Ca' Foscari
University
of Venice

Supervisor
Ch. Prof. Filippo Bergamasco

Graduand
Daniele Barzazzi
Matriculation Number 863011

Academic Year
2021/ 2022

Master’s degree

in Computer science
Software dependability and Cyber Security

Final Thesis

A quantitative
evaluation of the QR
code detection and

decoding performance
in the zxing library

Abstract

In the year of the global pandemic there was an increment of the
usage of QR code due to the development of the EU Digital COVID
Certificate, among others type of certificate of other countries. This
lead us to the problem of mobile phone having difficulties to read-
ing the QR code. In this thesis, we evaluate the QR code detection
and decoding performance of a popular open-source library by apply-
ing different image noise models. Our approach works by simulating
several image degradation factors like thermal noise, perspective dis-
tortion, defocus, and Moire patterns originated when capturing an
LCD screen. Experimental results show that the detection part plays
a significant role and, surprisingly, the error-correction capability of

the marker might be inversely proportional to the decoding rate.

Contents

Contents

1 Introduction

1.1 Objectives

2 QR Code

2.1 FError Correction

2.2 DataMasking

3 Digital Image

3.1 Perspective Distortion
3.2 Defocus
321 GaussianBlur
3.3 Thermal Noise
3.3.1 Gaussian Noise

3.4 Moire Pattern

4 Analysis of the Libraries

4.1 7ZXing Library
4.1.1 Change on the Library
4.2 OpenCV

5 Implementation of the Models

5.1 Implementation of the Moiré

5.2 Implementation of the Perspective Distortion

5.3 Implementation of the Noise

6 Test Result

1 Contents

6.1 Low Versus High Error Correction Level 30
6.1.1 Without Moiré 31

6.1.2 With Moiré 41

6.2 Optimized DCC Versus Base DCC 49
6.2.1 Without Moiré 50

6.2.2 With Moiré 55

7 Conclusion 62

7.1 Future Works, 64

1 Introduction

In recent years, QR codes have gained widespread usage. A growing number
of states have implemented the use of QR codes for payments in an effort
to shift away from cash and promote electronic transactions. In Europe, the
increased adoption of QR codes may have been accelerated by the global
COVID-19 pandemic and the development of the EU Digital COVID Certifi-
cate. This specific QR code was necessary to access many places like cinema
or theater, in order to ensure that the people participating where vaccinated,
had recovered from the disease, or at least had been tested negative from
a COVID test. This situation in which lots of people’s QR code had to be
scanned showed that in multiple occasion the scanning was not immediate
and in some cases was almost never working.

The main idea on why there was such problem was because of the implemen-
tation. The structure of a EU Digital COVID Certificate is complex and is
composed by lots of data which means that the QR code generated is large
and dense. The density of a QR code makes it difficult for a library to dis-
tinguish between different squares in the matrix. Two previous thesis from
Marco Carfizzi[6] and Giacomo Arrigo[5] discussed about how to improve the
DCC by reducing the version of the QR code by removing unnecessary data
and trying different data structure to save the payload, plus reducing the

error correction level for the generation of the QR code.

3 1.1 Objectives

1.1 Objectives

In this thesis we will discuss how we simulated the scanning of a QR code
from a smartphone camera by applying different type of image noise models.
Usually people used to carry the DCC printed on paper or saved in their
smartphone so we divided the project in two type of camera simulation. In
the first we applied image degradation factors like thermal noise, perspective
distortion, defocus. In the second, to simulate the QR code on a smartphone,
we added a Moire patterns originated when capturing an LCD screen. The
goal it to understand which condition or which parameter were most influenc-
ing the good result of a scan. In particular, we studied the trade-off between
the lowest and highest error correction values, as there is a significant differ-
ence in the versions generated between the two. This was because we wanted
to determine if the trade-off would be valuable, considering both QR codes

had the same encoded data inside them.

2 QR Code

Quick response (QR) codes, developed by Denso Wave in 1994, are a type
of barcodes. QR codes are a license-free standard specified in ISO/IEC
18004:2006[10]. Data are encoded in a matrix formed from black square

placed on a white background which encode a string of text(Figure 1).

Figure 1: Different versions of QR codes

There are four modes of encoding:
e Numeric mode is for decimal digits from 0 to 9

e Alphanumeric mode is for decimal digits, letters only in uppercase and

the symbols $, %, *, +, -, ., /, : plus the blank space

e Byte mode is for characters from the ISO-8859-1 character set, 8 bit

for char.

e Kanji mode is for double-byte, 16 bit, characters from the Shift JIS

character set.

A QR code has a standard structure (Figure 2). It contains three big markers,
called position marker positioned on the top-left, top-right and bottom left
corner used for detecting the position and the size. Some smaller marker on
the inside are used as alignment pattern used to correct distortion of the QR
code and the timing pattern that are two dotted line that connect position
markers. On the outside, a quiet zone is used to make easier to detect the
QR code. The remaining area is called data area but some regions, called
reserved area, are used to insert version information, format information and

data and error correction keys.

