm] Length [mm] Result case max umax umax-𝐮̅ |umax-𝐮̅| 

1 9 457.0 8.0 10000.00 723 0.326 -0.664 0.664 

2 9 457.0 8.0 10000.00 529 0.868 -0.122 0.122 

3 9 457.0 8.0 10000.00 529 0.319 -0.671 0.671 

4 9 457.0 8.0 10000.00 529 0.256 -0.734 0.734 

5 9 457.0 8.0 10000.00 967 0.322 -0.668 0.668 

6 9 457.0 8.0 10000.00 879 0.368 -0.622 0.622 

7 1 273.0 5.0 10000.00 664 1.228 0.238 0.238 

8 9 457.0 8.0 10000.00 636 0.422 -0.568 0.568 

9 9 457.0 8.0 10000.21 530 0.373 -0.617 0.617 

10 9 457.0 8.0 10000.21 786 0.377 -0.613 0.613 

11 1 273.0 5.0 10000.00 819 1.312 0.322 0.322 

12 9 457.0 8.0 10000.00 730 0.396 -0.594 0.594 

13 9 457.0 8.0 10000.00 819 0.606 -0.384 0.384 

14 9 457.0 8.0 10000.00 652 0.950 -0.040 0.040 

15 20 711.0 12.0 13653.85 181 0.357 -0.633 0.633 

16 20 711.0 12.0 13653.85 608 0.687 -0.303 0.303 

17 20 711.0 12.0 13653.85 516 0.493 -0.497 0.497 

18 20 711.0 12.0 13653.85 728 0.597 -0.393 0.393 

19 20 711.0 12.0 13653.85 97 0.387 -0.603 0.603 

20 20 711.0 12.0 13653.85 631 0.420 -0.570 0.570 

21 20 711.0 12.0 13653.85 440 0.321 -0.669 0.669 

22 20 711.0 12.0 13653.85 771 0.282 -0.708 0.708 

23 20 711.0 12.0 13653.85 608 0.291 -0.699 0.699 

24 20 711.0 12.0 13653.85 679 0.260 -0.730 0.730 

25 20 711.0 12.0 13653.85 617 0.264 -0.726 0.726 

26 20 711.0 12.0 13653.85 529 0.594 -0.396 0.396 

27 7 406.4 6.3 14000.00 - - Class 4 Class 4 

28 1 273.0 5.0 14000.00 581 2.238 1.248 1.248 

29 5 355.6 6.3 14000.00 608 2.173 1.183 1.183 

30 1 273.0 5.0 14000.00 516 2.155 1.165 1.165 

31 5 355.6 6.3 14000.00 819 1.573 0.583 0.583 

32 7 406.4 6.3 14000.00 - - Class 4 Class 4 

33 5 355.6 6.3 14000.00 927 0.886 -0.104 0.104 

34 5 355.6 6.3 14000.00 177 1.357 0.367 0.367 

35 7 406.4 6.3 14000.00 - - Class 4 Class 4 

36 5 355.6 6.3 14000.00 529 1.523 0.533 0.533 

37 3 323.9 5.6 17204.65 302 2.271 1.281 1.281 

38 3 323.9 5.6 17204.65 790 2.276 1.286 1.286 

39 3 323.9 5.6 17204.65 597 1.227 0.237 0.237 
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40 3 323.9 5.6 17204.65 836 2.678 1.688 1.688 

41 3 323.9 5.6 17204.65 876 1.985 0.995 0.995 

42 12 508.0 10.0 17143.06 624 0.338 -0.652 0.652 

43 12 508.0 10.0 17143.06 529 0.580 -0.410 0.410 

44 12 508.0 10.0 17143.06 600 0.416 -0.574 0.574 

45 12 508.0 10.0 17143.06 935 0.783 -0.207 0.207 

46 12 508.0 10.0 17143.06 443 0.414 -0.576 0.576 

47 12 508.0 10.0 17143.06 756 0.508 -0.482 0.482 

48 12 508.0 10.0 17143.19 250 0.436 -0.554 0.554 

49 12 508.0 10.0 17143.19 714 0.499 -0.491 0.491 

50 12 508.0 10.0 17143.19 444 0.457 -0.533 0.533 

51 12 508.0 10.0 17143.19 712 0.746 -0.244 0.244 

52 12 508.0 10.0 17143.06 245 0.410 -0.580 0.580 

53 12 508.0 10.0 17143.06 728 0.569 -0.421 0.421 

54 3 323.9 5.6 17204.77 246 2.454 1.464 1.464 

55 3 323.9 5.6 17204.65 714 1.905 0.915 0.915 

56 7 406.4 6.3 14000.00 - - Class 4 Class 4 

57 5 355.6 6.3 14000.00 978 1.917 0.927 0.927 

58 7 406.4 6.3 14000.00 - - Class 4 Class 4 

59 5 355.6 6.3 14000.00 819 1.464 0.474 0.474 

60 7 406.4 6.3 14000.00 - - Class 4 Class 4 

61 5 355.6 6.3 14000.00 918 1.036 0.046 0.046 

62 7 406.4 6.3 14000.00 - - Class 4 Class 4 

63 5 355.6 6.3 14000.00 927 1.613 0.623 0.623 

64 3 323.9 5.6 17204.65 771 1.738 0.748 0.748 

65 3 323.9 5.6 17204.65 636 1.678 0.688 0.688 

66 3 323.9 5.6 17204.77 338 2.083 1.093 1.093 

67 3 323.9 5.6 17204.65 450 2.766 1.776 1.776 

68 12 508.0 10.0 14000.00 566 0.749 -0.241 0.241 

69 12 508.0 10.0 14000.00 181 0.557 -0.433 0.433 

70 12 508.0 10.0 17143.06 813 0.607 -0.383 0.383 

71 12 508.0 10.0 17143.06 778 0.674 -0.316 0.316 

72 12 508.0 10.0 17143.06 385 0.750 -0.240 0.240 

73 12 508.0 10.0 17143.06 638 0.623 -0.367 0.367 

74 12 508.0 10.0 17143.06 741 0.749 -0.241 0.241 

75 12 508.0 10.0 17143.06 782 0.753 -0.237 0.237 

76 9 457.0 8.0 10000.00 685 1.275 0.285 0.285 

77 9 457.0 8.0 10000.00 1002 0.332 -0.658 0.658 

78 9 457.0 8.0 10000.00 232 2.305 1.315 1.315 

79 9 457.0 8.0 10000.00 579 1.622 0.632 0.632 
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80 9 457.0 8.0 10000.00 638 0.466 -0.524 0.524 

81 9 457.0 8.0 10000.00 350 15.210 14.220 14.220 

82 9 457.0 8.0 10000.00 124 0.654 -0.336 0.336 

83 20 711.0 12.0 13653.85 704 0.644 -0.346 0.346 

84 20 711.0 12.0 13653.85 181 0.345 -0.645 0.645 

85 20 711.0 12.0 13653.85 137 1.085 0.095 0.095 

86 20 711.0 12.0 13653.85 712 0.362 -0.628 0.628 

87 20 711.0 12.0 13653.85 608 0.405 -0.585 0.585 

88 20 711.0 12.0 13653.85 987 0.566 -0.424 0.424 

89 9 457.0 8.0 10000.00 87 0.346 -0.644 0.644 

90 9 457.0 8.0 10000.00 875 0.264 -0.726 0.726 

91 9 457.0 8.0 10000.00 826 0.324 -0.666 0.666 

92 1 273.0 5.0 10000.00 832 1.453 0.463 0.463 

93 9 457.0 8.0 10000.21 246 0.374 -0.616 0.616 

94 1 273.0 5.0 10000.00 223 1.331 0.341 0.341 

95 9 457.0 8.0 10000.00 199 0.366 -0.624 0.624 

96 20 711.0 12.0 13653.85 181 0.392 -0.598 0.598 

97 20 711.0 12.0 13653.85 181 0.573 -0.417 0.417 

98 20 711.0 12.0 13653.85 246 0.539 -0.451 0.451 

99 20 711.0 12.0 13653.85 246 0.508 -0.482 0.482 

100 20 711.0 12.0 13653.85 802 0.352 -0.638 0.638 

101 20 711.0 12.0 13653.85 617 0.440 -0.550 0.550 

102 3 323.9 5.6 17204.65 987 3.665 2.675 2.675 

103 7 406.4 6.3 14000.00 - - Class 4 Class 4 

104 7 406.4 6.3 14000.00 - - Class 4 Class 4 

105 7 406.4 6.3 14000.00 - - Class 4 Class 4 

106 7 406.4 6.3 14000.00 - - Class 4 Class 4 

107 7 406.4 6.3 14000.00 - - Class 4 Class 4 

108 7 406.4 6.3 14000.00 - - Class 4 Class 4 

109 7 406.4 6.3 14000.00 - - Class 4 Class 4 

110 5 355.6 6.3 14000.00 500 1.025 0.035 0.035 

111 5 355.6 6.3 14000.00 615 0.941 -0.049 0.049 

112 5 355.6 6.3 14000.00 358 1.060 0.070 0.070 

113 5 355.6 6.3 14000.00 387 0.931 -0.059 0.059 

114 1 273.0 5.0 14000.00 26 2.133 1.143 1.143 

115 1 273.0 5.0 14000.00 185 2.127 1.137 1.137 

116 5 355.6 6.3 14000.00 179 0.910 -0.080 0.080 

117 3 323.9 5.6 17204.65 267 4.427 3.437 3.437 

118 3 323.9 5.6 17204.77 826 2.250 1.260 1.260 

119 7 406.4 6.3 19555.75 - - Class 4 Class 4 
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120 7 406.4 6.3 19555.75 - - Class 4 Class 4 

