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Abstract

During the COVID19 pandemic in 2019-2020 a large number of states intro-

duced a certification called EU Digital COVID Certification. The validation

of these certificates was done by scanning a QR code whose verification was

not always easy and usable. In this thesis we have simulated the typical

cases in which a QR is scanned in order to analyze the usability of the scan

based on the variation of the data contained and the level of error correction

applied.
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Introduction

A QR code, short for Quick Response code, is a two-dimensional barcode

that can be scanned using a smartphone camera or a dedicated QR code

reader. QR codes were first developed in 1994 by Denso Wave, a subsidiary

of Toyota, for use in the automotive industry. However, they have since

found a wide range of applications in various industrial context, including

retail, transportation, and healthcare.

QR codes can store much more information than traditional linear barcodes,

such as product information, website URLs, and contact information. They

are a versatile and convenient technology that can be used for a wide range of

applications, from providing product information to facilitating transactions

and digital identification.

One of the biggest historical use was during the global pandemic called

COVID-19. In the early months of this pandemic, a quarantine was imposed

on the population to reduce the spread of the virus. With the introduction of

vaccines, a secure digital certificate containing information regarding the vac-

cination status or recovery from SARS-Cov-2 of each citizen was introduced.

To verify that each citizen was cured or vaccinated, confirmation applications

were created and available to the entire population on each smartphone or
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tablet device.

The general purpose of this thesis is to analyze the performance of error

correction on QR codes. First we decided to study two QR codes with the

same data encoded, but with different error correction levels, the first one

with the lower and second with the higher. In the second part, we ana-

lyze the differences between QRs with different data encoding by taking as

samples the EU Digital COVID Certification (DCC) and the experimental

version proposed by Marco Carfizzi [6] and Giacomo Arrigo [2] in their mas-

ter thesis. In our study we investigate the relation between the level of error

correction and the usability of the standard QR code and the new version

proposed in [2, 6].

The thesis is structured as follow. The first chapter defines the QR code,

giving an explanation of its structure and how data are encoded. The second

chapter analyses the libraries used for the implementation of the tests. The

third chapter describes the data structure utilized in the standard DCC and

of the new DCC proposed in [2]. The fourth chapter gives an introduction

about the structure of the tests. The last chapter analyses the data from the

results of the tests. We conclude with future works directions.



Chapter 1

QR codes

QR Codes have gained widespread popularity in many areas, surpassing tra-

ditional barcodes in certain applications. This is often attributed to their

ability to store much more data than a standard barcode, holding up to

7,089 characters in contrast to the maximum 20 digits of a barcode. Addi-

tionally, QR Codes are highly versatile and extensible, making them a more

desirable option than barcodes. Furthermore, QR Codes have the ability to

encode the same amount of data in a much smaller space, about one-tenth

of a traditional barcode. Another key advantage of QR Codes is that they

can be scanned from any angle, as the three specific squares positioned in

the corners of the symbol and the alignment blocks allow the scanner to de-

termine the correct orientation of the image (see Figure 1)[16].
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5 1.1. QR Data encoding

Figure 1: QR

1.1 QR Data encoding

The data encoding of a QR code refers to the process of converting the data

to be encoded into a specific pattern of black and white modules, which define

the QR code. QR codes use a specific pattern of black and white modules,

known as modules, to represent the data encoded in the code. The data is

arranged in a specific way to make it possible to read the code with a QR

code reader.

• Numeric encoding is used to encode digits from 0 to 9. It uses a

more compact representation and is suitable for encoding numbers and

short text.

• Byte encoding, by default, it is used to characters from the ISO-8859-

1 character set. However, some QR code scanners can automatically

detect if UTF-8 is used in byte mode instead.

• Kanji encoding is used to encodes Japanese characters. It is suitable
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for encoding text in Japanese and other languages that use similar

character sets.

• Alphanumeric encoding is used to encode the decimal digits, up-

percase letter, special characters like $%*+-/: and the blank space.

1.2 QR data distribution

Figure 2: QR data distributin [16]

Detection markers

The detection markers (number 1 in Figure 2) are a crucial part of a QR

code, as they help the QR code reader to locate the code and to determine

its orientation, which is necessary for correctly reading the code. They are

placed in the corners of the QR code and are made up of a specific pattern

of black and white modules that can be easily distinguished from the rest of

the code.

Each detection marker has a separator that are lines made up of light mod-
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ules that serve to distinguish the finder patterns from the rest of the code

(number 2 in Figure 2). They are 1 module wide and can only be found

along the edges of the finder patterns that face the interior of the code.

Alignment markings

The alignment markers (number 4 on figure 2) are smaller then the detection

markers, the scope of this little marks is to help straighten out the Qr code

when it is drawn on a curved surface.

The number of these markers depends on the dimension of the Data stored

in the QR. Version 1 does not use the alignment marker because there is not

enough space to display the data and the marker.

Timing pattern

Combination of black/white modules on the QR code to support the con-

figuration of the data grid. In base of the line the decoder determines the

dimension of the data matrix (number 3 in figure 2).

Version information

The version information (number 8 in Figure 2) of QR Codes can have 40

different values, each of which has a varying number of modules. The first

version, Version 1, has 21x21 modules, with a maximum of 133 of those mod-

ules being used to store encoded data. On the other hand, the largest QR

Code version, Version 40, has 177x177 modules and can hold up to 23,648

data modules. The number of modules increases as the version number in-

creases and the error correction level decrease [16].

Format information

The Formation Information section (number 5 in Figure 2), located next to

the separators, contains 15 bits of information which includes details about
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the error correction level of the QR Code and the masking pattern selected

[16].

Error correction and data

The data and the error correction’s blocks (number 6 and 7 in Figure 2)

contain the data and the error correction that permit a restoration of the

missing or damage data.

The error correction bits are created by dividing a message polynomial by a

generator polynomial, the specific steps are discussed forward in the section.

Quiet zone

The quiet zone is a blank area that surrounds the QR code, it is used to

separate the code from other elements in the image and to make sure that

the QR code reader can correctly locate the code and to distinguish it from

other elements in the image. The size of the quiet zone can vary depending

on the specific QR code reader and the environment in which the code will

be used, but typically it should be at least 4 modules wide on all four sides

of the QR code.

1.3 Error correction

QR codes can have different levels of error correction built in, which affects

their robustness against damage or distortion. QR codes can be classified

into four levels of error correction: L (low), M (medium), Q (quartile), and

H (high) (see Table 1). The higher the level of error correction, the more

data can be recovered even if the QR code is partially damaged or distorted.

However, this also means that the QR code will be larger and may require
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more processing power to scan. To select error correction levels, various

factors such as the operating environment and QR Code size need to be con-

sidered. Level Q or H may be selected for factory environment where QR

Code get dirty, Level L and M may be selected for clean environment with

the large amount of data.

Error correction level Error correction percentage recover

Error correction level L Recovers 7% of data

Error correction level M Recovers 15% of data

Error correction level Q Recovers 25% of data

Error correction level H Recovers 30% of data

Table 1: Error correction table

The QR Code error correction feature is implemented by adding a Reed-

Solomon Code to the original data.

The Reed-Solomon code is a powerful error-correcting code that is widely

used in QR codes. The code works by using an algebraic structure and

mathematical algorithm to generate check symbols, which are added to the

original data, the algebraic structure used is the Galois field, and the algo-

rithms are the Euclidean algorithm and the Forney’s algorithm.

