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Abstract

The last two years have been characterized by geopolitical events and tensions which have caused

anomalous fluctuations in the financial markets. The high uncertainty surrounding the global

economic outlook has made investors risk-averse, focused mainly on preserving capital and

neglecting the pursuit of high returns.

Nonetheless, downturns resulting from a recession can represent advantageous and attractive entry

points for rational and patient investors, who have a long-term horizon.

The study focuses on the issue of asset allocation during financial crises and, in particular, on how it

is possible to improve traditional methods in order to better face the increase in market volatility. To

this end, a dynamic correlation model will be introduced, the DCC GARCH, through which it will be

possible to study the spillover effect of variable volatility and rebalance the portfolio on a monthly

basis using a rolling window.

A portfolio of Hedge Fund Indexes will be used as the reference investment, which have historically

performed well during bear markets (especially in relation to their mutual fund counterparts).

The empirical analysis is developed through data from the HFR database between February 2010 and

December 2022 and through the statistical software R.

Ultimately, the analysis will confirm that dynamic portfolio optimization through regular rebalancing

captures changes in financial market volatility.

Keywords: DCC GARCH, Hedge fund, Portfolio Management, Bear Market, Asset 
allocation
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1) Survive and thrive during a recession

1.1) Introduction

The global economic context of the last three years was very complex and characterized by substantial

uncertainty. A rare coronavirus pandemic caused severe disruption to financial and economic activity

around the world, causing the start of a bear market state in mid-March 2020, with losses exceeding

30%.

Luckily, this period was very short and lasted for 33 days (until March 23, the day in which many

stock indexes including the S&P 500 reached their minimum). An unusual decline ensued through

which in the following five months in which the market not only recovered the previous level but

went further surpassing all-time highs.

The year 2021 was also characterized by many events (for example the assault on the Capitol in the

US or the increase in inflation can be mentioned); unlike what happened in the previous year,

however, investors ignored external inputs (which sometimes suggested divesting and causing

alterations in the stock market). It follows that throughout the year the markets were characterized by

stable growth and many of the main indexes in fact had record increases, gaining from 18 to 26%

(Jackson, Schmidt, 2022).

However, this balance did not last long, until February 24th 2022, the day the Russian invasion of

Ukraine generated an economic storm. Indeed, the war caused a "domino effect" that involved the

whole continent, with an exponential rise in inflation especially in the price of some raw materials

like wheat, corn, oil, electricity and nickel. The severe losses in the Russian and Ukrainian markets

have spread creating a financial contagion especially in countries that had ties to the protagonists, or

geographically close to the conflict. In the study carried out by Zangari “Signs of Contagion from the

Russia-Ukraine War” it was found that Credit Default Swap (CDS) spreads on sovereign bonds of

Eastern European countries increased considerably up to March 10th (therefore expectations by

default they have risen considerably) (Zangari, 2022). Additionally, signs of contagion have also

emerged in the foreign exchange markets of the neighboring regions, where the Polish, Hungarian

and Czech Republic currencies have recorded sharp depreciations against the US dollar. The euro

was also affected by this event and reached the same value as the dollar on July 12th 2022 (it had not

happened since 2002). The war also tainted the stock market where investors rushed to reduce their

exposure to the markets. However, this reduction was not only due to the reaction of investors to this

macroeconomic event, but also to public reasons which led particular types of politically exposed
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institutional investors to disinvest in Russian securities.

The uncertainty of the economic context had a large impact on the prices of financial products, which

presented a fluctuating trend, subject to news announcements and events. These changes have

affected correlations between stocks, which are a key input to the asset allocation process as well as

risk estimation. Indeed, as reported in the article "Flexible Dynamic Conditional Correlation

multivariate GARCH models for asset allocation" (Billio, Caporin e Gobbo, 2006), the most

experienced professionals argue that correlations increase in periods of high instability and volatility

influences both the persistence and the extent of the correlation. Therefore, it becomes important to

account for the time variation of correlations in portfolio returns. Indeed, a static correlation structure

may not accurately measure risk, with significant impacts in terms of asset allocation and portfolio

construction. In this thesis, the topic of dynamic portfolio correlation will be explored through the

DCC GARCH model by Engle (2002). The empirical application carried out in the study represents

a specific case, that is the one of a patient investor, who at the advent of the financial crisis caused by

the Covid-19 pandemic decides to enter the market by contrasting the opposite signals from the

environment. The investment will be that of a "hedge fund" type portfolio, which has historically had

excellent returns during bearish periods thanks to an aggressive active investment style and the

advantage of not being subject to rules. The portfolio will be composed of some of the main hedge

fund indexes (data taken from the "Hedge Fund Research" website).

The thesis will be structured as follows. In chapter 1, after presenting a historical overview of financial

crises and the strategies adopted, the theme of Hedge Funds will be treated.

In chapter 2, the topic of portfolio management theories will be explored, starting from the

presentation of the Markowitz model (which is still the starting point of modern finance) and its

criticisms. Through the latter, some of the subsequent models will then be introduced, including

Tobin's Separation Theorem, the Black-Litterman model and Sharpe's Capital Asset Pricing Model,

which will be used in the empirical analysis. Starting from the limits of the same, Engle's DCC

GARCH model will be introduced and deepened.

Finally, in chapter 3, the empirical model will be presented, developed with the help of the statistical

software R. The purpose of the study is to verify the benefits of implementing the dynamic component

in the optimization of a hedge portfolio. This analysis will be carried out taking as a reference time

interval the one from February 2020 to November 2022, in which numerous macroeconomic and

geopolitical events took place and led to the high instability of the financial markets mentioned at the

beginning of the chapter.
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1.2) Active and passive strategies

Capital market theory states that the market portfolio, which is the portfolio made up of all the assets

present, is the most efficient portfolio as it optimally combines risk and return. The elements that

determine the choices of investors in the creation of the portfolio will therefore be their propensity

for risk and the amount they want to invest (also resorting to a loan).

This type of approach is the foundation of the concept of passive (or indexed) strategy, in which the

manager follows an asset allocation that aims to replicate a reference benchmark as closely as

possible. The watchword of passive strategies is “Try to be the market”. It follows that, by replicating

the weights of the index, namely buying the shares that have done well and selling those that have

lost, in fact they buy when the price is high and sell when it is low. Passive investors therefore

generate a momentum-driven market, further driving up the price of assets that rise the most monthly,

creating bubbles in asset prices.

However, the empirical context is much more complex than that presented in capital theory and is

characterized by a high information asymmetry between the various stakeholders which consequently

leads to a divergence between analyses and expectations. This "imperfect" environment creates other

investment strategies, based on exploiting market flaws and mispricings to make a profit. Such

methodologies classify as active and are highly sought after by investors. Indeed, active investment

strategies aim to beat the market, outperforming a given benchmark, by selecting a small portion of

financial products.

While passive strategies favor established companies that are in a maturity stage in their life-cycle,

active managers are free to select stocks characterized by a small market capitalization but enormous

growth potential due to the fact that the market attention is directed elsewhere, resulting in more

insight into emerging and frontier markets. Therefore, it is easy to understand what the weaknesses

of these strategies are, namely that of being more complex to manage, both in the selection and

management phases, and consequently more time consuming and characterized by higher

commissions and investment fund costs.

At the end of the global financial crisis, markets experienced a long bull run in asset prices and limited

volatility. In the decade 2009-2019, most of the stock indexes brought significant positive

performances, this means that passive strategies have been found to have good returns. The

intervention of the central banks was important, using unconventional instruments of expansive

monetary policy (quantitative easing). This consists in generating money (real or electronic) to buy

securities with the effect of increasing their price, injecting liquidity into the system and thus lowering
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the interest rate. The securities purchased can be of various types: from short-term ones (usually the

subject of the first transactions) to long-term ones, from non-performing bank loans to share capital

companies. This monetary policy has had positive effects on the real economy, reducing debt burdens

on the public debt, supporting inflation and investments.

Figure 1: The performance of stocks and bonds over a 20-year period: from January 1999 to October

2019

Source: Lustig, Y. (2019), A New Era of Active Management Looms, troweprice.com, December

2019

As can be seen from Figure 1, falling interest rates have meant that since 2009 the market yield has

exceeded the excess yield, resulting in a high expected return on stocks and bonds. Analyzing instead

the previous period of time, it is possible to notice an opposite trend, especially in the last eight

periods characterized by bearish markets.

From the study “Active vs passive fund management: which works during a crisis?” conducted by

Greg Flash and Holly Lobprise, it is possible to see how powerful active strategies are in these bearish

contexts (Flash, Lobprise, 2020).

The study carried out by the two analysts starts from the case in which an investor randomly selects

an actively managed fund and compares its performance with the reference benchmark. By selecting

the JSE All Share (ALSI) as a benchmark, it is possible to see that the probability that a random fund

of that market outperforms the index is 44% (therefore an average performance lower than the

reference index). This means that a short-sighted acceptance is unlikely to produce good results.

However, there are funds that can outperform it, even consistently and over the long term. In
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particular, this happens in the "lean" years and/or characterized by financial crises, characterized by

a drop of at least 20% compared to the previous maximum.

Figure 2:  Alsi returns and outperformers

Source: Flash, G., Lobprise, H. (2020), Active vs passive fund management: which works during a

crisis?, citywire.com, 8 May 2020

As can be seen from the graph and table, the average return of active equity managers has

outperformed ALSI, sometimes considerably, such as during the dot-com crisis of the late 1990s and

early 2000s and the real estate crisis of 2008. It is therefore evident that once there is an increase in

volatility, active strategies are the ones that lead to greater gains.

The main motivation appears to be linked to the greater flexibility that allows to mitigate the risk,

allocating lower percentages to the most vulnerable sectors and protecting themselves from declines,
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disinvesting from underperforming securities when the risks become too high. Historically, for

example, the sectors that have given the worst performances during times of recession have been

automotive, consumer durables (especially domestic appliances) and travel & tourism.

This greater flexibility also allows to take advantage of short-term trading opportunities (swing

trading), trying to identify where the price of an asset is likely to move next in order to capture a

portion of the profit. These strategies also allow to carry out operations that offset gains for tax

purposes, the so-called "collection of tax losses". This consists of selling some investments at a loss

to offset the gains made from the sale of other securities at a profit, thus paying taxes only on the

profit obtained, thus reducing the amount of the tax bill. This operation, in addition to reducing taxes,

also frees up money so that investors can acquire new businesses that are more likely to generate

positive performance.

This shows that an active style allows for more extensive trading options, offering investors the ability

to choose what they want to invest in (as opposed to many mutual funds), and above all greater

coverage linked to the possibility of generating positive returns even through short selling, put options

and other strategies to be able to insure against losses. Indeed, the best time to start shorting is, as can

be imagined, during a bear market, when most stocks in the market (or in certain sectors) are on a

downward trend.

There are no exact methodologies that can predict when the market is right to invest. However, there

are some tools that allow investors to understand whether the markets will follow an uptrend or a

downtrend. Some tools start from technical analysis, which is the study based on the analysis of

supply and demand for the security and the impact that these will have on changes in the price, volume

and volatility of the securities. It contrasts with another type of analysis called "fundamental", which

starts from the company's data (such as turnover, current assets, ...) to arrive at the valuation of the

stock. The person who opened the door to this type of analysis was Charles Dow, founder of the Wall

Street Journal and creator of the Dow Jones Industrial Index.

The first tool is that of the relative strength index (RSI), which is an indicator that allows to intercept

possible oversold or overbought assets. This graph allows investors to understand which trend the

markets are following in relation to the number of purchases and based on this it is possible to

understand how to act in the market. For example, if the RSI of the asset rises rapidly and it is in a

bear market, traders will be inclined to quickly sell the financial product in order to capture a quick

profit. Conversely, if the RSI is low and it is in a bullish period, the trader will be inclined to buy the

asset. Typically, during a bull market the RSI numbers are usually higher and assets remain

overbought for much longer. Conversely, during a bear market the RSI tends to be low, with long

oversold periods. However, the main limitation of this index emerges during events of great impact,
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when the provided signals tend to become meaningless.

Another tool is the stochastic oscillator, which compares the closing price of assets in a given period

with its recent highs and lows to provide an indication of the stock's momentum. If the closing is

close to its maximum, it is a bullish period and therefore it will be convenient to sell the security. If,

on the contrary, this is at a minimum, it will be the case of a bearish period and therefore the asset

will have to be purchased. The oscillator moves between two values: 1 and 100. For values lower

than 20, there will be an oversold situation and an overbought situation for values higher than 80. The

strength of this oscillator is that it can generate signals during phases not characterized by a trend.

1.3) Short selling and hedge funds

Bear periods often instill fear in investors as markets are often associated with recessions, complicated

and less stable. They are characterized by a very short average life of about 9-10 months (Tzanetos,

2022), about 1/5 of the average duration of bull markets. This makes market timing particularly

complicated, even for experienced investors.

Historically, the type of subjects that had the greatest performances during these periods were

particular alternative investment funds called hedge funds. These funds managed to outperform their

mutual fund counterparts both in the Dot-com crisis and in the real estate crisis thanks mainly to two

factors: the lack of subjection to rules and the ability to be able to invest in aggressive strategies

(Vikas, Boyson, Naik, 2009). These funds are characterized by active management based on the use

of complex investment strategies, with the use of loans held with the aim of generating "leverage".

This allows them to be able to take on financial exposures in excess of their capital base, thereby

increasing their returns (or possibly their losses).

The functioning is rather simple. Prime brokers lend liquidity, credit and securities to hedge funds.

Moreover, the funds are able to draw on additional financial resources also thanks to the

"securitisation". As an example, according to the results obtained from the hedge fund as counterparty

survey (HFACS), the average financial leverage used by hedge funds after the 2008 real estate crisis

was around 2x.

In addition to loans, it is also possible to create the leverage effect through derivatives (such as futures,

options and swaps) via the so-called "Synthetic leverage". The operation is quite intuitive: when the

investor decides to go long through the use of derivatives, they do not buy the security even though

they receive exposure to it.
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The peculiarity of these funds, however, is that of the extensive use of short selling, which is used to

reduce risk during periods of market decline and/or to make profits when it is believed that the value

of some assets will decrease in the short term. term. It is precisely this ability to reduce risk or "Hedge"

that gave the name to these funds.

Identifying stocks to sell short requires a different analysis process than analyzing to find an asset to

sell with a long position. The first step is to analyze the activity behind the stock being sold short,

trying to understand if it is actually overvalued. The focus of this analysis can be varied and concern

not only the current situation, but also possible future scenarios. Observation elements can include,

for example, the phase in which the company finds itself with respect to the life cycle, the competitors,

the regulatory framework or the possible development of more efficient substitute products. The

second step concerns the use of technical indicators to understand the market trend (such as the

already mentioned RSI and the stochastic oscillator). Once the situation of the company, the trend of

the reference sector and the other extra-sector components that can influence the investment are clear,

the investor has all the necessary tools to choose whether or not to make the investment.

Shorting is a particularly risky and dangerous practice for many reasons. Firstly, since bear markets

fall quickly and do not last long, it is difficult to intercept the correct moment in which to enter and

exit this type of investment. While the loss of a long investment, in the worst-case scenario,

corresponds to the purchase value of the asset, the risk of loss in a short sale is potentially unlimited,

as if the price skyrockets the investor still has to buy it at that value in order to return the stock to its

broker. Therefore, it is possible to go well below “zero”.

Secondly, this could be characterized by additional fees, called “stock lending fees”, or an expense

related to the difficulty to find the asset. The amount paid behaves like variable interest and is

determined on the basis of the trend in supply and demand for the same. Another aspect to consider

is the "short squeeze" that caused the Game Stop case in January 2021. This market phenomenon is

caused by a rapid increase in the share price of a security, which is present in short in the portfolio of

many investors. What happens is that the increase in the price of the same pushes some short sellers

to close their positions by buying back the asset. This causes the price to rally further, which in turn

prompts other investors to exit the position. Therefore a cycle is created which will end when all the

subjects have closed their positions. The Game Stop case caused many hedge funds that had short

positions in the stock to lose billions of dollars, so much so that some funds were forced out of

business altogether.

These risks highlight the importance of carrying out investigations and in-depth analysis of data and

information. If done correctly, this can generate several advantages, in addition to the already

mentioned one of making a profit when evaluating the decrease in the value of a stock.
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An advantage is certainly that of hedging, or that of protecting the earnings of an investment, helping

to reach breakeven. Take as an example a hedge fund that chooses to invest in a security X for a

duration equal to T. During the period 0à T there may happen that there is an event that causes a

change in the performance of X. The hedge fund could therefore choose to compensate for this new

risk by taking a short position on X, in order to close the position and gut the threat that the stock will

fall further in value.

Another big advantage of short selling that hedge funds often use is related to “leveraged trading”.

This lies in the fact that if the fund borrows X to short it, the capital employed for the investment is

not very high. So if the short selling operation is successful, the fund could generate very high profits

with a relatively small amount of money.

A further tool that has become popular in recent years is that of short selling campaigns by hedge

funds. These allow funds to be able to communicate actively and strategically to other investors,

exposing the reasons why they believe a particular company is overvalued. First of all, in-depth

investigative analyses are carried out on the companies subject to the attack; subsequently the results

are disclosed in an "effective" way, persuading investors to divest in the same companies. The process

of communication and persuasion is extremely important: it is not based solely on the display of

information and data, but topics that aim to arouse an emotion in the public are also often used, for

example dealing with ethical and environmental issues. The accusations usually concern industry-

wide, product-level problems, flawed business models, unfair competition, financial errors, financial

fraud or financial malpractice. The campaign allows hedge funds to reap high returns as they short

sell the target company's shares before publishing their report.