121 7 406.4 6.3 19555.75 - - Class 4 Class 4 

122 7 406.4 6.3 19555.75 - - Class 4 Class 4 

123 7 406.4 6.3 19555.75 - - Class 4 Class 4 

124 7 406.4 6.3 19555.75 - - Class 4 Class 4 

125 12 508.0 10.0 17143.06 818 0.387 -0.603 0.603 

126 12 508.0 10.0 17143.06 689 0.506 -0.484 0.484 

127 12 508.0 10.0 17143.06 304 0.430 -0.560 0.560 

128 12 508.0 10.0 17143.19 962 0.560 -0.430 0.430 

129 12 508.0 10.0 17143.19 987 0.639 -0.351 0.351 

130 12 508.0 10.0 17143.06 616 0.490 -0.500 0.500 

131 3 323.9 5.6 17204.65 962 2.163 1.173 1.173 

132 3 323.9 5.6 17204.65 826 2.162 1.172 1.172 

133 3 323.9 5.6 17204.65 878 2.051 1.061 1.061 

134 3 323.9 5.6 17204.65 8 3.786 2.796 2.796 

135 12 508.0 10.0 14000.00 631 0.754 -0.236 0.236 

136 7 406.4 6.3 19555.75 - - Class 4 Class 4 

137 7 406.4 6.3 19555.75 - - Class 4 Class 4 

138 23 813.0 12.0 14200.00 - - Class 4 Class 4 

139 23 813.0 12.0 14200.00 - - Class 4 Class 4 

140 23 813.0 12.0 14200.00 - - Class 4 Class 4 

141 23 813.0 12.0 14200.00 - - Class 4 Class 4 

142 23 813.0 12.0 14200.01 - - Class 4 Class 4 

143 23 813.0 12.0 14200.01 - - Class 4 Class 4 

144 23 813.0 12.0 14200.01 - - Class 4 Class 4 

145 23 813.0 12.0 14200.00 - - Class 4 Class 4 

146 23 813.0 12.0 14200.01 - - Class 4 Class 4 

147 23 813.0 12.0 14200.01 - - Class 4 Class 4 

148 23 813.0 12.0 14200.01 - - Class 4 Class 4 

149 23 813.0 12.0 14200.00 - - Class 4 Class 4 

150 23 813.0 12.0 14200.00 - - Class 4 Class 4 

151 23 813.0 12.0 14200.00 - - Class 4 Class 4 

152 23 813.0 12.0 14200.00 - - Class 4 Class 4 

153 23 813.0 12.0 14200.00 - - Class 4 Class 4 

154 23 813.0 12.0 14200.00 - - Class 4 Class 4 

155 23 813.0 12.0 14200.00 - - Class 4 Class 4 

156 23 813.0 12.0 14200.00 - - Class 4 Class 4 

157 23 813.0 12.0 14200.00 - - Class 4 Class 4 

158 23 813.0 12.0 14200.00 - - Class 4 Class 4 

159 23 813.0 12.0 14200.00 - - Class 4 Class 4 
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160 23 813.0 12.0 14200.00 - - Class 4 Class 4 

161 23 813.0 12.0 14200.00 - - Class 4 Class 4 

162 12 508.0 10.0 14000.00 944 0.635 -0.355 0.355 

163 12 508.0 10.0 14000.00 608 0.759 -0.231 0.231 

164 12 508.0 10.0 14000.00 771 0.751 -0.239 0.239 

165 12 508.0 10.0 14000.00 728 0.459 -0.531 0.531 

166 5 355.6 6.3 14000.00 529 0.804 -0.186 0.186 

167 3 323.9 5.6 17204.65 858 2.038 1.048 1.048 

SUM 17.280 91.192 

MIN -0.734 0.035 

MAX 14.220 14.220 

MEAN (excluding classes 4) 0.143 0.754 
Table 40. Cross-sections and utilization rate of the three-dimensional frame starting model. The deviation between the beam 
utilization rate and the target rate 𝑢̅, which is 0.99, is reported. The utilization rate for class 4 sections was not reported. 

The optimization tool provided the model in Figure 100 and Figure 101 as output. Information 

on the size of the cross sections, their utilization rates, and deviation from the target is given in 

Table 41. It is observed that the average absolute difference between actual and target 

utilization rates is close to zero (0.092), and that the range of these differences (with sign) is 

from a minimum of -0.289 to a maximum of 1.544. Analyzing the utilization rates of the various 

beams shows that only three of them have utilization rates greater than 1.4, that is, they have a 

deviation greater than 0.4. Excluding these three, the average absolute deviation further 

approaches zero, that is, it becomes 0.078, while the minimum and maximum values with sign 

become 0.013 and 0.328, respectively. 

 

Figure 100. Indices of the sections of the optimized three-dimensional model beams. 
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Figure 101. Area of the sections of the optimized three-dimensional model beams. 

Beam ID Section Diam [mm] Thk [mm] Length [mm] Result case max umax umax-𝐮̅ |umax-𝐮̅| 

1 1 273.0 5.0 10000.00 723 1.013 0.023 0.023 

2 8 406.4 8.0 10000.00 529 0.963 -0.027 0.027 

3 2 273.0 6.3 10000.00 36 2.067 1.077 1.077 

4 1 273.0 5.0 10000.00 229 0.701 -0.289 0.289 

5 3 323.9 5.6 10000.00 254 0.937 -0.053 0.053 

6 2 273.0 6.3 10000.00 868 1.034 0.044 0.044 

7 3 323.9 5.6 10000.00 436 0.868 -0.122 0.122 

8 3 323.9 5.6 10000.00 366 0.949 -0.041 0.041 

9 4 323.9 7.1 10000.21 530 0.879 -0.111 0.111 

10 2 273.0 6.3 10000.21 471 1.050 0.060 0.060 

11 3 323.9 5.6 10000.00 819 0.824 -0.166 0.166 

12 3 323.9 5.6 10000.00 787 1.003 0.013 0.013 

13 6 355.6 7.1 10000.00 819 0.862 -0.128 0.128 

14 8 406.4 8.0 10000.00 652 1.033 0.043 0.043 

15 5 355.6 6.3 13653.85 772 0.976 -0.014 0.014 

16 14 508.0 14.2 13653.85 33 0.929 -0.061 0.061 

17 8 406.4 8.0 13653.85 70 0.910 -0.080 0.080 

18 9 457.0 8.0 13653.85 728 2.534 1.544 1.544 

19 8 406.4 8.0 13653.85 798 0.803 -0.187 0.187 

20 8 406.4 8.0 13653.85 903 0.906 -0.084 0.084 

21 6 355.6 7.1 13653.85 212 1.123 0.133 0.133 

22 5 355.6 6.3 13653.85 771 1.125 0.135 0.135 
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23 6 355.6 7.1 13653.85 798 0.992 0.002 0.002 

24 4 323.9 7.1 13653.85 397 0.929 -0.061 0.061 

25 4 323.9 7.1 13653.85 438 1.043 0.053 0.053 

26 12 508.0 10.0 13653.85 33 1.060 0.070 0.070 

27 5 355.6 6.3 14000.00 334 1.017 0.027 0.027 

28 5 355.6 6.3 14000.00 399 0.989 -0.001 0.001 

29 9 457.0 8.0 14000.00 978 0.880 -0.110 0.110 

30 4 323.9 7.1 14000.00 246 1.009 0.019 0.019 

31 8 406.4 8.0 14000.00 819 0.954 -0.036 0.036 

32 4 323.9 7.1 14000.00 242 1.065 0.075 0.075 

33 4 323.9 7.1 14000.00 181 0.828 -0.162 0.162 

34 8 406.4 8.0 14000.00 177 0.858 -0.132 0.132 

35 5 355.6 6.3 14000.00 503 0.976 -0.014 0.014 

36 8 406.4 8.0 14000.00 297 0.883 -0.107 0.107 

37 8 406.4 8.0 17204.65 302 1.114 0.124 0.124 

38 8 406.4 8.0 17204.65 872 0.888 -0.102 0.102 

39 5 355.6 6.3 17204.65 597 0.990 0.000 0.000 

40 9 457.0 8.0 17204.65 836 1.005 0.015 0.015 

41 8 406.4 8.0 17204.65 810 0.951 -0.039 0.039 

42 6 355.6 7.1 17143.06 624 1.138 0.148 0.148 

43 8 406.4 8.0 17143.06 339 1.170 0.180 0.180 

44 6 355.6 7.1 17143.06 518 1.221 0.231 0.231 

45 10 457.0 10.0 17143.06 33 1.047 0.057 0.057 

46 8 406.4 8.0 17143.06 404 0.934 -0.056 0.056 

47 8 406.4 8.0 17143.06 756 1.007 0.017 0.017 

48 8 406.4 8.0 17143.19 250 1.015 0.025 0.025 

49 8 406.4 8.0 17143.19 714 1.144 0.154 0.154 

50 8 406.4 8.0 17143.19 444 1.049 0.059 0.059 

51 10 457.0 10.0 17143.19 712 0.955 -0.035 0.035 

52 6 355.6 7.1 17143.06 685 1.204 0.214 0.214 

53 9 457.0 8.0 17143.06 380 1.061 0.071 0.071 

54 8 406.4 8.0 17204.77 246 1.147 0.157 0.157 

55 8 406.4 8.0 17204.65 865 1.024 0.034 0.034 

56 8 406.4 8.0 14000.00 741 1.016 0.026 0.026 

57 9 457.0 8.0 14000.00 978 0.897 -0.093 0.093 

58 5 355.6 6.3 14000.00 771 0.990 0.000 0.000 

59 8 406.4 8.0 14000.00 819 0.979 -0.011 0.011 

60 9 457.0 8.0 14000.00 291 1.143 0.153 0.153 

61 6 355.6 7.1 14000.00 622 1.056 0.066 0.066 

62 8 406.4 8.0 14000.00 1002 0.997 0.007 0.007 
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63 8 406.4 8.0 14000.00 529 0.892 -0.098 0.098 

64 6 355.6 7.1 17204.65 715 1.289 0.299 0.299 

65 8 406.4 8.0 17204.65 636 0.889 -0.101 0.101 

66 8 406.4 8.0 17204.77 868 1.101 0.111 0.111 

67 9 457.0 8.0 17204.65 450 0.886 -0.104 0.104 

68 8 406.4 8.0 14000.00 608 0.851 -0.139 0.139 

69 8 406.4 8.0 14000.00 123 0.934 -0.056 0.056 

70 9 457.0 8.0 17143.06 813 1.023 0.033 0.033 

71 9 457.0 8.0 17143.06 1002 1.020 0.030 0.030 

72 10 457.0 10.0 17143.06 385 0.925 -0.065 0.065 

73 10 457.0 10.0 17143.06 638 0.927 -0.063 0.063 

74 10 457.0 10.0 17143.06 741 0.920 -0.070 0.070 

75 10 457.0 10.0 17143.06 782 0.970 -0.020 0.020 

76 5 355.6 6.3 10000.00 114 1.104 0.114 0.114 

77 2 273.0 6.3 10000.00 788 1.083 0.093 0.093 

78 3 323.9 5.6 10000.00 108 0.977 -0.013 0.013 

79 2 273.0 6.3 10000.00 347 0.947 -0.043 0.043 

80 3 323.9 5.6 10000.00 638 0.897 -0.093 0.093 

81 3 323.9 5.6 10000.00 168 0.827 -0.163 0.163 

82 8 406.4 8.0 10000.00 124 0.744 -0.246 0.246 

83 13 508.0 12.0 13653.85 704 0.959 -0.031 0.031 

84 6 355.6 7.1 13653.85 88 0.997 0.007 0.007 

85 6 355.6 7.1 13653.85 523 1.014 0.024 0.024 

86 9 457.0 8.0 13653.85 608 0.908 -0.082 0.082 

87 10 457.0 10.0 13653.85 608 0.870 -0.120 0.120 

88 13 508.0 12.0 13653.85 987 0.943 -0.047 0.047 

89 2 273.0 6.3 10000.00 87 1.043 0.053 0.053 

90 1 273.0 5.0 10000.00 875 1.005 0.015 0.015 

91 2 273.0 6.3 10000.00 28 1.039 0.049 0.049 

92 3 323.9 5.6 10000.00 832 1.126 0.136 0.136 

93 2 273.0 6.3 10000.21 147 0.955 -0.035 0.035 

94 3 323.9 5.6 10000.00 223 0.984 -0.006 0.006 

95 3 323.9 5.6 10000.00 199 0.839 -0.151 0.151 

96 9 457.0 8.0 13653.85 689 0.902 -0.088 0.088 

97 8 406.4 8.0 13653.85 298 0.954 -0.036 0.036 

98 10 457.0 10.0 13653.85 338 0.978 -0.012 0.012 

99 9 457.0 8.0 13653.85 29 0.963 -0.027 0.027 

100 8 406.4 8.0 13653.85 888 0.932 -0.058 0.058 

101 10 457.0 10.0 13653.85 29 0.860 -0.130 0.130 

102 10 457.0 10.0 17204.65 987 1.019 0.029 0.029 
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103 9 457.0 8.0 14000.00 688 1.008 0.018 0.018 

