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Abstract 
 

      Machine learning has become increasingly popular for its ability to learn from data, identify 

patterns and make logical decisions with little or no human intervention, allowing humans to 

rapidly develop models that can analyze extraordinarily large and ever-increasing volumes of data. 

Machine learning models, for instance, Convolutional Neural Networks (CNNs), received 

attention due to their purposeful use in a wide variety of areas, such as self-driving cars and cyber 

security. However, recent studies have shed light on how such systems can be compromised by 

test time evasion attacks, i.e., carefully engineered adversarial examples with imperceptible 

perturbation, raising security concerns about using such models in safety-critical systems. 

Furthermore, adversarial examples may exhibit the transferability property, i.e., adversarial 

examples crafted for one model may evade also potentially unknown models, that makes attacks 

practical even in the black-box setting. Machine learning models need to present satisfiable 

performance also in adversarial settings, thus it’s crucial to evaluate faithfully their robustness 

against evasion attacks. Since in real-world scenarios (black-box settings) target models may not 

be directly accessible and it may be difficult to verify their robustness, we propose a framework 

that allows the analyst to evaluate efficiently the robustness of target models by leveraging simple 

well-known surrogate models and the transferability of adversarial attacks. Our proposal consists 

in combining the information about the robustness of surrogate models evaluated on a test set using 

different logical gates to approximate the robustness of the target model, hoping that the 

information about the robustness of surrogate models transfers to the target model. In addition, 

along with the measure of transferability for each model, we explore the correlation between other 

information available to the analyst and the best gate, in order to suggest a strategy to identify the 

best aggregation function in different settings. The preliminary experimental evaluation on MNIST 

dataset using different machine learning models shows the possibility of approximating effectively 

the robustness of target models via surrogate models. 

 

Keywords: Machine Learning, Adversarial Machine Learning, Supervised Learning, Adversarial 

Attacks, Transferability, Robustness, Security  
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Chapter 1 

Introduction 

      Machine learning (ML), a branch of Artificial Intelligence (AI), is a unique approach that 

effectively looks at the use of computational algorithms and allows a machine to learn from data, 

turning the observed data into a usable model which needs not to be reprogrammed, and leveraging 

the training data to improve its performance on a specific set of tasks [1]. The main goal of machine 

learning models is to perform complex tasks or solve problems, the way humans do, by emulating 

human behavior. Machine learning models have widely been adapted in different domains, for 

medical diagnosis, classification, image processing, prediction, etc., due to their powerful and 

unparalleled flexible capabilities in dealing with evolving input in a variety of applications and 

their accurate results. However, despite being extremely powerful, these models can fall prey to 

malicious adversaries [2]. It has been shown, in previous research, that these models are sensitive 

to adversarial perturbations and when applied to the input data, eventually mislead the model. 

Security concerns arise, for using these models in safety/security-critical systems, following how 

these supposedly robust models can be fooled fairly easily with unnoticeable noise applied to the 

original input. Take, for instance, self-driving vehicles that use these models and rely on the 

surrounding and traffic signs to drive the vehicle. The performance of these models is dependent 

on factors such as illumination, weather, or other which influence it [2]. However, even in perfect 

illumination or weather conditions, inputs with a careful human imperceptible noise can force them 

to misclassify the signs. In [3], Papernot et. al. show how a carefully engineered adversarial input 

image, that looks the same as the original, can force the models to predict, what originally is a stop 

sign, as a yield sign which can put a vehicle in a dangerous situation, successfully carrying out an 

evasion attack.  

      The phenomenon of adversarial examples is not as new as it seems. As pointed out, the attacks 

against machine learning date to around 2004 when adversarial examples were studied in the 

context of spam filtering showing that linear classifiers could be easily made to do mistakes by a 

few carefully crafted changes in the context of spam emails [4]. The newness came from being 

discovered in the context of deep learning when it was found while trying to understand the 

decision-making process of neural networks, that they appear to possess adversarial examples that 

can mislead them [5] bringing the phenomenon of adversarial examples into the light. The process 

of feeding delicately perturbed inputs to a classifier at test time that feels the same as the original 

image to the human eye but throws away the respective classifier is known as an Evasion attack. 

In this kind of attack, the adversary uses the test data, the data which the model uses to make 

predictions, as opposed to data used to train models that come in the category of Poisoning attacks. 

The classifier is fixed in the case of a black-box evasion attack and neither the structure nor its 

parameters can be accessed by the attacker. [6], [3] shows how the algorithms working behind 

self-driving cars for road sign recognition can be evaded by slightly perturbing the road sign image 

or just putting stickers on the road sign in desired spots. 
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      We are in an era where security is constantly updated and it might not be possible to have 

direct access to the target model in most cases, either to its structure or its parameters, leaving the 

attacker no option but to attack the model in a black box setting. Black-box attacks are the kind of 

attacks where the adversary has very little or possibly no knowledge of the target model and are 

usually designed (in the case of surrogate model training) to query the target model on inputs and 

observe the outputs to infer knowledge about the target model as opposed to white-box attacks 

where the attacker can have complete access to the model, the training and test data, the 

architecture and the parameters as well as the weights that are learned by the model, at training 

time. These attacks might seem to limit the attacker's capabilities; however, there is the more 

practical fact that, in real-world scenarios, the models are inaccessible to an adversary, hence, they 

are the attacks mostly seen in the practical world. Apart from the fact that an attacker has access 

to querying the model, the querying access might be as well limited to a specific number of queries, 

limiting the attacker’s aptitude even further. 

      While black-box adversarial attacks limit the ability of the adversary, there is another novel 

phenomenon, transferability, which can make black-box attacks extremely effective. Adversarial 

examples crafted for one model can elude the model, nonetheless, it is not limited to evading that 

specific model but can evade other models as well. Transferability is the ability of an attack, 

generated against one specific model, to be significantly effective against another potentially 

unseen model. Since, possibly in real-world scenarios, a black-box attacker might be limited in 

terms of queries he can make to the target, the marvel of transferability overcomes this problem 

for the attacker. The first empirical black-box attacks, utilizing transferability, were conducted by 

Papernot et al, attacking real-world remotely hosted deep neural networks, achieving significant 

success, as well as, finding the extreme capability of black-box attacks being able to evade 

strategies previously found to make adversarial attack crafting harder [3]. The strategy is to train 

a surrogate model, available to the adversary locally, with data where the instances are generated 

synthetically by the adversary and labeled by the target network. The next step is to craft 

adversarial attack examples for the surrogate model, fed to the target model for prediction, and see 

them succeed in misleading the target classifier. There has been extensive research work of the 

same kind but on large-scale datasets [7] and for boosting the transferability [8]–[10]. 

      To make models, to be deployed for problem-solving, robust against these black-box attacks, 

it is crucial to understand what causes the phenomenon of transferability to happen. The reason is 

that machine learning models have an inborn or natural vulnerability to adversarial attacks, also, 

the substitute model complexity plays a major role in the transferability of the attacks [11]. 

Furthermore, the size of the gradient of the input, the gradient alignment of the substitute and target 

model, and, in addition, the variance of the loss landscape have a big impact on the transferability. 

In addition, the robustness measure is focused on by some in the literature as a metric for the 

security assessment of machine learning models. Furthermore, existing literature has focused on 

formal methods-based verification techniques and robustness certification techniques based on 

verification and some other methods to give robustness guarantees. 
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1.1 Problem Description 

      Dealing with the threat of adversarial attacks has been in the spotlight for quite some time and 

research work has been done in this regard to make machine learning models robust to attacks. 

However, to cope with the threat of adversarial attacks, it is vital to test the models for robustness, 

a measure of the extent to which a model can overcome or withstand adverse conditions (in this 

case, adversarial attacks), before deploying them. Since the accessibility to an ML model in a 

black-box setting is very limited, usually only query access [3], it might be possible to utilize 

transferability, for the fact that adversarial examples transfer between models, to perceive the 

measure of the robustness of the target model. In this work, we study whether using surrogate 

models and their transferability, we can infer the robustness information of the target model in 

black-box settings. 

 

1.2 Contributions 

      We summarize our main contributions as follows: 

• We propose a framework for certifying the robustness of machine learning models 

using an ensemble of surrogate models, used simultaneously and their results combined 

using four logic gates and utilizing their transferability to the target models. An analyst 

who wants to evaluate the robustness of a model in black-box settings because the 

model is inaccessible to him can use our framework to provide robustness guarantees 

to the owner or an attacker using our framework can gather robustness information of 

the target model that disclosed. 

 

• We present preliminary experimental evaluation, gained as a result of conducting an 

extensive assessment, to show that surrogate models can be productively used, using 

our strategy, to certify the robustness of the target model. 

 

1.3 Organization 

      We organize this thesis as follows: 

• In chapter 2, we discuss the background of topics needed as a basis for this thesis. We 

talk deeply about supervised learning, classification, and the three classification models 

used in this thesis (Support Vector Machines (SVM), Logistic Regression (LR), and 

Neural Networks (NNs)). Also, we give a deeper introduction to Adversarial Machine 

Learning, adversarial examples, Transferability as well as black-box and white-box 

evasion attacks. 
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• In chapter 3, we introduce and define stability and robustness, the importance of 

establishing the security of ML models, the measure of robustness and how robustness 

can be certified as well as the challenges in computing robustness in black-box settings. 

 

• In chapter 4, we talk in detail about our approach to compute the robustness of an ML 

model using surrogate models in black-box settings. 

 

• In chapter 5, we put forward our experimental assessments for the development of this 

thesis.  

 

• Last but not the least, we conclude the thesis by talking briefly about our contributions 

and future research directions. 
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Chapter 2       

Background 

      The term ‘Machine Learning’ was first coined by an American researcher, Arthur Lee Samuel, 

the pioneer of artificial intelligence and computer gaming, who stated it as, the field of study 

allowing the machines to learn without the requirement to unequivocally reprogram it [12]. 

Arthur's study not only defined machine learning but also included programming a machine in 

such a way that the resultant behavior corresponds to how humans behave and constitutes learning. 

Data was found to be the driving force in helping the machines learn, and, by the mid-2000s, with 

success stories amassing from extensive research, it was discovered that the data can be way 

stronger than theoretical models [13]. The evolution of computing technologies has brought at our 

disposal, machines, that are more powerful than ever before. It became possible to utilize these 

powerful machines and machine learning algorithms to identify complex and concealed patterns 

that would not be easy for humans, or even possible, with the amount of data that is available to 

us contemporarily. In layman or simple terms, machine learning develops models from training 

data and automates the process of adapting to a multiplex of facts and figures to perform tasks or 

solve problems. 

      Machine learning algorithms can be divided into categories depending on the purpose they are 

used for, but the main categories are as follow:  

• Supervised learning 

• Unsupervised learning  

• Reinforcement learning  

      For empirical analysis of this thesis, supervised learning models are used so we will discuss 

here only the supervised learning paradigm. 

 

2.1 Supervised Learning 

      Supervised learning is a class of problems that acquire the input-output relationship 

information of a system given a training dataset consisting of instances and their true labels [14]. 

Also cited as Learning with a Teacher as well as Inductive Machine Learning [15], [16], the 

objective of supervised learning is to build concise models that learn the mapping between the 

inputs and outputs given supervised data. After the training is over, the learned model is tested on 

a test set where only the test input vectors (without their corresponding labels) are provided to the 

model, allowing the model to predict the test examples, leading to uncovering the precision or 

correctness of the model by comparing the predicted labels with the true labels. 
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During supervised training, the instances (usually denoted by 𝑥𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1…𝑛) are fed to the 

model being trained to get outputs. The goal is to minimize the error on the entire dataset and in 

case of prediction error (higher difference between predicted output and the ground truth) during 

the training process, the parameters of the model are adjusted for minimized error. However, 

minimizing the training error does not guarantee that the model will perform equally well on the 

test data which is unseen and new to the classifier. The poor performance may be due to various 

reasons one of which is overfitting. When a model overfits, despite its good performance on 

training data, it is not able to generalize well to data unincluded in the training set, therefore, a 

balance between error minimization and complexity of the model is necessary. Take, for instance, 

Support Vector Machine (SVM), which maximizes the decision boundary leading to good 

generalization [17]. 

 

2.1.1 Classification  

      Classification is a supervised learning problem where the problem to solve is to find a mapping 

between instances and a set of pre-defined class labels or targets. Formally, 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏[18]. Given a labeled set of instance x ∈ S (S being the training set), along with their 

formal target labels y from a data distribution D which is unknown, and an inducer I, the objective 

of the classification task is to produce a classifier with generalization error as low as possible. 

 Generalization error is the rate of misclassification concerning the distribution and can be written 

as [18]: 

 

𝜀(𝐼(𝑆), 𝐷) = ∑ 𝐷(𝑥, 𝑦). 𝐿(𝑦, 𝐼(𝑆)(𝑥))

(𝑥,𝑦)∈𝑈

 

 

Where 𝐼(𝑆) is the model while 𝐿(𝑦, 𝐼(𝑆)(𝑥)) is the loss function of the model 

 

𝐿(𝑦, 𝐼(𝑆)(𝑥)) = {
0  𝑖𝑓 𝑦 = 𝐼(𝑆)(𝑥)
  1  𝑖𝑓 𝑦 ! = 𝐼(𝑆)(𝑥)

 

 

 

Machine learning classification algorithms make use of input training data to predict the likelihood 

of falling into one of the pre-defined classes. In the classification algorithm, a discrete output 

function (𝑦) is mapped to the input variable (𝑥). For the sake of simplicity, we will use 𝑓() as the 

notation for the learned model or classifier. 
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𝑦 = 𝑓(𝑥), where 𝑦 = categorical output 

 

Performance evaluation is crucial for the sake of uncovering the quality of the learned model. 

There are many metrics for the evaluation of performance however most commonly and frequently 

used is the accuracy and its complement error rate [19].  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

 

Accuracy and error rate complement each other so finding one, the other can be computed by 

deducting the computed from 1. 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

 

 

2.1.2 Classification Algorithms 

      Classification algorithms are used to categorize data into a class or category. It can be 

performed on both structured and unstructured data. Classification can be of three types: binary 

classification, multiclass classification, and multilabel classification. There are many algorithms 

used for classification, but we will discuss here the models specifically used for the motive of 

experimenting for this thesis. 

 

2.1.2.1 Support Vector Machine (SVM) 

      Support vector Machines (SVMs) are one of the most robust prediction methods used for binary 

classification where the input vectors are mapped to a high dimensional feature space [17]. Given 

a set of labeled training examples, builds a model that assigns new examples to one or the other 

category. The training examples are mapped into a feature space and separated using a hyperplane 

that is equidistant as well as which maximizes the distance between the data points of two classes. 
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The hyperplane is found using support vectors which are the points nearest to the hyperplane and 

influences its position and orientation. The reason, for finding a hyperplane that is at a maximum 

distance from the data points of the two classes, is that the future points are assigned a class with 

maximum confidence.  

Let’s suppose we have some points, represented by 𝑥 ∈ ℝ𝐷 in vector space representing feature 

vectors. However, this maybe too simple so we want to map this to a more complex non-linear 

feature space transforming the feature space, i.e., ℝ𝐷 → ℝ𝑀, where each of these feature vectors 

𝑥 is mapped to a transformed basis vector ∅(𝑥) ∈  ℝ𝑀. 

How are the feature vectors separated? Feature vectors are separated using a decision boundary, 

called hyperplane, separating these points into their respective classes.  

 

 

Fig 1: SVM decision boundary maximization 

 

Consider the case when the data is perfectly separable in a binary classification problem. 

Nonetheless, there can be different possibilities of hyperplanes all separating the data with cent 

percent accuracy. What SVM does is it chooses the hyperplane which maximizes the distance to 

the nearest points on either side of it. These points are called support vectors and play an important 

role in choosing the maximum-margin hyperplane. 

The classes usually in binary classification are 0 and 1. As the value of the hyperplane is 0, the 

value of the hyperplane for feature vectors in the feature space would be greater than 0 for one 

group of data and less than 0 for another. Furthermore, during the testing time, the product of the 

predicted value and the actual value would be greater than 0 for correct classification otherwise 
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less than 0. Since we are in a condition where the classes are perfectly separable, all the samples 

would be classified correctly. 