Thanks to the resonance of the media, the influence of the reports becomes extremely relevant for the

market value of the companies, which often are subsequently delisted, suspended from the stock

exchanges or, in the worst case, go bankrupt. The research “Deploying Narrative Economics to

Understand Financial Market Dynamics: An Analysis of Activist Short Sellers' Rhetoric” by

professors Luc Paugam and Hervé Stolowy shows that 85% of the reports are covered by the media

after publication and the companies involved can show losses significant amounts of value for more

than 6 months (Paugam, Stolowy, 2020). The value of companies targeted by hedge fund campaigns

declined by an average of 11.2 percentage points in the first three days, which corresponds to an

average reduction of $416 million in market value. Two months after publication, the results are down

by about -14.5%, while on average six months later they show a negative return of 22.6%. Cumulative

average loss is shown in the figure below.
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Figure 3: Average Cumulative Loss over 1 year

Source: the graph is built in R Studio using the data reported in «Paugam, L., Stolowy, H., Gendron,

Y. (2020), Deploying Narrative Economics to Understand Financial Market Dynamics: An Analysis

of Activist Short Sellers' Rhetoric, Contemporary Accounting Research, 15 November 2020»

Hedge funds tend to be very diverse and invest in many different strategies. As showed in figure 4,

among the most famous is long-short equity, which makes up about 25% of strategies, which consists

of taking long positions in stocks that can have above-average performance and shorting stocks with

below-market performance. So the gain depends mostly on the ability of the fund manager to compose

the portfolio.

Another very popular strategy (about 17%) is that of fixed income, which consists in holding similar

fixed-income securities characterized by a strong historical correlation. Since the securities have an

interest rate correlation, it follows that an increase in interest rates will have a positive influence on

the short position and a negative one on the long position. A typical operation of this strategy is to go

long on a bond and short on another with similar duration to offset the effects due to changes in

interest rates. The strategy is therefore not based on creating a profit based on intercepting the future

trend of the market but will focus on the relationship between positions in relation to the optimal gap

estimated by investors, trying to neutralize changes in interest rates.

Other less popular strategies are based for example on opportunities deriving from price inefficiencies
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deriving from extraordinary operations (such as acquisitions, spin-offs, restructurings, share

buybacks, hostile takeovers,…), on trend-following through the purchase of futures, on 'purchase of

financial products in emerging markets,… A brief summary of these strategies can be seen in Figure

4.

Figure 4: Summary of hedge fund strategies

Source: Barclayshedge.com, "Databases" section, reports relating to the third quarter of 2017

Another type of fund is the quant (or quantum fund), which has experienced exponential growth in

the last decade (since 2010 an average of 9.5% per year, against 6.4% in the sector) (Barclayhedge

and Barclays, 2017). These new investments have prompted managers to continuously innovate

management methodologies. One of the most innovative is the implementation of unsupervised

machine learning systems, real artificial intelligences in which the computer identifies complex

processes and patterns in the data without any manual guidance. The strategy of these funds is based

on a set of rules regarding the analysis of past patterns and present data trends. These funds usually

adopt a very high leverage (around 5x or 6x) to make the most of the price anomalies between the

assets. Another feature of these funds is that they operate in "liquid assets", which allow easier asset

management in market crisis situations. There are also residual less liquid assets, such as fixed income

securities or emerging market stocks.
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1.4) Hedge fund indexes

Historically, hedge funds have been exclusive funds, accessible only to high net worth individuals or

by institutional investors such as endowments or pension funds. The popularity of this last type of

fund has grown particularly in the last decade, reaching high shares of total assets in some countries.

An example of this is Great Britain, whose hedge fund activity exceeds 7% (barclayshedge.com)

while in the US it is around 5.9% (fundmap.com). This is due to the fact that these individuals use a

"barebell strategy", a strategy that consists of finding a balance between risk and return,

balancing between high risk-return and low-risk investments. The goal of the strategy is to reduce

risk without decreasing overall return. In this case, the riskiest assets are hedge funds, while the least

risky ones are bonds, held to cover pension liabilities.

Hedge fund indexes have been introduced since the late 1990s, through which even investors with 

medium-low capital can have access to this type of investment.

Index strategies have marked a major transformation in hedge fund investing, as they offer the 

advantage of professional management and diversification. These products also have the added 

benefit of helping the investor manage the risks associated with individual hedge funds; therefore if 

a single fund is faced with management or trading problems, the impact on the entire portfolio is not 

relevant.

Hedge fund indexes deviate significantly from the traditional definition of an index, which is that of 

a barometer for a particular market, sector or asset class, which allows it to serve as a point of 

reference for monitoring performance. A hedge fund index, in contrast, captures the returns of a broad 

universe of hedge funds, making it an alternative benchmark for measuring the performance of a 

given hedge fund.

Hedge fund indexes allow to capture attractive returns over the long term, in both bull and bear 

markets, ensuring a never significantly underperformance of the market.

Below is a comparison between some of the main equity indexes (S&P 500, Nasdaq and Dow Jones) 

and some hedge fund indexes (Fund of funds, equity hedged, emerging markets); the input data was 

taken from the MarketWatch website, from HFR and from YCharts. The graph was created assuming 

an investment of 100 dollars on January 1 1992 for each financial product.
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Figure 5: Performance analysis Stock vs Hedge indexes

Source: the graph is built using the data from the sites of MarketWatch, HFR and YCharts

Until about 1998, the yields of the 6 indexes were almost identical; the only index that appears to 

generate a higher profit is the emerging markets hedge index (HFRI EM).

This "equilibrium" breaks with the first bear market, namely the dot-com bubble (24/03/2000–

21/09/2001); on March 10th 2000 the Nasdaq (^IXIC) indeed reached its maximum point 

(5132.52 points) to then lose more than 10% of its value in one week. In this first bearish period,

shown in the graph, it is possible to see how the HF indexes were the ones that coped better 

with the period, managing not only to preserve their value but also to increase it. In particular, 

the following years showed a great growth in the value of equity hedged investments (HFRI EHI) 

and emerging markets, which reached 1000 dollars shortly before the bursting of the real estate 

bubble (ten times more than the value of the initial investment).

The second bearish period (09/10/2007–20/11/2008) does not substantially change the trend of the 

relationship of the indexes, which decrease by an average percentage of 30-40% in a few months. 

The index that turned out to be more stable during the subprime mortgage crisis is the HFRI FOF 

(funds of funds) while the other two HF indexes have had the greatest decline in absolute terms.
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During the long bull period following the Great Recession, the Nasdaq once again became one of the 

highest-yielding indexes. The third short bearish period caused by the Covid-19 pandemic did not 

alter the balance between the index reports, which soon returned to an upward trend. In this 

subsequent period, the Nasdaq experienced exponential growth, managing to reach the level of 

$2500 on November 19th 2022 (which corresponds to 25 times more than the original value of the 

investment).

The fourth and final bearish period began in the first quarter of 2022, in which the world economy 

was rocked by a mix of events such as a sudden monetary tightening, China's standstill due to its 

zero-Covid policy, but above all the invasion of Ukraine, which contributed to the generation of an 

energy shock and increased inflation. In this period, also due to the huge increase in the losses of 

giants such as Meta and Amazon.com, the Nasdaq experienced a dot-com 2.0 effect, losing to date 

(October 7, 2022) about 30% of its value.

It can be concluded that hedge fund indexes have performed well over the past three decades, but 

more importantly, they have been better able to cope with increased volatility during bear markets. 

However, it should be noted that commissions and management expenses must be deducted from the

return of the HF indexes, which narrow the gap with the equity indexes.
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2. Models of analysis and selection of the optimal portfolio

2.1. Markowitz’s revolution

When an individual makes investment choices, he usually tends to select more than one stock to better 

diversify the portfolio. This allows, especially in the event that the financial products are not 

correlated to each other, to reduce the overall risk of the investment. The quality of the financial 

products, as well as, the level of portfolio diversification, depends on the investor's propensity to 

tolerate uncertainty (the so-called "risk appetite").

This concept, that seems to be taken for granted nowadays, was introduced for the first time in 

1952 by the US economist Henry Markowitz in a scientific article called "Portfolio Selection". This 

work earned him the Nobel Prize in 1990 for his pioneering contributions in the field of 

financial economics.

Markowitz's study starts from the analysis of the historical performance of financial products in order 

to be able to make expectations on future ones and implement the portfolio choice.

The central theme of Markowitz's theory is diversification, that is which stocks to buy among those 

present in the market to maximize returns and minimize risk (or volatility). The benefit of 

diversification allows the overall volatility of the portfolio to be reduced, which will be lower than 

the average volatility of individual stocks.

A second theme is linked to the fact that in building a portfolio there are some combinations of 

securities that are undoubtedly better than others, which allow for the best risk-return ratio to 

be achieved.

The third and final issue concerns the subjective side: once the various efficient combinations have 

been identified, the model also indicates which is the most suitable for the investor on the basis of his 

risk appetite.

The model is based on five assumptions:

1. The time horizon is one-period

This means that the investor selects the allocation of securities in the portfolio only once at the

beginning of the investment and maintains it for the entire duration of the same, without making any 

rebalancing.

2. Investors select portfolios based on expected return and risk

The expected return ( ) is defined by Markowitz as the average of the possible returns of a security,



22

weighted by the probability that each return occurs.

As for expected risk, this is defined as the standard deviation of the security's return. Unlike yield,

portfolio risk is not the average of the stock's risks. This is due to the fact that when calculating the

portfolio variance it is consider the variance of the sum of n random variables.

3. Investors are risk averse

It follows that the subject, considering the risk as something unpleasant, will make a greater risk

correspond to a greater return.

4. The market is in a form of perfect competition

This means that subjects are unable to influence the price of financial assets.

5. The market is free of transaction costs and taxes

The most interesting hypothesis that deserves further study is certainly number 2, which is the starting

point for understanding the asset allocation process. In particular, it is possible to define the expected

return of the portfolio with the following equation:

2.1) ( ) = ∗ ( ) + ∗ ( ) + ∗ ( ) + ⋯+ ∗ ( )

Where ∑ = 1.

If the hypothesis of short selling is accepted, can also assume a negative sign.

It follows that the standard deviation is given by the following formula:

2.2)

= ∗ + ∗ + ∗ +⋯+ + 2 ( , ) + 2 ( , ) + ⋯

The covariances in this formula are extremely important as they correspond to the so-called “benefit

of diversification”. In fact, if the securities are not perfectly correlated, the standard deviation of the

portfolio will be less than the weighted average of the standard deviation of the individual securities.

Consequently, the risk will decrease as the number of stocks increases if they are sufficiently

“uncorrelated”.

By analyzing the problem through analytical geometry, all the possible mean-variance combinations

in an area delimited by a frontier can be drawn on a Cartesian plane.

Take for example a portfolio composed of two assets, marked in the expected return-standard
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deviation graph below as “a” and “b”.

Figure 6: Efficient frontier - Markowitz Portfolio Theorem

If portfolio risk and return both followed the weighted average logic, the portfolios that could be 

constructed by varying the proportions of the two securities would be positioned on the red line, also 

called the "efficient frontier". However, since the portfolio standard deviation is less than the 

weighted average, the portfolio curve will likely be the one shown in green.

Depending on the level of correlation of the two stocks, even less risky combinations can be achieved;

indeed, if the securities are negatively correlated, there could be portfolios whose risk is even 

lower than the risk of the less risky asset. This is the case of the efficient frontier represented by 

the blue line, where some portfolios are further to the left of security a. The more the securities are 

negatively correlated, the more the curve extends to the left; the extreme case is represented by the 

purple curve, which corresponds to the case in which the two stocks have a perfect negative 

correlation. Since every movement in one security is mirrored equally and oppositely by the other,

the portfolio will be risk-free.

The mean-variance principle derives from the second and third hypotheses according to which, 

between two investment strategies, the one that generates the highest return for the same level of risk 

or the one that generates the least risk for the same level of return is preferable.

For the identification of the optimal portfolio, however, the efficient frontier is not sufficient but it is 

useful to introduce the concept of risk appetite. Indeed, subjects can be divided on the basis of 

this factor into three categories: risk lover, risk neutral and risk adverse.

Investor preferences are represented by curves called "indifference" curves which encompass the set 

of risk-return combinations which guarantee the same level of utility or satisfaction to the subject. 

Since investors are risk averse (hypothesis 3), these curves will have a positive slope and different 

positions based on how much the individual investor is willing to take risks. For example, the
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indifference curves of a very risk averse subject will be more to the left (like those indicated in green

in the graph), while those of an investor who wants a higher return and is willing to take more risks

for it will be more right (in orange).

Figure 7: Indifference curves - Markowitz Portfolio Theorem

The set of indifference curves is given by the following function:

 ∗ ∗ ) − 0,5 ( = ) (  )2.3

In which λ represents the subject's aversion to risk. The chosen portfolio will be the one present at 

the point of tangency between the efficient frontier and the highest indifference curve.

It is not always easy to identify the investor's degree of aversion to risk as it is a factor that is difficult

to quantify, varies over time and is conditioned by numerous variables (think, for example, of the

investor's knowledge, his objectives, financial stability, market trends, etc).

Therefore, Markowitz's significant contribution was not only to introduce the benefit of 

diversification understood as "volatility", but also to use the investor's risk appetite as a criterion for 

identifying the portfolio.

2.2. Criticisms of the theory

Markowitz's theory was the "beaver" for asset allocation and in fact is the basis of subsequent

investment theories and, more generally, of modern finance.

However, the theory has many weaknesses that limit its value. Although of considerable scientific

importance, the study does not show great practical utility and in fact the use by investors is extremely

limited. The assumptions on which the model is based are highly and not likely to apply in the real
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world (a criticism that in part affects most future asset allocation theories).

The model does not offer results with a high degree of reliability since it overestimates assets with a 

high expected return, low risk and low correlation with other securities. It follows that the Markowitz 

optimal Portfolio will be composed of a small selection of assets.

Other problems include, for example, the absence of perfect rationality among investors, who often 

make investments that do not respect the risk-return ratio or the presence of information 

asymmetries that do not allow all subjects to have access to all the data available in the market. 

Other unlikely assumptions are unlimited access to capital, the absence of efficient markets or the 

absence of taxes and transition costs.

With regard to the model itself, an important criticism concerns the function linked to the indifference

curves, which is different from individual to individual since it depends on the subjective risk aversion

λ; this certainly makes the comparison between the choices of different individuals very complicated.

In addition to not being reliable in the results, the model presents some problems in terms of temporal

instability: each slight variation in the model inputs results in a composition of the optimal portfolio

that is very different from the previous one.

2.3. CAPM and subsequent development

A development to Markowitz's theory was given by James Tobin in 1958 who, starting from the

concept of diversification introduced by the US economist, introduced a risk-free rate to replace

the indifference curves. This makes possible to overcome one of the previously mentioned 

limitations of the US compatriot theory, that is the estimate of risk aversion λ.

The risk-free rate is characterized by a certain return and zero risk = 0. Therefore, it is placed 
in the Cartesian graph on the abscissa axis.

In the real world, a proxy for the risk-free rate is, for example, the 10-year Italian bond: this is 

considered a risk-free rate as the probability that the Italian government defaults and is unable to pay 

the return to the investor it is really small, so the risk is considered negligible.

The new optimal (or tangency) portfolio is therefore obtained through the intersection of the efficient 

frontier and the "capital market line" (CML), which is the half-line that originates in the risk-free rate.



26

Figure 8: Tangency Portfolio - Tobin's Separation Theorem

The capital market line represents portfolios that perfectly combine risk and return. The capital market

line equation is as follows:

2.4) = + ∗

Where is the market return, the standard deviation of market returns and the stan-
dard deviation of portfolio returns.

Tobin argues that investors should, once they have found the optimal portfolio T, leverage up or down 

to achieve the desired level of volatility. What has been obtained is a process with two independent 

phases (hence the name "Separation Theorem"): in the first part the composition of the risky part of 

the portfolio is chosen, while in the second the amount of financial leverage to use.

An evolution of Tobin's theorem is the Capital Asset Pricing Model (CAPM) by William Sharpe

(1964) who demonstrated that the optimal portfolio present at point T is the market portfolio, which

is characterized by the highest achievable Sharpe ratio.

2.5) ℎ =

In particular, the CAPM studies the relationship between two components: the first factor is the

expected return, while the second is the intrinsic risk of the market (or systematic risk), that is that

unpredictable risk that can be avoided. This risk cannot be modified through diversification and

reflects the impact of various macroeconomic, geopolitical and financial factors.

These two elements are related by the formula:
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2.6) ( ) = + ∗ [ ( )− ]

This equation introduces many interesting elements. The first is the market risk premium [ ( ) −

] which has a direct impact on the expected return of the financial product. The market risk

premium represents the expected reward for taking the extra risk and is calculated using the difference 

between two components: the average return on the stock market and the risk-free.

The second element is that of beta which indicates the exposure of an asset to systematic risk. The 

measures the expected change in the return on the security for each % change in the market return. It 

follows, as can be seen in equation 2.6, that the expected return of an asset will have a linear variation 

with its beta. If > 1 then my asset will be riskier than the market and will tend to widen its 

movements (in fact | | > | |). Conversely, if 0 < < 1 then the asset will be less volatile than the 

market, both in the rising and falling prices. Finally, if = 1 the stock will tend to move in line, 

while if < 0 the asset will tend to move in the opposite direction to that of the market. The negative

correlation of the asset with the market will lead it to have positive returns during bearish markets 

and negative returns during bullish moments. An example of an asset with a typically negative beta 

is gold (or more generally precious metals).

Figure 9: Comparison between an ETF built on the price of gold and the S&P 500

Source: the graph is built using the data from the sites of MarketWatch
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As it is possible to see from the graph both during the advent of the Covid-19 pandemic and during 

the outbreak of the war in Ukraine, gold not only managed to have a less volatile return than the 

market, but it even managed to grow worth. A study by Roshan Gautam and Yoochan Kim 

(published on 23 May 2022) showed that for every 1% daily increase in Covid-19 cases, it was 

attributed a 0.2885% increase in the price of gold.

It is possible to represent the equation of the CAPM model as a line, exactly like the capital market 

line in Figure 9, even if in the latter method the y-axis measures beta. This half-line, called the 

Security Market Line, indicates for any beta level what expected return the asset should have 

according to the CAPM model.

This is fact a tool to check if a security is listed incorrectly in the market. Take for example the 

stock of Amazon.com, Inc whose Beta as of December 6 2022 is 1.28. Taking the historical average 

value of the S&P 500 as a proxy for the calculation of the expected market return (calculated 

considering the last 20 years) and the US bond as the risk-free rate, the following result is obtained: 

(R ) = 0.038 + 1.28 ∗ (0.11 − 0.038)=13.02%. Since the value of Amazon's effective

average return over the last 20 years is 72%, as a result the asset is undervalued because for the same 

level of beta there is a much higher level of return.