104 6 355.6 7.1 14000.00 523 1.071 0.081 0.081 

105 8 406.4 8.0 14000.00 70 0.809 -0.181 0.181 

106 8 406.4 8.0 14000.00 29 0.941 -0.049 0.049 

107 8 406.4 8.0 14000.00 597 1.223 0.233 0.233 

108 8 406.4 8.0 14000.00 123 1.342 0.352 0.352 

109 10 457.0 10.0 14000.00 689 0.887 -0.103 0.103 

110 5 355.6 6.3 14000.00 500 0.992 0.002 0.002 

111 5 355.6 6.3 14000.00 101 0.977 -0.013 0.013 

112 5 355.6 6.3 14000.00 358 1.026 0.036 0.036 

113 4 323.9 7.1 14000.00 387 1.021 0.031 0.031 

114 5 355.6 6.3 14000.00 26 0.997 0.007 0.007 

115 5 355.6 6.3 14000.00 185 0.952 -0.038 0.038 

116 5 355.6 6.3 14000.00 179 0.948 -0.042 0.042 

117 10 457.0 10.0 17204.65 267 0.993 0.003 0.003 

118 8 406.4 8.0 17204.77 385 1.102 0.112 0.112 

119 16 610.0 11.0 19555.75 246 1.355 0.365 0.365 

120 14 508.0 14.2 19555.75 720 0.984 -0.006 0.006 

121 14 508.0 14.2 19555.75 617 0.990 0.000 0.000 

122 12 508.0 10.0 19555.75 810 0.906 -0.084 0.084 

123 10 457.0 10.0 19555.75 158 1.021 0.031 0.031 

124 17 610.0 12.5 19555.75 728 1.032 0.042 0.042 

125 6 355.6 7.1 17143.06 818 1.141 0.151 0.151 

126 8 406.4 8.0 17143.06 689 0.942 -0.048 0.048 

127 8 406.4 8.0 17143.06 385 0.950 -0.040 0.040 

128 9 457.0 8.0 17143.19 798 1.014 0.024 0.024 

129 9 457.0 8.0 17143.19 987 1.009 0.019 0.019 

130 8 406.4 8.0 17143.06 616 0.997 0.007 0.007 

131 8 406.4 8.0 17204.65 120 1.176 0.186 0.186 

132 8 406.4 8.0 17204.65 826 1.021 0.031 0.031 

133 6 355.6 7.1 17204.65 586 1.260 0.270 0.270 

134 10 457.0 10.0 17204.65 8 0.992 0.002 0.002 

135 10 457.0 10.0 14000.00 771 0.958 -0.032 0.032 

136 14 508.0 14.2 19555.75 241 0.972 -0.018 0.018 

137 12 508.0 10.0 19555.75 688 0.894 -0.096 0.096 

138 9 457.0 8.0 14200.00 33 1.213 0.223 0.223 

139 8 406.4 8.0 14200.00 1002 0.850 -0.140 0.140 

140 8 406.4 8.0 14200.00 259 0.909 -0.081 0.081 

141 9 457.0 8.0 14200.00 987 0.991 0.001 0.001 

142 10 457.0 10.0 14200.01 821 0.888 -0.102 0.102 
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143 8 406.4 8.0 14200.01 126 1.017 0.027 0.027 

144 8 406.4 8.0 14200.01 259 0.936 -0.054 0.054 

145 9 457.0 8.0 14200.00 987 0.981 -0.009 0.009 

146 13 508.0 12.0 14200.01 33 0.966 -0.024 0.024 

147 9 457.0 8.0 14200.01 449 0.920 -0.070 0.070 

148 8 406.4 8.0 14200.01 33 1.022 0.032 0.032 

149 12 508.0 10.0 14200.00 962 1.051 0.061 0.061 

150 13 508.0 12.0 14200.00 33 0.969 -0.021 0.021 

151 9 457.0 8.0 14200.00 97 0.912 -0.078 0.078 

152 8 406.4 8.0 14200.00 33 0.996 0.006 0.006 

153 12 508.0 10.0 14200.00 741 0.927 -0.063 0.063 

154 10 457.0 10.0 14200.00 529 0.911 -0.079 0.079 

155 10 457.0 10.0 14200.00 529 0.941 -0.049 0.049 

156 8 406.4 8.0 14200.00 15 0.832 -0.158 0.158 

157 5 355.6 6.3 14200.00 737 0.999 0.009 0.009 

158 5 355.6 6.3 14200.00 821 1.038 0.048 0.048 

159 5 355.6 6.3 14200.00 723 0.970 -0.020 0.020 

160 9 457.0 8.0 14200.00 878 0.934 -0.056 0.056 

161 9 457.0 8.0 14200.00 741 0.958 -0.032 0.032 

162 5 355.6 6.3 14000.00 21 1.648 0.658 0.658 

163 9 457.0 8.0 14000.00 21 1.096 0.106 0.106 

164 9 457.0 8.0 14000.00 631 1.058 0.068 0.068 

165 8 406.4 8.0 14000.00 181 0.812 -0.178 0.178 

166 3 323.9 5.6 14000.00 783 0.989 -0.001 0.001 

167 6 355.6 7.1 17204.65 858 1.318 0.328 0.328 

SUM 3.238 15.998 

MIN -0.289 0.000 

MAX 1.544 1.544 

MEAN 0.019 0.096 
Table 41. Results of the optimization of the beams of the three-dimensional frame 

 

 umax-u̅ |umax-u̅| 

SUM -0.041 12.719 

MIN -0.289 0.013 

MAX 0.365 0.328 

MEAN 0.000 0.078 
Table 42. Overall deviation values between actual and target utilization rates of the optimized three-dimensional frame beams, 
excluding beams with utilization rates greater than 1.4 (i.e., beams number 3, 18, and 108) 
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5.3.4  Additional training 

Analyzing the optimization results reported in the paragraph 5.3.3  , it is observed that the 

maximum utilization rate of the beams deviates from the desired target rate. To improve the 

results, it is proposed to continue training the network during the optimization process as well, 

adding a loss function that considers the difference between the utilization rate of the beams 

with the cross-sectional area provided as output by the network and the target utilization rate. 

Therefore, each time the MLPsectionOpt network is used during the optimization process, an 

update of the parameters is made using a loss function (Loss1) that evaluates the deviation 

between the beam utilization rate with the section output from the network and the target rate. 

After that, the network is further trained with the database previously used during the training 

phase and using the Cross Entropy loss (Loss2). The entire additional training process is 

illustrated in Figure 102. 

Two different approaches for calculating the deviation loss function between the utilization 

rate and the target were evaluated. They are presented in the following sections. 
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Figure 102. Workflow for the additional training of MLPsectionOpt 
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5.3.4.1  Approach A 

For each load case, the network returns as output a matrix Y [b x ns], with b equal to the number 

of beams and ns the number of section classes. The softmax function is applied in each row of 

the matrix, resulting in a matrix 𝑌̅ in which in each row the values are between 0 and 1 and their 

sum is 1.  

 
𝑌 = [𝑏 𝑥 𝑛𝑠] = [

𝑦11 … 𝑦1𝑛𝑠
… … …
𝑦𝑏1 … 𝑦𝑏𝑛𝑠

] 
(5.64) 

 
𝑌̅ = [𝑏 𝑥 𝑛𝑠] = [

𝑦̅11 … 𝑦̅1𝑛𝑠
… … …
𝑦̅𝑏1 … 𝑦̅𝑏𝑛𝑠

]                𝑤𝑖𝑡ℎ 𝑦̅𝑖𝑗 =
𝑒𝑦𝑖𝑗

∑ 𝑒𝑦𝑖𝑘
𝑛𝑠
𝑘=1

 (5.65) 

For each beam, the utilization rate that would occur with each section of the database is 

calculated, and the absolute difference between the obtained value and the target is used to 

compose the V matrix [b x ns]. 

𝑉 = [𝑏 𝑥 𝑛𝑠] = [

𝑣11 … 𝑣1𝑛𝑠
… … …
𝑣𝑏1 … 𝑣𝑏𝑛𝑠

]        (5.66) 

𝑣𝑖𝑗 = (max(𝑢𝑖𝑗 − 𝑢̅, 0)) ∗ 𝑓̅ + min(𝑢𝑖𝑗 − 𝑢̅, 0) (−1) (5.67) 

In the above equation, 𝑢𝑖𝑗  is denoted as the utilization rate of the i-th beam with j-th section, 𝑢̅ 

is the target utilization rate, while 𝑓 ̅ is a coefficient to penalize cases of under-sizing versus 

over-sizing. 

The Hadamard product between the matrices 𝑌̅ and V is then calculated. 

 
𝐴̅ = [𝑏 𝑥 𝑛𝑠] = [

𝑎̅11 … 𝑎̅1𝑐
… … …
𝑎̅𝑏1 … 𝑎̅𝑏𝑛𝑠

] = 𝑌̅ ∙ 𝑉 (5.68) 
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The loss function is given by the summation of the elements of matrix 𝐴̅: 

 𝑙𝑜𝑠𝑠 =∑ 𝑎̅𝑖𝑗
𝑖𝑗

 (5.69) 

The gradient that allows the model parameters to be updated to reduce the deviation between 

the utilization rate with the section being output from the model and the target utilization rate 

corresponds to the gradient between the loss function and the matrix Y: 

 
(
𝑑 𝑙𝑜𝑠𝑠

𝑑 𝑦
)
ℎ𝑘

=∑ 𝑣ℎ𝑗 ∗
𝑑 𝑦̅ℎ𝑗

𝑑 𝑦ℎ𝑘𝑗
 (5.70) 

Using this approach allows us to take advantage of the automatic differentiation operators of 

the library used to write the network without therefore having to create the ad hoc gradient 

function between matrices 𝐴̅ and Y. 

5.3.4.2  Approach B 

The sections obtained in output from the model are used to calculate the utilization rate of each 

beam. The utilization rate can be amplified with a coefficient 𝑓 ̅to penalize under-sizing versus 

over-sizing. These values are entered into a vector u [𝑛𝐿𝐶𝑏 x 1], which is used in the loss 

calculation with the following function: 

 𝑙𝑜𝑠𝑠 = 𝑀𝐴𝐸(𝑢, 𝑢̅) (5.71) 

where 𝑢̅ is the vector with the target utilization rate, b is the number of beams and 𝑛𝐿𝐶  is the 

number of load cases. 

