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EXECUTIVE SUMMARY  
 
 
The link between climate and typhoons are well studied, particularly in determining if changes in 

typhoon characteristics are forced by certain climate anomalies / trends. However, only few 

assessed the impact of a typhoon event to the weather / climate anomalies surrounding the 

typhoon period. In Southeast Asia, no study investigated the effects of Super Typhoon Haiyan 

that devastated the Philippines, to the weather / climate variables before and after its landfall. 

Hence, the motivation of this thesis study is drawn from this gap.  

 

In this study, the spatio-temporal anomalies using observational and reanalysis datasets i.e., 

GPCP, CRU, HadISST and ERA5 are analyzed, exploring temperature and precipitation, to 

determine how anomalies surrounding the Haiyan period compare with meteo-climatic 

variability between the non-typhoon and typhoon months / years. From the results, the 

anomalies are evident within the focal region (SE Asia) in as far as the annual, seasonal, and 

monthly values are concerned. For these periods, results revealed that the precipitation are 

wetter-than-average and temperature are warmer-than-average during the year, season and 

month when Typhoon Haiyan occurred (Y2013, SON 2013, November 2013), providing a 

background of the possible impacts of the typhoon Haiyan occurrence during these periods. 

Between precipitation and temperature anomalies, the temperature is notoriously higher (that 

is apparently illustrated by the red-dominated anomaly maps), as compared to precipitation with 

blue and red colors distributed across different geographic locations across the SE Asian map. 

This is likewise supported by the result of the ECDF plots showing the percentage of positive 

(negative) values demonstrating wet (dry) anomalies for precipitation and hot (cold) anomalies 

for temperature. 

 

The effects of seasonal phases and inter-annual variations (dry/wet, monsoon, ENSO) on 

precipitation and temperature patterns were also assessed. The analysis revealed that ENSO and 

monsoon significantly impacts the precipitation patterns in the region. However, ENSO does not 

significantly impact the temperature. Although it must be emphasized that Typhoon Haiyan 

occurred on an ENSO-Neutral year, therefore, it may have not necessarily influenced the 

variability of the studied variables. Albeit, the regression analysis with precipitation and 

temperature against Nino 3.4 Index shows that these variables are negatively correlated to the 

SST anomaly with high significance.  
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Using wind, pressure, precipitation and runoff data, the daily spatio-temporal evolution of 

abnormal weather patterns surrounding the landfall period (before, during, and after) is 

determined. The results revealed that during the typhoon period, the highest anomalies with 

respect to all variables (precipitation, runoff, windspeed and pressure) are recorded when 

typhoon Haiyan made landfall (November 7 & 8) predominantly in the Philippines where there is 

a large disparity of the calculated anomalies during these days, as compared to the rest of the 

days during the typhoon period. November 7 and 8 also topped the rank when compared with 

the same days of the non-typhoon years, especially with the windspeed and precipitation values.  

 

With respect to the inter-variable relationship, the result of the multiple linear regressions 

revealed that precipitation and runoff are positively correlated with windspeed, while negatively 

related with pressure, meaning, the cyclonic (low pressure) Typhoon Haiyan event increased the 

precipitation and runoff in as far as the Philippines is concerned.  

 

Building from these results, it can be deduced that an extreme event such as Typhoon Haiyan can 

profoundly influence the climate variables surrounding its occurrence. In addition, non-TC-

induced activities/events like ENSO and monsoon can further enhance the effects, especially on 

the precipitation patterns in the region. 

 

It must also be emphasized that results vary from one dataset to another, demonstrating that 

there are inconsistencies with the datasets, in as far as the analyzing these anomalies for its 

amplitude and geographical locations are considered. It can be noted that both GPCP and CRU 

data are constructed using rain gauge data and inhomogeneity with the recorded values can be 

a factor that affects the results. On the other hand, ERA5 is based on model results that also have 

its own estimation uncertainties. 

 

From this study, further research can be conducted investigating the differences of the analyzed 

datasets. A deeper understanding on the effects of EN/LN can also be performed especially on 

years when maxima/minima values of the studied variables were recorded. Other extreme 

typhoon events can also be explored not just in the Philippines but in other countries of the 

region. 
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STRUCTURE OF THE THESIS 
 
This thesis paper is organized into the following chapters:  

 

Chapter 1 introduces the technical definition and description of 

cyclones/hurricanes/storms/typhoons and their interrelation with climate change, as 

documented in pertinent literature. A short information about typhoons in Southeast Asia 

(particularly the Philippines) is also discussed. The highlights of the selected key papers that 

studied typhoons and climate anomalies are summarized according to the focus of their studies 

and the models, methods, and data used for analysis – characterizing the influence of changes in 

climatological variables on cyclone/typhoon variabilities. The papers are grouped and presented 

according to the investigated area, i.e., outside and within the Southeast Asian region. This 

chapter also explains the rationale behind the chosen topic based on the research gaps identified 

from the literature review, specifically on papers studying typhoon-induced impacts on climatic 

variables surrounding its occurrence and the use of observational (GPCP, CRU, HadISST) and 

reanalyzed (ERA5) datasets. Moreover, the thesis study's objectives, scope, and limitations are 

illustrated. 

 

Chapter 2 defines the spatial coverage of the study, predominantly focusing on the geographical 

location of the target region (Southeast Asia) and its climate characteristics. This characterization 

is then associated with the region’s vulnerability to multiple climate hazards – one of which is 

constituted by cyclones, where “Typhoon Haiyan” that caused severe damage to some parts of 

the Philippines in November 2013, is highlighted. This chapter also describes the datasets used 

and the methodologies and tools adopted to collect, pre-process, and analyze them regarding 

the Typhoon Haiyan event and the climatological responses to it (e.g., trends and cycles). 

 

Chapter 3 illustrates the main results of the analysis, discusses the findings revealed by the 

results, and shows how the results and interpretations relate to previously published studies. 

 

Chapter 4 states the conclusions drawn and provides and outline of the theoretical implications, 

significance, and any possible future applications of the thesis work. 
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CHAPTER 1: BACKGROUND OF THE STUDY 

1.1 Understanding Typhoons and Climate Change 

 

The Philippine Atmospheric Geophysical Astronomical Services Administration (PAGASA) 

describes “Tropical Cyclone (TC)” as a “warm-core low-pressure system with a spiral inflow of 

mass at the bottom and spiral outflow at the top”. Its formation always occurs over oceans where 

sea surface and air temperatures are greater than 26°C. In the process, the air receives heat from 

the sea, and large amounts of sensible and latent heat are accumulated, spiraling towards the 

center. This heat exchange occurs rapidly due to a large amount of spray thrown by the wind into 

the air, liberating a massive latent heat of condensation, thus giving TC its required energy1. 

 

PAGASA further defines TC as “a non-frontal, synoptic-scale phenomenon that develops at any 

level over tropical and sub-tropical water, with an organized circulation”2. Depending on the 

region, its nomenclature varies in different parts of the world. It is referred to as “hurricanes” in 

the North Atlantic, Eastern North Pacific, and South Pacific Ocean, “cyclonic” in the Bay of Bengal, 

Arabian Sea, and Western South Indian Ocean, "willy-willy" in the eastern part of the Southern 

Indian Ocean, and “typhoons” in the Western North Pacific Ocean3.  For guidance on the locations 

of these major global oceans, see Figure 1 below. 

 

Figure 1. Map of the Ocean Regions (Luo, Leung, Zhou, & Zhang, 2015)  
 

 
1 Sourced from “About Tropical Cyclones” at the PAGASA website, 
https://www.pagasa.dost.gov.ph/information/about-tropical-cyclone  
2, 3 Ibid 
 

https://www.pagasa.dost.gov.ph/information/about-tropical-cyclone
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Although TC forms over oceans, it can never develop in the South Atlantic and the Southeastern 

Pacific due to the cooler sea surface temperature (SST) and higher vertical wind shears. TC 

occurrences are usually situated at latitudes greater than 5° from the equator. Typically, they 

reach their greatest intensity while over warm tropical water. Albeit weakening as they move 

inland (landfall), they often leave damages to properties or human casualties4. 

 

The Philippines is one of the Countries mostly impacted by typhoons. It is located along the 

typhoon belt in the Pacific and is visited by about twenty typhoons every year – five of which are 

destructive5. It was observed that there was an increase in the number of intense typhoons over 

the Philippine Sea after the mid-2000s (He et al., 2017). Based on meteorological records from 

National Hurricane Center (NHC) and Joint Typhoon Warning Center (JTWC), five (5) out of the 

eleven (11) strongest TC that made landfall in world history hit the Country -- with Typhoon Goni 

that recently occurred in 2020 topping the list [see Table 1]6. Typhoon Haiyan on the other hand, 

despite landing on the second spot per wind strength, remained to be the topmost destructive 

typhoon in the Country, based on cost of damage7. These estimates of economic losses consist 

of damages to buildings and transportation networks, loss of revenue for businesses, and loss of 

crops, per an article by Uy & Pilar (2018)8.  

 
Table 1. World’s Top Eleven (11) Strongest Tropical Cyclone at Landfall 

 

Rank Name Year Wind speed Affected location 

 
Local  

(International) 
 

[miles per 

hour (mph)] 
Province / Country 

1 
Super Typhoon Rolly 

(Goni) 
2020 195 

Catanduanes, 

Philippines 

2 
Super Typhoon 

Yolanda (Haiyan) 
2013 190 Leyte, Philippines 

3 
Super Typhoon Ferdie 

(Meranti) 
2016 190 Itbayat, Philippines 

4 Hurricane Dorian 2019 185 Bahama Islands 

5 
Great Labor Day 

Hurricane 
1935 185 Florida, U.S.A 

 
4 Ibid 
5 According to the “Information on Disaster Risk Reduction of the Member Countries [the Philippines]” by Asia 
Disaster Reduction Center (ADRC), https://www.adrc.asia/nationinformation.php?NationCode=608&Lang=en  
6 List taken from the paper by Santos (2020) 
7The ranking is based on cost of damages per the typhoon assessment report of del Rosario (2014) through the 
Philippine National Disaster Risk Reduction and Management Council (NDRRMC) 
8 Written in the Business World, based on data reported in the Compendium of Philippine Environment Statistics 
(CPES) of the Philippine Statistics Authority (PSA)  

https://www.adrc.asia/nationinformation.php?NationCode=608&Lang=en
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6 Super Typhoon Joan 1959 185 Eastern Taiwan 

7 Hurricane Irma 2017 180 Leeward Islands 

8 Cyclone Winston 2016 180 Fiji 

9 
Super Typhoon Juan 

(Megi) 
2010 180 Luzon, Philippines 

10 
Super Typhoon Iliang  

(Zeb) 
1998 180 Luzon, Philippines 

11 Cyclone Monica 2006 180 
Northern Territory, 

Australia 

 

There is a scientific consensus that climate change contributes to stronger typhoons due to the 

higher sea surface and subsurface temperatures, which remove the natural buffer on typhoon 

strength when cold water upwells below the ocean’s surface (Holden & Marshall, 2018). These 

intensity changes largely concern the Countries in East and Southeast Asia (Mei & Xie, 2016). 

According to the Sixth Assessment Report (AR6)9 of the Intergovernmental Panel for Climate 

Change (IPCC), fewer but more extreme typhoons (with stronger wind speeds) have affected the 

Southeast Asian region in the 21st century. However, there is no significant trend in the overall 

number recorded. IPCC further reports that rainfall will increase in northern latitude but will 

decrease in the Maritime Continent where the Philippines belongs. Analyzing the typhoon data 

from 1951 to 2013, Cinco et al. (2016) revealed that during this period there was a decreasing 

trend in the number of landfalling typhoons in the Country, with fewer typhoons having wind 

speeds above 118 kilometers per hour (kph) but more extreme typhoons with wind speeds 

above 150 kph. A more recent study by Tran, Ritchie, & Perkins‐Kirkpatrick (2022) supports this 

observation showing that over the 50-yr period (1970 to 2019), the TC exposure in Southeast 

Asia relative to the Western North Pacific climatology has consistently shifted northward; hence, 

decreasing the landfall events in the Philippines and Vietnam while increasing in some South 

China areas. Correspondingly, Chen et al. (2021) found that the TC mean inland landfall intensity 

will increase by 2 m/s (6%) in the Western North Pacific the by the end of the 21st century, based 

on model projections. 

 

Studies covering other regions showed varying responses of Tropical Cyclones / Hurricanes / 

Tropical Storms (TS) to external forcings. Bhatia et al. (2019) and Knutson et al. (2020) showed 

that more intense TCs are consistent with the expected impacts of global warming due to 

anthropogenic forcings. Trenberth et al. (2018) concurred with this by demonstrating that there 

 
9 Sourced from “Regional Fact Sheet-Asia”, IPCC AR6, Working Group I: The Physical Science Basis, 
https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Asia.pdf   

https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Asia.pdf
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is a link between climate change and the above-normal activities of the recent Atlantic 

hurricanes in 2017 (i.e., Harvey, Irma, and Maria), wherein the ocean heat content due to global 

warming has “supercharged and exacerbated” them. Using hurricane Harvey as an isolated case 

study, they observed that the ocean heat content was highest on record globally and in the Gulf 

of Mexico before the northern summer of 2017. These record-high values fueled and intensified 

hurricane Harvey bringing flood rains on land. In the context of global distribution, Murakami et 

al. (2020) demonstrate that the individual effect of external forcings like greenhouse gases 

(GHG), aerosols, and volcanic activities on TC from 1980 to 2018 can be distinguished in terms 

of the spatial pattern of occurrence (varying per region) rather than their frequency, with the 

global spatial distribution being attributed to the increase in GHG emissions. Another study by 

Villarini & Vecchi (2012) explored projections of North Atlantic TS, revealing that over the first 

half of the twenty-first century, an increase in TS frequency arises from radiative forcings other 

than increasing atmospheric concentration of CO2 . However, projected TS trends over the entire 

21st century do not show consistent dependence on the Coupled Model Intercomparison Project 

Phase 5 (CMIP5) scenarios [Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5]10. 

Besides sea-surface temperature (SST), most of the uncertainties in the North Atlantic TS 

frequency are influenced by the complex nature of the climate system and its response to 

radiative forcing.  

 

1.2 Review of Pertinent Studies on Typhoons and Climate Variables 

 

Building on the knowledge of “typhoons” and “climate”, a more extensive literature review of 

scholarly articles and scientific journals is carried out using these keywords to deepen the 

understanding of their interconnection. The search resulted in some key papers that provide 

various models, methods, and datasets, showing how cyclone/hurricane/typhoon behaviors and 

climate variables are related. Many of these studies are done outside of the Southeast Asian 

region, as presented in Table 2.  

 

 

 

 

 
10 Four RCP scenarios [2.6, 4.5, 6 and 8.5] are adopted by IPCC for its Fifth Assessment Report (AR5). RCPs are named 
after a possible range of radiative forcing values [cumulative measure of human emissions of GHGs from all sources 
(expressed in Watts per square meter) in the year 2100, relative to pre-industrial values +2.6, +4.5, +6.0 and +8.5 
W/m2 respectively]. In the above-cited paper however, only the three RCPs [2.6, 4.5 and 8.5] were considered. 
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Table 2. Studies on the relationship between climate variables and typhoons conducted 
outside Southeast Asia 

 

Author/s Study focus Methods / Models / Data Used 

Wang & Wang 

(2019) 

Explain inter-annual variability of 

TC activity over the Western 

North Pacific using SST anomalies 

in the Pacific, Indian and Atlantic 

oceans 

 

Observed two modes of variability:  

1) forced by SST anomalies in the 

eastern-central Pacific and tropical 

Atlantic;  

2) a coupled ocean-atmosphere mode 

and a dipole SST anomaly in the Indo-

Pacific warm pool11 

Predict the two Western North 

Pacific Subtropical High modes 

and TC activity [genesis number, 

tropical storm days, and power 

dissipation index ] in the peak TC 

season (July–September) 

together with trans-basin SST 

predictors of the preceding 

season 

Built a set of physics-based empirical 

models 

Bhatia et al. 

(2018) 

Provide insight on how the 

distribution of TC intensification 

can be transformed due to 

climate change, by “nudging” SST 

with different climatological 

targets and a specific radiative 

forcing 

Used three 70-yr High-Resolution 

Forecast-Oriented Low Ocean 

Resolution (HiFLOR) model at the 

Geophysical Fluid Dynamics 

Laboratory (GFDL) 

Mei, Xie, Zhao 

& Wang (2015) 

Study TC tracks from observations 

and simulations forced by SSTs, 

using interannual-to-decadal 

variability of annual TC track 

Used a 25-km-resolution version of 

the GFDL High-Resolution 

Atmospheric Model (HiRAM) and a 

regional atmospheric model, 

 
11 The tropical warm pool, otherwise known as Indo-Pacific Warm Pool, is a mass of ocean water, spanning almost 
half the globe -- from the western waters of the equatorial Pacific to the eastern Indian Ocean. This body of water 
holds the warmest seawaters in the world, driving heat and moisture high into the atmosphere thereby affecting 
the climate of the surrounding land (NASA, 2001; De Deckker, 2016) 
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density in the Western North 

Pacific 

considering two modes of decadal 

variability:  

1) a nearly basin-wide mode (which 

links to variations in TC number and is 

forced by SST variations over the off-

equatorial tropical central North 

Pacific);  

2) a dipole mode between the 

subtropics and lower latitudes 

(associated with the Atlantic 

multidecadal oscillation) 

Jin et al. (2013) 

Demonstrate the effect of Central 

Pacific warming on the observed 

atmospheric and TC variability 

over East Asia during the Central 

Pacific - El Niño period 

Used Weather Research and Forecast 

(WRF) - based regional climate model 

 

Kiliç & Raible 

(2013) 

Investigate the influence of SST 

anomalies on the hurricane 

characteristics 

Performed a set of sensitivity 

experiments on the case of Hurricane 

Katrina in 2005, using the WRF model 

Choi, Kim & 

Byun (2010) 

Seasonal prediction of summer TC 

frequency in the mid-latitudes of 

East Asia relative to SST 

anomalies 

Constructed a multiple linear 

regression model 

Tu, Chou & 

Chu (2009) 

Understand the seasonal time 

series changes of typhoons in the 

vicinity of Taiwan concerning SST 

anomalies 

Applied Bayesian analysis 

 

 

In the study by Wang & Wang (2019), the first mode of interannual TC variability [i.e., forced by 

SST anomalies in the eastern-central Pacific and tropical Atlantic] showed a shift in TC formation 

locations southeastward/northwestward but had an insignificant influence on the total number 

NOTE: Boldface texts indicate major ocean regions, italics indicate the study area /country, 
and biogeographical subdivision (as depicted in Figure 2) are underlined  



19 

of TC genesis. However, it affects the track of TC, the number of tropical storm days, and power 

dissipation index. The second mode [i.e., a coupled ocean-atmosphere mode and a dipole SST 

anomaly in the Indo-Pacific warm pool] significantly impacted the total number of TC genesis. 

Moreover, the built models' predictions revealed inter-annual variabilities of the Western North 

Pacific Subtropical High and variability of Western North Pacific TC activity. 

 

The climate model experiment Bhatia et al. (2018) performed using prescribed climatological 

ocean and radiative forcing based on observations from 1986–2005, shows similarities with the 

observations in the simulated intensification distributions and the percentage of TCs that become 

major hurricanes under warmer conditions. Comparing the control experiment perturbed by 

climatological SSTs to multi-models projecting SST anomalies and atmospheric radiative forcing 

from either 2016–35 or 2081–2100 (RCP 4.5 scenario), the frequency, intensity, and 

intensification distribution of TCs all shift to higher values as the 21st century progresses. 

 

 
 

Figure 2. Biogeographic realms and marine ecoregional boundaries of the world12  
(Spalding et al., 2007) 

 

The internal variability in TC track density between 1979 and 2008, as examined using ensemble 

atmospheric model simulations by Mei et al. (2015), shows prominent spatial and seasonal 

patterns, particularly strong in the South China Sea and along the East Asia coast.  

 

The first set of sensitivity experiments by Kiliç & Raible (2013), using basin-wide changes of the 

 
12 For a more detailed description of the ocean regions and their jurisdiction, please refer to ANNEX 1 as appended. 
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SST magnitude, revealed that the hurricane intensity goes along with the SST changes, such that 

SST increase leads to hurricane intensification. Moreover, the trajectory shifted to the west with 

increasing SSTs, and to the east while SST decreased due to the strengthening of the background 

flow. On the other hand, the influence of idealized Loop Current eddies13 generated by localized 

SST anomalies showed that the hurricane’s intensity is enhanced with increasing SST close to the 

core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity, while positive SST 

anomalies (located west or north of the hurricane centre) change its trajectory. The SST anomaly 

attracts the hurricane, causing additional moisture sources and increased vertical winds. 

 
Based on the analysis and model simulations by Tu et al. (2009), warm SST anomalies over the 

equatorial Western and Central Pacific is a major contributing factor to a northward-shifted 

typhoon track.  

The study of Choi et al. (2010) revealed an interesting result, wherein the presence of large 

amounts of sea ice during the preceding spring that continued into the summer prevented 

Western Pacific Subtropical High from advancing toward mid-latitudes of East Asia, thus, 

reducing summer TC frequency. Relative to this, the study by Jin et al. (2013) shows that the 

number of TCs approaching East Asia in July–October is positively correlated with SSTs in the 

equatorial and northern off-equatorial Central Pacific oceans. The study showed that northern 

off-equatorial Central Pacific warming, rather than equatorial Central Pacific warming, effectively 

induces local irregular steering flows relative to the observed increase in TC activity over East 

Asia during Central Pacific - El Niño period. Furthermore, a sensitivity analysis was performed 

where the prescribed Central Pacific - El Niño related SST anomaly is confined near the equator. 

This did not capture the observed TC increase over East Asia. On the other hand, those including 

the off-equatorial region showed atmospheric and TC variabilities. The off-equatorial Central 

Pacific SST anomaly influences the expansion of “anomalous cyclonic response” farther 

northward to the Philippine Sea, creating a tunnel effect in the East China Sea where more TCs 

move to East Asian coastal regions, affecting China, Taiwan, Korea, and Japan. 

Common to these papers are the Oceanic Region (Western North Pacific) and the use of SST as a 

climatological variable of study. Although the results did not yield a consistent or predictable 

pattern, it was evident that SST anomalies can influence the TC formation and its activity.   

 
13 The circulation of the Gulf of Mexico is dominated by a warm ocean current called Loop Currents (LC). At random 
intervals, a part of the warm water separates as a Loop Current ring (known as "eddy"). The warm LC water and the 
associated eddy, supply energy and allow hurricanes to intensify, as with the case of Hurricane Rita in 2005 that 
passed over an LC and converted the ocean's heat into storm energy (University of Colorado- Boulder, 2005) 
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Despite most of the above-reviewed papers being conducted outside of Southeast Asia, a few 

articles were found covering this region, as summarized below.   