The Reed-Solomon uses the Galois Fields (Infinite Fields), to represent and

perform arithmetic operations when encoding the data. In Reed-Solomon,

the data are first divided into blocks according to the number of codewords,

and represented as polynomials over a Galois field. The encoding is per-

formed by evaluating the polynomials adding the evaluations to generate the
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codeword. By expressing data as a vector in the Galois Field, mathematical

operations can be performed with ease and efficiency to scramble data.

The elements of Galois Field 𝑔 𝑓 (𝑝𝑛) is defined as

𝑔 𝑓 (𝑝𝑛) =(0, 1, 2, · · · , 𝑝 − 1)∪

(𝑝, 𝑝 + 1, 𝑝 + 2, · · · , 𝑝 + 𝑝 − 1)∪

(𝑝2, 𝑝2 + 1, 𝑝2 + 2, · · · , 𝑝2 + 𝑝 − 1) ∪ · · · ∪

(𝑝𝑛 − 1, 𝑝𝑛 − 1 + 1, 𝑝𝑛 − 1 + 2, · · · , 𝑝𝑛 − 1 + 𝑝 − 1)

where the polynomial 𝑝 ∈ 𝑃 and 𝑛 ∈ 𝑍+. The order of the field is given by

𝑝𝑛 while p is called the characteristic of the field. Also note that the degree

of polynomial of each element is at most 𝑛 − 1 [4].

The standard process of decoding Reed-Solomon codes involves the calcu-

lation of the identification of an error locator polynomial , and the resolution

of error values. To find the syndromes, the received message is interpreted as

the coefficients of a polynomial 𝑆(𝑥) (called syndromes), where 𝑥 is a code-

word. The Euclidean algorithm is employed to derive the error locator and

error evaluator polynomials from the computed syndrome polynomial that

will be used to find the error positions and the error values. The Forney

algorithm uses the error locator and the error evaluator to correct the er-

rors present on the codewords. It is used as part of the process in decoding

Reed–Solomon code[14].

If the number of errors exceed the maximum number available, the Reed-

Solomon cannot restore the data.
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Table 3 shows the maximum data capacity under different error correction

levels in versions 1, 20 and 40. The error correction capability of a QR code is

determined by its error correction rate. A higher error correction rate means

that more errors can be corrected, but it also means that less data can be

stored. In different versions of QR codes, the stored data is divided into

several blocks and corresponding error correction codewords are generated

to ensure error correction capability.

For example, in QR code version 20-L, there are a total of 8 blocks, with

3 blocks containing 107 data codewords and 5 blocks containing 108 data

codewords, adding up to a total of 861 data codewords. The 224 error cor-

rection codewords are also divided into 8 blocks to ensure the error correction

capability for each corresponding data block [24].
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Figure 3: Qr code capability [24]

1.4 QR code Masks

A masking process is used to avoid symbols that might confuse a scanner,

such as misleading shapes that look like the locator patterns and large black

or white areas. The masking process consists in inverting certain modules

depending by the penalty score of each masks.

The Distribution lines of same colors penalty check the QR, first row

by row, and then column by column. In order to evaluate the first condition,

rows are checked individually. If there are five consecutive modules of the

same color, a penalty of 3 is added. If there are additional modules of the



13 1.4. QR code Masks

same color, an additional penalty of 1 is added for each module. After this,

the columns are checked in the same manner. The total of the horizontal

and vertical penalties are then added to obtain the first penalty score (see

Figures 4 and 5).

Figure 4: Distribution line penalty on row [12]

Figure 5: Distribution line penalty on column [12]
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The Data density penalty method involves identifying blocks of the same

color that are at least 2 × 2 modules or larger (see Figure 6). The QR code

specification states that for a block of the same color with dimensions 𝑚 × 𝑛,

the penalty score is calculated as 3×(𝑚−1)×(𝑛−1). However, the specification

does not provide guidance on how to calculate the penalty when there are

multiple ways to divide up the solid-color blocks.

To simplify the calculation, a penalty of 3 is added for each 2×2 block of the

same color in the QR code, including overlapping blocks. For example, a 3×2

block of the same color is counted as two 2 × 2 blocks, one overlapping the

other. The final penalty score is the sum of all penalties from these blocks.

Figure 6: Data density penalty [12]
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Block penalty evaluation condition searches for the pattern of dark-light-

dark-dark-dark-light-dark with four light modules on either side. Whenever

this pattern is detected, an additional 40 is added to the penalty score.

Figure 7: Block penalty [12]

The Proportion penalty gives the final evaluation condition assesses the

ratio of light and dark modules in the QR code matrix. The process involves

the following steps:

1 Count the total number of modules in the matrix.

2 Count the number of dark modules in the matrix.

3 Calculate the percentage of dark modules by dividing the number of

dark modules by the total number of modules and multiplying the

result by 100.
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4 Determine the closest multiple of five to the calculated percentage, both

lower and higher.

5 Take the absolute difference between each multiple of five and 50, divide

the result by 5, and take the smaller of the two numbers.

6 Multiply the smaller number by 10 to get the final penalty score

Figure 8: Proportion penalty [12]
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These four penalty scores are used together to calculate the total penalty

score, which is a measure of the quality of the QR code. The mask pattern

with the lowest total penalty score is considered the best mask pattern for

the QR code.

Figure 9: Data mask of a QR [1]

Conclusion In this Chapter we have introduced the concept of the QR

codes by describing their structure. We then focused on explaining the error

correction and how does it work. In the last chapter we discuss how the data

mask is choose and apply. The importance of knowing these aspects lies in

better understanding how works the QR code.



Chapter 2

Libraries

In this chapter, the libraries used in this thesis will be explained. The first

one is the ZXing library, it was chosen as: it is an open source library, it con-

tains several classes and functions that allow us to obtain the information

regarding the various decoding steps of a QR; it was used for the creation of

the Android app VerificaC19.

The second library instead is OpenCV, written in Python, with several meth-

ods useful for creating image distortions in the image.
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2.1 The ZXing library

Figure 10: ZXing [20]

ZXing is an open-source library implemented by the team ZXing project in

Java. Its scope is to provide a useful library that can be used to read 1D or

2D barcodes embedded website applications. Thanks to the great support of

the community the library has stable ports to different languages [20].

1D product 1D industrial 2D

UPC-A Code 39 QR Code

UPC-E Code 93 Data Matrix

EAN-8 Code 128 Aztec

UPC/EAN Extension 2/5 ITF MaxiCode, RSS-14,
RSS-Expanded

Table 2: Format supported by the library [20]
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As the Table 2 reports the library supports four 1D and four 2D dimensional

barcodes.

Universal Product Code (UPC see Figure 11) is a bar code composed by

twelve digits. The difference between the UPC-A and the UPC-E is the for-

mat of the information. The UPC-E is the compacted version of the UPC-A,

obtaining a barcode smaller but with the same information more useful when

the barcode is placed on small packages.

Figure 11: UPC barcode

The second 1D barcode of the library is the most used in the world and it is

the European Article Number (EAN) (see Figure 12). Like the UPC it has

multiple format but the most common are the EAN-13 for the majority of

the utilization and the EAN-8 when the barcode is too big to be placed on

the surface and it is needed a smaller version. In both formats the number

indicates the digits used by the barcode.

Figure 12: EAN barcode

Even if the EAN is used as a standards for the GS1, the non-profit organiza-
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tion that validate the standard used in the world, the UPC is acknowledged

as a standard and can be used.