It is necessary to define the gradient between utilization rates and model output in order to 

perform back-propagation and train the network. This gradient is expressed by the following 

matrix: 

 
𝐺 = [𝑏 𝑥 𝑛𝐿𝐶] = (

𝑔11 … 𝑔1𝑛𝐿𝐶
… … …
𝑔𝑏1 … 𝑔𝑏𝑛𝐿𝐶

) (5.72) 
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The entries of G matrix are calculated as follows: 

 
𝑔𝑖𝑗 =

𝑢(𝑡min (𝑗+1,𝑐), 𝑠𝑖 , 𝑙𝑖) − 𝑢(𝑡max (𝑗−1,1), 𝑠𝑖, 𝑙𝑖)

𝒜(𝑡min(𝑗+1,𝑐)) −𝒜(𝑡max(𝑗−1,0))
∗ 𝑦𝑖𝑗  

(5.73) 

where  

tk is the k-th section of the database, with 𝑘 = 1,… , 𝑐 

si are the forces on the i-th beam 

li is the length of the i-th beam 

𝑢(𝑡𝑘, 𝑠𝑖, 𝑙𝑖) is the utilization rate calculated using the forces and the length of the i-th beam and 

the k-th section of the database 

𝒜(tk) is the area of the k-th section, with 𝑘 = 1,… , 𝑐 

yij is the element at row i and column j of the matrix Y 

 

5.3.5  Optimization results with additional training 

Since multiple loss functions are involved, and moreover calculated on different databases, 

special attention must be paid to the choice and setting of optimizers with which to update 

model parameters during training. In fact, updating the network based on the gradients of one 

of the two loss functions will cause a shift in the values of the network parameters in favor of 

that loss, potentially leading it toward a worst-case configuration for the other loss function. 

The goal, therefore, is to identify optimizers that will allow the network to be trained toward a 

configuration that provides outputs closer to the target but at the same time without departing 

too far from the performance obtained with pretraining. Specifically, it was observed that in 

order to obtain benefits from additional training, higher learning rate values should be adopted 

with the Loss1 optimizer than with the Loss2 optimizer. The reason for this behavior is due to 

the larger database size used for Loss2 and the fact that the model was previously trained with 

that loss through that database.  
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5.3.5.1  Two-dimensional Frame 

Through the Approach A, the best results were obtained with Adam's algorithm setting a 

learning rate of 0.001 for Loss1 and 0.0005 for Loss2. The results are shown in the Table 43. 

The mean absolute deviation between the utilization rate and the target decreased from the 

result achieved without additional training, from 0.132 to 0.120. The same learning rate values 

also provided the best results with Approach B. However, in this case the additional learning 

did not provide a better solution than without it. In fact, the mean deviation between the 

utilization rate and the target was 0.145 with Approach B versus 0.132 obtained without the 

additional training. The results for Approach B are shown in Table 44. 

 

Beam Length [mm] ID Sect. 
ID Sect. –  

ID Sect.NO TRAIN 
Diam [mm] Thk [mm] umax umax-𝐮̅ |umax-𝐮̅| 

1 2500 7 0 323.9 5.6 1.092 0.102 0.102 

2 1500 4 -1 177.8 4.0 0.863 -0.127 0.127 

3 4000 5 0 219.1 5.0 0.799 -0.191 0.191 

4 4000 5 0 219.1 5.0 0.801 -0.189 0.189 

5 1500 6 1 273.0 5.0 0.960 -0.030 0.030 

6 2500 7 0 323.9 5.6 1.228 0.238 0.238 

7 4000 2 0 101.6 3.0 0.908 -0.082 0.082 

8 4000 2 0 101.6 3.0 1.108 0.118 0.118 

9 1500 3 0 139.7 4.0 0.843 -0.147 0.147 

10 4272 4 0 177.8 4.0 0.966 -0.024 0.024 

11 4272 4 0 177.8 4.0 1.061 0.071 0.071 

SUM -0.259 1.320 

MIN -0.191 0.024 

MAX 0.238 0.238 

MEAN -0.024 0.120 

NUMBER OF UNDER-SIZED BEAMS 4 

Table 43. Two-dimensional frame optimized with additional training with approach A (lr1=0.001 and lr2=0.0005) 
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Figure 103. Model of two-dimensional frame optimized with additional training with Approach A (lr1=0.001 and lr2=0.0005) 

 

Beam Length [mm] ID Sect. 
ID Sect. – 

 ID Sect.NO TRAIN 
Diam [mm] Thk [mm] umax umax-𝐮̅ |umax-𝐮̅| 

1 2500 7 0 323.9 5.6 1.157 0.167 0.167 

2 1500 4 -1 177.8 4.0 0.968 -0.022 0.022 

3 4000 4 -1 177.8 4.0 1.128 0.138 0.138 

4 4000 4 -1 177.8 4.0 1.118 0.128 0.128 

5 1500 5 0 219.1 5.0 0.900 -0.090 0.090 

6 2500 7 0 323.9 5.6 1.242 0.252 0.252 

7 4000 2 0 101.6 3.0 1.006 0.016 0.016 

8 4000 2 0 101.6 3.0 1.063 0.073 0.073 

9 1500 3 0 139.7 4.0 0.858 -0.132 0.132 

10 4272 7 3 323.9 5.6 0.703 -0.287 0.287 

11 4272 7 3 323.9 5.6 0.705 -0.285 0.285 

SUM -0.042 1.590 

MIN -0.287 0.016 

MAX 0.252 0.287 

MEAN -0.004 0.145 

NUMBER OF UNDER-SIZED BEAMS 6 
Table 44. Two-dimensional frame optimized with additional training with Approach B (lr1=0.001 and lr2=0.0005) 
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Figure 104. Model of two-dimensional frame optimized with additional training with Approach B (lr1=0.001 and lr2=0.0005) 

The use of additional training has the advantage of reducing the probability of under-sizing, a 

condition obviously absolutely to be avoided, through the use of values greater than 1 for the 

penalty coefficient multiplying utilization rates above the target. The following tables and 

pictures show the results obtained by imposing the penalty coefficient of 10. It is observed that 

the number of under-sized beams is zero, but the average deviation between actual and target 

utilization rates has increased. For better results, the existence of an optimizer that guides 

additional training more accurately can be investigated. 

Beam Length [mm] ID Sect. 
ID Sect. –  

ID Sect.NO TRAIN 
Diam [mm] Thk [mm] umax umax-𝐮̅ |umax-𝐮̅| 

1 2500 7 0 323.9 5.6 0.961 -0.029 0.029 

2 1500 7 2 323.9 5.6 0.624 -0.366 0.366 

3 4000 7 2 323.9 5.6 0.744 -0.246 0.246 

4 4000 7 2 323.9 5.6 0.744 -0.246 0.246 

5 1500 7 2 323.9 5.6 0.717 -0.273 0.273 

6 2500 7 0 323.9 5.6 0.980 -0.010 0.010 

7 4000 3 1 139.7 4.0 0.446 -0.544 0.544 

8 4000 3 1 139.7 4.0 0.395 -0.595 0.595 

9 1500 6 3 273.0 5.0 0.300 -0.690 0.690 

10 4272 5 1 219.1 5.0 0.517 -0.473 0.473 

11 4272 5 1 219.1 5.0 0.516 -0.474 0.474 

SUM -3.946 3.946 

MIN -0.690 0.010 

MAX -0.010 0.690 

MEAN -0.359 0.359 

NUMBER OF UNDER-SIZED BEAMS 0 
Table 45. Two-dimensional frame optimized with additional training with approach A and penalty coefficient equal to 10 

(lr1=0.003 and lr2=0.005) 
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Figure 105. Model of two-dimensional frame optimized with additional training with Approach A and penalty coefficient equal to 
10 (lr1=0.003 and lr2=0.005) 

 

Beam Length [mm] ID Sect. 
ID Sect. – 

ID Sect.NO TRAIN 
Diam [mm] Thk [mm] umax umax-𝐮̅ |umax-𝐮̅| 

1 2500 7 0 323.9 5.6 0.954 -0.036 0.036 

2 1500 7 +2 323.9 5.6 0.613 -0.377 0.377 

3 4000 7 +2 323.9 5.6 0.683 -0.307 0.307 

4 4000 7 +2 323.9 5.6 0.811 -0.179 0.179 

5 1500 7 +2 323.9 5.6 0.802 -0.188 0.188 

6 2500 7 0 323.9 5.6 0.966 -0.024 0.024 

7 4000 4 +2 177.8 4.0 0.322 -0.668 0.668 

8 4000 4 +2 177.8 4.0 0.341 -0.649 0.649 

9 1500 7 +4 323.9 5.6 0.355 -0.635 0.635 

10 4272 7 +3 323.9 5.6 0.488 -0.502 0.502 

11 4272 4 0 177.8 4.0 0.754 -0.236 0.236 

SUM -3.801 3.801 

MIN -0.668 0.024 

MAX -0.024 0.668 

MEAN -0.346 0.346 

NUMBER OF UNDER-SIZED BEAMS 0 
Table 46. Two-dimensional frame optimized with additional training with Approach B and penalty coefficient equal to 10 

(lr1=0.001 and lr2=0.0005) 
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Figure 106. Model of two-dimensional frame optimized with additional training with Approach B and penalty coefficient equal to 
10 (lr1=0.001 and lr2=0.0005) 

Three-dimensional Frame 

The additional training also had beneficial effects in the optimization of the three-dimensional 

model. Specifically, Approach A was applied without penalty for under-sizing and adopting the 

same learning rates used for two-dimensional model optimization (lr1=0.001 and lr2=0.0005). 

Analyzing the results, we observe that the average absolute deviation between the current 

utilization rate and the target has decreased from 0.096 to 0.082 and that the number of beams 

whose utilization rate exceeds 1.4 has decreased from three to one. Excluding this beam, the 

deviation takes on values between -0.287 and 0.388, with an absolute mean value of 0.073. The 

results are shown in Table 47 and Table 48 while the distributions of sections and 

corresponding areas in the output model are in Figure 107 and Figure 108. 

Additional training using Approach B, on the other hand, led to worse results than the previous 

approach. As can be seen from Table 49, in which the results are shown, there are some entities 

with high utilization rates. Specifically, four beams have a utilization rate greater than 2. 