 
Table 3. Studies on the relationship between climate variables and typhoons conducted 

within Southeast Asia 
 

Author/s Study focus Methods / Models / Data Used 

Comiso, Perez & 

Stock (2015) 

Investigated the correlation of 

historically strong typhoons in 

the Philippines to the SST, 

water vapor, clouds, winds, 

sea level pressure, and 

precipitation 

The role of SST in the formation of 

Typhoon Haiyan in 2013 was 

evaluated considering two study 

areas - the Warm Pool Region and the 

West Pacific Region, using an 

enhanced version of Reynold’s 

dataset incorporating Advanced Very 

High Resolution Radiometer (AVHRR) 

SST, Moderate Resolution Imaging 

Spectroradiometer (MODIS) and 

National Centers for Environmental 

Prediction (NCEP) reanalysis data. 

Wang, Zhao, Qiao 

& Zhao (2018) 

Analyze the impact of warm 

core ocean eddy combined 

with climate-change-induced 

SST on Typhoon Haiyan’s 

intensification process 

Conducted numerical simulations 

using observational data from AVHRR-

only V2 SST; and Tropical Atmosphere 

Ocean (TAO) and Argo buoy datasets 

Kang & Kimura 

(2003) 

Investigate the areas around 

East Asia subtropical 

anticyclone to analyze the 

influence of the regional 

climate of Japan and Korea in 

the summer, relative to the 

SST increase around the 

Philippine Islands 

Use a regional atmospheric fifth-

generation Penn State / National 

Center for Atmospheric Research 

mesoscale model (MM5) ver. 3.5 with 

realistic lateral and surface boundary 

forcing 

NOTE: Italicized texts indicate the study area /country, while underlined texts represent 
regional oceanic subdivision 



22 

The three papers alike used SST as the common climate variable for analysis. Similarly, they 

revealed that this variable could influence the variations in typhoon/cyclone behavior, as 

described in detail below: 

 

Results of the study by Comiso et al. (2015) showed that the SST is well-correlated with wind 

strength, and the observed trends in SST suggest that extremely destructive typhoons like Haiyan 

are more likely to occur in the future. Further analysis indicated that water vapor, clouds, winds, 

and sea level pressure for the same period did not reveal strong signals associated with the 

typhoon event.  

 
Per Wang et al. (2018), the observed data showed that Typhoon Haiyan intensified, and the 

maximum sustained winds increased after encountering a double warm-core ocean eddy. The 

study reveals that the presence of the warm-core eddy and climate-change-induced SST increase 

resulted in the rapid intensification of Typhoon Haiyan. Between the two factors, the warm-core 

ocean eddy that significantly brought more heat into the upper ocean played the leading role in 

the intensification, while climate warming made a lesser contribution. Moreover, with the 

increased thickness of the mixed layer associated with the warm-core ocean eddy, Typhoon 

Haiyan did not significantly decrease the SST to the east of the Philippines, as is typical of 

typhoons. 

 
Kang & Kimura (2003) used climate model simulations to reveal that the uniform increase of SST 

around the Philippine Islands propagated a Rossby wave14, resulting in an anomalous subtropical 

anticyclone around Japan/Korea. The Rossby wave propagation is linear, where the model 

response to negative SST anomalies reverses polarity. This suggests that the response to the SST 

forcing around the Philippine Islands is a deterministic problem since its magnitude depends on 

the size of the SST anomaly. Conversely, nonlinearity increases if there is a tropical depression or 

typhoon in the model domain. There is also a zonally weakened upper-level jet, and a 

meridionally intensified low-level jet, when the Rossby wave is excited by SST changes, where a 

 
14 As described by the National Oceanic Atmospheric Administration (NOAA), National Weather Service, Rossby 
waves are planetary waves that form naturally in rotating fluids. Due to the rotation of the Earth, these waves 
develop within the ocean and atmosphere. Since these waves are large and massive movements spanning 
horizontally across the planet, they can influence the weather and climate conditions as they transfer heat from the 
tropics to the poles and return the cold air toward the tropics. The horizontal movements (especially its speed) are 
dependent on the latitude of the wave, such that at lower latitudes (close to the equator), it takes months to a year 
for it to travel across the ocean, while those that form away from the equator (i.e., mid-latitudes) may take about 
10 to 20 years. Vertically, the waves move small along the surface and large along the deeper portion where there 
is thermocline, or the transition point between upper warm and colder depth of the ocean. Rossby Waves also help 
locate jet streams and can mark out surface low pressure systems. 
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positive SST anomaly intensifies the meandering of the upper-level jet, taking about five days for 

the atmospheric circulation to respond to such an SST forcing. On the vertical, the model showed 

barotropic and baroclinic responses over 40°N∼55°N, 100°E∼160°E, and over 10°N∼40°N, 

100°E∼140°E, respectively. Moreover, the effect of SST forcing is approximately four times 

stronger than the internal model variability. For Japan and Korea, positive SST forcing affects the 

precipitation pattern, causing rainfall to decrease in Japan and increase in Korea, contrastingly. 

Meanwhile, positive and negative SST forcing affect the precipitation around the Philippine 

Islands – wherein a positive SST forcing increases precipitation, and vice versa. Lastly, the 

response to the Rossby wave is sensitive to the geographical location of SST forcing, reaching a 

maximum in 110°E∼140°E, 10°N∼20°N, where the experiments are carried out. 

 

1.3 Research Gaps 

 
From the literature review in the preceding section, we can deduce that the link between 

anomalies in climate variables and the intensification, track formation, density, trajectory, 

genesis number, strength, and duration of typhoons/storms/hurricanes/cyclones are well 

studied. However, they vary with respect to their scope (location and period). Most of these 

studies aim to determine if changes in typhoon characteristics are forced by specific climate 

anomalies/trends, but there are only a few studies on the impact of a typhoon event to the 

weather/climate anomalies surrounding the typhoon period. One of these is Ji et al. (2021), who 

investigated SST and chlorophyll concentration responses to typhoons over the East China Sea. 

They combined multi-source satellite data using the weighted average method and 

reconstructed them through the Data INterpolating Convolutional Auto-Encoder method 

(DINCAE). Guzman & Jiang (2012), on the other hand, explored the general trends of TC rainfall 

rates based on a time series of a nineteen-year [1998–2016] observational data from the Tropical 

Rainfall Measurement Mission (TRMM) and the Global Precipitation Measurement mission, to 

analyze how they are associated with increases in SST and total precipitable water around the TC 

environment. Meanwhile, Deo et al. (2020) investigated TC-induced extreme rainfall events over 

the past few decades for the Southwest Pacific nations in the context of climate variability and 

change. Their study developed Bayesian regression models for individual island nations to 

understand better the relationships between TC-induced extreme rainfall and the combinations 

of various climatic drivers modulating the relationship. Comparatively, Lao, Zhou, and Wu (2008) 

used the Global Precipitation Climatology Project (GPCP), TRMM, and storm track data to explain 
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the relationship between TC and extreme rain events for July to November period (JASON)15 in 

the North Atlantic and Western North Pacific.  

 

In addition, only minimal literature focuses on Southeast Asia and Philippine typhoons. 

Benchmarking from the previously cited papers in Section 1.2 that investigate the relationship 

between climate variables and the intensification of Typhoon Haiyan, no studies were exploring 

the effects of the typhoon on the weather or climate variables before and after its landfall. Along 

with this, the expanded literature search using the keywords “Haiyan” and “ERA5” found only 

one related paper [e.g., Oggini et al., 2021], which partly discusses these subjects. Here, Oggini 

et al. (2021) studied the surface response [i.e., surface wind and sea surface temperature] to 

super-typhoon Haiyan based on satellite and Argo float data and evaluated atmospheric and 

oceanic analysis or reanalysis datasets (i.e., NCEP-FNL, ERA5, and HYCOM)16.  However, one 

paper by Bhatia et al. (2020) used ERA5 to calculate the trends in TC intensification in response 

to climate change, but this only redirects to the premise that several studies were already 

undertaken on that topic and not the contrary. 

On the use of observational datasets to evaluate the effects of cyclones/typhoons on 

precipitation, papers like Lao et al. (2020) and Trenberth et al. (2018) [as already cited] applied 

their analyses to GPCP data. However, these did not concern Haiyan nor the target area of study 

(Southeast Asian region). A paper investigating weather-related catastrophes [e.g., Miller, Muir-

Wood & Boissonnade, 2008] used temperature data from the Climatic Research Unit (CRU) of 

the University of East Anglia to evaluate the climate trend from 1950-2005. Nevertheless, the 

study aims to survey the losses caused by the catastrophe – not to link the TC activity to the 

temperature trends. Other non-TC-related studies use CRU to demonstrate the trends in either 

temperature or precipitation. 

 

Regarding papers that utilize the datasets in one study vis-à-vis cyclone/hurricane/storm 

occurrence, Nogueira (2020) and Watters & Battaglia (2021) have performed an inter-

comparison between these datasets. Nogueira (2020) compared the differences among GPCP, 

 
15 JASON is an acronym for the months of July, August, September, October, November 
16 NCEP-FNL stands for the Final Operational Global Analysis data of the National Centers for Environmental 
Prediction (NCEP), ERA5 is the fifth-generation atmospheric reanalysis of the European Centre for Medium-Range 
Weather Forecasts (ECMWF), while HYCOM is an acronym for HYbrid Coordinate Ocean Model, a data-assimilative 
hybrid isopycnal-sigma-pressure (generalized) coordinate ocean model, developed and evaluated by multi-
institutions through the sponsorship of the National Ocean Partnership Program (NOPP), as part of the U.S. Global 
Ocean Data Assimilation Experiment (GODAE). 



25 

ERA5-Interim, and ERA, to understand the global rainfall flux trends over a 40-yr period [1979–

2018], but it barely delved into storms [i.e., storm track regions] as the study focus. On the other 

hand Watters & Battaglia (2021) compared the GPCP and ERA5 datasets to the Integrated Multi-

satellitE Retrievals for GPM17 (IMERG) to understand the precipitation systems in the case of 

Hurricane Irma in 2017. Regardless of these two papers, the minimal number of relevant studies 

gives an opportunity to extend this research subject. 

 

Lastly, the interrelationship among anomalies in the studied variables induced by the typhoon 

event can be examined. For instance, Jiang et al. (2008) investigated whether the storms with 

higher wind/intensity during the Atlantic Ocean hurricane season in 2005 signify a strong rainfall 

potential before and during the landfall. Correspondingly, Jiang et al. (2008) compared the same 

parameters in a different study for two North Atlantic Hurricanes [Isidore and Lili] in 2002. 

Besides primarily attributing the probability of extreme rainfall to the increased TC activity, Deo 

et al. (2021) [who likewise studied TC-induced rainfall response as previously cited] also 

demonstrated that other underlying climatic conditions that are non-TC induced [e.g., La Niña or 

El Nino period, intra-seasonal variability like Madden–Julian Oscillation (MJO)18, monsoon, etc.] 

can also have an implication on the rainfall pattern. This is supported by studies of Lyon & 

Camargo (2009), that observed the influence of seasonally varying ENSO on the rainfall and TC 

activity in the Philippines, and Kumar et al. (2007), which examined the variations in the 

relationship between ENSO and monsoon rainfall over South Asia. These two papers both used 

precipitation data from CRU for their analyses. 

 

Considering the above findings, an assessment of the effects of Typhoon Haiyan on the climate 

variables/drivers surrounding its occurrence with the use of ERA5, GPCP, and CRU datasets, 

particularly on the Southeast Asia region where the Philippines belongs (and where the extreme 

typhoon “Haiyan” wreaked havoc), will be a valuable contribution to scientific research. 

Furthermore, the papers that investigate inter-variable relationships before and during the 

typhoon event and the probable effects of non-typhoon climatic conditions happening 

simultaneously or beyond the typhoon duration give supplementary insight on how the analysis 

 
17 GPM stands for Global Precipitation Measurement 
18 MJO is an atmospheric [i.e. clouds, rainfall, winds, and pressure] disturbance throughout the planet, moving 
eastward in the tropics and returning to its starting point at an average of about 30 to 60 days. MJO is distinct from 
El Niño–Southern Oscillation (ENSO) which is stationary and is associated with persistent features over the Pacific 
Ocean basin, lasting for several seasons or longer. MJO events can occur multiple times within a season (i.e. week-
to-week basis), and so it is best described as intra-seasonal tropical climate variability (Gottschalck, 2014). 
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can be expounded. These reasons, thereby, befit the motivation of this thesis. 

 

1.4 Objectives, Scope, and Limitations 

 
The overarching scope of this study is to analyze the spatio-temporal anomalies using 

observational and reanalysis datasets, i.e., GPCP, CRU, HadISST, and ERA5, to determine how 

anomalies surrounding the Haiyan period compare with meteo-climatic variability between the 

non-typhoon and typhoon months/years. Using wind, pressure, precipitation, and runoff data, 

the daily spatio-temporal evolution of abnormal weather patterns surrounding the landfall 

period (before, during, and after) will be determined, and their inter-variable correlation will be 

measured. Regression and other statistical treatments will also be carried out to understand 

which environmental signal is likely impacted by the typhoon event - whether it corresponds to 

changes in temperature, pressure, wind, precipitation, or runoff values. The effects of seasonal 

phases and inter-annual variations (dry/wet, monsoon, ENSO) on precipitation and temperature 

patterns will also be assessed.  

 

Global data will be calculated for comparison, but the assessment will concentrate on the 

Southeast Asian region to highlight this area's major spatial trends and climatological structures 

and any anomalous behaviors relative to the selected climate variables. Due to the volume of 

datasets that need to be analyzed, especially on the daily values, only 5 of the 54 essential climate 

variables19 were considered for the analysis. Nonetheless, these parameters are adequate to 

achieve the central aim of this study. 

 

As to the availability of observational data that is crucial in reconstructing long-term climate 

patterns and analyses of extreme weather events, there has been a challenge in the Southeast 

Asian region in keeping, preserving, and archiving observational data over time. Since this has 

not been a priority by government agencies, data availability only reaches back a few decades. 

This can be complemented, however, by comparing already-processed maps or graphs from sites 

or institutions that analyze climate data within the region. These will be beneficial to match the 

results obtained from this thesis’ data analysis. 

 
 

 
19 Per the Global Climate Observing System (GCOS) of the World Meteorological Organization (WMO), an Essential 
Climate Variable (ECV) is a physical, chemical, or biological variable or group of linked variables that are critical to 
the characterization of Earth’ s climate. Currently, there are 54 ECVs specified by GCOS 
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CHAPTER 2: STUDY AREA, DATA, AND METHODOLOGY 

2.1 Description and Climate Characterization of the Study Area 

 
The focal region of interest in this study is Southeast Asia. This region is between the continental 

part of the rest of Asia to the North, and the oceanic part (Indian and Pacific Oceans) to the South 

and East, with its latitudinal position lying approximately within 300N and 100S [see Figure 3]. 

These geographical factors profoundly influence the region giving it a distinct climate. Southeast 

Asian countries are divided into continental (Myanmar, Thailand, Laos, Cambodia, and Vietnam) 

and insular (Malaysia, Singapore, Indonesia, the Philippines, Brunei, and East Timor]. The 

continental sub-area experiences more seasonality, extreme temperature and rainfall, and more 

pronounced dry spells, while the insular [otherwise known as the "maritime continent" due to 

the greater expanse of the sea than land] have a more equable climate (Chuan, 2005; Frederick 

& Leinbach, 2022).  Rainfall in the region, nonetheless, is more associated with the change in 

seasons rather than the temperature variations.  

 

Southeast Asia falls within the warm and humid tropics and a generally monsoonal climate. It is 

subject to regular monsoon systems – the northeast (dry monsoon) and the southwest (wet 

monsoon), in which the prevailing winds reverse direction every six months, producing wet and 

dry periods for most of the region.  The northeast monsoon occurs from November to March, 

bringing relatively dry, cool air, and a small amount of precipitation to the mainland. In this 

period, the southwestward air passes over the sea where it warms and gathers moisture, causing 

heavy precipitation when the air rises over mountains and encounters landmass (Frederick & 

Leinbach, 2022). The onset of this monsoon varies from one area to another, characterized by 

increased rainfall. It arrives in mid-November along the east coast of Malaysia and in early 

December towards the south. In the eastern side of the Philippines, it arrives in November for 

the northern part, December for the central, and January for the southern. In Indonesia, the 

onset is felt in November and December. A critical feature of this monsoon is the cold surge from 

Siberia, affecting the South China Sea. The extent of this effect is observed from diffused cloud 

covers in the northern part of the South China Sea, the northern and central Philippines, and the 

West Pacific for most of the period. These extreme cold surges can reduce the air temperature 

in the northern side of Southeast Asia, particularly in places located at 170N and beyond. Nearer 

to the equatorial South China Sea, heavy rains and severe flooding may occur due to enhanced 

convection that causes pre-existing disturbances, e.g., southern Thailand, Malaysia, and 

Singapore. While the cold surges enhance convective activity, the middle and late cold surges 
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bring about dry conditions. For this reason, Malaysia and Indonesia seldom experience heavy 

rainfalls after mid-January and early March, respectively. In the eastern part of the Philippines, 

heavy rains seldom occur after January in the northern part, after February in the central, and 

after March in the southern part (Chuan, 2005). 

 

 

 

 
 

Figure 3. Geographical location of the Southeast Asian Region and the Philippines20 
 
 

 
20 Map is produced through the QGIS software. Sources of shapefiles are cited in Section 2.2 
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On the other hand, the southwest monsoon prevails from May to September when the air 

reverses and dominantly flows to the northeast. The bulk of the rainfall during this period goes 

to the mainland, affecting southern Malaysia and the insular part of Southeast Asia, hence, there 

is a little or non-prolonged dry season in this part of the region. This is mainly observed along the 

equatorial side, and the east coast of the Philippines (Frederick & Leinbach, 2022). A crucial 

feature of this monsoon is the trough. This is a low-pressure region and a heat source 

characterizing wet and windy weather closely linked to the monsoonal disturbances that produce 

considerable rainfall over Southeast Asia. Southwest monsoon also shows oscillations in rainfall, 

causing wave disturbances, which develop into tropical storms and typhoons under favorable 

conditions. Most heavy rains during this monsoon period are attributed to tropical waves, mid-

tropospheric cyclones, and the convergence zone (Chuan, 2005). 

 

Many cyclonic disturbances produce only moderate rainfall, but in certain cases, they mature 

into tropical storms [called cyclones in the Indian Ocean or typhoons in the Pacific]. These events 

bring heavy rains and devastation to the areas where they hit (Frederick & Leinbach, 2022). In 

fact, there has been significant growth in the number of extreme weather-related events in the 

region, such as increase in flooding, storms, and landslides, since the start of the last century 

(Beirne, Renzhi & Volz, 2021). This is depicted in the figure below.  

 

 

 
Figure 4. Historical trend of extreme weather occurrences in Southeast Asia21  

 

The same paper by Beirne et al. (2021) further states that four Southeast Asian countries are 

 
21 Original figure, sourced from Beirne et al. (2021), as compiled using data from EM-DAT (2020). EM-DAT stands for 
Emergency Events Database (https://www.emdat.be/), that contains essential data on the occurrence of global mass 
disasters from 1900 to the present. 

https://www.emdat.be/
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among the top ten most affected by climate-related disasters from 1999-2018, based on global 

record of fatalities and economic losses22. These are Myanmar, the Philippines, Vietnam, and 

Thailand [ranked 2nd, 4th, 6th, and 8th, respectively].  Regarding multi-climate hazard vulnerability, 

Figure 5 shows the hazard map of the countries in Southeast Asia23, per the paper by Yusuf & 

Francisco (2009). 

 

 

Figure 5. Multi-climate hazard map of Southeast Asia 

 

From the figure above, the hotspots [dark-orange to red colored areas] include the north-western 

and Mekong region of Vietnam, the coastal regions of Vietnam (facing the South China Sea), 

 
22 According to the ranking by Germanwatch using Climate Risk Index (Eckstein, Künzel, Schäfer, & Winges, 2019). 
23 For this cited paper, only seven [Thailand, Vietnam, Laos, Cambodia, Indonesia, Malaysia, and the Philippines] 
were assessed out of the eleven Southeast Asian countries. These countries belong to the Economy and Environment 
Program for Southeast Asia (EEPSEA)  (https://eepsea.org/), a networking initiative founded in 1993 by the 
International Development Research Centre (IDRC), the Swedish International Development Cooperation Agency 
(SIDA) and the Canadian International Development Agency (CIDA), to support research and give training in 
environmental and resource economics among its members, that previously included China and Papua New Guinea 
[non-Southeast-Asian countries]. In 2015, the EEPSEA has evolved into Economy and Environment Partnership for 
Southeast Asia (EEPSEA Partnership), a regional platform for transdisciplinary research to address global 
environmental challenges among the countries in the region. This partnership now includes Myanmar as an 
additional member. 

NOTE: For the scale levels in the legend, zero (0) indicates the lowest vulnerability, and one (1) 

means the highest 

 

https://eepsea.org/
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Bangkok and its surrounding areas in Thailand, almost all the regions of the Philippines, and the 

western and eastern parts of Java Island in Indonesia. Dominant hazards are then identified from 

these climate hotspots, as listed in the following table. 

 

Table 4. Hotspots and dominant climate hazards among Southeast Asian countries24 
 

HAZARD HOTSPOT DOMINANT HAZARDS 

Northwestern Vietnam Droughts 

Eastern coastal areas of Vietnam Cyclones, droughts 

Mekong region of Vietnam Sea level rise 

Bangkok and its surrounding area in Thailand Sea level rise, floods 

Southern regions of Thailand Droughts, floods 

The Philippines Cyclones, landslides, floods, droughts 

Sabah state in Malaysia Droughts 

The western and eastern area of Java Island, 

Indonesia 
Droughts, floods, landslides, sea level rise 

 

As reflected in the Figure and Table above, the Philippines is highly vulnerable to multi-climate 

hazards, especially in cyclone and rainfall-induced hazards [flooding and landslides] or the lack of 

it [droughts].  This is supported by statistics from Climate Change Knowledge Portal25 that gave 

an overview of the country’s frequent natural disasters. As presented in Figure 6, storms [276 

(46.94%)] comprise the biggest percentage of natural hazard incidents in the Philippines, 

followed by floods [136 (23.13%)]. Whereas the rain-induced landslides [29 (4.93%)] ranked 4th, 

and droughts [8 (1.36%)] ranked 8th out of 10 recorded hazard occurrences in the country from 

1980 to 2020. 

 

For cyclones/typhoons in particular, the Visayan Islands in the Philippines were devastated by 

Super Typhoon Haiyan on 8th November 2013. Following its landfall, it has been recorded as the 

strongest-ever typhoon during that period based on satellite data (Comiso et al., 2015), until 

Typhoon Goni surpassed its strength in 2020 [see Table 1 on page 13]. However, another paper 

 
24 Table sourced from the same paper by Yusuf & Francisco (2009) 
25 The Climate Change Knowledge Portal (CCKP) by the World Bank Group (WBG) is a climate-related information 
hub with global data on historical and future climate, vulnerabilities, and impacts. Aggregated data are also 
accessible on a national, sub-national, and watershed scale. 
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by Lagmay et al. (2015) and information from NOAA26 specify that Typhoon Haiyan has maximum 

sustained winds reaching 315 kph (~195 mph), which could tie it to the recorded wind speed of 

Goni. Nevertheless, the Typhoon Haiyan event draws the basis for the scope and area of study in 

this thesis paper. 