The difference between the two standard are minimal since the UPC is a

subset of EAN and can be read from the 1D barcode without any prob-

lem. For the QR code format see Chapter 1. A Data Matrix (see Figure

13) is a bi-dimensional barcode with a higher information density than the

majority of the barcode typologies. It has the capacity to include different

error correction algorithms to improve the recovery property of the barcode.

The Data Matrix can encode alphanumeric characters, symbols like kanji,

and numeric digits in an efficient mode by using specific encoding schemes.

The structure is a matrix composed by black and white modules, where each

module represents a bit. All the modules of the matrix are stored in a frame.

The detection marker is placed on the outermost square of modules in the

frame. The dimension of the frame depends on the data size and all the code

included in the error correction [9].

Figure 13: Data Matrix

The Aztec code is a 2D dimensional barcode (see Figure 14) defined by the

standard ISO/IEC 24778 [13], it has the highest accuracy between all 2D

barcode. What is most noticeable is the presence of the ”eye-ball”, called
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core, displayed at the center of the barcode. Each corner includes an orien-

tation mark that allows the barcode reader to detect it even if the frame is

rotated or mirrored. The Aztec Code uses the Reed-Solomon algorithm for

error correction. Compared to the QR code the user can specify the percent-

age of the error correction (max 99%) of the data region codewords. The

recommended percentage is 23%. This type of barcode can decode alphanu-

meric characters, numeric digits, byte data and symbols. Data are stored by

a layer architecture with a clockwise direction starting form the first orien-

tation pattern. It can go from 1 to a maximum of 32 layers. The smallest

size is 15 × 15 and the greatest is 151 × 151. Since the presence of the core,

the AZTEC does not need a quiet zone to help the detection of the code and

that increase the displays of the frame on different location.

Figure 14: AZTEC code
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The Maxicore (see Figure 15) is a barcode used to store information about

packages. It is based on QR code and AZTEC code idea. Like AZTEC it

has a ”eye-ball” at the center of the frame. The disposition is a hexagonal

grid instead of a square grid like in the QR code and instead of using square

modules for the data it used dot. The structured portion of the message is

stored in the inner area of the symbol, near the bull’s-eye pattern. Maxicode

use the Reed–Solomon error (ref section) correction to recover missing data.

Even if it takes as reference the two most used barcodes it suffers of a poor

presence of library and software in comparison with QR code and Aztec code.

Figure 15: Maxicode
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ZXing library contains the following module:

Module Description

core The core image decoding library, and test code

javase JavaSE-specific client code

android Android client Barcode Scanner

android-core Android-related code shared among android,
other Android apps

zxingorg The source behind zxing.org

zxing.appspot.com The source behind web-based barcode generator
at zxing.appspot.com

Table 3: Module of the library [20]

The core module is responsible for processing raw image data, extracting bar-

code information, and decoding the data encoded in the barcode supported

see Table 3:

• Aztec: encoder, decoder and detector for Aztec code;

• Common: contains all the mathematically operation needed to com-

pute the Galois Fields and Reed-Solomon operation;

• Datamatrix : encoder, decoder and detector for datamatrix barcode;

• Maxicode: contains only the decoder for maxicode barcode;

• Multi : module that permit the detection of multiple QR code in a

single image;
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• Qr code: encoder, decoder and detector for QR code;

• Oned : barcode reader and writer for each 1D barcode;

• PDF417 : encoder, decoder and detector for PDF417 barcode.

The core module is built around a set of classes and interfaces that provide

a common API for working with barcodes. The main classes include:

• BarcodeReader : this class is responsible for decoding barcode images.

It takes an image file or in the case of a web app a stream video as

input, and returns the decoded barcode data as output;

• BarcodeWriter : this class is responsible for encoding data into a bar-

code image. It takes in input a data string, a barcode format, the error

correction level, and returns a barcode image as output;

• reedsolomon: it contains the two class for the Galois Fields, the Reed-

Solomon decoder, the ReedSolomon encoder and the class for the ex-

ception error;

• BarcodeFormat : it is used to store Enumerates barcode formats known

to this package ordered by alphabetic order;

• Result : it is a class that provide the output data of the decoded barcode

data with extra information like the version etc. . . ;

• WriterOptions : this class provides the base options for creating a bar-

code image, such as width, height, margin, error correction level, ver-

sion, and encoding.
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When the library is called to decode a QR, the following steps are computed,

the same steps are applied for each 2D barcode:

1 Detection of QR code markers : the image is then analyzed the special

markers used by the QR to provide the direction of the image. These

markers include the three large squares located at the corners of the

QR code and the smaller alignment patterns that are used when the

QR contain a lot of data.

2 Image perspective correction: once the markers are located, the image

is corrected for perspective distortion caused by the camera angle. This

step is necessary to ensure that the QR code is in the correct orientation

for decoding and also it is applied a cropping procedure on the image

to remove the borders.

3 Extraction of data modules : before the extraction of data the image

is reduced to a smaller image that represent a black or white square

for each pixel. Then it is divided into small modules, each of them

represents a single bit of data encoded in the QR code.

4 Error correction: the data blocks are passed through an error correction

Reed-Solomon algorithm that used the Euclidean Algorithm, which

corrects any errors caused by noise or damage to the QR code with the

maximum percentage corresponding to the error correction level.

5 Decoding of data: after the application of the error-correction the result

data blocks are then decoded to reveal the original data encoded in the

QR code. The QR code decodes the data using the five encoding type:

alphanumeric, numeric, byte, kanji and special symbol.
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6 Result extraction: the decoded data are extracted and returned as the

output.

When the library is called to encode data into a barcode image, it starts from

the opposite order of the decoding.

The encoding data procedure of a QR code consist in the following steps:

1 Data encoding : the information to be encoded is transformed into a

sequence of binary code words which will be represented by the modules

of the QR code. These code words are produced using the suitable data

mode like numerical, alphanumeric, and byte mode.

2 Error correction: the codewords are then passed through the Reed-

Solomon algorithm encoder, which adds redundant information to the

codewords using the Galois Fields.

3 Module placement : all the parts (detection marker, aligment marking

etc.) of the QR are placed in the output image, the last operation is

the placement of the error correction codewords and data codewords,

then the masking is computed and the best mask is applied to obtain

the better black and white blocks disposition.

4 Quiet zone and final image creation: a quiet zone is added around the

QR code and the final QR code image is created. In the case of Aztec

and Maxicode the quiet zone is not added.

Java SE (Standard Edition) is a standalone java application that can be used

for encoding and decoding of a barcode performing image processing tasks;

detecting and locating barcodes in images; reading and writing barcode data.
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It can be integrated in some supported framework to create an application

without rewriting all the classes and functions.

The Android module provides by all the functions and classes to create an

application that can read and write different barcode in Android.

The ZXing android-integration module is a module which includes the nec-

essary classes for the developer to launch the intent and handle the results,

it also includes the classes for the UI customization, like the viewfinder and

the overlays. This integration module is useful for developers that want to

include the barcode scanning functionality in their app do not go through

the hassle of integrating the library manually.

Zxingorg provides a web application to read or generate barcode without the

necessary installation of the library or the Java software.