Graphically speaking, all shares found above the Security Market Line are undervalued, conversely 

they can be considered overvalued.

Contrary to the Markowitz model, the Sharpe model is still widely used because in addition to being

very simple to estimate, it is an excellent tool for evaluating future expectations and also allows for

easy comparisons between different market alternatives. The CAPM allows the investor to make

judgments about how the portfolio has been constructed in relation to, for example, which assets have

significantly increased the risk of the portfolio.

The fundamental concept of the Sharpe model is the possibility of obtaining higher returns than those 

of the market by assuming a higher risk (beta). Such message has greatly contributed to the increase 

in the use of indexing or assembling portfolios that represent a given market.

A limitation of the Markowitz model (which also partially characterizes the CAPM) is that of the use 

of historical prices as an input to the portfolio optimization process. Indeed, the model presents an 

instability linked to its strong sensitivity to the inserted historical inputs; this factor could cause a 

high variability over time of the weights defined through the asset allocation, as well as the possibility 

of assuming extreme values.



29

A model that improves this limit of the mean-variance model is the one introduced by Fisher Black

and Robert Litterman, who try to find an agreement between the market's expectations and those of

the investor, linked for example to information that is not yet in the domain public. Another point of

improvement is that B&L theory does not assume that past expected returns will continue to play out

in the future.

The model is characterized by two distinct distributions of returns (and consequently two variances): 

one that follows market expectations and one that follows those of the investor. If the means and the 

variances coincide it would mean that the investor will invest in the market portfolio (for example in 

a highly diversified index).

One of the innovative aspects of the theorem lies in the fact that it is based on a Bayesian 

methodology, which combines the two types described above (market expectations and investor 

opinions).

The hypothesis underlying the model is that the security allocation process should be proportional to 

the market values of the assets, to then be modified using the basis of how much the opinions (or 

views) on the expected returns considered by the investors differ from those of the market (a kind 

of “desired” allocation). If there are two assets in the portfolio (X and Y) and the subject believes 

that stock X will yield better than Y, the opinion can be represented by the following equation:

2.7) = ( )− ( )

Where V represents the amount that the subject expects to receive more from the first title.

An important observation concerns the fact that, even if the opinions concern only some securities in

the portfolio, the consequences of the same will fall on all the components.

Views are called "absolute" if they express the opinion that the yield of a financial product will be

higher or lower than its current yield. They are "relative" if instead they make a comparison between

the future return of two different assets.

To calculate the excess returns, a procedure is used that is the opposite of the one previously analyzed

for the Markowtiz model and for the CAPM. In particular, the values of the weights of the securities

are set as optimal, which are used to solve the equation which has the excess returns as unknown. The

methodology is therefore based on maximizing the utility function with respect to the weights:

2.8) = ∗ − ∗ ∗
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Where π represents the vector of equilibrium excess returns, λ the investor's risk aversion and ω the

variance-covariance matrix.

With regard to the subjective component, the investor will have to measure his degree of certainty

regarding the forecasts. There are several methods for calculating this factor; the most common

method uses the equation = , where n represents the number of observations relating to the 

distribution of expected returns. Alternative methods are, for example, to use the standard deviation 

of the probability distribution, or to choose it arbitrarily in a range from 0 to 1 based on the level of 

certainty that the investor has in relation to his views. The lower the value of τ, the more the portfolio 

will tend to be similar to the market one.

An innovative aspect introduced by Black & Litterman is also that of the periodic rebalancing of the 

portfolio through the level of τ. Indeed, the investor could, over time, have external inputs that 

can cause decreases or increases in the level of security relating to some or all views; a rebalancing 

of the portfolio will therefore be necessary, which would make it possible to generate a better excess 

return.

The presence of a periodic rebalancing is essential during a bear market to restore the risk-reward

ratio. Indeed, during a market downturn, the products in the portfolio will tend to appreciate 

or depreciate more rapidly, misaligning the same with the predefined asset allocation. It 

therefore becomes necessary to periodically adjust the mix of asset classes to new market 

conditions.

The absence of periodic optimization represents a weakness of Sharpe and Markowitz's theory, which 

will be the result of in-depth analysis in this study. In fact, in the model of the American economist, 

the investor is relegated to being only a spectator of the market dynamics, unable to deal with the 

different situations of the portfolio through the control and adjustment of the weights of the securities.

2.4. Financial contagion and DCC GARCH

In the last thirty years, numerous financial crises have followed one another which have led to

consequences both in the local context and in the global one. Examples include the Tequila Crisis of

1994, the South East Asian Crisis of 1997, the Russian Fever of 1998, the Brazilian Crisis of 1999,

the Dot-Com Bubble of 2000, the Argentine Crisis of 2001, the Financial crisis of 2008, the Sovereign

Debt Crisis of 2011, the Covid-19 pandemic of 2020 and finally the current outbreak of the War in
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Russia of February 2022.

These crises, very different from each other both in type and in the cause of the event, are united by 

the fact that although they occur at a regional level, they have then expanded causing effects to the 

entire global economy. This phenomenon (called "financial contagion") has not only concerned a 

transmission between countries that have direct macroeconomic links, but also to states that have no 

apparent affinity.

Indeed, the definition of financial contagion has been the subject of extensive debate. Three 

definitions can be listed:

1. “Contagion is the transmission of global or local shocks between nations via economic 

fundamentals (spillover effect)” (Calvo, Reinhart, 1996) (Pristker, 2000).

From this definition it is possible to deduce that financial contagion is not only present in 

cases of financial crises but also in the absence of them, since this is a manifestation of mutual 

dependence between regions.

2. “Contagion is the transmission of global or local shocks between nations through mechanisms 

that do not involve the fundamentals of the affected nations” (Claessens, Dornbusch, Park, 

2001) (Masson, 1998).

Based on this second definition, it would seem that contagion is determined by the irrationality 

of investors and their aversion to risk.

3. “Contagion occurs when the correlation between the prices of financial assets of nations, 

during a period of crisis, changes from that which occurs during periods of stability, and this 

is due to changes in the parameters of the underlying model” ( Forbes, Rigobon, 2000).

According to this last hypothesis it is possible, for example, to intercept this phenomenon by observing

the correlation between the markets. Indeed, as report in the article "Flexible Dynamic 

Conditional Correlation multivariate GARCH models for asset allocation" (Billio, Caporin, Gob-

bo, 2006), the most experienced professionals argue that correlations increase in periods of high 

instability and volatility influences both the persistence and the extent of the correlation.

This last aspect is the one that will be considered in this thesis as it manages, unlike previous studies, 

to reduce portfolio risk during financial crises.

In the literature, the first economist who spoke of the interdependence of financial product markets 

was the aforementioned Sharpe (1964) who argued that asset returns are determined by a set of
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common factors and by idiosyncratic factors which represent an unrelated risk diversifiable. 

However, the first empirical studies concerning contagion were carried out by Grubel and Fadner 

(1971). The phenomena that occurred in the 1990s (mentioned above) were the result of numerous 

studies on the presence of possible financial contagion. The first was by Calvo and Reinhart (1996) 

who studied the Tequila Crisis using correlation coefficients and concluded that there was financial 

contagion between Latin America and Asia. Baig and Goldfajn (1999) studied the subsequent crisis 

(Southeast Asia) confirming the presence of financial contagion between the markets of Malaysia, 

Indonesia, the Philippines and South Korea. Caramazza, Ricci and Salgaredo (2000) identified 

common factors in the presence of indirect effects of the financial channel through common creditors 

in the Mexican, Asian and Russian crises.

Many economists have analyzed the impacts related to the real estate crisis of 2008. It is possible to 

cite for example Luchtenberg and Vu (2015) who argued in their empirical work that the US 

market influenced all the markets of North America, Europe and Asia with the exception of the 

Chinese, Japanese and German.

Therefore, the study of the dynamism of the relationships between assets in times of financial

instability becomes of fundamental importance. Multivariate GARCH models (or MGARCH models)

are one of the most effective tools for modeling the co-movement of time series.

However, before introducing these tools, it is helpful to first understand what an ARCH and a 

GARCH are. These models are especially useful when the goal of the study is to analyze and predict 

volatility.

An ARCH (AutoRegressive Conditional Heteroskedasticity) is a model used in history analysis to 

describe a changing variance. It was presented for the first time in 1982 by Engle, probably the 

greatest scholar of methods of analysis of economic-financial historical series. As the acronym says, 

it is an autoregressive model (therefore depending on its past) characterized by conditional 

heteroscedasticity (variance not constant) (the variance depends on past information). The ARCH(p) 

process is defined by the following formula:

2.9) = + ∗

ù

Where the empirical parameters ω and α have the following conditions 0<ω and 0<α (so that the

quantities under the root are always positive) and α<1 (stationarity condition). The variance of the
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time series is therefore a linear combination of the variance of the elements preceding the series itself.

The GARCH models (Generalized AutoRegressive Conditional Heteroskedasticity Model) are

nothing more than a development of the Engle model, which manages to approximate higher order

ARCH models through the use of a smaller number of parameters (advantage of parsimoniousness).

The ARCH model described above is appropriate when the variance of the error in a time series

follows the trend of an AR(p). However, if an ARMA(p,q) model is assumed for the variance of the

error, it is possible to obtain a GARCH(p,q).

This model was developed by Bollerslev in 1986, who did his Ph. D. under Engle on the same topic.

In a GARCH(p, q) model for conditional variance, forecasts depend on a (non negatively) weighted

sum of past squared residuals (from some conditional mean function model) and past forecasts. The

formula is as follows:

2.10) = + ∗ + ∗

Also in this model the parameters ω , α and β are >0 (for each “i” and “j”) and ∑ < 1 and

∑ < 1 (covariance stationarity).

When one univariate time series impacts another univariate time series then it is known as

Multivariate Analysis.

MGARCHs are designed to understand the relationship between volatility and co-volatility of several

univariate variables.

A first model was developed by Bollerslev in 1990, who proposed a GARCH model consisting of a

number n of univariate GARCH models, related to each other by a matrix ρ of constant conditional

correlation. It follows that the conditional covariances are proportional to the product of the

corresponding conditional standard deviations. This restriction solves one of the main problems of

the multivariate GARCH literature, namely the complexity of the estimation due to the large number

of parameters. This model, called a Constant Conditional Correlation (CCC GARCH Model) is

defined by the following formula:

2.11) = ∗ ∗

Where represents the conditional variance matrix, R is a symmetric positive matrix (with =1,
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∀ ) containing the constant conditional correlations . The matrix is symmetric and contains
∗( ) elements:

=

1
1

1

⋯
⋯
⋯

⋮ ⋮ ⋮
1 ⋱ ⋮
⋱ ⋱ ,
⋯ , 1

is the conditional standard deviation which has the form of a diagonal square matrix

∗ … ∗ ; this can be represented as:

=

, 0 0
0 , 0
0 0 ,

0 ⋯ 0
0 ⋯ 0
0 ⋯ 0

0 0 0
⋮ ⋮ ⋮
0 0 0

, ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ,

R is definite positive, while is positive if and only if all conditional variances are positive.

The CCC GARCH, although it represents an important development of multivariate modeling, has a

significant limitation: in the real world the hypothesis that conditional correlations are constant is

unrealistic. Engle in 2002 proposes a generalization of the Bollerslev model making the conditional

correlation matrix time dependent; this model is called Dynamic Conditional Correlation GARCH

(DCC).

This model allows, through dynamic conditional variances and correlations, to take into account the

dynamic effect of financial contagion. In particular, the model has been used by many economists to

estimate the contagion effects of the US subprime crisis on international stock markets. For example,

one can cite the contribution “Contagion Effects of the U.S. Subprime Crisis on International Stock

Markets” by Inchang Haeuck, Tong Suk Kim and Francis Hwang In, who not only found financial

contagion in emerging markets, more sensitive to shocks due to their underdeveloped markets and

high public deficits, but even in developed markets (Haeuck, Kim, Hwang, 2010).

DCC GARCH is applied to capture the degree of volatility correlation changes or spillover between

two or more variables. The aim of the model is to study the interdependence in volatility of one

variable on another. Market integration is represented by a conditional correlation movement that

varies over time in nature. The model is nothing but a non-linear combination of univariate GARCH
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models in which the multivariate conditional variance is estimated through the univariate GARCH

model of each market.

The equation through which the model is expressed is similar to that of CCC GARCH Model:

2.12) = ∗ ∗

Where represents the conditional correlation estimator, which has the form of a square diagonal

matrix of conditional variances at time. is the conditional standard deviation which has the same

diagonal square matrix form as the one represented above.

The elements constituting the matrix can also be estimated by processes which are not standard

GARCH(p,q) but also by any GARCH process with normally distributed errors and satisfying the

conditions of stationarity and non-negativity. Also the number of lags need not be the same for all

univariate series.

is the conditional correlation matrix of the standardized disturbances ∼ (0, ). The matrix is

symmetric and has the following form:

=

1 , ,

, 1 ,

, , 1

, ⋯ ,
, ⋯ ,
, ⋯ ,

, , ,
⋮ ⋮ ⋮

, , ,

1 ⋱ ⋮
⋱ ⋱ , ,
⋯ , , 1

One of the advantages of DCC models is that correlation matrices are easier to handle than covariance

ones.

To ensure that the above requirements are met in Engle's model, R is presented as:

2.13) R = ∗ ∗ ∗ ∗

2.14) = (1−∝ − ) ∗ + ∗ ∗ + ∗

With ∝ and β scalar parameters that implies that the estimators obtained in the DCC GARCH are

dynamic and time-varying; represents the unconditional variance matrix relating to the

standardized errors , and can be estimated through the equation = ∑ ∗ .
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So, the correlation process is driven by only two parameters ∝ and β. It is specified that the number 

of parameters does not depend on the number of model variables: ∝ and β control the time evolution 

of all the conditioned correlations regardless of the number of historical series k involved. This is 

indeed a great advantage as the models are relatively simple to estimate.

∝measures the short run volatility impact, which means the persistence of the standardized residuals 

for the previous period. β measures the lingering effect of a shock impact on the conditional 

correlation, which is the persistence of the conditional correlation process. The sum of these 

parameters must satisfy the following condition 0<∝+β<1, which indicates that the conditional 

correlation in the models are not constant over time.

It can be seen that the equation of is similar to that of a GARCH(1,1) process; is a positive

definite matrix, while ∗ is a normalization matrix. The dynamic dependence of the correlations is

controlled by the parameters ∝ and β.

The model is divided into two steps. In the first step, the series of all univariate GARCH variables is 

estimated; in the second phase the correlation between the variables is estimated.

The procedure is therefore as follows:

- A A model is used to estimate the conditional mean of the time series of returns ( ) while

= − are the residuals (where is a multivariate time series of returns);

- GARCH univariate volatility models are applied to each component of the series; 

- The standardization is carried out through =
,

( = ,..., )′ and the DCC model is

adapted to .

It must be specified that the conditional distribution of can be both that of a multivariate standard

Gaussian and that of a multivariate standard t-Student with n* degrees of freedom.

It can be concluded that the main advantage of the DCC GARCH is related to the fact that this allows

modeling not only the variance and covariance, but also the flexibility.

In addition to the DCC model, there are other models that analyze the volatility spillover between

multiple markets or assets, such as for example the BKK GARCH proposed by Engle and Kroner in

1995. This model is a multivariate GARCH model which estimates the conditional mean function

and volatility conditional function of high dimensional relationships. It is used to test the volatility

spillover between the multi-market segments that is estimated by maximum likelihood.



37

The model is specified by the following equation:

′)1 − ()1 − (  + )1 − (  + )1− ()1 − ( + =  )2.15

Where H indicates the time varying variance and covariance matrix of the time series variables, the 

U is instead the matrix of the residuals from the mean equation, A-B-C-D are mean coefficient 

matrices.

The BKK and DCC GARCH models are very similar; the DCC is usually used to predict conditional

correlations, while the BEKK conversely is used to predict conditional covariances. However some

theoretical studies (such as the article “Do We Really Need Both BEKK and DCC? A Tale of Two

Covariance Models”) reported that the DCC model is empirically preferred due to the fact that 

the BKK suffers from so-called “curse of dimensionality” (Caporin, McAleer, 2012). This

phenomenon implies that the fully parameterized conditional covariance model has the number of

parameters increasing by order greater than the number of resources, with growth of order O( ).

This "curse" is actually common to both models; however, it is possible to apply the so-called

"targeting" to the DCC model, through which, if certain conditions are met, it is possible to use a

sample variance estimator to reduce the number of intercept parameters and, consequently, make the

estimation easier also for large cross-sectional dimensions.
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3. Empirical analysis

3.1. Model data and inputs

After having introduced the context and the elements covered by the study, it is possible to move on

to the empirical part of the thesis, where the advantages of implementing a dynamic allocation scheme

in the portfolio will be presented.

For the purposes of carrying out this verification, this study considers a specific case, namely that of 

a patient investor who, at the advent of the financial crisis caused by the Covid-19 pandemic, decides 

to enter the market, countering the opposite signals from the environment. The portfolio that the 

individual will decide to use is that of a hedge fund portfolio, which has historically had excellent 

returns in bearish periods.

The CAPM mean-variance approach will be used as a portfolio optimization method; this assumes 

that the covariance matrix is constant, or rather that the investor "looks forward one period". However, 

investment decisions can also be made by analyzing multiple future time periods: these generate 

dynamic optimization models.

Such models assume that the variance-covariance matrix is time-varying; it follows that the weights 

of the portfolio must be adjusted according to the modifications of the optimization parameters, so as 

to obtain a real-time update. For this purpose the DCC GARCH model will be used, which will allow 

rebalancing at regular intervals.

The data used in the study was taken from the Hedge Fund Research website and is monthly. The 

sample will be divided into two time intervals: the first is between February 2010 and February 2020, 

the second from the latter date until December 2022. The data referring to the first period are used 

to adapt the model, estimating all the parameters necessary for the formation of the portfolio which 

optimizes the investor's utility function. Regarding the second period, the data obtained is used 

to adjust and rebalance the portfolio on a monthly basis.