Let’s consider the case now when the data is not perfectly separable with a straight line. In this 

case, a decision boundary that perfectly classifies feature vectors into their respective class will 

make the model overfit the data. Vapnik, 1995 [] introduced the concept of slack variables to tackle 

the situation when the data is not perfectly separable, i.e., when the noise present seeds the flap of 

the target classes, relaxing the hard margin constraints and inducing a soft margin. Mistakes are 

allowed in the case of imperfectly separable data by introducing slack variable denoted by the 

Greek letter ξ, valued greater than or equal to zero for all, which serves as a penalty for incorrect 

classification. A data point classified correctly will have a slack value of 0 and 1 otherwise. The 

variable C serves as a regulator which regulated the value of slack variables. The higher the C is, 

the more complex the decision boundary becomes. 

The choice of linear classifiers can be problematic sometimes because it is often the case when the 

data is not linearly separable. With the introduction of Kernel Trick (Vapnik and Cortes, 1995), 

it’s possible to have maximum margin hyperplanes with linear models and non-linear decision 

functions.  

To understand the essence of SVM, classification, one needs to grasp four basic concepts: (i) the 

separating hyperplane, (ii) the maximum-margin hyperplane, (iii) the soft margin, and (iv) the 

kernel function [20]. 

 

2.1.2.2 Logistic Regression 

      Logistic Regression (LR), originally developed by Joseph Berkson as a general statistical 

model [21], despite its name is a classification model, is an efficient method for binary and linear 

classification problems and has a very good performance not only with binary or linearly separable 

problems but with multiclass problems as well. When the dependent variables are binary, it is LR 

that is most appropriate to be used.  Logistic regression is used as a tool for predictive analysis 

describing the correlation between a binary dependent variable and one or more independent 

variables.  

Logistic regression, also known as the logit model, uses a logistic (sigmoid) function to model 

binary dependent variables and is often used for solving classification problems as well as predictive 

analysis. Logistic regression calculates the probabilities of events to occur based on the available 

set of independent variables, for instance, head or tail in case of tossing a coin. The value of the 

dependent variable is usually between 0 and 1 for the fact that the outcomes are probabilistic. 

Logistic regression uses logit transformation on the odds, dividing the success probability by the 

failure probability.  

Given points 𝑥 ∈ ℝ𝐷 representing feature vector in feature space, the logistic or sigmoid 

function 𝐹(𝑥) =  𝑒𝑥/𝑒𝑥 + 1 make sure that the values are between 0 and 1. Logistic Regression is 

called a classification model because it starts as a linear equation. Due to the presence of log-odds, 

we use the sigmoid function to help get the output values as a probability. These probabilities can 
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then be effectively used to conduct classification tasks. For instance, we want to predict whether a 

student will successfully pass the exam or fail it. The probability, to predict whether that student 

will pass, has to be higher than a specific threshold. If the probability is higher than that threshold, 

we can say that the student will pass. However, if the probability is lower, we can predict that the 

student will fail.  

We could assume the function 𝑝(𝑥) to be linear but the outputs are probability distribution which 

is bounded while the function is unbounded. To solve this problem, logit transformation comes into 

play limiting it between 0 and 1, therefore, we will consider the function as 𝑙𝑜𝑔 𝑝(𝑥)/(1 − 𝑝(𝑥)).  

Setting up a threshold is important for the logistic regression to work as a linear classifier. As an 

example, let’s suppose the threshold is 60% or 0.6 and we have two classes, 1 and 0. The outcome 

probability needs to be equal to or higher than 0.6 to be classified as 1.  

 

𝑦 = {
1  𝑖𝑓  𝑝 ≥ 0.6
  0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

 

 

2.1.2.3 Neural Networks (NN) 

      Neural networks are algorithms or methods, modeled on the human brain, and, in machine 

learning, they are designed for recognizing patterns in data. The inspirations for NNs are taken 

from the human brain imitating closely the signaling of biological neurons. Since they mimic the 

way neurons in the human brain signal and make decisions, they are also known as Artificial 

Neural Networks (ANNs). 

Artificial neural networks (ANNs) are made up of layers of junctions, comprising input and output 

layers at the start and end respectively. Between the input and output layers, there are deep layers 

where the computation happens. The junctions or nodes are connected each with its weight and a 

threshold that causes the nodes to activate and signal. Having the output of a node higher than a 

specific threshold, the neuron signal to other corresponding nodes. 

Neural Networks learn by analyzing the training data to be able to be used for problem-solving or 

performing tasks. Once they are trained or they have found the decision boundary, they can 

perform tasks, such as classification efficiently and at much faster speeds than humans can 

perform.  

Each node in the network can be thought of as itself a linear regression model composed of input 

data, weights, threshold, and output. 
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∑𝑤𝑖𝑥𝑖 + 𝑏 = 𝑤1𝑥1 +𝑤1𝑥1 +⋯+ 𝑏 

𝑓(𝑥) =  {
1,   ∑𝑤1𝑥1 + 𝑏 ≥ 0

0,   ∑𝑤1𝑥1 + 𝑏 < 0
 

 

These ANNs learn weights (the parameters of the neural network that transform the input data) 

which constitute learning. A trained neural network is one where the initially assigned weights are 

optimized.  The optimization procedure starts by initializing random weights that are usually small 

in magnitude. The weights show the strength of the connection between the neurons and are 

important in the fact that the higher the weight of a neuron is, the more it contributes to the final 

output. Given an input to the neural network, it is multiplied with the weights, and if a node’s 

output is greater than a threshold, after the passage down the activation function, it signals to other 

neurons. The process continues with the higher-weighted neurons signaling to one another in a 

forward way and the neural networks that process in this manner are known as Feed Forward 

Neural Networks.   

To know an estimation of how far we from our desired solution are, a loss function is used. 

Generally, mean squared error is chosen as the loss function for regression problems and cross-

entropy for classification problems. Let’s take a regression problem and its loss function be a mean 

squared error, which squares the difference between actual (𝑦ᵢ) and predicted value (𝑦 i ). 

 

𝑀𝑖 = (𝑦ᵢ − 𝑦 ᵢ)2 

 

The loss function is calculated for the entire training dataset and their average is called the Cost 

function. 

 

𝐶𝑜𝑠𝑡 = 𝑀 =
1

𝑛
∑(𝑦ᵢ − 𝑦 ᵢ)2
𝑛

𝑖=1

 

 

2.1.2.4 Deep Neural Networks (DNNs) 

      Deep Neural Networks (DNNs) are Artificial Neural Networks (ANNs) having multiple hidden 

layers. They have the same component as the ANNs and work in the same way, but, the difference 
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is that the inputs are passed through several deep or hidden layers before outputting a result. DNNs 

can contain many more hidden layers, even hundreds or thousands. With the high volume and 

dimensions of data available nowadays, it would not be possible to use simple ANNs to analyze 

them and perform tasks efficiently and this is where DNNs shine, being able to explore and 

scrutinize data much more effectively. 

 

                                 

                                                   

                                              Fig 3: Example of Deep Neural Network Architecture 

 

 

2.1.2.5 Convolution Neural Networks (CNNs) 

      Convolutional neural networks (CNNs) are Feed Forward Neural Networks that contain 

additional layers, known as convolution layers, before the deep or hidden layers. CNNs shine when 

used for image recognition, as their performance is topnotch with computer vision tasks. These 

networks harness matrix multiplication, to pinpoint patterns within images.  

The convolutional layers are the first layers, after the input layers, where the convolution 

operations are performed and are the building blocks of CNNs. These layers are comprised of 

specific size filters applied to an area of the image, calculating the dot product between the input 

pixels and the filter. The process is repeated, shifting the filter by a specific stride, until the entire 

image is covered and dot products are calculated. As a result, we get what is known as a Feature 

Map comprising the output of the filter applied. The feature maps are then transformed using ReLU 

(Rectified Linear Unit) activation function, mapping the negative inputs as zeros, establishing non-

linearity to the neural network model.  

Pooling layers, also known as down sampling, are part of convolution neural networks and conduct 

dimensionality reduction, reducing the number of parameters in the input. Similar to the 
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convolutional layer, the pooling operation sweeps a filter across the entire input, but the difference 

is that this filter does not have any weights. Instead, the kernel applies an aggregation function to 

the values within the receptive field, populating the output array. 

While convolutional layers can be followed by additional convolutional layers or pooling layers, 

the fully-connected layers are the final layers, before the final output layer, to which the output of 

the convolution layers is fed. However, adding more convolution layers drastically increase the 

complexity of the CNN, identifying greater portions of the image. The initial layers take note of 

low-level features such as edges. As the input data is passed to the later layers, more concrete 

elements are recognized focusing on high-level features such as shapes, that are specific in order 

to recognize the input.  

 

        

                                                 Fig 4: Example of Convolution Neural Network  

 

 

2.2 Adversarial Machine Learning 

      Machine learning models can be sometimes overly complicated, due to their ambiguous 

learning nature, which might lead to a poor understanding of how they output results. Take, for 

instance, Deep Neural Networks (DNNs) which have unparalleled accurate and state-of-the-art 

performance on the problems to which they are applied. However, their eloquence, which is the 

reason for their great performance, can lead them to learn in an explicable way, making it hard to 

understand their learning manner as well as making it a weakness that can be exploited by an 

attacker. 

      But why do these adversarial examples exist? There have been different theories presented and 

one of the first to put forward was Szegedy et al, explaining that deep neural networks learn a 

discontinuous mapping between inputs and outputs, as well as poor generalization of the model 
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causing the network to fail to predict correctly when given an indistinguishably perturbed input 

[5]. However, there is much non-linearity in machine learning, the activation functions like ReLU 

and Sigmoid are straight in the middle for preventing the gradient to vanish. There are a lot of 

linear functions all perpetuating one another’s input in the same direction, and, applying small 

perturbations to inputs, accumulates into massive differences on the other end of the network. 

Another most commonly accepted reason, as argued in [22], could be that the model never fits data 

perfectly, test accuracy is always lower than perfect, and there will always be adversarial pockets 

of inputs that exist between the boundary of the classifier and the actual sub-manifold of the 

sampled data. 

 

2.2.1 Allocation of Attacks 

      The attacks, against a machine learning model, by an attacker, can be different in different 

scenarios and is dependent on features, such as the effect on the classifier, the kind of violation, 

and or the kind of attack. In [23] Biggio et al give the taxonomy of the attacks that a machine-

learning model might confront. The attacks are based on features such as influence (the effect that 

the attack or the attacker has on the machine learning classifier), security violation (the type of 

violation of the security that an attacker can cause), and specificity (what particularly an attacker 

wants to do). 

The influence can be of two types, either causative or exploratory. If it is causative, the attacker 

wants to constrain or put hurdles in the path of the classifier to make it slip away. Otherwise, in 

the case of exploratory, the attacker doesn’t interfere with the classifier, but he tries to gain 

knowledge about the classifier which might be trained. 

The security violation can be of three types depending upon the attacker and his motive. An 

attacker can violate Integrity by fooling the classifier into giving access to the attacker and 

realizing some malicious inputs into legitimate. Additionally, availability violations can be caused 

by keeping busy the classifier with unwanted and successfully conducting denial-of-service 

attacks. Furthermore, a violation of privacy can bring privileged details regarding the classifier 

into the attacker's hands. 

The attack specificity stands for if the attacker is focusing on misclassifying an instance into a 

specific class, targeted, or the attacker just intends to misclassify the instances, exploratory. 

 

2.2.2 Modelling Adversary 

      Modeling the threats is crucial in understanding the kind of attacks that a deployed classifier 

might face, the attackers’ strategies that he could use, and what could be at risk when the attacks 

happen. Biggio et al [4] proposed a framework for modeling threats against supervised learning, 

considering the goal of the attacker, his knowledge, capability, and the strategies he might wield 

to attack.  
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The attacker’s goal is based on two of the features, as described in the previous section, one of 

which is a security violation and another being specificity. The attackers can have different motives 

for attacking and depend on the kind of security that the attacker plans to breach as well as if the 

attacker is considering some specific targets or it is untargeted. An attack could be targeted or 

untargeted along with breaking integrity, availability, or privacy. 

Another point that is worth considering is the attacker’s knowledge which is important for 

deciding what kind of attacks the adversary could carry out. 

White-box attacks. This is the situation when the adversary or the attacker has complete 

knowledge of the model or classifier deployed, including the training data, the architecture of the 

model, the objective function, as well as the parameters and weights learned, etc. Since the attacker 

has full knowledge of the classifier, he can carry out an attack fairly easily and efficiently. 

Grey-box attacks. These types of attacks come in between white-box and black-box attacks where 

the attacker has some partial knowledge about the system, such as the feature representation and 

the algorithm used to train the model but do not have any access to the data used for training as 

well as the weights learned by the trained model. However, even if the training dataset is not 

available to the attacker, he can make a synthetic data set made up of instances collected by the 

attacker and labeled by the target model. 

Black-box attacks.  For most real-world scenarios, white-box assumptions or complete access to 

a classifier may be unrealistic, most probably only query access to it. A black-box attack is the 

kind of attack where the information about the models is hidden, the attacker has no access to it, 

but only querying access to the models is possible where the inputs are synthetically crafted and 

queried to the oracle, which acts as an opaque endpoint, to get the outputs predicted by the model. 

Nonetheless, the attacker can still use the knowledge of the algorithms that are good for specific 

tasks, e.g., for image recognition or generally working with images for classification, CNNs are 

used, so the attacker might guess the trained model, but still, since he has no other knowledge, he 

cannot guess the architecture of the target CNN. 

The attacker’s capability is dependent on one of the features that Biggio et al proposed, as 

described above, that is the feature of influence. If the influence of the adversary is causative, he 

can have control over both the data used for training as well as the data used for testing. 

Conversely, if the influence is exploratory, the attacker can only exploit the test time data.  

 

2.2.3 Attack Types 

      The two most common types of attacks that an adversary can carry out, as described in [4], are 

test time Evasion and Availability attacks. The evasion attacks are carried out at test time where 

the adversary influences the test set violating integrity, as opposed to poisoning attacks which can 

be used for violating integrity as well as availability, where the adversary has an influence over 

the training set and can inject malicious instances into the dataset used for training to affect the 

prediction capability of the classifier negatively.  
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2.2.4 Evasion Attacks  

      Evasion attacks are the kind of attacks that are carried out at test time since the attacker 

influences the test data. Given a trained classifier, the attacker manipulates the input data to deceive 

the classifier into misclassifying them. The formulations below are taken from.[11] 

The optimization problem in the case of a white-box evasion attack, given an instance 𝑥 along with 

its label 𝑦 and 𝑙 being the loss function and 𝑥′ being the adversarial example can be written as: 

 

max 
𝑥′

    𝑙(𝑦, 𝑥′, 𝑤) 

           𝑠. 𝑡     ||𝑥′ − 𝑥||𝑝 ≤ 𝜀 

                                                       𝑥𝑙𝑏 ≼ 𝑥′ ≼ 𝑥𝑢𝑏 

 

Here, since the attack is white-box and the attacker has complete knowledge of the classifier, the 

parameters are assumed to be known to him. For a black-box attack, since the attacker doesn’t 

have any knowledge of the classifier and in this case, the adversary can make use of the surrogate 

models for effectively carrying out evasion attacks on the target model leveraging the property of 

transferability [3]. The parameters of the target model are not known to the attacker but by using 

surrogate models, the parameters of the surrogate model will make up for target model parameters 

that are unknown. 

The instinct behind the evasion attack is that the adversary, instead of minimizing the loss as done 

in the training phase, maximizes the loss on the perturbed sample with the true label to force the 

classifier to misclassify it. The perturbation value, usually denoted by 𝜀 (epsilon) is the bound on 

the perturbation and the difference between the natural instance and perturbed sample should not 

increase the value of 𝜀 as well as an additional constraint, known as box constraint, is on the 

perturbed sample itself bounding its values [11].  

 

2.2.4.1 Adversarial Examples  

      An adversarial example refers to a specifically engineered input that is designed to look the 

same as the original input to humans but misleads the machine learning model.  

Let 𝑥 be a natural instance with label 𝑦 and the classifier under attack be 𝐶. An adversarial example 

is such that: 

 

�̂� = 𝑥 + 𝛿 

𝐶(�̂�) ! = 𝐶(𝑥) = 𝑦 
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Where 𝛿 is the amount of perturbation or noise that is applied to the image. For instance, when an 

imperceptible noise is applied to the image of a ‘panda’, causes the classifier to misclassify it as 

‘gibbon’ [22].  

 

2.2.4.2 Adversarial Examples Generation 

      Given an input, an adversarial example is generated by applying carefully crafted noise to the 

input which forces the classifier to make the wrong prediction. But how are the adversarial 

examples generated? Let us start with what an entity wants to achieve with training, for instance, 

a neural network. The formulations below are taken from [24]. 