Excluding these elements, the results provided by Approach B are similar to those of Approach 

A. The presence of elements with very high utilization rate compared to the other approach 

may indicate a greater difficulty on the part of Approach B in taking into account nonlinearities 

between utilization rate and section area. The distribution in the structure of beam sections 

and corresponding areas obtained in output from the model with additional training B are 

shown in Figure 109 and in Figure 110. 
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Figure 107. Indices of the sections of the optimized three-dimensional model beams obtained using the additional training 
(Approach A) 

 

 

Figure 108. Area of the sections of the optimized three-dimensional model beams obtained using the additional training  
(Approach A) 
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Beam 
ID 

Sect. 
ID Sect. – 

ID Sect.NO TRAIN 
Diam  
[mm] 

Thk  
[mm] 

Length  
[mm] 

Result 
case max 

umax umax-𝐮̅ |umax-𝐮̅| 

1 1 0 273.0 5.0 10000 723 0.998 0.008 0.008 

2 8 0 406.4 8.0 10000 529 0.964 -0.026 0.026 

3 2 0 273.0 6.3 10000 529 1.013 0.023 0.023 

4 1 0 273.0 5.0 10000 229 0.703 -0.287 0.287 

5 3 0 323.9 5.6 10000 254 0.939 -0.051 0.051 

6 2 0 273.0 6.3 10000 868 1.033 0.043 0.043 

7 2 -1 273.0 6.3 10000 436 1.088 0.098 0.098 

8 3 0 323.9 5.6 10000 868 0.947 -0.043 0.043 

9 4 0 323.9 7.1 10000 530 0.870 -0.120 0.120 

10 2 0 273.0 6.3 10000 471 1.051 0.061 0.061 

11 2 -1 273.0 6.3 10000 819 1.028 0.038 0.038 

12 3 0 323.9 5.6 10000 787 0.999 0.009 0.009 

13 4 -2 323.9 7.1 10000 819 1.012 0.022 0.022 

14 8 0 406.4 8.0 10000 652 1.037 0.047 0.047 

15 5 0 355.6 6.3 13654 772 0.974 -0.016 0.016 

16 14 0 508.0 14.2 13654 33 0.926 -0.064 0.064 

17 8 0 406.4 8.0 13654 70 0.915 -0.075 0.075 

18 9 0 457.0 8.0 13654 728 2.611 1.621 1.621 

19 8 0 406.4 8.0 13654 798 0.808 -0.182 0.182 

20 8 0 406.4 8.0 13654 903 0.900 -0.090 0.090 

21 8 +2 406.4 8.0 13654 212 0.765 -0.225 0.225 

22 4 -1 323.9 7.1 13654 771 1.192 0.202 0.202 

23 6 0 355.6 7.1 13654 798 1.018 0.028 0.028 

24 4 0 323.9 7.1 13654 397 0.926 -0.064 0.064 

25 4 0 323.9 7.1 13654 438 1.043 0.053 0.053 

26 12 0 508.0 10.0 13654 33 1.054 0.064 0.064 

27 5 0 355.6 6.3 14000 334 1.017 0.027 0.027 

28 5 0 355.6 6.3 14000 404 1.017 0.027 0.027 

29 8 -1 406.4 8.0 14000 978 1.121 0.131 0.131 

30 4 0 323.9 7.1 14000 246 1.015 0.025 0.025 

31 8 0 406.4 8.0 14000 819 0.949 -0.041 0.041 

32 5 +1 355.6 6.3 14000 242 1.006 0.016 0.016 

33 4 0 323.9 7.1 14000 181 0.810 -0.180 0.180 

34 8 0 406.4 8.0 14000 177 0.858 -0.132 0.132 

35 5 0 355.6 6.3 14000 588 0.971 -0.019 0.019 

36 8 0 406.4 8.0 14000 297 0.886 -0.104 0.104 

37 8 0 406.4 8.0 17205 302 1.114 0.124 0.124 

38 8 0 406.4 8.0 17205 872 0.890 -0.100 0.100 

39 5 0 355.6 6.3 17205 597 0.957 -0.033 0.033 
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40 9 0 457.0 8.0 17205 836 1.004 0.014 0.014 

41 8 0 406.4 8.0 17205 810 0.948 -0.042 0.042 

42 6 0 355.6 7.1 17143 624 1.132 0.142 0.142 

43 8 0 406.4 8.0 17143 339 1.168 0.178 0.178 

44 6 0 355.6 7.1 17143 518 1.198 0.208 0.208 

45 10 0 457.0 10.0 17143 33 1.045 0.055 0.055 

46 8 0 406.4 8.0 17143 404 0.932 -0.058 0.058 

47 8 0 406.4 8.0 17143 756 1.003 0.013 0.013 

48 8 0 406.4 8.0 17143 250 1.011 0.021 0.021 

49 8 0 406.4 8.0 17143 714 1.144 0.154 0.154 

50 8 0 406.4 8.0 17143 444 1.052 0.062 0.062 

51 10 0 457.0 10.0 17143 712 0.946 -0.044 0.044 

52 6 0 355.6 7.1 17143 685 1.203 0.213 0.213 

53 9 0 457.0 8.0 17143 380 1.057 0.067 0.067 

54 8 0 406.4 8.0 17205 246 1.156 0.166 0.166 

55 8 0 406.4 8.0 17205 865 1.023 0.033 0.033 

56 8 0 406.4 8.0 14000 741 1.009 0.019 0.019 

57 9 0 457.0 8.0 14000 978 0.887 -0.103 0.103 

58 5 0 355.6 6.3 14000 771 0.989 -0.001 0.001 

59 8 0 406.4 8.0 14000 819 0.974 -0.016 0.016 

60 9 0 457.0 8.0 14000 291 1.172 0.182 0.182 

61 6 0 355.6 7.1 14000 622 1.057 0.067 0.067 

62 8 0 406.4 8.0 14000 1002 0.996 0.006 0.006 

63 8 0 406.4 8.0 14000 297 0.893 -0.097 0.097 

64 6 0 355.6 7.1 17205 715 1.282 0.292 0.292 

65 8 0 406.4 8.0 17205 636 0.883 -0.107 0.107 

66 8 0 406.4 8.0 17205 868 1.102 0.112 0.112 

67 9 0 457.0 8.0 17205 450 0.888 -0.102 0.102 

68 8 0 406.4 8.0 14000 608 0.934 -0.056 0.056 

69 8 0 406.4 8.0 14000 123 0.929 -0.061 0.061 

70 9 0 457.0 8.0 17143 813 1.025 0.035 0.035 

71 9 0 457.0 8.0 17143 1002 1.015 0.025 0.025 

72 10 0 457.0 10.0 17143 385 0.921 -0.069 0.069 

73 10 0 457.0 10.0 17143 638 0.924 -0.066 0.066 

74 10 0 457.0 10.0 17143 741 0.926 -0.064 0.064 

75 10 0 457.0 10.0 17143 782 0.963 -0.027 0.027 

76 5 0 355.6 6.3 10000 114 1.104 0.114 0.114 

77 2 0 273.0 6.3 10000 788 1.082 0.092 0.092 

78 3 0 323.9 5.6 10000 108 0.980 -0.010 0.010 

79 2 0 273.0 6.3 10000 347 0.946 -0.044 0.044 
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80 3 0 323.9 5.6 10000 638 0.894 -0.096 0.096 

81 2 -1 273.0 6.3 10000 168 1.063 0.073 0.073 

82 6 -2 355.6 7.1 10000 124 1.043 0.053 0.053 

83 13 0 508.0 12.0 13654 704 0.972 -0.018 0.018 

84 6 0 355.6 7.1 13654 88 1.040 0.050 0.050 

85 6 0 355.6 7.1 13654 523 1.050 0.060 0.060 

86 9 0 457.0 8.0 13654 608 0.867 -0.123 0.123 

87 9 -1 457.0 8.0 13654 608 1.065 0.075 0.075 

88 13 0 508.0 12.0 13654 987 0.926 -0.064 0.064 

89 2 0 273.0 6.3 10000 87 1.043 0.053 0.053 

90 1 0 273.0 5.0 10000 875 0.982 -0.008 0.008 

91 2 0 273.0 6.3 10000 28 1.038 0.048 0.048 

92 3 0 323.9 5.6 10000 832 1.126 0.136 0.136 

93 2 0 273.0 6.3 10000 147 0.955 -0.035 0.035 

94 3 0 323.9 5.6 10000 223 0.986 -0.004 0.004 

95 2 -1 273.0 6.3 10000 199 1.078 0.088 0.088 

96 9 0 457.0 8.0 13654 689 0.901 -0.089 0.089 

97 8 0 406.4 8.0 13654 298 0.952 -0.038 0.038 

98 10 0 457.0 10.0 13654 338 0.984 -0.006 0.006 

99 9 0 457.0 8.0 13654 29 0.963 -0.027 0.027 

100 8 0 406.4 8.0 13654 888 0.933 -0.057 0.057 

101 10 0 457.0 10.0 13654 29 0.865 -0.125 0.125 

102 10 0 457.0 10.0 17205 987 1.028 0.038 0.038 

103 9 0 457.0 8.0 14000 688 1.011 0.021 0.021 

104 6 0 355.6 7.1 14000 523 1.062 0.072 0.072 

105 8 0 406.4 8.0 14000 70 0.808 -0.182 0.182 

106 8 0 406.4 8.0 14000 29 0.937 -0.053 0.053 

107 8 0 406.4 8.0 14000 597 1.194 0.204 0.204 

108 8 0 406.4 8.0 14000 123 1.378 0.388 0.388 

109 10 0 457.0 10.0 14000 689 0.885 -0.105 0.105 

110 5 0 355.6 6.3 14000 500 0.990 0.000 0.000 

111 5 0 355.6 6.3 14000 101 0.979 -0.011 0.011 

112 5 0 355.6 6.3 14000 358 1.026 0.036 0.036 

113 4 0 323.9 7.1 14000 387 0.998 0.008 0.008 

114 5 0 355.6 6.3 14000 26 1.003 0.013 0.013 

115 5 0 355.6 6.3 14000 185 0.953 -0.037 0.037 

116 5 0 355.6 6.3 14000 179 0.946 -0.044 0.044 

117 10 0 457.0 10.0 17205 267 0.997 0.007 0.007 

118 8 0 406.4 8.0 17205 385 1.115 0.125 0.125 

119 16 0 610.0 11.0 19556 246 1.375 0.385 0.385 
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120 14 0 508.0 14.2 19556 720 0.984 -0.006 0.006 

121 14 0 508.0 14.2 19556 617 0.994 0.004 0.004 

122 12 0 508.0 10.0 19556 810 0.909 -0.081 0.081 

123 10 0 457.0 10.0 19556 158 1.020 0.030 0.030 

124 17 0 610.0 12.5 19556 728 1.052 0.062 0.062 

125 6 0 355.6 7.1 17143 818 1.142 0.152 0.152 

126 8 0 406.4 8.0 17143 689 0.941 -0.049 0.049 

127 8 0 406.4 8.0 17143 385 0.961 -0.029 0.029 

128 9 0 457.0 8.0 17143 798 1.021 0.031 0.031 

129 9 0 457.0 8.0 17143 987 1.006 0.016 0.016 

130 8 0 406.4 8.0 17143 616 0.997 0.007 0.007 

131 8 0 406.4 8.0 17205 120 1.174 0.184 0.184 

132 8 0 406.4 8.0 17205 826 1.023 0.033 0.033 

133 8 +2 406.4 8.0 17205 586 0.834 -0.156 0.156 

134 10 0 457.0 10.0 17205 8 0.994 0.004 0.004 

135 10 0 457.0 10.0 14000 771 0.953 -0.037 0.037 

136 14 0 508.0 14.2 19556 241 0.975 -0.015 0.015 

137 12 0 508.0 10.0 19556 688 0.893 -0.097 0.097 

138 10 +1 457.0 10.0 14200 33 0.937 -0.053 0.053 

139 8 0 406.4 8.0 14200 123 0.841 -0.149 0.149 

140 8 0 406.4 8.0 14200 259 0.924 -0.066 0.066 

141 9 0 457.0 8.0 14200 987 0.998 0.008 0.008 

142 10 0 457.0 10.0 14200 821 0.891 -0.099 0.099 

143 8 0 406.4 8.0 14200 126 1.013 0.023 0.023 

144 8 0 406.4 8.0 14200 259 0.937 -0.053 0.053 

145 9 0 457.0 8.0 14200 987 0.987 -0.003 0.003 

146 13 0 508.0 12.0 14200 33 0.967 -0.023 0.023 

147 9 0 457.0 8.0 14200 449 0.920 -0.070 0.070 

148 8 0 406.4 8.0 14200 33 1.032 0.042 0.042 

149 12 0 508.0 10.0 14200 962 1.049 0.059 0.059 

150 13 0 508.0 12.0 14200 33 0.969 -0.021 0.021 

151 9 0 457.0 8.0 14200 97 0.910 -0.080 0.080 

152 8 0 406.4 8.0 14200 33 1.004 0.014 0.014 

153 12 0 508.0 10.0 14200 741 0.932 -0.058 0.058 

154 10 0 457.0 10.0 14200 529 0.914 -0.076 0.076 

155 10 0 457.0 10.0 14200 529 0.943 -0.047 0.047 

156 8 0 406.4 8.0 14200 15 0.824 -0.166 0.166 

157 5 0 355.6 6.3 14200 737 0.991 0.001 0.001 

158 5 0 355.6 6.3 14200 821 1.042 0.052 0.052 

159 5 0 355.6 6.3 14200 723 0.952 -0.038 0.038 
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160 9 0 457.0 8.0 14200 878 0.938 -0.052 0.052 

