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INTRODUCTION 

The objective of this thesis is to understand whether farms that produce renewable 

energy are significantly more economically efficient than farms that do not produce 

renewable energy. 

The reasons behind the research question are the growing need for renewable energy 

to respond to the problem of pollution and the resulting global warming on the one 

hand and the energy price crisis that erupted in Italy and beyond during 2022 on the 

other.  

The results of this study are intended to pose as, possibly, a tool for Italian and European 

policies in the area of agricultural support on the one hand, and as a tool for farms to 

support, possibly, the argument that producing renewable energy improves the overall 

efficiency of the farm's economic activity. For example, by reducing energy costs or by 

providing a complementary cash flow from the sale of surplus energy. 

This paper then begins by defining energy as an economic good, dissecting the energy 

market in its components: demand, supply and price. 

As is well known, most energy is produced from fossil fuels, an energy source based on 

the combustion of organic substances that have undergone a transformation lasting 

millions of years. These fossil fuels bring with them three main issues: pollution from 

combustion as a negative externality, scarcity of resources that will run out in a 

relatively short time, and finally geopolitical issues related to the location of the raw 

material. 

At the same time, the technological progress requires a great deal of energy that must 

necessarily be satisfied, and the price to be paid for this, in the event of a serious failure 

of demand, would be the socio-economic collapse of modern society. 

So the imperative is to provide, on the production side, substitutes for fossil fuels that 

can meet demand while avoiding the unpleasant drawbacks of fossil fuels. This is energy 

from renewable sources. At the same time, it is necessary to limit energy waste and 

become more efficient in order to make the most of the energy produced. 

The process of solving the above-mentioned problems is called ecological transition and 

is one of the priorities that states should pursue. Italy is a country that has a negative 

'ecological balance', meaning that it produces more pollution than it can absorb in its 

own territory. 
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This is where farms get involved. As a first thought, it may seem strange that farms 

produce energy; in fact, they are normally associated with other types of production, 

related to the biological cycle of animal and plant life.  

However, farms have two advantages that can be exploited: open spaces, generally 

large and exposed to the sun, and biological production waste, both animal and 

vegetable. Photovoltaic panels or even wind turbines can be installed in open spaces if 

the space is suitable. Production waste, on the other hand, can be treated to obtain 

clean energy, such as biogas or simply heat from combustion. 

The energy produced by farms can therefore serve two main purposes: energy self-

sufficiency and the sale of energy to providers as a business. 

At this point, only one piece is missing to answer the fundamental question expressed 

at the beginning: how can the economic efficiency of several farms be compared? 

Economic efficiency is the condition in which, with the available tools, the desired level 

of achievement cannot be improved. Economic efficiency is when the output values of 

the process cannot be increased by using or allocating the available inputs differently, 

i.e. when the difference between the gross benefits and the costs incurred is maximum 

(Franzini, 2012). 

It must be emphasized that this definition refers to a concept of absolute efficiency, 

whereas for the purposes of comparison, a comparative tool of relative efficiency is 

more useful. 

For this purpose, a methodology called Data Envelopment Analysis (DEA) was used, 

which associates an efficiency score between 0 and 1, where 1 means relative efficiency, 

with each unit considered in a population. Farms are then compared according to their 

relative efficiency score. 

This methodology has three main characteristics: it is a non-parametric method, i.e. it 

does not need the a priori specification of a production function; it handles multi-input 

and multi-output, as companies often use different inputs to produce different outputs; 

finally, it relies on the best performers in the population to set the efficiency bar, thus, 

the score reflects relative and not necessarily absolute efficiency. 

The study is based on over 10,000 Italian companies from an Italian database called 

RICA, which belongs to the Farm Accountancy Data Network, which is a European 

institution that monitors companies from a statistical economic perspective. This 

database contains, for each company, over a hundred quantitative and qualitative 

variables. 
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The same input and output variables were chosen for all companies, which, when put 

together in the DEA model, provided each company with an efficiency score. Then the 

companies were divided into those producing and those not producing renewable 

energy and the scores were compared. 

Chapter 1 describes the energy market, starting from defining energy as a commodity 

and then it shows how does this market work in terms of supply, demand and price.  

Chapter 2 summarizes the three main issues that come along with the fossil fuels: 

environmental issues, scarcity of resources and geopolitical issues.  

Chapter 3 looks at the Italian ecological situation and presents the state of art of the 

ecological transition, in terms of policies. Then it highlights the link between agriculture 

and sustainability that Italian policies are pursuing. 

Chapter 4 introduces how farms can deal with sustainability and then it briefly 

describes the energy production of two renewable sources that will be significant in the 

following analysis: solar and biogas. Finally it presents four works from the existing 

literature.  

Chapter 5 describes the DEA methodology and its formal characterization. In particular, 

it presents the CCR and BCC models. 

Chapter 6, finally, shows the analysis that has been done. It starts from data selection, 

followed by the model specifications and then it presents and discusses the results. 
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1. THE ENERGY MARKET 

Section 1.1 introduces the topic of the energy market by discussing energy as an 

economic good. Sections 1,2 and 1.3 show the different energy sources that can 

theoretically and limited to their own characteristics be used alternatively to produce 

energy. Sections 1.4 through 1.8 describe the energy market, starting with the 

context and continuing with demand, supply, equilibrium, and prices. 

1.1. Preliminary Energy Concepts 

What is energy?  

Energy, in physics, is defined as the capacity for doing work. Moving an object is work, 

heating it is work. Work is defined as the transfer of energy to an object from another 

or viceversa. Work and energy are two concepts that are strictly connected and they 

define each other themselves.  

For example, a man lifting a chest from the floor is putting some work that requires some 

quantity of energy: without the required energy the chest would not move. 

Energy may exist in various forms: potential, kinetic, thermal, electrical, chemical, 

nuclear or others. All these forms of energy are associated with motion: any given body 

has kinetic energy if it is in motion. A tensioned device such as a bow contains the 

potential energy for creating motion. A heated body contains moving particles that 

determine its heat. 

First principle of thermodynamics 

Energy can be neither created nor destroyed but only converted from one form to 

another. This principle is known as the conservation of energy or the first law of 

thermodynamics. In the previous example, lifting that chest has required some energy 

https://www.britannica.com/science/potential-energy
https://www.britannica.com/science/kinetic-energy
https://www.britannica.com/science/thermal-energy
https://www.britannica.com/science/chemical-energy
https://www.britannica.com/science/motion-mechanics
https://www.britannica.com/science/kinetic-energy
https://www.britannica.com/technology/bow-and-arrow
https://www.britannica.com/science/thermodynamics/The-first-law-of-thermodynamics#ref258541
https://www.britannica.com/science/thermodynamics/The-first-law-of-thermodynamics#ref258541
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from the man that has not been exhausted but instead has been converted into 

potential energy and heat. 

In the International System of Units (SI), energy is measured in joules. A joule is defined 

to be equal to the kinetic energy of a kilogram mass moving at the speed of one meter 

per second. To give a practical example, a joule is the amount of energy needed to lift a 

medium tomato up one meter or, thanks to the first principle of thermodynamics, is the 

energy released when dropping that same tomato from a height of one meter. 

Energy is An Economic Good 

Economically speaking, energy is one of the most important good in the human society 

for its uncountable uses: movement, heating, lighting. Without energy vehicles wouldn’t 

move, food couldn’t be cooked, streets would be completely dark at night. Society must 

exploit energy for its own conservation. 

How is it possible to “produce” energy? 

The law of conservation of energy implies that energy cannot be produced in a physical 

sense. Instead, in an economic sense, energy can be produced and that does not break 

physics rules. Energy, as a good, is the realization of the effects from the energy transfer: 

the lightbulb that lights up, the vehicle that moves along the road.  

Energy production is therefore a conversion process: from an “useless” form to a form 

that can be useful to mankind. Energy development is then obtaining sources 

of energy from natural resources. These natural energy resources may be classified as 

primary resources, when the resource is disposable and can be used in substantially its 

original form, or as secondary resources, when the energy source is not disposable and 

must be converted into a more conveniently usable form. 

https://www.britannica.com/science/International-System-of-Units
https://www.britannica.com/science/joule
https://www.thoughtco.com/definition-of-kinetic-energy-604552
https://www.thoughtco.com/definition-of-mass-604563
https://www.thoughtco.com/speed-2699009
https://en.wikipedia.org/wiki/Energy
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1.2. Non-Renewable Sources 

Another classification is between renewable and non-renewable source. The former is 

produced by ongoing processes that can sustain virtually indefinite human exploitation 

and that are naturally replenished on a human timescale such as sunlight , wind, rain, 

tides, waves and geothermal heat, while the latter is limited, and in most cases, 

significantly depleted by human use. Nuclear power is a controversial one, for the 

purpose of this thesis it will be taken off from renewables discussion. 

Hereafter there are listed the most common energy sources divided into fossil fuels, 

nuclear power and renewable sources. 

Fossil Fuels 

The most widely known non-renewable energy source is fossil fuel which implies burning 

coal or hydrocarbon fuels, which are the rests of the decomposition of living being. 

There are three main kinds of fossil fuels: coal, petroleum, and natural gas. Fossil fuels 

are part of the carbon cycle and allow the “biological energy” (that came from nutrition 

and solar power) stored in the fuel, in form of carbon chains, to be released through the 

burning process. 

Coal 

Coal is mostly carbon with variable amounts of other elements, that is formed when 

dead plant matter decays and is converted into coal by the heat and pressure of deep 

burial over millions of years. The energy density of coal is roughly 24 megajoules per 

kilogram. 

Petroleum 

Petroleum, also known as crude oil, or just oil, is a naturally occurring yellowish-black 

liquid mixture of hydrocarbons and other elements. Petroleum is formed when large 

quantities of dead organisms are buried underneath sedimentary rock and subjected to 

https://en.wikipedia.org/wiki/Geothermal_energy
https://en.wikipedia.org/wiki/Coal
https://en.wikipedia.org/wiki/Hydrocarbon
https://en.wikipedia.org/wiki/Petroleum
https://en.wikipedia.org/wiki/Natural_gas
https://en.wikipedia.org/wiki/Carbon_cycle


 

 

8 

 

millions of years of heat and pressure. The energy density of oil is about 45 megajoules 

per kilogram. 

Natural Gas 

Natural gas is a naturally occurring mixture of gaseous hydrocarbons mainly consisting 

of methane. Natural gas is formed when layers of organic matter decompose 

underground in anaerobic conditions and are subjected to heat and pressure over 

millions of years. The energy density of natural gas is roughly 83 megajoules per 

kilogram. 

Nuclear Power 

Nuclear power is the exploit of nuclear fission to produce heat and electricity. Fission of 

uranium produces nearly all economically significant nuclear power. There is an 

ongoing debate about nuclear power: the WNA (World Nuclear Association), the IAEA 

(International Atomic Energy Association) and ENA (Environmentalists for Nuclear 

Energy) claim that nuclear power is a safe, sustainable energy source; while 

opponents contend that nuclear power introduces threats to people and the 

environment due to the radioactivity of nuclear waste. 

1.3. Renewable Sources 

Hydroelectric Power 

Hydroelectricity is electric power generated by waterpower; the force coming from 

falling or flowing water. Remarkable is the energy storing part: lifting volumes of water 

during the night stores energy, in potential form, that can be exploited during the day 

whenever it is more convenient. 

 

 

https://en.wikipedia.org/wiki/Nuclear_power
https://en.wikipedia.org/wiki/Nuclear_fission
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Nuclear_power_debate
https://en.wikipedia.org/wiki/World_Nuclear_Association
https://en.wikipedia.org/wiki/International_Atomic_Energy_Agency
https://en.wikipedia.org/wiki/Environmentalists_for_Nuclear_Energy
https://en.wikipedia.org/wiki/Environmentalists_for_Nuclear_Energy
https://en.wikipedia.org/wiki/Sustainable_energy
https://en.wikipedia.org/wiki/Anti-nuclear_movement
https://en.wikipedia.org/wiki/Environmental_radioactivity
https://en.wikipedia.org/wiki/Environmental_radioactivity
https://en.wikipedia.org/wiki/Hydroelectricity
https://en.wikipedia.org/wiki/Hydropower
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Wind power 

Wind power, or Eolic, harnesses the power of the wind to propel the wind turbines that 

generates electricity. 

Solar Energy 

Solar energy is the energy coming directly from the sun in the form of radiant light and 

heat that are exploited to produce electricity (photovoltaic) and solar thermal energy 

that stores energy through a heating process. 

Biofuels 

A biofuel is a fuel that differs from the fossil ones because it contains energy from 

geologically recent carbon fixation that is produced from living organisms. These fuels 

are made by a biomass conversion (biomass refers to recently living organisms, most 

often plants or plant-derived materials that are cultivated for generating energy).  

This biomass can be converted to convenient energy in three diverse ways: thermal 

conversion, chemical conversion, and biochemical conversion. The resulting biofuel can 

result in solid, liquid, or gas form. The most common biofuels are bioethanol and 

biodiesel. 

Geothermal 

Thermal energy is the energy that generically determines the temperature of matter. 

Geothermal energy is thus the thermal energy generated and stored in the 

Earth. The geothermal gradient, which is defined as the difference in temperature 

between the core of the planet and its surface, drives a continuous flows of thermal 

energy, in the form of heat, from the nucleus to the crust.  

 

 

https://en.wikipedia.org/wiki/Wind_power
https://en.wikipedia.org/wiki/Wind_turbine
https://en.wikipedia.org/wiki/Fuel
https://en.wikipedia.org/wiki/Carbon_fixation
https://en.wikipedia.org/wiki/Living_organisms
https://en.wikipedia.org/wiki/Biomass
https://en.wikipedia.org/wiki/Plants
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Liquid
https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Thermal_energy
https://en.wikipedia.org/wiki/Geothermal_gradient
https://en.wikipedia.org/wiki/Heat


 

 

10 

 

Marine power 

Marine power refers to the energy carried by the movement of water in the oceans that 

creates a large store of kinetic energy. This energy can be exploited 

to generate electricity. 

Recovery and reuse 

Alongside with the energy production there is energy consumption: some of it is 

necessary for living and cannot be dismissed, but some other is not necessary and 

generates inefficiency. This issue can be fixed approaching more sustainable 

consumption that goes from avoiding squandering to recovery and reuse of energy that 

would otherwise been wasted. Energy awareness, conservation and efficiency 

measures reduce then the demand for energy development. 

1.4. Energy Market Characterization 

Energy sector is one of the most important worldwide: according to the European 

Commission nearly 58 million people worldwide were employed in the energy sector in 

2018.  

About half of these jobs are related to the fossil fuel industries, while employment in 

the renewable energy sector accounts for 11 million total jobs in 2018. Forecasting 

suggests that the employment in the broad energy sector is expected to be in the range 

of 87 to 100 million total jobs by 2050. 

Specifically, European energy sector had 7.5 million total jobs in 2018, of which 1.5 

million are related to the renewables sector. 

Despite the growing share of renewable energy, a downward trend in occupation took 

place from 2011 onwards, turning to stagnation in the following years. The reasons 

behind this uncertain development include the aftermath of the 2008 financial crisis, 

https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Electricity_generation
https://en.wikipedia.org/wiki/Energy_conservation
https://en.wikipedia.org/wiki/Efficient_energy_use
https://en.wikipedia.org/wiki/Efficient_energy_use
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the relocation of some manufacturing capacities outside of Europe due to their lower 

costs, and changes in subsidy schemes for renewables within the EU. 

The structure of energy markets has changed dramatically over the past two centuries: 

with technological transitions as new fuels have emerged and a vertiginous growth in 

global production and consumption. Although the demand for energy has long paired 

economic growth, its consumption accelerated drastically after WWII. 

Fig. 1.4.1 shows the growth of the global energy market, from the First Industrial 

Revolution to our days, in terms of total energy supply. Table 1.1 reports the annual 

energy production by source during the years that are multiples of 10, during the 

aforementioned period.  

In both Fig. 1.4.1 and Table 1.4.1 the unit of measurement is TWh, that stands for 

Terawatt per hour, which is equal to the energy that gives a power of 1012 Watt for one 

hour.  

Fig. 1.4.1: Energy Market Growth (1800 – 2020) 

Source: Our World in Data, 2022 
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Table 1.4.1: Global Energy Production by Source (1800 – 2020) 

Year Coal Oil Natural gas Nuclear Biomass Renewables 

1800 97 0 0 0 5,556 0 

1810 128 0 0 0 5,833 0 

1820 153 0 0 0 6,111 0 

1830 264 0 0 0 6,389 0 

1840 356 0 0 0 6,944 0 

1850 569 0 0 0 7,222 0 

1860 1,061 0 0 0 6,944 0 

1870 1,642 6 0 0 6,944 0 

1880 2,542 33 0 0 6,944 0 

1890 3,856 89 33 0 6,667 37 

1900 5,728 181 64 0 6,111 44 

1910 8,656 397 142 0 6,389 88 

1920 9,833 889 233 0 6,944 168 

1930 10,125 1,756 603 0 7,222 344 

1940 11,586 2,653 875 0 7,222 504 

1950 12,603 5,444 2,092 0 7,500 877 

1960 15,442 11,097 4,472 0 8,889 1,813 

1970 17,059 26,708 9,614 219 9,444 3,334 

1980 20,858 35,577 14,239 1,978 10,000 4,947 

1990 25,895 37,691 19,483 5,557 11,111 6,424 

2000 27,417 42,897 24,000 7,169 12,500 8,090 

2010 41,997 48,087 31,606 7,219 11,667 11,673 

2020 43,849 53,620 39,292 6,923 11,111 18,545 

Source: Our World in Data, 2022 

In the following Fig. 1.4.2 is reported the market share of each sources throughout the 

period, showing how the production sources shifted from biomasses to coal and oil at 

the beginning of the 20th Century. In Table 1.4.2 are reported the percentages of each 

source for each considered year. 
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Figure 1.4.2: Energy Sources Shares (1800 – 2020) 

Source: Our World in Data, 2022 

Table 1.4.2: Energy Sources Shares (1800 – 2020) 

Year Coal Oil Natural gas Nuclear Biomass Renewables 

1800 1.7% 0 0 0 98.3% 0 

1810 2.1% 0 0 0 97.9% 0 

1820 2.4% 0 0 0 97.6% 0 

1830 3.9% 0 0 0 96.1% 0 

1840 4.8% 0 0 0 95.1% 0 

1850 7.3% 0 0 0 92.6% 0 

1860 13.2% 0 0 0 86.7% 0 

1870 19.1% 0 0 0 80.8% 0 

1880 26.7% 0.3% 0 0 72.9% 0 

1890 36% 0.8% 0.3% 0 62.4% 0.3% 

1900 47.2% 1.4% 0.5% 0 50.3% 0.3% 

1910 55.2% 2.5% 0.9% 0 40.7% 0.5% 

1920 54.4% 4.9% 1.2% 0 38.4% 0.9% 

1930 50.4% 8.7% 3% 0 36.0% 1.7% 

1940 50.7% 11.6% 3.8% 0 31.6% 2.2% 
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1950 44.1% 19% 7.3% 0 26.3% 3% 

1960 37% 26.6% 10.7% 0 21.3% 4.3% 

1970 25.6% 40.2% 14.4% 0.3% 14.2% 5% 

1980 23.8% 40.6% 16.2% 2.2% 11.4% 5.6% 

1990 24.3% 35.5% 18.3% 5.2% 10.4% 6% 

2000 22.4% 35.1% 19.6% 5.8% 10.2% 6.6% 

2010 27.5% 31.5% 20.7% 4.7% 7.6% 7.6% 

2020 25.2% 30.9% 22.6% 3.9% 6.4% 10.6% 

Source: Our World in Data, 2022 

At the start of the 20th century, coal was the dominant fuel, but by 1920 oil was already 

increasing its market share: global crude oil production increased from 1 million barrels 

per day (mb/d) in 1920 to nearly 100 mb/d in 2019. Crude oil’s share of global energy 

rose from less than 5% in 1920 to a peak of 43% in 1973, decreasing to 29% in 2019. 