 

Figure 6. Average Annual Natural Hazard Occurrences in the Philippines [1980-2020]27 

 

2.2 Datasets Used 

 
A significant volume of data was collected for this study, essentially on the climate variables for 

analysis. Four (4) climate datasets are downloaded and analyzed for this study namely GPCP, 

CRU, ERA5 and Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST). They range 

from daily, monthly, seasonal, and annual values.  

 

GPCP provides precipitation analysis from surface and satellite measurements spanning from 

1979 to the present for monthly, and from 1996 to the present for daily data. CRU is a gridded 

historical dataset derived from observational data (land-based, except Antarctica) recorded from 

1901 to present. It provides temperature and rainfall values from weather stations worldwide 

 
26 Sourced from: https://scijinks.gov/haiyan/, a site produced by the NASA Space Place team at NASA's Jet Propulsion 
Laboratory for NOAA National Environmental Satellite, Data, and Information Service (NESDIS), with funds from the 
Geostationary Operational Environmental Satellite – R Series program and the Joint Polar Satellite System program. 
27 Chart is produced by the R program, but data used for charting is sourced from the CCKP site, 
https://climateknowledgeportal.worldbank.org/country/philippines/vulnerability  

https://climateknowledgeportal.worldbank.org/country/philippines/vulnerability
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and derivative products, including monthly and long-term historical climatologies. ERA5 provides 

estimates of many atmospheric, land, and oceanic climate variables extending from 1950 to the 

present. ERA5 combines historical observations into global estimates using advanced modeling 

and data assimilation systems. HadISST provides globally complete fields of SST, with data 

available from 1871 to the present. This is used as a boundary for ERA5. The metadata of these 

datasets is summarized in Table 5.
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Table 5. Metadata of Datasets used for Analyses 

 
28 The downloaded datasets cover global maps but coordinates for the focal region (SE Asia) are extracted from these. 
29 This column indicates only the years used for the analyses. Considering that GPCP covers data beginning from 1979, the temporal range selected for the analysis is 1981-2020 to 
have an exact 40-year period and to have uniform temporal comparison for all datasets. Only the daily GPCP data has an added year (2021) to compensate for the lacking number of 
years analyzed, since data is only available from 1996. 
30 NCEI direct download: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/  
31 NCEI direct download: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/access/  
32 CRU site: https://crudata.uea.ac.uk/cru/data/hrg/  
33 Climate Change Knowledge Portal by the World Bank Group: https://climateknowledgeportal.worldbank.org/download-data  

Dataset Variable Description Format Unit 
Spatial 

domain28 
Spatial 

resolution 
Temporal 

range29 
Source / Data 

access 

GPCP 
Monthly 

Precipitation 

Monthly satellite-gauge 
and associated 

precipitation error 
estimate (Version 2.3) 

NetCDF (Network 
Common Data 

Form) 
mm/day Global 

2.50 lon x 2.50 
lat 

 
1981 to 2020 

Adler et al., 
2018; NCEI30 

GPCP Daily Precipitation 
Daily precipitation 

estimates (Version 1.3) 
NetCDF mm/day Global 10 lon x 10 lat 1996 to 2021 

Adler et al., 
2018; NCEI31 

CRU 
Monthly 

timeseries 
Precipitation 

Timeseries of monthly 
mean values (Version 4.06) 

NetCDF mm/month Global 0.50 lon x 0.50 lat 1981 to 2020 
Osborn et al., 
202032; CCKP33 

CRU 
Monthly 

timeseries 

Surface Air 
Temperature 

Timeseries of monthly 
mean values (Version 4.06) 

NetCDF 0C Global 
0.50 lon x 0.50 lat 

1981 to 2020 -do- 

CRU 
Annual 

timeseries 
Precipitation 

Timeseries of annual mean 
values (Version 4.06) 

NetCDF mm/year Global 
0.50 lon x 0.50 lat 

1981 to 2020 -do- 

CRU 
Annual 

timeseries 

Surface Air 
Temperature 

Timeseries of monthly 
mean values (Version 4.06) 

NetCDF 0C Global 
0.50 lon x 0.50 lat 

1981 to 2020 -do- 

ERA5 
Monthly 

timeseries 
Precipitation 

Timeseries of monthly 
mean values 

NetCDF mm/month Global 
0.50 lon x 0.50 lat 

1981 to 2020 CCKP 

https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/access/
https://crudata.uea.ac.uk/cru/data/hrg/
https://climateknowledgeportal.worldbank.org/download-data
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34 https://climate.copernicus.eu/climate-data-store 
35 HadISST1 Data download: https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html  

ERA5 
Monthly 

timeseries 

Surface Air 
Temperature 

Timeseries of monthly 
mean values  

NetCDF 0C Global 
0.50 lon x 0.50 lat  

1981 to 2020 -do- 

ERA5 
Annual 

timeseries 
Precipitation 

Timeseries of annual mean 
values 

NetCDF mm/year Global 
0.50 lon x 0.50 lat 

1981 to 2020 -do- 

ERA5 
Annual 

timeseries 

Surface Air 
Temperature 

Timeseries of monthly 
mean values 

NetCDF 0C Global 
0.50 lon x 0.50 lat 

1981 to 2020 -do- 

ERA 5 Daily 
Total 

precipitation 
(Var 228) 

Total amount of water 
accumulated over a 

particular time period 
NetCDF m/day Global 10 lon x 10 lat 1981 to 2020 

C3S Climate 
Data Store, 

Copernicus34 

ERA 5 Daily 
 10 m U wind 
component 

(Var 165) 

Eastward component of 
wind at the height of 10m 

from Earth’s surfrace 
NetCDF m/s Global 

0.50 lon x 0.50 lat 
1981 to 2020 -do- 

ERA 5 Daily 
10 m V wind 
component 

(Var 166) 

Northward component of 
the 10m wind 

NetCDF m/s Global 
0.50 lon x 0.50 lat 

1981 to 2020 -do- 

ERA 5 Daily 
Mean sea 
level pressure 

(Var 151) 

Pressure of the 
atmosphere adjusted to 
the height of mean sea 

level 

NetCDF Pa Global 

0.50 lon x 0.50 lat 

1981 to 2020 -do- 

ERA 5 Daily 
Runoff 

(Var 205) 

Total amount of water 
accumulated over a 

particular time period as a 
sum of surface + sub-

surface runoff  

NetCDF depth in m Global 
0.250 lon x 0.250 

lat 
1981 to 2020 -do- 

HadISST 
monthly 

Sea surface 
temperature 
(SST Version 

1.1) 

Monthly SST for ocean 
only 

NetCDF 0C Global 

0.250 lon x 0.250 
lat 

1981 to 2020 
Met Office 

Hadley 
Centre35 

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
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To investigate the effects of ENSO on the studied climate variables, ENSO-related datasets were 

likewise downloaded for analysis. ENSO is monitored using several indices (i.e., Nino 1+2, 3, 3.4, 

4, ONI, and TIN), and anomalies are computed for a 30-year baseline period. The Niño 3.4 index 

and the Oceanic Niño Index (ONI) are the commonly used indices in defining El Niño and La Niña 

events (Trenberth; NCAR, 2016). Therefore, these were used for the analysis. Commonly, El Niño 

(La Niña) or Warm (Cold) phases are characterized by a five consecutive 3-month running mean 

of SST anomalies (ERSST.v5) in the Niño 3.4 region (as shown in Figure 7). This phenomenon is 

observed in the equatorial Pacific Ocean, with a threshold of above (below) +0.5°C (-0.5°C).  

 

Figure 7. Nino Regions36 

The ONI 3-month running mean values is taken from the Climate Prediction Center, National 

Weather Service of NOAA37. Data are available from 1950 to present, but for this analysis, only 

the values from 1981-2020 are used. For the monthly analysis, the Niño 3.4 SST Index was 

downloaded from Physical Sciences Laboratory of NOAA38. These values are calculated from 

HadISST1 spanning from 1870 to September 2021. Same as with ONI, only the 1981 to 2020 data 

were used for the analysis. Both time series are available in tabular format but were copied in 

CSV files for ease of use during data processing.  

 

Some GIS shapefiles were also used to produce maps demonstrating the locations of the focal 

area and points of emphasis, that include the World Administrative Boundaries39 and Marine 

Boundaries for SE Asia40. 

 
36 Information and map are sourced from https://www.ncei.noaa.gov/access/monitoring/enso/sst  
37 Sourced from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php  
38 Sourced from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino4/  credits to Rayner et al., 2003  
39 Sourced from https://international.ipums.org/international/gis.shtml  
40 Sourced from https://www.marineregions.org/gazetteer.php?p=details&id=18092  

https://www.ncei.noaa.gov/access/monitoring/enso/sst
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino4/
https://international.ipums.org/international/gis.shtml
https://www.marineregions.org/gazetteer.php?p=details&id=18092
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2.3 Methods & Tools in Data Analysis 

 
PRE-PROCESSING OF DATA 
 
Prior to the analysis of each dataset using the R software, the data are pre-processed with the 

aid of Climate Data Operator (CDO) to compute the daily, monthly, seasonal, and annual means. 

These were useful especially for computing the climatological means of data that involves multi-

year values. Operators like ydaymean (computes climatology for the mean of same day for all 

years), yseasmean (computes climatology for same season of multiple years), ymonmean 

(computes climatology for same month of multiple years), monmean (computes for the monthly 

mean only), seasmean (computes for mean of the season only), and yearmean (computes for 

yearly mean only), were used for the calculations. Since the datasets vary, e.g., GPCP is for daily 

accumulated precipitation, while the CRU and ERA5 use monthly and annual accumulated values, 

CDO was also used to convert daily into monthly or yearly values through the muldpm (multiply 

with day per month) and muldpy (multiply with day per year).  

 

For the analysis of SE Asian region, since the netCDF files cover the entire global coordinates, the 

values of the coordinates for SE Asia are extracted using the sellonlatbox (select longitude and 

latitude) operator. The maritime extent of SE Asia [with coordinates at longitude: 92.205 to 

141.007 degrees and latitude: -10.930 to 28.547 degrees] is used for this operation. The decimal 

degrees are utilized because the netCDF files use this gridding format. During this process 

however, there were files that are not directly in lonlat grids but were in generic format, hence, 

these were formatted by selecting the appropriate grid, through the -selgrid operator.  

 

For analysis that only requires a particular day, season, month, or year, the operators like selday 

(extract the values for the selected day/s), selmon (select the month/s), selseas (select the 

season/s) and selyear (select the year/s) were used. For the daily analysis, since the ERA5 

datasets are large and take time to process in R due to its 0.25° lon x 0.25° lat resolution, the 

global data is re-gridded into 1° lon x 1° lat resolution, using the remapcon (conservative 

remapping) operator. This was done since the interest of the analysis is not necessarily focused 

on the global values but on SE Asia. The daily dataset for SE Asia, however, remained with the 

original grid resolution.  

 

For data that requires the use of spatial mean, the fldmean operator was used to compute the 
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weighted mean of the values per grid point 

 

DATA ANALYSIS 
 
After all the required data are pre-processed and ready, further data analysis were performed 

through the R program.  

 

Baseline (reference) period 

 

The standard reference period for calculating climatologies was the 30-year period of 1981-2010, 

until the World Meteorological Organization recently recommended that the 30-year base period 

should be updated to 1991-2020 to better reflect the change in the climate. WMO’s Services 

Commission recommends to its members the adoption of the new 30-year baseline, with the use 

of the 1981-2010 base year until the end of 2020.  

Since the data utilized for this thesis are only until December 2020, the 1981-2010 baseline is 

used as a reference period all throughout the analyses.  

 

Annual analysis 

 

For precipitation, CRU, ERA5, and GPCP are analyzed individually both for the global and SE Asian 

region, but the three datasets are merged in one time series plot to determine trends and 

patterns for comparison. The maximum and minimum values were then identified to see the 

common years for all datasets. The same analysis is performed for the annual temperature using 

CRU, HadISST, and ERA5 datasets. From the absolute annual and baseline climatology values, the 

anomalies are computed and again plotted as bar and line chart, this time merging both the 

precipitation and temperature values in one plot. Maximum and minimum values are again 

identified and compared among the datasets for purposes of inspecting their commonalities. The 

values for Y2013 are then extracted and compared for both the precipitation and temperature 

datasets and the percentile and rank of these values are determined to demonstrate how 

extreme is Y2013 compared to other “non-typhoon” years. 
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Seasonal analysis 

 

The standard global seasons are used for this study. These are DJF (winter) season, MAM (spring) 

season, JJA (summer) season, and SON (autumn) season. As with the annual analysis, the 

precipitation and temperature datasets are individually processed but are all incorporated into 

the same time series plot for comparison. Maximum and minimum global and SE Asian values 

are likewise identified to check the if the datasets have common maximum/minimum 

years/seasons . Since typhoon Haiyan occurred in November 2013, a separate yearly timeseries 

for the SON season is plotted, this time focusing on the SE Asia region only. Similarly, the 

maximum and minimum absolute values are inspected to identify the common year. From the 

absolute and baseline values, the SON anomalies are then computed and plotted into bar and 

line chart, and the values for the Year 2013 are again extracted and compared, to determine how 

extreme the SON 2013 values among the 40 years considered. 

Another plot is created reflecting the seasonal values of the Asian region for Y2013 only. The plot 

is inspected to compare the common maximum or minimum seasons among the datasets, with 

the same year.  

All plots used the “ggplot2” package, since it has features that are helpful in improving the plots’ 

aesthetics. 

 

Monthly analysis 

 
The same sequence, as with the seasonal analysis, was performed for the monthly datasets to 

plot the time series and inspect the common maximum/minimum year for each month, among 

the datasets. A separate yearly time series using November month only is plotted to identify 

which are the maximum or minimum years and if there are commonalities among the datasets. 

Anomalies are likewise computed for all of November, and the values for Y2013 are again 

extracted and plotted for comparison with respect to its rank and percentile. 

Another plot is created, this reflecting the monthly absolute values and anomalies (from January 

to December) for Y2013. The same comparison for maximum and minimum is made. 

Investigating the ENSO and monsoonal influence 

For the annual analysis, the influence of ENSO (El Niño, La Niña, or Neutral) on the precipitation 
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and temperature anomalies are investigated. To determine which is the classification of each 

year, the colors used by the Climate Prediction Center for ONI served as a reference where 

periods of below and above normal SSTs are colored in blue and red when the threshold of a 

minimum of 5 consecutive overlapping 3-month mean is met. As these are overlapping months, 

there are years, however, that both El Niño and La Niña can be seen. For these cases, the 

prevailing phenomenon will be based on what is observed toward the end of the year – the 

period when ENSO normally matures (Rasmusson & Carpenter, 1982). For the seasonal analysis 

however, the Niño 3.4 Index values anomalies are used, with the 3-month mean computed from 

the monthly SST values. The same 3-month mean as with the seasonal months (DJF, MAM, JJA, 

and SON) are picked, for a uniform temporal comparison.  

For the monthly analysis, the Niño 3.4 Index values are likewise used since these are computed 

on a monthly timescale, and the same months are picked (e.g., November only or January to 

December), depending on the analysis performed.  

To investigate the effect of monsoonal variations on the monthly precipitation values, the 

months are classified into Northeast (denoting Northeast monsoon month), Southwest (denoting 

Southwest monsoon month), and None (or not a monsoon month). Northeast months include 

November to March, Southwest months include May to September, while None months are only 

April and October. This classification is consistent with the region’s climate characterization, as 

discussed in Section 2.1.  

Daily analysis 

Similarly, the time series of the daily values are plotted for the global and SE Asian region. For 

this analysis, the datasets used are only GPCP and ERA5 for precipitation and ERA5 for winds, 

pressure, and runoff.  

Similarly, the maximum and minimum day, month, and year are identified from the time series 

plot. Additionally, the highest absolute and precipitation anomaly (per grid point) is identified to 

check if it falls within the typhoon days (Haiyan was formed on November 3 and dissipated on 

November 11, 2013) and within the affected area. This was done by picking the coordinates of 

the longitude and latitude of the point with the highest value. This point is then mapped using 

QGIS to visualize its location. 

Likewise, the anomalies are computed, plotted, and inspected for the maximum and minimum 
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day, month, and year. For GPCP, considering that the temporal range is from 1996 to 2021, the 

climatology value is the mean of all 26-year period rather than the baseline periods 1981-2010 

and 1991-2020 used for the analysis of ERA5 data. The grid point and day with the highest 

precipitation anomaly are then identified to investigate again if these coincide with the days and 

points of interest.  

Separate plots were created, showing absolute, baseline, and computed anomalies for the 

typhoon days. The days are also colored according to before (Nov. 3-6; denoting before landfall), 

during (Nov. 7 & 8; landfall days), and after (Nov. 9-11; after landfall days). Since the official date 

of landfall is November 8, in the morning of Philippine time, November 7 and 8 are classified as 

“during” days in this study since the dataset used the UTC time zone. Technically, however, the 

official landfall date is 20:40 UTC on November 7, but records indicated that there were several 

other succeeding landfalls in other parts of the country until late November 8.  

Mapping 

Climatological maps are generated from annual, seasonal, monthly, and daily values to visualize 

the spatial coverage and location of major anomalous areas. Individual maps show the 

climatology and absolute values for the study year (2013), study season (SON 2013), and study 

month (November 2013) using a rainbow color scale. To guarantee uniform color scales among 

the datasets, the same z-limit values were set, ensuring that most of the values and their 

corresponding colors were properly displayed on the map. For precipitation, the colors range 

from red, orange, yellow, green, blue, and magenta (low or dry to high or wet). The reverse colors 

were used for temperature, where magenta denotes cold and red denotes warm. However, some 

extreme values beyond the set z-limit cannot be displayed; thereby, blank white spots can be 

seen.  

For the anomaly maps, only blue and red color scales are used for better visualization. For 

precipitation, blue signifies a wetter (positive) anomaly, and red is for a drier (negative) anomaly. 

For temperature, blue means colder (negative) anomaly, and red means hotter (positive) 

anomaly. For the daily maps, the corresponding pressure and runoff values are indicated by 

contours using viridis gradient, while windspeed used the same rainbow color gradient as 

precipitation. 

The anomaly points that are beyond the local 5-95 percentile among the values within the SE 

Asian map (per grid point) are also determined and plotted. For precipitation, values that are 
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higher than the 95th percentile are colored dark blue to signify extreme wet anomaly, and red to 

signify extreme dry anomaly. For temperature, the reverse colors are used where red signifies 

extreme warm anomaly and dark blue denotes extreme cold anomaly. 

For plotting these maps, the “raster” and “lattice” packages in R, are used. 

 

2.4 Statistical Treatment 

Percentile 

To compute for the local 5-95 percentile range to determine anomaly points that are beyond this 

threshold, quantiles are computed using the quantile () function in R. For the ranking on how 

extreme are the Y2013, SON 2013 and November 2013 anomalies compared to the rest of the 40 

years considered, the ecdf () is used since it returns the percentile values.  

Analysis of variance & Wilcoxon Rank Sum Test 

Analysis of variance (ANOVA) is performed to determine whether the monsoonal phases and 

ENSO variations have affected the precipitation and temperature patterns. The significant 

influence is measured based on the p and F values of the results. Taking into account two 

parameters only (excluding ENSO-Neutral year, and non-monsoon month), another test is 

performed this time using Wilcoxon rank sum.  

Prior to testing, all datasets are detrended using the detrend () function from the “pracma” 

package in R. 

For these analyses, the aov () and wilcox.test () functions in R are used to compute the p and F 

values. 

Correlation 

To better understand the strength and direction of association among the variables 

(precipitation, temperature, and SST anomalies), a Pearson’s correlation analysis [i.e., 

precipitation vs. temperature, precipitation vs. SST, temperature vs. SST] is performed for each 

of the datasets. The pairing is done for similar datasets i.e., CRU precipitation vs. CRU 

temperature, ERA5 precipitation vs. ERA5 temperature. The correlation is then supported by 

regressing the variables against each other, to compute for the p-values, where significant 
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correlations are only considered when the p-value is lower than 0.05, even if the correlation 

coefficient that indicates their relationships are high. 

All datasets are likewise detrended before subjecting them into the correlation and regression 

analyses. 

Serial correlations are also inspected using the acf () function in R, as autocorrelation can affect 

the results. 

Density plot, scatterplot and boxplot 

To visualize how the above-analyzed values are clustered or dispersed and to to better 

understand the result of the correlation analysis, density plots were used to show the data 

distribution, with particular attention to skewness (to the right or left), kurtosis (if there are sharp 

peaks in the graph), and boxplot are used to show the shape of the distribution, 

dispersion/spread of the values and to identify outliers. The scatterplot is also used to check if 

the relationship of the correlated values is reflected in the plot. 

For these analyses, probability density are plotted using hist () function, while skewness () and 

kurtosis () functions are used from the “moments” package in R. For the boxplot, the 

geom_boxplot() function in the “ggplot2” package is used. For plotting the pairwise comparison, 

correlation and density plots together in one frame, the pairs () function from the “GGally” 

package is used.  

Empirical cumulative distribution function 

To understand the differences of the anomaly maps (why it is more colored red or blue or even), 

the ECDF is used to show the percentage of values equal to or above zero (positive). This is 

because the median of the z-limit for the color is intentionally set at zero for easier visualization 

as to whether the points have positive or negative anomalies. For this, the ecdf () function is used. 

To confirm this percentage, the count of the positive or negative values are also computed by 

sub-setting first the anomaly values greater than or equal to zero and counting the False 

(negative) and True (zero or positive) using the table () function in R.  

Welch t-test analysis 

Apart from distinguishing the differences of the anomaly values among the datasets through the 
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ECDF and count, they are also subjected to a Welch Two-Sample t-test to further examine if, 

indeed, datasets are significantly different among each other. Significant differences are based 

on the p-values and evidence of the most robust significant difference are based on the highest 

t-value among the t-test comparison, i.e., CRU vs. ERA5, CRU vs. GPCP, ERA5 vs. GPCP. HadISST 

was not tested, since no other dataset that measures SST can be compared to it. For this test, the 

t.test () function is used. 

Regression analysis 

 
Simple linear and multiple regression analyses are conducted for the daily variables to assess the 

effect of the winds or winds + pressure (regressor) to the precipitation and runoff values 

(response variables). For precipitation, different regression models are tried [regressed with: 1) 

winds only; 2) winds + time; 3) winds + pressure; 4) winds + pressure + time; 5) pressure only; 6) 

pressure + time] to check which model results to high R2
, and whether changing the regressors 

will result to improvement in adjusted R2 and AIC. Better models should have high R2 with a 

minimum AIC. The mean of residuals and the correlation of residuals and fitted values are also 

inspected since a zero mean and a negative correlation indicates a good model. Another 

indication of good fitting is that the plot of the residuals vs. the fitted values do not show any 

visible pattern among the points.  