Let 𝑥 be a sample and 𝑦 be its target class. Classifiers are trained by feeding them data, the 

instances, and the labels, in the form (𝑥, 𝑦). After the classifier is trained, and successfully found 

a decision boundary, the next step is how the classifier performs on unseen data. Let 𝐶 be a trained 

classifier, then the prediction function would be of the form: 

 

𝐶𝜃: 𝑋 → ℝ𝑚 

 

Where ℎ𝜃 maps the input space to the output space which is 𝑚 dimensional with 𝑚 number of 

classes. The vector 𝜃 stands for the parameters of the model and is what is typically optimized 

when training the model.  

A loss function is necessary to deduce how well the network model the training data and maps the 

predictions made by the model and the true labels to a non-negative number. 

 

𝑙(𝐶𝜃(𝑥), 𝑦) 

 

In the function above, 𝐶(𝑥) is the predictions of the model and 𝑦 are the true labels. Since we want 

to optimize the parameters and minimize the loss, we use it as an optimization problem. 

 

min
𝜃

1

𝑛
 ∑ 

𝑛

𝑖=1

𝑙(𝐶𝜃(𝑥𝑖), 𝑦𝑖) 
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The problem is solved using an optimization algorithm, such as gradient decent, computing the 

gradient of the loss, which is calculated by the back-propagation algorithm, concerning the 

parameters of the model and fine-tuning the parameters in the opposite direction. 

For crafting an adversarial example, the opposite, of what is done above, needs to be done. We 

have to maximize the loss, so the classifier is forced to make the wrong prediction. 

 

max
∥𝛿∥ ∈ 𝜀

𝑙 (𝐶𝜃(𝑥 +  𝛿), 𝑦) 

 

In the above formulation, 𝜀 is the allowed perturbation, and, since we want our adversarial image 

to be close to the natural image, the optimization is one over the perturbation applied to the image. 

In literature, there have been different techniques proposed for the generation of adversarial 

examples. Adversarial examples can be generated using two settings, white box, in which the 

adversary has access to the model, and, black-box, where the attacker has no access to the model 

and usually the model querying is allowed but that is limited as well. Below are some of the famous 

methods proposed for the generation of adversarial examples. 

 

 

2.2.5 Attack Methodologies 

2.2.5.1 Substitute Model Attack  

      Substitute model attack is a black-box attack methodology where the adversary has no access 

to the model, i.e., parameters or weights of the network, gradient directions, training set, as well 

as network architecture in the case of a neural network, and the objective is to train a substitute or 

surrogate model. The attacker only has query access to the model and exploits the transferability 

property to carry out attacks. The attack was demonstrated by Papernot et al [3]against deep neural 

networks (DNNs) by training substitute deep neural networks (DNN).  

The attack works as follows: 

1. A substitute or replicated training set is made by synthetically crafting training samples. 

 

2. The substitute training set samples (𝑋) are fed to the target DNN for prediction and getting 

the corresponding labels (𝑌) 
 

3. A substitute DNN model is chosen and trained using the dataset crafted in the form (𝑋, 𝑌) 
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4. Attack the surrogate network by crafting adversarial examples using a white-box attack 

method, such as FGSM or PGD. The adversarial examples crafted for the surrogate model 

are likely to throw away the target model making it misclassify the adversarial inputs. 

 

 

 

 
                                                  

                                                    Fig 5: Substitute model Attack 

 

 
 

2.2.5.2 Projected Gradient Decent (PGD)  

      Projected gradient decent is one of the most efficient and effective attacks in the white box 

settings. Since it’s a white-box attack, the attacker has full access to the classifier, most 

importantly, its gradients. Gradients being vectors are the directions in which the model is 

sensitive, pointing to the direction of the highest increase of a function. The attacker is much more 

capable and powerful in white-box settings and can craft adversarial examples fairly efficiently as 

opposed to black-box or real-world scenarios where the attacker has to rely on the property of 

transferability to execute attacks. Projected gradient descent can be considered one of the most 

veritable white-box attacks as it is argued that making a neural network robust against a PGD 

attacker, makes it robust against all or a wide range of first-order adversaries [25]. 
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PGD, as compared to general gradient decent, which moves in the direction opposite to the direction 

of gradients to minimize a function and has no constraints on variables, as well moves in the 

direction opposite to gradients to minimize the function but is subject to constraints. With each step 

taken in the direction negative to the gradient, we have to project onto the feasible set. So, finding 

an adversarial example with PGD can be thought of as a constrained optimization problem. The 

objective is to find perturbations that maximize the loss of a classifier on inputs while keeping the 

perturbations in the specified range, 𝜀. As the aim of crafting an adversarial example is to maximize 

the loss of a model on that sample, PGD attempts to find such perturbations keeping the 

perturbation size less than or equal to a specified amount referred to as epsilon (denoted by 

𝜀). However, for adversarial attacks in real-world scenarios, the perturbations applied to the inputs 

are such that they can not be recognized by humans. 

The PGD algorithm is an iterative method that starts by initialization of a uniform random 

perturbation in the 𝑙𝑝 ball around the sample and then iterate the updates [24], written as: 

 

𝛿 ∶= 𝑃𝑟𝑜𝑗(𝛿 + η∇𝛿l(ℎ𝜃(x + 𝛿), y)) 

 

Here 𝑃𝑟𝑜𝑗 denotes the projection onto 𝑙2 or 𝑙∞ and η denotes the step size. Additionally, we 

have the choice to set the step size as well as the number of iterations. 

 

 

2.2.6 Defenses 

      Defense mechanisms have been proposed in former research works to make machine learning 

models robust or resistant to adversarial attacks. Most of the literature used regularization and data 

augmentations to defend against, however, they were relatively simple approaches and couldn’t 

defend against strong adversaries. More considered sophisticated methods, such as Gradient 

Masking has also been shown not to suffice for the fact that an attacker can access gradients using 

other ways [22](e.g., training surrogate models), and Defensive Distillation which was shown to 

be broken by Carlini and Wagner [26]. However, the method of adversarial training is the most 

efficient one which can prove to be a reliable defense for increasing the robustness against 

adversarial attacks. 

 

2.2.6.3 Adversarial Training  

      Adversarial training is a defense mechanism attempting to make neural networks robust or 

improve their robustness against adversarial attacks by training the network with adversarial 

examples. The problem of adversarial sample crafting, a problem of inner maximization, is to find 
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the most effective adversarial examples that maximize the loss of the classifier on that sample and 

is solved by well-designed adversarial attacks such as Fast Gradient Sign Method (FGSM) or 

Projected Gradient Decent (PGD) [22], [27].  

 

max
∥𝛿∥ ∈ 𝜀

𝑙 (𝐶𝜃(𝑥 +  𝛿), 𝑦) 

 

The problem of outer minimization is to minimize the loss during the training procedure. Let 𝐷 be 

an adversarial dataset of input-output pairs (adversarial samples along with their true labels), we 

can write: 

 

min
𝜃

1

∥ 𝐷 ∥
∑ max

∥𝛿∥ ∈ 𝜀
𝑙 (𝐶𝜃(𝑥 +  𝛿), 𝑦)

𝑥,𝑦 ∈ 𝐷

 

 

 

Adversarial training is a min-max problem solved by finding adversarial samples which maximize 

the prediction loss of the classifier while training the same classifier on the adversarial examples 

crafted in a way that minimizes the training loss.  

Adversarial training has been shown to be one of the most effective methods of defense achieving 

avant-garde performance. 

 

2.2.7 PGD Adversarial Training 

      PGD adversarial training was proposed by Madry et al [25]for the training of adversarially 

robust networks. The idea is the same as discussed above, to train the model with both natural and 

adversarial examples generated by PGD. When tested for robustness, adversarially trained CNNs 

and ResNets [28] prove to be resistant with improved robustness against many first-order 𝐿∞ 

attacks in both black-box and white-box settings.  

For experimental evaluations, we have used PGD as a method of choice for crafting adversarial 

examples. 
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Chapter 3 

Adversarial Robustness       

      With the discovery of adversarial examples (Szegedy et al, 2013), inputs that are specifically 

crafted by an adversary to mislead machine learning systems or models, questions have been raised 

about the security of these models and their use in critical systems. Deep neural networks are 

shown to be much more sensitive to perturbations due to their natural vulnerability to these 

perturbations. Although there has been defense research work done in the regard to making the 

models robust to adversarial attacks, it’s still steady and not enough, as compared to the research 

work that has been done in understanding the adversarial attacks which is very vast. Furthermore, 

most of the proposed techniques or defense mechanisms to defend against the threat of adversarial 

examples were soon shown to be either insufficient or invalid for the reason of invalid 

implementation [29].  

Robustness, in general, refers to the ability to cope with unexpected or harsh conditions and remain 

in good health. When looked at in the view of a system, it can be thought of as the potential of a 

system to resist disturbance or perturbations without being functionally affected [30]. However, 

we have to look into robustness in view of adversarial machine learning known as adversarial 

robustness. Adversarial robustness relates to the measure of the extent to which a network can 

withstand or is irrepressible against adversarial examples [5].  

The use of machine learning models has grown immensely in recent years due to their super-human 

level performance, flexibility, and adaptability to complex problem-solving situations. However, 

their flexibility and over-expressiveness can prove to be dangerous as they can be exploited by an 

adversary. If we wish to deploy a machine learning model (e.g., DNNs) for problem-solving, it is 

important to consider the security risks and threats that the model might face to take appropriate 

measures to defend it. Machine learning has been used to focus more on the problems that they are 

well capable of solving while less attention has been paid to making them secure. Machine learning 

systems are not free from security threats. Designing or deploying machine learning models 

without effectively looking or taking into security, in the real world there exists, adversaries, 

intending to benefit (e.g., monetary), who can cause impairment and force the model to behave 

inappropriately. Currently, the biggest threat that these models are facing is the threat of adversarial 

attacks. With the discovery of adversarial inputs, it has been shown how these models can be 

fooled with imperceptible noise applied to the inputs. Machine learning models, such as DNNs, 

have inherent or inborn properties that can make them vulnerable to adversarial examples. ML 

models are used in a wide range of areas including safety-critical systems and using them without 

establishing proper security could be disastrous. For instance, consider a self-driving car that uses 

a machine learning model to recognize road signs to take necessary driving actions. An adversary 

can perturb the road sign to fool the ML model used by the car, by carefully putting simply small 

patches in desired areas of the road sign, into classifying the sign which it originally it is not [6]. 
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If the ML model used by the car is fooled by the perturbed road sign, which will be fooled most 

probably if it is not tested in adversarial conditions, it can put the passenger’s life at risk.  

 

3.1 Stability vs Robustness 

      Stability and Robustness are sometimes misunderstood and used interchangeably. Both of 

these measures are used in terms of defining the security properties of machine learning models 

(classifiers), however, they are not the same and the differentiation between them is necessary for 

establishing appropriate security.  

A classifier is said to be stable on a particular instance 𝑥 ∈ 𝑋 if it classifies all the possible 

adversarial examples (that can be crafted for 𝑥 to mislead it) to the same class as it classifies x to 

[31]. The definition of stability makes it interesting for the fact that if the classifier is stable on an 

instance, no adversarial evasion attacks are possible as the classifier will assign all the adversarial 

exploited inputs the same class label as the original input.  

A classifier is said to be robust on a particular instance 𝑥 ∈ 𝑋 if the prediction of the classifier on 

that instance is correct (the same as the mapping between 𝑥 and its correct label 𝑦 found by the 

target function given a correctly labeled set) as well as it is stable on that instance. That means 

that, for instance, if the classifier is robust on some set of instances, the classifier will always 

correctly predict them assigning them a class label to which they belong [31]. 

Having said that, it is obvious from the definitions that for a classifier to be robust, it needs to 

predict the correct class label and it has to be stable on all the feasible adversarial examples that 

are possible for the instances. We can say that robustness implies stability but not vice-versa. 

Furthermore, just the stability is not enough because the classifier not only needs to assign a 

constant class label to an instance, but the class label needs to be correct as well. Additionally, the 

notion of stability might be limited in practice when considering the stability of a classifier on a 

set of instances. Hence, robustness favors more when we are considering adversarial scenarios as 

the classifiers’ predictions are expected to be correct on an instance along with its stability.  

 

3.2 Motivations for Robustness Evaluation 

    Assessing the security properties of a model to be deployed is of utmost importance to make 

sure there isn’t any security flaw in the model that could be exploited by an adversary. However, 

the motive behind accessing the model security could be different for different people who wish 

to investigate the soundness of a model before stationing the model in the real world. Carlini et al 

[29] argue that there are usually three reasons for evaluating the security of a model considering 

metric, such as robustness, which is the most widely used metric for establishing the security of 

machine learning models in the view of adversarial attacks. Evaluating robustness could be for the 

reason of, defending against adversaries who will attack the deployed model if they find any 

incentive, testing the worst-case robustness, or measuring the advancements or progress of 
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machine learning. However, whatever the motivation is, it is clear that robustness evaluation is of 

utmost importance.  

 

3.3 Robustness Verification vs Robustness Certification 

      The terms, verification, and certification are sometimes used in an ambiguous manner 

(interchangeably for each other). Although they are as good as to be used interchangeably, there 

is a slight difference that forces us to use them in appropriate contexts.  

Verification in general hands-on to a mechanism that allows checking formally or informally that 

a given model respects a certain set of specifications giving rise to the question, “Are we on the 

right track of building or designing?” Certification instead is the act of guaranteeing that a system 

or component complies with its specified requirement and is acceptable to be used for operations.  

In the view of adversarial machine learning, certification of robustness refers to the surety that for 

a given classifier and an instance 𝑥 𝜖 𝑋 there does not exist any adversarial example within the 𝑙𝑝 

bounds that can force the classifier to make wrong predictions. While the verification of robustness 

can be thought of as a mechanism that gives theoretical guarantees (i.e., using abstract 

interpretation or formal verification) that the model's robustness will not come down a specific 

lower bound upon attacks with a specified range or kind of perturbations. The verification 

approaches can be divided into complete and incomplete verification. Complete verification is the 

one when the verification process is unable to verify an instance while the presence of an 

adversarial example around that instance is guaranteed, we can say that the verification process is 

complete. In contrast, if the process results in outputting the instance to be verified, and if there is 

an adversarial example that is guaranteed to exist around that sample, the verification process is 

incomplete. 

The robustness verification of models as stated in [32], such as DNNs, is carried out with the 

objective of putting forward the robustness’ theoretical lower bounds under specific 

disturbance/perturbation constraints against any adversary. The robust training measures are then 

applied with the goal to achieve robustness which is in accordance with the theoretical lower 

bounds. While formal method techniques are used for verification of robustness, they have been 

used for certification of robustness as we can see in [33] where the authors use abstract 

interpretation for robustness certification of neural networks. With that being said, the verification 

can be seen as a part of the certification process because for a model to be issued robustness 

certification, it needs to be verified first and empirically tested. However, it is not necessary for 

verification to be a part of the certification task as verification may not work when considered 

certification in the black-box settings. Robustness certification might be possible in black-box 

settings, which is the aim of this thesis, where we don’t need the help of any formal method 

verification techniques to certify robustness. 
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3.4 How to Certify Robustness? 

3.4.1 Robustness Measure  

      Robustness is the characteristic of a system to remain functional without losing its 

effectiveness when faced with unforeseen circumstances that are outside of its normal conditions 

of operations. Even though contemporary machine learning models have achieved state-of-the-art 

performance in solving problems, such as image recognition, they have still not achieved any 

milestone in being robust (struggling with being robust). These machine-learning models struggle 

with resilience against adversarial examples, which is an example of a distributional shift [34]. 

The phenomenon of distributional shift is a kind of a problem that arises when the data on which 

the model is trained is from a different distribution than the data distribution that the model will 

work on in the real world. Perturbed inputs or adversarial examples are not the only ones that can 

cause the problem of distributional shift, transformations, such as gaussian noise, can lead to the 

same problem as well. To increase the robustness of a machine learning model, the normal training 

techniques don’t work, and new objectives and processes are introduced to the training procedure 

to make the model learn in a way that is resilient to adversarial perturbation. One such example is 

adversarial training where the models are trained with natural instances as well as adversarial 

examples. 