Consumption of natural gas began to rise in the 1900s, but initially at a much slower 

pace than crude oil. However, the increasing use of natural gas in electricity generation, 

in heating and cooking, resulted in natural gas share rising from 1% of global energy 

consumption in 1920 to 22% in 2019. 

Since the demand for energy continuously expanded it is the case that new sources of 

energy have not replaced existing sources, even if they took a greater market share. 

Consumption of coal has risen in every decade, even though its share of total energy 

demand has fallen since 1920 in which its share was 54% to 2019 with a 26% share. Coal 

is mainly used for electricity generation, but also for smelting iron ore for steel 

production. 

Among the non-fossil fuel sources of energy, nuclear power emerged as an important 

source of electricity in the 1970s, peaking in 2000 at around 6% of total energy 

consumption. 
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The share of broad renewable energy (comprehensive of hydro-electric, solar, wind, 

geothermal, wave, and tidal) gradually increased over the 20th century before 

accelerating in the 2010s, reaching 10% of energy consumption in 2019.  

The economic system needs to have a continuous and generous access to energy 

sources, otherwise, without that essential input, the whole system would collapse. 

Generally speaking, countries are the major players in the energy sector, since they 

provide the infrastructure that permits the energy circulation. They generally control 

pipelines, cables, even plants and so on. 

Countries have essentially two ways of collecting energy: by directly producing it, 

controlling internally each segment of the production chain, or by purchasing it from 

other countries. 

The following sections treat the topics of energy production and consumption, showing 

the evolution over the 1990 – 2020 period of the energy supply and demand, separating 

the different energy sources, respectively for World, EU and Italy. 

1.5. Energy Production 

In this section, three pairs of graphs and tables will be shown: the first pair refers to 

world data, the second to European data and the last to Italian data. The line chart shows 

the development of energy production, divided by resource, from 1990 until 2019, while 

the corresponding table shows the data from which the graph was constructed. 

Global Energy Production 

As the following figure 1.3 and table 1.3 show, energy production worldwide, in Europe 

and specifically in Italy, has been increasing over the years. The worldwide broad energy 

production in 1990 was 366 million TJ and it nearly doubled to 606 million TJ in 2019 

(where TJ stands for Terajoules: the prefix tera- denotes a factor of a trillion, which 

means that there are 1012 joules in a Terajoule). 
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The choice of normalizing the unit of measurement of data in terajoule, which is a 

multiple measure of joule, that is the unit of energy in the International System of Units 

(SI)., has been made for the purpose of comparing different energy sources that have 

different unit measures: oil is counted in barrels, coal in mass, in kilograms, bio or 

natural gas in liters and so on. 

Looking at the different energy sources is it possible to note that each one of them 

increased worldwide since 1990, but at different paces: the three combined fossil fuels 

(Coal, Natural Gas and Oil) increased over the 1990-2019 period from 297 million TJ to 

490 million TJ by 64.67% while the combined renewables (Hydro, Wind/Solar and 

Biofuels, excluding Nuclear) increased along the same period from 46 million TJ to 85 

million TJ by 86.01%. Considering only Wind/Solar sources the production increased by 

a notable 775.18%. 

Fig. 1.5.1: Energy Supply, by Source, World (1990 – 2019) 

Source: IEA – Data & Statistics 
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Table 1.5.1: Energy Supply, by Source, World (1990 – 2019) 

 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

European Energy Production 

Looking at the European situation, instead, it is possible to see a different trend: fossil 

fuels sources are being progressively less produced within the Europe, in 1990 the 

aggregate production was 73 million TJ while in 2019 was 58 million TJ, stating a -20,84% 

total decrease; on the other hand, renewables has been boosted from a 4 million TJ 

production in 1990 to 13 million TJ in 2019 with a 194.59% increase. 

Year Coal Oil Natural Gas Nuclear Biofuels Hydro Wind/ 

Solar 

1990 92,962,604 135,326,568 69,597,508 22,002,473 36,688,520 7,703,880 1,533,085 

1995 92,345,651 141,138,864 75,495,152 25,459,860 39,397,760 8,908,060 1,784,759 

2000 96,876,327 153,594,988 86,550,367 28,280,459 41,490,083 9,406,153 2,529,177 

2005 125,224,095 167,959,369 98,640,052 30,216,369 44,663,882 10,564,092 2,944,819 

2010 152,992,480 172,740,070 114,447,753 30,091,065 49,123,321 12,414,905 4,616,284 

2015 160,976,300 181,265,383 122,498,778 28,063,289 52,822,020 14,017,921 8,526,212 

2019 162,375,732 187,364,800 140,784,380 30,461,171 56,813,210 15,194,639 13,417,236 
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Fig. 1.5.2: Energy Supply, by Source, EU (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

Table 1.5.2: Energy Supply, by Source, EU (1990 – 2019) 

Year Coal Oil Natural Gas Nuclear Hydro Wind/Solar Biofuels 

1990 24,155,553 31,924,210 17,346,559 9,768,029 1,774,688 233,978 2,494,575 

1995 18,834,809 30,353,204 18,063,280 10,654,667 2,006,501 269,667 2,919,827 

2000 16,947,498 29,772,554 20,751,535 11,445,537 2,178,647 446,546 3,334,324 

2005 16,793,044 30,690,604 23,587,524 12,114,495 2,036,969 696,431 4,354,915 

2010 15,779,286 27,861,447 23,888,208 11,267,110 2,306,006 1,269,367 6,243,335 

2015 14,705,949 25,576,068 19,194,880 10,564,594 2,266,540 2,438,786 6,895,024 

2019 11,293,304 25,901,281 20,932,232 10,166,636 2,241,261 3,379,812 7,645,042 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

Italian Energy Production 

In Italy fossil fuels broad production decreased from roughly 6 million TJ to roughly 5 

million TJ by -21.70%. Although is remarkable that the natural gas supply increased by 

49.94%. Renewables increased from 277,865 TJ to more than 1 million TJ by 321.50%. 

Biofuels themselves increased by an astonishing 1453.26%. Note that Italy does not 

produce nuclear energy and that is why it does not appear on the table. 
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Fig 1.5.3: Energy Supply, by Source, ITA (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

Table 1.5.3: Energy Supply, by Source, ITA (1990 – 2019) 

Year Coal Natural Gas Hydro Wind/Solar Biofuels Oil 

1990 61,258 163,290 11,385 12,461 3,939 348,835 

1995 51,407 186,950 13,601 13,298 6,097 381,462 

2000 52,583 242,584 15,911 18,084 9,426 363,636 

2005 68,952 295,802 12,984 21,029 27,865 335,981 

2010 57,249 284,939 18,402 24,528 52,969 273,415 

2015 51,495 231,536 16,393 37,298 61,101 224,229 

2020 19,898 244,840 16,799 39,129 61,190 184,230 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

1.6. Energy Consumption 

As in the previous section, this one will show three pairs of graphs and tables that refer 

to energy consumption at the global, European and Italian levels. 
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Global Energy Consumption 

Worldwide demand for energy, in the 1990-2019 period has significantly risen  from 261 

million TJ to 418 million TJ with a percentage increase of 60.08%. In particular, fossil fuel 

consumption remained stable starting from 140 million TJ in 1990 and ending with 144 

million TJ in 2019 with a slight growth of 3.06%, renewables resources instead grew 

59.61% from 71 million TJ in 1990 to 114 million TJ in 2019; showing that the 

composition of the demand changed in favor of renewables share.  

Fig. 1.6.1: Final Energy Consumption, by Source, World (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

 

Table 1.6.1: Final Energy Consumption, by Source, World (1990 – 2019) 

Year Coal Oil  

Products 

Natural gas Wind, solar, 

etc. 

Biofuels and Waste 

1990 31,470,482 108,656,537 39,543,757 143,516 31,824,701 

1995 27,648,926 116,771,810 42,003,303 224,410 34,030,361 

2000 22,689,352 129,979,163 46,864,239 361,948 36,680,293 

2005 34,522,696 143,682,184 50,049,872 503,348 38,341,923 
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Source: IEA – Data & Statistics 2022, measurement unit: TJ 

 

European Energy Consumption 

Total energy consumption rose dramatically in Europe over the period: from 

261,096,296 TJ demanded in 1990, demands rose to 417 million TJ marking a 60.08% 

increase. 

Fig. 1.6.1: Final Energy Consumption, by Source, EU (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

Although worldwide fossil fuels consumption remained stable over the period, in Europe 

significantly rose from 180 million TJ in 1990 to 277 million TJ in 2019 by 53.87%. 

Renewables rose as well by 43.06%, from 32 million TJ in 1990 to 46 million TJ in 2019. 

The quota of fossil fuels consumption over the broad consumption was 68.69% in 1990 

and decreased to 66.31% in 2019. The quota of renewables, instead, rose from 12.24% 

to 14.16%.  

2010 44,257,171 149,660,971 56,341,398 895,700 40,536,083 

2015 46,098,834 159,773,622 59,521,976 1,732,437 41,945,250 

2019 39,786,218 168,375,005 68,404,947 2,318,093 43,414,906 
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Table 1.6.2: Final Energy Consumption, by Source, EU (1990 – 2019) 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

Italian Energy Consumption 

In Italy total consumption stayed stable over the period: with a 2.41% increase from 

1990 to 2019.  Fossil fuels consumption decreased from 4 million TJ in 1990 to 3,3 million 

in 2019 marking a -16.21% decrease. Demand for renewables on the other hand, rose 

significantly from 0,8 million TJ in 1990 to 1,4 million TJ in 2019 by 73.1%. 

Fig 1.6.3: Final Energy Consumption, by Source, ITA (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

 

Year Coal Oil Products Natural Gas Wind, Solar, etc Biofuels 

and Waste 

1990 6,743,182 25,872,230 11,314,717 5,8131 2,118,140 

1995 4,123,733 25,165,165 11,953,217 7,7697 2,352,370 

2000 3,171,965 25,638,068 13,112,459 10,5426 2,543,426 

2005 2,868,816 26,502,378 14,291,419 14,1156 2,985,110 

2010 2,773,183 24,476,734 13,823,192 21,2527 4,121,543 

2015 2,354,057 22,935,945 12,257,291 24,6351 4,138,594 

2019 2,067,157 23,535,993 12,752,657 26,5876 4,541,949 
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Table 1.6.3: Final Energy Consumption, by Source, ITA (1990 – 2019) 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

1.7. Supply and Demand 

Figure 1.7.1: Aggregate Energy Supply and Demand, EU (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

This section shows the trends, over the period from 1990 to 2019, of supply and 

demand, divided into Europe and Italy. The data are presented through three line charts 

Year Coal Oil products Natural gas Wind, solar, etc. Biofuels 

and Waste 

1990 149,464 2,572,800 1,272,905 8,602 36,148 

1995 133,691 2,544,434 1,449,389 9,209 51,291 

2000 112,260 2,608,225 1,615,620 9,372 66,063 

2005 112,339 2,657,032 1,740,996 10,060 182,761 

2010 78,966 2,278,874 1,635,585 10,859 378,333 

2015 39,634 1,973,578 1,404,937 12,731 348,727 

2019 33,593 1,895,606 1,410,345 15,021 349,121 
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and then shown in two tables. Both EU and Italy are not self-sufficient and in both cases 

the demand curve grew while the supply curve has generally flattered.  

Table 1.7.1: Aggregate Energy Consumption 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

Table 1.7.2: Aggregate Energy Production (1990 – 2019) 

Source: IEA – Data & Statistics 2022, measurement unit: TJ 

Figure 1.7.2: Aggregate Energy Supply and Demand, ITA (1990 – 2019) 

Source: IEA – Data & Statistics 2022 

1.8. Energy Prices 

The last section discusses the prices that, together with supply and demand, define the 

energy market. 

Year 1990 1995 2000 2005 2010 2015 2019 

EU 211,638,993 220,678,810 236,574,995 267,100,023 291,691,323 309,072,119 322,299,169 

Italy 2,239,776 2,501,359 2,786,025 3,129,324 3,181,270 2,840,968 2,859,038 

Year 1990 1995 2000 2005 2010 2015 2019 

EU 87,697,592 83,101,955 84,876,641 90,273,982 78,474,360 816,418,41 81,559,568 

Italy 6,011,711 6,065,515 6,549,023 7,509,290 6,949,428 6,220,547 5,660,890 
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The prices for energy evolve over time depending on many different factors like the 

prices of inputs, market conditions, regulatory and policy-related costs, taxation as well 

as demand’s needs and behavioral patterns. 

The global energy sector strongly relies on bilateral and multilateral agreements 

between countries, that can vary a lot, depending on the geopolitical situation and often 

is hard to access the specifications of these pacts. Additionally, there is a secondary 

energy market which is financially regulated. For the above-mentioned reason, energy 

market prices considered in this paragraph are only the European ones. 

Starting in 2014 and for every 2 year since, the European Commission publishes a report 

on energy prices and costs, which considers the latest trends for gas, electricity and oil 

prices, in Europe and internationally. 

The 2020 report shows that wholesale prices rose up in recent years, before starting to 

fall in 2019 due to economic slowdown and exceeding supply.  The prices then collapsed 

in 2020, due to the economic crisis and restrictions triggered by the COVID-19 pandemic. 

The report also points out the high reliance on fossil fuel imports for EU and their related 

costs. In fact, the EU’s energy net import/export balance reached in 2018 the negative 

value of  -€331 billion, after three years of consecutive import rises. 

Finally, the report shows that energy taxes is a crucial and stable source of revenues for 

EU governments, amounting to 4.6% of their total tax revenues in 2018. 

Oil Prices 

Oil prices are mainly determined by the biggest players in oil supply: OPEC, Russia and 

United States.  

The Organization of Petroleum Exporting Countries (OPEC) consists of Algeria, Angola, 

Congo, Equatorial Guinea, Gabon, Iran, Iraq, Kuwait, Libya, Nigeria, Saudi Arabia, the 

United Arab Emirates and Venezuela. Founded in 1960, OPEC reports oil production by 

member country and collectively manages the amount of oil produced. This ensures that 
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their supply does not exceed demand. Russia and the United States which have become 

large energy producers in recent decades, are not part of this group and compete with 

OPEC for market share. 

Oil prices are often taken as reference prices for other commodities in the energy sector 

and therefore  they can be an efficient indicator on the status of the whole energy 

market. 

Crude oil prices have been very volatile in the recent years. They fell in 2014-2016 and 

rose from mid-2017 to 2018. In 2020, again prices collapsed due to demand decreases 

as an effect from the COVID-19 pandemic.  

Uncertainty and variability in crude oil prices affect the whole energy system prices, 

increasing risks and costs for suppliers and consumers. This suggests that switching to 

renewable energy sources would reduce the volatility linked to crude oil prices. 

Gas and Coal Prices 

Traditionally, Natural Gas and Oil prices have moved with positive correlation, but since 

2006, new drilling techniques have led to Natural Gas being an independent commodity. 

Europe strongly relies on crude oil and oil products, whose hold 52% of total 

consumption, while gas and coal accounts for only 33%. 

European wholesale gas prices fluctuated between 10 and 40 €/MWh over the 2015-

2019 period.  In late 2018 liquefied natural gas imports started to ramp up, resulting in 

a significant price fall in 2019. In 2020, wholesale gas prices fell further, reaching 

historical minimums in May 2020, which was the result of falling gas demand due to the 

COVID-19 pandemic.  

On the other hand there has not been a similar drop in coal prices, making gas relatively 

more convenient. The current high carbon price and low gas prices pushed to rely more 

on gas in power generation, helping to cut the energy environmental impact, since 

natural gas has significantly lower emissions than coal.  
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Generally, the overall variability of gas prices reflects oil prices, but there are some 

significant seasonal dummies for gas: price spikes usually appear in winter, when 

demand grows for heating. 

Electricity Prices 

In the electricity market, in 2016, began the trend of rising wholesale prices and 

culminated towards the end of 2018, with wholesale prices falling drastically in 2019 

due to the falling fuel costs and the expanding renewable energy sector.  

The decrease in prices across the continent was uneven and that resulted in growing 

price divergence among different regions. In the first half of 2020, prices fell between 

30% in some southern European regional markets and up to 70% in some northern 

regions. 

The differences in prices could be explained by local infrastructures, uneven renewable 

generation across markets and a strengthened CO2 price, that particularly affected 

Member States with a greater presence of fossil fuels in the energy mix.  

In addition, COVID-19’s negative impact on broad economic activity caused a further 

significant drop in the electricity demand that has pushed wholesale electricity prices to 

very low levels. 

Moreover, electricity producers may have not the full ability to dispose of their 

production. Insufficient interconnections, some generators lack in technical flexibility, 

the difficulties in efficiently storing energy and/or the absence of sufficient economic 

incentive to reduce production, together provoke a much steeper decrease in prices, 

since supply still needs to match  demand. 

Compared internationally, Europe’s position has been relatively stable over the last 

years. Wholesale electricity prices in the EU have been higher than in the US, Canada 

and Russia, but lower than those in Japan, Australia and Brazil. 
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2. FOSSIL FUELS ISSUES 

Along the human history many sources and forms of energy have been used by mankind: 

from solar beams for cooking to nuclear power. Nowadays electricity is largely identified 

with the concept itself of energy: electricity can be transmitted and distributed easily 

with small losses. 

The electric power industry is dominated by electromechanical generators that convert 

the chemical energy of fuels first into heat, then through turbines into kinetic energy 

and finally into electricity. Unfortunately, big amount of electricity is produced by 

burning fossil fuels, such as coal, oil and natural gas, which brings about several issues:  

1) The burning process produces negative externalities, such as: smog, CO2 and other 

greenhouse gases that provoke climate change and reduce the quality of life. 

2) Fossil fuels are a limited source on earth. 

3) Fossil fuels location and control give rise to Geopolitical Issues. 

Section 2.1 covers the negative externalities, section 2.2 the scarcity of the resources 

and section2.3 the geopolitical issues. 

2.1. Negative Externalities 

Figure 2.1 depicts the history, starting more than 700.000 years ago, of the carbon 

dioxide (C02), in blue, paired with temperature anomalies, the black line, throughout 

the period. 