. 1. Version information

E . 2. Format information

3. Data and error correction keys

:E: 4, Required patterns

E 4.1. Position
E 4.2. Alignment

n
- 4.3. Timing
[

5. Quiet zone
Figure 2: QR code structure[4]
QR codes have different possible versions(Figure 1) that goes from version

1 with size 21 x 21 modules, a module is a single square of the matrix that

it will not be called pixel because it can differ in size from a real screen

pixel, to version 40 that is 177 x 177 modules. Every version differs from the
previous one by 4 modules. The number of character that can be encoded
in each version depends on the mode in use. All the space not covered from
the reserved area is filled by codewords, 8 bit long, that are divided between
data codewords and error correction codewords. Depending on the version,
the total number of blocks is fixed from 26 of version 1 to 3706 of version
40. Data are inserted starting from bottom right to top left, first the data

codewords and then the error correction ones, Figure 3.

Error
Correction
Bytes

Format
Error

|
1nr .é Ciorrection
g=..] -
.I.I'..h

Format
Info

[
' a3C 5

Duplicate Message
Format Info Data Bytes

Figure 3: Data and error correction codewords|[3]

7 2.1 Error Correction

2.1 Error Correction

The error correction blocks allows QR code decoder to detect and correct

errors. There are four level of error correction:
1. level low, L, that cover up to 7% of the damage
2. level medium, M, that cover up to 15% of the damage
3. level quartile, Q, that cover up to 25% of the damage
4. level high, H, that cover up to 30% of the damage

The error correction is based on the Reed—Solomon codes[11] that are able
to detect and correct half of the number of error correction codeword. For
example, in a QR code of version 2 with 44 codewords (level Q) we can
recover up to 11 of them but we will need 22 of them for the error correction.
For larger versions the codewords are divided on group and block, even so for
high error correction level and long sequence of data the QR code becomes

very large and dense.

[m] 3% [m]
[m] -

Figure 4: Same data with error correction level low and high

8 2.2 Data Masking

2.2 Data Masking

Data masking is an operation in which some modules are switched from
black to white and from white to black, in order to make the QR code more
readable for a decoder. The QR code specification gives eight possible mask
patterns with their relative formula (see Figure 5). Each formula tell us if
for the given i and j the respective module has to be flipped or not, the %
operator stands for module that return the remainder of a division between
two numbers.

Those patterns have to be applied only on data and error correction modules
not on marker, version information, and format information. To evaluate the
best mask, all patterns must be tested with all penalty rules. Then, the one
with the lower score is picked. To calculate the penalty score there are four

rules to be applied:

1. gives a penalty for each rows of 5 consecutive modules of the same

color;
2. gives a penalty for each square 2 x 2 of same color modules;
3. gives a penalty if there are patterns similar to the position pattern;

4. gives a penalty if there are more than double modules black then white

or vice versa.

2.2 Data Masking

Figure 5: Data mask patterns[1]

10

3 Digital Image

In the context of computer vision a digital image is a function f(x,y) where
the x and y are the coordinates of a single point in the image, called pixel,
and it returns the intensity of that single pixel. Taking in example an image

of 800 x 500 pixels we have:

f0,0) f(0,1) - f(0,499)
O Il B
£(799,0) f(799,1) --- £(799,499)

In the case of a gray scale image the intensity just need a values form 0
to 255, but since we want to study a scenario with a simulation of a real
smartphone camera we have a color image as input. Visible colors can be
represented by a mixture of three primary color: red, blue and green. So,
the function f(z,y) will return a triple i.e. a black pixel will be (0,0, 0), the
most common order is RGB but sometimes even other variant can be found

like BGR.

3.1 Perspective Distortion

When a person take a photo of a planar object, like the QR code, the image
look distorted, if the angle of view differs form the perpendicular viewpoint.
Another factor can be the distance from the object, when closer it looks
bigger and when far it looks smaller. In Figure 6 we can see an example of

perspective distortion applied to a square. On the left there is the normal

11 3.2 Defocus

object and the right the same object distorted. The square is formed with
four edges (A, B,C, D) and in the distortion they become (A’, B’,C’, D’),
this is to represent the fact that they have been translated by the change of

the point of view. We can describe the translated point as:

A'=A+dA (2)

In general, lengths and angles change depending by the point of view while
straight lines remain straight (The transformation is linear in the 2D projec-

tive space).

Al B'

C D Cc' D

Figure 6: Example of distortion of an object

3.2 Defocus

Defocus is a type of blur that occurs in a image when the camera is not
correctly focused on the subject. It can happen because of lens defocus
on a stationary subject or because the subject is moving. What we see

on the resulting image is blurred image in which it could be difficult to

12 3.2 Defocus

understand what it has been captured, depending on the level of the blurring.
Mathematically, it can be defined as the convolution of the ideal clear image
f and the point-spread function h as : g(z,y) = (f % h)(x,y) [8] in our

approach we will apply a Gaussian function.