As stated in [29], it is crucial (while measuring the robustness of a machine learning model that 

has been robustly trained, i.e., adversarially trained) to define the threat model. A threat model is 

an essential part of the defense in itself and is important for providing security guarantees the 

conditions under which a defense or a model with defense is secure. Defining the adversary goals, 

whether he wants to simply cause the classifier to make errors or he has some target class that he 

wants the adversarial examples to be misclassified into. It is of utmost importance to constrain the 

adversary, and his capabilities, for building defenses that are not avoided by an adversary who is 

unrestricted. Contemporarily, the majority of the defense mechanisms restrict the adversary in 

perturbing the inputs from the test set to a small amount. Keeping that in mind, an adversarial 

example (in the view as defined before) would be legitimate only if the similarity or the distance 

between the natural and the perturbed image is in the specified ball of radius, known as epsilon. A 

careful and thorough explanation of the adversary's capabilities can help measure robustness well. 

Robustness is usually computed over the dataset and can be between 0 and 1 showing a percentage 

of instances the classifier can classify correctly as well as every viable adversarial example (for 

each of the instances of the dataset) is not able to mislead the classifier in assigning a wrong class. 

 

3.4.2 Existing Robustness Certification Approaches  

      Accessing security is not easy for the fact that the risk, adversarial risk (Madry et al, 2017), 

can be theoretically calculated while practically, the exact value cannot be calculated leading to an 

approximation of this quantity because of the dependence on the capability of an adversary.  The 

knowledge of the adversary is either a white box, black box, or grey box. It would be wrong to 
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assume that the attacker might not know the details of the model or the datasets. A defense 

mechanism that hides their data secret (e.g., model, data, etc.) must show that the secret is easily 

replaceable and that the secret is not extractable [29]. 

In the traditional software development process, formal methods (a set of mathematical and logical 

techniques to prove the correctness of software) are used for providing mathematically proved 

guarantees on the software/system behavior. The formal method is broadly divided into complete 

formal methods and incomplete formal methods [35]. The difference between complete and 

incomplete formal methods is that complete methods provide soundness and completeness 

guarantees but require a large amount of time making them unscalable to bigger neural networks. 

However, incomplete formal methods provide only soundness guarantees but with the advantage 

over complete formal methods that it requires very little time and is scalable to larger neural 

networks. An extended amount of work has been done for traditional software systems leading to 

the development of verification tools that are well-planned, efficient, and organized. However, if 

we look at the use of formal methods for the verification of machine learning systems, the progress 

is steady, nonetheless, efforts have recently been made for adapting formal methods to be used for 

the verification of machine learning. Take for instance the work done in [36] for neural networks, 

based on the Satisfiability Modulo Theory (SMT) which comes under the category of complete 

formal methods, and the task of verification is taken as a problem of constrained satisfiability. The 

authors demonstrated that with the sigmoid function, the output of a feed-forward neural network 

with just dense layers is always between the specified bounds. In their approach, the activation 

function was encoded as linear approximation functions with some specified intervals and feeding 

them to an SMT solver along with the constraints for finding any counter-example if any exist. If 

counter-examples are found, the intervals are changed to the ratio between the previous interval 

and a refinement parameter.  

Existing research works have proposed ways to certify the robustness of machine learning models 

with most of the work done on neural networks, such as DNNs, for their use in the vast majority 

of fields. Take, for instance, the work done in [37]for robustness certification of neural networks. 

The authors introduce a system named RefineZono which works by a combination of complete and 

incomplete verification techniques for the certification of neural networks. The formal methods 

used are Mixed Linear Integer Programming (MILP) which works by transforming verification 

into a mixed linear integer program, Linear Programming (LP) relaxation which is used for hard 

optimization problems, and Abstract Interpretation which allow comparing semantics 

mathematically to prove security properties. The approach is that the layers are encoded using the 

formal methods along with the constraints and the bounds are refined for the first layers using 

MILP relaxation, and the second layer using LP relaxation. However, for the last layers, abstract 

interpretation is used without any additional refinement. The works [33], [38], [39], take an 

incomplete formal method of abstract interpretation while [40] take a complete formal method 

MILP into account for robustness certification. In [38], the authors propose certification of 

robustness using randomized smoothing arguing that turning a classifier (which performs well 

under the Gaussian noise) into its smooth version using randomized smoothing proves to provide 

robustness guarantees over 𝑙2 norm. 
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3.4.3 Comparing Our Work with Existing Literature  

      Adversarial perturbations and the attacks originating from them are real threats. Also, when 

considering black-box settings (where the attacker has no knowledge of the classifier, its 

parameters, the training data, and procedure, etc.), the property of transferability (having vast 

empirical evidence to support [3], [6]) is a fact as well, along with the reasons behind it [11].  

The common thing about most of the previous research works is that their proposed mechanisms 

try to certify robustness with the help of formal methods, formal verification, along with making 

slight changes to the way such as layers in the neural network work. The majority of the works are 

using incomplete formal methods as a part of their robustness certification process to deal with the 

problem of scalability which the complete formal methods suffer from. Since white-box access to 

the model is needed, its typically infeasible to verify large neural networks. The robustness 

certifications are usually in the form of verification of security properties that are motivated by 

these slight changes to the structure or the way the layers in neural networks work. Furthermore, 

most of the works are trying to norm-bound an adversary and putting constraints to be able to not 

make any changes greater than the specified size of perturbations. What has been done is proposing 

slight changes while trying to theoretically verify it followed by some empirical guarantees to be 

secure within the norm bounds.  

Because of the large number of adversarial threats, establishing the security properties of a 

classifier is of utmost importance and the metric used in the scenarios of adversarial attacks is 

usually adversarial robustness. What distinguishes our work from most of the work previously 

done is that we want to certify robustness in real-world or black-box settings. We do not provide 

any defense mechanism that would protect the classifier from attacks, instead, what are we doing 

is we intend to certify classifiers for robustness which may or may not be trained with the current 

state-of-the-art defense mechanism, such as adversarial training, and deployed for problem-

solving, in the black-box settings using surrogate models. Since the attacks transfer, we can utilize 

the transferability information along with leveraging well-known neural network models as 

surrogates to certify the robustness of the target model. The main advantage is that we do not face 

the issue of scalability. Since our work is free from verification techniques (complete verification 

which suffer from scalability), as well as we are not accessing the target model directly, we are 

able to handle machine learning models, such as deep neural networks, which could be very large. 

 

3.5 Why is black-box robustness Certification challenging?   

      Black-box setting refers to when the adversary or the attacker has no knowledge of the target 

model, including the architecture, parameters and weights, training data, etc. It is clear from the 

fact that since nothing is known about the model in black-box settings, it would be hard to perceive 

the information of robustness. In the real-world, we do not have any access to the deployed model 
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and the only access to the model is in the form of querying the model to get predictions, and that 

as well is in the form of an API where the queries are sent to the oracle.  

To get accurate evaluations of the robustness of any model, it would be necessary to search for the 

minimum adversarial perturbation to attack the model that will significantly degrade the model’s 

performance. There are possibilities of many different attacks that can prove to be strong, however, 

optimization-based attacks are the most powerful among them that utilize gradients of the loss 

function [29]. The gradient-based algorithms to generate adversarial examples, such as Projected 

Gradient Decent (PGD) [25] which can generate maximum confidence adversarial examples, work 

on the gradients of the model, and without gradients, it would not be possible for PGD to find 

adversarial perturbation that is confident enough to mislead the classifier and forcing it to 

misclassify an input for which the perturbation is found. Following the reasoning, as the gradients 

are not available to find any adversarial sample in black-box settings, which might mislead the 

model, it's challenging to access the model for robustness.   

Apart from the inaccessibility to gradients in black-box settings, in the case of a surrogate model 

attack, the surrogates need to be as close as possible in architecture for the attacks to transfer more 

to infer something beneficial. Also, the huge amount of hyperparameters makes the certification 

in black-box settings complicated because a slight change can induce a different behavior.  Many 

testing methods work well for traditional software systems, nevertheless, these testing methods 

might not prove to be useful when considering machine learning (since neural networks in 

themselves work as black boxes lacking transparency) and are under-approximated for the fact 

that the inputs space might be infinite and unable to be explored fully (unless the feature space is 

finite).  Furthermore, the verification techniques formally guarantee robustness, but the problem 

is that they do not scale well to larger complex models. Additionally, the robustness measure itself 

is not reliable because of its dependence on the choice of inputs. Even if the robustness guarantees 

for a specific input are provided, that does not assure the robustness of any other instance from the 

same distribution (providing only local robustness guarantees).       
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Chapter 4 

Robustness Certification 

      Neural networks are a powerful way to solve computer problems that leans from data and act 

in a way mimicking human behavior. Deep learning algorithms based on artificial neural networks 

(ANNs) have achieved great success for their powerful nature to analyze data and state-of-the-art 

super-human level performance in domains such as image classification. However, the 

performance of these models in the presence of perturbations cannot be even compared to an 

uninformed human [29]. The important thing is the consistency of performance which means that 

these models when used in real-world settings with the presence of adversaries, who could make 

the models fall astray using carefully crafted adversarial examples, should behave the same as they 

perform with natural data. The consistency of performance is even more important when using 

them in safety-critical systems, such as self-driving vehicles or aeronautics, etc., because, in safety-

critical systems where the room for error is extremely low and inconsistent, behavior can lead to 

disaster (risk of harm to human life and/or system). 

Robustness measures the extent to which a model can incessantly keep its performance consistent, 

as it performs on the natural data, without being fooled by adversarial examples. Robustness is 

important for the fact that these models are under constant threat of adversarial attacks which could 

force them to behave unexpectedly. Machine learning models, such as DNNs, can be made robust 

to attack by developing defense mechanisms with a thorough evaluation of the threats and the way 

the threats affect the models. However, although the defense designed can be argued to increase 

robustness in the view of some kind of attacks, we don’t know how the defense will perform as 

we don’t have robustness guarantees of the model when considering real-world situations or black-

box settings where the attacker doesn’t know anything about the model but can still attack using 

black-box attack methods. Take for instance, gradient masking where the concept is to mask 

gradients, so the attacker is not able to access gradients, nonetheless, this mechanism to increase 

robustness was shown to not suffice the fact that there exists a possibility of black-box attacks, 

such as square attacks [41], where the attacker doesn’t need gradients to attacks or, substitute 

model attacks, where the adversary train substitute models to approximate the target model 

gradient information [22].  

Robustness certification is crucial in the sense that we have a surety of the robustness of the 

models, we wish to deploy, for generating trust in them and have peace of mind that their 

performance will not degrade, keeping adversaries and adversarial attacks in mind, even in the 

worst-case scenarios. In this chapter, we explain our approach to robustness certification in detail.  
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4.1 Framework for Robustness Certification 

      The framework developed uses the black-box technique of attacking the target model via 

multiple surrogate models. The robustness information for each surrogate is taken independently 

and combined to approximate the robustness of the target model. The target and surrogate models 

are trained and then fed to the framework for robustness certification of the target model. The first 

step is to attack the models via Projected Gradient Decent (PGD). 

 

4.1.1 Attacking the Models 

      The classifiers are attacked using the Projected Gradient Decent (PGD) which is a white-box 

algorithm for generating maximum confidence adversarial examples utilizing the gradients of the 

model under attack (since we are using surrogate models to attack the target model, the surrogate 

model gradients are available to the attacker). Adversarial examples are generated using PGD and 

the surrogate model performance is tested on them. For each instance of adversarial examples, the 

prediction of the surrogate models is recorded in the form of success or failure. 

 

4.1.1.1 Attacking Surrogates 

      Let 𝐷𝑡𝑒𝑠𝑡 be a test set and 𝑥 be an instance, such that 𝑥 ∈  𝐷𝑡𝑒𝑠𝑡, belonging to a class label 𝑦 ∈

𝑌 where 𝑌 is the output space, 𝑆 a surrogate classifier, 𝑥′ be an adversarial sample where 𝑥′ = 𝑥 +

 𝛿 and 𝛿 is the perturbation or noise found by the PGD algorithm, and 𝑅 is a result function that 

maps the correct or incorrect prediction to a result space. The result of the surrogate models on 

each instance becomes: 

 

𝑅(𝑆(𝑥′)) =  { 1       𝑖𝑓 𝑆
(𝑥′) ≠ 𝑦 

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
  

 

Where 𝑆(𝑥′) is the prediction of the surrogate model on the adversarial example and 𝑆(𝑥) is the 

prediction of the classifier 𝑆 on a natural instance. The result is 1 if the prediction of the surrogate 

classifier on the adversarial sample is not equal to the true label that the instance belongs to.  

In the same manner, the surrogates are tested on each of the instances belonging to the test set and 

the results are recorded. 

 

4.1.1.2 Evaluating Transferability 

      When attacks for the recording of the attack results are done, the next step is to attack the model 

for evaluating the transferability. The measure of transferability will tell us how much of the 
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adversarial samples crafted transfer to the target model. This time, the full test set is not needed to 

be perturbed, instead, we first find the performance of the surrogates on the test set in the form of 

accuracy. We take all of the instances that the surrogate classifiers predict correctly. We then use 

these instances to craft adversarial examples for the surrogate models. After the adversarial 

examples are crafted, we move to the performance testing of both the surrogate, for which the 

adversarial samples are crafted, as well as the target model.  

Let 𝐷𝑖𝑛𝑐 = {1,… , 𝑛} be the set of natural unperturbed instances that the surrogate classifier 

misclassifies. The set of unperturbed natural instances that the classifier correctly classify 

becomes: 

 

𝐷𝑐 = 𝐷𝑡𝑒𝑠𝑡 −  𝐷𝑖𝑛𝑐 

 

The PGD algorithm will find the adversarial examples for this set 𝐷𝑐 for a given surrogate classifier 

and tested upon the same surrogate as well as the target model to get the cardinality of instances 

that they misclassify. Let 𝑥 ∈ 𝐷𝑐 be an instance with the correct label 𝑦, 𝑇 be the target classifier, 

the transferability of adversarial samples to the target model is then computed as: 

 

𝒯 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑦 𝑇𝑎𝑟𝑔𝑒𝑡 𝑀𝑜𝑑𝑒𝑙

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑦 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑀𝑜𝑑𝑒𝑙
    

 

The same procedure is followed for every surrogate classifier that would be used against the target 

model to get the measure of transferability (the number or proportion of adversarial examples that 

transfer to the target model). 

 

4.1.1.3 Combining Results 

      Since the idea is to use an ensemble of surrogate models against the target model, each of the 

surrogate models will have its result list which needs to be combined to get one single result list 

that can be compared to the target results. Since the results are in the form of 1 and 0, we will use 

logical gates to combine the results into one.  

 

• AND gate. Here we will perform tuple-wise logical conjunction to combine the results of 

surrogates recorded as a result of the PGD attack. For instance., in the case of two 

surrogates against the target, let the results of the two surrogates be 𝑅1 and  𝑅2, the 

combination becomes: 
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 𝑅1     = [1,   0,   1,    0] 

𝑅2     = [1,   0,   0,    1] 

 

 𝐴𝑁𝐷  = [1,   0,   0,    0]    

 

 

The idea is that if both the surrogates fall prey to the adversarial examples, only then we 

will take the combined result for that instance as 1, else 0. 

 

• OR gate. The logical OR operation will be performed in order to combine the results of 

surrogates. For example., 

 

 

𝑅1     = [ 1,   0,   1,   0]   

𝑅2     = [ 1,   0,   0,   1]   

 

𝑂𝑅   = [ 1,   0,   1,   1]   

 

 

In this case, even if one of the classifiers is forced to misclassify an instance 𝑥𝑖, doesn’t 

matter if the other surrogate classifier predicts it correctly, the combined result would be 

taken as 1 (misclassification on that instance). 