Looking at the picture there is evidence of positive correlation between carbon dioxide 

level (on the left) and temperature anomaly (on the right). The more CO2 is putted in 

the atmosphere the more the temperature would rise. 
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Fig. 2.1.1: Relation between CO2 PPM and anomalous temperature 

changes (800.000 B.C – Today) 

Source: 2DegreesInstitute, 2022 

While there is some understanding of CO2 levels throughout 4.5 billion years of existence 

of the planet, the most reliable data covers only the last 800,000 years. 

Levels from long time ago about atmospheric carbon dioxide concentrations can be 

determined by measuring the composition of air bubbles trapped in ice from Antarctica. 

Drilling and extracting ice cores up to three kilometres has provided detailed 

information about the “recent” composition of the atmosphere. The data from 20,000 

years ago to 2000 years ago was instead reconstructed using marine sediments. Finally, 

most of the past 2000 years’ records were found using lake sediments and tree rings, 

while the last 35 years of CO2 fluctuations have been precisely measured thanks to 

scientists at Mauna Loa observatory. (Inglis and Gordon, 2015) 

At this moment (July 2022), CO2 PPM (parts per million) is at 418 and the global 

temperature rise is 1.1 degrees Celsius compared to pre-industrial levels and the last 

time carbon dioxide levels on our planet were as high as today was more than 4 million 

years ago. (Snyder, 2016) 

Increased emissions of greenhouse gases have led to a rapid and steady increase in 

global temperatures since the 19th Century Industrial Revolution, which in turn is causing 

catastrophic events all over the world: from Australia and the US experiencing some of 

the most devastating bushfire seasons ever recorded, locusts swarming across parts of 
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Africa, the Middle East and Asia, decimating crops, desertification pace speeding 30 to 

35 times faster than ever according UN, sea levels rising threatening seaside land and 

a heatwave in Antarctica that saw temperatures rise above 20 degrees for the first time. 

It must be noted that the time lag between CO2 emission and their pollution and 

warming effect is around 50 years, and whatever changes is observable now is just the 

tip of the iceberg. (Snyder, 2016) 

Fig. 2.1.2: Relation between CO2 PPM and anomalous temperature 

changes (1000 A.C – Today) 

Source: 2DegreesInstitute, 2022 

Even if all greenhouse gas emissions were halted immediately, global temperatures 

would continue to rise in the coming years. That is why it is imperative starting now to 

drastically reduce greenhouse gas emissions, invest in renewable energy sources, and 

phase out fossil fuels as fast as possible. 

Fossil fuels are also a major contributor to local air pollution, which is estimated to be 

linked to millions of premature deaths each year and a factor that lower life quality 

overall.  

Air pollution is one of the world’s leading risk factors for death, attributed to millions of 

deaths each year that are estimated to be 11.65% of deaths globally. 
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It is also one of the leading risk factors for disease burden. Air pollution is a risk factor 

for many of the principal causes of death, including heart disease, stroke, lower 

respiratory infections, lung cancer, diabetes and chronic obstructive pulmonary disease. 

Fig. 2.1.3: Deaths by source (1990 – 2019) 

Source: Our World in Data, 2022 

As fig. 2.3 depicts, three out of the top 10 causes of death in the last thirty years are 

linked to air pollution. Note that death rates from air pollution are highest in low-to-

middle income countries. 

2.2. A Limited Source on Earth 

Fossil fuels have a limited availability due to the Carbon Cycle duration. 
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The Carbon Cycle is the biogeochemical cycle by which carbon is exchanged among 

various forms crossing the biosphere, the pedosphere, the geosphere, the hydrosphere, 

and the atmosphere of the Earth.  

Fossil fuels consist of deposits of once living organisms. Coal is a solid fossil fuel formed 

over millions of years by decay of land vegetation. When layers are compacted and 

heated over time, deposits are turned into coal that is usually extracted in mines. 

Oil is a liquid fossil fuel that is formed from the remains of marine microorganisms 

deposited on the sea floor. After millions of years the deposits end up in rock and 

sediment where oil is trapped in small spaces. It can be extracted by large drilling 

platforms.  

Natural gas is a gaseous fossil fuel that is versatile, abundant and relatively clean 

compared to coal and oil. Like oil, it is formed from the remains of marine 

microorganisms. It is highly compressed in small volumes at large depths in the earth. 

Like oil, it is brought to the surface by drilling. 

Given that, it is not an option to “farm” fossil fuels due to their enormous time required 

for generation and reserves are slowly being emptied. According to the MET group, 

fossil fuels will eventually phase out. It is predicted that we will run out of fossil fuels in 

this century. Oil can last up to 50 years, coal up to 114 years and natural gas up to 53 

years (IEA, 2022). 

2.3. Geopolitical Issues 

The location of fossil resources is not evenly distributed around the globe and few 

countries dominate the fossil fuels production side of the market. Controlling some 

specific areas and their reserves to grant the access to the energy sources, has become 

crucial in the geopolitical framework. In the last decades there have been several 

conflicts denominated “Oil Wars”, such as the Gulf War and the Iraq war. Among the 
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causes that generated those conflicts, oil control in the Middle East was probably the 

most determinant one. 

In the next sections there will be a look over the major extracting countries of the three 

fossil fuel resources. 

Coal 

Since the year 2000 China has been steadily the leader country in coal production, 

marking a continuous increment in production that created an even larger spread 

between China and the other producing countries.  

According to British Petroleum, China increased the coal extraction from 1.384 million 

of tons in 2000 to 3.902 million of tons in 2020 by a factor of 181%.  In 2020, China 

accounted for over 50% of the worldwide coal production. In comparison, the second 

largest player, India, had a global share of roughly ten percent.  

In Fig. 2.4 and in Table 2.4 are reported the annual coal extraction in 2020 in terms of 

millions of tons and their relative share of the market, by the countries that exceeds 300 

million of tons of annual extracted coal. 

Fig. 2.3.1: Coal Production by Country (2020) 

 Source: BP Statistical Review, 2022 
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Table 2.3.1: Coal Production by Country (2020) 

 

 

 

 

 

 

 

Source: BP Statistical Review, 2022 

Then, in Fig. 2.5 and in Table 2.5 is reported the evolution of the market share held by 

each country during the 2000 – 2020 period. China, Indonesia and India consistently 

expanded their market share while on the other hand, the US notably reduced its piece 

of the pie.  

Fig. 2.3.2: Coal Production Share by Country (2020) 

Source: BP Statistical Review, 2022 

Country Millions of Tons/year 

Australia 476 

China 3,902 

India 756 
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Rest of World 1,162 
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Table 2.3.2: Coal Production Share by Country (2020) 

 

 

 

 

 

 

Source: BP Statistical Review, 2022 

Oil 

Differently from coal production, oil extraction is a matter of many countries. In the year 

2000, top ten oil producer countries covered only around 50% of the total share of the 

market, while in 2020 they covered more than 75% of the total share. Global production 

has increased from 41.846 TWh to 45.508 TWh. 

Fig. 2.3.3: Oil Production by Country (2020) 

 

Source: Our World In Data, 2022 
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Table 2.3.3: Oil Production by Country (2020) 

Country Millions of Barrels/Day 

US 11.18487 

Russia 10.11183 

Saudi Arabia 9.313145 

Canada 4.459455 

Iraq 4.084822 

China 3.987677 

Iran 2.546336 

United Arab Emirates 3.091481 

Brazil 2.905121 

Kuwait 2.527106 

Norway 1.775813 

Kazakhstan 1.764463 

Mexico 1.734495 

Nigeria 1.540991 

Rest of World 15.387601 

Total 76.415206 

Source: Our World In Data, 2022 

Russia, United States and Saudi Arabia dominates the market in 2020 with an aggregate 

share of roughly 45%. 
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Fig. 2.3.4: Oil Production Share by Country (2020) 

 

Source: Our World In Data, 2022 

Table 2.3.4: Oil Production Share by Country (2020) 

Country Share 

US 14.64% 

Russia 13.23% 

Saudi Arabia 12.19% 

Canada 5.84% 

Iraq 5.35% 

China 5.22% 

Iran 3.33% 

United Arab Emirates 4.05% 

Brazil 3.80% 

Kuwait 3.31% 

Norway 2.32% 

Kazakhstan 2.31% 

Mexico 2.27% 

Nigeria 2.02% 

Rest of World 20.14% 

Source: Our World In Data, 2022 
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Natural Gas 

Natural gas production is currently dominated by US and Russia that cover respectively 

the 21% and the 18% share of the worldwide market. The third power in the natural gas 

is Iran, with only 6% share. 

Fig. 2.3.5: Natural Gas Production by Country (2020) 

Source: Indexmundi, 2022 

Table 2.3.5: Natural Gas Production by Country (2020) 

Country Millions of m3/year 

US 772,799 

Russia 665,600 

Iran  214,499 

Qatar 166,400 

Canada 159,099 

China 145,899 

Norway 123,900 
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Algeria 93,499 
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Turkmenistan 77,450 

Indonesia 72,090 

Malaysia 69,489 

United Arab 

Emirates 

62,009 

Turkmenistan 52,100 

Egypt 50,859 

Rest of World 759,823 

Total 3,700,023 

Source: Indexmundi, 2022 

Fig. 2.3.6: Natural Gas Production Share by Country (2020) 

Source: Indexmundi, 2022 

Fig. 2.3.6: Natural Gas Production Share by Country (2020) 

Country Share 

US 20.89% 

Russia 17.99% 
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Norway 3.35% 

Saudi Arabia 2.95% 

Australia 2.84% 

Algeria 2.53% 

Turkmenistan 2.09% 

Indonesia 1.95% 

Malaysia 1.88% 

United Arab Emirates 1.68% 

Turkmenistan 1.41% 

Egypt 1.37% 

Rest of World 20.54% 

Source: Indexmundi, 2022 

US, China and Russia 

Given that, fossil fuels production is a sector that is highly polarized towards the few 

countries that possess these natural resources. It is, then, possible to identify three 

countries that dominates the sector: US, Russia and China. These countries are globally 

recognized as three of the main geopolitical forces that drive world policies since they 

are leaders in economic and military fields. Moreover, they have the power to affect 

politics outside of their national borders due to their enormous influence, in particular 

China and US.  

According to the International Monetary Fund, the United States with a gross domestic 

product of 25,346 billion of US$ is placed at the first place in terms of nominal GDP. 

China follows in second place, with a GDP of 19,911 billion US$. Russia is only in 11th 

place with a GDP of 1,829 billion US$. 

According to “Global Firepower”, the United States are the first military power, with a 

power index of 0.0453, Russia is right behind in second place, with a power index of 

0.0501, China is then the third power with a power index of 0.0511. 

Global Firepower utilizes a ranking system, that considers over 50 individual factors to 

determine a given country military score with categories ranging from military might 



 

 

42 

 

and financials to logistical capability and geography. The closer the score is to zero, the 

greater is the theoretical military power of the given nation (nuclear power is excluded 

from their calculations). 

In terms of the energy sector (including only fossil fuels) these three countries are close 

to an oligopoly situation. 

US detains 6% of the global coal supply, 15% of the global oil supply and 21% of the 

global natural gas supply. Russia holds 5% in coal production, 13% in oil production and 

18% in natural gas production. China currently detains 51% of the global coal 

production, 5% of the global oil production and 4% of the global natural gas production. 

Comprehensively these three countries control: 62% of coal supply, 33% of oil supply 

and 43% of natural gas supply. 

It is straightforward, then, that these countries exercise a great power on the energy 

market. Then political issues, like the recent conflict in Ukraine, can affect the whole 

energy sector destabilizing the supply – demand fragile equilibrium. 

Transition towards Renewable Energy Sources 

Therefore, significant efforts are made to replace conventional power plants. With 

doubts on the safety of nuclear energy and a limited number of places where dams can 

be built to develop hydro-electric power plants, new renewable energy sources are of 

paramount importance in this path toward decarbonization. 

Transition to renewable energy sources (RES) and reducing greenhouse gas (GHG) 

emissions is at the center of attention in recent years in the public and in the research 

community. While there are several other sectors that contributes to greenhouse gases 

emission, such as meat and textile industry, deployment of renewable resources in 

electricity and heat production can strongly mitigate the GHG emission from the energy 

sector which accounts for 35% of overall GHG emissions. (Jafari et al. 2019) 
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The green transition would take long time to be implemented, since it requires the 

entire economy to be reshaped: vehicles and machineries that are powered directly by 

fossil fuels need to be substituted with other ones that can exploit electricity produced 

in sustainable plants, or directly renewable sources, like solar power. 

Therefore, due to the limited availability of fossil fuels resources, it is mandatory 

switching as soon as possible to renewable energy sources. 

Moreover, the recent unstable political situation has accelerated the need to switch 

from fossil fuels to renewable sources. The sudden cut in fossil fuel supply (especially 

Natural Gas) from Russia, has strongly increased energy prices over the European 

market, threatening all the European economy by a horizontal, unexpected rise of costs. 

Switching to a RES economy imply for EU a much more stable equilibrium in the energy 

market than before, since external factor such US, China and Russia would have a 

significantly less impact. 

It is clear that RES transition would improve the environment and the society that we 

live in. Reducing emissions would mean improvement in population health, arresting 

global warming and safeguard the environment, reducing issues like desertification and 

bushfires.  

On the other hand, one can say that the carbon industry is granting a lot of jobs and 

economic prosperity but, stated that RES transition would bring social issues such as job 

losses and private investments to pollute less (like buying new sustainable cars or 

renovate house heating/cooling systems), several studies and reports claim that RES 

transition could enhance the economic system overall. 

The “Economic Report of The President” reported in fact that GHG emission reductions 

coincided with economic growth in the United States in 2008 to 2015 period. Moreover, 

renewable energy consumption has a significant positive impact on the economic 

output for 57% of the top thirty-eight renewable energy consuming countries. 

(Bhattacharya et al., 2016). 
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It must be noted that, from an economic point of view, Renewable Energy Sources 

becomes relatively more convenient as the traditional fossil fuels sources become more 

expensive or RES become cheaper.   

Since fossil fuels are a limited source on earth that is slowly falling down, it is 

straightforward that ceteris paribus the price will increase due to the expected shortage 

of supply. Moreover, the negative externalities of fossil fuels (GHG emissions) push the 

policies to disincentive exploiting such sources and that contributes to make fossil fuels 

relatively less convenient compared to RES. 

Given that, renewable electricity costs have fallen significantly in recent years, leading 

to increased interest in a large-scale RES expansion in power systems. From 2008 to 

2015, the cost of electricity fell 41% for wind, 54% for rooftop solar photovoltaic (PV) 

installations, and 64% for utility-scale PV (Donohoo-Vallett, 2016). 
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3. ITALIAN ECOLOGICAL SITUATION 

Section 3.1 describes the concept of ecological balance and shows the Italian situation 

in this term. Section 3.2 brings together the main policies in place in Italy toward 

ecological transition. Finally, section 3.3 deepens into the topic of agriculture 4.0 

among the various policies that promote ecological transition. 

3.1. Ecological Balance 

The environment, through plants photosynthesis, can reduce the greenhouse gases 

distribution over the atmosphere. Unfortunately, this purification requires more plants 

and green areas the more the GHG are spread into the atmosphere. Basically, there are 

two effects that an area can produce: a positive one, depending on how “green” that 

area is, that reduces GHG density; and a negative one, depending on how much that 

area emits GHG. There is then a balance between those effects. 

In some uncontaminated natural areas, the positive effect is so big that they can even 

cover for other territories emissions. In some high-density areas, on the other hand, the 

soil is not even nearly sufficient for covering all the emissions in that area; therefore, 

these areas are, in some way, borrowing the beneficial effects that the uncontaminated 

ones are granting.  

The next paragraphs present a more detailed view over the Italian ecological impact. 

The following assessment (Franco, S. et al. 2021), performed for all the 8.092 Italian 

municipalities, is based on the evaluation of the Ecological Balance (EB), obtained as the 

difference between Biocapacity (BC), which is the “positive effect”, and Ecological 

Footprint (EF), that is the “negative one”. 
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EB = BC – EF    (1) 

The following maps show respectively the ecological footprint (EF), Biocapacity (BC) and 

the Ecological Balance (EB) in each Italian municipality.  

The estimation of the Ecological Footprint has been performed by estimating EF per 

capita at the municipal level, that was carried out considering the most updated value 

of Italian per capita ecological footprint and the relative level of consumption per capita 

with respect to the national one. This value has then been multiplied for the living 

population in the municipality to obtain the EF of the given municipality. 

Regarding the estimation of Biocapacity, each area was converted into a bioproductive 

surface, measured in global hectares (gha), adjusted for a yield factor. Equivalent factors 

convert one of the five land types (Built-up land, Cropland, Grazing land, Forest land, 

Water) into a standard unit of biologically productive area, represented by one gha. The 

yield factor accounts for the level of productivity of a given land type in a specific country 

with respect to the average world productivity. 
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Map 3.1.1: Italian Ecological Footprint (2021) 

Source: Franco S. et al. 2021 

Looking at Map 3.1.1 is clear that Northern Italy has a relatively higher Ecological 

Footprint than Southern Italy. That difference is partially explained by the different 

density of population, but the main reason behind is the difference in EF per capita. 

Which means that northern regions are producing more emission than the southern 

ones. 
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Map 3.1.2: Italian Biocapacity (2021) 

Source: Franco S. et al. 2021 

Performing then equation (1), 71.4% of the Italian municipalities appears to have a 

negative Ecological Balance and thus to be not sustainable. On the other hand, 38.6% of 

the Italian territories are sustainable municipalities, showing a positive value of EB. As 

far as the Italian population is concerned, the vast majority, almost 95%, live in 

municipalities characterized by unsustainable conditions, which implies that the quality 

of life could be threatened by problems like bad air quality, increased probability of flood 

and bushfire and so on. (Franco, S. 2021) 
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Map 3.1.3: Italian Ecological Balance (2021) 

Source: Franco S. et al. 2021 
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Table 3.1.1: Sustainable and unsustainable municipalities (2021) 

Source: Franco S. et al. 2021 

Overshoot Day for Italy 

Individual ecological footprint for Italy is 4.4 gha (global hectare) while global 

biocapacity is 1.6 gha per person. One global hectare is the world's annual amount of 

biological production for human use and human waste assimilation, per hectare of 

biologically productive land and fisheries. 

Given that, and considering a 365-day year, one can calculate the “Overshoot Day” for 

Italy, that is the day in which Italy ecological footprint meets its biocapacity. The 

Overshoot Day for Italy in 2022 has been on the 135th day of the year, that is May 15th. 

From that day, Italy is making a sort of a debt with the planet, exploiting the resources 

that other areas are giving, and that allows Italian people to live over their possibilities. 

In comparison, the global Overshoot Day for 2022 have been estimated to be on July 

28th (Global Footprint Network, 2022). 

If all global population would live like Italy, one planet wouldn’t be enough to fulfil 

everyone lifestyle. In fact, more than two and a half planets would be necessary, 

according to the Global Footprint Network. 

Condition 
Number of 

Municipalities 
% 

Aggregate 

Area (Km2) 
% 

Aggregate 

Population 
% 

Sustainable 2,314 28.6% 118,654 39.3% 3.159 M 5.2% 

Unsustainable 5,778 71.4% 183.419 60.7% 57.638 M 94.8% 

Total 8,092 100% 302.073 100% 60.797 M 100% 
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3.2. Italy Transition to Renewables 

Italy, on its own, accounts for 0.97% of global CO2 emissions with 361,176 tonnes 

released in 2021 (Our World in Data, 2022). It is therefore clear that is mandatory 

reducing Italian ecological footprint improving Italian sustainability.  

