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Introduction

Modeling volatility in financial markets has always been problematic given its non-deterministic
nature. In the derivative world, where volatility plays a crucial role, different pricing models have
been developed since the 20th century. The most famous and widely used is the Black-Scholes
formula, proposed in their seminal work in the seventies [1].

Since then, several other models have been developed to overcome its shortcomings that
question its robustness such as the assumption of constant volatility (implied). Indeed, volatility
surface is well-known to presents so-called smiles due to the option moneyness and ATM skews.
If volatility were a constant as described by Black and Scholes, volatility surface would be flat
instead of varying across moneyness and maturities.

Hence, the need of models capable of capture consistently this feature in order to correctly
price option contracts.

Among stochastic volatility models, notable mentions are Heston model [2], SABR [3], Hull
and White [4] and Bergomi model [5]. They differ from each other, essentially for the specific dy-
namics describing the volatility process. These models are considered time-homogenous, meaning
that parameters are independent from price and time. This property assumes that the overall shape
of the volatility surface does almost not change in the equity market, at least in first approximation,
albeit level and orientation can.

Despite these models were a notable improvement, they do not capture persistency and
volatility clusters that instead are observable in time-series data. The limitation of the stochasticity
term modeled as a Brownian motion process, was eliminated by Comte and Renault [6] with the
introduction of fractional stochastic volatility model, where a fractional Brownian motion with
long dependency drives the model. A revisitation of that has been proposed by Gatheral, Jaisson
and Rosenbaum [7], who defined volatility as rough and showed that volatility has short term
dependence. Bayer, Friz and Gatheral also proposed an extension of the Bergomi model for option
pricing purpose under rough volatility, called the rough Bergomi model.

The work has the following structure. In the first session we describe fractional Brownian
motion processes with particular focus on different traces-simulation approaches. We then, describe
the so-called roughness of the process driving the volatility of many underlying, according to the
work of Gatheral, Jaisson and Rosenbaum. Follows the derivation of the rough Bergomi model for
option pricing. Finally, in the last session we proceed with the simulation of the model and we

work on its calibration with real market data.






1 Fractional Brownian motion and simulation methods

A fractional Brownian motion is a generalization of the well-known Brownian motion process. It

was first formally defined in [8] in 1968 by the following stochastic representation:

W T (f Oocw - o+ [ (s av) @

where T is the gamma function' and H € (0,1) denotes the Hurst parameter. W is a standard
Brownian motion process W (¢, w) where ¢t € (—oo0,+ —00) and w is a set of all values of a random
function (path) that belongs to the sample space 2 = Cy(R4, R).

In contrast to the ordinary Brownian motion process, its covariance structure allows for

asymptotic dependence:

S

1
E[WHAWH] = §(t”’ + 2t — s |?H). (2)

Note that, the ordinary Brownian Motion process is easily retrievable with H = %, hence inde-
pendence between the increments. With H > % positive correlation is addressed, memory and
persistence are generated. Negative correlation, thus intermittency and anti-persistency, is present

instead with H < %

1.1 Some properties of the process

A fractional Brownian motion process WH = WH __ with 0 < H < 1 is uniquely characterized by

the following properties:
L W =0and E [WH] =0,
2. WH has homogeneous increments, i.e. Wgs — WH has the same law of WH for s, > 0,
3. WH is a Gaussian process and E [(WtH)z} =21
4. WH has continuous trajectories.

For the purposes of our study, it is also important that in the case of H # %, the process
is neither a semi-martingale nor a Markov process. The dependence of new values from the past
causes the stochastic calculus developed by It6 to be undefined. This poses a potential limitation

for process simulation, especially in terms of time since there is no analytical solution.

!The gamma function is defined as: I'(z) = [;* t*~te~tdt.



1.2 Simulation methods

In the following section, some methods are presented to simulate fractional Gaussian noise, from
which, it is then possible to obtain the fractional Brownian motion process.

Process simulation is required to evaluate any model based on this type of stochastic process.
Some of these algorithms, in fact, will then be employed in the last section of the document.

First, we introduce four mathematical algorithms and then implement them in Python, the
code part is attached in Appendix A. The section presents the algorithms in increasing order of
efficiency. In fact, for the implementation of these algorithms in the financial sector, their efficiency
is fundamental: both from the point of view of the time required and from that of the memory
used.

First, we introduce simulation methods considered exact: more time-consuming but gen-
erating more accurate path coordinates. For exact methods the common starting point is the
covariance matrix I' which specifically defines the process. It follows an approximate method also

used in the last section of the document.

1.2.1 Cholesky decomposition

Since it is a stationary process, the simulation of a path of fractional Brownian motion in a discrete
time-frame WH = WH t € [0,T] can be done via cumulative sums of simulated increments, i.e.
WH =0and WH = ZI;:O X;,k > 1, where X; is defined as a random variable X,, = WH —WH
Due to the properties of the process itself, it is sufficient to generate the values Wi, Wi, ... W]I\}Ll
and scale them by a factor (%) to retrieve a sequence of coordinates W (£), W (L), ..., WH (%)
of simulation values.

We introduce the covariance of a sequence of standard Gaussian random variables Xg, X7, ...

belonging to a fractional Gaussian noise:
1
Y(8) = B (X1, Xia] = 5 (b + 1) + [k = 12— 202H) | > 0, (3)

If we write the process in term of centered Gaussian vector? X = (Xg, X1,..., Xnx_1)7, it can

represented as

X =1LZ (4)

where Z is a standard Gaussian vector Z = (Z;, Zs,...,Zn)T and L is the square root of the

2A centered normal random vector is a real random vector X = (Xo, X1, ..., Xy_1)T with deterministic N x I
matrix A such that AZ, where Z is a standard normal random vector with [ components, has the same distribution

as X.



covariance matrix I' defined as

7(1) 7(2) YN =2) (N -1)

7(1) 1 7(1) YN =3) (N -2)

v(2) 7(1) 1 YN —4) (N -3)
r=Ty=| ~03) 7(2) 7(1) V(N =5) (N —4) (5)

YN =2) y(N=3) y(N-4) 1 7(1)
YN =1) y(N=2) ~v(N-=3) 7(1) 1]
such that

LLT =T. (6)

Given that, applying the Cholesky decomposition gives the matrix L of type:

[ L) 0 0 0o .. 0o |
l(]’o) l(ly]) 0 0 ce. 0
L= l(g,o) 1(271) 1(2,2) 0 ce. 0 . (7)
Iv-10) lnv-11) Iv-12) w13 - lv—1,8-1)]

We define the Cholesky decomposition in its element-wise form as

J
Vi = 5) =D ikl 0<j < i <N = 1. (8)
k=0

For i = j = 0 the equation reduces to v(0) = I3, = 1 and for i = 1 we obtain v(1) = l1glgp and
13,+13, = 1. From that, ;o = (1) and l;; = \/1 — ¥2(1). The other non-zero clements are defined
as following, for ¢ > 2:
Lio = (i)
1 =
lij:—(7(i—j)—Zlikljk),0<j§i<N—1 (9)
k=0

Li;

i—1
17, =~(0) — Zl?k
k=0
Once L is found, according to (4), fractional Gaussian noise is easily recovered by matrix multi-
plication. The fractional Brownian motion process is recovered from the cumulative sum of the
increments.