 

• Majority Voting. In the case of majority voting, the result would be taken supported by 

the majority. However, in the case of two surrogates, the result of the majority voting would 

be equal to the AND gate. As an example., let’s consider a third surrogate classifier along 

with the previous two and let the result of the third classifier be 𝑅3, the combination would 

be: 

 

                            𝑅1    = [ 1,   0,   1,    0]                               

                            𝑅2    = [ 1,   0,   0,    1]                               

                             𝑅3    = [ 1,   0,   1,    1]                                
 

  𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑉𝑜𝑡𝑖𝑛𝑔  = [ 1,   0,   1,   0]                                 

 

 

• Weighted Majority Voting. Here the idea is almost the same as majority voting but 

with the addition of weights. Here, the weights are the measure of transferability for each 
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classifier which is multiplied by the result list. One important thing here is that for weighted 

majority voting, the resulting space consists of -1 instead of 0. Since we will multiply the 

transferability measure with each respective result list, we don’t want any instance result 

of a surrogate classifier to become 0 when multiplied by 0. Furthermore, we will do tuple-

wise addition to get a single result list. For instance, let the transferability measure of the 

first classifier be 𝒯1=0.2, the second classifier be 𝒯2 = 0.5 and the third classifier be 𝒯3 =

0.8. Weighted majority voting would be: 

 

 

𝑅1    = [1, −1, 1, −1] * 𝒯1 

𝑅2    = [1, −1,−1, 1] * 𝒯2 

𝑅3    = [1, −1, 1, −1] * 𝒯3 

 

 

Which after multiplication with the transferability measure becomes: 

 

 

 𝑅1    = [0.2, −0.2, 0.2, 0.2 ]    

𝑅2    = [0.5, −0.5, −0.5, 0.5]  

𝑅3    = [0.8, −0.8, 0.8, −0.8]  
 

 

Now we will do tuple-wise addition. After the addition operation, the result will look like 

this: 

 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑖𝑛𝑔 = [1.5, −1.5, 0.5, −0.1] 

 

 

If the resulting number is positive or greater than 0, we will take the combined result as 1 

for that instance, otherwise 0. The final result using weighted majority voting will be: 

 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑖𝑛𝑔 = [1,   0,   1,   0] 

 

4.1.1.4 Attacking Target Model in White-Box Setting 

      For the purpose to certify the robustness of the target model, we will suppose the target model 

is available to be attacked in a white-box setting. It is important to note that the assumption of 

accessibility to the target model is just for our experimental evaluations, while the target model 
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may most probably not be accessible in the ideal black-box settings or real-world scenarios. Since 

here, the target model is available to us for empirical assessment in white-box settings, we have 

access to the model gradients so we can use PGD to generate adversarial examples for the target 

model and see the performance. In the same way, as we attacked and recorded results for the 

surrogate models, we will check the prediction of the target model on each instance getting a result 

list in the form of 1 if the prediction is wrong, else 0. 

Let 𝑥 ∈  𝐷𝑡𝑒𝑠𝑡 be an instance, with class label 𝑦 ∈ 𝑌, 𝑇 be a target classifier, 𝑥′ be an adversarial 

sample where 𝑥′ = 𝑥 +  𝛿 and 𝛿 is the perturbation found by the PGD, and 𝑅 is a result function 

that maps the correct or incorrect prediction to a result space. We can write: 

 

𝑅(𝑇(𝑥′)) =  { 1       𝑖𝑓 𝑇
(𝑥′) ≠ 𝑦 

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
  

 

Being able to access the target classifier would be beneficial for the fact that we will have a result 

list for the target model (collected as a result of predictions on the adversarial examples set crafted 

specifically for the target model using PGD) which can be directly compared with the combined 

result of the surrogate models. In addition, it would allow us to compute the accurate measure of 

robustness for the target model (since the target model is accessible) which in turn would be 

beneficial for comparing it with the robustness measure found by the surrogate models for the 

target model.   

 

4.1.2 Computing the Robustness 

      Having collected the combined result list and the result list for the target model, we can now 

compute robustness. It is crucial to mention here that we aim to approximate the robustness of the 

target model in the best way possible via surrogate models. The robustness of the target model is 

computed in two ways. First, via the target model which is the actual robustness because we are 

computing it using the result list obtained by directly attacking the target model. Secondly, we 

compute the robustness via the surrogate models. 

 

4.1.2.1 Robustness via Target Model  

      For computing robustness, we will use two result lists. First, the list of results would be 

collected by checking the predictions of the target model on the unperturbed test set while second, 

the list of the result obtained via checking the predictions of the target model on the adversarial 

samples crafted using the same test set.  

We will compare the two result lists. Suppose a natural instance is misclassified by the target 

classifier, we will not look at the result of the target classifier on the adversarial example that was 
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crafted for the target model using the same instance for the fact that it’s already been misclassified 

in the natural form, so the classifier is not robust on that instance. Instead, if the classifier classifies 

a benign instance correctly and the target classifier also classifies the adversarial sample crafted 

using the same instance correctly, we will consider the classifier to be robust on that instance. 

Let 𝑥 ∈  𝐷𝑡𝑒𝑠𝑡 be an instance of the test set with the target label 𝑦, 𝑥′ be the adversarial sample 

crafted for the target model making use of PGD using the same instance, and 𝑇 be the target 

classifier, 𝑇 is considered robust on an instance 𝑥 if it also correctly classifies both 𝑥 and 𝑥′. The 

robustness over the dataset is computed by checking the robustness of the target model on every 

instance and dividing the number of instances the target classifier is robust on by the total number 

of instances in the dataset. 

 

ℛ = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖𝑠 𝑟𝑜𝑏𝑢𝑠𝑡 𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
   

 

4.1.2.2 Robustness via Surrogate Models 

      The robustness via the target models is computed is the same way as it is computed for the 

target model. However, the difference is that in the previous section, the robustness is computed 

directly using the target model assuming it to be accessible while here, the robustness is computed 

using the combined result lists that we obtained for the surrogate models. Nevertheless, since we 

propose the use of multiple models, their independent results are combined using the logical gates 

to get single combined results. As a result, we will have four robustness measures for the fact that 

the robustness is measured by comparing the four combined lists (one for each gate) with the list 

of predictions (predictions of the target model) on an unperturbed test set.  

 

4.1.3 Finding the Optimal Result 

      After we have the robustness results for all four gates, the next step is to compare them with 

the actual robustness that is computed via the target model and pick the result which best 

approximates the robustness of the target model.  

The most important part is choosing the result with the gate which finestly approximates the 

robustness of the target model because the results depend on the choice of models and different 

models will have slightly different results. For instance, in the case of using surrogate neural 

networks against a target neural network, to get the best robustness approximation results out of 

surrogates, one of the important points is to construct surrogate models that are close in architecture 

to the target model.  However, the key to understanding which gates best approximate the 

robustness of the target model in different situations, the hyperparameters used for the surrogate 

models need to be understood because the hyperparameters do affect the robustness result we 

obtain via the four gates. We will discuss the factor affecting the results in detail in chapter 5. 
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4.2 Attacker’s Scheme 

      An analyst or an attacker can use our framework to effectively evaluate the robustness of a 

target model in black-box. Generally, in real-world scenarios or black-box settings, access to the 

model is not possible and usually, there is only query access where the model can be queried to 

get predictions on some inputs. So, the attacker can use surrogates to approximate the robustness 

of the target model. 

 

4.2.1 Training Surrogates 

      It is possible to craft a synthetic dataset for training the surrogates for attacking the target model 

as shown in previous research [3]. The attacker can generate synthetic samples and get them 

labeled by the target model by querying to get a training set. The surrogates can be chosen and 

trained with the dataset crafted.   

 

4.2.2 Attacking Target via Surrogates  

      The attacker can use the trained surrogates to attack the target model. A test set can be crafted 

in the same way as the training set and used to craft adversarial samples. The surrogates are 

available to the attacker locally to it is possible to use PGD to craft adversarial samples for 

surrogate models and then query them to the target model in return to infer transferability 

information. The transferability can tell how close the surrogates used are to the target in 

architecture or for instance, the parameters used. If the attacks are not transferring well, the dataset 

crafting, and surrogate model selection can be redone in order to make sure that the trained 

surrogates approximate the target model well. However, one thing to notice is that the query access 

to the target model might be limited, but it is possible to overcome the query limitation problems 

[42], [43].  

 

 

4.2.3 Approximating Robustness 

      After having attacked the target models via adversarial examples crafted for surrogates that 

transfer well and calculated the transferability, the prediction results of the target model and 

surrogates can be recorded in a list form on the test set. In the same way, as stated in section 4.2.2.2, 

the robustness can be computed by getting four approximations of robustness (one for each logical 

gate) of the target model via surrogate models.  
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4.2.4 Choosing the Best Robustness Result 

      The last step is to find and choose the robustness result of a gate that best approximates the 

robustness of the target model which is dependent on models used as surrogates and their 

hyperparameters and most importantly their transferability. We will discuss the patterns to look 

for as well as the transferability measure in detail in the next chapter in order to be able to choose 

the right gate approximating optimally the target model robustness.  
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Chapter 5 

Experimental Evaluations 

      In this chapter, we present the experiments, conducted for the development of this thesis, and 

the experimental results as well as discuss how the empirical evaluations conform with the 

proposed theory. 

 

5.1 Preliminaries 

5.1.1 Choice of Machine Learning library 

      We have used SecML [44] which is a library for security evaluations of machine learning 

models and serves the purpose. It has built-in standard datasets allowing for efficient training of 

machine learning models. In the bargain, it has implementations of the most popular attacks against 

machine learning models, such as Projected Gradient Decent (PGD), for effectively carrying out 

evasion attacks.  

       

5.1.2 Dataset 

     The dataset used, for empirical evaluations, for the development of this thesis is the MNIST 

database [45] (Modified National Institute of Standards and Technology database). MNIST is a 

dataset of handwritten digits that was originally crafted out of the old NIST database. The dataset 

consists of 70,000 grey-scale images (10 classes from 0 to 9) divided into 60,000 training and 

10,000 testing instances. Each image is 28*28 black and white image. 

Image and optical character recognition are important problems in machine learning. Several 

standard datasets to experiment with machine learning algorithms have been proposed, out of 

which MNIST is the most widely used dataset for the fact that it is simple as well as to promote 

research so researchers can experiment on a common dataset and able to compare their results to 

one another [46]. The popularity of MNIST can be seen in the fact that almost every machine 

learning library has it built-in. 

 

5.1.3 Target and Surrogate Models 

      There have been different machine learning models used for experimenting including simple 

well-known models, such as Support Vector Machines (SVMs) and Logistic Regression (LR) 

which are only used as surrogate models, as well as more complex models such as Neural 



 

pg. 44 
 

Networks (NNs). The NNs used include shallow neural networks and deep Convolution Neural 

Networks some of which are taken from [42] and used as target as well as surrogate models. For 

instance, we have used a well-known convolution neural network, such as the Caffe version of 

LeNet referring to LeNet-5 [47], so that the results are comparable to other research works.  

The simple models, only used as surrogates, along with their regularization factor 𝐶 are reported 

in the table below: 

 

 

Hyperparameters 

Models C Max Iterations 

Support Vector Machine (SVM) 0.1 1.0 - 

Logistic Regression (LR) 0.1 1.0 100 

                Table 5.1: Models only used as surrogates 

    

 

As it is evident from the table, we will use both models in two different versions, one highly 

regularized and another slightly less regularized model. Regularization here is important because 

as we can see in the previous work, highly regularized or lower complexity models tend to perform 

better than high complexity or less regularized models [11]. Since we will be using multiple 

surrogates against the target model, we want to try different combinations of highly regularized 

and less regularized models to see how their regularization affects the robustness result on each 

logical gate calculated via surrogates.  

Apart from the simple models presented above, the majority of the machine learning models used 

for experiments are neural networks, specifically some shallow neural networks and convolution 

neural networks. Presented below in the tables are neural networks that we have used for empirical 

evaluations: 

 

 

Model 1 Model 2 

    FC (10) + ReLU 

    FC (3) + SoftMax 

    FC (50) + ReLU 

    FC (3) + SoftMax 

Table 5.2: Shallow neural networks used for experiments 
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Model 3 Model 4 

Conv(32, 3, 3) + ReLU 

MaxPool(2, 2) 

Conv(64, 3, 3) + ReLU 

MaxPool(2, 2) 

Conv(64, 3, 3) + ReLU 

MaxPool(2, 2) 

 

FC(1024) + ReLu 

FC(3) + SoftMax 

Conv(32, 3, 3) + ReLU 

MaxPool(2, 2) 

Conv(64, 3, 3) + ReLU 

MaxPool(2, 2) 

Conv(128, 3, 3) + 

ReLU 

MaxPool(2, 2) 

 

FC(512) + ReLu 

FC(128) + ReLu 

FC(3) + SoftMax 

Table 5.3: CNNs used in this work. 

 

 

CNN Model A Model C LeNet 

Conv(32, 3, 3) + ReLU 

Conv(64, 3, 3) + ReLU 

MaxPool(2, 2) 

Dropout(0.25) 

 

FC(128) + ReLu 

Dropout(0.5) 

FC(3) + SoftMax 

Conv(64, 5, 5) + ReLU 

Conv(64, 5, 5) + ReLU 

Dropout(0.25) 

 

FC(128) + ReLu 

Dropout(0.5) 

FC(3) + SoftMax 

Conv(128, 3, 3) + ReLU 

Conv(64, 3, 3) + ReLU 

Dropout(0.25) 

 

FC(128) + ReLu 

Dropout(0.5) 

FC(3) + SoftMax 

Conv(20, 5, 5) + ReLU 

MaxPool(2, 2) 

Conv(50, 5, 5) + ReLU 

MaxPool(2, 2) 

 

FC(500) + ReLu 

FC(3) + SoftMax 

Table 5.4: Additional CNNs used in this work. Taken from [63] 

 

There are two shallow neural network models presented in table 5.2 named Model 1 and Model 2. 

For evaluations, Model 1 is only used as a surrogate model while Model 2 is only used as a target 

model. The same goes for the two convolution neural network models in the next table. In table 

5.3, Model 3 is only used as a surrogate model while Model 4 is used only as a target model.  

However, in table 5.4, the four neural networks mentioned are taken from previous work [42] for 

the reason to make our work comparable with other previous research work.  
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5.2 Experimental setup 

      Before presenting the experimental results, here we talk about the dataset partitioning, the 

accuracy of each trained classifier, and the methods of crafting adversarial attacks. The 

experimental setups are as follows: 

 

5.2.1 Dataset Splitting 

      The MNIST dataset is divided into training, with 60,000 instances, and a test set consisting of 

10,000 instances. However, we are not using the full training and test set. We are considering the 

sets consisting of three digits, 0, 3, and 7. We call the training set 𝐷𝑡𝑟𝑎𝑖𝑛 comprised of 18,319 

examples and the test set 𝐷𝑡𝑒𝑠𝑡 made up of 3,018 examples. We won’t divide 𝐷𝑡𝑒𝑠𝑡 set as we will 

use it to craft adversarial examples against the surrogate models to get prediction results as well as 

to check if they transfer to the target model. Moreover, we will also use the test set to directly 

attack the target model crafting adversarial examples for it and getting a prediction result list. The 

training set instead is partitioned into 𝐷𝑇−𝑡𝑟𝑎𝑖𝑛 including 12,823 samples, for training the target 

model, and 𝐷𝑆−𝑡𝑟𝑎𝑖𝑛 comprising 5,496 samples, for training the surrogate models, with a 70:30 

split ratio where 70% of the instances of the original training set are reserved for training the target 

model and 30% for training the surrogate models. The training set is partitioned using stratified 

random sampling to maintain the original class distribution. Moreover, the training and test sets 

were normalized between 0 and 1. 

 

5.2.2 Training 

5.2.2.1 Surrogate and Non-Adversarial Target Models 

      The simple models, as can be seen in table 5.1, are trained using 𝐶 = 0.1 as well as 𝐶 = 1.0 

and the maximum iteration for Logistic Regression in both cases is 100. The table below shows 

the accuracies of the trained models on the natural or benign test set. 

 

Hyperparameters 

Models C= 0.1 C = 1.0 

Support Vector Machine (SVM) 98.41 98.28 

Logistic Regression (LR) 98.14 98.38 

Table 5.5: Accuracy of simple models on the benign test set 
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Both of the models have been able to achieve more than 98% accuracy on the benign test set when 

trained with different values of hyperparameters. 

 

As for the more complex neural network models, Model 1 from table 5.2 was trained using 

Stochastic Gradient Decent (SGD) as an optimizer for 15 epochs with a learning rate of 10−2, 

momentum 0.9 with 8 instances per batch. Model 2 instead was trained for 10 epochs with Adam 

optimizer with a learning rate of 10−2 and batch size of 20. The convolution neural network 

models, presented in table 5.3, were both trained using  SGD optimizer, however, Model 3 was 

trained for 15 epochs with a batch size of 32 while Model 4 was trained for 10 epochs with a batch 

size of 20. The table below shows the accuracy of these models on the natural test set. 