To see the linear relationship between the regressor and response variables, the summary of 

coefficients are inspected whether they are negatively related (and with a steep negative slope) 

or positively related (and with a steep positive slope). The significance of this relationship is 

determined based on the p values. 

The same analysis was done for runoff, including testing of an additional model [regressed with 

1) wind + pressure + precipitation; and 2) wind + pressure + precipitation + time]. Here, 

precipitation is added as one of the regressors. For all the analysis, the lm() function is used for 

the computation. 

Lastly, regression plots are created for each variable to present their individual relationships. To 

plot the regression lines, the ggscatter () function from “ggpubr” package is used. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Annual Analysis 

 

Results 
 
The absolute annual cumulative mean precipitation and temperature values are plotted in Figure 

8 for the global mean (left panels) and for the south-east-asian region (sea, right panels). In terms 

of maximum and minimum values, ERA5 and GPCP have a common global maximum year (2016) 

for precipitation, while CRU and HadISST have a common global maximum year (2020) for 

temperature. In SE Asia, CRU and ERA5 have a common maximum year (2017), while ERA5 and 

GPCP have a common minimum year (1997) for precipitation. CRU and ERA5, on the other hand 

share a common minimum year (1984) for temperature. 

For the “typhoon year”, i.e., the year when Typhoon Haiyan occurred, the absolute mean, 

baseline climatology, and anomaly values of the SE Asian region for the year 2013 are extracted 

for all the datasets used, as summarized in Table 6.  

 
Table 6. Year 2013 Absolute Annual Mean, Baseline Climatology and Anomaly Values for 

Precipitation & Temperature [SE Asia] 
 

Var. 
CRU  ERA5 GPCP | HadISST 

Absolute Baseline Anomaly Absolute Baseline Anomaly Absolute Baseline Anomaly 

P
re

ci
p

. 

2297.626 2171.179 126.448 2492.249 2236.699 255.551 2259.561 2041.359 218.202 

Te
m

p
. 

24.257 24.064 0.193 25.779 25.510 0.269 28.387 28.172 0.215 

 
 
 
 
 

 

As reflected in the above table, ERA5 has the highest precipitation anomaly for Y2013 among 

CRU, ERA5, and GPCP datasets, and ERA5 likewise resulted in the highest temperature 

anomaly.  For temperature however, HadISST measures a different variable than CRU and ERA5, 

hence, this cannot be compared with the two. Looking at how extreme the Y2013 is compared 

to the non-typhoon years, the following Tables 7 and 8 summarize the percentile of Y2013 for 

each dataset, both for precipitation and temperature.

NOTE: Precipitation units: mm; Temperature units: 0C 
For the third dataset/s, GPCP is used for precipitation while HadISST is used for SST analyses 

Highest values among the datasets are emphasized in boldface colored fonts 
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Figure 8. Annual Mean Precipitation and Temperature (Absolute Values) for Global and SE Asian Region

PRECIPITATION 
Max. Global Mean (CRU): 876.545 (mm/year) in 2010; Max. SEA Mean (CRU): 2431.398 (mm/year) in 2017 
Min. Global Mean (CRU): 796.527 (mm/year) in 1987; Min. SEA Mean (CRU): 1944.03 (mm/year) in 1982 

Max. Global Mean (ERA5): 1095.453 (mm/year) in 2016; Max. SEA Mean (ERA5): 2615.704 (mm/year) in 2017  
Min. Global Mean (ERA5): 1031.623 (mm/year) in 1992; Min. SEA Mean (ERA5): 1800.307 (mm/year) in 1997 
Max. Global Mean (GPCP): 999.026 (mm/year) in 2016; Max. SEA Mean (GPCP): 2412.65 (mm/year) in 1984 
Min. Global Mean (GPCP): 963.791 (mm/year) in 1991; Min. SEA Mean (GPCP): 1618.595 (mm/year) in 1997 

 
 
 

TEMPERATURE/ SST 
Max. Global Mean (CRU): 14.435 (0C) in 2020; Max. SEA Mean (CRU): 24.63 (0C) in 2019 
Min. Global Mean (CRU): 13.109 (0C) in 1984; Min. SEA Mean (CRU): 23.586 (0C) in 1984 

Max. Global Mean (ERA5): 14.81 (0C) in 2016; Max. SEA Mean (ERA5): 26.185 (0C) in 2016 
Min. Global Mean (ERA5): 13.849 (0C) in 1985; Min. SEA Mean (ERA5): 25.096 (0C) in 1984 

Max. Global Mean (HadISST): 14.767 (0C) in 2020; Max. SEA Mean (HadISST): 28.705 (0C) in 2016 
Min. Global Mean (HadISST): 2.093 (0C) in 2009; Min. SEA Mean (HadISST): 27.738 (0C) in 1982 
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Table 7. Rank and Percentile of Y2013 Precipitation Anomalies [SE Asia] 
 

Dataset Precipitation 

CRU 

> Fn1.A<-ecdf(df1.1$Precip.Anomaly[1:40]) 
> Fn1.A(df1.1$Precip.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.85 
 
> summary(Fn1.A) 
Empirical CDF:   40 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-227.15  -74.26   10.75   11.25  106.50  260.22  
 
Rank: 7 

ERA5 

> Fn2.A<-ecdf(df1.1$Precip.Anomaly[41:80]) 
> Fn2.A(df1.1$Precip.Anomaly[41:80][df1.1$Year[41:80]==2013]) 
[1] 0.875 
 
> summary(Fn2.A) 
Empirical CDF:   40 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-436.39 -168.97   45.91   18.21  176.39  379.01  
 

Rank: 6 

GPCP 

> Fn3.A<-ecdf(df1.1$Precip.Anomaly[81:120]) 
> Fn3.A(df1.1$Precip.Anomaly[81:120][df1.1$Year[81:120]==2013]) 
[1] 0.875 
 
> summary(Fn3.A) 
Empirical CDF:   40 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-422.764 -145.157   52.270    5.711  154.613  371.292  
 
Rank: 6 

 

Table 8. Percentile of Y2013 Temperature Anomalies [SE Asia] 
 

Dataset Temperature 

CRU 

> Fn1.B<-ecdf(df1.2$Temp.Anomaly[1:40]) 
> Fn1.B(df1.2$Temp.Anomaly[1:40][df1.2$Year[1:40]==2013]) 
[1] 0.7 
> summary(Fn1.B) 
Empirical CDF:   40 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-0.47800 -0.11675  0.08000  0.07675  0.21850  0.57100  
 
Rank: 13 

ERA5 

> Fn2.B<-ecdf(df1.2$Temp.Anomaly[41:80]) 
> Fn2.B(df1.2$Temp.Anomaly[41:80][df1.2$Year[41:80]==2013]) 
[1] 0.775 
 
> summary(Fn2.B) 
Empirical CDF:   39 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-0.41500 -0.09350  0.08200  0.09297  0.25950  0.67400  
 
Rank: 10 

HadISST 

> Fn3.B<-ecdf(df1.1$SST.Anomaly[1:40]) 
> Fn3.B(df1.1$SST.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.85 
 
> summary(Fn3.B) 
Empirical CDF:   40 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-0.43400 -0.06500  0.04000  0.04752  0.14050  0.53300  
 
Rank: 7 
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As shown, ERA5 and GPCP are the highest for the three precipitation datasets – with both having the 

Y2013 on the 87.5th percentile and ranking 6th out of the 40 years, while HadISST is the highest for the 

temperature datasets, with Y2013 on the 85th percentile and ranking 7th among all years  

For spatial comparison, the maps of the 30-yr climatology, absolute and anomaly values for Y2013 

are depicted in ANNEX 3 for precipitation and temperature. Globally and in SE Asia, the temperature 

anomaly maps showed more dominant red than blue spots, demonstrating a prevalence of positive 

(warm) anomalies as background climatic conditions for Haiyan occurrence. For precipitation, the 

global anomaly maps show wet anomaly (blue colors) and dry anomaly (red colors) distributed all 

over the map, at different locations in the considered datasets. In SE Asia, CRU and ERA5 visually 

showed more blue points (wetter) compared to GPCP for precipitation, with the largest anomalies 

(dark-blue spots) in ERA5. The Empirical Cumulative Distribution Function (ECDF) plots for 

precipitation anomalies [Figure 9] and the count of positive or negative values in Table 9 show that 

about 70% of the values are equal to or above 0 (positive) for CRU, while ERA5 and GPCP have about 

80%.  

 

Figure 9. Empirical Cumulative Distribution Plots of Y2013 Precipitation Anomalies for SE Asia 
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Figure 10. Probability Distribution Plots of Y2013 Precipitation Anomalies for SE Asia 

 

With respect to the distribution of precipitation anomaly values, the skewness [CRU = 1.064, ERA5 = 

0.380, GPCP =0.254] indicates that all datasets are positively skewed or more concentrated to the left 

of the graph as shown in the density plot in Figure 10 -- with GPCP being more symmetric having 

skewness closer to zero. The kurtosis [CRU =7.819, ERA5 = 5.510, GPCP = 2.766] also reveals that the 

GPCP value is closer to 3 hence more normally distributed than CRU and ERA5 with both having sharp 

peaks on the graph. 

For temperature anomalies, the ECDF plots in Figure 11 show that CRU has the least percentage 

(about 90%) among the three datasets, while ERA5 and HadISST have almost 100% of the values 

above 0. This is likewise confirmed by the count of positive and negative values in Table 9.  

With respect to the distribution of anomaly values, the skewness [CRU = -0.628, ERA5 = 1.202, 

HadISST = -0.298] indicates that ERA5 is positively skewed or concentrated to the left, while CRU and 

HadISST are negatively skewed or more concentrated to the right of the graph as shown in the density 

plot in Figure 12. Among the datasets, HadISST is more symmetric with skewness closer to zero. The 

kurtosis [CRU = 3.280, ERA5 = 7.828, HadISST = 3.054] also reveals that HadISST value is closer to 3 

hence more normally distributed than CRU and ERA5, with ERA5 having sharp peaks on the graph. 
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Figure 11. Empirical Cumulative Distribution Plots of Y2013 Temperature Anomalies for SE Asia 

 

 
 

Figure 12. Probability Distribution Plots of Y2013 Temperature Anomalies for SE Asia 

 
 
Table 9. Count of Negative vs. Zero/Positive Annual Precipitation and Temperature Anomalies for 

Y2013 
 

 PRECIPITATION TEMPERATURE 

CRU 

> pos_cru<-prcp_2013_cru$anomaly>=0 
> table(pos_cru) 
pos_cru 
FALSE  TRUE  
  828  1855  
 
> table(pos_cru)[2]/(table(pos_cru)[
2]+table(pos_cru)[1]) 

> pos_cru<-tmp_annual_cru_2013$anomal
y>=0 
> table(pos_cru) 
pos_cru 
FALSE  TRUE  
  356  2327  
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     TRUE  
0.6913902  
 

> table(pos_cru)[2]/(table(pos_cru)[2
]+table(pos_cru)[1]) 
     TRUE  
0.8673127 
 

ERA5 

 

> pos_era5<-prcp_2013_era5$anomaly>=
0 
> table(pos_era5) 
pos_era5 
FALSE  TRUE  
 1868  5874  
 
> table(pos_era5)[2]/(table(pos_era5
)[2]+table(pos_era5)[1]) 
     TRUE  
0.7587187  
 

> pos_era5<-tmp_annual_era5_2013$anom
aly>=0 
> table(pos_era5) 
pos_era5 
FALSE  TRUE  
  246  7496  
 
> table(pos_era5)[2]/(table(pos_era5)
[2]+table(pos_era5)[1]) 
     TRUE  
0.9682253  
 

GPCP | 

HadISST 

> pos_gpcp<-prcp_2013_gpcp$anomaly>=
0 
> table(pos_gpcp) 
pos_gpcp 
FALSE  TRUE  
   63   222  
 
> table(pos_gpcp)[2]/(table(pos_gpcp
)[2]+table(pos_gpcp)[1]) 
     TRUE  
0.7789474  
 

> pos_HadISST<-tmp_annual_HadISST_201
3$anomaly>=0 
> table(pos_HadISST) 
pos_HadISST 
FALSE  TRUE  
   48  1491  
 
> table(pos_HadISST)[2]/(table(pos_Ha
dISST)[2]+table(pos_HadISST)[1]) 
     TRUE  
0.9688109 
 

 

The 5-95 percentiles of the anomaly values for all the grid points were also calculated to show the 

points that are beyond the threshold. Shown in Figures 13 & 14 are the points with anomaly values 

exceeding the local 5 -95 range denoted by red (blue) for dry (wet) anomalies, while the reverse colors 

were used for temperature, where the points below the 5th percentile are marked with blue (or cold) 

and the points above 95th percentile are marked with red (or hot). It is seen that there are clear 

differences in the locations of these marked red (or blue) points, demonstrating that there are 

inconsistencies in the locations of high (or low) precipitation and temperature anomalies in terms of 

its geographic location in as far as the year when typhoon Haiyan occurred, is considered.  
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Figure 13. Maps Showing Anomaly Points Beyond 5-95 Percentile for Y2013 Precipitation [SE Asia] 
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Figure 14. Maps Showing Anomaly Points Beyond 5-95 Percentile for Y2013 Temperature [SE Asia] 

To further compare the differences in the values, the summary of the t-test for each dataset [as 
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summarized in Table 10] shows that CRU, ERA5, and GPCP are significantly different in terms of 

precipitation anomalies -- having relatively low p-values for CRU vs. ERA5 and CRU vs. GPCP, and just 

a little lower than 0.05 for ERA5 vs. GPCP. Based on the highest t-value, the strongest evidence of 

difference is between CRU & ERA5. For temperature, CRU and ERA5 are likewise significantly 

different. HadISST was excluded from this analysis since only CRU and ERA5 measure surface air 

temperatures among the three. 

 

Table 10. Results of Welch Two-Sample t-test for Y2013 Precipitation and Temperature Anomalies 
 

 PRECIPITATION TEMPERATURE 

CRU vs. 

ERA5 

data:  prcp_2013_cru$anomaly and prcp_20
13_era5$anomaly 
t = -19.878, df = 7469.9, p-value < 2.2e
-16 
 
alternative hypothesis: true differ- 
ence in means is not equal to 0 
95 percent confidence interval: 
 -137.2749 -112.6301 
sample estimates: 
mean of x mean of y  
 122.7846  247.7371  
 

data:  tmp_annual_cru_2013$anomaly 
and tmp_annual_era5_2013$anomaly 
t = -18.586, df = 4260.5, p-value 
< 2.2e-16 
 
alternative hypothesis: true diffe
rence in means is not equal to 0 
95 percent confidence interval: 
 -0.08435525 -0.06825695 
sample estimates: 
mean of x mean of y  
0.1929929 0.2692990  
 

CRU vs. 

GPCP 

data:  prcp_2013_cru$anomaly and prcp_20
13_gpcp$anomaly 
t = -5.556, df = 334.37, p-value = 5.643
e-08 
 
 
alternative hypothesis: true differ- 
en ce in means is not equal to 0 
95 percent confidence interval: 
 -122.93596  -58.64702 
sample estimates: 
mean of x mean of y  
 122.7846  213.5761  
 

N/A 

ERA5 vs. 

GPCP 

data:  prcp_2013_era5$anomaly and prcp_2
013_gpcp$anomaly 
t = 2.1005, df = 328.22, p-value = 0.036
45 
 
 
alternative hypothesis: true differ- 
ence in means is not equal to 0 
95 percent confidence interval: 
  2.167778 66.154240 
sample estimates: 
mean of x mean of y  
 247.7371  213.5761 
 

N/A 

 

The SE Asian precipitation and temperature anomalies are plotted against the ENSO variations, as 

presented in Figure 15, to investigate whether the El Niño/Southern Oscillation (ENSO) phenomenon 

impacts the yearly precipitation and temperature in the region. For the plot, the years are categorized 

into El Niño (EN), La Niña (LN), and Neutral (N), based on the 3-month running mean values of the 
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Oceanic Nino Index (ONI), as described in detail in Chapter 2, Section 2.3. 

As seen, most of the precipitation anomalies are positive for LN years (green bars) and negative for 

EN years (red bars). However, a few green bars fall along negative anomalies, and a few red bars fall 

along positive precipitation anomalies at different years. For the N years (blue bars), they fall either 

along positive or negative precipitation anomalies, but exhibit a common pattern where both years 

1981 and 2013 have positive precipitation anomalies, while years 1990 and 1993 have negative 

precipitation anomalies – for all three datasets.  

Comparing the anomaly years in the same plot, CRU and ERA5 have a common maximum year (2017) 

for precipitation and minimum year (1984) for temperature. ERA5 and GPCP, otherwise, have a 

common minimum year (1997) for precipitation anomaly, and ERA5 and HadISST have a common 

maximum year (2016) for temperature anomaly. With respect to the typhoon year (2013), the 

precipitation and temperature anomaly values differ among the datasets, yet ERA5 has the highest 

precipitation and temperature anomalies, as previously presented in Table 6. Being an ENSO Neutral 

year, the plot and the values in the same table show that both precipitation and temperature 

anomalies are positive.  

To statistically characterize the influence of ENSO variations (EN, LN and N) on the precipitation and 

temperature anomalies, an Analysis of Variance (ANOVA) is performed for each dataset as detailed 

in Table 11. The results showed that the precipitation anomalies for all datasets are significantly 

influenced by ENSO variations with very low p-values (marked with a green rectangle). The large F 

values likewise confirm this result. For temperature anomalies (marked with a red rectangle), only 

HadISST is influenced by the ENSO variation, although the p-value indicates lower significance being 

slightly higher than 0.05. It is important to stress that Haiyan occurred in a neutral year, as anomalies 

of ENSO would have otherwise likely significantly affected its occurrence and evolution. 

A Wilcoxon rank sum test is also performed, accounting only the EN and LN years as presented in 

Table 12. Like the ANOVA results, only precipitation anomalies showed significant p-values. 
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Figure 15. Annual Precipitation and Temperature/SST Anomalies vs. ENSO variations (SE Asia)

___ERA5___ 
Max. Precip. Anomaly: 379.006 (mm) in 2017 
Min. Precip. Anomaly: -436.392 (mm) in 1997 

Max. Temp. Anomaly: 0 0.674 (0C) in 2016 
Min.Temp. Anomaly: -0.415 (0C) in 1984 

 
 
 
 
 
 

___GPCP | HadISST___ 
Max. Precip. Anomaly: 371.292 (mm) in 1984 
Min. Precip. Anomaly: -422.764 (mm) in 1997 

Max. SST. Anomaly: 0.533 (0C) in 2016 
Min.SST. Anomaly -0.434 (0C) in 1982 

 
 
 
 
 
 

___CRU__ 
Max. Precip. Anomaly: 260.22 (mm) in 2017 

Min. Precip. Anomaly: -227.149 (mm) in 1982 
Max. Temp. Anomaly: 0.571 (0C) in 2019 
Min.Temp. Anomaly: -0.478 (0C) in 1984 
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Table 11. Results of Analysis of Variance for Annual Precipitation & Temperature Anomalies 
against ENSO [SE Asia] 

 
Dataset ANOVA results 

CRU 

 

ERA5 

 

GPCP / 
HadISST 

 
 

Table 12. Results of Wilcoxon Rank Sum Test on Annual Precipitation and Temperature 
Anomalies for EN and LN years 

 
Dataset Wilcoxon Test Results 

CRU Precip. 

> wilcox.test(Precip.DT[1:40] ~ ENSO[1:40], data = df1.1, conf.int = TRU
E) 
 
 
data:  Precip.DT[1:40] by ENSO[1:40] 
W = 18, p-value = 4.362e-07 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -264.2979 -132.7509 
sample estimates: 
difference in location  
             -204.0518  
 

CRU Temp. 

 
> wilcox.test(Temp.DT[1:40] ~ ENSO[1:40], data = df1.2, conf.int = TRUE) 
 
data:  Temp.DT[1:40] by ENSO[1:40] 
W = 195, p-value = 0.2758 
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alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -0.08565767  0.22234233 
sample estimates: 
difference in location  
            0.07507208 
 

ERA5 
Precip. 

> wilcox.test(Precip.DT[41:80] ~ ENSO[41:80], data = df1.1, conf.int = T
RUE)                
 
 
data:  Precip.DT[41:80] by ENSO[41:80] 
W = 5, p-value = 5.2e-09 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -420.6027 -253.6029 
sample estimates: 
difference in location  
             -344.2017 

 

ERA5 Temp. 

> wilcox.test(Temp.DT[41:80] ~ ENSO[41:80], data = df1.2, conf.int = TRU
E)                
 
 
data:  Temp.DT[41:80] by ENSO[41:80] 
W = 165, p-value = 0.8875 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -0.1761172  0.1683153 
sample estimates: 
difference in location  
           0.007378376  

 

GPCP 
Precip.  

> wilcox.test(Precip.DT[81:120] ~ ENSO[81:120], data = df1.1, conf.int = 
TRUE) 
 
data:  Precip.DT[81:120] by ENSO[81:120] 
W = 6, p-value = 8.21e-09 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -395.2323 -234.9853 
sample estimates: 
difference in location  
             -324.7317  

 

HadISST 

> wilcox.test(SST.DT[1:40] ~ ENSO[1:40], data = df1.2, conf.int = TRUE) 
 
data:  SST.DT[1:40] by ENSO[1:40] 
W = 105, p-value = 0.08271 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -0.24021371  0.01385485 
sample estimates: 
difference in location  
            -0.1182621 

 

 

Discussion 
 
On the percentile and ranking of Y2013 as well as the ECDF plots that displayed the percentage of 

positive anomalies, it is evident that Haiyan occurred in a warmer-than-average and much wetter-

than-average year in SE Asia, according to all inspected datasets. 

 

For the precipitation anomaly maps, the GPCP has higher percentage of positive values than CRU, 

but there appears to have more blue-dominated anomaly map for CRU. This can be due to CRU 

having more grid points with finer grid resolution (0.50 x 0.50) than GPCP (2.50 x 2.50). For 
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temperature anomalies, the high percentage of positive values confirm the red-dominated 

anomaly maps for SE Asia for all three datasets. Checking information from other institutions to 

compare the generated anomaly maps, the Annual 2013 Global Climate Report41 by the National 

Centers for Environmental Information (NCEI) NOAA states that 2013 was the fourth warmest year 

globally since 1880 records, supporting the red-dominated global anomaly maps. For precipitation, 

the report specifies that global land-based stations measured near-average on balance for this 

year but varied greatly from region to region. This explains the not-so-evenly distributed blue and 

red colors at different points in the continents. by the National Centers for Environmental 

Information (NCEI) NOAA states that 2013 was the fourth warmest year globally since 1880 

records, supporting the red-dominated global anomaly maps. For precipitation, the report 

specifies that global land-based stations measured near-average on balance for this year but varied 

greatly from region to region. This explains the not-so-evenly distributed blue and red colors at 

different points in the continents. 