First, it must be defined what does sustainability means. Literature has defined two 

concepts of sustainability: a weak one and a strong one. 

For neoclassical economists, sustainability is a condition wherein the capital is 

maintained at least at a constant level. To this end, natural capital can be substituted 

with man-made capital. When the income of an economic activity is reinvested in 

manufactured or human capital, and its value is greater than the value of the natural 

capital lost in such an activity, a weak sustainability condition is established. Weak 

sustainability therefore implies that there is no loss of capital (Ayres, R. U. 2001). 

On the other hand, the strong sustainability paradigm is based on the idea that natural 

capital is not an input that can be freely replaced, since it accomplishes many functions 

that man-made capital cannot. The functions of natural capital associated with 

production and consumption processes, such as raw material provision and waste 

assimilation, can be partially substituted by man-made capital. However, the basic life 

support function cannot be substituted. This implies that “the global environmental and 

ecological system that provides us with the basic functions of food, water, breathable 

air and a stable climate should be subject to a strong sustainability rule” (Ekins, P. 2003). 

The 2020 GSE (“Gestore Servizi Energetici”, that stands for “Italian Energy Provider”) 

report shows that in Italy 20.4% of total energy consumption comes from Renewable 

Energy Sources, below the European average of 22.1%. Looking at the Electric sector 

Italy electricity production from RES accounts for 38.1%, above the European average of 

37.5%. Regarding the heating sector RES account for 19.9%, below the average 23.1%. 

Finally, in the transport sector RES are used in 10.7% of the cases, above the average of 

10.2%. 
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In the figures 3.1 and 3.2 below, there are the comparisons between the first four 

energy consumers EU countries (Deutschland, Spain, France and Italy) and Union 

average in terms of: 

• Aggregate energetic consumption that comes from renewable sources. 

• Renewable sources usage in the electricity production sector. 

• Renewable sources usage in the heating sector. 

• Renewable sources usage in the transport sector. 

In absolute terms Italy consumes 107.3 mtoe and 21.9 mtoe comes from renewable 

sources. 

Mtoe stands for millions of tonnes oil equivalent, which is a unit of energy used to 

describe the energy content of all fuels, typically on a very large scale. It is equal to 

4.1868x1016 Joules, or 41.868 petajoules which is a tremendous amount of energy. A 

tonne of oil equivalent (toe) is a unit of energy, defined as the amount of energy 

released by burning one tonne (1000 Kilograms) of crude oil. 

The composition of renewable energy consumption in Italy is thus the following: 9.9 

mtoe for the electric sector, 10.4 mtoe for the heating sector and 1.6 mtoe for the 

transport sector (biofuel and renewable electric vehicles are considered). 

Italy has slightly less aggregate consumption of renewable energy sources, with respect 

to the EU average.  In the heating sector RES accounts only for 19.9%, while the 

European average is at 23.1%.  

On the other hand, Italy performs better than the average in the electric sector, where 

the renewables quota is 0.6% better than other EU members, and in the transport 

sector, where 10.7% of energy consumption comes from RES. 
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Fig. 3.2.1: Renewables Consumption Shares (2019) 

Source: GSE report, 2020 

Fig. 3.2.2 Renewable Energy Composition (2019) 

Source: GSE report, 2020 

In fig. 3.2, there are shown the different compositions of sources of RES in the top4 Eu 

countries and the average of the Union. Bioenergies could be divided into derived 

electricity, thermal energy and biofuels. 
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For all the European country Bioenergies represent the predominant source for 

renewable energy, but the other sources may vary a lot depending on the country. In 

Italy the Eolic sector is not as developed as in the other countries, but the Hydraulic 

sector has a relative predominance in the Italian composition. 

Italian Policies towards the Green Transition 

In the next section are listed some of the major Italian and European policies, purposes 

and objectives for the ecological transition. 

Regulation (EU) 2018/1999 establish that as an objective for 2030 that the RES 

aggregate consumption quota should be at least equal to 32%, that the quota in the 

transport sector should be at least 14% and that the energy consumption for heating 

and cooling systems should have a + 1.3% annual growth. 

While the 2020 PNIEC (“Piano Nazionale Integrato per l’Energia e il Clima”, that stands 

for “Integrated National Energy and Climate Plan”) sets the goal at 30% for the aggregate 

RES quota, at 22% for the transport sector and it is aligned with the +1.3% growth in the 

heating and cooling systems. 

Currently, the most important policy in place is the 2021 NRRP (“National Recovery and 

Resilience Plan”).   

The National Recovery and Resilience Plan is part of the Next Generation EU (NGEU) 

program, the €750 billion package allocated by the European Union in response to the 

pandemic crisis. The main component of the NGEU program is the Recovery and 

Resilience Facility (RRF), which has a duration of six years, from 2021 to 2026, and a total 

size of €672.5 billion. 

Total funds provided by the NRRP presented by Italy amount to 222.1 billion. Moreover, 

an additional 26 billion has been earmarked by 2032 for the implementation of specific 

works and for the replenishment of resources from the Development and Cohesion 

Fund. In addition to these resources, there are those made available by the REACT-EU 
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program, which, as stipulated by EU regulations, are meant to be spent in the years 

2021-2023. These funds amount to an additional €13 billion. 

Overall, total funds amount to €261 billion. 

The NRRP is divided into 6 Missions that are further subdivided into 16 Components, 

functional to achieve the economic and social objectives defined in the government's 

strategy. The Components, in turn, are divided into 43 areas of intervention for 

homogeneous and coherent projects. 

The 6 Missions are: 

1) Digitalization, Innovation, Competitiveness and Culture 

2) Green Revolution and Ecological Transition 

3) Infrastructure for Sustainable Mobility 

4) Education and Research 

5) Inclusion and Cohesion 

6) Healthcare 

In fig. 3.3 are depicted the 6 Missions and their relative share of fundings. 
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Fig. 3.2.3: Allocation of NRRP Funds (2021) 

Source: European Commission, 2021 

The NRRP among its missions includes the key point of the “Green Revolution and 

Ecological Transition” that allocates a total of € 68.6 billion (€59.3 billion from NRRP and 

9.3 from a complementary fund) with the main goals of improving the sustainability 

and resilience of the economic system and ensuring a fair and inclusive environmental 

transition. The NRRP is the Italian purpose within the Next Generation EU program that 

the European Union negotiated in response to the pandemic crisis. The PNRR 

comprehends several points: waste recycling enhancement (increases of 55% electric 

material, 85% paper, 65% plastic materials, 100% textile material); reduction in drinking 

water leakage on water networks; an additional 50,000 more efficient private and public 

buildings; support for research on the use of hydrogen in industry and transport. 

3.3. Agriculture 4.0 

Among the measures in the NRRP, within the 2nd Mission, €5.2 billion are allocated for 

the agricultural sector to support technological innovation. First, modernization in the 

agricultural mechanics sector, a driver for the so called “Agriculture 4.0” market, is 

planned. Added to this are measures for technological innovation in the sector, a 
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transformation that could make a difference for all players involved in the agrifood 

supply chain. 

The areas of interest are logistics, agrisolar, supply chain contracts and the 

modernization of agricultural machinery. 

And this is where “Agriculture 4.0” comes in, which provides significant innovation on 

the agricultural activities such as: driver assistance or autonomous driving systems, 

satellite systems installed on the means for tracking the operations carried out in the 

field and even sensors for monitoring the quality and quantity of crops. 

Through this measure, the NRRP thus seems to want to give a boost to the process of 

upgrading agricultural machinery in use, to encourage overall innovation in the sector 

with undoubted benefits on environmental sustainability. 

As of today, the agricultural mechanics sector is actually driving the Agriculture 4.0 

market: in 2020, Agriculture 4.0 generated a turnover of about €540 m illion in Italy 

(Italiadomani.gov.it, 2022). About 73% was generated by manufacturers of 

agricultural machinery and auxiliaries. The solutions driving the market growth are 

those associated with monitoring and control of agricultural vehicles and equipment  

(36% of the market), followed by related machinery, accounting for 30% of the market 

(Smart Agrifood Observatory, 2022). 

Despite the fact that market data therefore indicate an already relevant attention of 

agricultural companies with respect to digital solutions applied to agricultural 

equipment, Italy is one of the countries with the highest number of registered 

agricultural equipment, despite the average size of companies being smaller than 

those of all other European countries, and the active fleet of machines is still quite 

dated (Smart Agrifood Observatory, 2022). 

Agriculture 4.0 has become in recent years one of the factors recognized as a lever 

for the competitiveness and resilience of the primary sector. In fact, over time it has 

been the subject of national and European funding, aimed at supporting companies 
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in the sector in the transition and innovation process in order to respond to the major 

challenges they face. From the CAP (Common Agricultural Policy) 2014-2020, to the 

Horizon 2020 program, to the NRRP, funds have been dedicated to support 

investments by agricultural enterprises in, among others, technological and digital 

innovation for the benefit of different objectives such as: improving water resource 

management, upgrading the machinery fleet, improving supply chain traceability. 

Thanks to the market entry of innovative technologies, such as the Internet of Things, 

data analytics and drones, it is now possible to transfer the approach of agricultural 

data valorization to the entire farm dimension and, more broadly, to the entire 

supply chain, generating benefits in terms of process efficiency, sustainability and 

transparency. The potential of Agriculture 4.0 is therefore not only for primary 

production actors to generate efficiency and sustainability within their own realities, 

but also for upstream and downstream actors in the agrifood supply chain.  

It is certainly positive, then, that in measures such as those defined by the NRRP there 

is a focus on innovation, including technological innovation in the sector. For the 

future, however, it will be desirable to consider the potential of such solutions as a 

whole. Potentialities that are not in opposition to the perceived needs of businesses 

in the sector. Traceability of agricultural products along the supply chain, for example, 

is among the top needs expressed by agricultural enterprises. Moreover, if we look 

more broadly at the European Community's strategic objectives for the agrifood 

sector, it becomes clear that, with a long-term view, it will be important in the coming 

years to support investments in Agriculture 4.0 by directing them toward solutions 

that can actually affect agricultural enterprises as a whole and their supply chains.  

To summarize, Agriculture 4.0 and technologic innovation in the agricultural sector 

can improve the overall efficiency of farms and help making them more sustainable. 
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4. A NEW ROLE FOR FARMING 

Section 4.1 introduces the topic of sustainable farms within a circular economy. Sections 

4.2 and 4.3 briefly describe solar energy and biogas production on farms. Finally, 

section 4.4 collects four papers from the literature related to efficiency issues in 

renewable energy production in agriculture. 

4.1. Sustainable Farms 

Farming has always been a part of human history from its very first origin, in fact the 

discover of agriculture is considered one of the crucial steps that caused the transition 

from the “homo abilis” to the more developed “homo sapiens”. 

Nowadays, agriculture still plays a fundamental role in the human society but due to 

the technological progress the number of workers employed in the sector has 

diminished drastically. Nevertheless, agriculture remains a major sector for 

employment in the EU, employing approximately 9.7 million workers and accounting for 

almost 4% of total employment in the EU in 2016. 

Farming provides, as its core feature, some of the fundamental human needs, such as 

nutrition and clothing, but recently there have been some new perspectives on the role 

of farms in an economic system that should not still be linear, but that should aim to be 

circular. 

Circular economy is defined as “a model of production and consumption, which involves 

sharing, leasing, reusing, repairing, refurbishing and recycling existing materials and 

products as long as possible” (European Commission, 2022). In this way, the life cycle of 

products is extended and, in practice, it implies reducing waste to a minimum. When a 

product reaches the end of its life, wherever possible, its components are reinserted 

inside the economy. This is a departure from the traditional, linear economic model, 
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which is based on a production chain that starts with raw materials that subsequently 

are being processed then purchased, consumed and thrown away by final consumers.  

Also, part of this model is planned obsolescence, that is when a product has been 

designed to have a limited lifespan to encourage consumers to buy it again and again, 

producing piles of waste. 

The world's population is growing and alongside the demand for raw materials. 

However, the supply of crucial raw materials is naturally finite. Limited supplies also 

means that some countries are dependent on other countries for their raw materials. In 

addition, extracting and using raw materials has a major impact on the environment. It 

also increases energy consumption and CO2 emissions. However, a smarter, sustainable 

use of raw materials can drastically lower CO2 emissions. Measures such as waste 

prevention, eco-design and re-use could make companies more efficient in terms of 

costs, while also reducing total annual greenhouse gas emissions. 

Specifically, 2022 geopolitical situation has caused a limited supply of natural gas for EU 

states that was mainly coming from Russia. A more sustainable production and 

utilization of energy is, therefore, crucial to overcome economical-political issues and 

environmental ones. 

It appears then mandatory, to the extent of safeguard the environment, reconsider 

both the energy production/consumption and the idea of a linear economy. 

Farms are one of the protagonists of the circular economy: farms provide food and 

clothing starting from the very raw materials and in doing so they could protect the 

environment, drive innovation and help the industry stay competitive. 

Energy has always been a struggle for agriculture: it is a sector that has always been 

input-intensive in energy, whether in the past it came from human or animal labour or 

more recently from fuels that move machineries (fossil fuels most of all). 

Moreover, farms can produce themselves energy in a sustainable way: through bio-

energies, solar, wind, geothermal and even hydraulic power. In the next sections are 
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briefly described the solar and biogas production, that will be significant subjects of the 

analysis within the following chapters. 

4.2. Solar Production 

Solar energy production on farms can basically take place in two ways: separately 

from agricultural activities or by merging with them. 

In the former case, this involves, for example, placing solar panels on the roofs of 

buildings within the boundaries of the farm, while in the latter case it is precisely a 

matter of merging agricultural activity with solar energy production, and this practice 

is called agrivoltaics. 

It is a system that combines agricultural production with photovoltaics, 

accommodating the two terms in the same plot. In fact, it is a combination of solar 

panels and food crops on the same unit of land that maximizes land use (Dupraz et al. 

2011). 

Agrivoltaics coexists mainly with vegetable crops, but even with farm animals. In fact, 

solar panels create shaded areas that promote crops but can also provide shelter for 

animals. 

More specifically, sustainable agrivoltaics would function to: 

Preserving land for food agricultural use 

In fact, with the elevation of solar panels, the land retains its fertility and can switch 

from arable agricultural use to higher value types of crops such as horticulture, fruit 

growing or viticulture. Moreover, maintaining plant cover and plant mass counteracts 

the decarbonization of soils Shading also makes it possible to decrease solar radiation 

and increase the available water potential in the soil. 

Reducing the water requirements of crops 

Especially in particularly dry and hot seasons and places, agrivoltaics allows to 

minimize the water stress of crops. Their water requirements are reduced, even in 

comparison with their placement in the sun. 
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Supporting agricultural crops 

Some types of cultivation require supportive conditions, such as shade or even 

mechanical supports to promote growth. Solar panels, in addition to producing energy, 

can act as supports to meet these demands. 

Regulating rainwater and protecting against violent weathering 

The raised photovoltaic panel forms a generally impermeable surface over which 

water flows by gravity. Water harvesting systems make it possible to reduce the 

amount of precipitation on the ground, reducing stormwater formation, and to 

conserve water for reuse according to crop needs. 

Moreover, an agrivoltaics system can act as a protective cover in case of heavy rain, 

snow, hail or wind; these are potentially harmful factors to crops. 

4.3. Biogas Production 

Biogas is generally produced starting from agricultural by-products (biomass and 

livestock waste) that are subject to a process called anaerobic fermentation, that is the 

fermentation in the absence of oxygen of organic substrates (Insidewaste.com, 2022). 

The most efficient biomass that can be fermented is corn, but sorghum and barley with 

lower yields are also used. The most efficient wastewater is cattle, but pigs’ manure is 

also used. Biomasses can either come from dedicated crops or can also be production 

waste. 

Traditionally wastewater is used as natural fertilizers but can cause environmental 

problems such as air and water pollution (dispersion of methane and carbon dioxide). In 

addition, incorrect use of manure could lead to pathogens that are harmful to human 

health. 

The process of anaerobic digestion of organic matter produces biogas. It mainly 

consists of methane (50-70%), carbon dioxide and a mix of other gases. It is a renewable 

gas that can be used in two ways:  
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1) Power an engine that, via an alternator, converts thermal energy into electrical 

energy that is sold to energy providers. 

2) Purify the gas. This is known as biogas upgrading and the resulting gas is called 

biomethane (91% pure methane) which has multiple valuable uses. Thereafter, it can be 

injected into the gas grid or used as transportation fuel. 

Currently the second option seems to be better from an energy point of view since it 

has less energy dispersion (in the form of heat) and there are Italian and European 

incentives to go in this direction. Even the first option, however, could have interesting 

implications from a circular economy point of view: energy waste (heat) could be used 

for crops and farms that require large amounts of heat and humidity, for example for 

the poultry sector or, with an eye to the future, insect farms and algae crops. 

Anaerobic digestion is an environmentally friendly, cost-effective solution to process 

virtually all types of organic waste. These include food waste, food and drink production 

waste, farm waste (manures, slurries, etc.), garden waste and more. Furthermore, many 

farmers grow energy crops, such as energy maize and hybrid rye, specifically for 

anaerobic digestion. Some of them are meant to be “break crops” which grow in-

between standard food crop cycles and this enables farmers to utilise their land during 

void periods, produce valuable crops which earn them income, improve soil condition 

and at the same time contribute to renewable development. 

Currently most organic waste worldwide ends up in landfill sites that threaten the 

environment since they subsequently decompose and produce methane which escapes 

into the atmosphere. Methane is an extremely potent gas which causes up to 30 times 

more pollution than an equivalent amount of carbon dioxide (CO2). In addition, organic 

waste at landfills also generates leachate (wastewater) which presents many challenges. 

In many parts of the world landfills have no leachate containment measures. As a result, 

leachate drains freely into natural rivers and lakes causing severe water pollution. 
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More recently, mixed municipal solid waste, which includes organic waste, has been 

sent to incineration plants (the most common type of energy from waste plants). 

Incineration can recover some of the waste by producing electricity and heat. Though is 

unquestionably a better solution than landfill, it is not a particularly efficient and 

environmentally friendly method of processing organic waste. 

When organic waste is relatively pure or can be separated from mixed waste, anaerobic 

digestion is regarded as the best processing method. Biogas plants extract the energy 

content by converting it to useful biogas. Unlike other renewable technologies, such as 

wind and solar, biogas production is very efficient, it is not uncertain and also allows 

energy storage. 

Combined heat and power engines (CHP plant) can burn it to produce renewable 

electricity and heat whenever it is needed, granting a stable flow of energy. 

Alternatively, upgrading it to biomethane (that is very close to pure methane) also 

allows energy storage, transportation and usage where and when necessary. 

Biomethane is useful in both gaseous and liquid form. It has similar properties to natural 

gas but it is a clean renewable biofuel. It has numerous benefits and plays an important 

part in making both gas grids and the transportation sector more sustainable. 