161 9 0 457.0 8.0 14200 741 0.962 -0.028 0.028 

162 6 +1 355.6 7.1 14000 617 0.889 -0.101 0.101 

163 9 0 457.0 8.0 14000 21 1.100 0.110 0.110 

164 9 0 457.0 8.0 14000 631 1.054 0.064 0.064 

165 8 0 406.4 8.0 14000 181 0.810 -0.180 0.180 

166 3 0 323.9 5.6 14000 39 0.991 0.001 0.001 

167 8 +2 406.4 8.0 17205 858 0.847 -0.143 0.143 

SUM 1.856 13.691 

MIN -0.287 0.000 

MAX 1.621 1.621 

MEAN 0.011 0.082 

Table 47. Results of the optimization of the beams of the three-dimensional frame with additional training (Approach A) 

 

 umax-u̅ |umax-u̅| 

SUM 0.235 12.070 

MIN -0.287 0.000 

MAX 0.388 0.388 

MEAN 0.001 0.073 
Table 48. Overall deviation values between actual and target utilization rates of the beams of the optimized three-dimensional 
frame with additional training (Approach A), excluding the beam with utilization rate greater than 1.4 (i.e., beam number 18) 

 

 

Figure 109. Indices of the sections of the optimized three-dimensional model beams obtained using the additional training 
(Approach B) 
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Figure 110. Area of the sections of the optimized three-dimensional model beams obtained using the additional training 
(Approach B) 

Beam 
ID 

Sect. 
ID Sect. – 

ID Sect.NO TRAIN 
Diam  
[mm] 

Thk  
[mm] 

Length  
[mm] 

Result 
case max 

umax umax-𝐮̅ |umax-𝐮̅| 

1 1 0 273.0 5.0 10000 723 1.013 0.023 0.023 

2 8 0 406.4 8.0 10000 529 0.963 -0.027 0.027 

3 2 0 273.0 6.3 10000 36 2.068 1.078 1.078 

4 1 0 273.0 5.0 10000 229 0.701 -0.289 0.289 

5 3 0 323.9 5.6 10000 254 0.936 -0.054 0.054 

6 2 0 273.0 6.3 10000 989 16.279 15.289 15.289 

7 3 0 323.9 5.6 10000 436 0.868 -0.122 0.122 

8 3 0 323.9 5.6 10000 868 0.949 -0.041 0.041 

9 4 0 323.9 7.1 10000 530 0.880 -0.110 0.110 

10 3 +1 323.9 5.6 10000 471 0.810 -0.180 0.180 

11 3 0 323.9 5.6 10000 819 0.823 -0.167 0.167 

12 3 0 323.9 5.6 10000 787 0.999 0.009 0.009 

13 6 0 355.6 7.1 10000 819 0.862 -0.128 0.128 

14 8 0 406.4 8.0 10000 652 1.037 0.047 0.047 

15 5 0 355.6 6.3 13654 772 0.976 -0.014 0.014 

16 14 0 508.0 14.2 13654 33 0.928 -0.062 0.062 

17 8 0 406.4 8.0 13654 70 0.910 -0.080 0.080 

18 9 0 457.0 8.0 13654 728 2.577 1.587 1.587 

19 8 0 406.4 8.0 13654 798 0.802 -0.188 0.188 

20 8 0 406.4 8.0 13654 903 0.904 -0.086 0.086 

21 6 0 355.6 7.1 13654 212 1.121 0.131 0.131 
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22 5 0 355.6 6.3 13654 771 1.148 0.158 0.158 

23 6 0 355.6 7.1 13654 798 0.990 0.000 0.000 

24 4 0 323.9 7.1 13654 397 0.929 -0.061 0.061 

25 4 0 323.9 7.1 13654 438 1.043 0.053 0.053 

26 12 0 508.0 10.0 13654 33 1.058 0.068 0.068 

27 5 0 355.6 6.3 14000 334 1.018 0.028 0.028 

28 5 0 355.6 6.3 14000 404 1.006 0.016 0.016 

29 9 0 457.0 8.0 14000 978 0.879 -0.111 0.111 

30 4 0 323.9 7.1 14000 246 1.009 0.019 0.019 

31 8 0 406.4 8.0 14000 819 0.954 -0.036 0.036 

32 4 0 323.9 7.1 14000 242 1.065 0.075 0.075 

33 4 0 323.9 7.1 14000 181 0.828 -0.162 0.162 

34 8 0 406.4 8.0 14000 177 0.858 -0.132 0.132 

35 5 0 355.6 6.3 14000 503 0.976 -0.014 0.014 

36 8 0 406.4 8.0 14000 297 0.883 -0.107 0.107 

37 8 0 406.4 8.0 17205 302 1.111 0.121 0.121 

38 8 0 406.4 8.0 17205 872 0.898 -0.092 0.092 

39 5 0 355.6 6.3 17205 597 0.990 0.000 0.000 

40 9 0 457.0 8.0 17205 836 1.005 0.015 0.015 

41 8 0 406.4 8.0 17205 810 0.951 -0.039 0.039 

42 6 0 355.6 7.1 17143 624 1.137 0.147 0.147 

43 8 0 406.4 8.0 17143 339 1.170 0.180 0.180 

44 6 0 355.6 7.1 17143 518 1.220 0.230 0.230 

45 10 0 457.0 10.0 17143 33 1.048 0.058 0.058 

46 8 0 406.4 8.0 17143 404 0.934 -0.056 0.056 

47 8 0 406.4 8.0 17143 756 1.007 0.017 0.017 

48 8 0 406.4 8.0 17143 250 1.015 0.025 0.025 

49 8 0 406.4 8.0 17143 714 1.144 0.154 0.154 

50 8 0 406.4 8.0 17143 444 1.046 0.056 0.056 

51 10 0 457.0 10.0 17143 712 0.946 -0.044 0.044 

52 6 0 355.6 7.1 17143 685 1.200 0.210 0.210 

53 9 0 457.0 8.0 17143 380 1.057 0.067 0.067 

54 8 0 406.4 8.0 17205 246 1.147 0.157 0.157 

55 8 0 406.4 8.0 17205 865 1.023 0.033 0.033 

56 8 0 406.4 8.0 14000 741 1.016 0.026 0.026 

57 9 0 457.0 8.0 14000 978 0.897 -0.093 0.093 

58 5 0 355.6 6.3 14000 518 1.010 0.020 0.020 

59 8 0 406.4 8.0 14000 819 0.978 -0.012 0.012 

60 9 0 457.0 8.0 14000 291 1.143 0.153 0.153 

61 6 0 355.6 7.1 14000 622 1.055 0.065 0.065 
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62 8 0 406.4 8.0 14000 1002 0.996 0.006 0.006 

63 8 0 406.4 8.0 14000 529 0.892 -0.098 0.098 

64 6 0 355.6 7.1 17205 715 1.289 0.299 0.299 

65 8 0 406.4 8.0 17205 636 0.889 -0.101 0.101 

66 8 0 406.4 8.0 17205 868 1.100 0.110 0.110 

67 9 0 457.0 8.0 17205 450 0.896 -0.094 0.094 

68 8 0 406.4 8.0 14000 608 0.842 -0.148 0.148 

69 8 0 406.4 8.0 14000 123 0.934 -0.056 0.056 

70 9 0 457.0 8.0 17143 813 1.023 0.033 0.033 

71 9 0 457.0 8.0 17143 1002 1.020 0.030 0.030 

72 10 0 457.0 10.0 17143 385 0.925 -0.065 0.065 

73 10 0 457.0 10.0 17143 638 0.927 -0.063 0.063 

74 10 0 457.0 10.0 17143 741 0.921 -0.069 0.069 

75 10 0 457.0 10.0 17143 782 0.970 -0.020 0.020 

76 5 0 355.6 6.3 10000 114 1.104 0.114 0.114 

77 2 0 273.0 6.3 10000 788 1.083 0.093 0.093 

78 3 0 323.9 5.6 10000 108 0.977 -0.013 0.013 

79 2 0 273.0 6.3 10000 347 0.947 -0.043 0.043 

80 3 0 323.9 5.6 10000 638 0.898 -0.092 0.092 

81 3 0 323.9 5.6 10000 168 0.827 -0.163 0.163 

82 8 0 406.4 8.0 10000 124 0.744 -0.246 0.246 

83 13 0 508.0 12.0 13654 704 0.959 -0.031 0.031 

84 6 0 355.6 7.1 13654 88 0.997 0.007 0.007 

85 6 0 355.6 7.1 13654 523 1.014 0.024 0.024 

86 9 0 457.0 8.0 13654 608 0.908 -0.082 0.082 

87 10 0 457.0 10.0 13654 608 0.870 -0.120 0.120 

88 13 0 508.0 12.0 13654 987 0.943 -0.047 0.047 

89 2 0 273.0 6.3 10000 87 1.043 0.053 0.053 

90 1 0 273.0 5.0 10000 875 1.005 0.015 0.015 

91 2 0 273.0 6.3 10000 28 1.039 0.049 0.049 

92 3 0 323.9 5.6 10000 832 1.126 0.136 0.136 

93 2 0 273.0 6.3 10000 147 0.955 -0.035 0.035 

94 3 0 323.9 5.6 10000 223 0.984 -0.006 0.006 

95 3 0 323.9 5.6 10000 199 0.839 -0.151 0.151 

96 9 0 457.0 8.0 13654 689 0.902 -0.088 0.088 

97 8 0 406.4 8.0 13654 298 0.954 -0.036 0.036 

98 10 0 457.0 10.0 13654 338 0.978 -0.012 0.012 

99 9 0 457.0 8.0 13654 29 0.963 -0.027 0.027 

100 8 0 406.4 8.0 13654 888 0.932 -0.058 0.058 

101 10 0 457.0 10.0 13654 29 0.860 -0.130 0.130 
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102 10 0 457.0 10.0 17205 987 1.019 0.029 0.029 