The Cholesky method is relatively easy to implement but has a complexity of O(N?) and
requires more memory than other methods, making it rather uneconomical in terms of speed.
However, the matrix L can be stored once it has been calculated, reducing it to the order of O(N?)
for repetitive simulations. Another advantage of this algorithm is that traces can be generated
on-the-fly, which means that the sample size doesn’t have to be defined in advance; moreover, from

a practical point of view, this guarantees some results if the algorithm stops at a random moment.



Algorithm 1.1. The algorithm generates a single path given granularity N, time T and Hurst

parameter H.
1. Compute the array generating the matrix T' as T'(k) = § ((k + 1)*7 + |k — 12 — 2(k2H)).
2. Implement the Cholesky composition as in (9).

3. Compute the fractional Gaussian noise through matrix multiplication between the obtained

matrix L and a vector of generated standard normal random variables Z; ~ (0, 1).

4. Take the cumulative sum and scale by (%)H to retrieve the fractional Brownian motion

process.

1.2.2 Hosking method

The Hosking method is an algorithm capable of simulating a general stationary Gaussian process
and therefore can also be used to generate a fractional Brownian motion process. It is also known as
the Durbin and Levinson method and, like the Cholesky decomposition, simulates the process as a
cumulative sum of increments. The algorithm generates X, 1 given X,,, X,,_1, ..., X recursively,
therefore it does not exploit any specific property of the process itself. It also has the same
advantage of the Cholesky decomposition when referring to sample size.

We define an n-dimensional vector ¢, := (y(1),7(2),...,7(n))T from the covariance matrix

of the form (5) and the matrix F,:

[0 0 0 0 0 1]

00 0 01 0

00 0 100
F, =

010 ..000

100 ... 00 0

The matrix is capable of flipping any pre-multiplied vector of dimension (n x 1) or post-multiplied
row vector of dimension (1 x n).
Then, the covariance matrix I';,1; can be represented by block-matrix multiplication in

terms of I',, by:

1 cg 'y, Fuen
T = = . (10)
Cn Fn Cz:Fn 1

The conditional distribution of (X,,41]|X,, ..., Xo) is a Gaussian distribution with the following

10



parameters, see [9]:

pn = E(Xpi1| X, .o, Xo) = 2T 0

02 =Var(X,11|Xn, ..., Xo) =1 — cIT, tc,.

Starting from Xy, these parameters can be calculated recursively. The original method
proposed by Hosking sees the computation of the inverse of the I' matrix at each step, however
it would be computationally expensive. A slightly different, but more efficient, version has been
proposed by Dieker [10], to which we refer for the proof.

We define d,, := T, *¢,, for convenience. From (10), we can then rewrite the inverse of T',,1 1
as:

1 1 |o20, '+ F,d,dYF, —F,d,
I_‘n-i-l =3 T

where 2| and d,41 satisfy the recursions

2 (7(’”‘_‘_2) B Tn)2

n

2
ag =0
n+1 2
(o)

and
dn - ¢nFndn

On

dn+1 =

with
Ty 1= dZ;Fncn = CZFndn

by = ~v(n + 22) ~Tn
Uﬂ,

Note that, the algorithm needs the covariance of order (n + 2) to calculate the coordinates of the
process at step n, thus I' should have dimension (N + 2 x N + 2).

Starting from Xo ~ N(0,1) we can easily simulate the process Xy, X, X», ... recursively.
The advantage of this method over Cholesky algorithm is that it has less complexity (O(N?)),
resulting in a faster computation. However, it has the disadvantage that it does not improve
the calculation speed in the case of simulation of multiple processes, since the algorithm must be
executed separately each time.

The two methods presented are very similar, the triangular matrix L is also implicitly

calculated in the Hosking algorithm.

Algorithm 1.2. The algorithm generates a single path given granularity N, time 7" and Hurst

parameter H.

1. Compute the array generating the matrix I as ¢, = 3 ((n+ 1) + [n — 1|27 —2(n?#)) n €

(1, N).

11



2. Implement the Hosking algorithm setting for the initial point Xo, po = v(1)Xo, 03 = 1 —
v2(1), 70 = v*(1) and dgy = (y(1)). The computation of the fractional Gaussian noise is done

recursively.

3. Take the cumulative sum and scale by (L) to retrieve the fractional Brownian motion

process.

1.2.3 Circulant embedding method (CEM)

Originally proposed by Davies and Harte in [11], this algorithm was later generalized in [12].
Analogously to the previous described methods, the circulant embedding algorithm tries to find a

decomposition of the covariance matrix I" for some squared matrix S, such that
=557 (11)

where S is not the same matrix L of the Cholesky decomposition.

This method differs from the others, in applying the fast Fourier transformation (FFT)
algorithm?® to speed up the calculation. Indeed, FFT results faster than matrix multiplication,
reducing the complexity to O(Nlog N). Note that to exploit this advantage, the sample size N
must be a power of 2.

To be applied, the algorithm needs also a larger matrix. For this reason, we define the
circulant matrix?* C' = circ(co, c1,ca,...,car—1), obtained embedding the covariance matrix I', of

size M = 2N = 29%! for some g € N.

3The fast Fourier transformation, introduced by Cooley and Tukey in [13], is a more efficient algorithm to
compute the discrete Fourier transformation, i.e. a matrix multiplication X = Mx with My, = e~ @27kn/N [t
reduces the computation complexity from O(N?) of the original, to O(N log N) of the fast version. The formula is

expressed in its forward version by:

N—-1
X = Z xnefiQWkn/N
n=0
where i = 4/—1, and in its inverse by:
1 N-1
— i27kn/N.
Ty = — Xpe'

To reduce complexity, the fast version exploits the symmetries obtained by dividing the calculation problem into

smaller parts.