Moreover, in addition to generating renewable energy, there is a by-product of the 

biogas production process, known as digestate, which is a natural fertiliser with 

numerous proven benefits for farming. Digestate replaces traditional chemical 

fertilisers, thus it saves costs to farmers and reduces pollution. 
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Fig. 4.1.1: Biogas Production Scheme 

Source: InsideWaste.com, 2022 

Fig. 4.1.1 portraits the production scheme for the electricity and heat production 

through a Combined Heat and Power Engine that burns the biogas from the anaerobic 

digestion of biomasses and wastewater. Alternatively, the biogas can be purified to 

obtain biomethane. 

Fig. 4.1.2 depicts the growth in biogas production in EU from 2008 to 2020. It has 

significantly increased over the years, especially in Germany that have more than 

doubled its domestic production. Italy has witnessed a quick growth during the 2010-

2013 period, then the curve has flattened.  

Biogas is already seen as a reliable alternative to the common energy sources and the 

latest trends suggest that biogas production can keep increasing in the following years. 
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Fig. 4.1.2: Biogas Production Trends in Europe (2008 – 2020) 

Source: Our World in Data, 2022 

4.4. Works from Literature 

The purpose of this thesis is to clarify the efficiency issue about the energy production 

within the agricultural sector using the Data Envelopment Analysis method. In other 

words, farms can produce energy (output) in several ways, using different inputs in 

several ways and through this input-output process some can be more efficient than 

others. The DEA method helps in identifying efficient and inefficient farms, in 

understanding the sources of inefficiencies and, moreover, in suggesting how inefficient 

farms can improve and being optimally efficient. 

A large part of the literature of economic efficiency owes something to the early work 

by Farrell (1957): “The Measurement of Productive Efficiency”. After that a whole body 

of literature has been developed around the concept of frontier methodology. 

The original frontier function model uses the efficient unit isoquant to measure 

economic efficiency, and to decompose this measure into technical and allocative 

efficiency. In this model, technical efficiency (TE) is defined as the firm's ability to 
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produce maximum output given a set of inputs and technology, while allocative 

efficiency (AE) measures the firm's success in choosing the optimal input proportions, 

that is where the ratio of marginal products for each pair of inputs is equal to the ratio 

of their respective market prices. 

The large number of frontier models that have been developed based on Farrell's work 

can be classified into two basic types: parametric and non-parametric. Parametric 

frontiers rely on a specific functional form while non-parametric frontiers do not. Data 

Envelopment Analysis is a non-parametric model. 

In addition, another important distinction can be made between deterministic and 

stochastic frontiers. The deterministic model assumes that any deviation from the 

frontier is due to inefficiency, while the stochastic approach allows for some statistical 

noise. DEA can be classified as a deterministic frontier model. 

The deterministic parametric approach was initiated by the work of Aigner and Chu 

(1968), who estimated a Cobb-Douglas production frontier through linear and quadratic 

programming techniques and it has been further developed by the work of Timmer 

(1971) that introduced the probabilistic frontier production model. 

Then, another class of deterministic parametric models is the one proposed by Afriat 

(1972), in which technical efficiency (TE) is measured by a one-sided disturbance term. 

This class of models relies on a statistical production frontier. 

If the distribution of the disturbance term is determined by explicit assumptions, the 

frontier is estimated by the maximum likelihood estimation (MLE) method. When no 

assumptions are made concerning the distribution of the error term, the frontier can be 

otherwise estimated by the corrected ordinary least squares method (COLS) which 

consists of simply and neutrally shifting the frontier upwards until no positive error term 

are left behind. 

Further developments in frontier methodology exploited an “econometric approach” 

(Bauer, 1990) with the purpose of estimating frontiers using a parametric 
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representation of technology along with a two-part composed error term. This 

approach was first proposed by Aigner et al. (1977), Meeusen and Van den Broeck 

(1977), and Battese and Corra (1977). The first part of the composed error term 

represents statistical noise and is generally assumed to follow a normal distribution; it 

reflects all the casualties that are not under the firm’s control, like luck or weather. The 

second part represents inefficiency and instead is assumed to follow a particular one-

sided distribution. 

Several authors have revolved around the definition and explication of the distribution 

that represents the inefficiency. The following one-sided distributions have been then 

employed: the half-normal and exponential distributions proposed by, among others, 

Aigner et al. (1977), the truncated normal proposed by Stevenson (1980), and the two-

parameter Gamma distribution Proposed by Greene (1990).  

The “econometric approach” recalls a recurring theme in frontier methodology and 

broadly in statistic modelization, that is the conflict between structure and flexibility. 

The more structure we impose on a model the better the estimates, provided the 

structure we impose is correct, and the econometric approach relies on the definition 

of a structure. Nevertheless, one must keep in mind that assuming a structured model 

bear the burden of being precisely correct about all the specifications.  

Ideally, either the correct structure is known to be imposed a priori otherwise it has to 

be estimated a sufficiently flexible model so that possible restrictions can be tested. 

In short, stronger assumptions generate stronger results, but they strain one’s 

conscience more (Bauer, 1990). The appropriate structure to impose can only be 

determined by a careful consideration of the data and the characteristics of the sector 

under study. Unfortunately, there are not always statistical tests to guide the way. 

Data Envelopment Analysis, originally proposed by Charnes, Cooper and Rhodes (1978), 

is on the other side with respect to the previous stated “econometric approach” since it 

is a non-parametric method that provide a deterministic frontier in which deviations 
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from the frontier are paradigmatically considered inefficiencies. In that article they 

proposed the CCR model, named after authors initials. 

Then Banker, Charnes and Cooper (1984) further developed the DEA methods, 

proposing the BCC model, named as well after the initials of the authors. Starting from 

that, many extensions to DEA have been proposed in the literature.  

The textbook “Introduction to Data Envelopment Analysis and its uses” by Cooper (one 

of the original authors), Seiford and Tone (2006) reports a bibliography of over 2800 

works that develop, rearrange, change perspective and open new possibilities for the 

DEA method. These developments range from adapting and changing implicit model 

assumptions such as input and output orientation, distinguishing technical and 

allocative efficiency, adding limited disposability of inputs/outputs or varying returns-

to-scale to even develop new techniques that utilize DEA results and extend them for 

more sophisticated analyses, such as stochastic DEA or cross-efficiency analysis. 

Given that, in the following paragraphs are presented some works that come close to 

this thesis topic and deserve to be acknowledged. 

1. First paper 

The first one is the work of Dogan and Tugcu (2015) “Energy efficiency in electricity 

production: a data envelopment analysis (DEA) approach for the G-20 countries”, 

which is about a DEA efficiency analysis in the energy production field. The study adopts 

the DEA techniques to compare the energy efficiency performances of G-20 countries 

in electricity production for the periods 1990, 1995, 2000, 2005 and 2011. 

They considered five different inputs: Coal Sources (CS), Hydroelectric Sources (HS), 

Natural Gas Sources (NGS), Oil Sources (OS), and Renewable energy Sources (RS), 

excluding hydroelectric. On the other hand one output is taken into consideration, 

which is the Electricity Produced.  
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Data for this study have been obtained from the World Development Indicators 

Database of World Bank. Data Envelopment Analysis was used because of its ability of 

handling multiple inputs and multiple outputs simultaneously without the need of 

specifying a cost or a production function. 

Efficiency measurement is made using CCR model and Super Efficiency Model. Two 

values have then been found: ES, “efficiency score”, and SES, “super-efficiency score” 

and their values are given for each period (1990 – 2011) and country (G-20 members). 

ES and SES are derived from solving CCR and Super Efficiency Models, respectively. 

DEA assigns the efficiency value of one (normalized to 100 in this case) to the DMUs 

which are efficient. All the DMUs lying on the efficiency frontier are therefore 

considered efficient, anyway there might be several units with an efficiency value of 

unity. Each one of them is efficient in their way, but which one is the “more efficient”? 

Super Efficiency is perhaps the most well-known answer to this question. The idea of 

Super Efficiency is that the best practice frontier is created first without evaluating 

DMU0, and then with its inclusion. With this procedure, DMU0 may even be attributed 

an efficiency value higher than unity. 

Results are then summarized in the following table 4.1 and 4.2. 

Table 4.2.1: G-20 Countries ES and SES (1990 – 2000)  

Country ES 1990 SES 1990 ES 1995 SES 1995 ES 2000 SES 2000 

Argentina 100 464,84 100 425,04 100 241,5 

Australia 100 113,14 100 158,55 100 279,23 

Brazil 100 1362,32 100 1462,96 100 650,88 

Canada 100 114,69 100 126,18 100 145,77 

China 100 1460,26 100 552,57 100 763,87 

France 99,6 99,6 99,74 99,74 99,74 99,74 

Germany 100 175,43 100 127,61 100 122,36 
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India 100 213,92 100 196,29 99,39 99,39 

Indonesia 100 159,72 100 107,62 99,91 99,91 

Italy 100 115,59 100 145,39 100 114,47 

Japan 100 117,29 100 112,02 100 104,43 

Korea 100 158,11 100 265,61 100 614,28 

Mexico 100 162,52 100 108,03 100 146,34 

Russia 100 230,95 100 1665,5 100 511,55 

Turkey 100 111,23 100 106,85 100 101,14 

UK 100 398,27 100 223,64 100 247 

USA 100 101,8 100 103,83 98,85 98,85 

EU 96,98 96,98 98,41 98,41 99,95 99,95 

Source: Dogan and Tucgu, 2015 

It can be seen from Table 4.1 that among 18 samples in 1990, 16 countries are efficient 

and only 2 of them (France and EU) are inefficient. The most efficient country in 1990 is 

China.  

In 1995, similar to 1990, 2 samples are inefficient: France (99.74 %) and the European 

Union (98.41 %). The most efficient country in 1995 is Russia. 

In 2000, 5 countries are found to be inefficient: France, European Union, India, 

Indonesia, and the United States. China leads the efficient countries. 

Table 4.2.2: G-20 Countries ES and SES (2005 – 2011) 

Country ES 2005 ES 2005 SES 2005 ES 2011 SES 2011 

Argentina 100 100 224,39 100 273,73 

Australia 100 100 177,02 100 112,92 

Brazil 100 100 510,2 100 462,53 

Canada 100 100 118,57 100 146,7 

China 100 100 1049,24 100 682,88 
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France 99,4 99,4 99,4 100 111,29 

Germany 100 100 118,19 100 149,8 

India 99,5 99,5 99,5 99,17 99,17 

Indonesia 100 100 130,19 100 119,82 

Italy 100 100 113,06 100 110,03 

Japan 100 100 104,12 100 105,65 

Korea 100 100 756,36 100 499,12 

Mexico 100 100 118,35 100 131,08 

Russia 100 100 202,11 100 1234,91 

Turkey 100 100 104,39 100 170,2 

UK 100 100 237,7 100 165,14 

USA 99,16 99,16 99,16 99,92 99,92 

EU 100 100 101,04 99,11 99,11 

Source: Dogan and Tucgu, 2015 

Looking at table 4.2, in 2005, France, India and the United States are inefficient. China is 

the most efficient country. 

Finally, in 2011 India, the United States and the European Union are inefficient while 

Russia, China, Korea are the most efficient ones. 

2. Second paper 

The second work considered is “Analysing farming systems with Data Envelopment 

Analysis: citrus farming in Spain” by Reig-Martinez and Picazo-Tadeo (2004), which 

covers the topic of efficiency analysis in agricultural production. 

The purpose of the article was, starting from a sample of Spanish citrus farms, to identify 

the decision making units (DMU) that determine the technological or best practice 

frontier, and their characteristics are compared with those of the average farm.  
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Microeconomic theory considers production processes as the result of optimization 

behavior. Managers decide what to produce and which input-mix to use in order to 

achieve profit maximization. From an engineering or technical perspective, producers 

seek to maximize output for a given endowment of resources. Alternatively, producers 

are assumed to allocate resources efficiently by using the combination of inputs that 

minimizes the cost of producing the desired level of output. 

Therefore they used CCR Model to determine, for each inefficient production unit, a 

measure of relative inefficiency that can be calculated by comparing its observed 

behavior either with the behavior of a reference unit that belongs to the technological 

frontier or with a virtual unit that is the result of a convex combination of different 

efficient units. The set of units that a decision making unit should look at for improving 

efficiency, is called reference set.  

The sample included 33 full production citrus fruit farms with data for one output and 

nine inputs.  

The output considered was the Citrus Fruit Production per Hectare (measured in tons). 

The nine categories of inputs considered were: Cultivated Land (hectares), Own-Family 

and Wage-Earning Labor (annual worker units or AWU), Own and Hired Agricultural 

Machinery (annual hours of use), Consumption of Nitrogen, Phosphorus and Potassium 

in Chemical Fertilizers (in kilograms) and Expenditure in Pesticides and other 

Phytosanitary Products (euros).  

The results are the identification of the 6 DMUs that belongs to the efficient frontier, 

the determination of the reference sets for each DMU and the characterization of the 

efficient DMUs.  

Table 4.3 shows the characterization of the 6 DMUs lying on the efficient frontier. In 

brackets there is displayed the number of times that specific DMU appears in the 

reference set of another DMU.  
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Table 4.2.3: Characteristics of the Efficient Frontier (2004) 

DMU 1 (2) 2 (1) 3 (21) 4 (10) 5 (2) 6 (28) Average 

Output per Ha 25.2 37.6 37.2 44.1 23.3 46.0 30.1 

Farm Size  35.0 1.3 16.7 1.1 1.0 1.8 5.7 

Own Labor 0.03 0.19 0 0 0 0 0.13 

Wage-Earning 

Labor 

0.10 0.02 0.13 0.12 0.20 0.17 0.13 

Own Capital 34 0 60 0 74 14 70 

Hired Capital 0 0 3 23 0 0 4 

Nitrogen 233 148 262 171 306 292 289 

Phosphorus 186 91 0 80 59 0 102 

Potassium 93 91 0 171 59 0 115 

Pesticides 365 1360 305 319 92 243 453 

Source: Reig-Martinez and Picazo-Tadeo, 2004 

That kind of representation is useful to rapidly compare DMUs and can help in looking 

for patterns that can explain a greater efficiency level.  

3. Third paper 

The third article, by Madlener R. et al. (2009), “Assessing the performance of biogas 

plants with multi-criteria and data envelopment analysis” is the closest one to this 

thesis. It performs an assessment of 41 agricultural biogas plants located in Austria to 

determine their relative performance in terms of economic, environmental and social 

criteria by using DEA techniques and Multi Criteria Decision Analysis (MCDA). 

DEA is the tool generally used to evaluate the efficiency of decision making units, while 

MCDA is the tool generally used to conciliate multiple evaluation criteria, considering 

the preferences of a decision-maker. In fact, a manager is normally not indifferent to 

the fact that a DMU turns out to be more efficient by using/producing a different 

combination of inputs or outputs, and by underweighting inputs and/or outputs of key 

importance to the business concerned. 
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The paper computes an efficiency score for any given DMU when this particular DMU is 

compared with all the other DMUs considered. The relative efficiency of a DMU is 

usually defined as the ratio between the sum of its weighted output levels to the sum of 

its weighted input levels. The weights are not exogenous, but endogenous since they 

are chosen by the Linear Programming model, such that each DMU is ‘‘shown in its best 

light”. 

In DEA, a DMU is considered efficient if there is no other DMU, or a linear combination 

of inputs and outputs of several DMUs, that can improve one input or output, without 

worsening the value of at least another one.  

The efficient frontier is defined by the observed values of the relatively efficient DMUs. 

If a DMU does not belong to this envelopment surface and lies in its interior, then that 

DMU is operating inefficiently. DEA models usually return an efficient projection point 

of operation on the frontier for each inefficient DMU, thus identifying the single DMU 

or the combination of several ones, that can be used as performance benchmarks for 

the inefficient DMU. 

The DMUs considered are a representative set of energy crop digestion plants in 

Austria, that aim to cover the whole spectrum of plant types and operating conditions. 

Samples were taken from the substrate, digester, fermentation residues and biogas 

plant types. Cooling, safe transport and appropriate storage were scrutinized as well. 

The considered plants are geographically distributed over the country.  

They range from small-scale installations using mainly manure and energy crops to 

larger-scale plants that use considerable amounts of co-substrates. 

The main aspects that the study shall evaluate, for assessing the efficiency of energy 

crop digestion plants, are: Substrate Provision, Storage and Pre-Treatment; Biogas 

Production from anaerobic digestion; Utilization of Heat and Electricity; Digestate 

Handling and Disposal; and Greenhouse Gas (GHG) Emissions. 
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The variables considered as input were two: labor (time) spent for plant operation and 

amount of substrate used (organic dry substances, ODS). 

The outputs, on the other hand, were: amount of biogas or net electricity produced 

(electricity delivered by the biogas plant and sold for external consumption, subtracting 

what the plant needs to consume itself); net heat produced (for external consumption) 

and net GHG emissions released to the atmosphere (net of the “emissions credits” 

calculated in case of not having the biogas plant, and measured in CO2 equivalent). 

In the DEA model considered in this paper, we have used substrate and labor as 

traditional inputs and the amount of net external electricity and heat as desirable 

traditional outputs. GHG emissions have been considered as an undesirable output. 

Authors chose to consider these emissions as an input, which is a common option to 

model undesirable outputs, since the DMU to be efficient should minimize GHG 

emissions (just like other inputs) given a certain fixed level of output. 

The considered model was CCR, even though the authors suggest the possibility  to use 

the BCC model to benefit DMUs not operating at an optimal scale. 

Fig. 4.2.4 reports paper’s DEA results, in which it can be seen that only 5 out of the 41 

plants belong to the efficient frontier and thus appear to be considered efficient. 
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Fig. 4.2.4: Efficiency of 41 agricultural biogas plants located in Austria 

(2009) 

Source: Madlener R. et al. (2009) 

4. Fourth paper 

The article considered is the one by Sameena B. et al. (2018) “Significance of 

Implementing Decentralized Biogas Solutions in India: a Viable Pathway for Biobased 

Economy”. 

This study revolves around the implementation of biogas plants in India and the barriers 

that prevent the spread of new plants. 

The first part of the study focuses on investigating the biogas solutions that evolved in 

India, its installations in rural areas promoted by government and on barriers that 

hindered the spread of biogas technology due to limited access to information and lack 

of awareness on the recent scientific innovations. 

A second part of the study focuses on presenting a case study describing the installation 

and commissioning of the biodigester in Bellary (Karnataka, India), operation and 

maintenance and finally an estimate on its products utility and payback period. 

The first barrier is economic feasibility. Installing a plant requires large investments and 

therefore a system in which there are own capital and disposable debt capital. 
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The costs associated with biogas technology can be divided into initial costs of 

construction and installation and operative costs for the maintenance of the plant. 

Within the first category there are: cost of labor, excavation cost, costs of construction 

materials, pipes and their set up for biogas supply, transportation cost of materials. 

For the maintenance costs there are: costs associated with mixing of feedstock in the 

slurry tank with water, pH boosters to operate the reactor in stable conditions, collecting 

the digested slurry from outlet tank, drying the digested slurry to obtain solid fertilizer. 

India has implemented a large biomass energy program, which involves the promotion 

of several bioenergy technology programs, called BETP, through several policies, 

institutional and financial incentives and interventions. 