Before starting the application part on the model, it is advisable to understand which indexes the 

investor must select through a preliminary analysis.

For this purpose, an analysis was carried out among ten of the major hedge fund indexes, in order to 

select the best assets to include in the portfolio. The indexes to be analyzed are the following:

· HFRIEHI: this index adopts an equity hedge strategy, so it is mainly composed of HFs holding
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both long and short positions in equities and equity derivatives. Investment decisions are the result

of a variety of both quantitative and fundamental techniques; strategies are usually broadly

diversified and can vary widely in terms of net exposure levels, leverage, holding periods, market

capitalization concentrations and portfolio valuation ranges.

· HFRISEN: is a sector index with an equity hedge strategy, which however provides a primary

focus in the energy and basic materials area

· HFRIHLTH: this is also a sector index with an equity hedge strategy, which has a primary focus

on the Healthcare sector

· HFRITECH: is a sector index with an equity hedge strategy, which has a primary focus on the

Technology sector

· HFRIEDI: this index adopts an "Event-Driven" strategy, which means that it is composed of funds

that maintain positions in companies currently or potentially involved in corporate transactions

of a large scale and variety, such as for example mergers, restructurings, financial difficulties,

public offers of purchases, share buybacks, debt swaps, security issues or other capital structure

adjustments.

· HFRIMI: this index adopts a "macro" strategy, that is one based on the movements of

macroeconomic variables and the impact these have on the equity, bond, hard currency and

commodity markets. As is the case with EHs, the managers of these funds use a wide variety of

both quantitative and fundamental analyses; the periods of detention are both long-term and short-

term.

· HFRIRVA: this index adopts a strategy based on the analysis of valuation discrepancies in the

relationship between multiple securities. In particular, the manager exploits price differentials by

buying and selling different financial products simultaneously. As in equity hedges and macros,

the managers in these strategies use fundamental and quantitative methods to establish their

strategies and identify investment opportunities.

· HFRIFOF: This index aims to achieve a broadly diversified portfolio and appropriate asset

allocation with investments in a variety of fund categories (a true diversified portfolio of funds).

The aim is to obtain better exposure with lower risks than investing directly in financial products.

The FOF manager has discretion in choosing which strategies to invest in for the portfolio.

· HFRIEM: this index is based on a geographical strategy based on investment in emerging

markets. In particular, the managers mainly invest long in corporate or sovereign debt securities
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of developing countries such as Africa, Asia (excluding Japan), Latin America, the Middle East,

Russia and Europe Oriental. The weightings between the various regions are carried out on the

basis of the country risk and the future prospects of the various areas.

· HFRICRDT: this index is based on strategies traded mainly in the credit markets. It is an

aggregation of different types of analysis methodologies, mainly relating to the Event-Driven and

Relative Value HF indexes. Among these it is possible to mention credit arbitrage and fixed

income convertible arbitrage strategies, distressed/Restructuring strategies, strategies based on

Fixed Income assets and fixed income.

Before determining the efficient frontier it is therefore necessary to obtain some indicators through

which it is possible to select the most suitable indexes for the analysis.

Table 1: Preliminary analysis of the HF indexes

Average corr Sharpe
HFRISEN 0.52 - 0.02

HFRIHLTH 0.48 0.31

HFRITECH 0.52 0.35

HFRIEHI 0.32 0.20

HFRIFOF 0.30 0.21

HFRIEM 0.35 0.11

HFRIEDI 0.61 0.29

HFRIFWI 0.61 0.25

HFRIMI 0.30 0.10

HFRIRVA 0.60 0.49

HFRICRDT 0.61 0.48

Source: HFR website, data from February 2010 to February 2020

Where darker colors denote more interesting elements.

The Sharpe ratio represents the measurement of the portfolio's performance from the point of view of

the return on securities (net of the risk-free rate), in relation to the risk (standard deviation).

As can be seen from the table described above, the Sharpe ratio of HFRISEN is negative since it has

a negative average return value (it should be noted that a risk-free rate =0 was chosen for

convenience). The indexes with the highest Sharpe are HFRIRVA and HFRICRDT, with a value

close to 0.5.

The average correlation was selected as the second indicator in order to be able to make selections in

order to minimize the variance of the portfolio: a lower minimum average correlation is synonymous
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with better portfolio diversification. From this second factor it is possible to select the indexes

HFRIEHI, HFRIFOF and HFRIMI which have an average value of 0.3.

3.2. Data analysis and diagnostic checks

It is therefore possible to move on to the application part of the thesis, in which the data described in

the previous paragraph will be used in order to analyze the benefit of a dynamic portfolio rebalancing.

It should be noted that the calculations carried out from here on were carried out using the R Studio

software and are reported in the Appendix 1 section.

After calculating the returns of the indexes, it is possible to proceed with the analysis of the

characteristics of the data for the series of returns. In this regard, the variance-covariance matrix and

the correlation matrix were calculated.

Table 2: Variance-Covariance matrix of HF portfolio

HFRIEHI HFRIFOF HFRIMI HFRIRVA HFRICRDT

HFRIEHI 0.4102 0.2068 0.0080 0.0248 0.0395

HFRIFOF 0.2068 0.1237 - 0.0066 0.0095 0.0183

HFRIMI 0.0080 - 0.0066 0.1552 0.0366 0.0357

HFRIRVA 0.0248 0.0095 0.0366 0.0742 0.0750

HFRICRDT 0.0395 0.0183 0.0357 0.0750 0.0811

Source: HFR website, data from February 2010 to February 2020

Table 3: Correlation matrix of HF portfolio

HFRIEHI HFRIFOF HFRIMI HFRIRVA HFRICRDT

HFRIEHI 1.0000 0.9180 0.0315 0.1421 0.2166

HFRIFOF 0.9180 1.0000 - 0.0474 0.0991 0.1831

HFRIMI 0.0315 - 0.0474 1.0000 0.3409 0.3184

HFRIRVA 0.1421 0.0991 0.3409 1.0000 0.9672

HFRICRDT 0.2166 0.1831 0.3184 0.9672 1.0000

Source: HFR website, data from February 2010 to February 2020
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From the first table it is not possible to comment much on the portfolio as finding two indexes with

a high or low covariance is not a useful parameter if used alone. It can only be noted that the HFRIEHI

has a much higher variance than that of the other indexes, a figure that is even more relevant taking

into account that previously it was seen that it was one of the indexes that had the lowest average

correlation.

More interesting is certainly the correlation matrix, in which it is possible to see first of all that almost

all the values are positive (the only negative value is that between the Fund of Funds and the macro

HFI, which is negligible anyway). The most correlated indexes are HF equity hedge and HF FOF

which have in common the fact that they invest in the same equity class (entirely in the case of the

first, predominantly in the case of the second) and that they are both funds in which the managers

mainly make use of fundamental analysis , selecting the best investment opportunities with respect to

market prices. Two other particularly correlated indexes are HFRIRVA and the HFRICRDT: the

positive and high correlation between these two indexes was quite obvious as the HFRICRDT is

largely based on sub-strategies of the Relative Value index (such as fixed income - Asset Backed

Index, Fixed Income-Convertible Arbitrage Index, Fixed Income-Corporate Index, Multy-Strategy

Index).

If it is excluded the possibility of having negative weights (so without short selling), proceeding with

the construction of the efficient frontier it is possible to obtain:

Figure 10: Efficient frontier and equally weighted portfolio
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Where the red point represents the global minimum variance portfolio, the colored rhombuses

represent the positioning of each asset according to their Risk/Return and the blue square represents

the equal weights portfolio. As was imaginable to think, the efficient frontier is better than single

assets and the equally weighted portfolio because it is the output of an optimization process. The

yellow diamond representing the HFRICRDT index is approaching the efficient frontier, which will

most likely constitute a very high percentage of the weight in the portfolio due to a high level of risk.

Moving on to the analysis of the weights, it is possible to obtain that in the minimum variance 

Portfolio (identified in the point [0.0066; 0.0014] these are:

Figure 11: Analysis of the minimum variance portfolio

From the analysis carried out previously, it was foreseeable that the minimum variance portfolio had

the HFRIMI and HFRIRVA indexes which had a low average correlation. Less obvious was the

presence of the HF Relative Value index, which, despite having a high average correlation

(especially with the HFRICRDT index), has the lowest standard deviation (as can be seen from the 

variance-covariance matrix).

It is also interesting to analyze the following graph, from which it is possible to observe the trend of 

the weights as the standard deviation increases (it should be noted that the x axis represents the points 

of the efficient frontier following zero, or rather following the Minimum Variance Portfolio).
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Figure 12: Weights variation (without short selling)

As can be seen, as the risk increases, the three indexes that make up the minimum variance portfolio

decrease more and more. From point 15 onwards, the two main indexes that make up the portfolio

are those that had the highest Sharpe Ratio; the HFRIEHI timidly enters point 15 and then disappears

in point 21, reaching a maximum value of 9.11% in point 19. From point 21 onwards, the portfolio

consists almost exclusively of the HFRICRDT asset (which agrees with the comment of the efficient

frontier).

If the positivity constrain of the weights is removed (so if short selling is admitted), the following

efficient frontier is obtained:

Figure 13: Comparison between the efficient frontier with and without short selling

The new efficient frontier, presented in the graph with the larger dots, is higher than the one calculated
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with the short selling constraint; this was to be expected as short selling allows for greater portfolio

differentiation. The global minimum portfolio in this case is identified in the point [0.0053; 0.0016],

thus presenting a significant improvement in the risk-return ratio. This is found more to the left as it

is characterized by a lower correlation between assets (and therefore to maximize the effects of

diversification).

As in the previous case, it is interesting to analyze the changes in the weights as one moves away 

from the zero point (that is the minimum variance portfolio).

Figure 14: Weights variation (with short selling)

As can be seen from the graph, the HFRIEHI and HFRICRDT indexes (blue and light blue area) have

negative weights for many of the points following the global minimum portfolio of the efficient

frontier. The HF relative value index is even more important in the portfolio, consistently covering

between 76% and 78%. Basically, the main change in the composition of the portfolio that occurs as

risk increases is the progressive replacement of the HF Funds of Funds with the two indexes that

initially show negative weights (HFRIEHI and HFRICRDT).

It is also possible to visualize the graph of the efficient frontier through a Monte Carlo simulation, 

which allows to calculate a series of possible realizations of the HF portfolio through a 

probabilistic model that assigns the value of the weights randomly.
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Figure 15: Efficient frontier with a Monte Carlo simulation

As it is possible to see there are several thousand portfolios within the efficient frontier, which, being

located under the curve, are considered sub-optimal (therefore it will always be better to choose the

realizations that coincide with the frontier, as they represent the highest return for each level of risk).

It is possible to proceed with the analysis of some descriptive statistics relating to the series of returns.

The average Skewness and Kurtosis are as follows:

Table 4: Skewness and Kurtosis analysis

HFRIEHI HFRIFOF HFRIMI HFRIRVA HFRICRDT

Skewness -0.5699009 -0.6787536 0.09064997 -0.6511869 -0.6083743

Kurtosis 0.8548134 0.4795859 -0.02802581 0.356992 0.452555

As it is possible to see all the series present a non-normality, with a generally negative skewness (with

the exception of the HFRIMI which is very close to zero) and a kurtosis always higher than zero (note

that the R Studio function used subtracts 3 for obtain the Kurtosis coefficient). Also in this case the

only exception is found HFRIMI which value is even negative and is very close to zero of the normal.

It is possible to confirm these results also by analyzing the results of the Jarque-Bera test, through

which it is possible to verify the hypothesis of normality:
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Table 5: Jarque-Bera test

Jarque Bera HFRIEHI HFRIFOF HFRIMI HFRIRVA HFRICRDT

X-squared 10.9760 10.9830 0.1702 9.6278 8.9653

p-value 0.0041 0.0041 0.9184 0.0081 0.0113

As is possible, with the exception of HFRIMI, all indexes tests have the result of rejecting the null 

hypothesis that the data are normally distributed. In the HFRIMI, on the other hand, having a test 

statistic of 0.1702 and a p-value of 0.9184, it is the case of "do not reject" the null hypothesis 

(therefore the series appears to be normally distributed, confirming what had been anticipated in the 

previous analysis).

It is possible to move on to the study of the stationarity of the return series to verify that they can be

used directly for the analysis without requiring further transformations. First of all let's analyze the

graphs of the return series.

Figure 16: Return series analysis
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From the graphs it is possible to notice that in none of the 5 return series there is neither a constant 

(the average of the fluctuations is always around zero) nor a time trend (as there is no positive or ne-

gative trend in the series but the occur around a constant that can be approximated to zero).

To this end, some unit root tests are performed, including the Augmented Dickey-Fuller (ADF), the

Philipps-Perron (PP) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS).

Table 6: Unit root tests analysis

HFRIEHI HFRIFOF HFRIMI HFRIRVA HFRICRDT

ADF stat - 5.0077 - 4.6518 - 4.6616 - 4.6754 - 4.2396

p-value 0.01 0.01 0.01 0.01 0.01

PP stat - 114.1600 - 103.4700 - 137.7900 - 89.0660 - 84.0920

p-value 0.01 0.01 0.01 0.01 0.01

KPSS stat 0.035118 0.043189 0.06579 0.1852 0.16429

p-value 0.01 0.01 0.01 0.01 0.01

Assuming a significance level of 5%, the ADF Stat is equal to -1.94 (since it was possible to see from 

the previous analysis that this does not have a time trend or a constant. Net of this it is possible to 

conclude that one must reject the null hypothesis, as all test statistics are more extreme than the critical 

value and the p-values are lower than the significance level (5%). This implies that the series do 

not have a unit root (which means that the data is stationary).

The table also includes the Phillips-Perron and the Kwiatkowski-Phillips-Schmidt-Shin which

confirm the result previously obtained with the ADF test. The fact that all three of these tests had the

same result is not obvious: indeed it can happen that for some tests the data show non-stationarity and

in another the same series turns out to be stationary. One of the reasons of these different results is

for example the presence of structural breaks, which can alter the functioning of the ADF test.



49

If, on the other hand, the test revealed that the series was not stationary, this would have required the

use of a transformation that made the data become stationary, by taking the log returns and first

difference.

Another preliminary test that is useful to analyze is the Ljung-Box test, which allows to check whether

there is autocorrelation in a time series. In particular, in this test the null hypothesis predicts that the

series is distributed in an uncorrelated way, while the alternative hypothesis predicts on the contrary

that these show a serial correlation.

Table 7: Ljung–Box test

Ljung-Box test HFRIEHI HFRIFOF HFRIMI HFRIRVA HFRICRDT

X-squared (lag=20) 14.282 16.629 16.17 24.621 35.18

p-value (lag=20) 0.8159 0.6769 0.706 0.2163 0.01917

The test was performed with lag=20; as it is possible to see from the analysis of the X-Squared and

of the p-values it is possible to notice that for all the indexes with the exception of the HFRICRDT it

is not possible (fail) to reject the null hypothesis so the series are iid (independent and identical

distributed).

This result is quite anomalous since the object of the analysis is that of financial products, but

plausible since the data are monthly and therefore there could be even considerable variations. So the

series, with the exception of the Credit Index, do not have a serial correlation.

It is also possible to analyze the presence of volatility clusters by re-testing with squared returns:

Table 8: Ljung–Box test ( )

Box-Ljung test HFRIEHI^2 HFRIFOF^2 HFRIMI^2 HFRIRVA^2 HFRICRDT^2

X-squared (lag=20) 21.561 17.932 15.512 26.271 47.281

p-value (lag=20) 0.3648 0.5919 0.7464 0.157 0.0005362

Also in this case the results are compromised by the monthly data; the test highlights the absence of

the presence of autoregressive conditional heteroskedasticity.

Further investigation of the autocorrelations in returns may be needed therefore the ACF and PACF

are analyzed.

To this end, an analysis was performed to find the autocorrelation (p) and the moving average (q)
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lags using the auto.arima function. The procedure is as follow: the first step is determining the optimal 

lags, so they are used to compute adjusted returns and residual time series from the average model. 

The residual time series are calculated as the difference between returns and fitted returns. So 

residuals in that time series model are what is left after fitting the model. They are very helpful in 

checking whether the model has adequately captured the information in the data or not.

It is possible to move on to the "diagnostic check", analyzing the graphs relating to the

autocorrelogram (ACF) and partial-autocorrelogram (PACF) to view the analysis of the

autocorrelation of the residuals from the optimal ARMA(p,q) model.

Figure 17: Analysis of ACF and PACF
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None of the time series of the residuals appears to present autocorrelation as there is no peak outside

the statistically insignificant area; therefore the residuals are independent.

A second check is to verify that the residuals are normally distributed and if they have constant mean

at zero.

Figure 18: Analysis of the residuals
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In the graphs on the left it is possible to see that the residuals are in all cases bell shapes and many of

which show a fairly normal distribution. Some of these graphs like HFRIRVA and HFRIFOF look

slightly left skewed, however this could be due to the fact that there are only 121 observations in the

analysis. From the graphs on the right, however, it is possible to see that the residuals show a constant

mean at time zero.

Therefore, from the various tests it is possible to conclude that the return series are ready for the 

use of the DCC GARCH model.

3.3. Application of the DCC GARCH

Once the time series has been analyzed, it is therefore possible to move on to the introduction of the 

dynamic component by analyzing the interdependence between the volatility of one variable and 

another. For this purpose a DCC GARCH is performed, a model that allows modeling directly the 

variance and the covariance but also its flexibility, using only two parameters (alpha and beta).

The first step is to study the spillover effect between the five indexes. To this end the volatility of the

times series is modeled using a GARCH(1,1) model with a multivariate normal distribution, while

the mean equation has been fitted with an ARMA(0,0).

The parameters that will then be used to estimate the variance-covariance matrix and the time-varying 

correlation processes are then calculated.

The estimated values for the DCC are shown below.
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Figure 19: Output of the DCC GARCH model

In the left column it is possible to see for each index the mu (overall mean), omega (constant), alpha

(which represents the ARCH model), beta (which represents the GARCH model), dcca1 (that is the

short run volatility impact) and dccb1 (that is the long run volatility impact). From the column on the

right it is possible to see through the p-values that some of the parameters are not significant.