 

 

Models 

Surrogate Target 

Hyperparameters Model 1 Model 3 Model 2 Model 4 

Epochs 15 15 10 10 

Batch size 8 32 20 20 

Optimizer SGD SGD Adam SGD 

Learning rate 0.01 0.01 0.01 0.01 

Momentum 0.9 0.9 - 0.9 

Accuracy 98.67 99.67 99.20 99.67 

Table 5.6(a): Accuracies of neural network models 

 

It can be noticed that only Model 1 achieved less accuracy as compared to the other three, however, 

it’s not very bad considering it’s a very small shallow neural network with just 10 filters. Other 

than that, the other three models achieved accuracy higher than 99% with Model 3 and Model 4 

achieving the same accuracy. Mention again, Model 1 and Model 3 were used only as surrogate 

models while Model 2 and Model 4 were used as target models. 

The models mentioned in table 5.4, have been used as surrogates, as well as some of them, have 

been used as target models. The table below shows which of them has been used as surrogates as 

well as the target model. 
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Table 5.6(b): Accuracies of neural network models 

 

5.2.2.2 Adversarial Trained Target Models 

      Apart from conducting experiments on non-adversarial trained target models, some of the 

target models presented in section 5.2.2.1 were adversarially trained to expose the performance of 

surrogates in approximating the robustness of the target model which are adversarially trained. For 

adversarial training, the method adopted was PGD Adversarial Training [25]. Training adversarial 

samples were crafted for target models using the set 𝐷𝑇−𝑡𝑟𝑎𝑖𝑛, considering the 𝑙2 norm bound, and 

the models were trained on them. The table below shows the models which were adversarial trained 

along with their accuracy on a natural test set. 

 

 

 

 

 

Table 5.7: Adversarial-trained target models 

 

In the table above, it can be seen that with adversarial training, the accuracy on the benign test set 

has been improved for Model 4 and LeNet. However, for Model C, the accuracy almost remains 

the same with a very slight fall in accuracy.  

 

Models 

Models as surrogates Models as Targets 

Hyperparameters CNN Model A Model C LeNet Model C LeNet 

Epochs 15 15 15 15 12 12 

Batch size 32 32 32 32 20 20 

Optimizer SGD SGD SGD SGD SGD SGD 

Learning rate 0.01 0.01 0.01 0.01 0.001 0.001 

Momentum 0.9 0.9 0.9 0.9 0.9 0.9 

Accuracy 99.60 99.50 99.47 99.57 99.77 99.87 

Adversarial Trained Target Models 

 Model 4 Model C LeNet 

Accuracy 99.80 99.73 99.90 
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5.2.3 Evasion Attacks Crafting 

      We adopt Projected Gradient Decent (PGD) [25], described in section 2.2.5.2 to craft 

adversarial attacks for the surrogates as well as the target model. The adversarial samples were 

crafted with three levels of perturbations, 𝜀 = [1.0, 1.5, 2.0] considering the 𝑙2 norm.  

 

 

5.3 Evaluations 

      The experiments are carried out with a number of surrogate models against target models (in 

singular) with a surrogate grouping of three, two, and one models. We run a total of eight sets of 

experiments testing three as well as two surrogates against a target model. A target model can be 

adversarial-trained or non-adversarial trained, so we experiment with both adversarial trained as 

well as non-adversarial-trained target models. We first present, in section 5.3.1, three sets of 

experiments where the surrogate models are used against a non-adversarial trained target model. 

The rest, in section 5.3.2, belong to the category of experiments where the target model is 

adversarially trained.  

 

5.3.1 Non-Adversarial Trained Targets    

5.3.1.1 Experiments 1  

      In the first experiment, SVM, LR, and Model 1 were used against Model 2. Attacks were 

crafted for the three surrogates, with perturbation 𝜀 = 1.0 and 𝜀 = 1.5, and then tested on the target 

model.  

The table below shows the measure of transferability of the surrogates to the target model. 

 

 

Transferability 

C=0.1 C=1.0 

  𝜺 SVM LR SVM LR Model 1 

1.0 0.13 0.27 0.02 0.06 0.14 

1.5 0.11 0.29 0.03 0.07 0.13 

Table 5.8: Transferability of SVM, LR, Model 1 to Model 2 
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In table 5.8, it can be seen that the transferability of highly regularized simple models, SVM and 

LR, is very high as compared to when the models are less regularized. Moreover, the shallow 

neural network Model 1 and SVM are performing almost the same with SVM having slightly less 

transferability. In addition, LR is performing the best with the highest transferability. 

The table below shows the robustness approximation results of the surrogates. The results shaded 

yellow represent the results that are closest to the target robustness compared to others. 

 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR Model 1 Model 2 AND OR MV WMV Target 

1.0 C=0.1 C=0.1 NN NN 0.90 0.75 0.85 0.85 0.86 

1.0 C=1.0 C=0.1 NN NN 0.91 0.42 0.82 0.90 0.86 

1.0 C=0.1 C=1.0 NN NN 0.86 0.72 0.79 0.79 0.86 

1.0 C=1.0 C=1.0 NN NN 0.86 0.43 0.75 0.85 0.86 

Table 5.9(a): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR Model 1 Model 2 AND OR MV WMV Target 

1.5 C=0.1 C=0.1 NN NN 0.76 0.40 0.55 0.75 0.62 

1.5 C=1.0 C=0.1 NN NN 0.76 0.10 0.49 0.75 0.62 

1.5 C=0.1 C=1.0 NN NN 0.57 0.37 0.44 0.44 0.62 

1.5 C=1.0 C=1.0 NN NN 0.56 0.10 0.40 0.55 0.62 

Table 5.9(b): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

As can be seen in table 5.9(a), when the models are highly regularized (i.e., C = 0.1), the simple 

majority voting and weighted majority voting gates give the best results when compared to the 

robustness measure directly computed using the target model. However, it is worth noticing that 

LR has a big impact on the result shift between gates. When its highly regularized, the gate which 

best approximates the target model robustness is weighted majority voting, while, when it's not as 

highly regularized as before, the result which best approximates target model robustness is shifted 
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to the AND gate. It might be for the reason that transferability does have an effect that can help us 

spot the gate which best approximates the target model robustness. In this case, it seems that when 

the transferability of surrogate models is high, the weighted majority gate will give the best result. 

Additionally, the table also shows the effect of regularization on the gates. For instance, when C 

for SVM is changed from 0.1 to 1.0, it highly affects the OR gate and has a small effect on the 

majority voting gate which is evident from the table, while, in the case of LR, the effected gates 

are AND and weighted majority voting with almost the same effect on majority voting gate as 

SVM. Furthermore, table 5.9(b) shows the same patterns when the models are attacked with 𝜀 =
1.5. 

The tables below show the results when two models are used against the target model.  

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR  Model 2 AND OR MV WMV Target 

1.0 C=0.1 C=0.1  NN 0.90 0.77 0.90 0.89 0.86 

1.0 C=1.0 C=0.1  NN 0.89 0.42 0.89 0.89 0.86 

1.0 C=0.1 C=1.0  NN 0.79 0.74 0.79 0.77 0.86 

1.0 C=1.0 C=1.0  NN 0.76 0.42 0.76 0.76 0.86 

Table 5.9(c): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR  Model 2 AND OR MV WMV Target 

1.5 C=0.1 C=0.1  NN 0.75 0.42 0.75 0.75 0.62 

1.5 C=1.0 C=0.1  NN 0.75 0.10 0.75 0.75 0.62 

1.5 C=0.1 C=1.0  NN 0.45 0.38 0.45 0.42 0.62 

1.5 C=1.0 C=1.0  NN 0.42 0.10 0.42 0.42 0.62 

Table 5.9(d): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

In the case of using two models, SVM and LR, as surrogates, the patterns are the same as we saw 

when using three models but here the difference is that when LR is highly regularized, the majority 

voting and weighted majority voting is over-approximating the robustness measure while when it 

is less regularized, the AND gate is under-approximating the robustness of target model. It might 
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be for the reason that using the same models as a surrogate could help better approximate the target 

model robustness, and since we are not using any neural network as a surrogate, we are not 

optimally approximating the target model robustness. 

Let’s see what the results are when using LR and Model 1 against Model 2. The tables below show 

the results. 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR Model 1 Model 2 AND OR MV WMV Target 

1.0  C=0.1 NN NN 0.90 0.83 0.90 0.89 0.86 

1.0  C=1.0 NN NN 0.86 0.75 0.86 0.84 0.86 

Table 5.9(e): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR Model 1 Model 2 AND OR MV WMV Target 

1.5  C=0.1 NN NN 0.76 0.54 0.76 0.76 0.62 

1.5  C=1.0 NN NN 0.46 0.38 0.46 0.42 0.62 

Table 5.9(f): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

When attacking with stronger models such as LR which has a higher transferability and a neural 

network, as can be seen in table 5.9(e) and 5.9(f), the results show the kind of the same patterns as 

we saw with using other models above, however, this time OR gate also show a comparable result 

to other gates and that maybe because the two surrogates are stronger models than SVM and will 

probably over-approximate robustness with other gates. In the case when attacked with a higher 

perturbation level, OR gate is able to approximate the target robustness to some extent, but still for 

other gates, robustness is over-approximated with highly regularized LR while under-

approximated with less regularized LR.  

The tables below show when used an SVM and a shallow neural network Model 1 as surrogates 

against a shallow neural network Model 2. 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  Model 1 Model 2 AND OR MV WMV Target 

1.0 C=0.1  NN NN 0.86 0.75 0.86 0.84 0.86 

1.0 C=1.0  NN NN 0.84 0.42 0.84 0.84 0.86 

Table 5.9(g): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  Model 1 Model 2 AND OR MV WMV Target 

1.5 C=0.1  NN NN 0.56 0.40 0.56 0.54 0.62 

1.5 C=1.0  NN NN 0.50 0.10 0.50 0.50 0.62 

Table 5.9(h): Robustness approximations results of SVM, LR, and Model 1 against Model 2 

 

Looking at tables 5.9(g) and 5.9(h), the surrogate models SVM and Model 1 have been able to 

approximate target robustness very well with 𝜀 = 1.0, nonetheless, in the case of 𝜀 = 1.5, as the 

adversarial examples crafted for SVM doesn’t transfer as well as LR, doesn’t matter if SVM is 

highly regularized or not, the robustness is under-approximated. 

 

5.3.1.2 Experiments 2 

      In this set of experiments, Model A, Model C, and CNN were chosen as surrogates against 

LeNet as the target model. The models were attacked with perturbation levels 𝜀 = [1.0, 1.5. 2.0]. 
The table below shows the measure of transferability of surrogates to the target. 

 

Transferability 

  𝜺 Model A Model C CNN 

1.0 0.53 0.28 0.40 

1.5 0.58 0.37 0.38 

2.0 0.60 0.29 0.36 

Table 5.10: Transferability of Model A, Model C, and CNN to LeNet 
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Since now we are using all convolution neural networks against a target convolution network, the 

transferability of all three surrogates is better than before. Among the three surrogates, Model A 

is the one with the highest transferability followed by CNN, and lastly Model C.  

The tables below show the results when three of them, as well as in groups of two, are used together 

to approximate the target model robustness.  

 

Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0 Model 
A 

Model 
C 

CNN LeNet 0.98 0.96 0.97 0.97 0.96 

1.5 Model 
A 

Model 
C 

CNN LeNet 0.95 0.90 0.93 0.93 0.87 

2.0 Model 
A 

Model 
C 

CNN LeNet 0.88 0.68 0.80 0.80 0.69 

Table 5.11(a): Robustness approximations results of Model A, Model C, and CNN against LeNet 

 

As table 5.11(a) shows, the result, which best approximates the target model robustness, shifted to 

OR gate because we are using CNNs against a CNN and all of these three surrogates are stronger 

models in a sense that the adversarial examples crafted for them are transferring well to the target 

model. 

 

Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0 Model 
A 

Model 
C 

 LeNet 0.98 0.96 0.98 0.97 0.96 

1.5 Model 
A 

Model 
C 

 LeNet 0.95 0.90 0.95 0.93 0.87 

2.0 Model 
A 

Model 
C 

 LeNet 0.85 0.75 0.85 0.82 0.69 

Table 5.11(b): Robustness approximations results of Model A, Model C, and CNN against LeNet 
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Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0 Model 
A 

 CNN LeNet 0.98 0.96 0.98 0.97 0.96 

1.5 Model 
A 

 CNN LeNet 0.95 0.92 0.95 0.93 0.87 

2.0 Model 
A 

 CNN LeNet 0.87 0.72 0.87 0.81 0.69 

Table 5.11(c): Robustness approximations results of Model A, Model C, and CNN against LeNet 

 

Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0  Model 
C 

CNN LeNet 0.98 0.96 0.98 0.97 0.96 

1.5  Model 
C 

CNN LeNet 0.95 0.91 0.95 0.93 0.87 

2.0  Model 
C 

CNN LeNet 0.85 0.70 0.85 0.77 0.69 

Table 5.11(d): Robustness approximations results of Model A, Model C, and CNN against LeNet 

 

Tables 5.11(b), 5.11(c) and 5.11(d) show two surrogates against the target model. The result in 

these cases is the same as with three surrogates, however, if seen the result where Model C is used, 

the robustness approximation is close to the target model as compared to when the other two 

models as well as the Model A is causing the result value to go up which might be the reason that 

Model A is the strongest model among the three having the highest transferability. Overall, the 

three models together can better approximate the target robustness with the OR gate.  

Moreover, if we employ the three models singularly against the target model, as can be seen in the 

tables below, they provide a single robustness value which might or might not approximate the 

target model robustness well, and using them together we have the advantage of leveraging the 

logical gates for the combination of the predictions for surrogates which can help approximate 

well the target model robustness with one or the other logical gate. 
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𝜺 Surrogates Target 
Robustness Approximation via 

Surrogates 

Target 

Robustness 

1.0 Model 
A 

  LeNet 0.98 0.96 

1.5 Model 
A 

  LeNet 0.93 0.87 

2.0 Model 
A 

  LeNet 0.82 0.69 

Table 5.11(d): Robustness approximations results of Model A, Model C, and CNN against LeNet 

 

𝜺 Surrogates Target 
Robustness Approximation via 

Surrogates 

Target 

Robustness 

1.0  Model 
C 

 LeNet 0.97 0.96 

1.5  Model 
C 

 LeNet 0.93 0.87 

2.0  Model 
C 

 LeNet 0.78 0.69 

Table 5.11(d): Robustness approximations results of Model A, Model C, and CNN against LeNet 

 

𝜺 Surrogates Target 
Robustness Approximation via 

Surrogates 

Target 

Robustness 

1.0   CNN LeNet 0.97 0.96 

1.5   CNN LeNet 0.93 0.87 

2.0   CNN LeNet 0.78 0.69 

Table 5.11(d): Robustness approximations results of Model A, Model C, and CNN against LeNet 
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5.3.1.3 Experiments 3 

      This set of experiments employs Model A, LeNet, and CNN as surrogates against Model C as 

the target model. The adversarial perturbation levels considered, for crafting adversarial samples, 

here are, 𝜀 = [1.0, 1.5. 2.0]. The table below shows the measure of transferability, to the target 

model, for each surrogate concerning the three perturbation levels. 

 

 

Transferability 

  𝜺 Model A LeNet CNN 

1.0 0.48 0.20 0.47 

1.5 0.50 0.21 1.0 

2.0 0.57 0.35 0.29 

Table 5.12: Transferability of SVM, LR, Model 1 to Model 2 

 

It can be seen in table 5.12 that Model A transferability is constant, around 50%, with all the 

perturbation levels, while CNN with perturbation level 𝜀 = 1.5, the adversarial examples crafted 

for it are 100% transferring to Model C. LeNet has the lowest transferability among the three. 

Below are the tables of robustness approximation results. 

 

Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0 Model 
A 

LeNet CNN Model C 0.98 0.95 0.97 0.97 0.95 

1.5 Model 
A 

LeNet CNN Model C 0.95 0.84 0.94 0.93 0.76 

2.0 Model 
A 

LeNet CNN Model C 0.88 0.60 0.80 0.80 0.47 

Table 5.13(a): Robustness approximations results of Model A, LeNet, and CNN against Model C 

 

 

 



 

pg. 58 
 

 

 

Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0 Model 
A 

LeNet  Model C 0.95 0.95 0.95 0.97 0.95 

1.5 Model 
A 

LeNet  Model C 0.94 0.85 0.94 0.93 0.76 

2.0 Model 
A 

LeNet  Model C 0.84 0.67 0.84 0.82 0.47 

Table 5.13(b): Robustness approximations results of Model A, LeNet, and CNN against Model C 

 

Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Surrogates Target AND OR MV WMV Target 

1.0 Model 
A 

 CNN Model C 0.98 0.96 0.98 0.97 0.95 

1.5 Model 
A 

 CNN Model C 0.95 0.91 0.95 0.93 0.76 

2.0 Model 
A 

 CNN Model C 0.87 0.72 0.87 0.82 0.47 

Table 5.13(c): Robustness approximations results of Model A, LeNet, and CNN against Model C 

 

Overall, the results, using this combination of models, show the same patterns as the results in 

section 5.3.1.2. The OR gate is dominating because the surrogate models are too strong as 

compared to the target model as well as surrogates over-approximating the robustness of the target 

model with increasing levels of perturbation. 