4A circulant matrix is particular matrix constructed shifting the first row vector by i — 1 places to the right and

padding the removed elements on the left side. The matrix can be fully described, thus, by the vector:
Cik = Cj—k

where 0 < j,k < n — 1. Note that, for symmetry, it can also be displayed in column form.

12



Precisely, we define the circulating matrix C":

7(0) (1) YN -1)  ~y(N) yN-1) v(2) (1)

(1) 7(0) YN =2) y(N-1) ~y(N) 7(3) v(2)

O YN =1) (N -2) 7(0) (1) 7(2) YN —=1)  ~y(N)
¥(0) (N -1) (1) 7(0) (1) Y(N—2) ~(N-1)
YN —=1)  y(N) v(2) v(1) 7(0) YN =3) (N -2)
L (1) ¥2) . AN) AN =1) A(N=-2) o (D) 7(0) |

where the matrix I' is recognizable in the upper-left corner.

In the case of fractional Brownian motion entries, it is ensured that there exists a matrix S
that multiplied by a vector Z = (Zo, Z1,..., Zp—1)T of the standard Gaussian random variables,
results in a vector X = (Xg, X1, ..., Xpr—1)T of fractional Gaussian noise coordinates. See [12] for

the proof and further details.

Algorithm 1.3. Although several algorithms based on the circulating embedding method have
been developed, we implement the one proposed in [9] to which we refer for the explanation of the
mathematical elements. The algorithm generates a single path given granularity N, time T and

Hurst parameter H.
1. Set N =29, g € N so thus M = 297!, in order to speed up the computation time.

2. Compute the array generating the matrix C defined as

~v(k),k=1,2,..,N -1
co=1lrc, = , M =2(N —1). (12)

vy(M —-k),k=N,N+1,...M -1
3. Apply the inverse FFT of the vector of standard normal random variable Zg 1 2.... a, to obtain

\/LMQHZ since:

M—1 )

1 1

\/_MQHX =3 Z xjexp <27ri‘7—> x = (zo,21,...,x7-1)" €C.
§=0

4. Matrix-multiply the results by Ai i.e. multiply it element-wise by the vector of eigenvalues

1o 1
(A&, A2, ... A2, )T obtained in the step before.

5. Apply the FFT algorithm another time to the results. Note that, apply the FFT to Az \/IMQHZ
is equivalent to pre-multiply it by v M@, since:
M—1 . M=t
VMQx = Z T exp (—27ri%>

j=0 k=0

13



6. The fractional Gaussian noise coordinates are retrieved by M QA% \/IJT[QH Z =S7.

7. Take the cumulative sum and scale by (%)H to retrieve the fractional Brownian motion

process.

1.2.4 Hybrid scheme for truncated Brownian semi-stationary process

There are many simulation techniques that do not rely on exact computation of fractional Brownian
motion coordinates, but instead have the advantage of speed, which in some cases allows for more
robust simulations. One of these is the Hybrid scheme proposed in [14]. This approximated method
is useful in the simulation of the rough Bergomi model in the last section of the document.

It can be applied to the simulation of paths of a truncated Brownian motion process of type:
t
X, = / g(t — s)osdWs,t € R
0

expressed in integral form where o, is a stationary predictable process representing the volatility
of the process X;, and g is a deterministic weight function in R;. For completeness, we refer to
[14] for the assumptions regarding the function ¢ that should be made. For the purposes of this
work it is sufficient to know that in the case of the rough Bergomi model these are satisfied.

We use g(x) = 2H~2 and constant o = v2H. Therefore, the discretization of the process

can be represented by
= i 1
X, = Z\/w/ (t—s)""2aW,
k=1 t—%
where for large k£ > 1, in first order of approximation we have
1
(P k-1 k] .,
(t*S)H 2Q"4<Nk> ,tSG[T,N],ka[kl,k]
with

1

. (kH+é — (k- 1)f+s ) EE]

B H+1l

see [14]. We summarize as follows

t S *
X, ~V2H (/ (t—s)H_édWS—i—Z(ka)
t—% k=2

TN

H-1 t_ki%l
/ dWs | . (13)
-

The simulated process can be written as

Xo=0
X, = V2HW: 4 (14)

i H 1
: by — 2
Xi =V2H Wl_ + E .3 [/Vi— .
l o k=2 (N) "2

,i€ (2,7)

where W; (1 9) are two random i.i.d. vectors of a generated bivariate normal distribution with
p = [0,0]7 and covariance structure

S S
3 — (H+3)NH+2) (15)
1 1 ’
(HJr%)N(HJr%) (2H)N2H

Z|=

14



Algorithm 1.4. The algorithm generates a single path given granularity N, time T and Hurst

parameter H.
1. Construct the covariance matrix ¥ as indicated in (15).
2. Use it to generate a bivariate normal variable W, = (W, 1, th’g)T with zero mean.

o\ H-3
3. Implement the algorithm according to (14). Note that (%) ’ Wi_k,2 can be computed as

. =4
convolution®.

4. Take the cumulative sum of the first 7'« N components and scale by ( %)H to retrieve the

fractional Brownian motion process.

1.3 Exact simulation methods comparison

The Cholesky, Hosking and CEM methods are discussed in this section. A comparison based solely
on the running time of the algorithms is made. We compare only exact methods, as the comparison
with approximate methods should also require a penalty on the errors due to the approximation,
see the last section for such a comparison.

First, we visibly compare coordinates simulated by each algorithm.

Fractional Gaussian noise from Cholensky decomposition

0.5

0.0

wh(t)

0.0 0.2 0.4 0.6 0.8 1.0

Fractional Gaussian noise from Holesky method

0.5

0.0

wH(t)

-0.5

0.0 0.2 0.4 0.6 0.8 1.0

Fractional Gaussian noise from CEM method

0.5

0.0

wh(t)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Fractional Gaussian noise traces generated by different algorithms®.

5Discrete convolution is defined as

oo
(a*v)y = Z AmVm—n

m=—o0

where a,v are complex-valued functions.

6All the figures and tables shown in the document are the result of a personal elaboration of data.
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wH(t)

wH(t)

N}

o

N}

wH(t)
-

o

1.0

0.5

0.0

-0.5

Fractional Brownian motion from Cholensky decomposition

0.0 0.2 0.4 0.6 0.8 1.0
t
Fractional Brownian motion from Holesky method
0.0 0.2 0.4 0.6 0.8 1.0
t
Fractional Brownian motion from CEM method
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Fractional Brownian motion traces generated by different algorithms.

Both results refer to fractional Gaussian noise and fractional Brownian motion with H = 0.2,

T =1and N = 1024.