What is important to verify is that the beta is significant: this is the case in all indexes except the

HFRIEHI. Another thing that is important to check is the significance of dcca1 and dccb1: dcca1 is

not significant and this means that there is no short run spillover effect of volatility. On the other

hand, analyzing the dccb1 it will be found that this is instead significant and therefore there is a long

run spillover of volatility. The estimates of these coefficients are positive and if dcca1 and dccb1 are

added, the value is less than 1, therefore the estimates are also below the threshold limit value. This

is proof that there is a dynamic conditional correlation between the five indexes.

It is possible to proceed with the estimation of the correlation and variance-covariance matrix which

will be different in the different time periods which will be useful for calculating the dynamic efficient

frontier. The optimization of the portfolio that is the subject of this study is based on the division of
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the time span into two sub-periods: the first that has been analyzed up to now goes from February 

2010 to February 2020 and the second from February 2020 to December 2022. And it is thanks to the 

data of this second period of time that all the parameters necessary for the formation of the optimal 

dynamic portfolio are estimated.

Therefore, it is possible to proceed with the estimation of the correlation and variance-

covariance matrix which will be different in the different time periods which will be useful for 

calculating the dynamic frontier. The estimation of these matrices will be carried out through the 

use of a rolling window, that is an interval of fixed size made up of 121 data (10 years) which 

however will move at each rebalancing of a month. It follows, for example, that for the purposes 

of estimating the matrix of differences1 using the DCC GARCH, the input data from March 2010 to 

March 2020 will be used, for the second from April 2020 to April 2022 and so on. Since between 

2010 and 2018 the data did not show significant changes that could influence the window, it has 

been chosen to use the 10-year interval.

The first portfolio was then constructed using historical data up to February 2020; following this 

interval, a monthly rebalancing process is programmed in which the weights of the portfolio are 

updated and a new efficient frontier is consequently generated (34 total rebalances). What is obtained 

after all the related portfolio’ updates is as follows.

Figure 20: Changes of the efficient frontier over time – 2020
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As can be seen there is a rather high degree of instability in efficient frontiers. The initial frontier of

the investor (that is the one built on the day of the advent of the pandemic) stands above the others.

This was to be expected as in March 2020 the worsening of the pandemic led to the fall of the markets.

As a consequence, the new efficient frontiers will be located lower down and will be characterized 

by a lower return for the same level of standard deviation.

After April 2020 there is an increase of the efficient frontier, as a consequence of the end of the bear 

market due to the Covid-19 pandemic (which ended on April 7th). The frontier progressively only to 

then have a new slight relapse following the second wave of viruses. It is also interesting to analyze 

the shift of the global minimum portfolio, which initially falls and moves further to the right. This is 

not new to us, as it confirms what was said in the article "Flexible Dynamic Conditional Correlation 

multivariate GARCH models for asset allocation" (Billio, Caporin e Gobbo, 2006): correlations 

increase positively in periods of high volatility and that both the magnitude and persistence of the 

correlation are affected by risk.

Figure 21: Changes of the efficient frontier over time - 2021
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It is therefore possible to move on to the analysis of the year 2021. After the first quarter of the 

year, which remains in line with the latest updates of 2020, there is a significant rise in the frontier 

mainly linked to a considerable increase in HFRIEHI and HFRIFOF. The two indexes in question, 

as it has been possible to observe from the analyses carried out previously on historical data, are 

characterized by a high correlation; their increase probably derives from the introduction of the 

vaccine and from the fiscal stimulus measures which helped to offset the concerns related to the 

previous increase in inflation. The situation remains quite stable for the rest of the year in terms 

of border positioning, except for some shifts in the GMV portfolio (especially in December 2021).

Figure 22: Changes of the efficient frontier over time – 2022

Finally, the efficient frontiers relating to the year 2022 are reported. The year in question was

characterized by some macroeconomic events that shook the financial markets, first and foremost the

war in Russia, which consolidated and amplified some of the critical issues that had already appeared

in the second half of 2021, including the rise in the prices of energy and food raw materials, the

appearance of new obstacles to the functioning of the value chains and the supply of some raw

materials, as well as the increase in volatility on the financial markets. As a consequence, the efficient

frontier has progressively declined. In particular there was a sharp drop in August 2022, mainly

caused by the drops linked to an increase in inflation (these are months in which the Euribor rate
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increases considerably, returning positive after seven years). These are months characterized by 

"wild" and disorienting swings in stocks, bonds, commodities and currencies (note that the last three 

curves have shifted more to the right than the previous ones).

It is therefore possible to move on to the heart of the study where the advantages of periodic portfolio 

rebalancing will be analyzed. Using the indexes analyzed until now, it is possible to proceed with the 

creation and optimization of six portfolios (without any long constrain), in order to compare their 

performances:

1. Equally weighted portfolio, that is that portfolio whose components will all have the same 

percentage weight (in the case of the study since there are 5 assets, each constitute 20% of 

the capital);

2. Efficient portfolio (or benchmark portfolio), that is a portfolio that follows the performance

of a representative benchmark. In this study, the Hedge Fund World Index will be used

(HFRIWI);

3. A static portfolio built with the weights corresponding to the global minimum variance 

(GMV) at time zero;

4. A static portfolio built with the weights corresponding to the maximum Sharpe at time zero 

(CAPM asset allocation method);

5. A dynamic portfolio built using the GMV of each efficient frontier calculated using the 

DCC GARCH;

6. A dynamic portfolio built using the maximum Sharpe of each efficient frontier calculated 

using the DCC GARCH.

The weights of the dynamic portfolios have had the range [-0.5; +1.0] as their position, so it is not 

possible to go short by more than -50% and long by more than 100%. The trend of the weights relating 

to portfolio 6 is as follows:



58

Figure 23: Change over time of the weights related to the DCC GARCH Portfolio (using CAPM

allocation method)

The initial weights are those that coincide with the static portfolio (number 4); the portfolio is mainly

composed of the HF Relative Value and Fund of Funds indexes which together cover 114.96% of the

portfolio.

Speaking instead of the subsequent weights output of the dynamic rebalancing, in light blue it is 

possible to see the HFRIRVA which starts from a value of 76.11% and remains quite high except for 

some ups and downs during the first year due to the effects of market volatility caused by the 

pandemic. Another significant fall occurred in August 2022, due to the increase in inflation and the 

Euribor mentioned in the previous analysis. Overall, the index covered 62.89% of the portfolio, 

almost 20% more than the average weight of the second highest index HFRIFOF which covers an 

average of 43.18%. Also this index (in the graph it is the one in dark green) shows a good speed in 

changing the weight in the portfolio; the greatest ones are found in balancing number 23 (which 

corresponds to January 2022, the month in which the index was characterized by a sharp decline in 

the stock market (of which the index is largely composed). This decrease is due to the ever greater 

increase of consumer price inflation, which during that month reaches annualized highs in four 

decades, and by the decisions made by the Federal Reserve to combat it. Furthermore, as early as this 

month there was war between Russia and Ukraine, with the consequent threat from of possible
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sanctions against the Russian state in case of invasion. This has further contributed to the increase in

the instability of the financial markets. In red it is possible to see the HFRIMI which remains stable

throughout the time frame, without having particular increases or decreases (covers on average 8.94%

of the portfolio). The last two indexes HFRICRDT and HFRIEHI are almost always in short and 

indeed cover on average resp actually -6.44% and -8.59% of the portfolio. The trend of the 

HFRIEHI is very unusual as, despite having a high correlation with the Fund of Funds, this very 

often turns out to have an opposite trend in almost the entire interval under analysis. The 

HFRICRDT, on the other hand, historically has a high positive correlation with the Relative Value 

index; this analysis also does not find much correspondence in the dynamic analysis of portfolio 

weights.

The trend of the weights relating to portfolio 5 (DCC global minimum variance portfolio) is as 

follows.

Figure 24: Change over time of the weights related to the DCC Global Minimum Variance portfolio

The weights appear to have more "extreme" average values than the correspondents of portfolios

number 4 and 6, so both in the static portfolio and in the dynamic one. In particular, in the static

portfolio, the Relative Value Index and the Fund of Funds which covered 114.96% now moved to
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167.24%; this is balanced by the equity and credit index (-83.61% overall).

Even in the dynamic portfolio these values are on average more extreme. The analysis of the portfo-

lio is almost identical to that carried out previously in portfolio 6. The weights of the indexes

show, as normally expected, less variability over time. Also in this case there is a big change near

August 2022 and the reasons are the same as mentioned in the previous analysis.

For an investment of 100k euros in each of the six portfolios at zero time, these will perform as in 

the following graph between February 2020 and December 2022 (one time unit corresponds to 

one month):

Figure 25: Comparison between the performance of the various portfolios identified

As can be seen from the graph, the portfolios that seem to suffer the least impact from the Covid-19

pandemic are the two DCC portfolios (in particular, the one calculated with the minimum global

variance) and the static GMV portfolio. After the end of this first bear market, the two portfolios that

seem to present the best performances are the benchmark portfolio and the DCC maximum Sharpe

portfolio, which confirm their good stability also in period 8 which coincides with the start of the

second wave of the pandemic. Subsequently, the equally weighted portfolio will also perform better
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than the Dynamic Sharpe Portfolio; the two DCC portfolios become competitive again since period

25 following the increase in financial market volatility and instability caused by the Russia-Ukraine

conflict. This demonstrates how effective dynamic rebalancing is during periods of high volatility.

Beyond the general comparison, what is interesting to note for the purposes of this study is that the

two DCC portfolios have always beaten the corresponding static portfolios in each time interval. The

light blue line (dynamic GMV) has always outperformed the red line (static GMV) and this gap has

remained fairly constant over time. The divergence between dynamic and static is even more visible

in the Maximum Sharpe portfolio where in some periods it is close to 8 thousand euros.

Another comparison concerns the average volatility between static and dynamic portfolios.

Table 9: Comparison of volatility in portfolios

MONTHS DCC CAPM STATIC CAPM DCC GMV STATIC GMV EQUALLY HFRIWI

STD DEV PORT 0.011789 0.0167102 0.0091566 0.0095427 0.0165671 0.0202971

As can be seen from the table, the advantage of dynamic rebalancing is considerable both in the

CAPM portfolio and in the GMV.

In the analysis carried out in Figure 25 it was possible to see that the benchmark portfolio HFRIWI

outperformed both DCC portfolios in terms of performance 34 months after the initial investment.

However, the table also shows that the World Index has 221.6% more standard deviation than the dcc

global minimum variance portfolio and 172.2% more than the DCC CAPM.

It is therefore possible to conclude that the results of the empirical analysis are positive, as the purpose

of the study was to be able to capture the changes in the riskiness of the indexes in a context of

financial market instability, improving the asset allocation of the portfolio. The aim was achieved as

both through the quantitative analysis and through the graphic analysis it was possible to ascertain

the positive effects that the dynamic rebalancing brought about in terms of investor protection towards

downwards.

However, it is necessary to mention an aspect that has not been considered in the analysis until now:

transaction costs. The empirical analysis showed that DCC portfolios actually lead to a more

competitive risk/reward ratio; these better performances may disappear as the various fees are

presented. It therefore emerges that for an analysis more likely to the real context, there must be a

compromise between the benefits and costs of portfolio rebalancing.
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Conclusions

This study aimed to improve the optimization of a portfolio in a context of financial market instability, 

characterized by numerous events that generate an alternation of bullish and bearish periods.

This improvement, therefore, had the aim of dealing with the high instability of the markets and 

the limits of traditional asset allocation models (such as the CAPM which was the subject of the 

empirical part) linked in particular not to taking into account any variances and correlations ti-

me-varying returns (thus assuming a constant/static structure). This limit is particularly relevant in 

these contexts of high instability as it does not allow to provide an accurate measure of the 

variance and, consequently, it does not allow to measure the risk accurately.

For this purpose, a portfolio of Hedge Fund Indexes was used as a reference investment. This 

choice was not taken by chance: these, as it is possible to see in the analyzes carried out in chapter 

1, have had a good return during past bear markets, especially in relation to their mutual fund 

counterparts. This is due to the fact that they are changeable investments, which use the short sell 

during down markets in order to protect themselves against downturns and to obtain positive 

returns.

Despite the fact that Hedge Funds are investments themselves, the dynamics are the variance and 

variability of the financial time series over time, with impacts in terms of portfolio construction 

and risk measurement.

Therefore, a DCC GARCH was introduced which made it possible to study the spillover effect 

of volatility that varies over time as well as, through a monthly rolling window, to create 

dynamic portfolios.

The results of the empirical application show that both dynamic investments (GMV and CAPM) show 

better performances after 34 months than their static portfolios. However, what is even more 

important to note is the lower volatility of dynamic portfolios during the most “stressed” and volatile 

periods.

It is therefore possible to conclude that the empirical analysis shows that a dynamic optimization of 

the portfolio through periodic rebalancing guarantees to capture the changes in the riskiness of the 

indexes and therefore to improve the asset allocation during periods of market instability.

Furthermore, carrying out the empirical part, some points for improvement were found which 

would allow both to make the evaluation carried out more reliable and to deepen the theme of dynamic 

models.
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An improvement of this study concerns the use of daily data and not monthly data. However this 

was not possible as the HFRI site does not provide data with a frequency other than the monthly one. 

This would certainly lead to a better ARCH effect and a better evaluation of the advantage of the 

dynamic correlation; the absence of high frequency data makes it more difficult to draw reliable 

conclusions from the results of the empirical study.

A second point for improvement concerns the fact that in this thesis only the context of financial 

markets characterized by high volatility has been examined (since this was the context present in the 

premise of the thesis). However, it would be interesting to compare the performance of the DCC 

model during more "calm" periods, characterized by a long-lived bull market.

The third and final point of improvement concerns the fact that the study used only the DCC GARCH

as a dynamic correlation model. It might be interesting to examine the results of multiple models and

their performance, such as the VEC and BEKK models mentioned in chapter 2 that directly model

the conditional covariance matrix, or study a possible extension of Engle's model, such as the Flexible

Dynamic Conditional Correlation GARCH (FDCC) presented in the article "Flexible Dynamic

Conditional Correlation multivariate GARCH models for asset allocation" (Billio, Caporin e Gobbo,