Zxing.appspot.com is the last module that gives the possibility to an user to

read a QR code using the webcam of his/her device [20].
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2.2 The OpenCV library

OpenCV (Open Source Computer Vision Library) is an open source com-

puter vision and machine learning software library. The library is written in

C++ and has interfaces for several programming languages, including C++,

Python, and Java. OpenCV was built to provide a common infrastructure

for computer vision applications and to accelerate the use of machine per-

ception in the commercial products. It contains a large collection of image

processing and computer vision algorithms, including image filtering, feature

detection, motion analysis, object recognition, and more. Being an Apache 2

licensed product, OpenCV makes it easy for businesses to utilize and modify

the code [17].

For the goal of this thesis we used the following function: GaussianBlur,

imwrite, imread, findHomography and warpPerspective.

GaussianBlur() this method apply obfuscation effect called blur (see Chap-

ter 4) using a Gaussian kernel to distort the details of the image. It is done

with the function

cv.GaussianBlur(src , kernel size(x,y), sigmaX , sigmaY)

This method has the following parameters:

• src: the input image to be smoothed.

• Kerne size: the kernel size of the Gaussian kernel.

• Sigma X: the standard deviation of the Gaussian function in the x-

direction (must be positive).
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• Sigma Y: the standard deviation of the Gaussian function in the y-

direction (must be positive).

Taking as input an image by convolving it with a Gaussian kernel, which is a

matrix of weights that is calculated based on the standard deviation (sigma)

of the Gaussian function. Increasing the value of the sigma we will obtain a

increase of the blur applied to the image, if the sigma Y is not defined the

the method will use the same value of Sigma X on Sigma Y. If the kernel

values are set to 0 the blur will be applied to all the image [17].

The Imread() function loads an image from the specified path and returns

it as an array. The array dimension will be height, width, number of chan-

nels, where the number of channels will be 3 for RGB images and 1 for

grayscale images. If the image cannot be read (because of missing file, im-

proper permissions, unsupported or invalid format), the function returns an

empty matrix [17].

cv.imread(filename[, flags])

Where the parameters are:

• filename: Name of file to be loaded;

• flag: values that can indicate a mode such as IMREAD COLOR that

convert image to the 3 channel BGR color image.

Supported image file format:

• Windows bitmaps: *.bmp, *.dib.
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• JPEG files: *.jpeg, *.jpg, *.jpe.

• JPEG 2000 files : *.jp2.

• Portable Network Graphics: *.png.

• WebP: *.webp.

• Portable image format: *.pbm, *.pgm, *.ppm *.pxm, *.pnm.

• Sun rasters: *.sr, *.ras.

• TIFF files: *.tiff, *.tif.

• OpenEXR Image files: *.exr.

• Radiance HDR: *.hdr, *.pic.

Imwrite() function saves the image to the specified file. The image

format is chosen based on the filename extension. In general, only 8-bit

single-channel or 3-channel (with ’BGR’ channel order) images can be saved

using this function, with these exceptions:

cv.imwrite(filename , img[, params ])

Where the parameters are:

• filename: Name of the file;

• img[, params]: Images to be saved with a possible format-specific pa-

rameters encoded.

The format image supported are:
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• 16-bit unsigned images can be saved in the case of PNG, JPEG 2000,

and TIFF formats

• 32-bit float images can be saved in PFM, TIFF, OpenEXR, and Radi-

ance HDR formats.

• PNG images with an alpha channel can be saved using this function.

• Multiple images can be saved in TIFF format.

If the image format is not supported, the image will be converted to 8-bit

unsigned and saved that way.

FindHomography finds a perspective transformation between two planes

[17]. Taking in consideration an image captured with a camera, we can note

that the picture can look distorted due to the prospective angle of the person

that made the shot. This effect is called perspective distortion. If we take

in consideration a subject in a photo taken form a perpendicular viewpoint,

the four edges of the object are A,B,C and D (top-left, top-right, bottom-left

and bottom-right). A photo of the same subject will be taken from a dif-

ferent angle the resulting image can be see as A’,B’,C’ and D’ that are the

translated point of the original image [3].

cv.findHomography(srcPoints , dstPoints)

• srcPoints: coordinates of the points in the original plane, it is an

image represented as a matrix containing all the dimension of the source

picture.
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• dstPoints: coordinates of the points in the target plane, matrix where

the result are stored.

warpPerspective is used to apply a perspective transformation to an image

[17]. The function warpPerspective transforms the source image using the

specified matrix:

cv.warpPerspective( src , M, output size))

The function takes three parameters:

• The first parameter is the source image, which is an array representing

the image to be transformed.

• The second parameter is the transformation matrix, which is a 3x3

floating-point array representing the perspective transformation to be

applied.

• The third parameter is the size of the output image, which is a tuple

of (width, height).

The transformation matrix is typically computed using the findHomogra-

phy() function, which takes in a set of source and destination points and

computes the perspective transformation matrix that maps the source points

to the destination points.

The function returns an array that represents the output image after the

perspective transformation has been applied. The size of the output image

is specified by the third parameter.
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Conclusion In this Chapter we have introduced libraries used in this the-

sis. We described which barcode supports the ZXing library and also illus-

trated the components of the core module. In the last section we discussed

the function used from the OpenCV library.



Chapter 3

Digital Certifications

In this chapter we are going to explain the architectures used by the QR

codes used in the experiments. In the first section, the architecture of the

Digital Covid Certificate (DCC) will be explained. In the second section, on

the other hand, the Digital Covid Certificate proposed in [2, 6].

3.1 Standard Certifications

The European Union eHealth Network, created guidelines and technical

specifications for proof of vaccination for medical purposes. These guide-

lines prioritize simplicity, compatibility with existing national standards and

strong protection of personal data, with the aim of promoting interoperabil-

ity between EU Member States initiatives. The guidelines include a mini-

mum dataset and a globally unique, verifiable Unique Vaccination Certifi-

cate/Assertion Identifier [8].
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3.1.1 CBOR

CBOR (Concise Binary Object Representation) is a data format that aims

to have compact code size, efficient message size and the ability to extend

without requiring version negotiation. The data model of the format is based

on the JSON format and its based on the following idea [15]. The encoding

must have the capability to express most frequently used data formats in

Internet standards in a clear and concise manner. The encoder or decoder

code should be efficient to support systems that have limited memory, pro-

cessing power, and instruction sets. The priority for the encoder and decoder

should be compact code size, rather than compact data size, in the serializa-

tion process. The Decoding of data must be possible without the need for

a schema description. The format should be appropriate for systems with

limited resources as well as high-volume applications. Additionally, it should

support the conversion of all JSON data types to and from JSON, and allow

for expansion while still enabling earlier decoders to decode the extended

data..

CBOR as the following data item:

• an integer in the inclusive range between -264 . . . 264-1;

• a sequence of zero or more bytes (”byte string”);

• a sequence of zero or more Unicode code points (”text string”);

• a sequence of zero or more data items (”array”);

• a mapping from zero or more data items (”keys”) each to a data item

(”values”), (”map”);



37 3.1. Standard Certifications

• a tagged data item (”tag”), comprising a tag number (an integer in the

range between 0 and 264 − 1) and the tag content (a data item).