Figure 7: Comparison of a clear image and a blurred one

3.2.1 Gaussian Blur
Gaussian blur is a smoothing lowpass spatial filter using a bell shaped Gaus-

sian (Normal) distribution. To compute the resulting image, a 2D Gaussian

0.4

0.3

fix)

0.2

0.1

0.0
-4 2 0 2 4

Figure 8: Gaussian or Normal distribution with ;= 0 and 0% = 1

13 3.3 Thermal Noise

kernel is used, which is a square matrix that has to be convolved with the

clear image. The kernel is computed from a zero-mean 2D Gaussian function:

. %+ y2
e 202 (3)

G(x,y) =

2o

where 2 and y are the coordinate and o2 is the variance of the distribution.
As we can see from equation 3, the grater is o the more blurred the output
image will be. Having the kernel, we can define the resulting image b(z,y)
as the convolution of the base image f(z,y) with dimension H x W with the

Gaussian filter:[12]

::

W—

>—‘

G, 5) f(x —i,y — i) (4)

I
o

i 7=0

3.3 Thermal Noise

Noise in a image means a variation of intensity of each pixel and it can be

defined as:
g(z,y) = (f = h)(z,y) + n(z,y) (5)

where the convolution of the clear image f(z,y) and the filter h(x,y) is
discussed in section 3.2, while n(z,y) is called additive noise and represents
how much the intensity of the single pixel is being altered. This alteration
can be caused by various environmental factor such as high or low luminosity
exposure. The matrix n(z,y) has the same dimension of the clear image and
the values can be simulated by generating intensity values form a probability

density function. In our approach we will take in consideration a Gaussian

14 3.3 Thermal Noise

noise.

Figure 9: Comparison of an image without noise and with noise

3.3.1 Gaussian Noise

The Gaussian noise is a type of noise that arise when the camera is capturing
the image, this could happen due to the illumination of the environment or
the temperature of the sensor. As said before the noise is additive and
it is applied to the single pixel taking in consideration the sampling of a
probability density function. In the case of Gaussian noise the sampling is

done on the normal distribution:

. (z—pw)?
flx) = e 20° (6)

o\ 2T

Where g is the mean and o is the standard deviation, the more we increase
sigma and the more noise will be applied on the resulting image. When

dealing with additive noise, we typically consider it to have zero mean.

15 3.4 Moire Pattern

3.4 Moire Pattern

A moiré pattern is a visual artifact that can happen when two grid of the

relative same dimensions are overlapped creating a pattern with frequencies

not present in either of the original patterns|16].

=

S

Figure 10: Moiré pattern example[9]

It usually occurs when someone try to take a photo of a screen because both
the display and the camera have a grid system. In a LCD display each pixel
is composed by three RBG sub-pixel, that can represent each possible visible

color by incrementing on lowering the values of the sub-pixels(Figure 11).

Figure 11: Example of the sub-pixel of a LCD display

Camera sensor is not able to capture colors directly, so a Bayer color filter

array is applied in order to be able to understand which color has to be

16 3.4 Moire Pattern

assigned to each pixel. This operation is possible by using a matrix with a
specific arrangement of RGB cells (Figure 12). To evaluate the RGB value
of the resulting image, an operation called demosaicing is used. It performs
an interpolation of the pixels from the filter to reconstruct the intensity of

the pixel in the output image.

Figure 12: Example of a Bayer CFA

The moiré pattern occurs when the projected pixel grid of the screen have
similar size of the pixel grid of the camera. This creates a typical periodic

noise pattern that can severely hinder the marker detection.

17

4 Analysis of the Libraries

We started by choosing a QR code decoding library. After looking at different
possibility, we decided for ZXing library because is widely used with a good
accuracy, open-source and it was the library used by the android application

VerificaC19, the Italian customization of the EU Digital COVID Certificate

Verifier App[7].

The fact that the library was the one used on the DCC

decoder in Italy made a huge impact on the final decision.

4.1 ZXing Library

ZXing, zebra crossing, is an open-source, multi-format 1D /2D barcode image

processing library implemented in Java, with ports to other languages|[14].

The library support different type of barcodes:

1D product 1D industrial | 2D

UPC-A Code 39 QR Code

UPC-E Code 93 Data Matrix

EAN-8 Code 128 Aztec

EAN-13 Codabar PDF 417

UPC/EAN Extension 2/5 | ITF MaxiCode
RSS-14

RSS-Expanded

The library is divided in components:

e core: The core image decoding library, and test code;

e javase: JavaSE-specific client code;

18 4.1 ZXing Library

e android: Android client Barcode Scanner;

e android-integration: Supports integration with Barcode Scanner via

Intent;

e android-core: Android-related code shared among android, other An-

droid apps.
QR code decoding involves the following steps:
e Image acquisition: an image is captured using a camera or passed to

to the library;

e Image preprocessing: The image is converted in grayscale and resized
to the dimension in which a single module is equal to a screen pixel, in

order to have a standard that make easier the detection;

e Binarization: The image is transformed into a binary form to make it

easier to detect and decode;

e QR code detection: The library parse the bit matrix for QR code pat-
terns, such as the alignment patterns and the finder patterns, then

extract the format and version information;

e QR code decoding: The library decodes the QR code by reading the
encoded data and converting it into the original information, applying

the error correction to detect error and correct them if possible.

4.1.1 Change on the Library

To be able to test lots of QR code it has been decided to adopt the Java core

module and made it run on IntelliJ] IDEA. Being an open-source library it

19 4.1 ZXing Library

made possible to change some class and function in order to extract more
information on the decoding. The vanilla version of the library given a QR
code it returns the decoded text if all goes right and throws an exception if
somethings go wrong. Since one of the goal was to understand how much
the error correction affects a good scan it was needed to extract information
about it.