 

The differences across the maps that depict the points beyond the 5-95 local range also manifest 

that there are general inconsistencies across datasets regarding not only the amplitude of large 

precipitation and temperature anomalies around the Haiyan typhoon but also their geographical 

position. The inconsistencies are most apparent for precipitation – a notoriously more difficult 

variable to monitor and simulate than temperature. Overall, as far as the SE Asian region and 

annual-mean values are considered, the empirical distributions demonstrate that for both 

precipitation and temperature, different datasets provide a clearly different description of the 

Y2013 anomalies, pointing to a lack of consistency about the background climatic conditions upon 

which Haiyan occurred. It must be noted, however, that the points analyzed are individual grid 

points in the map, but their spatial relevance differs since they are at varying latitudes. Hence the 

empirical distributions are not comparable – from one to the other. 

 

On the effect of ENSO, SE Asian countries have historically experienced significant climate-related 

issues with El Niños causing deficient rainfall or drought that impacts the crop production, 

particularly in Indonesia and Philippines (Shean, 2014). This supports the result of the analysis 

where most red bars (EN years) fall on negative precipitation anomalies. For green bars (LN years) 

falling on positive precipitation anomalies, a previously cited paper by Deo et al. (2021) studying 

Southwest Pacific nations confirms this observation, where non-TC-induced LN years enhance 

 
41 Sourced from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/201313  

https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/201313
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rainfall. However, it has a lower probability than combined TC and LN to induce extreme rainfall. 

In SE Asia, a study by Wang, Luo & Liu (2020) used a 31-yr running mean from 1901–2017 to 

calculate the correlation coefficient (CC) between rainfall variations and ENSO, indicating that 

tropical subregions of Asia (including SE Asia) show a robust and stable relationship with ENSO, 

with persistent CCs that are significantly above the 99% (95%) confidence level. In their study, 

strong correlations denote drier anomalies during EN and wetter anomalies on LN. However, they 

also noted that the response to EN and LN is asymmetric and differs between major or minor ENSO 

events. On the contrary, the same paper by Deo et al. (2021) also states that an EN year can 

influence intense/extreme rainfall when combined with a TC activity. This could explain why a few 

green bars in the plot fall along negative anomalies, and a few red bars fall along positive 

precipitation anomalies at different years. While on Neutral years, TC-combined contributions to 

rainfall vary (increasing or decreasing) from one area to another. Consistent with this, the plot 

shows that some N years (blue bars) fall either along positive or negative precipitation anomalies. 

Looking further at other literature, the previously cited paper by Tran, Ritchie, & Perkins‐

Kirkpatrick (2022) mentioned that fewer TC landfalls occur in SE Asia in EN years, with locations 

shifting northwestward over mainland Asia, while landfalls are higher and more distributed in LN 

and highest in N years. However, it is beyond this thesis's scope to investigate whether the N years 

other than 2013 have experienced strong TC activities that contributed to the rainfall variations.  

On the temperature, the plot did not necessarily show that EN years have positive while LN years 

have negative anomalies but a related paper by Thirumalai, DiNezio, Okumura & Deser (2017) 

observed that there is a robust relationship between ENSO and SE Asian surface air temperatures 

(SATs) with all April extremes occurring during EN years. Upon quantifying the relative 

contributions of long-term warming and 2015-2016 EN year to the extreme SAT in April 2016, the 

study found that global warming increases the likelihood of record-breaking April extremes, 

estimating that 29% of the 2016 anomaly was caused by warming and 49% by El Niño.  

Taking into consideration the result of the statistical treatments, the ANOVA and Wilcoxon tests 

deduced that ENSO has significantly affected the precipitation patterns, but there is no significant 

effect on the temperature anomalies vis-a-vis the EN/LN/N year variations. 
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3.2 Seasonal Analysis 

 

Results 

The yearly SON values for precipitation and temperature (Global and SE Asia) are plotted 

in Figure 16. Looking at the maximum and minimum values, CRU and ERA5 share a common 

minimum year (1991) with respect to global precipitation values. For SE Asia, ERA5 and GPCP 

both share a common maximum year (2010) and minimum year (1997). For temperature, CRU 

and ERA5 share a common maximum year (2020), while only CRU and ERA5 share a common 

minimum year (1992) globally. In SE Asia, only CRU and HadISST have a common maximum year 

(1998).  It is again apparent that the various datasets provide different information on the 

recorded maxima/minima years, an indication of the differences among them. 

Like the annual analysis, the yearly SON absolute, baseline, and anomaly values for the year 2013 

are extracted and summarized in Table 13.  

 
Table 13. SON 2013 Absolute Mean, Baseline and Anomaly Values for Precipitation & 

Temperature 
 

Var. 
CRU  ERA5 GPCP | HadISST 

Absolute Baseline Anomaly Absolute Baseline Anomaly Absolute Baseline Anomaly 

P
re

ci
p

. 

573.771 536.644 37.127 614.463 588.446 26.017 589.989 555.982 34.007 

Te
m

p
. 

24.347 24.341 0.006 25.751 25.693 0.138 28.595 28.481 0.114 

 
 
 
 

 

As reflected in the above table, CRU has the highest precipitation anomaly for Y2013 among the 

CRU, ERA5, and GPCP datasets, while ERA5 has the highest anomaly among the datasets 

measuring temperature. However, as previously mentioned in the annual analysis, HadISST 

measures a different variable than CRU and ERA5, hence, this can’t be compared with the two.  

 

On how extreme the Y2013 is compared to the non-typhoon years, Tables 14 and 15 summarize 

the percentile and ranking of SON for Y2013, for all the years considered, among all the datasets. 

NOTE: Precipitation units: mm; Temperature units: 0C 
For the third datasets, GPCP is used for precipitation while HadISST is used for temperature analyses 

Highest values among the datasets are emphasized in boldface colored fonts 
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Figure 16. Yearly SON Precipitation and Temperature Absolute Values (Global & SE Asia)

 

 

 

 

PRECIPITATION 

Max. Global Mean (CRU): 215.676 (mm/quarter) in 2010; Max. SEA Mean (CRU): 638.781 (mm/quarter) in 2016 

Min. Global Mean (CRU): 185.718 (mm/quarter) in 1991; Min. SEA Mean (CRU): 424.791 (mm/quarter) in 1994 

Max. Global Mean (ERA5): 272.394 (mm/quarter) in 2017; Max. SEA Mean (ERA5): 741.867 (mm/quarter) in 2010 

Min. Global Mean (ERA5): 254.874 (mm/ quarter) in 1991; Min. SEA Mean (ERA5): 395.616 (mm/quarter) in 1997 

Max. Global Mean (GPCP): 255.066 (mm/ quarter) in 1987; Max. SEA Mean (GPCP): 683.304 (mm/ quarter) in 2010 

Min. Global Mean (GPCP): 243.18 (mm/ quarter) in 1994; Min. SEA Mean (GPCP): 336.582 (mm/ quarter) in 1997 

TEMPERATURE/ SST 

Max. Global Mean (CRU): 15 (0C) in 2020; Max. SEA Mean (CRU): 24.9 (0C) in 1998 

Min. Global Mean (CRU): 13.521 (0C) in 1992; Min. SEA Mean (CRU): 23.917 (0C) in 1984 

Max. Global Mean (ERA5): 14.87 (0C) in 2020; Max. SEA Mean (ERA5): 26.364 (0C) in 2016 

Min. Global Mean (ERA5): 13.812 (0C) in 1992; Min. SEA Mean (ERA5): 25.403 (0C) in 1992 

Max. Global Mean (HadISST): 17.767 (0C) in 2019; Max. SEA Mean (HadISST): 29.069 (0C) in 1998 

Min. Global Mean (HadISST): -1.786 (0C) in 2009; Min. SEA Mean (HadISST): 27.984 (0C) in 1982 
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Table 14. Percentile of SON 2013 Precipitation Anomalies [SE Asia] 
 

Dataset Precipitation 

CRU 

> Fn1.A(df1.1$Precip.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.675 
 
> summary(Fn1.A) 
Empirical CDF:   40 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-111.853  -46.492   17.002    3.117   51.800  102.137 
 
Rank: 14 

ERA5 

> Fn2.A<-ecdf(df1.1$Precip.Anomaly[41:80]) 
> Fn2.A(df1.1$Precip.Anomaly[41:80][df1.1$Year[41:80]==2013]) 
[1] 0.575 
 
> summary(Fn2.A) 
Empirical CDF:   40 unique values with summary 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-192.8290  -49.6178    6.5840    0.3222   66.5757  153.4200 
 
Rank: 18 

GPCP 

> Fn3.A<-ecdf(df1.1$Precip.Anomaly[81:120]) 
> Fn3.A(df1.1$Precip.Anomaly[81:120][df1.1$Year[81:120]==2013]) 
[1] 0.575 
 
> summary(Fn3.A) 
Empirical CDF:   40 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-219.399  -60.210   14.221   -1.987   73.050  127.323  
 
Rank: 18 

 

Table 15. Percentile of SON 2013 Temperature Anomalies [SE Asia] 
 

Dataset Temperature 

CRU 

> Fn1.B<-ecdf(df1.1$Temp.Anomaly[1:40]) 
> Fn1.B(df1.1$Temp.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.4 
 
> summary(Fn1.B) 
Empirical CDF:   39 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-0.4240 -0.1010  0.0660  0.0760  0.2455  0.5590  
 

Rank: 24 

ERA5 

> Fn2.B<-ecdf(df1.1$Temp.Anomaly[41:80]) 
> Fn2.B(df1.1$Temp.Anomaly[41:80][df1.1$Year[41:80]==2013]) 
[1] 0.575 
 
> summary(Fn2.B) 
Empirical CDF:   39 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-0.34900 -0.09750  0.09400  0.09985  0.29300  0.61200  
 
Rank: 18 

HadISST 

> Fn3.B<-ecdf(df1.1$SST.Anomaly[1:40]) 
> Fn3.B(df1.1$SST.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.65 
 
> summary(Fn3.B) 
Empirical CDF:   39 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-0.49700 -0.11700  0.07300  0.05228  0.17500  0.58700 
 
Rank: 15 
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As shown, CRU is the highest among the three precipitation datasets – with the SON 2013 on the 

67.5th percentile and ranking 14th out of 40 years, while HadISST is the highest for the 

temperature datasets, with SON 2013 on the 65th percentile and ranking 15th among all years. 

Compared to Y2013, the SON 2013 anomalies are not as high, with just above the average 

precipitation and temperature anomalies, in as far as all SON seasons from 1980 to 2020 are 

considered. 

For spatial comparison, the maps of the 30-yr climatology, absolute and anomaly values for SON 

2013 are depicted in ANNEX 4 for both precipitation and temperature. Globally and in SE Asia, 

the temperature anomaly maps showed some blue spots although there is still prevalent red, 

demonstrating positive (hotter) anomalies. For precipitation, anomaly maps again show blue and 

red colors distributed at various locations. Statistically, the Empirical Cumulative Distribution 

Function (ECDF) plots for precipitation anomalies [Figure 17] and the count of positive or 

negative values in Table 16 show that about 70% of the anomaly values are equal to or above 0 

(positive) for CRU, while ERA5 and GPCP have about 60%.  These values show that SON 2013 is 

just slightly wetter-than-average with respect to the baseline climatology, despite Haiyan’s 

occurrence. 

 

Figure 17. Empirical Cumulative Distribution Plots of SON 2013 Precipitation Anomalies [SE 

Asia] 

With respect to the distribution of anomaly values, the skewness [CRU = 0.082, ERA5 = 0.410, 

GPCP = 0.503] indicates that all datasets are positively skewed or more concentrated to the left 

of the graph as shown in density plot in Figure 18 -- with CRU having more symmetry as the 
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skewness is closer to zero. The kurtosis [CRU = 7.797, ERA5 = 3.814, GPCP = 3.446] also reveals 

that GPCP have a more normal distribution with kurtosis closer to 3 than CRU and ERA5. Among 

the three, CRU has sharp peaks on the graph. 

 

 

Figure 18. Probability Distribution Plots of SON 2013 Precipitation Anomalies for SE Asia 

 

The ECDF plots in Figure 19 are more apparent for temperature anomalies, showing a higher 

percentage of positive anomalies for both ERA5 and HadISST (about 80%), compared to CRU 

(about 50%). This is confirmed by the summary of counts in Table 16. As with precipitation, these 

values also show that SON 2013 is hotter-than-average, with respect to the baseline climatology, 

across all datasets. 

With respect to the distribution of anomaly values, the skewness [CRU = -0.664, ERA5 = 0.070, 

HadISST = -0.200] indicates that CRU and HadISST are negatively skewed or more concentrated 

to the right of the graph, while ERA5 is positively skewed or more concentrated to the left as 

shown in the density plot in Figure 23. ERA5 is more symmetric among the three having skewness 

closer to zero. The kurtosis [CRU = 3.240, ERA5 = 4.178, HadISST = 3.882] also reveals that CRU 

value have a more normal distribution being closer to 3 than ERA5 and HadISST, with ERA5 and 

HadISST having more sharp peaks on the graph. 
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Figure 19. Empirical Cumulative Distribution Plots of SON 2013 Temperature Anomalies [SE 

Asia] 

 

 
Figure 20. Probability Distribution Plots of SON 2013 Temperature Anomalies for SE Asia 

 

Table 16. Count of Negative vs. Zero/Positive SON 2013 Precipitation and Temperature 
Anomalies 

 

 PRECIPITATION TEMPERATURE 

CRU 

> pos_cru<-prcp_SON_cru_2013$anomaly
>=0 
> table(pos_cru) 
pos_cru 
FALSE  TRUE  
  906  1777  
 
> table(pos_cru)[2]/(table(pos_cru)[
2]+table(pos_cru)[1]) 
     TRUE  

> pos_cru<-tmp_SON_cru_2013$anomaly>=
0 
> table(pos_cru) 
pos_cru 
FALSE  TRUE  
 1255  1428  
 
> table(pos_cru)[2]/(table(pos_cru)[2
]+table(pos_cru)[1]) 
   TRUE  
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0.6623183  
 

0.53224 
 

ERA5 

 

> pos_era5<-prcp_SON_era5_2013$anoma
ly>=0 
> table(pos_era5) 
pos_era5 
FALSE  TRUE  
 3328  4414  
 
> table(pos_era5)[2]/(table(pos_era5
)[2]+table(pos_era5)[1]) 
     TRUE  
0.5701369  
 

> pos_era5<-tmp_SON_era5_2013$anomaly
>=0 
> table(pos_era5) 
pos_era5 
FALSE  TRUE  
 1612  6130  
 
> table(pos_era5)[2]/(table(pos_era5)
[2]+table(pos_era5)[1]) 
     TRUE  
0.7917851  
 

GPCP | 

HadISST 

> pos_gpcp<-prcp_SON_gpcp_2013$anoma
ly>=0 
> table(pos_gpcp) 
pos_gpcp 
FALSE  TRUE  
  135   150  
 
> table(pos_gpcp)[2]/(table(pos_gpcp
)[2]+table(pos_gpcp)[1]) 
     TRUE  
0.5263158 
 

> pos_HadISST<-tmp_SON_HadISST_2013$a
nomaly>=0 
> table(pos_HadISST) 
pos_HadISST 
FALSE  TRUE  
  328  1211  
 
> table(pos_HadISST)[2]/(table(pos_Ha
dISST)[2]+table(pos_HadISST)[1]) 
     TRUE  
0.7868746  
 

 

The 5-95 percentiles of the anomaly values for all the grid points were also calculated to show 

the anomalies for SON 2013 that are beyond the threshold. Shown in Figures 21 & 22 are the 

points with anomaly values exceeding the local 5 (red or dry) and 95 (blue or wet) range for 

precipitation, and the reverse with points below 5 marked with blue (or cold) and above 95 

marked with red (or hot) for temperature anomalies. As with the annual analysis, there are clear 

differences across the maps, again demonstrating the general inconsistency among the datasets 

regarding the amplitude and locations of the anomalies throughout the entire SE Asian region. 

Inconsistencies are both apparent for precipitation and temperature. 

  

Further comparing the anomaly values among the datasets, the summary of the t-test results in 

Table 17 shows that CRU vs. ERA5 and CRU vs. GPCP are significantly different in terms of 

precipitation. CRU vs. ERA5 have relatively low p-value, while CRU vs. GPCP has a p-value just a 

little lower than 0.05. ERA5 and GPCP on the other hand did not show significant difference 

between them. Basing on the highest t-value, the strongest evidence of difference is between 

CRU & ERA5 for precipitation. With respect to temperature anomalies, CRU & ERA5 are 

significantly different with a relatively low p-value. HadISST is excluded from the t-test.
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Figure 21. Maps Showing Anomaly Points Beyond 5-95 Percentile for SON 2013 Precipitation [SE  

Asia]
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Figure 22. Maps Showing Anomaly Points Beyond 5-95 Percentile for SON 2013 Temperature [SE 

Asia] 
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Table 17. Results of Welch Two-Sample t-test for SON 2013 Precipitation and Temperature 
Anomalies 

 

 PRECIPITATION TEMPERATURE 

CRU vs. 

ERA5 

data:  prcp_SON_cru_2013$anomaly and prc
p_SON_era5_2013$anomaly 
t = 4.2247, df = 5799.4, p-value = 2.429
e-05 
 
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval: 
  5.854015 15.990371 
sample estimates: 
mean of x mean of y  
 36.71606  25.79387  
 

data:  tmp_SON_cru_2013$anomaly an
d tmp_SON_era5_2013$anomaly 
t = -26.714, df = 3852.3, p-value 
< 2.2e-16 
 
alternative hypothesis: true diffe
rence in means is not equal to 0 
95 percent confidence interval: 
 -0.1445941 -0.1248210 
sample estimates: 
   mean of x    mean of y  
0.0004153987 0.1351229766 
 

CRU vs. 

GPCP 

data:  prcp_SON_cru_2013$anomaly and prc
p_SON_gpcp_2013$anomaly 
t = 1.9872, df = 330.79, p-value = 0.047
73 
 
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval: 
  0.1532826 30.2989706 
sample estimates: 
mean of x mean of y  
 36.71606  21.48994 
 

N/A 

ERA5 

vs. 

GPCP 

data:  prcp_SON_era5_2013$anomaly and pr
cp_SON_gpcp_2013$anomaly 
t = 0.57139, df = 309.11, p-value = 0.56
81 
 
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval: 
 -10.51721  19.12508 
sample estimates: 
mean of x mean of y  
 25.79387  21.48994  
 

N/A 

 

The yearly SON precipitation, temperature and SST anomalies are then plotted to inspect the 

maximum and minimum years for each variable. As shown in Figure 23, ERA5 and GPCP share 

common maximum (2010) and minimum (1997) years for precipitation anomalies. On temperature, 

no common maximum or minimum year is observed for all datasets. Notable from this plot however 

is the year 1997 which registered the maximum for both Nino 3.4 and CRU temperature anomalies. 

Contrastingly, 1997 is the minimum year for precipitation anomaly in ERA5 and GPCP. This year was 

also the minimum year recorded for GPCP and ERA5 in terms of annual mean. 

Figure 24 to 26 presents the plots of the linear regression between Precipitation, Temperature, 

HadISST and Nino 3.4 SST anomalies, for the yearly SON season, among all datasets. For CRU, 

regressions for precipitation vs. HadISST, precipitation vs. Nino 3.4 SST, temperature vs. HadISST, 
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and temperature vs. Nino 3.4 SST all resulted to a significant p-value, with both precipitation and 

temperature being positively correlated with HadISST, and precipitation and temperature and being 

negatively correlated to Nino 3.4. For ERA5, the regression of precipitation against temperature, 

HadISST, and Nino 3.4 all resulted to significant p-values, with precipitation positively correlated 

with temperature and HadISST and negatively correlated with Nino 3.4.  ERA5 temperature likewise 

resulted to a significant p-value when regressed with HadISST, and both variables are positively 

correlated. GPCP on the other hand, showed a positive correlation with HadISST and Nino3.4 SST, 

all with significant p-values. Lastly, HadISST also resulted in a significant p-value with negative 

correlation to Nino 3.4.  These relationships are likewise reflected in the scatterplots in Figure 27 

where the red, green or blue circles incline toward the left if negatively correlated and toward the 

right if positively correlated. The rest of the correlations without a corresponding significant p-value 

(i.e., CRU precipitation vs. temperature, CRU temperature vs. Nino 3.4 and ERA5 temperature vs. 

Nino 3.4) otherwise show that the circles are more distributed across different parts of the plot, 

than displaying an inclining left or right pattern. Although the values are more or less evenly spread 

and clustered as shown in the density plot and boxplot in Figures 27 and 28, there are outliers for 

CRU and ERA5 temperature as well as HadISST which may have partly affected the regression 

analysis. Nevertheless, almost all the regressions still produced significant p-values. 

Focusing on the seasonal changes in SE Asia for the whole Y2013, the absolute precipitation and 

temperature values are plotted in Figure 29. All three datasets have the same maximum season 

(JJA), while ERA5 and GPCP share a common minimum season (MAM) for precipitation. For 

temperature, all datasets have the same maximum (JJA) and minimum (DJF) seasons. 

The seasonal anomalies for Y2013 are then computed using the baseline reference and are plotted 

in Figure 30. To check if the highest or lowest anomaly season for precipitation and temperature 

also corresponds to the highest or lowest SST anomaly for ENSO, the Nino3.4 seasonal SSTs are 

likewise presented in the same plot.  As seen, ERA5 and GPCP share common maximum (JJA) and 

minimum (SON) seasons for precipitation anomalies. For temperature, CRU and ERA5 have a 

common maximum season (DJF), while all CRU, ERA5 and HadISST have the same minimum season 

(SON). The Nino3.4 SST anomaly on the other hand has the same maximum season (SON) as the 

CRU precipitation anomaly, among others. From these observations, the precipitation and 

temperature for the SON season of the Y2013 is comparatively low than the rest of the seasons 

despite Haiyan occurring in November of this year. It is also noteworthy that September belongs to 
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the Southwest monsoon season when it is expected that large volume of rain goes to the mainland, 

however, only CRU registered SON as the maximum precipitation season among the datasets. It is 

also notable that the Nino 3.4 SST anomaly is highest for this season. When ENSO is supposed to 

peak on DJF, for the Y2013, it showed otherwise. This can be a manifestation that ENSO may have a 

background effect on the changes of the precipitation and temperature variables. The 

interpretation of this observation, however, is not delved further and is beyond the scope of this 

thesis paper. 