We adversarial trained the target models to increase their robustness against adversarial attacks. 

We hope the surrogates would be able to approximate well the robustness of target models when 

the target models are robust to adversarial attacks. In the next section, we present the experimental 

evaluations with adversarial-trained target models.  
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5.3.2 Adversarial Trained Targets 

5.3.2.1 Experiments 1 

      We will use simple models, SVM and LR, and a relatively complex convolutional neural 

network model, Model 3, against adversarial trained Model 4. The adversarial examples were 

crafted using the same levels of perturbation as before, 𝜀 = [1.0, 1.5. 2.0]. The table below shows 

the measure of transferability. 

 

Transferability 

C=0.1 C=1.0 

  𝜺 SVM LR SVM LR Model 1 

1.0 0.005 0.012 0.0018 0.005 0.065 

1.5 0.0017 0.009 0.0008 0.0017 0.050 

2.0 0.0028 0.008 0.0007 0.001 0.067 

Table 5.14: Transferability of SVM, LR, Model 1 to Model 2 

 

The transferability measures are very low for the reason that adversarial training made the target 

model much more robust to adversarial attacks. Adversarial attacks crafted with three different 

levels of perturbations doesn’t for surrogate models don’t affect the target classifier much. Since 

the models’ transferability measures are low, they can be termed weak models. The simple models, 

SVM and LR have very low transferability which is around 1% for LR in the case of crafting 

adversarial examples with  𝜀 = 1.0 and lower than 1% for both with all the levels of applied 

perturbations. Moreover, Model 3 has better transferability but still, it’s not enough. 

As we saw in section 5.3.1.1, less regularized models cause the result of best robustness 

approximation to be shifted to AND gate because the transferability measures were low, however, 

in this case, all the surrogate models have very low transferability so we would expect the AND 

gate to approximate the robustness of target model well. The tables below show the robustness 

approximation results. 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR Model 3 Model 4 AND OR MV WMV Target 

1.0 C=0.1 C=0.1 Model 3 Model 4 0.96 0.76 0.89 0.94 0.99 

1.0 C=1.0 C=0.1 Model 3 Model 4 0.96 0.42 0.88 0.94 0.99 

1.0 C=0.1 C=1.0 Model 3 Model 4 0.95 0.73 0.79 0.94 0.99 

1.0 C=1.0 C=1.0 Model 3 Model 4 0.95 0.42 0.75 0.94 0.99 

Table 5.15(a): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR Model 3 Model 4 AND OR MV WMV Target 

1.5 C=0.1 C=0.1 Model 3 Model 4 0.88 0.41 0.71 0.83 0.88 

1.5 C=1.0 C=0.1 Model 3 Model 4 0.88 0.10 0.70 0.83 0.88 

1.5 C=0.1 C=1.0 Model 3 Model 4 0.84 0.37 0.45 0.83 0.88 

1.5 C=1.0 C=1.0 Model 3 Model 4 0.84 0.10 0.41 0.83 0.88 

Table 5.15(b): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR Model 3 Model 4 AND OR MV WMV Target 

2.0 C=0.1 C=0.1 Model 3 Model 4 0.70 0.14 0.41 0.65 0.67 

2.0 C=1.0 C=0.1 Model 3 Model 4 0.70 0.01 0.41 0.65 0.67 

2.0 C=0.1 C=1.0 Model 3 Model 4 0.65 0.12 0.17 0.65 0.67 

2.0 C=1.0 C=1.0 Model 3 Model 4 0.65 0.01 0.15 0.65 0.67 

Table 5.15(c): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

As we were anticipating, the AND gate is dominating here is all the cases, except in the case when 

the surrogates are attacked with 𝜀 = 2.0 where we see the same patterns as in section 5.3.1.1 where 

the regularization of LR was causing the shift of best result from weighted majority voting gate to 



 

pg. 61 
 

AND gate. Overall, the models have low transferability, and, in such cases, AND gate would 

approximate the target models' robustness better. 

It would be interesting to see how the surrogates in groups of two perform against the target model. 

Below are the table presenting two surrogates against the target model. 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR  Model 4 AND OR MV WMV Target 

1.0 C=0.1 C=0.1  Model 4 0.90 0.77 0.90 0.90 0.99 

1.0 C=1.0 C=0.1  Model 4 0.90 0.42 0.90 0.90 0.99 

1.0 C=0.1 C=1.0  Model 4 0.79 0.74 0.79 0.77 0.99 

1.0 C=1.0 C=1.0  Model 4 0.76 0.42 0.76 0.76 0.99 

Table 5.15(d): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR  Model 4 AND OR MV WMV Target 

1.5 C=0.1 C=0.1  Model 4 0.76 0.42 0.76 0.76 0.88 

1.5 C=1.0 C=0.1  Model 4 0.75 0.10 0.75 0.75 0.88 

1.5 C=0.1 C=1.0  Model 4 0.46 0.38 0.46 0.42 0.88 

1.5 C=1.0 C=1.0  Model 4 0.42 0.11 0.42 0.42 0.88 

Table 5.15(e): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

It seems, from table 5.15(d) and 5.15(e), that SVM and LR alone cannot approximate the 

robustness well when the target model is adversarially trained. The results are not even interesting 

at perturbation level 1.0 as only the first two results show a comparable robustness approximation 

with resect to the target model. As the perturbation level advance to 1.5, all the results are under-

approximated. 

The tables below, 5.15(f), 5.15(g), and 5.15(h), show SVM along with Model 3 as surrogates 

against the target Model 4, while tables 5.15(f), 5.15(g), and 5.15(h), present LR and Model 3 as 

surrogates against Model 4. 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  Model 3 Model 4 AND OR MV WMV Target 

1.0 C=0.1  Model 3 Model 4 0.95 0.77 0.95 0.94 0.99 

1.0 C=1.0  Model 3 Model 4 0.94 0.42 0.94 0.94 0.99 

Table 5.15(f): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  Model 3 Model 4 AND OR MV WMV Target 

1.5 C=0.1  Model 3 Model 4 0.84 0.41 0.84 0.83 0.88 

1.5 C=1.0  Model 3 Model 4 0.83 0.11 0.83 0.83 0.88 

Table 5.15(g): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  Model 3 Model 4 AND OR MV WMV Target 

2.0 C=0.1  Model 3 Model 4 0.70 0.41 0.70 0.65 0.67 

2.0 C=1.0  Model 3 Model 4 0.65 0.15 0.65 0.65 0.67 

Table 5.15(h): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR Model 3 Model 4 AND OR MV WMV Target 

1.0  C=0.1 Model 3 Model 4 0.96 0.88 0.96 0.94 0.99 

1.0  C=1.0 Model 3 Model 4 0.95 0.75 0.95 0.94 0.99 

Table 5.15(i): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR Model 3 Model 4 AND OR MV WMV Target 

1.5  C=0.1 Model 3 Model 4 0.88 0.70 0.88 0.83 0.88 

1.5  C=1.0 Model 3 Model 4 0.84 0.84 0.84 0.83 0.88 

Table 5.15(j): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR Model 3 Model 4 AND OR MV WMV Target 

2.0  C=0.1 Model 3 Model 4 0.70 0.41 0.70 0.65 0.67 

2.0  C=1.0 Model 3 Model 4 0.65 0.15 0.65 0.65 0.67 

Table 5.15(k): Robustness approximations results of SVM, LR, and Model 3 against ADV Model 4 

 

The tables above show the same patterns and almost the same result when using the three models. 

It is clear that the simple models alone cannot approximate well, however, if used both or one of 

them together with a neural network, the robustness approximation is optimally possible using 

AND gate considering the models do not transfer well. 

 

5.3.2.2 Experiments 2 

In this group of experiments, we considered SVM, LR, and LeNet against adversarial-trained 

Model C. The table below shows the measures of transferability. 

 

Transferability 

C=0.1 C=1.0 

  𝜺 SVM LR SVM LR LeNet 

1.0 0.005 0.016 0.0012 0.003 0.078 

1.5 0.0035 0.012 0.0011 0.0023 0.094 

2.0 0.043 0.011 0.0014 0.0036 0.10 

Table 5.16: Transferability of SVM, LR, and LeNet to Model C 
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As we can see in table 5.16, the attacks crafted for SVM and LR don’t transfer well to the target 

Model C and the transferability of SVM is lower than the transferability of LR except when SVM 

is highly regularized, and the attack perturbation is 2.0. The adversarial examples crafted for LeNet 

are transferring at most 10% however, the transferability of LeNet is on average between 8 to 10% 

for all of the three perturbations.  

The tables below show the robustness approximation results. 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR LeNet Model C AND OR MV WMV Target 

1.0 C=0.1 C=0.1 LeNet Model C 0.97 0.77 0.90 0.96 0.98 

1.0 C=1.0 C=0.1 LeNet Model C 0.97 0.42 0.89 0.96 0.98 

1.0 C=0.1 C=1.0 LeNet Model C 0.96 0.74 0.79 0.96 0.98 

1.0 C=1.0 C=1.0 LeNet Model C 0.96 0.42 0.76 0.96 0.98 

Table 5.17(a): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR LeNet Model C AND OR MV WMV Target 

1.5 C=0.1 C=0.1 LeNet Model C 0.90 0.41 0.73 0.87 0.94 

1.5 C=1.0 C=0.1 LeNet Model C 0.90 0.11 0.73 0.87 0.94 

1.5 C=0.1 C=1.0 LeNet Model C 0.87 0.38 0.46 0.87 0.94 

1.5 C=1.0 C=1.0 LeNet Model C 0.87 0.1 0.41 0.87 0.94 

Table 5.17(b): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM LR LeNet Model C AND OR MV WMV Target 

2.0 C=0.1 C=0.1 LeNet Model C 0.74 0.14 0.43 0.69 0.79 

2.0 C=1.0 C=0.1 LeNet Model C 0.74 0.01 0.43 0.69 0.79 

2.0 C=0.1 C=1.0 LeNet Model C 0.70 0.12 0.17 0.70 0.79 

2.0 C=1.0 C=1.0 LeNet Model C 0.70 0.014 0.15 0.70 0.79 

Table 5.17(c): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 

 

Tables 5.17(a), 5.17(b), and 5.17(c) show a very clear pattern. When the LR is highly regularized, 

the AND gate dominates giving the best approximation result, however, when its less regularized, 

AND gate and weighted majority voting (WMV) gate give the same result. One thing to be noticed 

is that in the case of 𝜀 = 1.0 and 𝜀 = 1.5, switching between highly regularized and less 

regularized models doesn’t affect the weighted majority voting gate. However, as we saw in the 

previous experiments, AND or weighted majority voting giving the best approximation can be 

connected to the low transferability of the surrogates to the target. 

Let’s see the case of using two surrogates against the target model. 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  LeNet Model C AND OR MV WMV Target 

1.0 C=0.1  LeNet Model C 0.96 0.77 0.96 0.96 0.98 

1.0 C=1.0  LeNet Model C 0.96 0.42 0.96 0.96 0.98 

Table 5.17(d): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  LeNet Model C AND OR MV WMV Target 

1.5 C=0.1  LeNet Model C 0.87 0.41 0.87 0.87 0.94 

1.5 C=1.0  LeNet Model C 0.87 0.10 0.87 0.87 0.94 

Table 5.17(e): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 SVM  LeNet Model C AND OR MV WMV Target 

2.0 C=0.1  LeNet Model C 0.70 0.14 0.70 0.70 0.79 

2.0 C=1.0  LeNet Model C 0.70 0.01 0.70 0.70 0.79 

Table 5.17(f): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR LeNet Model C AND OR MV WMV Target 

1.0  C=0.1 LeNet Model C 0.97 0.89 0.97 0.96 0.98 

1.0  C=1.0 LeNet Model C 0.96 0.76 0.96 0.96 0.98 

Table 5.17(g): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 

 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR LeNet Model C AND OR MV WMV Target 

1.5  C=0.1 LeNet Model C 0.90 0.73 0.90 0.87 0.94 

1.5  C=1.0 LeNet Model C 0.87 0.41 0.87 0.87 0.94 

Table 5.17(h): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LR LeNet Model C AND OR MV WMV Target 

2.0  C=0.1 LeNet Model C 0.74 0.43 0.74 0.70 0.79 

2.0  C=1.0 LeNet Model C 0.70 0.15 0.70 0.70 0.79 

Table 5.17(i): Robustness approximations results of SVM, LR, and LeNet against ADV Model C 

 

Overall, tables, 5.17(d) to 5.17(i), show the same patterns as before with AND and weighted 

majority voting gates dominating. LeNet along with LR instead of SVM show slightly better 

approximation result.  

 

5.3.2.3 Experiments 3 

      Since SVM is not contributing much when used with other models, we decided to omit it in this 

group of experiments. We are using LR, LeNet, and CNN against Model C. The table below shows 

the measure of transferability. 

 

Transferability 

LR 

  𝜺 C=0.1 C=1.0 LeNet CNN 

1.0 0.016 0.0003 0.078 0.26 

1.5 0.012 0.0023 0.094 0.92 

2.0 0.011 0.0036 0.10 0.82 

Table 5.18: Transferability of LR, LeNet, and CNN to Model C 

 

Here, LR and LeNet are not transferring very well but CNN which has a very high transferability 

reaching as high as 92% with 𝜀 = 1.5 and 82% with 𝜀 = 2.0 which might be for the reason that 

CNN and Model C are very much the same in architecture. 

The tables below show the robustness approximation result. 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 LR LeNet CNN Model C AND OR MV WMV Target 

1.0 C=0.1 LeNet CNN Model C 0.98 0.89 0.96 0.97 0.98 

1.0 C=1.0 LeNet CNN Model C 0.98 0.76 0.96 0.97 0.98 

Table 5.19(a): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 LR LeNet CNN Model C AND OR MV WMV Target 

1.5 C=0.1 LeNet CNN Model C 0.95 0.73 0.88 0.93 0.94 

1.5 C=1.0 LeNet CNN Model C 0.94 0.41 0.85 0.93 0.94 

Table 5.19(b): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 LR LeNet CNN Model C AND OR MV WMV Target 

2.0 C=0.1 LeNet CNN Model C 0.85 0.42 0.66 0.78 0.79 

2.0 C=1.0 LeNet CNN Model C 0.85 0.15 0.62 0.78 0.79 

Table 5.19(c): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

The AND and weighted majority voting gates are giving the best results, looking at tables 5.19(a), 

5.19(b), and 5.19(c), and that is because we just have only one model that is transferring well. 

However, if we look at the OR gate, the result is not as low as when all the surrogates have low 

transferability as we saw previously. That is because we have one model, Model C, which is 

transferring very well, and the high transferability is not letting the OR gate get very low. But the 

other two do not have much impressive transferability and that’s the reason we are not getting 

better results with OR gate. If all the models transfer well, as we saw in section 5.3.1.3, the OR 

gate would be the one best approximating the target robustness.  

The tables below show the results with two surrogates against the target. 
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 LR  CNN Model C AND OR MV WMV Target 

1.0 C=0.1  CNN Model C 0.97 0.90 0.97 0.97 0.98 

1.0 C=1.0  CNN Model C 0.97 0.76 0.97 0.97 0.98 

Table 5.19(d): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 LR  CNN Model C AND OR MV WMV Target 

1.5 C=0.1  CNN Model C 0.936 0.75 0.936 0.932 0.94 

1.5 C=1.0  CNN Model C 0.93 0.42 0.93 0.93 0.94 

Table 5.19(e): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺 LR  CNN Model C AND OR MV WMV Target 

2.0 C=0.1  CNN Model C 0.78 0.47 0.78 0.78 0.79 

2.0 C=1.0  CNN Model C 0.78 0.15 0.78 0.78 0.79 

Table 5.19(f): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

In the case of using LR with CNN against Model C, we can see that AND and weighted majority 

voting gates give almost the same result and consistent results with all three levels of perturbations. 