2006).
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Appendix (R Code)

```{r}

#Load libraries

library(quadprog)

library(ggpubr)

library(openxlsx)

library(fPortfolio)

library(timeSeries)

library(quantmod)

library(dplyr)

library(PortfolioAnalytics)

library(PerformanceAnalytics)

library(ggplot2)

library(DAAG)

library(tseries)

library(moments)

library(FinTS)

library(zoo)

library(rugarch)

library(e1071)

library(rmgarch)

library(moments)

library(forecast)

library(DEoptim)

library(ROI)

#Figures in chapter1

plot(Indexes_confronto$Data,
Indexes_confronto$IXIC,col='white',xlab="Time(from
02.1992 to 11.2022)",ylab="Portfolio PerformanceS")

lines(Indexes_confronto$Data,
Indexes_confronto$GSPC, col='#996633', lwd=1)

lines(Indexes_confronto$Data,
Indexes_confronto$IXIC, col='darkgreen', lwd=1)

lines(Indexes_confronto$Data, Indexes_confronto$DJI,
col='red', lwd=1)

lines(Indexes_confronto$Data,
Indexes_confronto$HFRIEHI, col='#3399FF', lwd=1)

lines(Indexes_confronto$Data,
Indexes_confronto$HFRIFOF, col='blue', lty=1)

lines(Indexes_confronto$Data,
Indexes_confronto$HFRIEM, col='black', lty=1)

plot(figure$Months, figure$`Average Cumulative Loss
over 1 year`, type="l",
col='blue',xlab="Time",ylab="Performance%")

#Figures in chapter2

plot(Gold_Etf$Date, Gold_Etf$compl, type="l",
col='white',xlab="Time",ylab="Performance%")

lines(Gold_Etf$Date, Gold_Etf$`iShares Gold etf`,
col='blue', lwd=1)

lines(Gold_Etf$Date, Gold_Etf$`^GSPC`, col='red',
lwd=1)

#Empirical Analysis

#0 Organize the data

HFRIEHI=select(returns,HFRIEHI)

HFRIFOF=select(returns,HFRIFOF)

HFRIMI=select(returns,HFRIMI)

HFRIRVA=select(returns,HFRIRVA)

HFRICRDT=select(returns,HFRICRDT)

HFRIEHI1=select(returns1,HFRIEHI)

HFRIFOF1=select(returns1,HFRIFOF)

HFRIMI1=select(returns1,HFRIMI)

HFRIRVA1=select(returns1,HFRIRVA)

HFRICRDT1=select(returns1,HFRICRDT)

HFRIEHI2=select(returns2,HFRIEHI)

HFRIFOF2=select(returns2,HFRIFOF)

HFRIMI2=select(returns2,HFRIMI)

HFRIRVA2=select(returns2,HFRIRVA)

HFRICRDT2=select(returns2,HFRICRDT)
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HFRIEHI3=select(returns3,HFRIEHI)

HFRIFOF3=select(returns3,HFRIFOF)

HFRIMI3=select(returns3,HFRIMI)

HFRIRVA3=select(returns3,HFRIRVA)

HFRICRDT3=select(returns3,HFRICRDT)

HFRIEHI4=select(returns4,HFRIEHI)

HFRIFOF4=select(returns4,HFRIFOF)

HFRIMI4=select(returns4,HFRIMI)

HFRIRVA4=select(returns4,HFRIRVA)

HFRICRDT4=select(returns4,HFRICRDT)

HFRIEHI5=select(returns5,HFRIEHI)

HFRIFOF5=select(returns5,HFRIFOF)

HFRIMI5=select(returns5,HFRIMI)

HFRIRVA5=select(returns5,HFRIRVA)

HFRICRDT5=select(returns5,HFRICRDT)

HFRIEHI6=select(returns6,HFRIEHI)

HFRIFOF6=select(returns6,HFRIFOF)

HFRIMI6=select(returns6,HFRIMI)

HFRIRVA6=select(returns6,HFRIRVA)

HFRICRDT6=select(returns6,HFRICRDT)

HFRIEHI7=select(returns7,HFRIEHI)

HFRIFOF7=select(returns7,HFRIFOF)

HFRIMI7=select(returns7,HFRIMI)

HFRIRVA7=select(returns7,HFRIRVA)

HFRICRDT7=select(returns7,HFRICRDT)

HFRIEHI8=select(returns8,HFRIEHI)

HFRIFOF8=select(returns8,HFRIFOF)

HFRIMI8=select(returns8,HFRIMI)

HFRIRVA8=select(returns8,HFRIRVA)

HFRICRDT8=select(returns8,HFRICRDT)

HFRIEHI9=select(returns9,HFRIEHI)

HFRIFOF9=select(returns9,HFRIFOF)

HFRIMI9=select(returns9,HFRIMI)

HFRIRVA9=select(returns9,HFRIRVA)

HFRICRDT9=select(returns9,HFRICRDT)

HFRIEHI10=select(returns10,HFRIEHI)

HFRIFOF10=select(returns10,HFRIFOF)

HFRIMI10=select(returns10,HFRIMI)

HFRIRVA10=select(returns10,HFRIRVA)

HFRICRDT10=select(returns10,HFRICRDT)

HFRIEHI11=select(returns11,HFRIEHI)

HFRIFOF11=select(returns11,HFRIFOF)

HFRIMI11=select(returns11,HFRIMI)

HFRIRVA11=select(returns11,HFRIRVA)

HFRICRDT11=select(returns11,HFRICRDT)

HFRIEHI12=select(returns12,HFRIEHI)

HFRIFOF12=select(returns12,HFRIFOF)

HFRIMI12=select(returns12,HFRIMI)

HFRIRVA12=select(returns12,HFRIRVA)

HFRICRDT12=select(returns12,HFRICRDT)

HFRIEHI13=select(returns13,HFRIEHI)

HFRIFOF13=select(returns13,HFRIFOF)

HFRIMI13=select(returns13,HFRIMI)

HFRIRVA13=select(returns13,HFRIRVA)

HFRICRDT13=select(returns13,HFRICRDT)

HFRIEHI14=select(returns14,HFRIEHI)

HFRIFOF14=select(returns14,HFRIFOF)

HFRIMI14=select(returns14,HFRIMI)

HFRIRVA14=select(returns14,HFRIRVA)

HFRICRDT14=select(returns14,HFRICRDT)

HFRIEHI15=select(returns15,HFRIEHI)

HFRIFOF15=select(returns15,HFRIFOF)

HFRIMI15=select(returns15,HFRIMI)

HFRIRVA15=select(returns15,HFRIRVA)

HFRICRDT15=select(returns15,HFRICRDT)

HFRIEHI16=select(returns16,HFRIEHI)

HFRIFOF16=select(returns16,HFRIFOF)

HFRIMI16=select(returns16,HFRIMI)

HFRIRVA16=select(returns16,HFRIRVA)

HFRICRDT16=select(returns16,HFRICRDT)

HFRIEHI17=select(returns17,HFRIEHI)

HFRIFOF17=select(returns17,HFRIFOF)
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HFRIMI17=select(returns17,HFRIMI)

HFRIRVA17=select(returns17,HFRIRVA)

HFRICRDT17=select(returns17,HFRICRDT)

HFRIEHI18=select(returns18,HFRIEHI)

HFRIFOF18=select(returns18,HFRIFOF)

HFRIMI18=select(returns18,HFRIMI)

HFRIRVA18=select(returns18,HFRIRVA)

HFRICRDT18=select(returns18,HFRICRDT)

HFRIEHI19=select(returns19,HFRIEHI)

HFRIFOF19=select(returns19,HFRIFOF)

HFRIMI19=select(returns19,HFRIMI)

HFRIRVA19=select(returns19,HFRIRVA)

HFRICRDT19=select(returns19,HFRICRDT)

HFRIEHI20=select(returns20,HFRIEHI)

HFRIFOF20=select(returns20,HFRIFOF)

HFRIMI20=select(returns20,HFRIMI)

HFRIRVA20=select(returns20,HFRIRVA)

HFRICRDT20=select(returns20,HFRICRDT)

HFRIEHI21=select(returns21,HFRIEHI)

HFRIFOF21=select(returns21,HFRIFOF)

HFRIMI21=select(returns21,HFRIMI)

HFRIRVA21=select(returns21,HFRIRVA)

HFRICRDT21=select(returns21,HFRICRDT)

HFRIEHI22=select(returns22,HFRIEHI)

HFRIFOF22=select(returns22,HFRIFOF)

HFRIMI22=select(returns22,HFRIMI)

HFRIRVA22=select(returns22,HFRIRVA)

HFRICRDT22=select(returns22,HFRICRDT)

HFRIEHI23=select(returns23,HFRIEHI)

HFRIFOF23=select(returns23,HFRIFOF)

HFRIMI23=select(returns23,HFRIMI)

HFRIRVA23=select(returns23,HFRIRVA)

HFRICRDT23=select(returns23,HFRICRDT)

HFRIEHI24=select(returns24,HFRIEHI)

HFRIFOF24=select(returns24,HFRIFOF)

HFRIMI24=select(returns24,HFRIMI)

HFRIRVA24=select(returns24,HFRIRVA)

HFRICRDT24=select(returns24,HFRICRDT)

HFRIEHI25=select(returns25,HFRIEHI)

HFRIFOF25=select(returns25,HFRIFOF)

HFRIMI25=select(returns25,HFRIMI)

HFRIRVA25=select(returns25,HFRIRVA)

HFRICRDT25=select(returns25,HFRICRDT)

HFRIEHI26=select(returns26,HFRIEHI)

HFRIFOF26=select(returns26,HFRIFOF)

HFRIMI26=select(returns26,HFRIMI)

HFRIRVA26=select(returns26,HFRIRVA)

HFRICRDT26=select(returns26,HFRICRDT)

HFRIEHI27=select(returns27,HFRIEHI)

HFRIFOF27=select(returns27,HFRIFOF)

HFRIMI27=select(returns27,HFRIMI)

HFRIRVA27=select(returns27,HFRIRVA)

HFRICRDT27=select(returns27,HFRICRDT)

HFRIEHI28=select(returns28,HFRIEHI)

HFRIFOF28=select(returns28,HFRIFOF)

HFRIMI28=select(returns28,HFRIMI)

HFRIRVA28=select(returns28,HFRIRVA)

HFRICRDT28=select(returns28,HFRICRDT)

HFRIEHI29=select(returns29,HFRIEHI)

HFRIFOF29=select(returns29,HFRIFOF)

HFRIMI29=select(returns29,HFRIMI)

HFRIRVA29=select(returns29,HFRIRVA)

HFRICRDT29=select(returns29,HFRICRDT)

HFRIEHI30=select(returns30,HFRIEHI)

HFRIFOF30=select(returns30,HFRIFOF)

HFRIMI30=select(returns30,HFRIMI)

HFRIRVA30=select(returns30,HFRIRVA)

HFRICRDT30=select(returns30,HFRICRDT)

HFRIEHI31=select(returns31,HFRIEHI)

HFRIFOF31=select(returns31,HFRIFOF)

HFRIMI31=select(returns31,HFRIMI)

HFRIRVA31=select(returns31,HFRIRVA)
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HFRICRDT31=select(returns31,HFRICRDT)

HFRIEHI32=select(returns32,HFRIEHI)

HFRIFOF32=select(returns32,HFRIFOF)

HFRIMI32=select(returns32,HFRIMI)

HFRIRVA32=select(returns32,HFRIRVA)

HFRICRDT32=select(returns32,HFRICRDT)

HFRIEHI33=select(returns33,HFRIEHI)

HFRIFOF33=select(returns33,HFRIFOF)

HFRIMI33=select(returns33,HFRIMI)

HFRIRVA33=select(returns33,HFRIRVA)

HFRICRDT33=select(returns33,HFRICRDT)

HFRIEHI34=select(returns34,HFRIEHI)

HFRIFOF34=select(returns34,HFRIFOF)

HFRIMI34=select(returns34,HFRIMI)

HFRIRVA34=select(returns34,HFRIRVA)

HFRICRDT34=select(returns34,HFRICRDT)

return.matrix=as.timeSeries(returns)

return.matrix1=as.timeSeries(returns1)

return.matrix2=as.timeSeries(returns2)

return.matrix3=as.timeSeries(returns3)

return.matrix4=as.timeSeries(returns4)

return.matrix5=as.timeSeries(returns5)

return.matrix6=as.timeSeries(returns6)

return.matrix7=as.timeSeries(returns7)

return.matrix8=as.timeSeries(returns8)

return.matrix9=as.timeSeries(returns9)

return.matrix10=as.timeSeries(returns10)

return.matrix11=as.timeSeries(returns11)

return.matrix12=as.timeSeries(returns12)

return.matrix13=as.timeSeries(returns13)

return.matrix14=as.timeSeries(returns14)

return.matrix15=as.timeSeries(returns15)

return.matrix16=as.timeSeries(returns16)

return.matrix17=as.timeSeries(returns17)

return.matrix18=as.timeSeries(returns18)

return.matrix19=as.timeSeries(returns19)

return.matrix20=as.timeSeries(returns20)

return.matrix21=as.timeSeries(returns21)

return.matrix22=as.timeSeries(returns22)

return.matrix23=as.timeSeries(returns23)

return.matrix24=as.timeSeries(returns24)

return.matrix25=as.timeSeries(returns25)

return.matrix26=as.timeSeries(returns26)

return.matrix27=as.timeSeries(returns27)

return.matrix28=as.timeSeries(returns28)

return.matrix29=as.timeSeries(returns29)

return.matrix30=as.timeSeries(returns30)

return.matrix31=as.timeSeries(returns31)

return.matrix32=as.timeSeries(returns32)

return.matrix33=as.timeSeries(returns33)

return.matrix34=as.timeSeries(returns34)

x.Return=ts(returns,start=c(2010, 2), end=c(2020, 2),
frequency=12)

return.HFRIEHI=as.timeSeries(HFRIEHI)

return.HFRIFOF=as.timeSeries(HFRIFOF)

return.HFRIMI=as.timeSeries(HFRIMI)

return.HFRIRVA=as.timeSeries(HFRIRVA)

return.HFRICRDT=as.timeSeries(HFRICRDT)

#1 Calculating the efficient frontier

#1.1 Long only constraint

efficient.frontier1=portfolioFrontier(return.matrix,
constraints = "LongOnly")

plot(efficient.frontier1, c(1,2))

portfolio.min.var=minvariancePortfolio(return.matrix,
constraints ="LongOnly")

weights.min.var1=getWeights(portfolio.min.var)

weights.min.var1

barplot(weights.min.var1)

pie(weights.min.var1)

frontierWeights=getWeights(efficient.frontier1)

frontierWeights

risk_return<-frontierPoints(efficient.frontier1)
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cor_matrix<-cor(return.matrix)

cor_matrix

cov_matrix<-cov(return.matrix)

cov_matrix

#1.2 Introduce Short Selling

Spec=portfolioSpec()

setTargetRisk(Spec)=.12

setSolver(Spec) = "solveRshortExact"

constraints1<-c("minW[1:length(tickers)]=-
1","maxW[1:length(tickers)]=.60","Short")

efficient.frontier2=portfolioFrontier(return.matrix,
Spec, constraints = constraints1)

plot(efficient.frontier2, c(1,2,3,4,5))

weightsShort=getWeights(efficient.frontier2)

weightsShort

portfolio.min.var2=minvariancePortfolio(return.matrix,
Spec, constraints = constraints1)

weights.min.var2=getWeights(portfolio.min.var2)

plot(efficient.frontier1, c(1,7))

#2 Descriptive statistics

#2.1 Normality tests

skewness(return.HFRIRVA)

skewness(return.HFRIMI)

skewness(return.HFRIEHI)

skewness(return.HFRIFOF)

skewness(return.HFRICRDT)

skewness(return.matrix)

kurtosis(return.HFRIRVA)

kurtosis(return.HFRIMI)

kurtosis(return.HFRIEHI)

kurtosis(return.HFRIFOF)

kurtosis(return.HFRICRDT)

kurtosis(return.matrix)

jarque.bera.test(return.HFRIRVA)

jarque.bera.test(return.HFRIMI)

jarque.bera.test(return.HFRIEHI)

jarque.bera.test(return.HFRIFOF)

jarque.bera.test(return.HFRICRDT)

#2.2 Unit root tests

plot(return.HFRIRVA)

plot(return.HFRIMI)

plot(return.HFRIEHI)

plot(return.HFRIFOF)

plot(return.HFRICRDT)

adf.test(return.HFRIRVA)

adf.test(return.HFRIMI)

adf.test(return.HFRIEHI)

adf.test(return.HFRIFOF)

adf.test(return.HFRICRDT)

pp.test(return.HFRIRVA)

pp.test(return.HFRIMI)

pp.test(return.HFRIEHI)

pp.test(return.HFRIFOF)

pp.test(return.HFRICRDT)

kpss.test(return.HFRIRVA)

kpss.test(return.HFRIMI)

kpss.test(return.HFRIEHI)

kpss.test(return.HFRIFOF)

kpss.test(return.HFRICRDT)

#2.3 Ljung-Box tests

x.HFRIRVA=ts(HFRIRVA,start=c(2010, 2),
end=c(2020, 2), frequency=12)

Box.test(HFRIRVA,lag=20,fitdf=0, type = "Ljung-
Box")

x.HFRIMI=ts(HFRIMI,start=c(2010, 2), end=c(2020,
2), frequency=12)

Box.test(x.HFRIMI,lag=20,fitdf=0, type = "Ljung-
Box")

x.HFRIEHI=ts(HFRIEHI,start=c(2010, 2), end=c(2020,
2), frequency=12)
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Box.test(x.HFRIEHI,lag=20,fitdf=0, type = "Ljung-
Box")

x.HFRIFOF=ts(HFRIFOF,start=c(2010, 2),
end=c(2020, 2), frequency=12)

Box.test(x.HFRIFOF,lag=20,fitdf=0, type = "Ljung-
Box")

x.HFRICRDT=ts(HFRICRDT,start=c(2010, 2),
end=c(2020, 2), frequency=12)

Box.test(x.HFRICRDT,lag=20,fitdf=0, type = "Ljung-
Box")

x.HFRIRVA2=x.HFRIRVA^2

x.HFRIEHI2=x.HFRIEHI^2

x.HFRIFOF2=x.HFRIFOF^2

x.HFRICRDT2=x.HFRICRDT^2

x.HFRIMI2=x.HFRIMI^2

Box.test(x.HFRIRVA2,lag=20,fitdf=0, type = "Ljung-
Box")

Box.test(x.HFRIMI2,lag=20,fitdf=0, type = "Ljung-
Box")

Box.test(x.HFRIEHI2,lag=20,fitdf=0, type = "Ljung-
Box")

Box.test(x.HFRIFOF2,lag=20,fitdf=0, type = "Ljung-
Box")

Box.test(x.HFRICRDT2,lag=20,fitdf=0, type = "Ljung-
Box")

#2.4 Diagnostic

auto.arima(x.HFRIRVA)

auto.arima(x.HFRIMI)

auto.arima(x.HFRIEHI)

auto.arima(x.HFRIFOF)

auto.arima(x.HFRICRDT)

modelHFRIRVA=arima(x.HFRIRVA,order = c(0,0,1))

modelHFRIMI=arima(x.HFRIMI,order = c(0,0,0))

modelHFRIEHI=arima(x.HFRIEHI,order = c(0,0,0))

modelHFRIFOF=arima(x.HFRIFOF,order = c(0,0,1))

modelHFRICRDT=arima(x.HFRICRDT,order =
c(0,0,1))

Eirva=residuals(modelHFRIRVA)

Eimi=residuals(modelHFRIMI)

Eiehi=residuals(modelHFRIEHI)

Eifof=residuals(modelHFRIFOF)

Eicrdt=residuals(modelHFRICRDT)

acf(Eirva)

acf(Eimi)

acf(Eiehi)

acf(Eifof)

acf(Eicrdt)

pacf(Eirva)

pacf(Eimi)

pacf(Eiehi)

pacf(Eifof)

pacf(Eicrdt)

plot(Eirva)

plot(Eimi)

plot(Eiehi)

plot(Eifof)

plot(Eicrdt)

Box.test(Eirva,lag=20,fitdf=1, type = "Ljung-Box")

Box.test(Eimi,lag=20,fitdf=0, type = "Ljung-Box")

Box.test(Eiehi,lag=20,fitdf=0, type = "Ljung-Box")

Box.test(Eifof,lag=20,fitdf=1, type = "Ljung-Box")