Most of the BETP were implemented with direct capital subsidy support from the MNRE 

(Ministry of New and Renewable Energy), combined with other policy incentives, such 

as income tax reduction, accelerated depreciation, concessional duty/custom duty-free 

import, soft loans for manufacture and state level policies on wheeling and banking.  

Unfortunately, the rate of spread of bioenergy technologies has remained low: only 

about 3.83 million household biogas plants were installed (till 2006) against a forecasted 

potential of 12 to 17 million. The reasons behind are attributable to barriers such as the 

limited capacity to assess, adopt, adapt and absorb scientific options, insufficient 

information and financing possibilities to assess the technological needs. 
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5. DATA ENVELOPMENT ANALYSIS 

5.1. What is DEA? 

The origins of DEA methodology date back to 1978, when Professors Charnes, Cooper 

and Rhodes in their work "Measuring the efficiency of decision-making units" applied 

linear programming to estimate, for the first time, an empirical production-technology 

frontier, building on the work of more than two decades earlier by Farrell, 1957. 

Data Envelopment Analysis is a nonparametric linear methodology aimed at evaluating 

the efficiency of similar decision-making units (DMU), based upon the inputs and the 

outputs associated with these entities (Cooper et al. 2005). 

DMUs are the basic units of the DEA methodology.  The term is very broad and includes 

within it businesses, hospitals, schools, public institutions, military and police forces, and 

more. DMUs are defined as any such entity, with each such entity to be evaluated as 

part of a homogeneous collection that utilizes similar inputs to produce similar 

outputs.  

One of the strengths of the DEA methodology is that it is nonparametric. This means 

that it does not need a priori parametric specifications, such as defining a production 

function. 

Data envelopment analysis is so called because it "envelops" observations to identify a 

"frontier" that is used to evaluate the performances of the considered entities. DEA, 

then, assigns a performance score that ranges between zero and one and represents 

the "degree of efficiency" obtained by the entity thus evaluated. 

All the efficient DMUs compose the efficient frontier where lie the entities that 

relatively better transform inputs into outputs (“degree of efficiency” = 1). 
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What is efficiency (and inefficiency) then? We take, at first, the well-known Pareto-

Koopmans Definition of Efficiency (S. Morteza Mirdehghan, H. Fukuyama, 2016): 

Definition 5.1.1: Efficiency 

A DMU is efficient if and only if it is not possible to improve any input or output without 

worsening any other input or output. 

Definition 5.1.2: Inefficiency 

A DMU is inefficient if and only if it is possible to improve some input or output without 

worsening any other input and output. 

The following trivial example shows the intuition behind the construction of the efficient 

frontier in the simplest case possible: firms that produce one kind of output, starting 

from one kind of input. 

5.2. Example with One Input and One Output 

Consider 8 farms (n) that produce t-shirts (y1) from cloth (x1). Thus, there are eight DMUs 

(indexed by i = 1…n) that produce one type of output, starting from one type of input 

(Cooper, Seiford and Tone, 2005).  

Each DMU is represented into a Cartesian plane with coordinates (x1i, y1i). 

The efficient frontier crosses the most efficient DMUs (which are the “northwest-er” 

ones). Efficient DMUs are defined to be the ones that better translate inputs into 

outputs. In this case the farms that have the greater t-shirts/cloth ratio (y1/x1) are 

efficient, since from one unit of cloth (input) they can realize the greater number of t-

shirts (outputs).  
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X 

Y 

Fig. 5.2.1: One Input, One Output: the Efficient Frontier 

Source: Cooper et al. (2005), rework by the author 

Thus, is straightforward that DMUs are efficient if and only if they lie on the efficient 

frontier while these are inefficient if and only if they lie out of the efficient frontier.  

In Fig. 5.1.1 only the DMU A is efficient, because it is the only one laying on the efficient 

frontier, since it transforms input (on the x axis) into output (on the y axis) at the best 

ratio within the DMUs considered. Considered 4 units of inputs, DMU A produces 10 

units of output, which means 1.5 units of output per unit of input. The second best, DMU 

G, only produces 5 units of output starting from 5 units of input: one unit of input 

produces exactly one unit of output. 

In this simple example, the efficient frontier is taken starting from the most efficient 

DMU A, and it is, in practice, a half line starting from the origin (O) that touches the most 

efficient points. 

𝑦 = 𝑚𝑥   (1) 

𝑚 =
𝑦

𝑥
   (2) 



 

 

82 

 

Starting from the equation (1), that crosses the origin the axes, it is straightforward that 

all the points that lie on this line, with angular coefficient equal to the output/input ratio, 

have something in common with DMU A: these are all efficient points, with score equals 

to one. 

It is important to note that efficiency in DEA is not necessarily absolute, but it is relative: 

in every DEA analysis there will be one, or more, efficient DMU. That does not mean that 

DMU is efficient in absolute terms, but it means that, among the considered DMUs, it is 

relatively the most efficient. Slightly changing the set of DMUs may change the set of 

efficient DMUs. 

Given the definition of efficiency, an inefficient decision-making unit should improve 

and change its position moving towards the efficient frontier. For example, point G 

could, theoretically, reduce the input, keeping fixed the output, until it lays on the 

efficient frontier (horizontal movement GH); on the other hand, it could fix the input 

level while being more efficient and enhancing the output level (vertical movement GI). 

In the example, DMU G uses 5 units of input (cloth) to produce 5 units of output (t-

shirts), given that the “A ratio” is feasible, DMU G should either keep the output fixed 

and reduce the inputs, or increase the output keeping fixed the level of inputs. 
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X 

Y 

Fig. 5.2.2: One Input, One Output: Improving an Inefficient DMU 

 

Source: Cooper et al. (2005), rework by the author 

There are then two perspectives that could be taken in consideration: DEA can be either 

output oriented or input oriented. 

In the former case the question is if, using the same number of inputs, a greater outcome 

can be achieved; in the latter case the question is reversed: given a certain amount of 

outcome, can this be achieved by using a lesser number of inputs?  

5.3. Partial to Total Productivity Measures 

The DEA methodology overcomes a problem that classical and simpler efficiency 

analyses have. Often other systems for assessing efficiency are based simply on the 

single output to single input ratio.  

DEA instead works on multi-outputs to multi-inputs ratio.  
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Examples, of single output to single input include cost per unit, profit per unit or 

satisfaction per unit, which are measures stated in the form of a ratio: 

This is a commonly used measure of efficiency. The usual measure of "productivity" also 

assumes a ratio form when used to evaluate worker or employee performance. "Output 

per worker hour" or "output per worker employed" are examples with sales, profit or 

other measures of output appearing in the numerator. 

Such measures are sometimes referred to as "partial productivity measures". This 

terminology is intended to distinguish them from "total factor productivity measures", 

because the former attributes all the production efficiency to one input: “Output per 

worker hour” attributes to the input “labor” all the responsibility for producing the 

output in an efficient way. The latter instead, attempt to obtain an output-to-input ratio 

value which takes account of many outputs and many inputs. 

How is it possible, then, to move from partial to total productivity in this framework? By 

combining all inputs and all outputs to obtain a single ratio. Which means finding two 

numbers that can reflect all the inputs and the outputs. 

However, an attempt to move from partial to total factor productivity measures 

encounters difficulties such as choosing the inputs and outputs to be considered: an 

insufficient number of inputs and outputs leads to a partial analysis that does not reflect 

the real situation, on the other hand selecting inputs and outputs that are not relevant 

leads, as well, to an unrealistic situation. 

Then, the weights that are used to obtain a single-output-to-single-input ratio must be 

wisely selected: weights are meant to express the relative importance of the factors 

and an inaccurate selection leads to underestimation and/or overestimation of the 

inputs/outputs.  

Moreover, dealing with multiple outputs and inputs is something to be cautious with: 

complexity rises proportionally with the number of inputs/outputs. 

Another issue is comparing different DMUs: it is not realistic considering all the DMUs 

“identical”, forcing every DMU to follow the same recipe of inputs/outputs may be 

misleading. 

Now is when Data Envelopment Analysis comes to the aid of the analyst. DEA does not 

require the user to prescribe weights to be attached to inputs and outputs and it also 

does not require prescribing the functional forms that are needed in statistical 

regression approaches. 

DEA utilizes techniques such as mathematical programming which can handle large 

numbers of variables and relations (constraints), and this relaxes the requirements that 
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are often encountered when one is limited to choosing only a few inputs and outputs 

because the techniques employed will otherwise encounter difficulties. Relaxing 

conditions on the number of candidates to be used in calculating the desired evaluation 

measures makes it easier to deal with complex problems and to deal with other 

considerations that are likely to be confronted in many managerial and social policy 

contexts.  

In section 5.4 is presented the two inputs and one output case. 

5.4. Example with Two Inputs and One Output 

Consider 9 supermarkets (DMU), that have two inputs and one output (Cooper et al. 

2005). 

Employee (unit is 10 employees) and Floor Area (unit is 1000m2) are the inputs while the 

output is Sale (unit is 100.000$). Inputs for each DMU are normalized to give 1 unit of 

output. 

Table 5.4.1: Two Inputs, One Output 

Store  A B C D E F G H I 

Employee X1 4 7 8 4 2 5 6 5.5 6 

Floor 

Area 

X2 3 3 1 2 4 2 4 2.5 2.5 

Sale Y 1 1 1 1 1 1 1 1 1 

Source: Cooper et al. (2005) 

Divide now each Input for the single Output and plot X1/Y on the X axis and X2/Y on the 

Y axis. Each DMUi can be represented as a point (X1i/Yi; X2i/Yi) on the cartesian plane. 

To find the efficient frontier link those points that cannot be improved without 

worsening one of the input/output, i.e., those points that does not have another point 

placed at west, south or south-west. 
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Y 

We can envelop all the data points within the region enclosed by the frontier line, the 

horizontal line passing through C and the vertical line through E. We call this region the 

production possibility set.  

This means that the observed points are assumed to provide (empirical) evidence that 

production is possible at the rates specified by the coordinates of any point in this 

region. Moreover, the efficient DMUs lying on the efficient frontier can be taken as 

models for the inefficient DMUs. 

Fig. 5.4.1: Two Inputs, One Output: the Efficient Frontier 

 

Source: Cooper et al. (2005) 

The efficiency of stores not on the frontier line can be measured by referring to the 

frontier points as follows. For example, A is inefficient. To measure its inefficiency let 

OA, the line from the origin to A, cross the frontier line at P. Then, the efficiency of A can 

be evaluated by: 

𝑂𝑃

𝑂𝐴
= 0.8571   (3) 
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X1 

X2 

This means that the inefficiency of A is to be evaluated by a combination of D and E 

because the point P is on the line connecting these two points.  

D and E are called the reference set for A. The reference set for an inefficient DMU may 

differ from store to store. For example, B has the reference set composed of C and D in 

Figure. We can also see that many stores come together around D and hence it can be 

said that D is an efficient store which is also "representative," while C and E are also 

efficient but also possess unique characteristics in their association with segments of 

the frontiers that are far from any observation. 

Fig. 5.4.2: Two Inputs, One Output: improving Inefficient DMU 

Source: Cooper et al. (2005) 

Whenever there are multiple inputs/outputs one trick to reduce complexity is to 

arbitrarily assign fixed (predetermined) weights. This simplifies matters for use, to be 

sure, but raises the question of justifying the weights.  

Why input i have weight 𝑤𝑖  instead of 𝑤𝑖
′ ? This difference in weight may result in 

significant differences in efficiency. 
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DEA, by contrast, uses weights that are not predetermined. In particular, the weights 

are derived directly from the data.  

The weights are chosen in a manner that assigns a best set of weights to each hospital. 

The term "best" is used here to mean that the resulting input-to-output ratio for each 

DMU is maximized relative to all other DMUs when these weights are assigned to these 

inputs and outputs for every DMU. In other words, the system of weight for DMU0 is 

meant to put under the best possible lights the evaluated DMU0. 

These weights describe more specifically each DMU, emphasizing its own characteristics 

with respect to the other DMUs. 

In the next section there will be a brief explanation of the two most important models 

in DEA methodology: CCR and BCC model. 

5.5. CCR Model 

CCR model was initially proposed by Charnes, Cooper and Rhodes in 1978, named after 

the initials of its developers. 

It is the first model proposed and the most “basic” one. It is a ratio model that calculates 

an overall efficiency for the unit in which both its pure technical efficiency and scale 

efficiency are aggregated into a single value. It deals with the problem of multi-input 

and multi-output by relying on virtual input and virtual output.  

First of all, let’s define what are virtual inputs and virtual outputs. In short, they 

represent, within two single values, the total input contribution and the outcome made 

up by all of the outputs.  

Inputs and outputs are two vectors (X,Y) of dimension (1xm) and (1xs), where m and s 

are respectively the number of inputs used by a DMU and the number of outputs 

produced by the same DMU. In DEA models these inputs and outputs are weighted by 
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a system of weights: a vector v (mx1) containing all the inputs weights and a vector u 

(sx1) containing all the information for the outputs.  

Virtual inputs and outputs are then defined by the multiplication of the input/output 

values times their respective weight. In this way virtual input/output it is defined as a 

weighted average of the input/output values. 

Virtual input 

VI = v1x10 + v2x20 + … + vmxm0    (4) 

Virtual output 

VO = u1y10 + u2y20 + … + usys0   (5) 

Xi0 are the inputs and Yj0 are the outputs of the considered DMU0. Vi and Uj are the 

multipliers (weights). The index i ϵ [0,m] and the index j ϵ [0,s].The optimal weights may 

(and generally will) vary from one DMU to another DMU. Thus, the "weights" in DEA 

are derived from the data instead of being fixed in advance. Each DMU is assigned the 

best set of weights. 

Suppose there are n DMUs indexed by k = 1…n. Let the input and output data for DMUj 

be (x1j, x2j..., xmj) and (y1i, y2i… ysi), respectively. The input data matrix X and the output 

data matrix Y can be arranged as follows: 

 

X = 

x11 x21 … x1m 

x21 x22 … x2m 

… … … … 

xn1 xn2 … xnm 

 

(6) 
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Y = 

y11 y21 … y1s 

y21 y22 … y2s 

… … … … 

yn1 yn2 … yns 

 

(7) 

 

X is a (nxm) matrix and Y is a (nxs) matrix, in which each row represents the situation of 

a specific DMUk and each column reports all the weights assigned to input j or to output 

i. 

Next step is to measure the efficiency of each DMU and hence n optimizations are 

needed, one for each DMUk to be evaluated. 

We solve the following fractional programming problem to obtain values for the input 

"weights" vi {i = 1...m) and the output "weights" uj (j= 1...s) as variables. 

Fractional Programming (FP) 

Max: 

𝛳 =
u1y10 + u2y20 + … + u𝑠y𝑠0

v1x10 + v2x20 + … + v𝑚y0
  (8) 

Subject to: 

u1y1𝑗 + u2y2𝑗 + … + u𝑠y𝑠𝑗

v1x1𝑗 + v2x2𝑗 + … + v𝑚y𝑚𝑗
≤ 1   (9) 

𝑣1, 𝑣2 … 𝑣𝑚 ≥  0    (10) 

𝑢1, 𝑢2 … 𝑢𝑠 ≥ 0     (11) 

The constraints mean that the ratio of "virtual output" vs. "virtual input" should not 

exceed 1 for every DMU. The objective is to obtain weights (vi) and (uj) that maximize 
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the ratio of DMUo, the DMU being evaluated. By virtue of the constraints, the optimal 

objective value ϴ is at most 1.    

To put the formalization in words, the objective function ϴ can be seen as a coefficient 

that describes the efficiency in the input-output transformation. It reflects how much 

output you can pull out of a theoretical virtual input unit.  

Take, for example, the one input – one output case. In this specific situation the virtual 

input and virtual output correspond exactly to the input/output used. And thus: 

ϴ =
𝑦

𝑥
    (12) 

ϴx = y   (13) 

Combining constraint (9) with constraints (10) and (11) and the non-negativity of inputs 

and outputs, implies that ϴ ratio belongs to [0,1].  

The objective is to obtain weights vi and uj that maximize the ratio of DMU0, the DMU 

being evaluated. 

By virtue of constraints, the optimal objective value ϴ* is at most 1. It is then 

straightforward, that only DMUs with ϴk = 1 are efficient and thus they belong to the 

efficient frontier. 

The discussion may end here, but fractional problems are often mathematically not 

convenient. A very important intuition, proposed by Charnes, Cooper and Rhodes, is the 

one that permits the linearization (computationally easier) of the above mentioned 

fractional problem. 

Fractional to linear problem 

Replace now the above fractional program (FP) by the following linear program (LP). 
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LP0 

Max 

ϴ =  μ1𝑦10 + μ2𝑦20 … + μ𝑠𝑦𝑠0     (14) 

Subject to: 

v1𝑥10 + v2𝑥20 … + v𝑚𝑥𝑚0 = 1    (15) 

μ1𝑦10 + μ2𝑦20 … + μ𝑠𝑦𝑠0  ≤  v1𝑥10 + v2𝑥20 … + v𝑚𝑥𝑚0 (16) 

𝑣1, 𝑣2 … 𝑣𝑚 ≥  0      (17) 

μ1, μ2 … μ𝑠 ≥ 0       (18) 

Constraint (15) imposes that virtual input of DMU0 is normalized as 1, therefore the 

fractional program can become linear, canceling the denominator. Weight μ, on the 

other hand, represent an “adjusted” weight for output that considers the normalization 

of the virtual input. 

Constraint (16) imposes instead that virtual output (weighted by μ) must be lesser or 

equal to virtual input for any k (k indexes the DMUs, k = 1…n).  

Finally, constraints (17) and (18) ensure the non-negativity of weights. 

Theorem 5.5.1 

The fractional problem (FP) is equivalent to the linear program (LP). See the article by 

Charnes, Cooper and Rhodes (1978) for exhaustive demonstration. 

Theorem 5.5.2 

The optimal values ϴk* are independent of the units of measurement, provided these 

units are the same for every DMU. 
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Definition 5.5.1: Optimality 

Suppose we have an optimal solution of the linear programming problem LP. We 

represent this solution by identifying three variables: ϴ*, v* and μ*. 

Where v* and μ* are the vectors of weights that solve the LP under constraints, ϴ* is 

the value that the objective function takes when maximized.  

We can then identify whether CCR-efficiency has been achieved as follows: 

Definition 5.5.2: CCR–Efficiency 

1. DMU0 is CCR-efficient if ϴ* = 1 and there exists at least one optimal (v*,μ*) that 

satisfies the constraints  v* > 0 and μ* > 0. 

2. Otherwise, DMU0 is CCR-inefficient. 

Demanding ϴ* = 1 condition implies that DMU0 lies on the efficient frontier. 

By contrast, CCR-inefficiency requires that either: 

1. ϴ*< 1  

2. ϴ* = 1 and at least one element of (v*, μ*) is zero for every optimal solution of LP. 

Meanings of optimal weights 

As mentioned earlier, (v*, μ*) are the set of most favorable weights for the DMU0 in the 

sense of maximizing the ratio scale, 𝑣𝑖
∗ is the optimal weight for the i-th input item and 

its magnitude expresses how much the item is evaluated, relatively speaking.  