 

Discussion 
 

Relating the results to literature information, papers by Diffenbaugh & Scherer (2011), Hawkins & 

Sutton (2012), Lehner, Deser, & Sanderson (2018), and Herring et al. (2015) found that there are 

significant temporal shifts in warmer temperatures in the summer season, particularly at lower 

latitudes, with one study [e.g., Mahlstein, Hegerl, & Solomon, 2012] indicating that Mainland SE Asia 

has likely experienced distinctly higher peak seasonal surface air temperature (SAT) since the year 

2000 due to global warming. These observations coincide with the plots for seasonal absolute values 

in Y2013 where the maximum temperatures are in the JJA (summer) season. Correspondingly, the 

JJA season also registered the highest precipitation, although for SE Asia the JJA months belong to 

the northeast monsoon season, where bulk of the rain is in the mainland. The effect of monsoons 

on precipitation in SE Asia will be discussed further in the section for monthly analysis.  

It is also interesting to link the result of this analysis to the study by Wang, Luo & Liu (2020) [as 

previously cited in the preceding Section], where the relationship of DJF ENSO anomaly and 

precipitation reverses from SO-ND (meaning a shift to a positive relationship from the persistent 

negative correlation for ten months) over a large region of Asia except for SE Asia. In the plot of 

seasonal anomalies for Y2013, DJF is the minimum season for Nino3.4 while SON is the minimum 

season for precipitation (although with ERA5 and GPCP only).  This indicates that there is a positive 

relationship with ENSO DJF and precipitation SON, contrary to what the paper found where SE Asia 

is exempted from this shift. Only with the CRU dataset that the opposite is noted – wherein SON is 

the maximum season, thereby showing that ENSO DJF and SON precipitation for this dataset are 

negatively related.  
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Checking maps produced by other institutions, a global map by NCEI NOAA42 shows that the 2013 

SON in Alaska is the third wettest SON since 1918 records, while Australia experienced the warmest 

period on record for SON 2013 [please refer to ANNEX 2 to view the full map]. This is likewise shown 

in the blue-dominated (wetter or positive anomaly) for Alaska and the red-dominated (hotter or 

positive anomaly) for Australia in the precipitation and temperature anomaly maps generated for 

this study. Russia also observed the warmest November record in Y2013, thereby showing a dark-

red color for this area.  

On the difference of colors displayed between the ERA5 and GPCP precipitation anomaly maps 

despite having relatively similar percentage of positive anomaly values, this may be due to ERA5 

having a finer resolution (more grid points) than GPCP.

 
42 Sourced from: https://www.ncei.noaa.gov/access/monitoring/monthly-report/service/global/extremes/201311.gif  

https://www.ncei.noaa.gov/access/monitoring/monthly-report/service/global/extremes/201311.gif
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Figure 23. Yearly SON Precipitation and Temperature/SST Anomalies (SE Asia) 

 

 

53   28.65   29.07  

 

 

 

___ERA5___ 

Max. Precip. Anomaly: 153.42 (mm) in 2010 

Min. Precip. Anomaly: -192.829 (mm) in 1997 

Max. Temp. Anomaly: 0.612 (0C) in 2016 

Min. Temp. Anomaly: -0.349 (0C) in 1992 

 

___GPCP / HadISST___ 

Max. Precip. Anomaly: 127.323 (mm) in 2010 

Min. Precip. Anomaly: -219.399 (mm) in 1997 

Max. SST. Anomaly: 0.587 (0C) in 1998 

Min. SST. Anomaly: -0.497 (0C) in 1982 

 

___CRU__ 

Max. Precip. Anomaly: 102.137 (mm) in 2016 

Min. Precip. Anomaly: -111.853 (mm) in 1994 

Max. Temp. Anomaly: 0.559 (0C) in 1997 

Min. Temp. Anomaly: -0.424 (0C) in 1984 

 

Nino 3.4 

 

Max. SST. Anomaly: 2.27 (0C) in 1997 

Min. SST. Anomaly: -1.867 (0C) in 1988 
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Figure 24. Linear Regression of CRU dataset for Yearly SON anomalies 
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Figure 25. Linear Regression of ERA5 dataset for Yearly SON anomalies 
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Figure 26. Linear Regression of GPCP and HadISST datasets for Yearly SON anomalies 
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Figure 27. Scatterplots, Density Plots and Correlation Coefficients of Yearly SON Precip., Temp., HadISST and Nino3.4 Anomalies 
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Figure 28. Boxplots of Yearly SON Precip., Temp./SST and Nino3.4 Anomalies 

 

 

 

 



80 

 
 

 
 
 

 

Figure 29. Seasonal Precipitation and Temperature Values for Y2013 (SE Asia) 

Max. SEA Mean (CRU): 706.3934 (mm/quarter) in Season JJA 
Min. SEA Mean (CRU): 451.984 (mm/quarter) in Season DJF 
Max. SEA Mean (ERA5): 772.336 (mm/quarter) in Season JJA   

Min. SEA Mean (ERA5): 534.195 (mm/quarter) in Season MAM 
Max. SEA Mean (GPCP): 724.807 (mm/quarter) in Season JJA 

Min. SEA Mean (GPCP): 459.124 (mm/quarter) in Season MAM 
 
 

Max. SEA Mean (CRU): 26.116 (0C) in Season JJA 
Min. SEA Mean (CRU): 21.879 (0C) in Season DJF 
Max. SEA Mean (ERA5): 26.825 (0C) in Season JJA   
Min. SEA Mean (ERA5): 24.384 (0C) in Season DJF 

Max. SEA Mean (HadISST): 29.016 (0C) in Season JJA 
Min. SEA Mean (HadISST): 27.469 (0C) in Season DJF 
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Figure 30. Y2013 Seasonal Anomalies for Precipitation and Temperature against Nino3.4 SST (SE Asia) 

 

CRU 
Max. Precip. Anomaly: 37.126 (mm) in Season SON 
Min. Precip. Anomaly: 8.034 (mm) in Season MAM 

Max. Temp. Anomaly: 0.544 (0C) in Season DJF 
Min. Temp. Anomaly: 0.006 (0C) in Season SON 

 
 
 
 
 
 
 
 
 
 

ERA5 
Max. Precip. Anomaly: 108.419 (mm) in Season JJA 
Min. Precip. Anomaly: 26.016 (mm) in Season SON 

Max. Temp. Anomaly: 0.494 (0C) in Season DJF 
Min. Temp. Anomaly: 0.138 (0C) in Season SON 

 
 
 

 
 
 
 
 
 

GPCP / HadISST 
Max. Precip. Anomaly: 92.672 (mm) in Season JJA 
Min. Precip. Anomaly: 21.024 (mm) in Season SON 

Max. SST Anomaly: 0.303 (0C) in Season MAM 
Min. SST Anomaly 0.114 (0C) in Season SON 

 
 
 
 
 
 
 
 
 
 

Nino 3.4 SST 
 

Max. SST Anomaly: -0.117 (0C) in Season SON 
Min. SST Anomaly: -0.317 (0C) in Season DJF 
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3.3 Monthly Analysis 

 

Results 
 
The yearly November absolute mean precipitation and temperature values are plotted in Figure 

31. In terms of maximum and minimum, CRU and ERA5 have a common global minimum year 

(1991) for precipitation, while CRU and ERA5 have a common global maximum year (2020) for 

temperature. In SE Asia, ERA5 and GPCP both have common maximum (1988) and minimum year 

(2006) years for precipitation. For temperature, CRU and ERA5 share a common maximum year 

(2016) and all three datasets have the same minimum year (1992).  Again, the information 

provided according to the maxima/minima values present differences among the datasets, like 

the annual and seasonal analysis. 

The absolute mean, baseline, and anomaly values of the SE Asian region for November 2013 are 

extracted for all the datasets, as summarized below.  

 
Table 18. November 2013 Absolute Annual Mean, Baseline and Anomaly Values for 

Precipitation & Temperature [SE Asia] 
 

Var. 
CRU  ERA5 GPCP | HadISST 

Absolute Baseline Anomaly Absolute Baseline Anomaly Absolute Baseline Anomaly 

P
re

ci
p

. 

172.753 156.188 16.565 197.198 188.919 8.279 173.089 169.585 3.5043 

Te
m

p
. 

23.230 23.039 0.191 25.256 25.116 0.140 28.421 28.330 0.091 

 
 
 
 
 

 

As reflected above, CRU has the highest anomaly for both precipitation and temperature, 

different from what the annual and seasonal analysis observed when ERA5 was consistently 

highest in as far as annual and seasonal means are concerned. On the significance of November 

2013 values compared to Novembers of other years, the percentiles are summarized in the 

following Tables 19 and 20. 

NOTE: Precipitation units: mm; Temperature units: 0C 
For the third dataset/s, GPCP is used for precipitation while HadISST is used for SST analyses 

Highest values among the datasets are emphasized in boldface colored fonts 
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Figure 31. Yearly November Precipitation and Temperature Absolute Values (Global & SE Asia) 