Box.test(Eicrdt,lag=20,fitdf=1, type = "Ljung-Box")

Box.test(Eirva^2,lag=20,fitdf=1, type = "Ljung-Box")

Box.test(Eimi^2,lag=20,fitdf=0, type = "Ljung-Box")

Box.test(Eiehi^2,lag=20,fitdf=0, type = "Ljung-Box")

Box.test(Eifof^2,lag=20,fitdf=1, type = "Ljung-Box")

Box.test(Eicrdt^2,lag=20,fitdf=1, type = "Ljung-Box")

gghistogram(Eirva)

gghistogram(Eimi)

gghistogram(Eiehi)

gghistogram(Eifof)

gghistogram(Eicrdt)

#3 DCC Garch

#3.1 Study the spillover effect
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model1=ugarchspec(mean.model=list(armaOrder=c(0,
0)),variance.model=list(garchOrder=c(1,1),model="sG
ARCH"),distribution.model="norm")

modelspec=dccspec(uspec=multispec(replicate(5,mode
l1)),dccOrder=c(1,1),distribution="mvnorm")

modelfit1=dccfit(modelspec,data=data.frame(HFRIEH
I1,HFRIFOF1,HFRIMI1,HFRIRVA1,HFRICRDT1))

modelfit1

correlation1=rcor(modelfit1)

dim(correlation1)

corr.1=correlation1[,,dim(correlation1)[3]]

corr.1

coEHIFOF=correlation1[2,1,]

coEHIIMI=correlation1[3,1,]

coEHIIRVA=correlation1[4,1,]

coEHICRDT=correlation1[5,1,]

coFOFIMI=correlation1[3,2,]

coFOFIRVA=correlation1[4,2,]

coFOFCRDT=correlation1[5,2,]

coIMIIRVA=correlation1[4,3,]

coIMICRDT=correlation1[5,3,]

coIRVACRDT=correlation1[5,4,]

par(mfrow=c(4,1))

plot.ts(coEHIFOF)

plot.ts(coEHIIMI)

plot.ts(coEHIIRVA)

plot.ts(coEHICRDT)

par(mfrow=c(4,1))

plot.ts(coFOFIMI)

plot.ts(coFOFIRVA)

par(mfrow=c(4,1))

plot.ts(coFOFCRDT)

plot.ts(coIMIIRVA)

plot.ts(coIMICRDT)

plot.ts(coIRVACRDT)

covariance1=rcov(modelfit1)

dim(covariance1)

cov.1=covariance1[,,dim(covariance1)[3]]

cov.1

covEHIFOF=covariance1[2,1,]

covEHIIMI=covariance1[3,1,]

covEHIIRVA=covariance1[4,1,]

covEHICRDT=covariance1[5,1,]

covFOFIMI=covariance1[3,2,]

covFOFIRVA=covariance1[4,2,]

covFOFCRDT=covariance1[5,2,]

covIMIIRVA=covariance1[4,3,]

covIMICRDT=covariance1[5,3,]

covIRVACRDT=covariance1[5,4,]

plot.ts(covEHIFOF)

plot.ts(covEHIIMI)

plot.ts(covEHIIRVA)

plot.ts(covEHICRDT)

plot.ts(covFOFIMI)

plot.ts(covFOFIRVA)

plot.ts(covFOFCRDT)

plot.ts(covIMIIRVA)

plot.ts(covIMICRDT)

plot.ts(covIRVACRDT)

modelfit2=dccfit(modelspec,data=data.frame(HFRIEH
I2,HFRIFOF2,HFRIMI2,HFRIRVA2,HFRICRDT2))

correlation2=rcor(modelfit2)

dim(correlation2)

correlation2[,,dim(correlation2)[3]]

covariance2=rcov(modelfit2)

dim(covariance2)

cov.2=covariance2[,,dim(covariance2)[3]]

modelfit3=dccfit(modelspec,data=data.frame(HFRIEH
I3,HFRIFOF3,HFRIMI3,HFRIRVA3,HFRICRDT3))

correlation3=rcor(modelfit3)

dim(correlation3)

correlation3[,,dim(correlation3)[3]]

covariance3=rcov(modelfit3)

dim(covariance3)
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cov.3=covariance3[,,dim(covariance3)[3]]

modelfit4=dccfit(modelspec,data=data.frame(HFRIEH
I4,HFRIFOF4,HFRIMI4,HFRIRVA4,HFRICRDT4))

correlation4=rcor(modelfit4)

dim(correlation4)

correlation4[,,dim(correlation4)[3]]

covariance4=rcov(modelfit4)

dim(covariance4)

cov.4=covariance4[,,dim(covariance4)[3]]

modelfit5=dccfit(modelspec,data=data.frame(HFRIEH
I5,HFRIFOF5,HFRIMI5,HFRIRVA5,HFRICRDT5))

correlation5=rcor(modelfit5)

dim(correlation5)

correlation5[,,dim(correlation5)[3]]

covariance5=rcov(modelfit5)

dim(covariance5)

cov.5=covariance5[,,dim(covariance5)[3]]

modelfit6=dccfit(modelspec,data=data.frame(HFRIEH
I6,HFRIFOF6,HFRIMI6,HFRIRVA6,HFRICRDT6))

correlation6=rcor(modelfit6)

dim(correlation6)

correlation6[,,dim(correlation6)[3]]

covariance6=rcov(modelfit6)

dim(covariance6)

cov.6=covariance6[,,dim(covariance6)[3]]

modelfit7=dccfit(modelspec,data=data.frame(HFRIEH
I7,HFRIFOF7,HFRIMI7,HFRIRVA7,HFRICRDT7))

correlation7=rcor(modelfit7)

dim(correlation7)

correlation7[,,dim(correlation7)[3]]

covariance7=rcov(modelfit7)

dim(covariance7)

cov.7=covariance7[,,dim(covariance7)[3]]

modelfit8=dccfit(modelspec,data=data.frame(HFRIEH
I8,HFRIFOF8,HFRIMI8,HFRIRVA8,HFRICRDT8))

correlation8=rcor(modelfit8)

dim(correlation8)

correlation8[,,dim(correlation8)[3]]

covariance8=rcov(modelfit8)

dim(covariance8)

cov.8=covariance8[,,dim(covariance8)[3]]

modelfit9=dccfit(modelspec,data=data.frame(HFRIEH
I9,HFRIFOF9,HFRIMI9,HFRIRVA9,HFRICRDT9))

correlation9=rcor(modelfit9)

dim(correlation9)

correlation9[,,dim(correlation9)[3]]

covariance9=rcov(modelfit9)

dim(covariance9)

cov.9=covariance9[,,dim(covariance9)[3]]

modelfit10=dccfit(modelspec,data=data.frame(HFRIE
HI10,HFRIFOF10,HFRIMI10,HFRIRVA10,HFRICR
DT10))

correlation10=rcor(modelfit10)

dim(correlation10)

correlation10[,,dim(correlation10)[3]]

covariance10=rcov(modelfit10)

dim(covariance10)

cov.10=covariance10[,,dim(covariance10)[3]]

modelfit11=dccfit(modelspec,data=data.frame(HFRIE
HI11,HFRIFOF11,HFRIMI11,HFRIRVA11,HFRICR
DT11))

correlation11=rcor(modelfit11)

dim(correlation11)

correlation11[,,dim(correlation11)[3]]

covariance11=rcov(modelfit11)

dim(covariance11)

cov.11=covariance11[,,dim(covariance11)[3]]

modelfit12=dccfit(modelspec,data=data.frame(HFRIE
HI12,HFRIFOF12,HFRIMI12,HFRIRVA12,HFRICR
DT12))

correlation12=rcor(modelfit12)

dim(correlation12)

correlation12[,,dim(correlation12)[3]]

covariance12=rcov(modelfit12)

dim(covariance12)

cov.12=covariance12[,,dim(covariance12)[3]]
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modelfit13=dccfit(modelspec,data=data.frame(HFRIE
HI13,HFRIFOF13,HFRIMI13,HFRIRVA13,HFRICR
DT13))

correlation13=rcor(modelfit13)

dim(correlation13)

correlation13[,,dim(correlation13)[3]]

covariance13=rcov(modelfit13)

dim(covariance13)

cov.13=covariance13[,,dim(covariance13)[3]]

modelfit14=dccfit(modelspec,data=data.frame(HFRIE
HI14,HFRIFOF14,HFRIMI14,HFRIRVA14,HFRICR
DT14))

correlation14=rcor(modelfit14)

dim(correlation14)

correlation14[,,dim(correlation14)[3]]

covariance14=rcov(modelfit14)

dim(covariance14)

cov.14=covariance14[,,dim(covariance14)[3]]

modelfit15=dccfit(modelspec,data=data.frame(HFRIE
HI15,HFRIFOF15,HFRIMI15,HFRIRVA15,HFRICR
DT15))

correlation15=rcor(modelfit15)

dim(correlation15)

correlation15[,,dim(correlation15)[3]]

covariance15=rcov(modelfit15)

dim(covariance15)

cov.15=covariance15[,,dim(covariance15)[3]]

modelfit16=dccfit(modelspec,data=data.frame(HFRIE
HI16,HFRIFOF16,HFRIMI16,HFRIRVA16,HFRICR
DT16))

correlation16=rcor(modelfit16)

dim(correlation16)

correlation16[,,dim(correlation16)[3]]

covariance16=rcov(modelfit16)

dim(covariance16)

cov.16=covariance16[,,dim(covariance16)[3]]

modelfit17=dccfit(modelspec,data=data.frame(HFRIE
HI17,HFRIFOF17,HFRIMI17,HFRIRVA17,HFRICR
DT17))

correlation17=rcor(modelfit17)

dim(correlation17)

correlation17[,,dim(correlation17)[3]]

covariance17=rcov(modelfit17)

dim(covariance17)

cov.17=covariance17[,,dim(covariance17)[3]]

modelfit18=dccfit(modelspec,data=data.frame(HFRIE
HI18,HFRIFOF18,HFRIMI18,HFRIRVA18,HFRICR
DT18))

correlation18=rcor(modelfit18)

dim(correlation18)

correlation18[,,dim(correlation18)[3]]

covariance18=rcov(modelfit18)

dim(covariance18)

cov.18=covariance18[,,dim(covariance18)[3]]

modelfit19=dccfit(modelspec,data=data.frame(HFRIE
HI19,HFRIFOF19,HFRIMI19,HFRIRVA19,HFRICR
DT19))

correlation19=rcor(modelfit19)

dim(correlation19)

correlation19[,,dim(correlation19)[3]]

covariance19=rcov(modelfit19)

dim(covariance19)

cov.19=covariance19[,,dim(covariance19)[3]]

modelfit20=dccfit(modelspec,data=data.frame(HFRIE
HI20,HFRIFOF20,HFRIMI20,HFRIRVA20,HFRICR
DT20))

correlation20=rcor(modelfit20)

dim(correlation20)

correlation20[,,dim(correlation20)[3]]

covariance20=rcov(modelfit20)

dim(covariance20)

cov.20=covariance20[,,dim(covariance20)[3]]

modelfit21=dccfit(modelspec,data=data.frame(HFRIE
HI21,HFRIFOF21,HFRIMI21,HFRIRVA21,HFRICR
DT21))

correlation21=rcor(modelfit21)

dim(correlation21)

correlation21[,,dim(correlation21)[3]]

covariance21=rcov(modelfit21)
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dim(covariance21)

cov.21=covariance21[,,dim(covariance21)[3]]

modelfit22=dccfit(modelspec,data=data.frame(HFRIE
HI22,HFRIFOF22,HFRIMI22,HFRIRVA22,HFRICR
DT22))

correlation22=rcor(modelfit22)

dim(correlation22)

correlation22[,,dim(correlation22)[3]]

covariance22=rcov(modelfit22)

dim(covariance22)

cov.22=covariance22[,,dim(covariance22)[3]]

modelfit23=dccfit(modelspec,data=data.frame(HFRIE
HI23,HFRIFOF23,HFRIMI23,HFRIRVA23,HFRICR
DT23))

correlation23=rcor(modelfit23)

dim(correlation23)

correlation23[,,dim(correlation23)[3]]

covariance23=rcov(modelfit23)

dim(covariance23)

cov.23=covariance23[,,dim(covariance23)[3]]

modelfit24=dccfit(modelspec,data=data.frame(HFRIE
HI24,HFRIFOF24,HFRIMI24,HFRIRVA24,HFRICR
DT24))

correlation24=rcor(modelfit24)

dim(correlation24)

correlation24[,,dim(correlation24)[3]]

covariance24=rcov(modelfit24)

dim(covariance24)

cov.24=covariance24[,,dim(covariance24)[3]]

modelfit25=dccfit(modelspec,data=data.frame(HFRIE
HI25,HFRIFOF25,HFRIMI25,HFRIRVA25,HFRICR
DT25))

correlation25=rcor(modelfit25)

dim(correlation25)

correlation25[,,dim(correlation25)[3]]

covariance25=rcov(modelfit25)

dim(covariance25)

cov.25=covariance25[,,dim(covariance25)[3]]

modelfit26=dccfit(modelspec,data=data.frame(HFRIE
HI26,HFRIFOF26,HFRIMI26,HFRIRVA26,HFRICR
DT26))

correlation26=rcor(modelfit26)

dim(correlation26)

correlation26[,,dim(correlation26)[3]]

covariance26=rcov(modelfit26)

dim(covariance26)

cov.26=covariance26[,,dim(covariance26)[3]]

modelfit27=dccfit(modelspec,data=data.frame(HFRIE
HI27,HFRIFOF27,HFRIMI27,HFRIRVA27,HFRICR
DT27))

correlation27=rcor(modelfit27)

dim(correlation27)

correlation27[,,dim(correlation27)[3]]

covariance27=rcov(modelfit27)

dim(covariance27)

cov.27=covariance27[,,dim(covariance27)[3]]

modelfit28=dccfit(modelspec,data=data.frame(HFRIE
HI28,HFRIFOF28,HFRIMI28,HFRIRVA28,HFRICR
DT28))

correlation28=rcor(modelfit28)

dim(correlation28)

correlation28[,,dim(correlation28)[3]]

covariance28=rcov(modelfit28)

dim(covariance28)

cov.28=covariance28[,,dim(covariance28)[3]]

modelfit29=dccfit(modelspec,data=data.frame(HFRIE
HI29,HFRIFOF29,HFRIMI29,HFRIRVA29,HFRICR
DT29))

correlation29=rcor(modelfit29)

dim(correlation29)

correlation29[,,dim(correlation29)[3]]

covariance29=rcov(modelfit29)

dim(covariance29)

cov.29=covariance29[,,dim(covariance29)[3]]

modelfit30=dccfit(modelspec,data=data.frame(HFRIE
HI30,HFRIFOF30,HFRIMI30,HFRIRVA30,HFRICR
DT30))

correlation30=rcor(modelfit30)
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dim(correlation30)

correlation30[,,dim(correlation30)[3]]

covariance30=rcov(modelfit30)

dim(covariance30)

cov.30=covariance30[,,dim(covariance30)[3]]

modelfit31=dccfit(modelspec,data=data.frame(HFRIE
HI31,HFRIFOF31,HFRIMI31,HFRIRVA31,HFRICR
DT31))

correlation31=rcor(modelfit31)

dim(correlation31)

correlation31[,,dim(correlation31)[3]]

covariance31=rcov(modelfit31)

dim(covariance31)

cov.31=covariance31[,,dim(covariance31)[3]]

modelfit32=dccfit(modelspec,data=data.frame(HFRIE
HI32,HFRIFOF32,HFRIMI32,HFRIRVA32,HFRICR
DT32))

correlation32=rcor(modelfit32)

dim(correlation32)

correlation32[,,dim(correlation32)[3]]

covariance32=rcov(modelfit32)

dim(covariance32)

cov.32=covariance32[,,dim(covariance32)[3]]

modelfit33=dccfit(modelspec,data=data.frame(HFRIE
HI33,HFRIFOF33,HFRIMI33,HFRIRVA33,HFRICR
DT33))

correlation33=rcor(modelfit33)

dim(correlation33)

correlation33[,,dim(correlation33)[3]]

covariance33=rcov(modelfit33)

dim(covariance33)

cov.33=covariance33[,,dim(covariance33)[3]]

modelfit34=dccfit(modelspec,data=data.frame(HFRIE
HI34,HFRIFOF34,HFRIMI34,HFRIRVA34,HFRICR
DT34))

correlation34=rcor(modelfit34)

dim(correlation34)

correlation34[,,dim(correlation34)[3]]

covariance34=rcov(modelfit34)

dim(covariance34)

cov.34=covariance34[,,dim(covariance34)[3]]

return.matrix=as.timeSeries(returns)

#3.2 Find all the efficient frontiers

covariance<-cov(return.matrix)

covariance

print(covariance)

n <- ncol(covariance)

eff.frontier <- function (returns, covariance,

short = "no",

max.allocation = NULL,
risk.premium.up = .5,

risk.increment = .000

) {

Amat <- matrix (1, nrow = n)

bvec <- 1

meq <- 1

if (short == "no") {

Amat <- cbind(1, diag(n))

bvec <- c(bvec, rep(0, n))

}

if (!is.null(max.allocation)) {

if (max.allocation > 1 | max.allocation < 0) {

stop("max.allocation must be greater than 0 and less
than 1")

}

if (max.allocation * n < 1) {

stop("Need to set max.allocation higher; not enough
assets to add to 1")

}

Amat <- cbind(Amat, -diag(n))

bvec <- c(bvec, rep(-max.allocation, n))
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}

loops <- risk.premium.up / risk.increment + 1

loop <- 1

eff <- matrix(nrow = loops, ncol = n + 3)

colnames(eff) <-

c(colnames(returns), "Std.Dev", "Exp.Return",
"sharpe")

for (i in seq(from = 0, to = risk.premium.up, by =
risk.increment)) {

dvec <-

colMeans(returns) * i # This moves the solution up
along the efficient frontier

sol <-

solve.QP(

covariance,

dvec = dvec,

Amat = Amat,

bvec = bvec,

meq = meq

)

eff[loop, "Std.Dev"] <-

sqrt(sum(sol$solution * colSums((

covariance * sol$solution

))))

eff[loop, "Exp.Return"] <-

as.numeric(sol$solution %*% colMeans(returns))

eff[loop, "sharpe"] <-

eff[loop, "Exp.Return"] / eff[loop, "Std.Dev"]

eff[loop, 1:n] <- sol$solution

loop <- loop + 1

}

return(as.data.frame(eff))

}

Rf=0.001

effshort0 <-

eff.frontier(

returns = return.matrix, covariance=covariance,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

efflong0 <-

eff.frontier(

returns = return.matrix, covariance=covariance,

short = "no",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff1 <-

eff.frontier(

returns = return.matrix1, covariance=cov.1,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff2 <-

eff.frontier(

returns = return.matrix2, covariance=cov.2,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff3 <-

eff.frontier(

returns = return.matrix3, covariance=cov.3,
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short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff4 <-

eff.frontier(

returns = return.matrix4, covariance=cov.4,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff5 <-

eff.frontier(