The resulting traces are very similar to each other in terms of structure. The Hurst pa-

rameter smaller than % gives the processes a short-term negative correlation, more appreciable in

the figure below where 8 different processes are simulated with the CEM algorithm by varying the

Hurst parameter.

wH(t)

wH(t)

wH(t)

0.5
0.0
0.5

50

Fractional Brownian motion with H = 0.010

Fractional Brownian motion with H = 0.050

0.5
£ oo
=
-0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 1.0
t t
Fractional Brownian motion with H = 0.100 Fractional Brownian motion with H = 0.200
1
z
£ o0
-1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 1.0
t t
Fractional Brownian motion with H = 0.300 s Fractional Brownian motion with H = 0.500
Lo
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 1.0
t t
Fractional Brownian motion with H = 0.700 Fractional Brownian motion with H = 0.900
100
£ o
=
-100
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 1.0
t t

Figure 3: Fractional Gaussian noise paths generated with CEM algorithm by varying H.

16



The 3 methods are evaluated in terms of execution speed on normal hardware, in the

following table”. For this comparison we simulate only a path with N = 1024 steps and 7' = 1.

Cholesky decomposition | Hosking CEM
1.429664s 0.022176s | 0.000969s

Table 1: Time in seconds for one trace simulation with different algorithms.

Easy to see how the efficiency of the algorithms increases from the Cholesky decomposition

to the CEM method, with a significantly shorter simulation time.

"The results are averaged from a sample of 10 simulations and the generation of the covariance matrix is excluded

from the calculation time.

17
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2 Rough volatility and RSFV model

Fractional Brownian motion processes are becoming increasingly popular in mathematical finance
due to their application to a relatively new class of stochastic volatility models. They were first
applied to option pricing by Comte and Renault in [6], and in recent years Gatheral, Jaisson and
Rosenbaum [7] have demonstrated how the volatility process of many types of underlyings, from
stocks to commodities, is driven by this type of process and not by a standard Brownian motion
as in the well-known model of Black and Scholes [1].

Rough volatility is a term referring to a volatility process driven by fractional Brownian
motion with Hurst parameter < % According to recent studies, this framework seems to provide
a more accurate description and estimation of the implied volatility surface.

In this session, we analyze why volatility is defined as rough and present a relatively simple
model, namely the RFSV model where log-volatility behaves as a fractional Brownian motion.
This model provides the basis for the derivation of the rough Bergomi model covered in the next

section.

2.1 Roughness

In [7], the roughness of the volatility process is assessed defining the increments of the log-volatility
in a discrete-time framework at every ¢;;, sample moment of a standard Gaussian random variable.
To detect any micro-structure noise in high frequency data as in this case, we have to search

for irregularities that disappear in low frequencies. Specifically, we indicate:

N
1
m(q,A) = N E |log(oka) — 10g(ﬂ(k—1)A)\q (16)
k=1

where A represents the mesh.
Following [15], we have that m(q, A) is assumed to be a stationary process, converging to a

constant b depending on ¢ and with the following asymptotic approximation as A — 0:
m(q, A)NT% ~ by, s > 0,0y > 0 (17)

where s, is the roughness parameter. Note that, from (16) and also assuming that a law of large

numbers can be applied, m(g, A) can be seen as an estimate of
E[llog(oa) — log(ao)|?]. (18)

Taking the minimal mesh at one business day for technical reasons, in [7] authors show how, for

different g-moments, log-volatility has the scaling property in expectation:
E[|log(oa) — log(a0)|?] = m(g, A) ~ b, A% (19)

where (, = gsq > 0 represents the slope of the line associated with ¢. Particularly, it is shown
that, {, ~ Hq with H € (0, %), as Hurst parameter of a fractional Brownian motion process, for

the log-volatility of a broad class of indices and commodities as underlying.

19



2.2 RFSV model

Always in [7], it is proved that empirical distributions of log-volatility increments are reasonably
approximated by a Gaussian distribution, confirming the choice of fractional Brownian motion
as well-approximating process. As in other models for stochastic volatility, the volatility process
is assumed to be itself to be asymptotically stationary and nowhere differentiable. The authors

propose a simple volatility model using the same approach as in [6]:
log(ot1a) —log(oy) = v(Wils — W) (20)

It is a mean-reverting volatility process in continuous time as in the Hull and White framework [4].
However, differently from that, the Wiener process is substituted by a fractional Brownian motion.
And differently from Comte and Renault in [6], in [7] the case with short memory is addressed, i.e.

H € (0, %) instead of (3,1).

2.3 Empirical results

We replicate the results by implementing our code in Python using the same database of high-
frequency realized variance. The log-volatility data are processed for each different g-moment
€ (0.5,1,1.5,2,2.5,3) and A € [1,150]. The graphical results for the S&P500 are shown in the

figure below and are quite satisfactory confirming the approximation (19).

log(m(q, A)) as function of log(A)

log(m(a, 4))

-2.0

+ gq=1.000

. « q=1500
-3.0 « q=2.000
+ g=2500
« q=3.000

log(A)

Figure 4: logm(g, A) on log(A) for different g-moments on S&P500 data.
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The point-estimations of the slope of a linear approximation given by ¢, for several indexes,

are summarized in the following tables.

S&P 500 FTSE 100 DAX 40 NIKKEI 225
qth Cq qth Cq dth Cq qth Cq
0.5 | 0.075864 0.5 | 0.073943 0.5 | 0.088254 0.5 | 0.065158
1 0.14944 1 | 0.142838 1 | 0.168386 1 | 0.126375
1.5 | 0.219884 1.5 | 0.205546 1.5 | 0.239910 1.5 | 0.182881
2 0.28648 2 | 0.261186 2 1 0.301861 2 ] 0.233723
2.5 | 0.348625 2.5 | 0.309289 2.5 | 0.352789 2.5 | 0.277944
3 | 0.405837 3 | 0.349881 3 | 0.391032 3 | 0.314843

Table 2: Estimated (, for different g-moments on different indexes.

We estimate H exploiting the approximation {, ~ Hgq and thus regressing ¢ = (0.5,1,1.5,2,2.5,3)

on (.

S&P 500 | FTSE 100 | DAX 40 | NIKKEI 225
H | 0.132229 | 0.110553 | 0.121660 0.100226
SE | 0.003006 .005216 0.007624 0.004462
Upper .95 | 0.138121 | 0.120777 | 0.136603 0.108972
Bottom .95 | 0.126337 | 0.100328 | 0.106716 0.091481

Table 3: Estimated parameters H on different indexes.