This might be a sign that one weak model, with low transferability, and one stronger model, with 

high transferability, when used together, the gates which will best approximate the target model 

robustness would be AND and weighted majority voting.  
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Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LeNet CNN Model C AND OR MV WMV Target 

1.0  LeNet CNN Model C 0.98 0.95 0.98 0.97 0.98 

Table 5.19(g): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LeNet CNN Model C AND OR MV WMV Target 

1.5  LeNet CNN Model C 0.946 0.85 0.946 0.932 0.94 

Table 5.19(h): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

Surrogates Target 
Robustness Approximation 

via Surrogates 

Target 

Robustness 

𝜺  LeNet CNN Model C AND OR MV WMV Target 

2.0  LeNet CNN Model C 0.85 0.62 0.85 0.78 0.79 

Table 5.19(i): Robustness approximations results of LR, LeNet, and CNN against ADV Model C 

 

When using LeNet along with CNN as surrogates, the patterns are kind of the same as we saw 

when using LR with CNN as surrogates, however, LeNet is a convolution neural network and has 

better transferability than LR and as we move to the results with 𝜀 = 2.0, the AND gate, in this 

case, is over-approximating the target robustness which might be for the fact that LeNet is not as 

weak as LR against Model C and the adversarial examples crafted for it are transferring more than 

LR. So, we cannot call LeNet a very weak model against Model C, having 10% transferability, 

and combined with a stronger model such as CNN, the weighted majority voting gate would 

approximate the target model robustness well.  
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5.3.2.4 Experiments 4 

      Since LR proved to be not much effective in terms of transferability, we omit it in this set of 

experiments and use Model A instead. The table below shows the measures of transferability for 

the three surrogates. 

 

Transferability 

  𝜺 Model A LeNet CNN 

1.0 0.196 0.078 0.26 

1.5 0.2 0.094 0.92 

2.0 0.24 0.10 0.82 

Table 5.20: Transferability of Model A, LeNet, and CNN to Model C 

 

Looking at the table above, Model A seems better having transferability slightly more than twice 

the transferability of LeNet. Since now we have models that have better transferability, we can 

expect the OR gate to give much better approximation results as compared to before. 

The tables below show the approximation results. 

 

 

Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Model 

A 

LeNet CNN Model C AND OR MV WMV Target 

1.0 Model 
A 

LeNet CNN Model C 0.98 0.95 0.97 0.97 0.98 

1.5 Model 
A 

LeNet CNN Model C 0.95 0.85 0.93 0.93 0.94 

2.0 Model 
A 

LeNet CNN Model C 0.88 0.60 0.80 0.78 0.79 

Table 5.21(a): Robustness approximations results of Model A, LeNet, and CNN against ADV Model C 
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Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Model 

A 

LeNet  Model C AND OR MV WMV Target 

1.0 Model 
A 

LeNet  Model C 0.98 0.95 0.98 0.97 0.98 

1.5 Model 
A 

LeNet  Model C 0.94 0.85 0.94 0.93 0.94 

2.0 Model 
A 

LeNet  Model C 0.84 0.67 0.84 0.81 0.79 

Table 5.21(b): Robustness approximations results of Model A, LeNet, and CNN against ADV Model C 

 

Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Model 

A 

 CNN Model C AND OR MV WMV Target 

1.0 Model 
A 

 CNN Model C 0.98 0.97 0.98 0.97 0.98 

1.5 Model 
A 

 CNN Model C 0.95 0.92 0.95 0.93 0.94 

2.0 Model 
A 

 CNN Model C 0.87 0.72 0.87 0.78 0.79 

Table 5.21(c): Robustness approximations results of Model A, LeNet, and CNN against ADV Model C 

 

As we were expecting, the results with OR gate seem much better than before and that’s for the 

reason that we have models that have better transferability except LeNet which is not as high. This 

becomes clear from table 5.21(c) where the results with OR gate seem much improved since we 

are using two models, one with high transferability and the other one that can be called average 

and not very low. Since the AND and weighted majority voting gates both are best approximating 

two results each (AND gives the best result with 𝜀 = 1.0, while weighted majority voting gives 

the best result with 𝜀 = 2.0, and in the case of 𝜀 = 1.5 both over-approximate and under-

approximate by same value so the result can be considered common) Model A needs to have 

transferability higher than the current transferability to see a shift of result that optimally 

approximate the target model to the OR gate. 

The tables below show when surrogate models one by one are tested against the target model. 
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𝜺 Surrogates Target 
Robustness Approximation via 

Surrogates 

Target 

Robustness 

1.0 Model 
A 

  Model C 0.976 0.98 

1.5 Model 
A 

  Model C 0.93 0.94 

2.0 Model 
A 

  Model C 0.817 0.79 

Table 5.21(d): Robustness approximations results of Model A, LeNet, and CNN against ADV Model C 

 

𝜺 Surrogates Target 
Robustness Approximation via 

Surrogates 

Target 

Robustness 

1.0  LeNet  Model C 0.96 0.98 

1.5  LeNet  Model C 0.87 0.94 

2.0  LeNet  Model C 0.695 0.79 

Table 5.21(e): Robustness approximations results of Model A, LeNet, and CNN against ADV Model C 

 

𝜺 Surrogates Target 
Robustness Approximation via 

Surrogates 

Target 

Robustness 

1.0   CNN Model C 0.97 0.98 

1.5   CNN Model C 0.93 0.94 

2.0   CNN Model C 0.77 0.79 

Table 5.21(f): Robustness approximations results of Model A, LeNet, and CNN against ADV Model C 

 

From tables, 5.21(d), 5.21(e), 5.21(f), it is clear that CNN alone can approximate the target model 

robustness since is very much the same in architecture as the target model, however, in practice, it 

would not be easy to find a surrogate model who is fully transferring or transferring to a very high 

extant to the target model. Also, still, the results, when using a model along with CNN as a 

surrogate whose adversarial examples are averagely transferring (i.e., Model A with transferability 

equal 24% on 𝜀 = 2.0), show slightly better approximation when compared to the results of CNN 

alone against Model C. Moreover, the results of using just CNN against Model C very much 

coincide with the results of using two models, Model A and CNN as surrogates against Model C. 

But in practice, it would not be easy  
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5.3.2.5 Experiments 5 

      In this group of experiments, the same models are used as used in section 5.3.2.4 but instead 

of Model C as a target, adversarial-trained LeNet is used as a target, and Model C is moved in 

place of LeNet as a surrogate. The table below shows transferability measures. 

 

 

Transferability 

  𝜺 Model A Model C CNN 

1.0 0.07 0.07 0.8 

1.5 0.16 0.11 0.14 

2.0 0.23 0.14 0.15 

Table 5.22: Transferability of LR, LeNet, and CNN to Model C 

 

 

It can be seen in the table above that adversarial samples crafted for Model A and Model C at  𝜀 =

1.0 does not transfer well while adversarial examples crafted for  CNN at the same perturbation 

level are transferring very well, about 80%. However, as the perturbation level increases, the 

transferability of CNN drops while the other two improve.  The adversarial examples crafted for 

all of the three surrogates have almost the same transferability at 𝜀 = 1.5 while at 𝜀 = 2.0, Model 

A transferability is highest. 

The tables below show the robustness approximation results when three of them are used together 

against LeNet. 

 

Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Model 

A 

Model 

C 

CNN LeNet AND OR MV WMV Target 

1.0 Model 
A 

Model 
C 

CNN LeNet 0.98 0.96 0.976 0.976 0.98 

1.5 Model 
A 

Model 
C 

CNN LeNet 0.95 0.90 0.93 0.93 0.95 

2.0 Model 
A 

Model 
C 

CNN LeNet 0.88 0.68 0.80 0.80 0.77 

Table 5.23(a): Robustness approximations results of Model A, Model C, and CNN against ADV LeNet 
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Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Model 

A 

Model 

C 

 LeNet AND OR MV WMV Target 

1.0 Model 
A 

Model 
C 

 LeNet 0.98 0.96 0.98 0.97 0.98 

1.5 Model 
A 

Model 
C 

 LeNet 0.95 0.90 0.95 0.93 0.95 

2.0 Model 
A 

Model 
C 

 LeNet 0.85 0.75 0.85 0.81 0.77 

Table 5.23(b): Robustness approximations results of Model A, Model C, and CNN against ADV LeNet 

 

Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺 Model 

A 

 CNN LeNet AND OR MV WMV Target 

1.0 Model 
A 

 CNN LeNet 0.98 0.97 0.98 0.97 0.98 

1.5 Model 
A 

 CNN LeNet 0.95 0.92 0.95 0.93 0.95 

2.0 Model 
A 

 CNN LeNet 0.87 0.72 0.87 0.82 0.77 

Table 5.23(c): Robustness approximations results of Model A, Model C, and CNN against ADV LeNet 

 

Surrogates Target Robustness Approximation 

via Surrogates 
Target 

Robustness 

𝜺  Model 

C 

CNN LeNet AND OR MV WMV Target 

1.0  Model 
C 

CNN LeNet 0.98 0.97 0.98 0.97 0.98 

1.5  Model 
C 

CNN LeNet 0.95 0.91 0.95 0.92 0.95 

2.0  Model 
C 

CNN LeNet 0.85 0.70 0.85 0.78 0.77 

Table 5.23(d): Robustness approximations results of Model A, Model C, and CNN against ADV LeNet 
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In table 5.23(a), the results show patterns again as we saw before. For 𝜀 = [1.0, 1.5], the AND 

gate is approximating well because the adversarial examples crafting for all the three models are 

averagely transferring, however, in the case of 𝜀 = 2.0, Model A transferability is higher, and the 

resulting shift to weighted majority voting gate, but weighted majority voting is over-

approximating the target robustness by a small amount. If we take the average of transferability 

measures in the case of 𝜀 = 2.0, we get 17%. In the cases of using two models, if Model A is 

included, with 𝜀 = 2.0, the result shifts to OR gate, and taking the average of transferability for 

the two we get 19%.  If we look at table 5.23(d), with 𝜀 = 2.0, the weighted majority voting gate 

is better approximating the target robustness, and taking the average of the transferability of the 

models, Model C and CNN, we get 14.5%.  That might be a sign that if we can find models whose 

transferability is greater than 20%, we can safely choose the OR gate. We can choose WMV gate 

if we have surrogate models whose transferability, with 𝜀 = 2.0, each is between 14% and 20%. 

Furthermore, for the same perturbation level, 𝜀 = 2.0, if each of the surrogate models’ 

transferability is lower than 14%, it would be the AND gate that would be best approximating the 

target robustness. 

 

 

5.4 Discussion 

    With reference to the extensive experiments presented above, one thing which is clear is that if 

the surrogate models do not have sufficient transferability or the transferability is very low, AND 

gate would be the one to choose because in case of weak surrogate models whose adversarial 

examples don’t transfer well, AND gate will give the best approximation result. If the models have 

average transferability or the transferability is not very low, the weighted majority gate (WMV) 

will most probably approximate the target robustness better. However, if the surrogate models 

have strong transferability, it would not be wrong to select the approximation result with OR gate 

as the optimal approximation result.  

In the case of using models different from the target as surrogates, as we saw in sections 5.3.1.1 

and 5.3.2.1, the results might not be as expected with lower perturbations and with higher 

perturbation levels, they might very probably under-approximate the target robustness. So, it’s 

better to use models as a surrogate that are of the same kind, i.e., if the target model performs 

image classification or accepts images as query, then the target model most probably will be a 

convolution neural network, as they are better with image classification, and we can train 

convolution neural networks as surrogates to in order to be able to infer optimally the target model 

robustness. 

As for the level of attack perturbation, with 𝜀 = 2.0, it can be said that if two of the surrogate 

models have at least 10% transferability, considering three surrogates, the WMV gate will give the 

best approximation result. Looking at section 5.3.2.3, if we consider three models at 𝜀 = 2.0, the 

WMV gate is giving better results since one model, LR has transferability lower than 10%. 

However, if we look at the table with two surrogates, LR and CNN, the AND gate provides a better 
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result. Furthermore, in the case of two surrogates with LeNet instead of LR, the best result move 

to the WMV gate again which proves that at least two models need to have transferability greater 

than or equal to 10% to choose the result with the WMV gate. For the shift of best result from 

WMV to OR gate, we have two sets of experiments, section 5.3.1.2, and what we can get from it 

at most is that all the models need to have at least 28% transferability in order to choose the result 

of OR gate as the optimal result. However, if we look at tables 5.23(b) and 5.23(c), tables 5.23(b) 

show results with surrogates with Model A and Model C who has transferability 23% and 14% 

respectively with 𝜀 = 2.0 and the OR gate is under-approximating the target robustness by a small 

amount. While table 5.23(c) shows Model A and CNN whose transferability is 23% and 15% 

respectively but the approximation value drops further a little bit with OR gate despite CNN having 

a transferability of 1% higher than Model C, which might seem to contradict. However, table 

5.23(d) shows a further drop in the robustness approximation with OR gate and the models, Model 

C and CNN, have transferability of 14% and 15%. So, in simple terms, we can say that if we are 

using three models or two models as surrogates, if the transferability of any of the two models is 

at least 10%, we can choose the WMV gate while if any of the two models have transferability at 

least 23%, we can choose OR gate.  

For the perturbation magnitudes 𝜀 = [1.0, 1.5], we can observe slightly different transferability 

levels for choosing gates. In section 5.3.1.1, we can observe that if at least two models have 10% 

or higher transferability, the best approximation result move from AND to WMV gate. Observing 

the results in section 5.3.2.3 further proves the argument stated before. However, in section 5.3.2.3, 

we also observe that if one model has at least 82% transferability, then the result shifts to the WMV 

gate as well. Nonetheless, we can notice in section 5.3.2.4, in tables 5.21(a) and 5.21(c) that despite 

two of the models having transferability higher than 10%, the best result stays at AND gate. For 

instance, Model A has a transferability of 19.6% and CNN has 26% at 𝜀 = 1.0 and the best gate 

in this case is AND. But if we look at the results with 𝜀 = 1.5, Model A has 20% transferability 

and CNN has 92% transferability and, in this case, the result moves to the WMV gate. This means 

that we need at least two models with transferability higher than 20% to choose the result of the 

WMV gate as the best robustness approximation. Now, in section 5.3.1.3, we can infer that at the 

minimum, two surrogates need to have at least 20% transferability to observe the best robustness 

approximation with the OR gate. However, this contradicts the previous statement where it was 

argued that two surrogates must have 20% or higher transferability to choose WMV gate. This 

contradiction is cleared by observing the results in section 5.3.1.2 where we can note that for 

choosing the OR gate, the transferability needs to be at least 28%. Consequently, we can say that 

at least two models must have transferability higher than 20% to observe the best result at the 

WMV gate while if the transferability is higher than 28%, then we can safely choose the result 

given by the OR gate to be the optimal approximation of the target model. 
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Conclusion 

      The use of machine learning models has risen immensely recently for their powerful near-

human or superhuman performance in some cases, however, they are still struggling with being 

robust against adversarial attacks that can greatly reduce their performance. Robustness is 

important for machine learning models to help them resist adversarial attacks. Robustness is even 

more important in safety-critical systems where the space for error or misclassification is 

extremely little and a model which is not robust to these adversarial attacks, specifically evasion 

attacks, can cause havoc, causing harm to critical systems and/or human life.  

 In this work, we discussed how evasion attacks can mislead the machine learning models into 

misclassifying instances, why is it important to establish the security of machine learning models 

and why is it important to certify robustness along with discussing previously proposed approaches 

to robustness certification as well as why is it challenging to certify robustness in black-box or 

real-world scenarios. We tried to deal with the problem of robustness certification by proposing a 

framework that can be used by an analyst who wants to evaluate the robustness of a machine 

learning model in black-box settings via surrogate models for the reason of robustness 

certification. As most of the previous research work has tried to certify robustness in white-box 

settings via verification techniques, giving theoretical bounds followed by experimental 

guarantees in achieving these bounds, we discussed how our approach is different and challenging 

(as an analyst who wants to certify robustness or an attacker who want to evaluate a target model 

for robustness to adversarial attacks). 

We presented the experimental evaluations done for the development of this thesis and the 

experimental assessments show the possibility of effectively approximating the robustness via 

surrogate models in black-box settings. It is clear from the evaluations presented that the 

approximation results move from AND to weighted majority voting (WMV) to OR gate with 

increasing transferability. We have set some initial transferability bounds under or over which the 

approximation result shift between logical gates, however, there is still the need for more extensive 

experiments done to refine the bounds.  
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