returns = return.matrix5, covariance=cov.5,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff6 <-

eff.frontier(

returns = return.matrix6, covariance=cov.6,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff7 <-

eff.frontier(

returns = return.matrix7, covariance=cov.7,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff8 <-

eff.frontier(

returns = return.matrix8, covariance=cov.8,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff9 <-

eff.frontier(

returns = return.matrix9, covariance=cov.9,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff10 <-

eff.frontier(

returns = return.matrix10, covariance=cov.10,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff11 <-

eff.frontier(

returns = return.matrix11, covariance=cov.11,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff12 <-

eff.frontier(

returns = return.matrix12, covariance=cov.12,
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short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff13 <-

eff.frontier(

returns = return.matrix13, covariance=cov.13,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff14 <-

eff.frontier(

returns = return.matrix14, covariance=cov.14,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff15 <-

eff.frontier(

returns = return.matrix15, covariance=cov.15,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff16 <-

eff.frontier(

returns = return.matrix16, covariance=cov.16,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff17 <-

eff.frontier(

returns = return.matrix17, covariance=cov.17,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff18 <-

eff.frontier(

returns = return.matrix18, covariance=cov.18,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff19 <-

eff.frontier(

returns = return.matrix19, covariance=cov.19,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff20 <-

eff.frontier(

returns = return.matrix20, covariance=cov.20,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff21 <-

eff.frontier(

returns = return.matrix21, covariance=cov.21,
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short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff22 <-

eff.frontier(

returns = return.matrix22, covariance=cov.22,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff23 <-

eff.frontier(

returns = return.matrix23, covariance=cov.23,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff24 <-

eff.frontier(

returns = return.matrix24, covariance=cov.24,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff25 <-

eff.frontier(

returns = return.matrix25, covariance=cov.25,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff26 <-

eff.frontier(

returns = return.matrix26, covariance=cov.26,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff27 <-

eff.frontier(

returns = return.matrix27, covariance=cov.27,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff28 <-

eff.frontier(

returns = return.matrix28, covariance=cov.28,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff29 <-

eff.frontier(

returns = return.matrix29, covariance=cov.29,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff30 <-

eff.frontier(

returns = return.matrix30, covariance=cov.30,
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short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff31 <-

eff.frontier(

returns = return.matrix31, covariance=cov.31,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff32 <-

eff.frontier(

returns = return.matrix32, covariance=cov.32,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff33 <-

eff.frontier(

returns = return.matrix33, covariance=cov.33,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

eff34 <-

eff.frontier(

returns = return.matrix34, covariance=cov.34,

short = "yes",

max.allocation = 1.0,

risk.premium.up = .5,

risk.increment = .001

)

write.xlsx(effshort0,"/Users/Niccolo/Desktop/effshort0.
xlsx",asTable=TRUE)

write.xlsx(efflong0,"/Users/Niccolo/Desktop/efflong0.
xlsx",asTable=TRUE)

write.xlsx(eff1,"/Users/Niccolo/Desktop/eff1.xlsx",asT
able=TRUE)

write.xlsx(eff2,"/Users/Niccolo/Desktop/eff2.xlsx",asT
able=TRUE)

write.xlsx(eff3,"/Users/Niccolo/Desktop/eff3.xlsx",asT
able=TRUE)

write.xlsx(eff4,"/Users/Niccolo/Desktop/eff4.xlsx",asT
able=TRUE)

write.xlsx(eff5,"/Users/Niccolo/Desktop/eff5.xlsx",asT
able=TRUE)

write.xlsx(eff6,"/Users/Niccolo/Desktop/eff6.xlsx",asT
able=TRUE)

write.xlsx(eff7,"/Users/Niccolo/Desktop/eff7.xlsx",asT
able=TRUE)

write.xlsx(eff8,"/Users/Niccolo/Desktop/eff8.xlsx",asT
able=TRUE)

write.xlsx(eff9,"/Users/Niccolo/Desktop/eff9.xlsx",asT
able=TRUE)

write.xlsx(eff10,"/Users/Niccolo/Desktop/eff10.xlsx",a
sTable=TRUE)

write.xlsx(eff11,"/Users/Niccolo/Desktop/eff11.xlsx",a
sTable=TRUE)

write.xlsx(eff12,"/Users/Niccolo/Desktop/eff12.xlsx",a
sTable=TRUE)

write.xlsx(eff13,"/Users/Niccolo/Desktop/eff13.xlsx",a
sTable=TRUE)

write.xlsx(eff14,"/Users/Niccolo/Desktop/eff14.xlsx",a
sTable=TRUE)

write.xlsx(eff15,"/Users/Niccolo/Desktop/eff15.xlsx",a
sTable=TRUE)

write.xlsx(eff16,"/Users/Niccolo/Desktop/eff16.xlsx",a
sTable=TRUE)

write.xlsx(eff17,"/Users/Niccolo/Desktop/eff17.xlsx",a
sTable=TRUE)

write.xlsx(eff18,"/Users/Niccolo/Desktop/eff18.xlsx",a
sTable=TRUE)

write.xlsx(eff19,"/Users/Niccolo/Desktop/eff19.xlsx",a
sTable=TRUE)

write.xlsx(eff20,"/Users/Niccolo/Desktop/eff20.xlsx",a
sTable=TRUE)
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write.xlsx(eff21,"/Users/Niccolo/Desktop/eff21.xlsx",a
sTable=TRUE)

write.xlsx(eff22,"/Users/Niccolo/Desktop/eff22.xlsx",a
sTable=TRUE)

write.xlsx(eff23,"/Users/Niccolo/Desktop/eff23.xlsx",a
sTable=TRUE)

write.xlsx(eff24,"/Users/Niccolo/Desktop/eff24.xlsx",a
sTable=TRUE)

write.xlsx(eff25,"/Users/Niccolo/Desktop/eff25.xlsx",a
sTable=TRUE)

write.xlsx(eff26,"/Users/Niccolo/Desktop/eff26.xlsx",a
sTable=TRUE)

write.xlsx(eff27,"/Users/Niccolo/Desktop/eff27.xlsx",a
sTable=TRUE)

write.xlsx(eff28,"/Users/Niccolo/Desktop/eff28.xlsx",a
sTable=TRUE)

write.xlsx(eff29,"/Users/Niccolo/Desktop/eff29.xlsx",a
sTable=TRUE)

write.xlsx(eff30,"/Users/Niccolo/Desktop/eff30.xlsx",a
sTable=TRUE)

write.xlsx(eff31,"/Users/Niccolo/Desktop/eff31.xlsx",a
sTable=TRUE)

write.xlsx(eff32,"/Users/Niccolo/Desktop/eff32.xlsx",a
sTable=TRUE)

write.xlsx(eff33,"/Users/Niccolo/Desktop/eff33.xlsx",a
sTable=TRUE)

write.xlsx(eff34,"/Users/Niccolo/Desktop/eff34.xlsx",a
sTable=TRUE)

eff.optimal.point1 <- eff1[eff1$sharpe ==
max(eff1$sharpe),]

ealred  <- "#7D110C"

ealtan  <- "#CDC4B6"

eallighttan <- "#F7F6F0"

ealdark  <- "#423C30"

mvwHFRIEHI=-0.3919

mvwHFRIFOF=0.9024

mvwHFRIMI=0.1636

mvwHFRIRVA=0.7701

mvwHFRICRDT=-0.4442

statwHFRIEHI=-0.1093

statwHFRIFOF=0.3885

statwHFRIMI=-0.0559

statwHFRIRVA=0.7611

statwHFRICRDT=0.0156

check1=mvwHFRIEHI+mvwHFRIFOF+mvwHFRIMI
+mvwHFRIRVA+mvwHFRICRDT

check2=statwHFRIEHI+statwHFRIFOF+statwHFRIM
I+statwHFRIRVA+statwHFRICRDT

check1

check2

ggplot(eff1, aes(x = Std.Dev, y = Exp.Return)) +
geom_point(alpha = .1, color =

ealdark) +

geom_point(

data = eff.optimal.point1,

aes(x = Std.Dev, y = Exp.Return, label = sharpe),

color = ealred,

size = 5

) +

annotate(

geom = "text",

x = eff.optimal.point1$Std.Dev,

y = eff.optimal.point1$Exp.Return,

label = paste(

"Risk: ",

round(eff.optimal.point1$Std.Dev * 100, digits = 3),

"\nReturn: ",

round(eff.optimal.point1$Exp.Return * 100, digits =

4),

"%\nSharpe: ",

round(eff.optimal.point1$sharpe * 100, digits = 2),

"%",

sep = ""

),

hjust = 0,

vjust = 1.2

) +
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ggtitle("Efficient Frontier\nand Optimal Portfolio") +
labs(x = "Risk (standard deviation of portfolio
variance)", y =

"Return") +

theme(

panel.background = element_rect(fill = eallighttan),

text = element_text(color = ealdark),

plot.title = element_text(size = 24, color = ealred)

)

#3.3 Plot the results

plot(X2020$RY,X2020$SDX,col='white',xlab="Standa
rd Deviation)",ylab="Return")

lines(X2020$R0, X2020$SD0, col='#996633', lwd=1)

lines(X2020$R1, X2020$SD1, col='darkgreen', lwd=1)

lines(X2020$R2, X2020$SD2, col='red', lwd=1)

lines(X2020$R3, X2020$SD3, col='#3399FF', lwd=1)

lines(X2020$R4, X2020$SD4, col='blue', lty=1)

lines(X2020$R5, X2020$SD5, col='pink', lwd=1)

lines(X2020$R6, X2020$SD6, col='666000', lwd=1)

lines(X2020$R7, X2020$SD7, col='#9933CC', lwd=1)

lines(X2020$R8, X2020$SD8, col='#330033', lwd=1)

lines(X2020$R9, X2020$SD9, col='#33FFFF', lty=1)

lines(X2020$R10, X2020$SD10, col='#CCCC00',
lty=1)

plot(X2021$RY,X2021$SDX,col='white',xlab="Standa
rd Deviation)",ylab="Return")

lines(X2021$R11, X2021$SD11, col='#996633',
lwd=1)

lines(X2021$R12, X2021$SD12, col='darkgreen',
lwd=1)

lines(X2021$R13, X2021$SD13, col='red', lwd=1)

lines(X2021$R14, X2021$SD14, col='#3399FF',
lwd=1)

lines(X2021$R15, X2021$SD15, col='blue', lty=1)

lines(X2021$R16, X2021$SD16, col='pink', lwd=1)

lines(X2021$R17, X2021$SD17, col='#666000',
lwd=1)

lines(X2021$R18, X2021$SD18, col='#9933CC',
lwd=1)

lines(X2021$R19, X2021$SD19, col='#330033',
lwd=1)

lines(X2021$R20, X2021$SD20, col='#33FFFF',
lty=1)

lines(X2021$R21, X2021$SD21, col='#CCCC00',
lty=1)

lines(X2021$R22, X2021$SD22, col='#666666', lty=1)

plot(X2022$RY,X2022$SDX,col='white',xlab="Standa
rd Deviation)",ylab="Return")

lines(X2022$R23, X2022$SD23, col='#996633',
lwd=1)

lines(X2022$R24, X2022$SD24, col='darkgreen',
lwd=1)

lines(X2022$R25, X2022$SD25, col='red', lwd=1)

lines(X2022$R26, X2022$SD26, col='#3399FF',
lwd=1)

lines(X2022$R27, X2022$SD27, col='blue', lty=1)

lines(X2022$R28, X2022$SD28, col='pink', lwd=1)

lines(X2022$R29, X2022$SD29, col='#666000',
lwd=1)

lines(X2022$R30, X2022$SD30, col='#9933CC',
lwd=1)

lines(X2022$R31, X2022$SD31, col='#330033',
lwd=1)

lines(X2022$R32, X2022$SD32, col='#33FFFF',
lty=1)

lines(X2022$R33, X2022$SD33, col='#CCCC00',
lty=1)

lines(X2022$R34, X2022$SD34, col='#666666', lty=1)

dccweights_HFRIEHI=select(dcc_weights,HFRIEHI)

dccweights_HFRIFOF=select(dcc_weights,HFRIFOF)

dccweights_HFRIMI=select(dcc_weights,HFRIMI)

dccweights_HFRIRVA=select(dcc_weights,HFRIRVA
)

dccweights_HFRICRDT=select(dcc_weights,HFRICR
DT)

ret_HFRIEHI=select(returns_2020_2022,HFRIEHI)

ret_HFRIFOF=select(returns_2020_2022,HFRIFOF)

ret_HFRIMI=select(returns_2020_2022,HFRIMI)



82

ret_HFRIRVA=select(returns_2020_2022,HFRIRVA)

ret_HFRICRDT=select(returns_2020_2022,HFRICRD
T)

dcc_ret_HFRIEHI=dccweights_HFRIEHI*ret_HFRIE
HI

dcc_ret_HFRIFOF=dccweights_HFRIFOF*ret_HFRIF
OF

dcc_ret_HFRIMI=dccweights_HFRIMI*ret_HFRIMI

dcc_ret_HFRIRVA=dccweights_HFRIRVA*ret_HFRI
RVA

dcc_ret_HFRICRDT=dccweights_HFRICRDT*ret_HF
RICRDT

dcc_portfolio=dcc_ret_HFRIEHI+dcc_ret_HFRIFOF+
dcc_ret_HFRIMI+dcc_ret_HFRIRVA+dcc_ret_HFRIC
RDT

Wi=1/5

equallyHFRIEHI=(ret_HFRIEHI-Rf)*Wi

equallyHFRIFOF=(ret_HFRIFOF-Rf)*Wi

equallyHFRIMI=(ret_HFRIMI-Rf)*Wi

equallyHFRIRVA=(ret_HFRIRVA-Rf)*Wi

equallyHFRICRDT=(ret_HFRICRDT-Rf)*Wi

equally_portfolio=equallyHFRIEHI+equallyHFRIFOF
+equallyHFRIMI+equallyHFRIRVA+equallyHFRICR
DT

statHFRIEHI=(ret_HFRIEHI)*statwHFRIEHI

statHFRIFOF=(ret_HFRIFOF)*statwHFRIFOF

statHFRIMI=(ret_HFRIMI)*statwHFRIMI

statHFRIRVA=(ret_HFRIRVA)*statwHFRIRVA

statHFRICRDT=(ret_HFRICRDT)*statwHFRICRDT

stat_portfolio=statHFRIEHI+statHFRIFOF+statHFRI
MI+statHFRIRVA+statHFRICRDT

mvHFRIEHI=(ret_HFRIEHI)*mvwHFRIEHI

mvHFRIFOF=(ret_HFRIFOF)*mvwHFRIFOF

mvHFRIMI=(ret_HFRIMI)*mvwHFRIMI

mvHFRIRVA=(ret_HFRIRVA)*mvwHFRIRVA

mvHFRICRDT=(ret_HFRICRDT)*mvwHFRICRDT

mv_portfolio=mvHFRIEHI+mvHFRIFOF+mvHFRIM
I+mvHFRIRVA+mvHFRICRDT

dccmvweights_HFRIEHI=select(dcc_mv_weights,HF
RIEHI)

dccmvweights_HFRIFOF=select(dcc_mv_weights,HF
RIFOF)

dccmvweights_HFRIMI=select(dcc_mv_weights,HFRI
MI)

dccmvweights_HFRIRVA=select(dcc_mv_weights,HF
RIRVA)

dccmvweights_HFRICRDT=select(dcc_mv_weights,H
FRICRDT)

dcc_mvret_HFRIEHI=dccmvweights_HFRIEHI*ret_H
FRIEHI

dcc_mvret_HFRIFOF=dccmvweights_HFRIFOF*ret_
HFRIFOF

dcc_mvret_HFRIMI=dccmvweights_HFRIMI*ret_HF
RIMI

dcc_mvret_HFRIRVA=dccmvweights_HFRIRVA*ret
_HFRIRVA

dcc_mvret_HFRICRDT=dccmvweights_HFRICRDT*r
et_HFRICRDT

dcc_mv_portfolio=dcc_mvret_HFRIEHI+dcc_mvret_
HFRIFOF+dcc_mvret_HFRIMI+dcc_mvret_HFRIRV
A+dcc_mvret_HFRICRDT

c <- data.frame(dcc_portfolio = dcc_portfolio,

equally_portfolio = equally_portfolio,

stat_portfolio = stat_portfolio,

mv_portfolio = mv_portfolio,

dcc_mv_portfolio = dcc_mv_portfolio,

HFRIWI = HFRIWI

)

c1 <- data.frame(dcc_weights)

c2 <- data.frame(dcc_mv_weights)

colnames(c) <- c("dcc_portfolio", "equally_portfolio",
"stat_portfolio", "mv_portfolio","dcc_mv_portfolio",
"HFRIWI")

b <- data.frame(c(100, 100, 100, 100, 100, 100),
row.names = c("dcc_portfolio", "equally_portfolio",
"stat_portfolio", "mv_portfolio","dcc_mv_portfolio",
"HFRIWI"))

df <- data.frame(dcc_portfolio = c(100),

equally_portfolio = c(100),

stat_portfolio = c(100),

mv_portfolio = c(100),

dcc_mv_portfolio = c(100),
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HFRIWI = c(100)

)

for(i in 1:nrow(c)){

df[i+1,] <- df[i,]*(1+c[i,])

}

x=0:35

x1=0:34

plot(x,df$HFRIWI,col='white',xlab="Time(from
02.2020 to 12.2022)",ylab="Portfolio Performance")

lines(x, df$dcc_portfolio, col='#996633', lwd=1)

lines(x, df$stat_portfolio, col='darkgreen', lwd=1)

lines(x, df$mv_portfolio, col='red', lwd=1)

lines(x, df$dcc_mv_portfolio, col='#3399FF', lwd=1)

lines(x, df$equally_portfolio, col='blue', lty=1)

lines(x, df$HFRIWI, col='#FF3399', lty=1)

plot(x1,c1$HFRIFOF,col='white',xlab="Time(from
02.2020 to 12.2022)",ylab="Portfolio Performance")

lines(x1, c1$HFRIEHI, col='#996633', lwd=1)

lines(x1, c1$HFRIFOF, col='darkgreen', lwd=1)

lines(x1, c1$HFRIMI, col='red', lwd=1)

lines(x1, c1$HFRIRVA, col='#3399FF', lwd=1)

lines(x1, c1$HFRICRDT, col='blue', lty=1)

plot(x1,c1$HFRIFOF,col='white',xlab="Time(from
02.2020 to 12.2022)",ylab="Portfolio Performance")

lines(x1, c2$HFRIEHI, col='#996633', lwd=1)

lines(x1, c2$HFRIFOF, col='darkgreen', lwd=1)

lines(x1, c2$HFRIMI, col='red', lwd=1)

lines(x1, c2$HFRIRVA, col='#3399FF', lwd=1)

lines(x1, c2$HFRICRDT, col='blue', lty=1)

```
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