The point-estimations are not the same as those obtained in the original paper, however
this can easily be due to longer time series with recent data not included in the authors’ estimates.
This suggests that H may fluctuate over time as they point out.

In any case, the results confirm the roughness of the volatility process, being the Hurst
parameter on the order of 0.1. This disqualifies the authors’ choice in [6] of long memory in the

volatility process, as well as its classic approximation by standard Brownian motion.
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3 Rough Bergomi model

The rough Bergomi model was introduced for the first time in [16] with the motivation of pricing
on realized variance and its underlying. It can be seen as another instance of the RFSV model and
a generalization of the original Bergomi model.

It has the advantage of calculate the price of vanilla and exotic options more accurately
than other models. Its main disadvantage is the lack of an analytical solution which causes the
need of statistical techniques such as Monte-Carlo solutions.

In this section, the original version of the model is presented, followed by the rough version.

However, describing these models first requires an introduction to variance swap contracts.

3.1 Variance swap

A variance swap contract is a derivative contract that pays out some notional amount times the
realized variance of the logarithmic total returns of the underlying up to maturity 7', less the strike

called the variance swap rate:

2
payOH = (Urealized((),T) - KUGV’)‘

Particularly, let S; denote the value of the underlying at time ¢ € [0,7] and a?eali,ze dA(r,t)? the
realized variance of returns over the time interval [7,¢] with 7 < ¢. Hence. the realized variance is

usually priced for 7 < t; <t < T as
t—1 S, 2
U?‘ealized(ﬂt) ~ U2 Z <10g é;l ) (21)

where u represents any scaling factor, such as the annualization factor u := 100 x ,/%.
Note that, (21) is a generalization useful to price the contract in any period of its life, not
only at inception (7 = 0). Moreover, is worth mentioned that (21) is an approximation, since

02

vealized(r.t) 15 exactly described in continuous-time framework by

t
O—gea,lized('r,t) = u2/ deé (22)

For completeness, from (21) we have also that

, [ 2
Orealized(r,t) = J'r‘ealized(‘r,t)

denoting the volatility swap with payoff = (0;cqtized(0.7) — Kvot) Where Koo = v/ Kyar-
At inception, the fair value of a swap is chosen so that the swap has zero value, meaning

ATM. For the remaining life of the contract, we define V,,,.(;) as the value of the variance swap

2

at time ¢ > 0 which pays out Urealized(o T)

and V(1) the equivalent for volatility swap. Then for

both, we have that their fair value at time ¢ is their value as they were exercised in that moment,
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r(T—t)

multiplied by the factor e where 7 represents the constant interest rate and (7' — ¢) the

remaining life of the contract. So for the variance swap case:

ATM

var(t) = Vvar(t) er(T—1)

3.2 Bergomi model

Based on a arbitrage-free condition, the Bergomi model uses market-traded Variance swap secu-
rities as a hedging instrument [5]. From such securities it is possible to extrapolate the so-called
forward variance curve of which the model describes the dynamics. We define the forward variance

curve & (T') observed at time ¢ for maturity T, with T > ¢ as
&(T) := Elo7|F]

where F; indicates the entire history of the process up to time ¢.

We assume that &; follows a log-normally distributed and drift-less dynamics and that its
volatility (w) is function of (T' — t). For the complete derivation of the model we refer to [5].

In the original paper, the model is presented in different versions, in fact the model can be
generalized with N-factors. However, the authors and further research have shown that 2-factors
are the best compromise between the precision in fitting the volatility surface and the parsimony
principle. Therefore, we only show that version in continuous time here, referring to the original

paper for the others.
dSy = rSydt + \/&(T) S, dW (23)

dey(T) = w (e—(n(T—t)dUt n He—az(T—t)th) &(T)

where S; represents the log-normal dynamics of the underlying, r; the interest rate, U; and W; are
correlated Brownian motion processes such that p = E[U,W,].

The model is ensured to be Markovian since the conditional probability distribution of
future states of the process (conditional on both past and present values) depends only upon the

present state.

3.3 Rough Bergomi model

The rough Bergomi model is a particular rough volatility model presented in [16] as another
instance of RFSV models. It is consistent with the realized volatility model present in [7] and
it was introduced for pricing purposes. Furthermore, again in [16], it is shown that the model
outperform its classical counterparts by capturing the skew term structure observed in the market
with only three parameters, instead of the seven required in the 2-factor Bergomi. The model is
a non-Markovian generalization of the original. As remarked previously, this loss of Markovianity
is a major drawback for the practical uses, since the phase of calibration and simulation, may be

largely time-consuming.
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The model is derived from the RFSV model, see [16], and we summarize it as

dS, = puSudu + \/028,dZ" (24)

02 = olexp (nWF(u) + QVCHZt(u))

where Wf(u) = \/ﬁftu(u — s)H=2dWP(s) and p = E[ZFW?P] is constant over time.

The model is first described under the physical measure P. Note that, to value securities,
such as derivatives, we need an artificial probability measure Q, called a risk-neutral measure,
which allows us to assign different probabilities to different states of the world including the com-
bination which reflects the real market data. The need for a change of measures is due to the
non-martingality of the true probability measure P, as opposed to Q, which prohibits the correct
pricing of derivatives as expected discounted dividend streams.

Follows that under Q ~ P on [t,T] as in the Black and Scholes model, the rough Bergomi

model can be then summarized in:

dS; = \/0;5,dZ2
t
vy = &o(t)exp <77\/ 2H | (t-— S)H*%dWs - %u2H) (25)
0

dZ2 = pdW2 + /1 = p2dWw 2+,
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4 Simulation and calibration of rough Bergomi model

In this section, we firstly simulate the price of a European call option and its volatility curve
according to the rough Bergomi model, secondly we calibrate the model on market data.
We work on the freely-available algorithms [17] by Achraf Maalej and [18] by McCrickerd

and Pakkanen.

4.1 Simulation

In order to effectively price option contracts, we evaluate the rough Bergomi model using a Monte-
Carlo method. As mentioned at the beginning, such technique requires an efficient and fast fraction
Brownian motion paths-generator algorithm. The hybrid scheme is, therefore, the recommended

choice since it guarantees the fastest computation time.

Algorithm 4.1. The algorithm generates paths with time-horizon of 7" in years, with N steps per

unit of time. Other inputs are the estimated roughness H, correlation p, constants 7 and &y ().
1. Simulate the process V; = v2H fot (t — s)7=2dWY using hybrid scheme.