The DecoderResult class in package com.google.zxing.common, that encapsu-

lates the result of decoding a matrix of bits:

DecoderResult (byte [] rawBytes, String text, List<bytel[]l>
byteSegments, String eclLevel, int saSequence, int saParity

, int symbologyModifier)

it has been changed to accept also the byte value of the codewords before
the application of the ReedSolomon algorithm and store them together with

the raw byte corrected:

DecoderResult (byte[] rawBytes, byte[] notCorrectedBytes,
String text, List<byte[]> byteSegments, String eclevel,

int saSequence, int saParity, int symbologyModifier)

The DecoderResult object is being created as result of the decode method on

the class Decoder at package com.google.zzing.qrcode.decoder:

private DecoderResult decode(BitMatrixParser parser, Map<

DecodeHintType ,?> hints)

in which it has been made a copy of the array containing the parsed raw byte
before being passed the the method correctErrors in order to have both the
codewords raw and corrected passed to the DecoderResult.

Having if the error correction was applied or not when a code is decoded

20 4.1 ZXing Library

without error it was needed to handle when the detection or decoding failed.
To do so it was decided, instead of modifying the library, to just catch the

exception on the java file in which the test was run:
e com.google.zxing. NotFoundFException: the QR code not detected;

e com.google.zxing. FormatEzception: error on the decoding of the QR

code;

e com.google.zxing. ChecksumFException: number of codewords to be cor-
rected grater than maximum number recoverable, based on error cor-

rection, see section 2.1.

The function on the test file takes a directory as input and parse all the QR
codes inside it. To test different QR codes, they are divided on different
directory. In return it gives a number of .txt equals to the different level of
scaling and noise. In each file each raw is a different level of blur and a raw

has:

e total number of QR parsed;

e total number of success;

e total number of fail;

e total number of unsuccessful detection;
e total number of unsuccessful decoding;

e total number of unsuccessful application of error correction, too much

errors to repair;

e total number of success with the application of the error correction.

21 4.2 OpenCV

4.2 OpenCV

OpenCV, Open Source Computer Vision Library, is an open-source library
specialized in computer vision and machine learning. The library boasts
an extensive collection of over 2500 optimized algorithms, comprising classic
and cutting-edge computer vision and machine learning techniques. These
algorithms enable tasks such as face detection and recognition, object iden-
tification, and a lot more[2]. The library is mostly written in C++, but it is
ported in JAVA, Python and MATLAB.

For our case we decided to opt for Python, to implement the noise model
on the images. This choice was made due to our will to learn it better and

because there was a lot of different library useful for our study.

22

5 Implementation of the Models

The software has to take in input two QR code and apply the various model
in parallel so that the resulting image could have the same amount of noise
in order to be comparable. Given the two QR codes it is possible to choose
if the test has to generate the moiré effect or not. The steps performed that

will be discussed in the following sections are:

1. generate different scaling of the QR code to simulate different distance

from the camera;
2. apply moire or not to the QR code(Figure 13);
3. generate different homography of the QR code;
4. generate blur and noise to the images.

In the case of the application of the moiré pattern, steps 2 and 3 are fused

together.

Figure 13: Example of scaling

23 5.1 Implementation of the Moiré

5.1 Implementation of the Moiré

To simulate a moiré pattern, described in section 3.4, is needed to execute

the following steps[13]:

1. to simulate a LCD screen is needed to resample the input image, split-
ting each pixel into a representation of a RGB sub-pixel of the display.
The image is represented in a multidimensional matrix in which at each
cell of the W x H matrix contain a triple of the BGR value of the pixel.
So in the output image each pixel needs to be transformed in a 3 x 3

sub-matrix, Fig 14

Figure 14: Resample of a pixel

In general, if the pixel of the input image is on f[i, j| then the resulting

submatrix will be in position:

[i-3,5-3] [i-3,7-3+1] [i-3,7-3+2]
[i-34+1,5-3] [i-3+1,5-34+1] [i-3+1,5-3+2] (7)
[i-3+2,7-3] [(-3+2,57-3+1] [1-34+2,j-3+2]

In which in the first column there are the intensity value of blue, in the
center column green and red in the last. The resulting matrix will be

three times the one in input, 3W x 3H.

24 5.1 Implementation of the Moiré

Figure 15: Resulting image of the LCD sampling

2. Apply a Gaussian filter to simulate anti-aliasing filter (Figure 17).
Aliasing is a phenomenon where different signals become indistinguish-
able upon sampling. In computer graphics, it arises during the render-
ing and reconstruction of an image. To enhance the visual quality of
polygon edges, anti-aliasing is commonly employed in computer graph-

ics, making the jagged edges appear smoother on the screen[15].

Figure 16: Aliasing vs Anti-alising[15]

25 5.1 Implementation of the Moiré

Figure 17: Simulation of the anti-alising filter

3. Generate a perspective distortion, to simulate that the image is cap-
tured from a point of view that is not perpendicular with the display.

It will be discussed in section 5.2.

Figure 18: Example of perspective distortion

4. Simulate a Bayer CFA filter, to reproduce the capturing of the image
from a camera sensor. This operation is done by, following the schema
from Figure 12, setting, for each pixel, to zero the intensity value of
the two color not corresponding with the one on the filter. If a pixel

has to be set to green, then it just need to turn off blue and red.

26 5.1 Implementation of the Moiré

Figure 19: Simulation of the Bayer CFA

5. Apply the demosaicing process by interpolating the intensity values
from the Bayer filter. Each pixel, of the resulting image, get its BGR
value from a 2 x 2 sub-matrix of the filter in which the intensity values
of blue and red are taken as they are and the green is calculated with

the mean of the two green pixels intensity.