The CBOR encoding process involves converting a CBOR data item into a

byte string that contains a well-formed encoded data item. The decoding

must only return the data item if the input is a well-formed encoded CBOR

data item. The first byte of each encoded data item includes information

about the major type (represented by the 3 most significant bits) and ad-

ditional information (represented by the 5 least significant bits). Taking in

consideration the additional information’s value describe how to load the

argument value [5]:

• Less than 24: the argument value is encoded immediately after the

additional information;

• 24, 25, 26, or 27: the data are encoded in 1, 2, 4, or 8 bytes after the

first byte

The following list explain with an example the major type and the interaction

that they have with other bytes associated with the type:

• Major type 0: the encoding of an unsigned integer within the range

of 0 to (264−1) is included in CBOR representation. The encoded item

holds the argument value itself;

• Major type 1: a negative integer ranging from −264 to -1 is repre-

sented. The item’s value is obtained by subtracting the argument from

-1;
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• Major type 2: a byte string is represented in CBOR. The length of

the string is specified by the argument;

• Major type 3: a text string represented in UTF-8 format. The length

of the string is specified by the argument;

• Major type 4: an array consisting of data items of various types,

with the length of the array specified by the number of elements. The

additional information bits in the initial byte denote the length. The

rules for encoding arrays follow those for the major type 2;

• Major type 5: a map is comprised of pairs of data items, where each

pair consists of a key followed by a value. The argument specifies the

number of pairs in the map. As the items in a map come in pairs,

their total number must always be even. A map that contains an odd

number of items is considered not well-formed.

CBOR has a web token called CWT (CBOR Web Token) that provides an

efficient way to convey claims between two parties. The claims in a CWT

are encoded using the Concise Binary Object Representation (CBOR), and

enhanced security is provided through the use of CBOR Object Signing and

Encryption (COSE). Claims are pieces of information made about a subject,

represented as a name-value pair consisting of a claim name and claim value.

CWT is based on JSON Web Token (JWT) but uses CBOR instead of JSON

[15].



39 3.1. Standard Certifications

3.1.2 COSE

The structure of COSE (CBOR Object Signing and Encryption) objects is

created to allow for maximum code reuse while parsing and processing various

types of security messages. All message structures are constructed using the

CBOR array format [22]. The first three elements in the array are always

uniform, consisting of:

• A bstr that encapsulates the protected header parameters;

• An unprotected header parameters map;

• The message content, either plaintext or ciphertext, wrapped in a bstr.

When detached, the location is still used, but the content is represented

as a nil value.

The elements beyond this point are determined by the specific message type.

The design of COSE messages also employs the concept of layers to separate

distinct cryptographic concepts.

COSE has two distinct signature structures, COSE Sign and COSE Sign1.

COSE Sign enables multiple signatures to be added to the same content,

while COSE Sign1 is limited to a single signer. Conversion between these two

structures is not possible as the signature computation includes information

identifying the structure used, leading to a failure in signature validation if

converted. The DCC used the COSE Sign1 to sign the data.

In this schema (see Figure 16), the signature is computed and verified by

combining the contents of the protected header and the payload. The sig-

nature is then stored in the CBOR array as a byte string of major type 2.
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Figure 16: Sign1 schema [7]

To specify the algorithm used, a mandatory parameter named ”alg” with

label 1 must be added to the protected header. This parameter restricts the

algorithms that can be used to verify the signature that is the Elliptic Curve

Digital Signature Algorithm (ECDSA) [22].

The ECDSA is a cryptographically secure digital signature scheme, based on

the elliptic-curve cryptography [23]. The ECDSA keys are:

• private key: An integer of 256 bits in size (32 bytes) that is kept secret

and known only to the person who generated it;

• public key: is generated from the private key and it is used to verify

the signature

The signature is computed by following this steps:

• Compute the hash of the message using a cryptography hash function,

such as SHA-256, to obtain the value h: h = hash(msg);

• Generate a random number k, in the range of [1 to n-1], securely. In

the case of deterministic-ECDSA, the value of k is obtained by using

HMAC derivation from the combination of h and privateKey;

• Calculate the x-coordinate, ”r”, of the random point ”R” generated by
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multiplying a randomly generated number ”k” by the base point ”G”:

r = R.x;

• Compute the signature proof: 𝑠 = 𝑘−1 ∗ (h + r ∗ privateKey)(mod n);

• Return the signature r, s.

The COSE specifications emphasize the use of a deterministic implementa-

tion of DSA to prevent collisions caused by biased random number genera-

tion, which has been a previous attack on the algorithm [19].

3.1.3 Base45

QR codes have limited capacity for storing binary data, which must be en-

coded as characters using a defined mode in the QR code standard. The

simplest mode, Alphanumeric mode, uses 45 characters making Base32 or

Base64 encoding less effective.

In QR codes, the Alphanumeric mode uses a 45-character subset of US-

ASCII. This mode converts 2 bytes of data into 3 characters using the Base45

encoding scheme. This is different from Base64 encoding, which converts 3

bytes of data into 4 characters.

For encoding, two bytes [𝑎, 𝑏] are treated as a number n in base 256, repre-

sented as an unsigned 16-bit integer, resulting in 𝑛 = (𝑎∗256) +𝑏, the number

n is transformed into base 45 [𝑐, 𝑑, 𝑒] such that 𝑛 = 𝑐 + (𝑑 ∗ 45) + (𝑒 ∗ 452),

with the order of c, d, and e arranged in a way that the leftmost [𝑐] holds

the least significance. The values of c, d, and e are then used to find the

corresponding characters in Table 4, forming a string of three characters.

The reverse process is performed during decoding.



42 3.1. Standard Certifications

Value Encoding Value Encoding

00 0 23 N

01 1 24 O

02 2 25 P

03 3 26 Q

04 4 27 R

05 5 28 S

06 6 29 T

07 7 30 U

08 8 31 V

09 9 32 W

10 A 33 X

11 B 34 Y

12 C 35 Z

13 D 36 Space

14 E 37 $

15 F 38 %

17 H 39 ∗
18 I 40 +

19 J 41 -

20 K 42 ·
21 L 43 /

22 M 44 :

Table 4: Base 45 alphabet
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To encode a byte string [𝑎𝑏𝑐𝑑 . . . 𝑥𝑦𝑧] of arbitrary content and length, the

pairs of bytes are processed from left to right using the method described

above. If the number of bytes is even, the resulting encoded string will have

a length that is divisible by 3. If the number of bytes is odd, the last byte

will be encoded using two characters. To decode a Base45 encoded string,

the inverse operations are performed. If we take as example the string ”AB”,

its byte sequence is [[65 66]]. If we look at all 16 bits, we get 65 ∗ 256 + 66

= 16706. 16706 is equals to 11 + (11 ∗ 45) + (8 ∗ 45 ∗ 45), so the sequence

in base45 is [11 11 8]. Taking the encoded value form the Table 4, we get the

encoded string ”BB8”.

The Base45 encoding is recommended for storing binary data in a QR code,

using 11 bits for 2 characters, with an ECI mode indicator of 0010. If the

data is intended for another form of transport the other encoding like the

Base64 have better performance on the data [18].

From the point of view of the security, the Base45, as all the encoding, can

be attacked with a buffer overflow, that implies that the decoder must han-

dle any input, including handling octet values from 0 to 255 and the NUL

character.

The Base45 differs from other encoding like Base64, it avoids the padding

and because of this it is always needed to take care when encoding an odd

number of octets and when decoding a number of characters that is not di-

visible by 3.

Another possible attack is the covert channel attack (”type of attack that

creates a capability to transfer information objects between processes that

are not supposed to be allowed to communicate”) where an attacker can
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corrupt the data inserting non alphabetic characters in order to exploit im-

plementation error. To prevent this type of attack the implementation of the

decoder must always reject non valid characters [18].