2. Correlate the increments of the Brownian motion WY with the stock price process driven
by increments of Zy: Zyy1 — Zy = p(WXrl — WYY 4+ /1 — p2(Wyy — Wy) where W, is an

independent Brownian motion process.
3. Compute the variance process v; using £ and 7, namely v; = () exp (th — %2t2H )
4. Simulate the stock price process S; using the scheme Sy 1 = Si+exp (\/v_t(ZtH —7y) — %vtT/N).

The option price in case of a European call option is given by C'(k,t) = E[(ST — k)4]. Therefore,
once simulated the stock price Sy, it can be retrieved as

N
1 .
C(k,t) = i g max(S; — e*,0).

i=0
For the implementation we used the following estimated parameters used in literature, in

addition to & = 0.15%:

H p n
0.07 | -0.9 | 1.9

Table 4: Parameters for European call price simulation.
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European call price simulation

call price
5 &G 8 & 8 & 38

w

Figure 5: European call option price simulation with H = 0.07, p = —0.9, n = 1.9 and k = 0.

Calculation time for n = 30000 simulations is approximately 2.243330 seconds with normal
hardware. The algorithm is confirmed to be efficient and potentially exploitable in the financial
sector.

We report a comparison between the exact Cholesky decomposition method and the ap-
proximated hybrid scheme for n = 100000 simulations. The results are clear in favor of the latter

with a relatively negligible loss in accuracy.

Generated volatility curve

0.24 —— Cholesky decomposition
) Hybrid scheme

=1.00)

ops(k, t
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e
R
[N}

=]
=
©:

Figure 6: Volatility curve simulations comparison with H = 0.07, p = —0.9, n = 1.9 and k£ = 0.
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Figure 7: Simulations time comparison.

4.2 Calibration

The simulation of the rough Bergomi model relies on 3 parameters: H,7n and p in addiction to the
initial forward variance. Calibration of these is therefore required. A visual comparison of how
each parameter affects implied volatility is shown in the figures below. In particular, it is easy to
see how H affects the skewness, 1 the convexity of the curve, p the explosion in terms of smiles

and skew and &y the level of the curve.

Effect of H Effect of p

0.26
0.250
0.24
0.225
0.22
0.200
0.20
0.175

< 0.18

%

Oss(k, T)

0.150
0.16
0.125
0.100

0.075

60 70 80 90 100 110 120 130 60 70 8 9 100 110 120 130
« «

Figure 8: Volatility curve for different H, other  Figure 9: Volatility curve for different p, other

parameters constant. parameters constant.
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Effect of n Effect of &,
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Figure 10: Volatility curve for different 7, other ~ Figure 11: Volatility curve for different &,

parameters constant. other parameters constant.

The calibration operation can be done from the observed volatility surface at a given day.
Formally, we define M := M(f)gco with © € R™ for some n € N. 6 represent the vector of
parameters of the model so that the model can be fully specified by them. We also define the fair

pricing-map for a European call option as
P (0/ C) X (M7 T) = E[ST(ea C) - M]+

where ( represents possible information on the corporate market and M, T denote moneyness and
time to maturity, respectively.
We define calibration as

0 = argmin §(P(0,¢. M, T). P(¢,M,T)) (26)
oeM

where J(.,.) is a suitable chosen metric, P is a numerical approximation of the theoretical pricing
map P and P the prices observed in the market.

According to the literature, instead of working directly on option prices, a better approach
is to work with implied volatilities of the Black-Scholes type. Therefore, we define also the implied
volatility-map as

7o (Q,C,M,T) — (TBs(G,C,M,T).

We want optimized the model parameters generating the model surface, to fit the empirical
implied volatility observed in the market of liquid European options. Thus, from (26) with J(.,.)

a least squares function, we can write

0= argmin Y (P(0.M,T) —ops(M.T,0)). (27)
{H,pnyeM ;5

In practice, we are trying to minimize the squared difference between the volatility surface gener-

ated by the model and the one observed in the market which is equivalent to (26).
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4.3 Empirical results

We calibrate the model on data of traded European call options on the SPY in 02/03/2015. We

isolate the implied volatility ops according to Black-Scholes model:
Cps = N(d1)S; — N (dy)ke "=
1 St O'2
d = ——— |1 — |+ —i—i‘g) T—t] 28
= = 1o () (52 o .
dg = dl —0'35\/T—t

where r the constant interest rate and k the strike price. We get three different implied volatilities

by taking S; as bid price, bid price and average price (as an extrapolation).

Volatility surface in 2015-03-02

(L)AL

03

02

ot

0

Figure 12: Mid-Implied Volatility surface of SPY in 02/03/2015.

First, we calibrate the model parameters for each expiration date rather than for the entire
volatility surface. Note that the algorithm does not calibrate the forward variance parameter &y(7T)
which is calculated as a corrected approximation of the implied volatility observed for ATM options

for each expiration. The results are shown in the following table.

Expiration H p n

0.0301 | 0.138426 | -0.816584 | 2.653066
0.0849 | 0.185319 | -0.761033 | 3.085558
0.2986 | 0.155451 | -0.840005 | 2.336378
0.8739 | 0.128683 | -0.885059 | 1.920311

Table 5: Calibrated parameters on the main expiration dates.
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The algorithm is very time consuming, taking up to over an hour to complete the parameter
calibration. The results are shown in Appendix B and are very satisfactory. In particular, the
calibration of the parameters is performed only for the 4 most liquid expiration dates, due to the
heaviness of the minimization problem. Of course, other optimization algorithms might be more
efficient, we propose it as a further research topic.

We also note some inconsistencies with the Monte-Carlo simulations with the algorithm
proposed by McCrickerd and Pakkanen. However, these seem to be related to a relatively low
number of simulations, as they tend to disappear with N > 50000. Since this is not a serious
problem, the investigation of this issue goes beyond the purposes of the document.

As a further step, we also proceed to calibrate the entire volatility surface by reformulating

(27) to
. T n
0= argmin » > (3(0,M,T) - cps(M.T,0))’. (29)
HpnyeMi—y =

In this case, the estimated parameters are:

H p Ul
0.124083 | -0.775163 | 2.585495

Table 6: Calibrated parameters on the entire volatility surface.

Complete results are shown always in Appendix B. As might be expected, the algorithm is
even heavier and the results are less accurate than the previous ones, especially for short expiration
dates. Note that, this differs from the results obtained by the authors in [16] for different dates,
where they do not see this effect.

However, we remark the good implied volatility approximation of the model. Easy to
imagine is a comparison with the Black-Scholes model on which the rough Bergomi model offer a
massive improvement. In fact, if the first were correct, it would describe a flat volatility surface.