Figure 20: Final result

27 5.2 Implementation of the Perspective Distortion

5.2 Implementation of the Perspective Distortion

The implementation takes the four edges of the image and shifts their posi-
tion. The new edges should not be outside the original image area, in order

to do so the program follows this schema, given the edges form Figure 6:
1. A=A+ (dz,dy)
2. B'= B+ (—dx,dy)
3. C"=C+ (dz, —dy)
4. D' =D + (—dz,—dy)

For each edge the value of dr and dy are randomly sampled form a discrete
Uniform distribution between an interval from 0 to a 10% of the dimension
of the original image. Then the old and new edges are passed to an OpenCV
function to calculate the perspective transformation between two planes and

finally to another function that computes the transformation.

Figure 21: Example of distortion

28 5.3 Implementation of the Noise

5.3 Implementation of the Noise

In section 3.3 it has been discussed that the noise, in a image, can be defined
as the blur effect, the convolution of the image and a filter, plus the additive
noise. OpenCV gives a function to generate a Gaussian blur directly on the
given image. The noise has been sampled from a Normal distribution, with
zero mean and input standard deviation, and added to the blurred image.

At the end the value of the matrix are clipped between 0 and 255.

Figure 22: Example of noise with moiré and without

29

6 Test Result

Tests are performed on two case of studies. The first is centered about
error correction, it compares two QR codes with the same data encoded
with different level of error correction. The second, compares the EU Digital
COVID Certificate versus the optimized version proposed in Arrigo’s master
thesis[5]. As previously said, each test is divided between the application
of the moiré effect or not. Both test have a hierarchical directory structure
divided on three level of noise, three level of scaling and twenty-one level
of blur all starting from zero. Inside the different directories of blur levels,
there are 1000 different homographies of the QR code, that are equals on each
different directory. This structure is not based on the order of the application
but just how it was thought it was more simple to parse with the java library.
Different homographies can be seen as a sort of collection of frame on the
action of scanning the QR code. All parameters values have been selected
trying to remain on a realistic level of noise on the images. Putting a large
amount of noise in an image to make it unreadable would not have been
useful for the purposes of this thesis. All the images generated have been
passed to the Java library and got in return the result of the scanning, see
Section 4.1.1.

The data have been represented in three different chart:

e Line chart: it shows the percentage of successful decoding over different

level of blur;

e Stacked area chart: it show result of all the 1000 homograpies over the

different level of blur;

30 6.1 Low Versus High Error Correction Level

e Pie chart: it show the whole set of data to show how a QR code has

sustained the test.

6.1 Low Versus High Error Correction Level

Low level error correction permits the detection and recover of a maximum
of 7% data, meanwhile the high level reach a maximum of 30%. From this
information it is expected that, with the presence of noise on the image, a
QR code with higher error correction level should be more easily decoded.
But the higher the level and denser and bigger the QR code becomes. To
study the effectiveness of the error correction it has been decided to take two
QR with the same data encoded inside it, the string of a EU Digital COVID
Certificate, and apply the maximum level of error correction to one and the

lowest to the other.

Figure 23: Low and High QR code used for the test

31 6.1 Low Versus High Error Correction Level

6.1.1 Without Moiré

The test results are presented in a line chart that represent the decoding rate
of the QR codes (X-axis) over the different levels of blur (Y-axis). In case of
comparison of two different QR codes two lines are putted together in order
to see how they perform in a specific context. Knowing that for a QR code to
success needs only one successful decoding, the percentage can be interpreted

as how fast a specific QR is to be scanned. Taking in consideration the

Figure 24: High QR code with medium and high level of noise

decoding rate of the QR codes with no scaling and different levels of noise
it is immediately clear that the low level has much better performance than
the high level one(Figures 25, 26, 27). Also blur alone seems to not impact
much on the good decoding of a QR code, but higher the noise become and

more the decoding rate decrease at the increments of the blur.

32

6.1 Low Versus High Error Correction Level

Figure 25: Without noise

Figure 26: Medium noise

33 6.1 Low Versus High Error Correction Level

Figure 27: High noise

Looking at the different distances it seems that without noise and blur the
library does prefer images with the QR code more distant instead at one
covering the whole dimension of the picture. With the addition of noise the
result drastically change showing that the low level QR code withstands bet-
ter those situation. In the line chart representing the three different scaling,
of the same QR code, the lines are named Low_b for the base image without

any scaling, Low_m for the medium scaling and Low_f for the farthest one.

34

6.1 Low Versus High Error Correction Level

Figure 28: Low - no noise

Figure 29: High - no noise

35

6.1 Low Versus High Error Correction Level

Figure 30: Low - medium noise

Figure 31: High - medium noise

36

6.1 Low Versus High Error Correction Level

Figure 32: Low - high noise

Figure 33: High - high noise

37 6.1 Low Versus High Error Correction Level

In Figures 34, 35, 36 and 37 is showed a representation of all the results given
by a single test, in order to understand why a QR code has been decoded or
why it has failed. The presented tests are the ones without noise and with
the higher level of noise since the medium is not so interesting. It can be
easily seen that, without noise, the low level one is easily decoded without
the utilization of the error correction, and the same goes for the higher one
with the difference that the second one fails more frequently. In cases of
fail the low one does practically always detect the QR code, meanwhile the
higher one fails most of the times because it can not be detected. With the
increment of the blur level, it is visible that the error correction detects the
errors but it cannot correct them because the number of codewords to correct

are greater than 30% (Figures 34 and 35).