 

````` 

 

PRECIPITATION 

Max. Global Mean (CRU): 67.212 (mm/month) in 2000; Max. SEA Mean (CRU): 194.508 (mm/month) in 2012 

Min. Global Mean (CRU): 59.063 (mm/month) in 1991; Min. SEA Mean (CRU): 115.01 (mm/month) in 1997 

Max. Global Mean (ERA5): 89.82 (mm/month) in 2015; Max. SEA Mean (ERA5): 251.242 (mm/month) in 1988 

Min. Global Mean (ERA5): 83.293 (mm/month) in 1991; Min. SEA Mean (ERA5): 121.121 (mm/month) in 2006 

Max. Global Mean (GPCP): 83.002 (mm/month) in 1993; Max. SEA Mean (GPCP): 226.264 (mm/month) in 1988 

Min. Global Mean (GPCP): 78.239 (mm/month) in 1994; Min. SEA Mean (GPCP): 101.009 (mm/month) in 2006 

 

TEMPERATURE/SST 

Max. Global Mean (CRU): 11.223 (0C) in 2020; Max. SEA Mean (CRU): 23.886 (0C) in 2015 

Min. Global Mean (CRU): 9.358 (0C) in 1993; Min. SEA Mean (CRU): 22.347 (0C) in 1992 

Max. Global Mean (ERA5): 13.907 (0C) in 2020; Max. SEA Mean (ERA5): 25.852 (0C) in 2015 

Min. Global Mean (ERA5): 12.717 (0C in 1984; Min. SEA Mean (ERA5): 24.523 (0C) in 1992 

Max. Global Mean (HadISST): 16.921 (0C) in 2019; Max. SEA Mean (HadISST): 28.874 (0C) in 2016 

Min. Global Mean (HadISST): -0.324 (0C) in 1988; Min. SEA Mean (HadISST): 27.936 (0C) in 1992 
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Table 19. Percentile of November 2013 Precipitation Anomalies [SE Asia] 
 

Dataset Precipitation 

CRU 

> Fn1.A<-ecdf(df1.1$Precip.Anomaly[1:40]) 
> Fn1.A(df1.1$Precip.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.75 
 
> summary(Fn1.A) 
Empirical CDF:   40 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-41.178 -13.799   7.521   2.747  16.953  38.320  
 
Rank: 11 

 

ERA5 

> Fn2.A<-ecdf(df1.1$Precip.Anomaly[41:80]) 
> Fn2.A(df1.1$Precip.Anomaly[41:80][df1.1$Year[41:80]==2013]) 
[1] 0.55 
 
> summary(Fn2.A) 
Empirical CDF:   40 unique values with summary 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-67.79800 -26.89850   5.90600   0.08252  21.75050  62.32300  
 
Rank: 19 
 

GPCP 

> Fn3.A<-ecdf(df1.1$Precip.Anomaly[81:120]) 
> Fn3.A(df1.1$Precip.Anomaly[81:120][df1.1$Year[81:120]==2013]) 
[1] 0.475 
 
> summary(Fn3.A) 
Empirical CDF:   40 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-68.576 -20.134   6.279  -1.015  18.054  56.679  
 
Rank:22 
 
 

 

Table 20. Percentile of November 2013 Temperature Anomalies [SE Asia] 
 

Dataset Temperature 

CRU 

> Fn1.B<-ecdf(df1.1$Temp.Anomaly[1:40]) 
> Fn1.B(df1.1$Temp.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.5 
 
> summary(Fn1.B) 
Empirical CDF:   40 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-0.6910 -0.1645  0.1955  0.1342  0.4365  0.8480  
 

Rank: 21 
 

ERA5 

> Fn2.B<-ecdf(df1.1$Temp.Anomaly[41:80]) 
> Fn2.B(df1.1$Temp.Anomaly[41:80][df1.1$Year[41:80]==2013]) 
[1] 0.475 
 
> summary(Fn2.B) 
Empirical CDF:   40 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-0.5930 -0.1237  0.1535  0.1261  0.3688  0.7350  
Rank:22 
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HadISST 

> Fn3.B<-ecdf(df1.1$SST.Anomaly[1:40]) 
> Fn3.B(df1.1$SST.Anomaly[1:40][df1.1$Year[1:40]==2013]) 
[1] 0.525 
 
> summary(Fn3.B) 
Empirical CDF:   39 unique values with summary 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-0.39300 -0.07950  0.08400  0.05659  0.18900  0.54400  
 
Rank: 19 
 

As shown, CRU is the highest for precipitation, being on the 75th percentile, ranking on the 11th 

among the 40 years, while HadISST is the highest for temperature, being on the 52.5th percentile, 

ranking on the 19th. From the above table, it can also be construed that November 2013 is not 

comparatively wetter and warmer than the rest of the years, despite the occurrence of Haiyan 

on this same month.  

To visualize, the maps of the 30-yr climatology, absolute and anomaly values for November 2013 

are presented in ANNEX 5 for precipitation and temperature. Globally and in SE Asia, the 

temperature anomaly maps showed more dominant red (and dark-red) spots, demonstrating 

positive (hotter) anomalies. For precipitation, the anomaly maps show blue (and dark blue) spots, 

indicating a positive (wetter) month, but some red (drier) areas are also depicted. Statistically, 

the Empirical Cumulative Distribution Function (ECDF) plots for precipitation anomalies [Figure 

32] and the count of positive or negative values in Table 21 show that CRU has the highest 

percentage of values equal to or above 0 (at 56%). ERA5 followed, still with more than 50% of 

positive values. GPCP on other hand has roughly 50% of positive values, meaning, there are drier 

than wetter points.  This demonstrates that indeed, November 2013 is just slightly wetter-than-

average month, as regards the baseline climatology.  

 

Figure 32. Empirical Cumulative Distribution Plots of November 2013 Precipitation Anomalies 

for SE Asia 
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With respect to the distribution of anomaly values, the skewness [CRU = 1.166, ERA5 = 0.475, 

GPCP = 0.089] indicates that all datasets are positively skewed or concentrated to the left as 

shown in the figure below. Among the datasets, GPCP is more symmetric with skewness closer 

to zero. The kurtosis [CRU = 6.261, ERA5 = 4.061, GPCP = 3.566] also reveals that GPCP value is 

closer to 3 hence more normally distributed than CRU and ERA5, with CRU having sharp peaks 

on the graph. 

Figure 33. Probability Distribution Plots of November 2013 Precipitation Anomalies for SE Asia 

 

For temperature anomalies, the ECDF plots in Figure 34 and the summary of counts in Table 21 

show that CRU likewise has the highest percentage (70%) among the three datasets, while ERA5 

and HadISST have almost 70% of the values above 0. This indicates that November 2013 is a little 

hotter than average, compared to the baseline climatology, in as far as the three datasets are 

concerned. 

With respect to the distribution of anomaly values, the skewness [CRU = -0.597, ERA5 = 0.222, 

HadISST = 0.158] indicates that CRU is negatively skewed or more concentrated on the right, 

while ERA5 and HadISST are positively skewed or concentrated to the left. Among the datasets, 

HadISST is more symmetric with skewness closer to zero. The kurtosis [CRU = 5.048, ERA5 = 5.519, 

HadISST = 4.3689] also reveals that HadISST value is closer to 3 hence more normally distributed 

than CRU and ERA5, with ERA5 having sharp peaks on the graph, as shown in Figure 35. 
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Figure 34. Empirical Cumulative Distribution Plots of November 2013 Temperature Anomalies 

for SE Asia 

 

 

Figure 35. Probability Distribution Plots of November 2013 Temperature Anomalies for SE Asia 

 
Table 21. Count of Negative vs. Zero/Positive Annual Precipitation and Temperature 

Anomalies for November 2013 
 

 PRECIPITATION TEMPERATURE 

CRU 

> pos_cru<-prcp_nov2013_cru$anomaly>
=0 
> table(pos_cru) 
pos_cru 
FALSE  TRUE  
 1175  1508  
 
> table(pos_cru)[2]/(table(pos_cru)[
2]+table(pos_cru)[1]) 

> pos_cru<-tmp_nov2013_cru$anomaly>=0 
> table(pos_cru) 
pos_cru 
FALSE  TRUE  
  803  1880  
 
> table(pos_cru)[2]/(table(pos_cru)[2
]+table(pos_cru)[1]) 
     TRUE  
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     TRUE  
0.5620574  
 

0.7007082  
 

ERA5 

 

> pos_era5<-prcp_nov2013_era5$anomal
y>=0 
> table(pos_era5) 
pos_era5 
FALSE  TRUE  
 3490  4252  
 
> table(pos_era5)[2]/(table(pos_era5
)[2]+table(pos_era5)[1]) 
     TRUE  
0.5492121  
 

> pos_era5<-tmp_nov2013_era5$anomaly>
=0 
> table(pos_era5) 
pos_era5 
FALSE  TRUE  
 2475  5267  
 
> table(pos_era5)[2]/(table(pos_era5)
[2]+table(pos_era5)[1]) 
     TRUE  
0.6803152  
 

GPCP | 

HadISST 

> pos_gpcp<-prcp_nov2013_gpcp$anomal
y>=0 
> table(pos_gpcp) 
pos_gpcp 
FALSE  TRUE  
  144   141  
 
> table(pos_gpcp)[2]/(table(pos_gpcp
)[2]+table(pos_gpcp)[1]) 
     TRUE  
0.4947368  
 

> pos_HadISST<-tmp_nov2013_HadISST$an
omaly>=0 
> table(pos_HadISST) 
pos_HadISST 
FALSE  TRUE  
  535  1004  
 
> table(pos_HadISST)[2]/(table(pos_Ha
dISST)[2]+table(pos_HadISST)[1]) 
     TRUE  
0.6523717  
 

 

The 5-95 percentiles of the grid points were also calculated to show the significance of the 

anomaly values. These significant points are shown in Figures 36 & 37. The same difference 

between the datasets is observed as with the annual and seasonal analysis, showing lack of 

consistency among the datasets in terms of amplitude and location of these points. 

 

To further compare the differences in the values, the summary of the t-test for each dataset [as 

summarized in Table 22] shows that CRU vs. ERA5, and CRU vs. GPCP are significantly different 

in terms of precipitation anomalies, having relatively low p-values for all the t-test analyses. ERA5 

& GPCP otherwise did not show significant difference. Based on the highest t-value, the strongest 

evidence of difference is still between CRU & ERA5. For temperature, CRU and ERA5 are likewise 

significantly different. HadISST was excluded from the t-test, like the annual and seasonal 

analysis.  The non-significant difference of ERA5 and GPCP demonstrates that the mean of the 

anomaly values for both datasets does not vary -- an indication that the values of the anomalies 

for November 2013 as computed from these datasets are comparable. It must be regarded 

however, that ERA5 has a larger number of grid points analyzed than GPCP.   
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Figure 36. Maps Showing Anomaly Points Beyond 5-95 Percentile for November 2013 

Precipitation [SE Asia] 
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Figure 37. Maps Showing Anomaly Points Beyond 5-95 Percentile for November 2013 

Temperature [SE Asia] 
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Table 22. Results of Welch Two-Sample t-test for Y2013 Precipitation and Temperature 
Anomalies 

 

 PRECIPITATION TEMPERATURE 

CRU vs. 

ERA5 

data:  prcp_nov2013_cru$anomaly and prcp
_nov2013_era5$anomaly 
t = 5.8121, df = 4867.6, p-value = 6.562
e-09 
 
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval: 
  5.487889 11.074443 
sample estimates: 
mean of x mean of y  
15.995053  7.713887  
 

data:  tmp_nov2013_cru$anomaly and 
tmp_nov2013_era5$anomaly 
t = 5.6106, df = 4733.2, p-value = 
2.131e-08 
 
alternative hypothesis: true diffe
rence in means is not equal to 0 
95 percent confidence interval: 
 0.03463220 0.07183357 
sample estimates: 
mean of x mean of y  
0.1909865 0.1377536  
 

CRU vs. 

GPCP 

data:  prcp_nov2013_cru$anomaly and prcp
_nov2013_gpcp$anomaly 
t = 3.4661, df = 356.43, p-value = 0.000
5925 
 
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval: 
  5.531305 20.040467 
sample estimates: 
mean of x mean of y  
15.995053  3.209167  

N/A 

ERA5 vs. 

GPCP 

data:  prcp_nov2013_era5$anomaly and prc
p_nov2013_gpcp$anomaly 
t = 1.2642, df = 310.77, p-value = 0.207
1 
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval: 
 -2.506364 11.515805 
sample estimates: 
mean of x mean of y  
 7.713887  3.209167  

N/A 

 

The SE Asian absolute monthly precipitation and temperature values for Y2013 are plotted in 

Figure 38. As seen ERA5 and GPCP show a common maximum month (July), while all three 

datasets have common minimum month (March) for precipitation. For temperature, all three 

datasets share a common maximum month (June), while CRU and ERA5 have a common 

minimum month (December).  

The precipitation values are then plotted against the monsoonal variations, as presented 

in Figure 39, to investigate whether the monsoonal changes impact the monthly precipitation. 

For the plot, the months are categorized into Northeast (for Northeast monsoon month), 

Southwest (for Southwest monsoon), and None (or not a monsoon month). This is likewise 

discussed in Chapter 2, Section 2.3. As shown, high precipitation values are observed in the 

months of May to September or the Southwest monsoon months (blue bars), compared to the 

Northeast (green) and non-monsoon (red) months. 
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Figure 38. Monthly Precipitation and Temperature Values for Y2013 (SE Asia) 

Max. SEA Mean (CRU): 253.906 (mm/month) in August;   
Min. SEA Mean (CRU): 145.691 (mm/month) in March 
Max. SEA Mean (ERA5): 276.446 (mm/month) in July;   

Min. SEA Mean (ERA5): 122.663 (mm/month) in March 
Max. SEA Mean (GPCP): 254.152 (mm/month) in July;  

Min. SEA Mean (GPCP): 105.973 (mm/month) in March 
 
 
 

Max. SEA Mean (CRU): 26.299 (0C) in June;   
Min. SEA Mean (CRU): 20.747 (0C) in December 

Max. SEA Mean (ERA5): 27.127 (0C) in June;   
Min. SEA Mean (ERA5): 23.889 (0C) in December 
Max. SEA Mean (HadISST): 2 29.281 (0C) in June;  

Min. SEA Mean (HadISST): 27.187 (0C) in February 
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Figure 39. Monthly Precipitation Values for Y2013 against Monsoonal Variations (SE Asia) 
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To statistically understand the influence of these monsoonal variations on the regional 

precipitation, an Analysis of Variance (ANOVA) is performed for each dataset as detailed in Table 

23. The results showed that the precipitation anomalies for all datasets are significantly 

influenced by ENSO variations with very low p-values (marked with a green rectangle). The large  

F values likewise confirm this result. Among the three precipitation datasets, CRU has the least 

p-value, while ERA5 are higher than the two.  

A Wilcoxon rank sum test is also performed, accounting only the Northeast and Southwest 

monsoon months as presented in Table 24. Like the ANOVA, the result showed significant p-

values. 

 
Table 23. Results of Analysis of Variance for Monthly Absolute Precipitation for Y2013 against 

Monsoonal Variations  

 
Dataset ANOVA results 

CRU 

  

ERA5 

  

GPCP 

  
 

Table 24. Results of Wilcoxon Rank Sum Test on Y2013 Monthly Absolute Precipitation for 
Northeast and Southwest Monsoon 

 
Dataset Wilcoxon Test Results 

CRU Precip. 

> wilcox.test(Precip.DT[1:12] ~ Monsoon[1:12], data = prcp_df2, conf.in
t = TRUE) 
 
 
data:  Precip.DT[1:12] by Monsoon[1:12] 
W = 0, p-value = 0.007937 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -104.81715  -20.23711 
sample estimates: 
difference in location  
             -67.59499  
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ERA5 
Precip. 

> wilcox.test(Precip.DT[13:24] ~ Monsoon[13:24], data = prcp_df2, conf.
int = TRUE)               
 
 
data:  Precip.DT[13:24] by Monsoon[13:24] 
W = 0, p-value = 0.007937 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -118.17368  -25.44986 
sample estimates: 
difference in location  
             -59.46255  
 

GPCP 
Precip.  

> wilcox.test(Precip.DT[25:36] ~ Monsoon[25:36], data = prcp_df2, conf.
int = TRUE) 
 
data:  Precip.DT[25:36] by Monsoon[25:36] 
W = 0, p-value = 0.007937 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
 -124.67852  -25.79639 
sample estimates: 
difference in location  
             -66.91553  

 

 

The yearly November anomalies for precipitation and temperature are plotted in Figure 40. To 

again understand if ENSO SST has an effect on the variables, Nino3.4 SST anomalies for all 

Novembers considered are likewise plotted. From this plot, ERA5 and GPCP share the same 

minimum year (2006) for precipitation, while CRU and ERA5 have common maximum (2015) and 

minimum years for temperature. Nino 3.4 also have the same maximum year (2015) as with the 

ERA5 and GPCP precipitation maximum. From these values, regression analysis are performed to 

understand their inter-variable relationships. Figures 41 to 43 presents the plots of the linear 

regression among the monthly Precipitation, Temperature, HadISST and Nino 3.4 SST anomalies, 

for all datasets. As seen, almost the p-values are significant for the all the regressions, except for 

CRU precipitation vs. temperature, ERA5 precipitation vs. temperature and ERA5 Temperature 

vs. Nino3.4.  The relationship of HadISST vs. Nino3.4 are likewise insignificant. Based on the 

results with significant p-values, the CRU precipitation and temperature are positively correlated 

with HadISST and Nino 3.4 respectively, while CRU precipitation and Nino3.4 are negatively 

correlated. For ERA5, positive correlations were also noted for both precipitation and 

temperature vs. HadISST, and negative correlation for precipitation and Nino 3.4. For GPCP, 

precipitation is positively correlated with HadISST while negatively correlated with Nino3.4. The 

significant relationships evidently showed that among all the datasets, the correlations of 

precipitation and temperature to HadISST and Nino3.4 are all uniform -- where precipitation and 

temperature increases with HadISST and vice versa, while precipitation decreases as Nino 3.4 

increases (and v.v.) The scatterplots (Figure 44) also display these relationships where the circles 
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are inclined toward the right for positive correlations and toward the left for negative 

correlations. The rest of the correlations without a corresponding significant p-value otherwise 

show that the circles are more distributed across different parts of the plot, than displaying an 

inclining left or right pattern. It was also noted from the density plot in Figure 44, and boxplot in 

Figure 45 that ERA5 temperature and HadISST have outliers and ERA5 temperature appears to 

have a peak in the curve, which could have affected the regression results.  

The monthly anomalies for precipitation and temperature/SST in Y2013 are plotted in Figure 45 

against the monthly Nino3.4 SST anomalies. Comparing the months, ERA5 and GPCP have a 

common maximum month (July) and minimum month (March) for precipitation. For 

temperature, CRU and ERA5 both share common maximum (March) and minimum (December) 

months. For Nino3.4, maximum and minimum months are November and January respectively, 

which are not common to all the precipitation or temperature datasets analyzed.  

 

Discussion 
 

From the ANOVA and Wilcoxon tests, it is apparent that the monsoonal variations (Northeast and 

Southwest) within the SE Asian region affected the precipitation patterns for the Y2013. The plots 

for Y2013 monthly absolute and anomaly values are also consistent with the seasonal analysis, 

wherein the monthly absolute and anomaly values have maximum temperature in June (summer 

season). Correspondingly, the months of July and August also registered the highest precipitation 

(absolute and anomaly values), which fall within the Northeast Monsoon season when the rain 

is concentrated in the mainland. March on the other hand is the minimum month, which falls 

within the Southwest monsoon season where only small amounts of rain goes to the mainland 

during this period.  It should be noted however, that CRU slightly varied from the two 

precipitation datasets having different maximum and minimum precipitation anomaly months. 

For temperature, the minimum months recorded are December and February wherein in these 

months, dry and cool air is observed in the mainland for SE Asian region. One remarkable 

observation is that November 2013 has low precipitation anomaly values, despite the occurrence 

of Typhoon Haiyan during this month.   

Checking maps produced by other institutions, the same global map in ANNEX 2, shows that 

California experienced record-low precipitation in November 2013, while Austria has the wettest 

November since 2002, that explains the red (dry) and blue (wet) colors in these parts of the map. 
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For temperature, Spain experienced the coolest November since 1985 records, while Russia has 

the warmest November since 1891 thereby showing blue and dark-red colors for these areas. For 

SE Asia, the percentage of negative and positive anomalies for precipitation is around 50-50 

hence the blue and red spots are even. Albeit positive, the mean precipitation anomaly for 

November 2013 throughout the region is low. 

From the regression analysis, it is also notable that Precipitation and Temperature are positively 

affected by the HadISST but the Nino3.4 has negative correlation to these variables, when both 

are measuring SST values. Following the observations of previously cited papers, SE Asia is 

expected to be excluded from the positive correlation with ENSO compared to the rest of Asia 

during the SO-ND months, hence the negative  correlation with the precipitation and Nino 3.4 

confirms this result. 
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Figure 40. Yearly November Precipitation and Temperature/SST Anomalies against Nino3.4 SST (SE Asia) 

___ERA5___ 
Max. Precip. Anomaly: 62.323 (mm) in 1988 
Min. Precip. Anomaly: -67.798 (mm) in 2006 

Max. Temp. Anomaly: 0.735 (0C) in 2015 
Min.Temp. Anomaly: -0.593 (0C) in 1992 

 
 
 
 
 
 

___GPCP / HadISST___ 
Max. Precip. Anomaly: 56.679 (mm) in 1988 
Min. Precip. Anomaly: -68.576 (mm) in 2006 

Max. SST. Anomaly: 0.544 (0C) in 2016 
Min.SST. Anomaly: -0.393 (0C) in 1992 

 
 
 
 
 
 

___CRU__ 
Max. Precip. Anomaly: 38.32 (mm) in 2012 

Min. Precip. Anomaly: -41.178 (mm) in 1997 
Max. Temp. Anomaly: 0.848 (0C) in 2015 
Min.Temp. Anomaly: -0.691 (0C) in 1992 

 
 
 
 
 
 
 
 
 

Nino 3.4 
 

Max. SST. Anomaly: 2.57 (0C) in 2015 
Min.SST. Anomaly: -2.18 (0C) in 1998 
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Figure 41. Linear Regression of CRU dataset for Yearly November Anomalies 
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Figure 42. Linear Regression of ERA5 dataset for Yearly November Anomalies 
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Figure 43. Linear Regression of GPCP and HadISST datasets for November 2013 anomalies 
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Figure 44. Scatterplots, Density Plots and Correlation Coefficients of Yearly November Precip., Temp., HadISST and Nino3.4 Anomalies 
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Figure 45. Boxplots of Yearly November Precip., Temp./SST and Nino3.4 Anomalies 
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Figure 46. Y2013 Monthly Anomalies for Precipitation and Temperature against Nino3.4 SST (SE Asia) 

 

___CRU__ 
Max. Precip. Anomaly: 45.757 (mm) in December 

Min. Precip. Anomaly: -12.828 (mm) in June 
Max. Temp. Anomaly: 0.900 (0C) in March 

Min. Temp. Anomaly: -0.637 (0C) in December 
 
 
 
 
 
 
 
 
 

____ERA5____ 
Max. Precip. Anomaly: 53.319 (mm) in July 

Min. Precip. Anomaly: -22.561 (mm) in March 
Max. Temp. Anomaly: 0.741 (0C) in March 

Min. Temp. Anomaly: -0.187 (0C) in December 
 
 
 
 
 
 
 
 
 

___GPCP_I HadISST_ 
Max. Precip. Anomaly: 45.954 (mm) in July 

Min. Precip. Anomaly: -22.693 (mm) in March 
Max. SST Anomaly: 0.333 (0C) in June 

Min. SST Anomaly: 0.057 (0C) in October 
 
 
 
 
 
 
 
 

Nino3.4 SST 
Max. SST Anomaly: -0.02 (0C) in 

November 
Min. SST Anomaly: -0.42 (0C) in January 

 



105 

3.4. Daily Analysis 

 

Results 

For the daily analysis, the focus is on the days when the Typhoon Haiyan formed, made landfall 

and dissipated (Nov. 3 to 11, 2013).  From these days it is apparent that spatially (Figure 47), 

there is a concentration of low pressure forming around the Philippine Area of Responsibility -- 

evidence of the cyclonic activity over the country linked with the passage of the typhoon.  

 

Figure 47. Cyclonic Formation of Low Pressure in SE Asia from ERA5 Absolute Pressure Values 

[Nov.3-11] 

Building from this, the annual timeseries of the spatial mean for SE Asia and the Philippines, are 

plotted for each day (from 3 to 11 November) with various atmospheric variables, to inspect any 

temporal trends or notable maxima/minima. The timeseries for windspeed, as plotted in Figure 

48 show that neither of the typhoon days registered as the maximum or minimum among all the 

years considered (1981-2020). However, for the daily mean anomalies during the typhoon period 
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itself, there is a large disparity of windspeed anomaly observed in the Philippines during the 

landfall days [Nov. 7 & 8], as shown in Figure 49 [right plot, left panel], compared to the mean 

values in SE Asia. From the maps of absolute and anomaly values [Figure 50] the concentration 

of high windspeed is also evident in the Philippines for these days. It can also be noted from the 

timeseries plot that Philippines has a higher mean windspeed values than SE Asia. 

The same is true for the timeseries of Pressure in Figure 51 where neither of the typhoon days 

registered as the maximum or minimum among all the years considered. For Nov. 7 & 8, pressure 

registered a negative anomaly for both locations [Figure 52], although a dip in pressure anomaly 

is more observed toward the last day of the typhoon in the whole SE Asian region than in the 

Philippines. The concentration of low-pressure values is also evident in the Philippines as visually 

shown in the map in Figure 53. From the timeseries plot, but both locations follow a more 

uniform range for mean pressure values.  

 

 

 

 

 

Figure 48. ERA5 Timeseries of Daily Mean Windspeed (Absolute Values) [Nov.3-11] 

Max. Mean (SE Asia): 5.746 (m/s) on 03 November 2009; 
Min. Mean (SE Asia): 2.597 (m/s) on 03 November 1990 
Max. Mean (Phils.): 10.048 (m/s) on 10 November 1996; 

Min. Mean (Phils.): 2.21 (m/s) on 03 November 1990 
 

PRECIP. BY DAILY ABSOLUTE VALUE FOR SE ASIA  
Highest Rate: 31.204 (m/s) on 06 November 1991; 

 
PRECIP. BY DAILY ABSOLUTE VALUE FOR PHILS. 

Highest Rate: 24.717 (m/s) on 04 November 1997; 

 
 

 

PRECIP. ANOMALY PER GRIDPOINT FOR SE ASIA 
Highest Anomaly: 24.98041 (m/s) on 06 November 1991; 

 
PRECIP. ANOMALY PER GRIDPOINT FOR PHILS. 

Highest Anomaly: 18.060 (m/s) on 05 November 1997; 
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Figure 49. ERA5 Plot of Daily Windspeed (Absolute Values &Anomalies) during the Typhoon 

Period  

 

Figure 50. SE Asian Maps of Daily Windspeed (Absolute & Anomalies) for ERA5 on Nov. 7 & 8 
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Figure 51. ERA5 Timeseries of Daily Mean Pressure (Absolute Values) [Nov.3-11] 

 

 

Figure 52. ERA5 Plots of Daily Mean Pressure (Absolute & Anomalies) during the Typhoon 

Period 

Max. Mean (SE Asia): 101561 (Pa) on 07 November 1997 
Min. Mean (SE Asia): 100663 (Pa) on 10 November 2009 
Max. Mean (Phils.): 101568 (Pa) on 07 November 1997 
Min. Mean (Phils.): 100258 (Pa) on 10 November 1996 

 

PRECIP. BY DAILY ABSOLUTE VALUE FOR SE ASIA 
Highest Rate: 104099.4 (Pa) on 08 November 2002 

 
PRECIP. BY DAILY ABSOLUTE VALUE FOR PHILS. 

Highest Rate: 103276.5 (Pa) on 09 November 2002 

 
 

 

PRECIP. ANOMALY PER GRIDPOINT FOR SE ASIA 
Highest Anomaly: 2022.023 (Pa) on 09 November 2002 

 
PRECIP. ANOMALY PER GRIDPOINT FOR PHIL. 

Highest Anomaly: 1343.148 (Pa) on 09 November 2002 
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Figure 53. SE Asian Maps of Daily Mean Pressure (Absolute & Anomalies) for ERA5 on Nov. 7 

& 8 

 

For precipitation, two datasets are plotted and compared [GPCP and ERA5]. As discussed in the 

Methods Section, GPCP only has available daily data from 1996 hence the timeseries is from 1996 

to 2021, and climatology reference value is likewise computed directly from this 26-yr period. As 

seen from the timeseries plots Figure 54 for GPCP and Figure 55 for ERA5, neither of the typhoon 

days registered as the maximum or maximum considering the mean daily absolute and anomaly 

values. However, upon investigation of the local values (analysis at grid point level), it was found 

that for GPCP the highest absolute precipitation for Philippines and the highest anomaly for SE 

Asia falls on the same day when Typhoon Haiyan made landfall (November 8, 2013). Extracting 

the coordinates where these values are observed, the map (see Figure 56) shows that the point 

falls within the Philippines. ERA5 otherwise recorded it on a different day and year (17 November 

2019), but the location of highest absolute value and highest anomaly are on the same spot, as 

shown in Figure 57.
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Figure 54. GPCP Timeseries of Daily Mean Precip. (Absolute & Values) [Nov.3-11] 

 

Max. Mean (SE Asia): 10.989 (mm/day) on 03 November 1996 
Min. Mean (SE Asia): 2.005 (mm/day) on 05 November 2006 
Max. Mean (Phils.): 19.332 (mm/day) on 10 November 1996 
Min. Mean (Phils.): 0.501 (mm/day) on 08 November 2014 

 

PRECIP. BY DAILY ABSOLUTE VALUE FOR SE ASIA / 
PHILS. 

 
Highest Rate: 99.978 (mm/day) on 08 November 2013 

at latitude 120, longitude 1200 
 

 

PRECIP. ANOMALY PER GRIDPOINT FOR SE ASIA 
Highest Anomaly: 93.40 (mm) on 10 November 1996 

 
PRECIP. ANOMALY PER GRIDPOINT FOR PHIL. 

Highest Anomaly: 90.216 (mm) on 08 November 2013 

at latitude 130, longitude 1330 
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Figure 55. ERA5 Timeseries of Daily Mean Precip. (Absolute Values) [Nov.3-11] 

Max. Mean (SE Asia): 10.835 (mm/day) on 10 November 2008 
Min. Mean (SE Asia): 2.843 (mm/day) on 10 November 1994 
Max. Mean (Phils.): 19.641 (mm/day) on 10 November 1996 
Min. Mean (Phils.): 1.056 (mm/day) on 07 November 1994 

 

PRECIP. BY DAILY ABSOLUTE VALUE FOR SE ASIA / 
PHILS. 

 
Highest Rate: 470.490 (mm/day) on 07 November 2019 

at latitude 12.7870, longitude 116.1560 
 

 

PRECIP. ANOMALY PER GRIDPOINT FOR SE ASIA /PHIL. 
Highest Anomaly: 462 (mm) on 07 November 2019 

at latitude 12.7870, longitude 116.1560 