3.1.4 ZLIB

Zlib is a compression library free written by Jean-loup Gailly (compression)

and Mark Adler (decompression). The compression method used by zlib,

deflation, outputs compressed data in the form of blocks. One of the block

types is ”stored blocks”, which consist of raw input data and a few header

bytes. If other block types cause the data to expand, deflation defaults

to using stored (uncompressed) blocks. With the default settings used by

deflateInit(), compress(), and compress2(), the overhead is five bytes per 16

KB block (around 0.03%) plus an initial overhead of six bytes for the entire

stream. This overhead applies even if the last or only block is smaller than

16 KB and it results in an overhead of 1100% for a single-byte input stream

(eleven bytes of overhead, one byte of actual data). The overhead approaches

the limiting value of 0.03% for larger stream sizes [21].
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3.1.5 DCC payload and QR code architecture

Figure 17: DCC creation process [11]

The DCC QR core is abtained by the computation of the process as depicted

in Figure 17, the first step is to store the data about the user on a JSON

following the data structure provided by the eHealt Networks guideline for

the DCC-19 an example of a correct structure is showed below [10].

{

"ver": "1.2.1",

"nam": {

"fn": "Musterfrau -G\u00f6\u00dfinger",

"gn": "Gabriele",

"fnt": "MUSTERFRAU <GOESSINGER",

"gnt": "GABRIELE"

},

"dob": "1998 -02 -26",

"v": [

{

"tg": "840539006",

"vp": "1119349007",



46 3.1. Standard Certifications

"mp": "EU \/1\/20\/1528",

"ma": "ORG -100030215",

"dn": 1,

"sd": 2,

"dt": "2021 -02 -18",

"co": "AT",

"is": "Ministry␣of␣Health ,␣Austria",

"ci": "URN:UVCI :01:AT :10807843

F94AEE0EE5093FBC254BD813#B"

}

]

}

The next step in the process is to store the JSON payload as a CBOR (Section

3.1.1) (binary document) and build it into a COSE Sign1 (Section 3.1.2). The

appropriate header is added to the CBOR and the entire content is signed

using the private key of the DSC and the selected encryption algorithm.

After the binarization of the JSON the data are compressed with the ZLIB

library (Section 3.1.4). The compressed string is encoded in base45 (Section

3.1.3) and the last step consists in adding the prefix “HCx:” to state the

Health Certificate version number.

In the end we will obtain a QR code valid (see Figure 18) with an error

correction level Q (25%) that certificate the state of person that can be:

vaccinated, infected or cured.



47 3.2. Optimazed Certification

Figure 18: Standard DCC

3.2 Optimazed Certification

The optimized DCC is a proposal of improvement DCC provided by Giacomo

Arrigo [2] and Marco Carfizzi [6] in their master thesis, the experimental QR

is cross-language interface description language (IDL) to generate customiz-

able data structures that used the buffer protocol standard for the security

of the data form the different attacks.

3.2.1 Buffer Protocol

Protocol buffers are a serialization format for packets of structured data

with types, which can range from a few megabytes in size. This format is

appropriate for both short-term network communication and long-term data

preservation. The addition of new information to protocol buffers can be
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done without altering existing data or requiring software upgrades.

To define the message contained in the protocol buffer the user just need

to provide the structure in the ”.proto” file which will be executed by the

compiler. An example of the structure can be see in the following code:

message Person {

optional string name = 1;

optional int32 id = 2;

optional string email = 3;

}

From the example we can immediately notice that in the message before of

each type there is a field specification optional, indeed the protocol buffer

field can be:

• singular: this is the standard field regulation when no alternate field

regulations have been designated for a specific field;

• optional: the same as a singular field, with the addition of the ability

to determine if a value has been explicitly set. An optional field can

either be set or unset;

• repeated: the repeated field type can appear zero or more times in a

valid message and the order of the values will be maintained.

• map: this is a field type consisting of a key and a value pairing.

The encoding of a message transforms each key-value pair into a record com-

posed of the field number, a wire type, and a payload. The wire type informs

the parser of the size of the payload following it, enabling older parsers to

bypass fields they are not familiar with.
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The protocol buffer has six different wire types VARINT, I64, LEN, SGROUP,

EGROUP and I32; the proposed DCC utilize the following two type:

• VARINT: that is identified by the number ”0” and it is used for the:

int32, int64, uint32, uint64, sint32, sint64, bool and enum.

• LEN: defined by the number ”2” for the: string, bytes, embedded mes-

sages and packed repeated fields

The record’s ”tag” is represented as a varint produced from the field number

and wire type through the equation (field number ≪ 3) | wire type. In

simpler terms, after decoding the varint related to a field, the bottom 3 bits

give us the wire type and the rest of the integer number provides the field

number.

3.2.2 DCC experimental architecture

The new data format uses location-based parsing, where the parser reads

bytes sequentially and determines the field being read based on the order

defined in an array in the IDL schema. This means that no key is saved

in the data and every position is linked to a key-value pair specified in an

external file, where each array element represents a field of the message and

includes its metadata.

{"Test": [

"bytes": 1,

"id": "algorithm",

"type": "u_int"
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]

"case":{

"1":{

data about the vacination

}

"2":{

data about the user

}

.

.

.

"10":{

data about the provider of the vacination

}

}

}

With this new format it is facilitated the verification of the information for

the reader of the QR code. The payload of the QR contains the JSON

encoded using the base45 and the prefix verification of the DCC encoded

before the JSON. Since its dimension is the shortest of the other QR code,

only 183 byte in comparison with the 517 byte of the DCC, the experimental

DCC does not need the compression given by the ZLIB.

From the point of view of the security, the experimental DCC is based on the

Protocol Buffer that provide an efficient protection from the possible attacks

to the payload of the QR.

The QR code structure consists in a QR code with error correction level ”L”,

the version of the QR is ”6” providing an image of dimension 41x41 with low

density as depicted in Figure 19 [2].
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Figure 19: Experimental DCC

Conclusion

In this chapter we explained the architecture structure of the EU Digital

COVID Certification and the experimental one proposed in [2]. The standard

DCC architecture use CBOR to store the JSON file and the base45 to encode

the data, but due to the dimension of the encoding data the standard DCC

need to be compressed using ZLIB. The experimental DCC use a different

structure obtaining an encoding of the data lower volume compered to the

standard DCC. This new architecture does not need a compression of the

encoded data and the resulting QR code has a modules density lower then

the standard one.



Chapter 4

Test structure

This section will explain the structure of the tests. Different types of image

distortion were applied to each QR test. The two testing cases being the

moiré effect to reproduce a QR decoding from a screen and the second without

the moiré effect to replicate a QR decoding from a piece of paper.

For each test the images are divided in the following directory structure:

Moiré/no Moiré: directories containing the two principal test

Noise levels : directories containing the images with the three noise

levels applied

Distance range: directories divided by the three distance ap-

plied

Blur level from 0 to n: directories the images with the

previews effect and the blur effect

The population of each test is 1000 elements representing the different per-

spective distortion.
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The distortion applied on each QR are:

• Distance: this parameter is used to define the distance from which the

QR is seen that can be 0 (close), medium distance and long distance.

Through this parameter we can simulate the attempt to read a QR

code from different distances;

Figure 20: Example of QR with distance 0, 50 and 100

• Perspective distortion: refers to a change in the perceived size and

shape of objects in an image as a result of their position relative to

the camera. This happens when the camera is not perpendicular to

the plane of the image and results in the objects in the foreground

appearing larger than those in the background. Each test have a dif-

ferent perspective distortion to emulate the QR code read from various

directions;
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Figure 21: Example of QR difference perspective distortion applied

• Moiré: is an optical phenomenon that occurs when an image is cap-

tured or displayed with a pattern of repeating elements that are too

close together. The Moiré effect can cause a number of visual artifacts,

such as distorted lines, false colors, and other visual distortions. It can

also make it difficult for a QR code reader to correctly read the code.