Figure 34: Low no noise

38 6.1 Low Versus High Error Correction Level

Figure 35: High no noise

With the addition of noise it should be expected that the QR code with
high error correction level performs better, instead, as previously seen from
the line charts (Figure 33), the decode rate decrease drastically. The reason
of this is that the low one is able to recover more errors compared of the
high one, due to the lower density of modules. The high one probably has
lot of errors equally distributed on the image so, most of the times, the error
correction is being applied without success. As the blur increment we see
that the low one in no longer able to correct the errors and the high one can
not even be decoded, so the modules can not be distinguished one from the

others.

39

6.1 Low Versus High Error Correction Level

Figure 36: Low with noise

Figure 37: High with noise

40 6.1 Low Versus High Error Correction Level

To give an easy view of how much the two QR codes have performed in
average, all the data has been represented on a pie chart. It is immediately
clear that the one with low level error correction performed a lot better than

the high one.

Figure 38: Low

Figure 39: High

41 6.1 Low Versus High Error Correction Level

6.1.2 With Moiré

In this section will we see the difference on results when the moire effect is
applied in order to simulate the scanning of a QR code on a LCD display.
The first notable things it that the overall performances are worse than the
simulation without the moire effect applied. A strange increment, in the line
of the low level QR code, is visible on the chart without noise(Figure 40).
This happen because as the blur increments the moiré becomes weaker. As
per the previous tests, it is immediately clear that the low one seems to have

much better performance.

Figure 40: Without noise

42

6.1 Low Versus High Error Correction Level

Figure 41: Medium noise

Figure 42: High noise

43 6.1 Low Versus High Error Correction Level

Looking at what happens with the different distances, the pattern remains
the same as before with the QR code with low error correction level with-
standing better the different tests. To show this only some charts are pre-
sented as an example, and not all the combination. The chart takes in
consideration the medium value of noise. It is visible, as said before, that
the low QR code can sustain better than the high one. Talking about the
distances, both does suffer a lot compared to the test without moiré (Figures
32 and 33). However the high one is practically unusable on higher distance

and with higher noise the situation becomes even worse.

Figure 43: Low scaling

44 6.1 Low Versus High Error Correction Level

Figure 44: High scaling

The result of the test without moiré has showed that the error correction
was almost never successfully applied. For what regards this test instead, the
error correction is very useful for successfully scan the QR code. Contrarily
at what could be expected, the QR code that is able to recover the majority
of errors in order to be readable is the lower one. This is caused by the lower
density of modules. In Figure 45 is notable that, without noise, as the blur
effect increments the moiré becomes less problematic and the decoding does
not need the error correction as much as before. With the addition of the

noise the success depends entirely on the error correction application.

45

6.1 Low Versus High Error Correction Level

Figure 45: Low - no noise

Figure 46: High - no noise

46

6.1 Low Versus High Error Correction Level

Figure 47: Low - high noise

Figure 48: High - high noise

47 6.1 Low Versus High Error Correction Level

The moiré effect seems to destroy the usability of the QR code with high
level of error correction. The pie charts (Figures 49, 50) show that in the
entirety of the tests the low level QR code has performed much better than
the high one. In this case, the difference between the two is much greater
then the one observed on the test without moiré. We can conclude that the
trade off of having a grater level of error correction in not worth the loss of

usability of the QR code.

Figure 49: Low

48

6.1 Low Versus High Error Correction Level

Figure 50: High

49 6.2 Optimized DCC Versus Base DCC

6.2 Optimized DCC Versus Base DCC

This case of study start form the implementation of an optimized version
of the EU Digital COVID Certificate discussed in Arrigo’s master thesis[5].
This version of QR code contains the same essential data as the original
DCC. The main differences are the data structure in which the data are
stored and some useless data, not used on the validation of the certificate,
have been removed. The last main difference is the utilization of the low level
of error correction instead of the quartile level used by the official DCC. The
type of tests performed on each are the same as the ones performed on the
comparison of low and high level of error correction. It is expected that the
optimized one will be much better than the base one, but it is interesting to

see how well it sustain the different type of disturbances.

Figure 51: Optimized and base DCC used for the test

50 6.2 Optimized DCC Versus Base DCC

6.2.1 Without Moiré

It is immediately clear that the difference between the two version is over-
whelming. Taking in consideration only the noise level, the optimized ver-
sion in able to sustain perfectly this level of noise. Adding the distances into
consideration, it starts to suffer a bit but it does remain on about 70% of
decoding rate even on the worst case (Figure 54). Meanwhile the base DCC
is sightly better then the one with the high level of error correction presented

before (Figure 54 and 33).

Figure 52: Optimized - no noise

51

6.2 Optimized DCC Versus Base DCC

Figure 53: DCC - no noise

Figure 54: Optimized - high noise

52 6.2 Optimized DCC Versus Base DCC

Figure 55: DCC - high noise

Like in the test with low and high, the presence of noise alone does not
activate much the error correction. The optimized DCC has been decoded
without the needs of correct any error for the cases with no noise and medium
noise. Only with a higher level of noise the error correction has been applied
in order to recover some data. For what it regards the base DCC it is possible
to say that the noise gives to much error to correct and in the other cases it

just made impossible the detection or decoding of the QR code.