The ratio scale is evaluated by: 

 

(19) 

As seen before in eq. (18), the denominator is equal to 1 and hence:  
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(20) 

Similarly, 𝑢𝑟
∗ does the same for the output item r. Furthermore, if we examine each item 

𝑣𝑖
∗𝑥𝑖0 in the virtual input: 

 

(21) 

Then we can see the relative weight of each item in constructing the virtual input. 

The same situation holds for 𝑢𝑟
∗𝑦𝑟0  where the 𝑢𝑟

∗  value provides a measure of the 

relative contributon of the output 𝑦𝑟0 to the overall value of ϴ*.  

These values not only show which items contribute to the evaluation of DMU0, but also 

to what extent they do so. 

Production Possibility Set 

Relax now the positive assumption: inputs and outputs are not anymore required to be 

strictly positive, instead there is a semipositive assumption. A vector may contain even 

zero value inputs and/or outputs. For example, let’s take two clothing factories as 

DMUs: both of them produce dresses as single output (y) but the first one uses as inputs 

workers, silk and machineries, while the second only uses silk and workers. In this case 

the input x3 (machineries) for the first DMU is positive while for the second is zero.  

Each pair of (x,y) semipositive vectors is defined as an activity. The set of feasible (x,y) 

is called the production possibility set (PPS). 

The production possibility set has four properties: 

1) Observed activities belong to the PPS. 
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Clearly, if an activity is observed that means that is feasible. 

2) Linear combinations (tx,ty) belong to PPS if (x,y) belongs to PPS, for every positive 

t. 

Given constant returns to scale, multiplying the inputs and the outputs for the same 

value means increasing (t > 1) or reducing the scale (0 ≤ t < 1). 

3) If (x,y) belongs to PPS, any (x1,y1) such that x ≤ x1 and y ≥ y1 belongs to PPS.  

Which means that if an activity belongs to PPS, less efficient activities also belong to PPS. 

4) Semipositive linear combinations belongs to PPS. 

PPS = {{x,y) I x > Xʎ, y <Yʎ, ʎ > 0}    (22) 

5.6. The Dual problem 

Based on the matrix (X, Y) of inputs and outputs, the CCR model was formulated in the 

preceding section as an LP problem with row vector 𝑣  for input multipliers and row 

vector μ as output multipliers that were treated as variables. 

Theorem 5.6.1: 

For any linear problem (LP) it is possible to formulate a partner LP using the same data, 

and the solution to either the original LP (called primal) or the partner (called dual) 

provides the same information about the model.  

The dual problem of LP is expressed with a real variable ϴ and the transpose of a non-

negative vector  (ʎi ... ʎn)T of variables as follows: 
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DLP0 

Min (ϴ,ʎ): 

ϴ   (23) 

Subject to:  

ϴ𝑥0 − Xʎ ≥ 0   (24) 

Yʎ ≥ 𝑦0    (25) 

ʎ ≥ 0    (26) 

DLP has a feasible solution in: ϴ = 1, ʎ0 = 1, ʎj = 0 with j ≠ 0. As before, the optimal ϴ, 

denoted by ϴ*, should not be greater than 1. The constraint Yʎ ≥ 0 forces ʎ to be nonzero 

because y0 > 0, given the semipositive assumption,  and thus y0 ≠ 0. Putting this all 

together, we have 0 <  ϴ* ≤ 1. 

The constraints of DLP0 require the activity (ϴx0, y0) to belong to the Production 

Possibility Set (PPS) , while the objective function seeks the minimum ϴ that reduces 

the input vector x0 radially to ϴx0 while remaining inside of the PPS.  

We are looking for an activity in PPS that guarantees at least the same output level y0 

of DMU0 in all components, while reducing the input vector x0 proportionally (radially) 

by the ϴ multiplier to a value as small as possible. 

To summarize, ϴ* is the coefficient that gives the minimum level of input ϴx0 in order 

to achieve the fixed level of output y0.  

If ϴ* is lesser than 1, there is room for improvement and thus the DMU is inefficient, 

and the activity (Xʎ, Yʎ) outperforms (ϴx0, y0). 

We define, then, the input excesses 𝑠+ ∈ ℝ𝑚 and the output shortfalls 𝑠− ∈  ℝ𝑠  and 

identify them as "slack" vectors by: 
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𝑠− =  ϴ𝑥0 − Xʎ   (27) 

𝑠+ =  Yʎ − 𝑦0   (28) 

To discover the possible input excesses and output shortfalls, we solve the following 

two-phase LP problem: 

Phase I 

We solve DLP0. Let the optimal objective value be ϴ* which is equal to the optimal 

objective value of LP and is the CCR-efficiency value, also called "Farrell Efficiency” (M.J. 

Farrell, 1957). 

Phase II 

We solve the following LP using (ʎ, s-, s+) as variables: 

LP 

Max (ʎ, s-, s+) 

𝑤 = 𝑒𝑠− + 𝑒𝑠+   (29) 

Subject to: 

 

𝑠− = ϴ∗𝑥0 − 𝑋ʎ  (30) 

𝑠+ = 𝑌ʎ − 𝑦0   (31) 

ʎ ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 (32) 

Where e is a vector of ones. 

The objective of phase II is to find a solution that maximizes the sum of input excesses 

and output shortfalls while keeping ϴ = ϴ*. 
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Definition 5.6.1: Max-slack Solution, Zero-slack Activity 

An optimal solution (ʎ*, s-*, s+*)  of Phase II is called the max-slack solution. If the max-

slack solution satisfies s-* = 0 and s+* = 0, then it is called zero-slack. 

This condition is also referred to as "radial efficiency”, or as "technical efficiency" 

because a value of ϴ* < 1 means that all inputs can be simultaneously reduced without 

altering the mix in which they are utilized. 

Definition 5.6.2: CCR-Efficiency 

If an optimal solution (ʎ*, s-*, s+*) satisfies ϴ* = 1 and is zero-slack (s-* = 0, s+* = 0), then 

the DMU0 is called CCR- efficient. Otherwise, the DMU0 is called CCR-inefficient. 

Theorem 5.6.2 

CCR Efficiency stated for the primal LP in definition , is equivalent to the partner DLP CCR 

Efficiency stated in definition.   

Given these conditions, inefficiencies can still occur in the process and these 

inefficiencies, associated with any nonzero slack identified in the above two-phase 

procedure, are referred to as "mix inefficiencies". 

5.7. CCR Example with 2 Inputs and 1 Output 

The current section shows an example that deals with the primal LP of a DEA problem 

with 2 inputs and 1 output. Table 5.3.1 reports 6 DMUs where the output value is 

unitized to 1 for each DMU. 
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Table 5.7.1: CCR Example: 2 Inputs, 1 Output 

DMU A B C D E F 

x1 4 7 8 4 2 10 

x2 3 3 1 2 4 1 

y 1 1 1 1 1 1 

Source: Cooper et al.  (2005) 

The linear problem for DMU0 is the following: 

LP0 

Max 

ϴ =  μ0𝑦0    (33) 

Subject to: 

v1𝑥10 + v2𝑥20 = 1  (34) 

μ1𝑦10  ≤  v1𝑥10 + v2𝑥20 (35) 

𝑣1, 𝑣2 ≥ 0   (36) 

μ ≥ 0    (37) 

For DMUA LP is then the following: 

LPA 

Max: 

ϴ = μ𝐴    (38) 

Subject to: 

𝑣14 + 𝑣23 = 1   (39)
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[A] μ𝐴 ≤  𝑣14 + 𝑣23 (42)  [B] μ𝐴 ≤  𝑣17 + 𝑣23 (43) 

[C] μ𝐴 ≤  𝑣18 + 𝑣21 (44)  [D] μ𝐴 ≤  𝑣14 + 𝑣22 (45) 

[E] μ𝐴 ≤  𝑣12 + 𝑣24 (46)  [F] μ𝐴 ≤  𝑣110 + 𝑣21 (47) 

This problem can be solved by a linear programming code and the (unique) optimal 

solution is the following: (𝑣1
∗= 0.1429, 𝑣2

∗ = 0.1429,  μ∗= 0.8571, ϴ* = 0.8571) 

By applying the optimal solution to the above constraints, the reference set for A is 

found to be:  EA = {D;E}. 

Applying the same method DMUB is found to be inefficient as well. 

An optimal solution for C is {𝑣1
∗  = 0.0833, 𝑣2

∗ = 0.3333, μ* = 1, ϴ* = 1) and C is CCR-

efficient by definition (ϴ=1, then it belongs to the Efficient Frontier). However, the 

optimal solution is not uniquely determined, as will be observed in the next section. 

Likewise, D and E are CCR-efficient. 

Developing the linear problem for DMU F we find that the solution (𝑣1
∗  = 0, 𝑣2

∗ = 1, μ* = 

1, ϴ* = 1) is unacceptable because of 𝑣1
∗  = 0. Therefore, DMU F is inefficient. 

Table 5.8.2 reports the results of Data Envelopment Analysis.  

Table 5.7.2: Results of the Example 

DMU x1 x2 y CCR(ϴ*) Ref. Set 𝒗𝟏
∗    𝒗𝟐

∗    μ* 

A 4 3 1 0.8571 D,E 0.1429 0.1429 0.8571 

B 7 3 1 0.6316 C,D 0.0526 0.2105 0.6316 

C 8 1 1 1 \\ 0.0833 0.3333 1 

D 4 2 1 1 \\ 0.1667 0.1667 1 

E 2 4 1 1 \\ 0.2143 0.1429 1 

F 10 1 1 1 C 0 1 1 

Source: Cooper et al. (2005), rework by the author 



 

 

101 

 

X1 

X2 

Fig. 5.7.1: Example with 2 Inputs, 1 Output 

Source: Cooper et al. (2005), rework by the author 

5.8. BCC Model 

BCC model, originally proposed by Banker, Charles and Cooper in 1984, takes the 

previous CCR model (1978) and implements a further condition that shapes in a 

different way the efficient frontier. 

In the graph below, that portraits the one input – one output framework, it is given the 

intuition behind the difference between CCR frontier and BCC frontier: the green dotted 

line is the CCR efficient frontier, the black broken line represents the BCC efficient 

frontier. The former has been built around the most efficient DMUE; the latter takes into 

consideration even two apparently inefficient DMUs (A; D). 
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Y 

X 

Fig. 5.8.1: BCC and CCR model comparison: one input, one output 

Source: Cooper et al.  (2005), rework by the author 

All the DMUs lying on the frontier are defined to be BCC efficient and those that lie 

within the frontier are considered inefficient and should aim to position themselves on 

the efficient line. 

Given the different efficient frontier and, consequently, different efficiency definition 

BCC and CCR rate inefficiency in two slightly different ways.  

For example, DMU G (11,7) is inefficient in both models but is clear that to reach CCR 

efficient frontier it is required much more effort. Given an input-oriented perspective 

(the level of output is fixed) DMU G should reduce its input level by a factor of: 

𝐺𝐾′

𝐺𝐻
 ~ 

4.777

11
 ~ 0.4343   (47) 

In a CCR efficiency framework. While in a BCC framework it should reduce input only by 

a factor of: 

𝐺𝐾

𝐺𝐻
 =  

4

11
 ~ 0.3636   (48) 

BCC 

E.F. 

CCR E.F. 
Y 

X 
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Generally speaking, the distance between an inefficient DMU and the efficient frontier 

is lower in the BCC model than in the CCR model. The same applies in an output-oriented 

model, where input is fixed. 

These changes are meant to overcome the constant return to scale assumption with a 

variable return to scale assumption: a DMU that has the “right” dimension and uses the 

“right” amount of input and produces the “right” amount of output, is going to have a 

better combination of inputs/outputs than an undersized or oversized firm. It does not 

stick to reality the assumption that the sweet combination stays unchanged over DMUs 

of different size.  

That is summarized into a new definition of the Production Possibility Set, which remains 

identical with the exception of a further constraint: 

PPSBCC = {(x,y) | x ≥ Xʎ ; y ≤ Yʎ ; eʎ = 1 ; ʎ ≥ 0}  (49) 

Where X is the input matrix: X = (xik) ϵ Rmxn with as many rows as the number of inputs 

and as many rows as the number of DMUs. Y is the output matrix Y = (yjk) ϵ Rsxn with as 

many rows as the number of outputs and as many columns as the number of DMUs. The 

column vector ʎ ϵ Rn represents the weight assigned to the DMUs and e is a row vector 

with all elements equal to 1. Which is the only adjunction to the CCR model (Cooper et 

al. 2006). The formalization of the linear problem, from its dual perspective, is thus the 

following: 

DLP0(BCC) 

Min: 

ϴ𝐵      (50) 

subject to:  

ϴ𝐵𝑥0 − 𝑋ʎ ≥ 0  (51) 

𝑋ʎ ≥ 𝑦0   (52) 
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𝑒ʎ = 1    (53) 

ʎ ≥ 0     (54) 

An optimal solution for BCC is represented by (ϴ*, ʎ*, s+*, s-*), where s+ and s- represent 

respectively, like in the CCR model, the maximal input excesses and output shortfalls. 

Notice that BCC model’s ϴ* is not more than the CCR optimal objective value ϴ*, since 

BCC imposes one additional constraint, eʎ = 1, so BCC feasible region is a subset of the 

feasible region in the CCR model. 

Definition 5.8.1: BCC Efficiency 

If an optimal solution (ϴ*, ʎ*, s+*, s-*) obtained for BCC0 satisfies ϴ* = 1 and has no 

slack (s+*, s-* = 0), then the DMU0 is called BCC-efficient, otherwise it is BCC-inefficient. 

Proposition 5.8.1: BCC and CCR Efficiency 

If a DMU is CCR-efficient, then is also BCC-efficient. 

5.9. Efficiency and Inefficiency Types 

In this last section, three types of efficiency, and inefficiency, that can arise are briefly 

presented. Specifically, we speak of Pure Technical Efficiency, Mix Efficiency and Scale 

Efficiency. Efficiency and inefficiency can have several meanings and interpretation, 

being aware of which kind of inefficiency is acting is crucial to understand how to 

overcome it.  

Pure Technical Efficiency 

Farrel (1957) defined the pure technical efficiency (PTE) in terms of radial reduction in 

inputs or radial augmentation in outputs. DMUs that are already on the frontier are 

technical efficient, but, if an inefficient DMU can move along its “ray” and therefore 

reach the efficient frontier, there was a pure technical inefficiency. 
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X1 

X2 

In fig. 5.9.1, through an input reduction along the “ray”, keeping the same angular 

coefficient and therefore keeping fixed the input ratio x1/x2, also keeping the output 

level fixed, DMUs A, B and F can improve their efficiency moving towards the origin and 

the efficient frontier. 

In fig. 5.9.2, DMUs C, D and E can improve their efficiency augmenting their outputs, 

given that the y1/y2 ratio is fixed, keeping the same input level, towards the frontier 

through the “ray”. 

Fig. 5.9.1: Two Inputs, One Output: Pure Technical Efficiency 

Source: Cooper, Seiford and Tone (2005), rework by the author 

 

 X2 
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Y2 

Y1 

Fig. 5.9.2: One Input, Two Outputs: Pure Technical Efficiency 

Source: Cooper, Seiford and Tone (2005), rework by the author 

Mix Efficiency 

To understand mix efficiency it is convenient putting it backwards, by looking instead at 

mix inefficiency. Mix inefficiency is the inefficiency due to a wrong composition of the 

inputs or the outputs, i.e. the ratio x1/x2 or y1/y2 is suboptimal and changing the ratio 

grants a higher efficiency. 

In figure 5.5.3, the DMU D can reduce its inputs x1, x2 to reach the efficient frontier in D’ 

but there is clearly the possibility to make another improvement: simply reducing input 

x2 the point D’ could move towards point F and, given the fact that inputs are costly, 

reducing the costs of inputs, being therefore more cost-efficient. 

That is because the combination (mix) of the inputs was itself inefficient. 

Y1 

Y2 
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X2 

X1 

Fig. 5.9.3: Two inputs, One Output: Mix Inefficiency 

Source: Cooper, Seiford and Tone (2005), rework by the author 

Scale Efficiency 

Scale efficiency relies on the economies of scale theory, that is the changes in returns 

from increasing, or decreasing, the scale of production.  

The most common and intuitive result is the average reduction of cost when increasing 

the size of the firm. That mainly result from spreading a firm’s fixed cost over a larger 

volume of output. So that the associated cost of one unit of output will be:  

𝐶 = 𝑉𝐶 + 𝑇𝐹𝐶/𝑛  (5) 

Where C is the unitary cost, VC is the variable unitary cost, FC is the total fixed cost 

required divided by n that is the number of units of output that “utilizes that fixed cost”. 

Economies of scale can be of two different types:  

• Constant Return to Scale (CRS) 

• Variable Return to Scale (VRS) 

X1 
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Constant returns to scale imply that as inputs increase, outputs will increase 

proportionally steadily. In the CCR model, only CRSs are allowed. On the other hand, 

Variable Scale Yields can be increasing (IRS), constant (CRS) or decreasing (DRS). The BCC 

model allows VRSs and in this it differs from the CCR model. 

Figure 5.9.4 (Seiford and Zhu, 1999) graphically summarizes the difference between CRS 

and VRS, highlighting the different efficient frontiers of the CCR and BCC models. 

Fig. 5.9.4: CCR and BCC scale returns compared 

Source: Seiford and Zhu, 1999 

Suppose we have six DMUs: A, B, C, D, H and M as shown in Fig. 5.9.4. The segment OBC 

is the CCR efficient frontier, exhibiting CRS. On the other hand, the three segments AB, 

BC and CD constitute together the BCC efficient frontier and exhibit IRS, CRS and DRS 

respectively.   

Note that some DMUs, say B and C, are located at the intersections of different RTS 

frontiers. In this situation, CRS have the first priority. Then, B and C should exhibit CRS 

rather than IRS and DRS, respectively.  
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Note also that the concept of RTS may be ambiguous unless a DMU is on the BCC 

efficient frontier. We classify, then, the RTS for inefficient DMUs by their BCC 

projections. For instance, by applying the BCC projection to point H, we have a frontier 

point H0 on the line segment AB and thus H exhibits IRS. However a different RTS 

classification may be obtained if a different projection, or model, is utilized. This is due 

to the fact that the input-based and the output-based BCC models yield different 

projection points on the VRS frontier. For example, the point H is moved onto the line 

segment CD by the output-based BCC model and thus DRS prevail on the point H0. 

However, some IRS, CRS and DRS regions are uniquely determined no matter which BCC 

model is employed. 
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6. DATA, MODEL AND RESULTS 

This chapter discusses the data regarding the farms and then defines what are the 

specifications of the model used, in the next chapter, for the efficiency analysis. 

Section 6.1 describes what is the FADN/RICA database from which the entirety of the 

data considered was collected, the manner in which these data were collected, and 

finally some brief history of the FADN institution. Section 6.2 discusses the need for 

clean data, specifically when talking about a DEA model. Section 6.3, then, describes 

the sample by showing some statistical information in order to put the data in context. 