The common to have a moiré distortion when taking a picture of the

screen;

Figure 22: Moiré on QR

• Noise: in the context of images, thermal noise can appear as random

speckles or graininess in the image, and it can be more pronounced
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in low-light conditions. It can also affect the image quality, making it

appear less sharp and more difficult to read. Thermal noise can also

make it difficult for a QR code reader to correctly read the code.

The thermal noise value can have three levels that were chosen based

on tests done over time on QRs, trying to reproduce effects that happen

more easily;

Figure 23: Example of QR with noise 0, 10 and 20

• Blur : it is a visual distortion that occurs when an image appears out

of focus, or when its details are not sharp. This can happen for a

variety of reasons, such as an image captured with a camera that is not

properly on focus. Blur effect is applied from 0 (absent) to n, where

the intensity of the blur is higher, as for noise the values were chosen

based on tests over time.
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Figure 24: Example of QR with blur 0 and 2

To implement the error correction tests, the ZXing library has been modified.

The modified class is DecoderResult() from com.google.zxing.common, which

serves to encapsulate the result of decoding a matrix of bits. A new pa-

rameter was added in the class signature representing the byte value of the

codowords before the Reed-Solomon algorithm is applied to compare how

many bytes have been corrected, so that we know whether error correction

has been applied.

DecoderResult ( byte [] rawBytes , byte [] notCorrectedBytes

, String text , List < byte [] > byteSegments , String

ecLevel ,int saSequence , int saParity , int

symbologyModifier )

The DecoderResult object occurs as a result of the Decoder method from the

com.google.zxing.common package, where a copy of the parsed the raw byte

array and the corrected codewords are given in input.

private DecoderResult decode ( BitMatrixParser parser , Map <

DecodeHintType ,? > hints )
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it has been created a JAVA file containing three functions for running all the

QRs tests:

• Main: function that calls the getFiles function to take all the QRs to

be tested and saves the result of test single QR method on each image.

The results data are stored in one of the six possible results variables:

correctly read, not correctly read, correctly read with the use of the

error correction, notFound, notDecoded and error correction fail. For

the variables notFound, notDecoded and error correction fail, catching

the exceptions in the Java file. Once all the QRs have been tested, it

saves the results to the appropriate files. Figure 25 shows the diagram

of the java file;

• getFiles : function that takes a directory in input and gives in output

all the files having as extension .jpg or .png ;

• test single QR: function that performs a tryHard decode on the input

image and returns the result using the DecoderResult method.
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Figure 25: Java code’s diagram
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Conclusion

In this chapter, the structure of the tests was explained in general. In the

first part, the effects applied to images were explained specifying the reason

behind the values chosen. The second part explained the structure of tests

done with JAVA, describing the modification applied to the library and how

the data were extracted.



Chapter 5

Case Studies

In this chapter we are going to analyze the data extracted from the tests by

explaining the results obtained from the graphs. In the first section we will

analyse the data from the study between two QRs with the same data but

different error correction level. In the second section instead we will compere

the performances of the standard DCC with the experimental DCC.

5.1 Methodology

The first part of the experiment concerns the utility of error correction in

barcodes having a large density of data, for these types of tests the Green Pass

was considered because of its immense use during the COVID19 pandemic

and the problems encountered by users when verifying the certificate.

The seconds part of the experiment, on the other hand, consists in comparing

the performance of the DCC proposed by the EHB and the experimental

green pass proposed by Arrigo and Carfizzi.
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With each test, the results should be viewed as the probability of reading

a QR. A probability tending toward 100 will indicate that the QR is more

clear to read compared to one with a probability tending toward 0.

In all the data study it is taken into consideration the data from the medium

level noise, because it represents the average value between the low level

and high level of noise. The first data representation used in this thesis is

a line chart where each line indicates the percentage of decoding of each

population of QRs(Y-axis) over different levels of blur (X-axis). Each line

represents different levels of scaling applied to the QRs, b indicate the zero

and f indicate the farthest. The second chart is a stacked area chart that

represents the number of QRs (Y-axis) over different levels of blur (X-axis).

5.2 DCC - Low High error correction

The DCC Low - High data analysis concerns QRs with low level of error cor-

rection (maximum 7% of recovery) and high level of error correction (maxi-

mum 25% of recovery). Both QRs are analyzed with and without the distor-

tion created by the Moiré as depicted in Figures 26 and 27 (DCC low on the

left and DCC High on the right) and applying all the distortion described in

chapter 4 .
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Figure 26: Example of QR without the moiré applied

Figure 27: Example of QR with the moiré applied

5.2.1 Analysis DCC Low - High without Moiré

From the first experimental tests, we can see that as the distance varies and

the blur increases, the QRs decoding rate decreases. This occurs because as

the distance and blur value increases, the QR will become more and more

difficult to read because of the library’s difficulty in detecting the QR due to

the distance and the increased noise produced by the blur. Comparing the

DCC low with the DCC high both with a medium level of noise (see Figure

28), we can easily see that the QR with lower error correction has a higher

readability than the QR with higher error correction.
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Figure 28: QR Low and High without moiré

By comparing each distance graph we understand why there is this gap.

Beginning by analyzing the graphs in Figure 29 we can see that for zero dis-

tance, the DCC with low level has a success rate of about 90% and as the

blur level increases the reading still remains optimal, on the other hand, for

the DCC with High level the performance initially is about 50% but as the

blur level increases, the reading decreases to almost 0%. An important find-

ing that can be seen from the High level is the use of error correction, which

as the blur of the image increases is applied but fails due to the excessive

amount of error above the threshold guaranteed by the High level. Taking

into consideration the graphs present in Figures 30 and 31 we can see that

as the distance increases the Low level begins to have difficulties in correctly

decoding the QR and to compensate for the amount of disruption caused by

increasing the distance between the QR and the camera and increasing the

blur, it uses error correction but it is never applied due to the amount of

errors. Assuming that the High level has a higher threshold than the Low

level, it is expected that as the disruption increases the performance will

improve. Contrary to predictions, the high level of error correction does not
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improve decoding, reducing the percentage of success to almost 0%. Those

fail on average are for the 40% in both cases (see Figures 30 and 31) due to

the error correction. This is because the Reed-Solomon code detected the

errors but they exceed the error threshold. From the comparison of the QRs

we obtain that the percentage of success without moiré is bounded to the

density of the QRs. This is because as error correction increases, there is a

greater range of correction at the expense of QR density.

Figure 29: DCC Low-High zero distance charts

Figure 30: DCC Low-High medium distance charts
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Figure 31: DCC Low-High far distance charts

5.2.2 Analysis DCC Low - High with Moiré

After completing the analysis of the two DCCs without Moiré, we analyzed

the same data structures with the moiré effect applied. Like the previews

analysis, starting from the charts representing the decoding success rates

with average noise level. We notice (see Figure 32) that the performances

are similar to those without the moiré effect for the QR with error correction

Low. Instead, for error correction High the performance begin to decrease

earlier (see Figure 32) than the other version previously analyzed. Since they

have similar graphs, we expect to have analogous decoding success and fail

rates between the two studies.
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Figure 32: QR Low and High with moiré

Contrary to our assumptions by looking at the charts of the three distance,

we notice that with the presence of the moiré distortion, the decoding success

rate is prevalently dependent on the application of the error correction (see

Figure 33). This applies to both DCC. the application of error correction

is due to the distortion created by the moiré effect, which from the lowest

blur value makes the image more difficult to decode, denoting that without

the presence of error correction would make the QRs unreadable. Another

important finding that is noted, is that as the blur increases, the use of error

correction decreases. This happen for the correlation between moiré and

blur, at the increase of the blur on the image, the moiré distortion decrease.