23

6.2 Optimized DCC Versus Base DCC

Figure 56: Optimized - high noise

Figure 57: DCC - high noise

54 6.2 Optimized DCC Versus Base DCC

In the end, it is possible to claim that, with only noise, the optimized
version is practically always readable. Meanwhile the base DCC has a total
decoding rate lower than the 40%. So more then half of the time the scanning

of the QR code will result in a failed scan.

Figure 58: Optimized

Figure 59: DCC

55 6.2 Optimized DCC Versus Base DCC

6.2.2 With Moiré

By applying the moiré effect on the images it is expected to see a drop in
decoding rate of the two QR codes and an increment of application of error
correction. Looking at the chart is possible to see that without noise the line
of the test with no scaling has a lower decode rate at the start, compared to
the other two. This is due to the fact that as the blur increment the moiré

effect gets weaker and the same goes with higher distances.

Figure 60: Optimized - no noise

56 6.2 Optimized DCC Versus Base DCC

Figure 61: DCC - no noise

With the addition of the noise it is expected that the optimized version
will withstand much better than the base DCC. But what is interesting to
see is how much the error correction is involved. From the chart it is visible
that, without the noise, the defocussing of the camera should be able to
remove a lot of disturbance of the moiré. The error correction is applied only
on the homograpies with low blur, meanwhile as the blur increases the QR
codes have been decoded without its application. If instead the noise level
increments, the error correction is essential to have successful scans. The only
difference is that with a medium level of noise the blur is able to mitigate
a bit the moiré effect, meanwhile with the higher value the QR codes are

scanned only thanks to the error correction.

o7

6.2 Optimized DCC Versus Base DCC

Figure 62: Optimized - no noise

Figure 63: DCC - no noise

o8

6.2 Optimized DCC Versus Base DCC

Figure 64: Optimized - medium noise

Figure 65: DCC - medium noise

29

6.2 Optimized DCC Versus Base DCC

Figure 66: Optimized - high noise

Figure 67: DCC - high noise

60 6.2 Optimized DCC Versus Base DCC

Even in this case, is clear that using a better data structure, in order to have
a simpler QR code, is necessary for a good scan result. A lower version QR
code is able to sustain image distortion a lot better than a more complex one.
To give a better understanding of how much better the optimized version has
performed the data have been collected together in two pie charts. From this
chart is immediately visible the major success rate of the optimized DCC,
this is even more greater thanks to the error correction reaching over 90% of

success.

Figure 68: Optimized DCC

61

6.2 Optimized DCC Versus Base DCC

Figure 69: Base DCC

62

7 Conclusion

In this thesis it has been discussed about the detection and decoding of QR
codes. The main discussion is been divided in two type of disturbances that
could influence the good result of a scan. First, we simulated a situation
in which a camera has to detect a QR code form a surface that is not a
display. So the images have been modified to create different levels of camera
defocussing and different levels of thermal noise. This is to create a realistic
scenario in which the camera try to put on focus the QR code or the object
is not much stable, added to the possibility to be in an environment with low
or high illumination. To test how a library deals with those problems, we
selected two different case of study. In both cases the main point of interest
was how a successful scan is dependent of the error correction. On the
first case, we used two QRs with the same data encoded inside but with the
minimum level selected for one and the maximum for the other. In the second
case, we compared the EU Digital COVID Certificate and an experimental
optimized version, in order to understand how much is important to use
a more compact and efficient data structure. From this two cases it has
been found that a lower level of error correction, and even more a good
data structure, are essential to have efficient QR codes. Contrary on the
expectation an higher level of error correction brings down the decoding rate
by a good margin. This is due to the fact that the QR becomes much larger
and denser with the higher level, and bigger is the data encoded inside it
and more the error correction codewords becomes bigger too. Furthermore,
it has been shown that most of the times the error correction was not applied

when a QR code was decoded. Instead, it happened frequently that a QR

63

code was not decoded, because the error correction detected the errors but
could not recover the data due to the large amount of them. This was much
notable on both the QR code with high level of error correction and the base
DCC. The reason is that, by increasing the error correction, the density of
the QR becomes much higher. This density makes the noise more impacting
causing lots of more errors. Another problem caused by the noise was that
the modules became not distinguishable between one from another, making
the decoding impossible. A large number of homograpies of the two higher
version was not even detected. This happens because the position marker,
the alignments marker or timing patterns could not be found due to the noise
and the perspective distortion.

The second simulation was the scanning of a QR code on a LCD display.
To create this situation it has been implemented a simulation of the moiré
pattern to be added to the images. Together with the noise and perspective
distortion. Taking in consideration the same two case of studies from before
it was clearly visible that the moiré has a huge impact on the performance
of the larger QR codes. An interesting result is that, in this case, the error
correction is essential to have a successful decoding. On the QR with low
level of error correction, and even more in the optimized version of the DDC,
the application of the error correction made possible to have a success rate
close to the one form the previous simulation.