For the comparison with classic time-homogeneus model such as Hull and White [4], SABR
[3] and Heston [2], we refer to the unanimous literature on their worse fitting of the volatility
surfaces ([16], [19], [7]), as it is outside the scope of this study.

That being said, those models are reasonably still widely used. In fact, as we have shown,
the calibration process of rough volatility models is prohibitively expensive. We tested for a
relatively small number of expiration dates, consequently for larger sets the model is unusable,

also considering that the calibration process is not one-off but occurs at least daily.
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Conclusion

The aim of this work was to implement a relatively new class of stochastic volatility models for
option pricing, with particular reference to the rough Bergomi. The model looks promising from
the results, despite the slowness of the calibration phase which constitutes a severe drawback.

Fractional Brownian motions are processes that require computationally expensive algo-
rithms to be simulated even though some mathematical techniques help to increase efficiency with
less loss of precision.

The analysis of log-volatility time series showed that fractional Brownian motion with Hurst
parameter € (0,0.5) is a better choice to model such rough behavior than the standard Brownian
motion usually used.

The option pricing model is presented as a derivation of original Bergomi model, which relies
on forward variance to infer a arbitrage-free condition using available market securities, i.e. vari-
ance swaps. Its low number of parameters and its good adaptation to the volatility surface make
it potentially usable in practice. However, the financial sector requires both robustness and speed
of computation. In this work we have presented an algorithm based on Monte-Carlo simulations;
recently other different approaches have been proposed in the literature such as mathematical
approximation methods ([20], [21], [22]) and numerical approximation using Artificial Neural Net-
works ([23], [24]). In particular, the latter appear to be a valid research field ensuring speed in
the calibration phase. However, even with machine learning methods the importance of stochastic

methods is not discussed. Hence the interest in the approach we have chosen in this document.
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Appendix A

HHAHHBAARH AR B AR B AR B AR B AR BB AR H BB ARV H BB AR BB SR H AR B AR B AR BB AR BB B B SR B RS H
##H## Gamma matrix ####
HHAHHH AR BB R B AR B A BB AR B RSB B AR H B R ARV H SR BB BB BB H AR B AR BB R B R BB R BB SRS H S S H

30

Computes the Gamma matrix and its main array for a given algorithm and H

30

import numpy as np

def covariance_f (N, H, output_gamma=False, algorithm = ’Chol’):
if algorithm == "H":
N +=2 #Hosking needs at least 2 correlation in advance
elif algorithm == "CEM":

N +=1 #Hosking needs at least 2 correlation in advance

G = np.zeros((N,N), dtype = ’float’) #gamma matrix
¢ = np.zeros(N, dtype = ’float’) #c vector
c_rev = np.zeros(N, dtype = ’float’) #reverse of c vector

for k in range(O,N):
c[k]l] = 1/2x((np.abs(k)+1)*x*(2*H)+
np.abs(np.abs (k) -1) x*(2xH) -
2*(np.abs(k)) **x(2*H)) #gamma array with covariance
if output_gamma == True:
G[0,:] = ¢
c_rev = np.flip(c[1:])
for i in range(1,N):
G[i,:] = np.concatenate((c_rev[N-i-1:]1, c[:N-i])) #gamma matrix

return c¢,G

Listing 1: Covariance matrix algorithm.
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)
=Y

HARRHHARRABHABHRBHABHABHRBHREHRR BB B RABHE R AR B R B AR BB HRRH R R AR AR R B AR R RSB HR R RS
HEH## Cholesky Decomposition H###
HAFHBAARRABAABHBRRARAHRRARRBRRF SR BERRABHA BB BB B AR R R A BB R BB R AR BB R B AR R RSB RSB RS

PIE I

Computes a fGn path with Cholesky decomposition from the main array of a Gamma

matrix

import numpy as np

from Covmatrix_Simulations import *

def Cholesky_f (c,H,T,Nu):
N = Tx*xNu
L = np.zeros ((N,N))
L[:,0] = ¢ #fixed computations

L[1,1] = np.sqrt(1-(c[1]1**2)) #fixed computations

sum_squared = O #sum of the row elements squared for diag elements computation

sum_mult_k = O #sum of elements needed for i>j elements computation

for j in range (1,N): #columns
for i in range (2,N): #rows
if i > j:
sum_mult_k = np.matmul (L[i,:j],np.transpose(L[j,:j]))

L[i,j] = (cl[i-j] - sum_mult_k)/L[j,j] #see paper

elif i == j:
sum_squared = np.sum(L[i,:j]**2)
arg = c[0] - sum_squared

if arg < 0: # to correct for negative power without using complex

numbers
q = -1
else:
q=1
L[i,j] = q*np.sqrt(arg*q) #see paper
Z = np.random.standard_normal (N) # Standard Gaussian vector

X = np.matmul (L,Z.T)*(T/Nu)**H #first order differtiated process

return X

Listing 2: Cholesky decomposition matrix algorithm.
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HARBHHHHH B R BB R AR B AR ARRRHRRH AR B BB BB R B R RRRRRRBH BB BB BB AR AR AR R R BH SR B R BB R RHH

HH#H#

Hosking Algotrithm

#it##

HHBHHBAARHBARHBABHBR AR A AR BB AR H AR A B R AR B BABHBARBBA SR A AA B R AR B BA BB BABH AR AR BARBRHHHH

>

)

il

Computes a fGn path with Hosking algorithm from the main array of a Gamma matrix

El

)

il

import numpy as np

from Covmatrix_Simulations import *

def Hosking_f (c,H,T,Nu):

N = T*Nu-1

#no need Flip matrix in python

X = np.zeros((1)) #fBm increments storing array

mu = np.zeros ((N+1)) #mu array that memorizes all computed mus
sigma_sq = np.zeros((N+1)) #sigma squared array that memorizes

sigmas

all computed

tau = np.zeros((N+1)) #tau array that memorizes all computed taus

phi = np.zeros((N)) #phi array that memorizes all computed phi
X[0] = np.random.standard_normal (1) # O-step

sigma_sq[0] = 1-c[1]**2 # O-step

taul[0] = c[1]**2 # O-step

d_arr_temp = np.array(c[1]) #varing length ’d’ array (no memory

mu[0]= d_arr_temp*X[0] # O-step --- non-zero mean process

for j in range (O,N):

x = 0 #temp variable storing fBm increment
d = np.zeros((j+1)) #temp variable storing d array
x = mul[j] + np.random.standard_normal (1) #increment shift