103 9 0 457.0 8.0 14000 688 1.008 0.018 0.018 

104 6 0 355.6 7.1 14000 523 1.071 0.081 0.081 

105 8 0 406.4 8.0 14000 70 0.809 -0.181 0.181 

106 8 0 406.4 8.0 14000 29 0.941 -0.049 0.049 

107 8 0 406.4 8.0 14000 597 1.219 0.229 0.229 

108 8 0 406.4 8.0 14000 123 1.342 0.352 0.352 

109 10 0 457.0 10.0 14000 689 0.887 -0.103 0.103 

110 5 0 355.6 6.3 14000 500 0.992 0.002 0.002 

111 5 0 355.6 6.3 14000 101 0.977 -0.013 0.013 

112 5 0 355.6 6.3 14000 358 1.026 0.036 0.036 

113 4 0 323.9 7.1 14000 387 1.021 0.031 0.031 

114 5 0 355.6 6.3 14000 26 0.997 0.007 0.007 

115 5 0 355.6 6.3 14000 185 0.952 -0.038 0.038 

116 5 0 355.6 6.3 14000 179 0.948 -0.042 0.042 

117 10 0 457.0 10.0 17205 267 0.993 0.003 0.003 

118 8 0 406.4 8.0 17205 385 1.103 0.113 0.113 

119 16 0 610.0 11.0 19556 246 1.353 0.363 0.363 

120 14 0 508.0 14.2 19556 720 0.984 -0.006 0.006 

121 14 0 508.0 14.2 19556 617 0.989 -0.001 0.001 

122 12 0 508.0 10.0 19556 810 0.906 -0.084 0.084 

123 10 0 457.0 10.0 19556 158 1.021 0.031 0.031 

124 17 0 610.0 12.5 19556 728 1.030 0.040 0.040 

125 6 0 355.6 7.1 17143 818 1.142 0.152 0.152 

126 8 0 406.4 8.0 17143 689 0.941 -0.049 0.049 

127 8 0 406.4 8.0 17143 385 0.950 -0.040 0.040 

128 9 0 457.0 8.0 17143 798 1.014 0.024 0.024 

129 9 0 457.0 8.0 17143 987 1.009 0.019 0.019 

130 8 0 406.4 8.0 17143 616 0.997 0.007 0.007 

131 8 0 406.4 8.0 17205 120 1.176 0.186 0.186 

132 8 0 406.4 8.0 17205 826 1.021 0.031 0.031 

133 6 0 355.6 7.1 17205 586 1.260 0.270 0.270 

134 10 0 457.0 10.0 17205 8 0.992 0.002 0.002 

135 10 0 457.0 10.0 14000 771 0.958 -0.032 0.032 

136 14 0 508.0 14.2 19556 241 0.973 -0.017 0.017 

137 12 0 508.0 10.0 19556 688 0.893 -0.097 0.097 

138 10 +1 457.0 10.0 14200 33 0.941 -0.049 0.049 

139 8 0 406.4 8.0 14200 1002 0.849 -0.141 0.141 

140 8 0 406.4 8.0 14200 259 0.908 -0.082 0.082 

141 9 0 457.0 8.0 14200 987 0.991 0.001 0.001 
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142 10 0 457.0 10.0 14200 821 0.891 -0.099 0.099 

143 8 0 406.4 8.0 14200 126 1.017 0.027 0.027 

144 8 0 406.4 8.0 14200 259 0.935 -0.055 0.055 

145 9 0 457.0 8.0 14200 987 0.981 -0.009 0.009 

146 13 0 508.0 12.0 14200 33 0.969 -0.021 0.021 

147 9 0 457.0 8.0 14200 449 0.920 -0.070 0.070 

148 8 0 406.4 8.0 14200 33 1.018 0.028 0.028 

149 12 0 508.0 10.0 14200 962 1.051 0.061 0.061 

150 13 0 508.0 12.0 14200 33 0.971 -0.019 0.019 

151 9 0 457.0 8.0 14200 97 0.912 -0.078 0.078 

152 8 0 406.4 8.0 14200 33 0.992 0.002 0.002 

153 12 0 508.0 10.0 14200 741 0.927 -0.063 0.063 

154 10 0 457.0 10.0 14200 529 0.911 -0.079 0.079 

155 10 0 457.0 10.0 14200 529 0.941 -0.049 0.049 

156 8 0 406.4 8.0 14200 15 0.832 -0.158 0.158 

157 5 0 355.6 6.3 14200 737 0.999 0.009 0.009 

158 5 0 355.6 6.3 14200 821 1.037 0.047 0.047 

159 5 0 355.6 6.3 14200 723 0.970 -0.020 0.020 

160 9 0 457.0 8.0 14200 878 0.934 -0.056 0.056 

161 9 0 457.0 8.0 14200 741 0.958 -0.032 0.032 

162 5 0 355.6 6.3 14000 21 1.637 0.647 0.647 

163 9 0 457.0 8.0 14000 21 1.096 0.106 0.106 

164 9 0 457.0 8.0 14000 631 1.058 0.068 0.068 

165 8 0 406.4 8.0 14000 181 0.812 -0.178 0.178 

166 3 0 323.9 5.6 14000 783 0.989 -0.001 0.001 

167 6 0 355.6 7.1 17205 858 1.318 0.328 0.328 

SUM 18.024 31.245 

MIN -0.289 0.000 

MAX 15.289 15.289 

MEAN 0.108 0.187 

Table 49. Results of the optimization of the beams of the three-dimensional frame with additional training (Approach B). 

 umax-u̅ |umax-u̅| 

SUM -0.577 12.643 

MIN -0.289 0.000 

MAX 0.363 0.363 

MEAN -0.004 0.078 
Table 50. Overall deviation values between actual and target utilization rates of the beams of the optimized three-dimensional 
frame with additional training (Approach B), excluding the beams with utilization rates greater than 1.4 (i.e., beams number 3, 6, 
18 and 162). 
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5.4  Conclusion 

The optimization tool proposed in this chapter resulted in a distribution of beam cross-sections 

in the structure such that these elements have a utilization rate close to that desired. No cost 

reasoning has been done in this tool, and optimization is driven by utilization rate. Also, joints 

were not considered. However, the result obtained is interesting and is a good basis for future 

developments in which to include these other aspects for a more complete optimization.  

The MLP network for defining beam sections has the advantage of being a model that is not 

specific to one structure to be optimized but can be used in multiple structures. Furthermore, 

additional training of the network performed during optimization can improve the results and 

also better direct them toward the desired goal. 

The use of low-rank stiffness matrices made it possible to create a surrogate model with low 

computational cost and quickly and can also be a useful tool in contexts other than optimization, 

such as having a quick estimate of a new load condition applied to the structure. 
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Conclusions 

Can Artificial Intelligence offer techniques that benefit the design process of steel 

megastructures? 

The purpose of this research is to try to provide an answer to this question. Through an 

interdisciplinary approach, the contributions that computer science knowledge can make to the 

world of structural design were explored. Contamination between even very different sciences, 

allowing cultural enrichment that leads to seeing the problem from a different point of view, 

can lead to the development of innovative tools for solving a problem. 

Scale of the problem 

The search for a solution to a problem begins with knowledge of the problem itself. Based on 

this philosophy, the present research began with a description of the structural problem, with 

a focus on the design of steel megastructures. This specific category of structures plays a crucial 

role in society. Bridges, stadiums, buildings, port access gates, etc. represent a small example of 

this type of works. They have different functions, but all are important for the economic 

development of the geographical area. The large number of parameters needed to describe a 

design solution, which are interconnected and influence each other, makes the size of the 

problem particularly high. In addition, the complex physical phenomena require in-depth 

knowledge of the subject matter and onerous analyses to assess structural performance. The 

complexity of the problem is also amplified by the design process itself, which involves 

numerous actors with different roles and skills, and among whom it is particularly important 

that there be proper information transmissions. Their large number prevents with traditional 

design techniques to systematize all design variables simultaneously, thus generating an 

iterative problem-solving approach. Commercially available software used by designers also 

fails to meet the need for a complete view of the design problem, being limited by their 

specificity and/or by the computational burden that excessive model size and degree of detail 

achieved. The solution resulting from this design approach is therefore generally inefficient. 

The economic and social impact of such structures drives to search for new approaches to 

solving the design problem that lead to more optimized, safe, efficient, and cost-effective 

results. As one of the biggest obstacles to achieving this goal is the large number of variables 
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involved in the problem, the idea is to use the tools offered by Artificial Intelligence to find the 

best solution within the range of possible solutions. 

State of the art 

In recent decades, machine learning techniques have been increasingly used in various 

scientific fields, including structural engineering. A review of the literature, however, shows 

that the research conducted for the use of these techniques in civil engineering is mainly aimed 

at material behavior assessment, damage detection, and structural monitoring. In contrast, 

applications in design are very limited and consider simple problems of very limited size. Thus, 

there emerges a gap in machine learning tools applicable to real structures, particularly 

megastructures, for which the need to apply such tools would instead be higher because the 

complexity of the problem limits the designer’s ability to identify the best solution within a 

reasonable time and, in addition, the considerable size of the structure means that the reduction 

in environmental, economic and social impact resulting from their optimization is particularly 

relevant. The difficulties in devising an optimization tool for large steel structures are related 

both to the size of the problem, which implies the need for adequate computational resources, 

and to the required level of knowledge of the structural problem. The aspects to be considered 

for steel structures are numerous, very different in nature, and concerning different skills. They 

range from local phenomena such as plasticity and fracture toughness, which require in-depth 

theoretical knowledge in the structural field and on the behavior of steel, to the more practical 

problems of transportation, execution, and erection of the structure, which designers often 

consider little or have little information about during the design process. All these aspects 

should concur in formulating the optimization problem, that is, in identifying the variables and 

correctly writing the cost function, which the chosen optimization technique will have to 

minimize. 

Preliminary work 

Optimized structural solutions must meet the verifications and performance required by the 

standards. The types of checks and performance depend on the reference standards and the 

types of elements available for solutions. Therefore, preliminary work needs to be done to 

define the reference standards and the types of allowable elements and geometric 

configurations, based on which to create a structural behavior verification form that provides 

the utilization rate of the elements. In this thesis, reference was made to the checks by the 
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Eurocodes, only the hollow circular sections were evaluated for the beams and only the "single 

plate connection" type joints were considered, being the main purpose of the research to 

investigate the optimization methods. However, the verifier can be expanded in the future to 

include other cases. Limiting the allowed structural types makes it possible to simplify the 

verifier's processing and narrow the algorithm's search range for the optimized solution, which 

on the one hand facilitates the algorithm's convergence, but on the other hand limits its ability 

to explore different solutions. For the calculation of stresses on structural elements to be used 

for verifications, it is necessary to rely on FEM software with which to create a calculation 

model. Correctly estimating the size of the elements needed for both verification and estimating 

the costs of materials and workmanship requires the support of CAD software with which to 

create a three-dimensional geometric model and measure the dimensions of individual 

elements. Therefore, it was necessary to create a framework that would link the optimization 

algorithm with FEM and CAD software with which to create candidate solution models and 

obtain the parameters to be used in calculating the cost function.  