From all of this interesting result is possible to say that the trade off of
having an higher error correction is not worth the lost of usability of the QR
code. An high level of error correction is suggested in industrial environment

where the QR could be seriously damaged. For an every day utilisation is

64 7.1 Future Works

better to use the lower version in order to have a better decode rate. From
the results of the first test someone could be easily be fouled to think that
the error correction is almost useless but this is not the case. The moiré
pattern simulation showed that the error correction is essential in some cases.
Another interesting result is that some level of blur can help to eliminate
some of those artifacts and made the detection more easy. As it has been
said when thinking of using the QR codes is important to use a low level of
error correction and implement a good data structure to store the data in a

safe way but trying to consume the lower number of bytes as possible.

7.1 Future Works

Starting form this study there are multiple new works that can be done.
One work could be to study the data masks of the QR code and try to
prove if the mask chosen from the lower penalty score is the best one even
in practice. This could be done by trying to apply by force all the difference
masks to the QR, one at time, and test them like it has been presented in
this thesis. To do so it should be needed to take an existing library and
change a lot the encoding and decoding of the QR code. This is because the
library during the decoding process must know how the values are encoded.
The better choice is probably to develop a library anew. By making a new
one it could be interesting to try to develop a new mask specific for certain
types of data that already have a low entropy, like a digital signature. For
whats it regards the detection and decoding it could be interesting to try to
apply some preprocessing on the image before it get passed on the library.

This could help the decoding of QR codes by eliminating disturbance on the

65 7.1 Future Works

image. A further extension of this study could be a simulation of different
camera resolution and the simulations of different surfaces in which the QR

code is placed.

66 References
References
[1] Data mask patterns. https://en.wikiversity.org/wiki/File:QR_

Code_Mask_Patterns.svg.
Opencv. https://opencv.org/about/.

Qr code codeword. https://en.wikiversity.org/wiki/File:QR_

Code_Unmasked. svg.

Qr code structure. https://en.wikipedia.org/wiki/File:QR_Code_

Structure_Example_3.svg.

Giacomo Arrigo. Analysis of the eu digital covid certificate system and
proposal of design improvements. Master’s thesis, Ca’Foscari University

of Venice, 2021.

Marco Carfizzi. Proposal of improvements for the digital covid-19 cer-

tificate. Master’s thesis, Ca’Foscari University of Venice, 2021.

Ministero della Salute. EU digital covid certificate veri-
fier app - android. https://github.com/ministero-salute/

it-dgc-verificaCl19-android, 2022.

Jan Flusser, Sajad Farokhi, Cyril Hoschl, Tom&s Suk, Barbara Zitova,
and Matteo Pedone. Recognition of images degraded by gaussian blur.

IEEE Transactions on Image Processing, 25(2):790-806, 2016.

Dirk Huisman, Glenn Heeres, Bertil Van Os, Willem Derickx, and J.M.

Schoorl. Erosion and errors: Testing the use of repeated LIDAR analyses

https://en.wikiversity.org/wiki/File:QR_Code_Mask_Patterns.svg
https://en.wikiversity.org/wiki/File:QR_Code_Mask_Patterns.svg
https://opencv.org/about/
https://en.wikiversity.org/wiki/File:QR_Code_Unmasked.svg
https://en.wikiversity.org/wiki/File:QR_Code_Unmasked.svg
https://en.wikipedia.org/wiki/File:QR_Code_Structure_Example_3.svg
https://en.wikipedia.org/wiki/File:QR_Code_Structure_Example_3.svg
https://github.com/ministero-salute/it-dgc-verificaC19-android
https://github.com/ministero-salute/it-dgc-verificaC19-android

67

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

and erosion modelling for the assessment and prediction of erosion of
archaeological sites? Conservation and Management of Archaeological

Sites, 18:205-216, 07 2016.

ISO. ISO/IEC 18004:2015. https://www.iso.org/standard/62021.
html.

Lacan Jerome, Roca Vincent, Peltotalo Jani, and Peltotalo Sami. "reed-

solomon forward error correction (FEC) schemes. 04 2009.

Leila Kabbai, Anissa Sghaier, Ali Douik, and Mohsen Machhout. FPGA
implementation of filtered image using 2D gaussian filter. International

Journal of Advanced Computer Science and Applications, 7, 07 2016.

Bolin Liu, Xiao Shu, and Xiaolin Wu. Demoiréing of camera-captured

screen images using deep convolutional neural network. ARXIV, 2018.
ZXing Project. Zxing. https://github.com/zxing/zxing, 10 2022.

Kesten Victor. Evaluating different spatial anti aliasing techniques.
Master’s thesis, KTH, School of Computer Science and Communication

(CSC), 2017.

Rafael C. Gonzalez; Richard E. Woods. Digital Image Processing. Pear-
son, 2018.

https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://github.com/zxing/zxing

	Introduction
	Objectives

	QR Code
	Error Correction
	Data Masking

	Digital Image
	Perspective Distortion
	Defocus
	Gaussian Blur

	Thermal Noise
	Gaussian Noise

	Moire Pattern

	Analysis of the Libraries
	ZXing Library
	Change on the Library

	OpenCV

	Implementation of the Models
	Implementation of the Moiré
	Implementation of the Perspective Distortion
	Implementation of the Noise

	Test Result
	Low Versus High Error Correction Level
	Without Moiré
	With Moiré

	Optimized DCC Versus Base DCC
	Without Moiré
	With Moiré

	Conclusion
	Future Works