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Figure 56. Map Showing the Grid point with Highest Absolute Precipitation & Precipitation 

Anomaly for GPCP 

 

Figure 57. Map Showing the Grid point with Highest Absolute Precipitation & Anomaly for ERA5 

 
For the spatially-averaged mean anomalies of the days when Typhoon Haiyan occurred, the highest 

positive precipitation anomaly is observed during the landfall days (November 7 & 8) for both GPCP 
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and ERA5, as shown in Figure 58. Again, the disparity of anomalies for these days is large, comparing 

Philippines and SE Asia.  

Based on the timeseries plots, the daily mean values for Philippine precipitation are again higher than 

the spatial mean for the whole SE Asian region. From the maps, it is also clear that large precipitation 

anomalies for these two days are concentrated within the Philippines, as seen in Figure 59. Between 

GPCP and ERA5 the location of the major spatial structures varied – as GPCP is more concentrated on 

the central part of the country (Visayas Islands) where the Typhoon made several landfalls, while 

ERA5 is more concentrated on the southern part.  

 
 

Figure 58. GPCP and ERA5 Plots of Daily Mean Precip. (Absolute & Anomalies) during the Typhoon 

Period 
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Figure 59. SE Asian Maps of Daily Mean Pressure (Absolute & Anomalies) for GPCP and ERA5 on Nov. 7 & 8 
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For the runoff, there is a very high anomaly on the 8th November for the Philippines, while SE 

Asia registered the highest positive anomaly on the last day of the typhoon period, as shown in 

the plots and Figures that follow. The runoff anomalies for Nov. 7 and 8, however, is not evident 

in the maps due to trivial differences across each grid point. 

Based on the timeseries plot, the Philippines again has higher runoff mean values compared to 

the spatial mean of the entire SE Asia region.  

 

 

 

 

 

 

 

Figure 60. ERA5 Timeseries of Daily Mean Runoff (Absolute Values) [Nov.3-11] 

 

 

Max. Mean (SE Asia): 1.600 (m/day) on 03 November 1999 
Min. Mean (SE Asia): 0.407 (m/day) on 11 November 2004 
Max. Mean (Phils.): 2.424 (m/day) on 11 November 2020 
Min. Mean (Phils.): 0.081 (m/day) on 10 November 1994 

 

PRECIP. BY DAILY ABSOLUTE VALUE FOR SE ASIA / 
Highest Rate: 0.366 (m/day) on 08 November 2017 

 

PRECIP. BY DAILY ABSOLUTE VALUE FOR PHILS. 
Highest Rate: 0.292 (m/day) on 06 November 2019 

 

PRECIP. ANOMALY PER GRIDPOINT FOR SE ASIA 
Highest Anomaly: 0.341 (m) on 08 November 2017 

 
PRECIP. ANOMALY PER GRIDPOINT FOR PHIL. 
Highest Anomaly: 0.291 (m) on 06 November 2019 
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Figure 61.  ERA5 Plots of Daily Mean Runoff (Absolute & Anomalies) during the Typhoon 

Period 

 

Figure 62. SE Asian Maps of Daily Mean Runoff (Absolute & Anomalies) for ERA5 on Nov. 7 & 

8 
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Inspecting the rank and percentile of the absolute values for the two landfall days (Nov. 7 & 8, 

2013) which also registered high anomalies, Table 25 shows that November 7 and 8 ranked top, 

when comparing the same days across the 40 years. This is a clear indication that indeed, the 

typhoon occurrence has significantly affected the climate variables, most particularly with the 

windspeed and precipitation -- both in the Philippines and throughout the SE Asian region. 

Table 25. Rank and Percentile of Nov. 7 and 8 2013 Absolute Values 
 

Variable SE ASIA PHILIPPINES 

 Nov. 7 Nov. 8 Nov. 7 Nov. 8 

Rank Percentile Rank Percentile Rank Percentile Rank Percentile 

Windspeed 2 0.975 1 1 3 0.95 1 1 
Pressure 19 0.525 16 0.6 12 0.7 17 0.575 

Precipitation         

GPCP 2 0.961 2 0.961 2 0.961 1 1 
ERA5 9 0.8 14 0.675 3 0.95 2 0.975 

Runoff 18 0.575 7 0.85 9 0.8 2 0.975 

 

Previous studies identified connections between the impact of a typhoon in terms of 

precipitation and flooding, and its magnitude, which can be described through physical variables 

such as atmospheric pressure anomalies and wind speed. Therefore, to understand how the 

typhoon event in terms of windspeed and pressure has impacted the precipitation and runoff 

values, the daily precipitation and runoff values (response variables) for the whole month of 

November 2013 are regressed with wind speed and pressure (regressors) using different fitted 

models. For precipitation, the following models are regressed: 

Fitted model 1 (fit1): Precip=β0 + β1Wind.Speed + β2Pressure + ϵ 

Fitted model 2 (fit2): Precip=β0 + β1Wind.Speed + β2Pressure + β3Time + ϵ 

Fitted model 3 (fit3): Precip=β0 + β1Pressure +ϵ 

Fitted model 4 (fit5): Precip=β0 + β1Pressure + β2Time + ϵ 

Fitted model 5 (fit4): Precip=β0 + β1Wind.Speed +ϵ 

Fitted model 6 (fit6): Precip=β0 + β1Wind.Speed + β2Time + ϵ 

 

The values of R2, adjusted R2 and AIC as well as the mean of residuals and correlation between 

residuals and fitted values of the fitted models, are summarized in the following table.  
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Table 26. Summary of R2, Adjusted R2, and AIC for Precipitation Regression Models 
 

Fitted Model R2 Adjusted R2 AIC 
Fit1 0.378 0.332 -269.12 

Fit2 0.385 0.314 -267.487 

Fit3 0.171 0.141 -262.495 

Fit4 0.178 0.117 -260.753 

Fit5 0.126 0.095 -260.941 

Fit6 0.214 0.155 -262.094 

 

LEGEND: 

 Regressed with wind speed + pressure /  [+ time in italics] 

 Regressed with pressure only / [+ time in italics] 

 Regressed with wind speed only / [+ time in italics] 

 

As shown, models 1 and 2 [a) regressed by wind speed + pressure, and b) with time as additional 

regressor] give the best R2 among the fitted models. However, adding the time as a regressor did 

not result to a noticeable improvement in the adjusted R2 and AIC.  

Also investigating the mean and correlation of residuals, the two best models [according to R2, 

adjusted R2 and AIC as above] have zero mean and very low correlation. In addition, the plots of 

residuals vs. fitted values for these models do not show any visible pattern, thus providing further 

indication of a good fit. However, upon inspection of the summary of coefficients [Table 27] , the 

p-value for time is not significant, hence, fit 1 [i.e., regressing with windspeed + pressure only 

without adding time] is the better model. 

Since the values as shown in above table are short of 40% of variance, these are not very useful 

in getting relevant info of the typhoon event predictors, and the significance of the regression 

using p-values prevail. 
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Table 27. Summary of Coefficients and p-values for Precipitation Regression Models 
 

Fitted Model Summary of coefficients 

Fit1 

> summary(fit1)$coefficients 
                    Estimate   Std. Error   t value    Pr(>|t|) 
(Intercept)     1.395802e+00 4.227670e-01  3.301587 0.002709799 
pres_vec_long4 -1.381787e-05 4.183942e-06 -3.302595 0.002702898 
ws_vec_long2    1.327285e-03 4.425753e-04  2.999003 0.005759768 

Fit2 

> summary(fit2)$coefficients 
                    Estimate   Std. Error   t value    Pr(>|t|) 
(Intercept)     1.822648e+00 8.676253e-01  2.100732 0.045511618 
pres_vec_long4 -1.266822e-05 4.699823e-06 -2.695468 0.012158640 
ws_vec_long2    1.328761e-03 4.482639e-04  2.964238 0.006418132 
t              -3.923344e-10 6.935907e-10 -0.565657 0.576476612 

Fit3 

> summary(fit3)$coefficients 
                    Estimate   Std. Error   t value   Pr(>|t|) 
(Intercept)     1.131266e+00 4.687836e-01  2.413195 0.02260622 
pres_vec_long4 -1.111623e-05 4.632489e-06 -2.399623 0.02330916 

Fit4 

> summary(fit4)$coefficients 
                    Estimate   Std. Error    t value  Pr(>|t|) 
(Intercept)     1.544805e+00 9.790565e-01  1.5778504 0.1262458 
pres_vec_long4 -9.998742e-06 5.235803e-06 -1.9096866 0.0668518 
t              -3.803654e-10 7.872645e-10 -0.4831481 0.6328854 

Fit5 

> summary(fit5)$coefficients 
                  Estimate   Std. Error    t value   Pr(>|t|) 
(Intercept)  -0.0003928761 0.0033973605 -0.1156416 0.90876200 
ws_vec_long2  0.0010125772 0.0005028763  2.0135711 0.05375607 

Fit6 

> summary(fit6)$coefficients 
                  Estimate   Std. Error   t value   Pr(>|t|) 
(Intercept)   1.661583e+00 9.607607e-01  1.729445 0.09514831 
ws_vec_long2  1.097235e-03 4.883444e-04  2.246847 0.03302776 
t            -1.200809e-09 6.941639e-10 -1.729864 0.09507224 

 

The mean runoff values for all November days are also regressed with the following models, 

adding precipitation as a regressor: 

Fitted model 1 (fit1): Runoff=β0 + β1Wind.Speed + β2Pressure +ϵ 

Fitted model 2 (fit2): Runoff =β0 + β1Wind.Speed + β2Pressure+ β3Time +ϵ 

Fitted model 3 (fit3): Runoff =β0 + β1Pressure + ϵ 

Fitted model 4 (fit5): Runoff =β0 + β1Pressure + β2Time + ϵ 

Fitted model 5 (fit4): Runoff =β0 + β1Wind.Speed + ϵ 

Fitted model 6 (fit6): Runoff=β0 + β1Wind.Speed + β2Time + ϵ 

Fitted model 7 (fit7): Runoff=β0 + β1Wind.Speed + β2Pressure + β3Precipitation + ϵ 

Fitted model 8 (fit8): Runoff=β0 + β1Wind.Speed + β2Pressure + β3Precipitation +β4Time + ϵ 
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The values of R2, adjusted R2 and AIC of the fitted models, are then summarized in the following 

table.  

Table 28. Summary of R2, Adjusted R2, and AIC for Runoff Regression Models 
 

Fitted Model R2 Adjusted R2 AIC 
Fit1 0.31 0.259 -424.632 

Fit2 0.311 0.231 -422.645 

Fit3 0.076 0.043 -417.86 

Fit4 0.076 0.56 -415.874 

Fit5 0.171 0.141 -421.107 

Fit6 0.192 0.132 -419.888 

Fit7 0.658 0.618 -443.635 

Fit8 0.664 0.611 -442.241 
 

LEGEND: 

 Regressed with wind speed + pressure /  [+ time in italics] 

 Regressed with pressure only / [+ time in italics] 

 Regressed with wind speed only / [+ time in italics] 

 Regressed with wind speed + pressure + precipitation / [+ time in italics] 

 
 

Based on above reflected values, models 7 and 8 [a) runoff regressed by wind speed + pressure + 

precipitation, and b) with time as additional regressor] gives the highest R2 . However, adding the 

time again did not improve the adjusted R2 value and the AIC. The mean of residuals and 

correlation for these models also indicate that this is a good fitting, with zero mean and negative 

correlation. Looking at the summary of coefficients, only fit 1 (regressed with windspeed + 

pressure) gave significant p-values among all the models, indicating that despite fit 7 and 8 having 

high R2, adjusted R2 and minimum AIC, the model may not be a good fit in assessing the response 

from the regressor.  

This again demonstrates that, beyond statistical aspects (significance) the results are not 

supporting any useful connection in practical terms (with fit 1 just 30% of variance explained). 
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Table 29. Summary of Coefficients and p-values for Runoff Regression Models 
 

Fitted Model Summary of coefficients & p-values 

Fit1 

> summary(fit1_2)$coefficients 
                    Estimate   Std. Error   t value    Pr(>|t|) 
(Intercept)     7.378632e-02 3.165691e-02  2.330812 0.027478316 
pres_vec_long4 -7.320328e-07 3.132947e-07 -2.336563 0.027131198 
ws_vec_long2    1.003535e-04 3.314016e-05  3.028153 0.005361928 

Fit2 

> summary(fit2_2)$coefficients 
                    Estimate   Std. Error    t value    Pr(>|t|) 
(Intercept)     6.775522e-02 6.535242e-02  1.0367668 0.309391347 
pres_vec_long4 -7.482767e-07 3.540062e-07 -2.1137387 0.044288394 
ws_vec_long2    1.003326e-04 3.376472e-05  2.9715218 0.006306051 
t               5.543474e-12 5.224355e-11  0.1061083 0.916310890 

Fit3 

> summary(fit3_2)$coefficients 
                    Estimate   Std. Error   t value  Pr(>|t|) 
(Intercept)     5.378524e-02 3.518821e-02  1.528502 0.1376075 
pres_vec_long4 -5.277672e-07 3.477276e-07 -1.517760 0.1402858 

Fit4 

> summary(fit4_2)$coefficients 
                    Estimate   Std. Error    t value  Pr(>|t|) 
(Intercept)     4.677572e-02 7.379160e-02  0.6338895 0.5314870 
pres_vec_long4 -5.467087e-07 3.946230e-07 -1.3853947 0.1772712 
t               6.447234e-12 5.933621e-11  0.1086560 0.9142788 

Fit5 

> summary(fit5_2)$coefficients 
                  Estimate   Std. Error    t value   Pr(>|t|) 
(Intercept)  -1.802919e-04 0.0002354072 -0.7658726 0.45016057 
ws_vec_long2  8.368112e-05 0.0000348449  2.4015310 0.02320916 

Fit6 

> summary(fit6_2)$coefficients 
                  Estimate   Std. Error    t value   Pr(>|t|) 
(Intercept)   5.824156e-02 6.925778e-02  0.8409389 0.40776832 
ws_vec_long2  8.665701e-05 3.520299e-05  2.4616380 0.02050595 
t            -4.221090e-11 5.003978e-11 -0.8435470 0.40633427 

Fit7 

> summary(fit7_2)$coefficients 
                    Estimate   Std. Error      t value     Pr(>|t|) 
(Intercept)    -3.751556e-04 2.693251e-02 -0.013929471 9.889926e-01 
pres_vec_long4  2.135115e-09 2.665627e-07  0.008009803 9.936703e-01 
ws_vec_long2    2.983245e-05 2.747614e-05  1.085758442 2.875505e-01 
prcp_vec_long3  5.313179e-02 1.034793e-02  5.134534965 2.357031e-05 

Fit8 

> summary(fit8_2)$coefficients 
                    Estimate   Std. Error    t value     Pr(>|t|) 
(Intercept)    -3.059403e-02 5.029235e-02 -0.6083237 5.484604e-01 
pres_vec_long4 -6.470536e-08 2.849170e-07 -0.2271025 8.221909e-01 
ws_vec_long2    2.863328e-05 2.778945e-05  1.0303653 3.127045e-01 
prcp_vec_long3  5.395954e-02 1.051089e-02  5.1336788 2.638213e-05 
t               2.671366e-11 3.740119e-11  0.7142461 4.816912e-01 

 

For the plot of individual regression between the variables (Figures 63 and 64), precipitation and 

runoff are positively correlated with windspeed, with significant p-values. This means that as 

windspeed increased, the precipitation and runoff likewise increased and vice versa. Regressing 

the two response variables (precipitation and runoff) against each other also gave significant p-

value with a positive correlation, thereby indicating that precipitation and runoff both increases 

or decreases congruently. When regressed with pressure, runoff and precipitation are negatively 

correlated to this variable, but with less significance for precipitation having a p-value slightly 

higher than 0.05. For runoff, the relationship is not significant. This means that low pressure does 

not necessarily influence the precipitation and runoff values, as opposed to windspeed. 
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For the distribution of the regressors, the density plots in Figure 65 reveal that the windspeed 

values are distributed more symmetrically (bell shaped) than pressure, which is skewed to the 

right.   

 

Discussion 

 

Based on the results, there are noteworthy changes to the observed variables especially in the 

Philippines due to the occurrence of Typhoon Haiyan, where very large precipitation anomalies 

are noted during the landfall days. These anomalies are likewise observed in the SE Asian region, 

albeit smaller compared to what is diagnosed for the Philippines. It can also be observed that 

there is an unusual dip in pressure anomaly and high positive runoff anomaly in the SE Asian 

region at the end of the typhoon period when Haiyan is about to dissipate. Analysis of the impacts 

of Haiyan on the main continent is beyond the scope of this thesis – which focused on the 

Philippines - but can be another topic of research in the future.  

 

It was also observed in the timeseries plot for runoff, that there is an oddly high value on 

November 11, 2020. Upon quick investigation, the strongest Typhoon on record (Goni) occurred 

on this day, bringing torrential rains that caused flooding in many parts of the Philippines. This 

could have explained why this day is recorded having the highest daily spatial mean in the 

country. However, due to the fact the ERA5 are modeled values, there is still uncertainty with the 

estimates. 

On the different highest precipitation day and coordinates recorded by ERA5 (07 November 

2019) compared to GPCP, a quick investigation revealed that another typhoon occurred on this 

day [International name Nakri (local name Quiel)], but with a weaker strength as shown in Figure 

66.  Jiang, Halverson & Simpson (2008) compared the rainfall potential of two North Atlantic 

Hurricanes Lili and Isidore in 2002 and found that Isidore produced a much larger volume of total 

rainfall despite being a relatively weaker storm than Lili, during their landfall on the same area. 

However, Isidore had a history of producing large volume of rain over the gulf. A similar argument 

could explain why the grid point is recorded by ERA5 as having the highest absolute precipitation 

value, on the same day where Typhoon Nakri hit. The observational measurements of GPCP may 

have not recorded this event, due to their coarser resolution and limited (land-only) coverage 

compared to ERA5. On the other hand, GPCP data has directly recorded the Typhoon Haiyan 

precipitation during its landfall.
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Figure 63. Regression Plots of Precipitation and Runoff against Windspeed and Pressure 
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Figure 64. Regression Between Runoff and Precipitation
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Figure 65. Density Plots, Scatterplots and Correlation of Precipitation and Runoff to Windspeed and Pressure
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Figure 66. Track of Typhoon Nakri in November 201943 

 

For the regression analysis, it was seen that the best regression model for precipitation and runoff 

includes both windspeed and pressure as predictors. This model has the best R2 and adjusted R2 

values among all fitted models, with low AIC. Although the values are not as high, the p-values that 

are significant for these models still demonstrate that it is the good model for predicting the 

response. From this multiple regression, the coefficients revealed that windspeed is positively 

related to precipitation while negatively related to pressure, as expected from fundamental 

dynamics of rainfall. This means that increase in wind speed during an extreme Typhoon event, 

together with decrease in pressure, result to increase in precipitation and runoff values.  This is in 

accordance with the findings by Zhang, Chen & Li (2021), where the precipitation induced on land 

by Typhoon Hato (the strongest Typhoon that made landfall in China) is extremely high, lasting for 

six days from the formation until its dissipation. Wu & Alshdaifat (2019), however, stated that the 

accuracy of predicting precipitation induced by typhoons is still difficult because of the nonlinear 

relationship between the precipitation and the physical processes like the typhoon dynamics, heat, 

cloud, microphysics, and radiation. 

 

The result also showed that adding time as a regressor has not improved the adjusted R2 and AIC 

and does not result to a significant p-value. This confirms that trends do not capture the large 

variability induced during an extreme event such as a typhoon landfall.  

 

 
43 Map credits to Dr. Kitamoto of the National Institute of Informatics (NII) / Research Organization of Information and 
Systems (ROIS) (Japan). Source: http://agora.ex.nii.ac.jp/cgi-
bin/dt/single2.pl?prefix=HMW819110718&id=201924&basin=wnp&lang=en  

http://agora.ex.nii.ac.jp/cgi-bin/dt/single2.pl?prefix=HMW819110718&id=201924&basin=wnp&lang=en
http://agora.ex.nii.ac.jp/cgi-bin/dt/single2.pl?prefix=HMW819110718&id=201924&basin=wnp&lang=en
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CHAPTER 4: CONCLUSION 
 
 
From the results of the analysis, the spatio-temporal anomalies within the focal region (SE Asia) are 

evident in as far as the annual, seasonal, and monthly values are concerned. Comparing the non-

typhoon and typhoon years, seasons, and months, Y2013, SON 2013 and November 2013 all 

revealed a wetter and hotter year/season/month, providing a background of the possible impacts 

of the typhoon Haiyan occurrence during these periods. However, it is with the annual mean that 

the precipitation and temperature anomalies are highest with respect to its ranking and percentile, 

compared to other years. The rank and percentile dropped when the analyses were narrowed down 

into seasonal and monthly. Between precipitation and temperature anomalies, the temperature is 

notoriously higher (that is apparently illustrated by the red-dominated anomaly maps), as compared 

to precipitation with blue and red colors distributed across different spots in the map. This is likewise 

confirmed by the ECDF plots and count, revealing high percentage of positive (warmer) values for 

temperature among all datasets.  

 

Comparing the annual, seasonal, and monthly anomalies during the typhoon period, it is interesting 

to note that for precipitation, the percentage of positive anomalies are lowest on the monthly scale, 

whereas highest on the annual mean. 

 

Investigating the anomalies and the values beyond local 5-95 range, the marked points in the map 

differ across all analyzed datasets, demonstrating that there are inconsistencies in as far as the 

analyzing these anomalies for its amplitude and geographical locations are considered. It can be 

noted that both GPCP and CRU data are constructed using rain gauge data and inhomogeneity with 

the recorded values can be a factor that affects the results. On the other hand, ERA5 is based on 

model results that also have its own estimation uncertainties. 

 

Analysis of non-TC induced dynamics such as monsoonal phases and inter-annual ENSO variations 

also revealed that ENSO and monsoon significantly impacts the precipitation patterns in the region. 

However, ENSO does not significantly impact the temperature. Although it must be emphasized that 

Typhoon Haiyan occurred on an ENSO-Neutral year, therefore, it may have not necessarily 

influenced the variability of the studied variables.     

 

Looking however at the relationship with Nino3.4 SST to the variables, it is shown that precipitation 
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and temperature are positively correlated with Nino3.4, indicating that precipitation and 

temperature increase (decrease) congruently with Nino3.4. This observation is only common for 

both CRU and ERA5 since GPCP demonstrated a contrasting result, again a manifestation of the 

differences among the datasets. Another evidence of differences are with the maxima/minima 

values where only two and not all three analyzed datasets share the common maximum (minimum) 

year, season or month. The significant differences are likewise confirmed by the result of the t-test 

comparing one dataset to another. 

 

For the daily analysis, results revealed that during the typhoon period, the highest anomalies with 

respect to all variables (precipitation, runoff, windspeed and pressure) are recorded when typhoon 

Haiyan made landfall (November 7 & 8) predominantly in the Philippines where there is a large 

disparity of the calculated anomalies during these days, as compared to the rest of the days during 

the typhoon period. November 7 and 8 also topped the rank when compared with the same days of 

the non-typhoon years, especially with the windspeed and precipitation values.  

 

Based on the result of the multiple linear regressions, it is revealed that regressing precipitation or 

runoff with windspeed + pressure, gives the best response, having significant p-values among all the 

fitted models. Although the R2 , adjusted R2 and AIC values for this model is not optimal, this does 

not reveal that the model is not a good fit but only an indication that the result cannot be very useful 

in explaining the event in practical terms. From the regression coefficients, it is shown that 

precipitation and runoff are positively correlated with windspeed, meaning, the Typhoon Haiyan 

event clearly increased the precipitation in as far as the Philippines is concerned. However, the 

negative relationship of these two variables with pressure is not significant. 

 

Building from these results, it can be deduced that an extreme event such as Typhoon Haiyan can 

profoundly influence the climate variables surrounding its occurrence. In addition, non-TC-induced 

activities/events like ENSO and monsoon can further enhance the effects, especially on the 

precipitation patterns in the region. 

 

From this study, further research can be conducted investigating the differences of the analyzed 

datasets. A deeper understanding on the effects of EN/LN can also be performed especially on years 

when maxima/minima values of the studied variables were recorded. Other extreme typhoon 

events can also be explored not just in the Philippines but in other countries of the region. 
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ANNEX 1. MAJOR OCEAN REGIONS  
 
 
The Permanent Service for Mean Sea Level (PSML) website of the National Oceanography Centre 

defines the following regional oceanic groups associated with the five major global oceans. The 

oceans are further subdivided based on the categorization of pelagic tidal constants from 

established publications of the International Association for the Physical Sciences of the Oceans 

(IAPSO): Scientific Publication No. 30 (Cartwright, Zetler, & Hamon, 1979); Scientific Publication No. 

33 (Cartwright & Zetler, 1985); and Scientific Publication No. 35 (Smithson, 1992). 

 

1. ATLANTIC OCEAN 

▪ Northeast Atlantic - north of 23° 30'N, east of 40°W, including the northern North Sea. 

▪ Northwest Atlantic - north of 23° 30'N, west of 40°W, including the Gulf of Mexico, the 

Labrador Sea and Hudson Bay. 

▪ Tropical Atlantic - between 23° 30'N and 23° 30'S, including the Caribbean Sea. 

▪ South Atlantic - between 23° 30'S and 55°S, west of 20°E. 

2. PACIFIC OCEAN 

▪ Northeast Pacific - north of 23° 30'N, east of 180°W, including the Bering Sea and the Gulf of 

California. 

▪ Northwest Pacific - north of 23° 30'N, west of 180°W, including the Seas of Okhotsk and Japan 

and the East China Sea. 

▪ Tropical Pacific - between 23° 30'N and 23° 30'S, including the South China Sea. 

▪ South Pacific - between 23° 30'S and 55°S, including the Tasman Sea. 

3. INDIAN OCEAN 

▪ East Indian - north of 55°S, between 80°E and 120°E, including the Bay of Bengal. 

▪ West Indian - north of 55°S, between 20°E and 80°E, including the Arabian Sea and the Gulf 

of Aden. 

4. SOUTHERN OCEAN 

▪ East Southern - south of 55°S, from 20°E, eastwards to 160°W, including the Indian Ocean 

south of Australia (120°E to 150°E) and the Ross Sea. 

▪ West Southern -south of 55°S, from 20°E, westwards to 160°W, including the Weddell Sea. 

 

5. ARCTIC OCEAN 
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ANNEX 2. GLOBAL MAP OF NOVEMBER 2013 SIGNIFICANT CLIMATE EVENTS 
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ANNEX 3. YEAR 2013 ABSOLUTE VALUES AND ANOMALIES 
 
 
 
 
 
 
 

 

 
 

Maps of Annual Climatology, Absolute Values and Anomalies for Precipitation and Temperature for the 
Year 2013 showing the Global and Southeast Asian Region 
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Maps of Annual Climatology [BP: 1981-2010] and Absolute Precipitation [Y2013] for Global and SE Asian Region
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Maps of Y2013 Precipitation Anomalies for Global and SE Asian Region 
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Maps of Annual Climatology [BP: 1981-2010] and Absolute Temperature [Y2013] for Global and SE Asian Region 



 

141 

 
Maps of Y2013 Temperature Anomalies for Global and SE Asian Region
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ANNEX 4. SON 2013 ABSOLUTE VALUES AND ANOMALIES 
 
 
 
 
 
 
 

 

 
 

Maps of Seasonal Climatology, Absolute Values and Anomalies for Precipitation and Temperature for 
SON 2013 showing the Global and Southeast Asian Region 
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Maps of SON Climatology [BP: 1981-2010] and Absolute Precipitation [SON 2013] for Global and SE Asian Region
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Maps of SON 2013 Precipitation Anomalies for Global and SE Asian Region 

Asia] 
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Maps of SON Climatology [BP: 1981-2010] and Absolute Temperature [SON 2013] for Global and SE Asian Region
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Maps of SON 2013 Temperature Anomalies for Global and SE Asian Region 
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ANNEX 5. NOVEMBER 2013 ABSOLUTE VALUES AND ANOMALIES 
 
 
 
 
 
 

 

 
 

Maps of Monthly Climatology, Absolute Values and Anomalies for Precipitation and Temperature for 
November 2013 showing the Global and Southeast Asian Region 
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Maps of November Climatology [BP: 1981-2010] and Absolute Precipitation [Nov. 2013] for Global and SE Asian Region
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Maps of November 2013 Precipitation Anomalies for Global and SE Asian Region 
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Maps of Nov Climatology [BP: 1981-2010] and Absolute Temperature [Nov. 2013] for Global and SE Asian Region
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Maps of November 2013 Temperature Anomalies for Global and SE Asian Region 

 