From this analysis, we realized that the use of error correction is important

when decoding is done in the presence of distortions, such as moiré, that lead

an increment of noise in the image. While being useful, from the charts in

Figures 33, 34 and 35, the decoding success rate is low and this is due to the

payload architecture used in the DCC. In the next section we will compare

two DCCs with different architectures to see whether with lower density error

correction remains useful for successful decoding or not.
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Figure 33: DCC Low-High zero distance charts

Figure 34: DCC Low-High medium distance charts

Figure 35: DCC Low-High far distance charts
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5.3 DCC and Optimized DCC analysis

In this case study we are going to compare the performance of the DCC

used during the pandemic and the experimental DCC proposed by Giacomo

Arrigo. Applying the same tests carried out in the previous section (see

Figures 36 and 37). Medium and high noise levels will be compared since,

unlike the basic QR with low and high, the performance of the experimental

DCC remains high even in the worst case. The low noise level was not be

showed since the QR optimized in the tests has a success rate of 100% without

moiré and 90% with moiré.

Figure 36: Example of DCC optimezed and base without the moiré applied

Figure 37: Example of DCC optimezed and base with the moiré applied
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5.3.1 Analysis DCC Base - Optimized wihtout Moiré

From the graphs of decoding rates, it is immediately noticeable that the

optimized DCC has significantly better success rates than the original DCC

on both medium and high noise level (see Figures 38 and 39). These better

performances for the medium noise level are not due to error correction since

it is applied on average 1% of the times (see Figures 40, 41 and 40). Instead,

in the case with high noise level the error correction is applied. The decode

reach the 100% success rate on base distance with an application of the 18%

(see Figure 43), 90% success rate on the medium distance using the error

correction on average 12% of the times (see Figure 44) and a 70% decode rate

for the high distance, with the majority of utilization of the error correction

where the level of blur is higher (see Figure 45). From this comparison, it

is immediately clear that by using an improved architecture the decoding

performance of the DCC improves even in situations where, as in the case

of maximum distance, the noise level is so high that normal DCC cannot be

read. Furthermore, in situations where the noise level is high, the optimized

DCC takes advantages of error correction to maintain decoding rates almost

similar to those present in the analysis with a lower noise level. In conclusion,

we can say that the experimental DCC has a very good performance due to

its low density and the use of error correction.
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Figure 38: DCC optimized and base DCC with medium noise level

Figure 39: DCC optimized and base DCC with high noise level

Figure 40: Optimized and base DCC with medium noise level charts
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Figure 41: Optimized and base DCC with medium noise level charts

Figure 42: Optimized and base DCC with medium noise level charts

Figure 43: Optimized and base DCC with high noise level charts
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Figure 44: Optimized and base DCC with high noise level charts

Figure 45: Optimized and base DCC with high noise level charts

5.3.2 Analysis DCC Base - Optimized wiht Moiré

From the previous analysis of data on QRs with moiré (see Section 5.2.2),

we realized that the effect damages the images increasing the difficulty ion

the detection of the QR code. From the charts representing the decoding

rates we can notice that the experimental DCC is better than the basic DCC

(see Figures 46 and 47). Analysing the medium noise level, we can see that

the success rates on average among the distances are 100% for the closer,

90% for the medium and 78% for the far (see Figures 48, 49 and 50). This
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good performances are due to the application of error correction that is used

in the majority of the decoding increasing the success rate. For the higher

noise level, on the other hand, the rate across distances on average are 90%

for the closer, 80% for the medium and 60% for the far (see Figures 51, 52

and 53). In contrast to the medium noise level, the success in decoding the

QR code in the high noise level is exclusively due to error correction. From

this analysis, we can deduce that in the presence of high noise levels, such as

moiré, it is not enough to have a low density QR code but the use of error

correction is necessary for the successful reading of a QR. From the charts

on Figure 50, it can be seen that as the distance increases, the need of error

correction is reduced. This happens because in addition to the correlation

with the blur, increasing the distance reduces the moiré distortion.

Figure 46: DCC optimized and base DCC with medium noise level
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Figure 47: DCC optimized and base DCC with high noise level

Figure 48: Optimized and base DCC with medium noise level charts

Figure 49: Optimized and base DCC with medium noise level charts
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Figure 50: Optimized and base DCC with medium noise level charts

Figure 51: Optimized and base DCC with high noise level charts

Figure 52: Optimized and base DCC with high noise level charts
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Figure 53: Optimized and base DCC with high noise level charts



Conclusion

This thesis presented the analysis carried on the EU Digital COVID Certifi-

cate system and the COVID Certificate system proposed in [2]. The analysis

involved the study of the impact of error correction on the decoding rates of

the two systems when different image distortions are applied.

In the first tests, two QRs containing the same data and having the same

structure were compared, one with error correction level low (7% recoveries)

and the other with error correction high (30% recoveries). Different distor-

tions were applied to the images to both tests. From the study done on

QRs without moiré effect, we could conclude that the use of error correc-

tion is not very important for the correct decoding of the barcode. Instead

from the study on QRs with moiré effect, we concluded that the use of error

correction is crucial in the successful barcode decoding. Furthermore, an im-

portant finding discovered is that, contrary to expectations, error correction

high does not improve decoding as the applied distortion levels increase.

In the second study, the basic DCC and the experimental DCC proposed

by Arrigo were compared. From the data analysis, it was noticed that both

with and without moiré, the experimental DCC has an excellent decoding

rate compared to the EU digital COVID certification. These excellent results
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are due to both the density of the QR and the use of error correction, which

allows it to be read even in cases where the image has been distorted. This

huge difference between the two QRs is due to the excellent data structure

presented by Arrigo and the choice to use an error correction level low in-

stead of an error correction level quartile as in the case of the DCC.

In conclusion, taking the results of both studies into consideration, we can

say that error correction helps the decoding of a QR code, but in the case of

dense barcodes such as DCC it is always recommended to use a better data

structure and an error correction level low.

From the second study done in this thesis, it was proven that the experimen-

tal DCC has better performance than the current DCC. A possible future

work can further implement the standard for optimized QR code since at

the moment it is only an experimental protocol, thus it has no recognized

standard yet.

Starting from the functions we developed, two more studies could be done.

The first study could focus on the masks currently used by QR. The study

would consists of taking QRs of different densities and, by modifying the

existing libraries, applying each type of mask to each QR to see if the mask

chosen by penalty score is the most efficient mask at a practical level. The

second study consists of finding and applying an improved mask to a QR,

comparing its performance with those currently in use. In both studies it is

necessary that the library has to be modified or created, because by default

all libraries use the pattern provided by the mask to facilitate decoding.

From the studies done, we also noticed that in the presence of certain dis-

tortions, as distance and blur increases, the disturbance on the readout de-
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creases. Using the libraries available for reading QRs, one could create a

library that upon detecting a distortion applies a filter to reduce the damage

on the QR or advises the user to move the camera closer or afar from the

barcode.
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