Combined beam and joint optimization 

In this research, the problem of optimizing beams and joints of a multi-way node was 

addressed. The same approach applies to a larger portion of the structure. Two philosophically 

different approaches to solve the problem were studied: the Genetic Algorithm and the 

Gradient-based algorithm. A third algorithm has only been sketched and not yet applied, in 

which elements are grouped on the basis of their stresses, and, taking a cue from the Particle 

Swarm Algorithm, for each element the update of variables also takes into account the value 

taken by them in the best element of the group. The Genetic Algorithm, due to its versatility and 

intuitiveness, was not difficult to apply to the structural problem. The fact that structural 

variables generally lend themselves to being described by discrete variables, either because 

they are related to the commercial availability of the elements or because they represent a 

quantification of the elements, facilitated the algorithm's search for the solution. As it is 

designed, the trend of the curve representing the value of the fitness function of the best 

individual in the population as a function of the number of iterations is monotonically 

decreasing. This implies that the best solution will always be found at the last iteration 

performed, without the need to search for it in previous iterations. The fact that the Genetic 

Algorithm evaluates only candidate solutions as a whole, without capturing whether variation 

in a single variable has positive or negative effects, suggests that this type of algorithm is 
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effective but not efficient. This consideration prompted the evaluation of another algorithm, 

based on gradients. With this approach, we want to estimate the influence of variations of single 

variables on the objective function to define the new candidate solution. Given the amount of 

variables to describe a candidate solution, the variables were divided into blocks with the aim 

of trying to facilitate the convergence of the algorithm to the final solution. Unlike the previous 

one, many difficulties were encountered in applying this approach to the structural case. First, 

the non-derivable nature of the cost function necessitated the use of a gradient estimate. The 

presence of very different variables, some discrete and others continuous, and which take 

values with very different scales has required numerous tests to evaluate the best way to treat 

them, especially in the choice of the deviation of their value necessary for the calculation of the 

gradient estimation and to evaluate how to update the values of the variables based on the 

gradient obtained. In the evaluation of the gradient, the variation in the value of the variables 

was performed using a different delta depending on the nature of the variables. The same delta 

is then applied when updating the solution, through a sign function that considers the estimated 

gradient. Of the two algorithms, the best results were obtained with the genetic one. The 

computational cost of the analysis is related not only to the calculations performed by the 

algorithm for creating and analyzing the candidate solutions and for calculating the update of 

the variables, but also to the creation and analysis of the calculation and geometric models with 

which the stresses and effective dimensions of the elements were derived, respectively. The 

number of iterations required to achieve convergence, which is related to the number of models 

created during the analysis, was lower for the Genetic Algorithm. As a result, it can be said that 

the Genetic Algorithm approach was less computationally burdensome. However, it should be 

noted that the worse performance demonstrated by the Gradient-based algorithm compared to 

the Genetic Algorithm may also be related to the difficulty of computing a gradient-dependent 

variable update function. The function used in this thesis, which merely evaluates the direction 

of gradient-dependent variable updating, appears very crude, and future studies may lead to its 

improvement, thus affecting the performance of the algorithm. 
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Surrogate models 

The need to obtain design solutions in a reasonable amount of time clashes with the need to 

conduct finite element simulations with which to derive parameters for evaluating structural 

behavior. In fact, the time and computational resources required for such analyses are high for 

large models or in the case where nonlinear analyses are required. This consideration has 

prompted an attempt to develop a surrogate model that provides stress estimation without the 

need to perform FEM analysis. A review of the existing literature revealed a lack of studies on 

this topic. Several approaches to surrogate model development have been studied. Among 

these, the one that has brought the best results in relation also to the burden for its construction 

is the one involving the creation of a low-rank stiffness matrix. It should be noted that this 

matrix is related to the stiffness distribution of the structure with which it was created. 

Therefore, changing the cross sections of the beams in the structure will affect the quality of the 

results. However, it should be kept in mind that the purpose is only to estimate stresses, to 

speed up iterations in an optimization workflow, and is not intended to replace FEM analyses, 

which still need to be performed but less frequently.  

Other approaches studied for surrogate modeling involve the creation of Neural Networks. In 

particular, the frame structure lends itself particularly well to being described by means of 

graphs, on the basis of which Graph Neural Networks can be constructed.  The specificity of the 

structural problem prompted the creation of ad hoc convolutional layers that would take into 

account the underlying physicality of the problem. Many difficulties were encountered in the 

training phase of the networks. Even with only frames of a hundred beams, learning was 

onerous and acceptable error levels could not be achieved. Therefore, these approaches are 

interesting but need further study to improve model learning and thus be applicable to real 

cases. 

Optimization with Neural Network 

Neural Networks are increasingly being used to model large complex problems. In this 

research, this technique was used to create a model that optimizes the beam sections of a frame 

structure, looking for the configuration of cross profiles for which all elements have the desired 

utilization rate. The use of Neural Networks has the advantage that pre-existing designs like the 

one under consideration can be used for training the network. Alternatively, the database to be 

used for training can be created ad hoc, thus having the possibility of creating dummy cases 
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with only the sections belonging to the database available for optimization and with lengths 

and stresses similar to those of the starting model to be optimized. Another advantage of Neural 

Networks is related to the fact that the trained models are not specific to one structure but can 

be used to design different structures. 

Changing the cross sections of the beams with those in output by the network results in a 

change in the weight acting on the structure and thus a change in the forces on the beams, on 

which the output of the Neural Network itself depends. The optimization process is therefore 

iterative, and to avoid having to update the FEM model and perform finite element analysis at 

each iteration, a surrogate model was created using the low-rank stiffness matrix approach. 

This optimization flow was applied to two case studies, a two-dimensional frame of 11 elements 

and a three-dimensional frame of 167 elements. In both cases the optimization approach 

yielded good results, providing a set of cross sections for the frame beams with which they have 

utilization rates closer to the target than the starting models. The results were further improved 

by performing additional training during the optimization process itself, using a loss function 

that takes into account the deviation of the actual utilization rate from the target one, in 

addition to the loss function already used during the previous network training. Two 

approaches have been proposed to carry out this additional training, which differ in the way 

the gradient is calculated. Careful selection of the configuration of the two optimizers that 

update the network parameters based on the two loss functions proved to be critical to 

properly perform the additional training. The use of additional training also has the advantage 

of reducing the risk of under-sizing, which is obviously a much less desirable condition than 

over-sizing, through the introduction of a penalty coefficient. 

This optimization approach does not consider joints and nodes, but only regards beams. A more 

correct optimization would require the introduction of joints and nodes, since, as explained 

earlier, there is a mutual influence between beams and the elements that connect them 

together. To introduce these elements into the optimization process as well, one idea might be 

to take the same approach used for beams, that is, to create a Neural Network that, taking the 

forces as input, provides the joint configuration with the desired utilization rate. Different 

Neural Networks could be trained depending on the type of joint to be designed. The workflow 

that includes both beam and joint Neural Networks would be iterative in nature because 

changing the geometry of the elements affects the loads and forces and because of the mutual 

influence of beams and joints. 
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It should be noted that the proposed Neural Network optimization workflow only considers the 

utilization rate of the elements and not the costs of materials and processing. For a more 

accurate and correct optimized solution, these concepts should also be introduced into the 

optimization process. 

Research findings 

Through this thesis, different approaches were investigated for the development of AI-based 

tools to provide support for structural design activities, with a focus on megastructures, which 

are characterized by complexity and onerousness in analysis. The lack of previous research in 

this area that emerged after an in-depth study of the state of the art made it necessary to 

investigate different approaches for the development of these tools. In particular, the search for 

the optimum was pursued both through the development of two algorithms, one meta-heuristic 

and the other gradient-based, and through the implementation of a neural network. The meta-

heuristic algorithm used is the genetic algorithm, which has already been used in a number of 

optimization problems in other areas, and has performed well, but does not appear to be the 

most efficient in the context of structural design because it does not allow for efficient 

exploitation of information from the analysis of candidate solutions. The gradient-based 

algorithm would have good intentions of making up for this shortcoming of the genetic method, 

but to be competitive it would need further study to devise a more efficient function for 

updating variables based on the gradient. Both algorithms were applied to a small portion of 

the structure in order to evaluate the pros and cons of the two methods. These approaches can 

also be applied to larger portions of the structure. However, the large increase in variables to 

the problem may require contrivances to reduce the size of the search space for the optimum 

and make it easier to reach the solution. A third algorithm, the Grouping Algorithm, based on 

groupings of similar elements, has been sketched in this direction.  

In addition to the algorithms, the use of Neural Networks was also investigated, which has the 

advantage of being able to exploit databases of existing structures for model training. The 

neural network has been used within an iterative type workflow in which at each iteration the 

loads are updated on the basis of the profiles of the members in output to the neural network 

and an additional training specially created of the Neural Network is carried out. The latter 

represents an approach that allows to improve the result coming from the optimization process 

through an adaptation of the network to the structural problem in question. The onerousness 

of finite element analyzes for complex structures has led to the search for surrogate models that 
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would speed up the updating of the loads resulting from the updates of the profiles of the 

members of the structure with those provided in output by the Neural Network. The approach 

based on surrogate models is particularly interesting as it could also be useful in other 

situations, for example for a quick estimation of the stresses deriving from a new loading 

condition. 

Closing remarks 

Answering the question posed at the beginning of this concluding chapter, Artificial Intelligence 

methods could have interesting applications in supporting the design of steel megastructures. 

On the one hand, they provide algorithms for the evaluation of different design solutions for 

optimization purposes; on the other hand, they offer methods for the creation of surrogate 

models that allow reducing the number of finite element analyses performed with complex 

computational models as they allow rapid estimation of results, which are useful for quick 

evaluation of different design solutions. The creation of these tools requires a well-rounded 

knowledge of steel structures, since proper design requires, on the one hand, in-depth 

knowledge of civil engineering and structural steel in order to be able to assess structural 

performance and, on the other hand, knowledge of machining, transportation, and erection 

processes, which are critical for feasibility assessment and cost estimation. In addition, 

preliminary work on the study of regulations is required, which, together with theoretical 

knowledge, allows for the calculation of element utilization rates. Added to this is the accurate 

creation of a database of available materials and elements on which to limit the choice, thus 

enabling a reduction in the search space for the solution. The size of the problem, which needs 

a large number of variables, moreover very different ones, to be described, and the 

impossibility of expressing the problem in terms of simple equations requires a deep 

knowledge of machine learning for appropriate data management and efficient application of 

computer science notions in order to develop a tool that provides valid results quickly. Given 

the extent and varied amount of knowledge and expertise required, the development of 

efficient and effective tools to support the design of steel megastructures requires significant 

investment. Justifying this investment is the economic and social impact of these structures, the 

improvement of which can easily translate into benefits for the whole society. 
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