X = np.append(X, x) #storing in X array

sigma_sq[j+1] = sigma_sq[j] - (c[j+2]-taulj])**2/sigma_sqlj
phi[j] = (c[j+2]1-tauljl)/sigma_sqlj] #see paper

d = d_arr_temp - phil[jl*np.flip(d_arr_temp) #see paper
d_arr_temp = np.append(d, phi[j]) #new d array

taul[j+1] = np.dot(d_arr_temp, np.flip(c[1:j+3])) #see paper
mu[j+1] = np.dot(np.flip(X), d_arr_temp) #see paper

X *= (T/Nu)**H #first order differtiated process

return X

Listing 3: Hosking algorithm.
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] #see paper
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CEM Algorithm

H####
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PIE I

Computes a fGn path with CEM algorithm from the main array of a Gamma matrix
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import numpy as np

from Covmatrix_Simulations import *

def CEM_f (c,H,T,Nu):

N = T*Nu

M = 2xN

c_circ = np.concatenate((c, c[::-11))

c_circ = np.delete(c_circ, [-1])

c_circ = np.delete(c_circ, [-N]) #array circular matrix
eigenes = np.fft.fft(c_circ) #FFT

eigenes = eigenes.real #get rid of immaginary part
eigenes [eigenes<0] = 0 #since positivity is not ensure,
Z = np.random.standard_normal (M) # Standard Gaussian vector
Z_inver = np.fft.ifft(Z) #inverse FFT

Z_inver = Z_inver.real #get rid of immaginary part

Y = np.sqrt(eigenes)*Z_inver

Y_inver = np.fft.fft(Y) #inverse FFT

X = Y_inver.real #get rid of immaginary part

return X[:N]1#(T/Nu)**H

Listing 4: CEM algorithm.
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HH#H# Hybrid Scheme H####
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PIE I

Computes a fBm path by Hybrid scheme with convolution and the covariance matrix

necessary

import numpy as np

def cov_matrix(N,H):

C = np.zeros ((2,2))
cfo,0] = 1/N

C[0,1] = 1/((H+1/2) *N*x*x(H+1/2))
cf1,0] = c[0,1]
Cl[1,1] = 1/(2%H*Nx*x(2%H))

return C

def Volt_sim(T,Nu,H):
N = Tx*Nu
alpha = H-1/2
dW = np.random.multivariate_normal ([0,0], cov_matrix(N,H), (N)) #binormal
random variable
V = np.zeros(N)
g = np.zeros ((N))
for k in range(2,N):
glk]l = ((k*+*(alpha+1)-(k-1)**(alpha+1))/(alpha+1))#**(1/alpha)
glk]l /=N
glk] **= alpha
Sum = np.convolve(g,dWw[:,1])
V = np.sqrt (2xH)*(dW[:,0] + Sum[:N]) #the convolution needs to be truncated
return V,dW[:,0]

Listing 5: Hybrid scheme algorithm.

43
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PIE I

Computes m(q,mesh), $\zeta$ and checks normality of log increments for a given

index

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import scipy.stats as stats

data = pd.read_csv(r’C:\Users\Lucam\OneDrive\Desktop\Dissertation\Codes\

oxfordmanrealizedvolatilityindices.csv’)

df = np.array(pd.DataFrame(data, columns=[’Symbol’, ’rk_twoscale’]))
class p:

index = ’.SPX’

max_mesh = 150

q = np.arange (0.5, 3.5, 0.5).tolist ()
norm_vec_check = [1,2,5,50]

index_var df [df [: ,0]== p.index ,1]

index_vol = np.sqrt(index_var.astype(float))

def m(vol, q, max_mesh, norm_vec_check):
mesh = np.arange (1,max_mesh+1)
m = np.zeros ((max_mesh,len(q)))
norm_check = np.zeros((len(vol), 4))
for ¢ in q:
for j in mesh:
v = np.array (0)
for i in range(j, len(vol)):
x =0
arg = 0
arg = np.log(vol[i])-np.log(vol[i-j])

if j in norm_vec_check and c == 1:
norm_check[i, norm_vec_check.index(j)] = arg
X = np.abs(arg)**c

v = np.append (v, x)
m[j-1,q.index(c)] = np.mean(v)

return np.log(m), np.log(mesh), norm_check

log_m, log_mesh, norm_check = m(index_vol, P-q, p.max_mesh, p.norm_vec_check)
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zeta = np.zeros((len(p.q)))
std_err = np.zeros((len(p.q)))
inter = np.zeros((len(p.q)))
for i in range(0,len(p.q)):
zetal[i], inter[i],_, _, std_err[i] = stats.linregress(log_mesh,

print (zeta)

plt.rcParams.update ({’font.size’:14})
plt.plot(log_mesh, log_m, ’*’)
label = []

s for k in range(0,len(p.qg)):

plt.plot(log_mesh, log_mesh * zetalk] + inter[k])
label.append(’q = %1.3f’ % p.qlk])
plt.title("log(m(q, $\Delta$)) as function of log($\Delta$)")
plt.ylabel (r"log(m(q, $\Delta$))")
plt.xlabel (r"log($\Delta$)")
plt.legend(label)

plt.show() #logm on logmesh

plt.plot(p.q, zeta, ’o0’)

H, inter2,_, _, std_err = stats.linregress(p.q, zeta)

7 print ("Coeff =", H)

print ("SE =", std_err)

print ("upper .95% =", H+1.96*std_err)
print ("bottom .95% =", H-1.96*std_err)
plt.plot(p.q, np.array(p.q)*H + inter2)
plt.title("$\zeta$q - H q")

plt.show() #zeta on q

_,a = plt.subplots(2, 2)
[0,0,1,1]
v2 = [0,1,0,1]

vl

for r in range (0, 4):
incr = norm_check[norm_check[:,r] != 0, r]
mu = np.mean(incr)
std = np.std(incr)
x = np.arange(-2,2,4/1000)
alvi[r], v2[r]].hist(incr, bins=100, density=True)

alvi[r]l, v2[r]].plot(x, stats.norm.pdf(x, mu, std))

log_mf[:,i])

alvi[r]l, v2[r]].set_title("log increments of volatility $\Delta$=%i days on

normal distribution" % p.norm_vec_check[r])

; plt.show() #increments on normal distribution

Listing 6: Rough volatility empirical results.
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Appendix B
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250

Results from rough Bergomi calibration on the main expiration dates.
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Expiration = 0.03
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Figure B.2 : Results from rough Bergomi calibration on the
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entire volatility surface.