Section 6.4 specifies what the characterizations of the model are: the purpose, the 

specifications, the inputs and the outputs considered. Section 6.5, then, reports the 

results of the model and their statistical distribution, further breaking down DMUs by 

macro area, altitude, economic size and economic orientation. Section 6.6 focuses on 

the distinction between farms that produce renewable energy and farms that do not. 

Section 6.7 characterizes efficient DMUs and their distribution, again taking care to 

distinguish renewable energy companies. Finally, section 6.8 reviews the steps of the 

analysis and comments on the results obtained. 

6.1. The FADN Database 

Data are collected from the Farm Accountancy Data Network (FADN), which is a 

European institution that monitors farms' income and business activities.  In particular, 

the data used comes from the Italian section of FADN, which is called RICA.  

RICA (“Rete di Informazione Contabile Agricola”) consist of an annual sample survey 

established by the European Economic Commission in 1965, by EEC Regulation 79/65 

and updated by EC Reg. 1217/2009. It has been carried out in Italy since 1968, with a 

similar approach in all EU Member States.  
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The FADN/RICA survey does not represent the entire universe of farms surveyed in a 

given territory, but only those that, due to their economic size, can be considered 

professional and market oriented. The methodology adopted aims to provide 

representative data on three dimensions: region, economic size and technical-

economic order. 

There are more than 86,000 farms in the FADN Community, and they represent nearly 

5 million Union farms that cover 90% of the agricultural area and 90% of the standard 

production. Table 6.1 below shows the evolution of the FADN Community as the 

European Union enlarges: from 1968 onward, the states that now make up the FADN 

were added as they came along. 

Table 6.1: FADN Sample Size per Country (1968 – 2013) 

Country 1968 1973 1981 1986 1995 2004 2007 2013 

Italy 2,750 3,500 12,000 18,000 18,000 17,000 16,300 11,106 

Germany 2,000 2,000 3,500 4,500 4,500 7,000 7,000 8,800 

France 3,000 3,000 6,100 6,100 6,100 6,100 6,100 7,640 

Netherlands 900 900 1,500 1,500 1,500 1,500 1,500 1,500 

Belgium 550 550 870 1,000 1,000 1,000 1,000 1,200 

Luxembourg 50 50 125 300 300 300 300 450 

United 

Kingdom 

 
1,600 1,650 2,500 2,500 2,500 2,500 2,500 

Denmark 
 

1,450 1,555 2,000 2,000 2,000 2,000 2,000 

Ireland 
 

550 700 1,300 1,300 1,300 1,300 900 

Greece 
  

3,000 7,200 7,200 7,200 7,200 5,500 

Spain 
   

12,000 10,100 10,100 10,100 8,700 

Portugal 
   

1,800 3,000 3,000 3,000 2,800 

Austria 
    

2,000 1,800 1,800 2,000 

Finland 
    

1,100 1,100 1,100 1,100 

Sweden 
    

600 1,025 1,025 1,025 

Poland 
     

12,100 12,100 12,100 

Czech 

Republic 

     
1,000 1,417 1,417 
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Slovakia 
     

600 600 562 

Hungary 
     

1,900 1,900 1,900 

Slovenia 
     

500 908 908 

Cyprus 
     

400 400 500 

Malta 
     

300 300 536 

Estonia 
     

400 400 658 

Lithuania 
     

1,000 1,000 1,000 

Latvia 
     

800 800 1,000 

Romania 
      

1,000 6,000 

Bulgaria 
      

2,000 2,202 

Croatia 
       

1,251 

Source: FADN, 2022 

Currently, the Italian FADN sample is based on a reasoned sample of about 11,000 

farms, structured to represent the different production types and sizes found in the 

country. It allows a national average coverage of 95% of Utilized Agricultural Area 

(UAA), 97% of Standard Production value, 92% of Labor Units, and 91% of Livestock 

Units. 

FADN's primary task is to meet the information needs of the European Union for the 

definition and evaluation of the Common Agricultural Policy (CAP). FADN data are the 

main source of information for both the European Commission and member countries 

to assess the impact of proposed changes to the 

CAP by simulating different scenarios on farm sustainability (economic, environmental, 

social and innovations). 

The FADN is used for policy evaluation of public aid to agriculture co-financed by the 

European Union. The information collected with the FADN also makes it possible to 

meet the needs of research and business advisory services, through a series of variables 

and indices on the technical, economic, capital and income characteristics of farms. 

For each farm in the sample, are collected on average about 1,000 variables, that 

becomes more than 2,500 for the Italian FADN. Then, the Community farm return is 
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compiled and outlined in its basic structure by specific regulatory measures of the 

Commission. 

The variables surveyed concern: 

• Physical and structural data (location, area, herd size, farm labor, services offered, 

etc.) 

• Economic data (revenues from sales, farm redeployments, ending stocks, purchases 

of technical means, etc.)  

• Financial and asset data (debts, credits, public aid, production rights, acquisition and 

disposal of assets, etc.) 

The information framework of the Italian FADN, which is much broader than the 

institutional requirements of the European Commission, allows for analysis on a variety 

of issues ranging from farm productivity to production costs, from environmental 

sustainability to the role of the farm family. 

Farm Accountancy Data Network (FADN) consists of a Community network and each 

participating member State has its own national network with its own characteristics. 

For Italy there is a concordance between the two, at least historically. Even at the 

beginning of the survey, the implementation took place in different ways, the ambition 

of the Community device was very great if one considers the poor situation of 

agriculture and bookkeeping in the 1960s, especially in Italy. 

Historical Notes 

Some of the founding countries of the European Community, had already been 

investigating farm accounting for several decades. The Netherlands had set up an 

accounting network in 1942, Germany in 1956, and for Italy the first accounting survey 

on farms was initiated in 1928 by the then nascent INEA (“Istituto Nazionale di 

Economia Agraria”, that stands for “National Institute of Agricultural Economics”), an 

activity strongly desired by minister Serpieri and included in the Institute's statutes.  
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The surveys, on a sample of only a few hundred farms, were later discontinued as a 

result of war events. In 1962, at INEA's proposal, the collection of accounting data on a 

sample of 1,500 farms was resumed, but the proposal failed to find the necessary 

financial resources. 

In 1965 there was the establishment of the Community FADN, and INEA was 

designated, by Presidential Decree (Presidential Decree 1708/65), as the liaison body for 

the Italian state, as the only public institution suitable for this role. 

The FADN was established just after the birth of the Common Agricultural Policy, 

precisely to accompany it on its long journey to support the European agricultural 

system. The initiative aimed to create an information tool that met the criteria of 

uniformity in surveys, how values were assigned and how the sample was represented. 

The dissemination of the FADN in Europe has gone hand in hand with the process of EU 

enlargement, eventually covering the current 28 states where the survey is regularly 

carried out. To the EU countries, one can add the accounting surveys carried out with 

the same FADN methodology in Switzerland and Norway for several decades. Moreover, 

recent requests for implementation of the FADN survey has been proposed by Turkey, 

the Balkan countries in pre-accession to join the EU (Serbia, Albania, Macedonia and 

Montenegro) and some states of the former Soviet Union (Azerbaijan). 

Italy, thanks to the prestige of great agricultural economists such as Baldini (INEA 

president from 1962 to 1972), was one of the main promoters towards the European 

Community for the establishment of an information network on agricultural accounting 

as a data collection tool to develop policy in the sector on a scientific basis. 

6.2. Data Accuracy and Errors 

Data collection is a very important issue for all kind of analysis: incorrect data can lead 

to large misunderstandings. All analysis should start with reliable data, but errors in 
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databases are anything but rarities. In practice, there are different types of errors: from 

missing or irrelevant data to values that are theoretically possible but completely out of 

scale. 

Errors can arise at the time of collection, at the time of database entry to even at the 

time of data analysis.  

To minimize errors at the time of collection, strict procedures must be followed to 

determine the data with certainty. Surveys are a relatively simple and quick method to 

perform but often lack the accuracy of documents, which on the other hand are more 

challenging and expensive to complete. The database entry step is often left to the 

manual entry procedure, which brings with it errors and inaccuracies. Ultimately, the 

analyst should be careful to treat the data he or she receives well, trying to skim those 

that are reliable from those that need to be evaluated. 

Since Data Envelopment Analysis builds its efficient frontier on a deterministic basis, 

data collection is even more crucial. In fact, all deviations from the efficiency frontier 

are indeed attributable to inefficiencies of various kinds. 

In contrast, if the frontier were stochastic then data collection might be a little looser, 

since the deviation from the frontier might be attributable to a random factor that also 

collects, within a certain extent, errors in data collection. 

Suppose the case of a typo that slightly changes an output: instead of 90 units of output, 

the careless collector transcribes only 80. In the case of a stochastic frontier, the error 

would be relatively unimportant because the system itself considers random deviations 

and the anomaly would not indelibly spoil the results. In our case of a deterministic 

frontier, unfortunately, that error results in a misleading result. In fact, that DMU could 

be inefficient because of the very error, or even more inefficient than it already was. But 

even in the case where it still turns out to be efficient, it would be a distortion of reality 

and a problem for the other inefficient DMUs that should be inspired by it in order to 

become efficient. 
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6.3. The Italian Sample (RICA) 

This section describes the sample in order to obtain an overall view of the constituent 

companies and to check the sample for bias due to an inappropriate choice of 

companies. The sample consists of 10,764 companies, investigated in 2020, from every 

area of Italy with a variety of characteristics that, according to the RICA database, make 

a fair representation of the population. 

Fig. 6.3.1: Sample Geographical Distribution, by Region (2020) 

Source: RICA (2022) 

In figure 6.3.1 and in table 6.3.1 it is possible to see that the most represented region is 

Emilia-Romagna, with 858 surveyed firms on its territory, followed by Puglia, with 704 

firms, and then by Veneto and Lombardia, both with 674 firms.  
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Fig. 6.3.2: Sample Geographical Distribution, by Altitude (2020) 

Source: RICA (2022) 

Moreover, in figure 6.3.2 and in table 6.3.2 it is possible to see the distribution among 

altitude, sorted by plain, hill and mountain. The largest slice of the Italian farms 

surveyed, 45%, belongs to the hills, 32% to the plains, and 23% to the mountains. 

As can be seen by comparing Figure 6.3.2 with Table 6.3.1, the distribution of farms in 

the three altitudes is different with respect to the percentage of Italian territory 

belonging to each altitude. The mountains have a greater presence as a territory than 

the share of Italian farms located in the mountains; in contrast, the plains and hills have 

a greater share of farms relative to their percentage of land occupancy. 

Table 6.3.1: Sample Geographical Distribution 

 
Plain Hill Mountain Italy 

Area (Ha) 6,978,265 12,543,385 10,611,208 30,132,858 

% 23.16% 41.63% 35.21% 100% 

Source: Istat (2022) 

  

32%

45%

23%

Plain Hill Mountain
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Table 6.3.2: Sample Geographical Distribution (2020) 

Region Firms %Firms Plain %Plain Hill %Hill Mountain %Mountain 

Abruzzo 563 5,23% 0 0,00% 356 7,29% 207 8,38% 

Alto Adige 311 2,89% 0 0,00% 0 0,00% 311 12,60% 

Basilicata 367 3,41% 65 1,91% 175 3,58% 127 5,14% 

Calabria 501 4,65% 109 3,21% 290 5,94% 102 4,13% 

Campania 598 5,56% 140 4,12% 255 5,22% 203 8,22% 

Emilia-
Romagna 

858 7,97% 598 17,60% 205 4,20% 54 2,19% 

Friuli-
Venezia 
Giulia 

399 3,71% 256 7,53% 123 2,52% 20 0,81% 

Lazio 578 5,37% 93 2,74% 413 8,45% 72 2,92% 

Liguria 431 4,00% 0 0,00% 278 5,69% 153 6,20% 

Lombardia 674 6,26% 565 16,63% 75 1,54% 31 1,26% 

Marche 430 4,00% 0 0,00% 384 7,86% 46 1,86% 

Molise 342 3,18% 0 0,00% 204 4,18% 138 5,59% 

Piemonte 600 5,57% 272 8,00% 246 5,04% 79 3,20% 

Puglia 704 6,54% 468 13,77% 234 4,79% 2 0,08% 

Sardegna 530 4,92% 155 4,56% 327 6,69% 48 1,94% 

Sicilia 672 6,24% 93 2,74% 417 8,54% 162 6,56% 

Toscana 562 5,22% 65 1,91% 402 8,23% 95 3,85% 

Trentino 282 2,62% 0 0,00% 0 0,00% 281 11,38% 

Umbria 441 4,10% 0 0,00% 402 8,23% 39 1,58% 

Valle D’Aosta 246 2,29% 0 0,00% 0 0,00% 246 9,96% 

Veneto 674 6,26% 519 15,27% 99 2,03% 53 2,15% 

Total 10763 100,00% 3398 100,00% 4885 100,00% 2469 100,00% 

Source: RICA (2022) 
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Table 6.3.2 shows the distribution by economic dimension, calculated according to the 

standard gross income, the largest mass resides more or less evenly in the ranges from 

€4,000 up to €500,000 while only 737 (less than 7% of the total) have a larger size. 

Table 6.3.2: Sample Distribution by Economic Dimension (2020) 

 

 

 

 

 

 

Source: RICA (2022) 

Table 6.3.3 reports the classification of companies according to their economic 

orientation. The main categories are: farms specialized in crops, in livestock and mixed.  

Table 6.3.3: Sample Distribution by Economic Orientation 

 

 

 

Source: RICA (2022) 

Looking now at renewable energy companies, of the entire sample of 10,764 farms, only 

459 produce renewable energy as a primary or complementary activity. On the other 

hand,  10,305 farms do not produce renewable energies. 

Economic Dimension Number of Firms % 

€4.000 - €25.000 2232 20.74% 

€25.000 - €50.000 2468 22.94% 

€50.000 -€100.000 2499 23.22% 

€100.000 - €500.000 2824 26.25% 

€500.000 or more 737 6.85% 

Farm type Number % 

Mixed  497 4.62% 

Livestock 2919 27.12% 

Crop 7347 68.26% 
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Fig. 6.3.3: Farms that do and do not Produce Renewables (2020) 

Source: RICA (2022) 

Of these 459 farms, which is 4.3% of the sample, Table 6.3.3 shows that the majority, 

405, exploit solar power, then 28 produce Biogas, 11 use as source the wind power, 5 

wood and 10 other sources. 

Table 6.3.4: Renewable Energy Production Farms (2020) 

Energy Source Number % 

Other 10 2.18% 

Biogas 28 6.10% 

Eolic 11 2.40% 

Wood 5 1.09% 

Solar 405 88.24% 

Total 459 100% 

Source: RICA (2022) 

4%

96%

Farms that produce renewables Farms that do not produce renewables
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6.4. Purpose and Model Definition 

The current section covers the definition of the DEA model, regarding the purpose of 

the analysis and then the choice of model, the choice of returns, the choice of 

orientation, and, finally, the choice of inputs and outputs. 

Purpose of the analysis 

The objective of this analysis is to assess the efficiency of all farms included in the 

database, to understand whether renewable energy production in agriculture, ceteris 

paribus, improves the overall efficiency of these farms. 

The question this analysis seeks to answer is whether the renewable energy farms are, 

on average, more efficient. In addition, the results will be read with different keys of 

interpretation, separating the results into categories to check whether, for example, the 

farms that belong to southern Italy are, on average, more or less efficient. Efficiency will 

be evaluated by scoring the following DEA model run on the MAXDEA program. 

Model Specifications 

Among the various DEA models, the chosen one is an output oriented BCC (Banker, 

Charnes and Cooper 1984), that has VRS (variable return to scale). 

The BCC model has been selected for two reasons: the first one is that because, 

alongside with CCR, is a well-known, basic DEA model and, most important, because it 

allows for variable return to scale. The reason for choosing the VRS is that farms belong 

to various fields that are extremely different from each other and thus  constant returns 

to scale would probably not optimally represent the reality. 

Finally, the choice to use the output oriented model is a choice due to the fact that 

farms, often rely particularly on land inputs and capital inputs that are not easy to 

change. Therefore, for farms it is better to try to optimize the inputs they have to get 
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the best possible result, rather than trying to minimize their inputs to get the same 

result. 

Inputs 

Table 6.4.2 shows the inputs values of the first ten DMUs, indexed by the “Id” column. 

Table 6.4.1: Inputs for DEA (2020) 

Id Working 
Hours 

Net Current 
Costs 

Multiyear 
Costs 

UAA Crop Pollution 
Costs 

Breeding 
Emissions 

1 2160 26310 1525 47.57 0 4950 

2 2880 23991 3520 27.02 4417 2574 

3 7080 97193 6712 32.93 7880 5445 

4 2720 12415 616 8.28 0 2040 

5 2400 105055 2262 14.64 8639 1856 

6 3840 58482 5019 88.25 25909 0 

7 3840 99473 25073 20.38 1681 3861 

8 2800 8555 3276 8.21 0 1287 

9 2720 13659 3410 7.03 0 1089 

10 6700 22605 1812 35.21 8524 0 

Source: RICA (2022) 

As it is possible to see, there are six different inputs. The following list briefly explain the 

reasons behind those choices and if the values are directly imported from the RICA 

database or whether there has been some manipulation. 

• Working Hours: That is the total number of working hours during the whole year. 

This input refers to labor as a productive factor. 

• Net Current Costs: this input item includes all current expenses that the farm pays 

during the year, net of the specific septage for herbicides, pesticides, and pesticides 

that have already been considered separately. 
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• Multiyear Costs: total deferred costs for the year, calculated as the sum of 

depreciation and provisions.  

• UAA: Utilized Agricultural Area, it refers to land as productive factor. UAA is the sum 

of farm areas devoted to agricultural production and it is calculated in hectares. 

• Crop Pollution Costs: this input can be either considered as an input or as an 

undesirable output. In fact, it is something that is actively used with the purpose of 

obtaining the output but is also an environmental cost that is an indirect 

consequence of the purpose of support the crops growth. In any case, it is something 

that farms want to minimize. It is a composed variable, obtained by the sum of the 

costs for fertilizers, herbicides and pesticides collected through the income 

statement table, in the RICA database, of each DMU. This input can be greater or 

equal to zero, where a farm does not use pesticides, herbicides, and pesticides by 

choice or because they are unnecessary, such as for breeding farms that do not grow 

crops. 

• Breeding Emissions: as before this input can be considered as an undesirable 

output. Livestock emit polluting agents, especially methane, that are an 

unnecessary consequence of breeding. Methane is not a necessary input to 

livestock farms, but an unavoidable externality that is an environmental cost. Not all 

emissions are inevitable waste, however; in fact, methane emission occurs at two 

main stages: the enteric fermentation and the manure management. Each animal 

species has a methane emission coefficient per livestock unit (Yusuf et al, 2012), 

separated into enteric fermentation and manure management. The value of 

breeding emissions is thus:   

• BEid = n * (EFj + MMj)  (1) 

• Where BE stands for Breeding Emissions, the index id refers to the DMU, n is the 

number of livestock, EFj is the coefficient for Enteric Fermentation for the animal 

species j and MMj is the coefficient for Manure Management for the animal species 

j. 

Table 6.4.2 summarize the coefficients for the animal species. 
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Table 6.4.2: Emission Coefficients by Animal Species 

Animal Species EF MM 

Cattle-Dairy 68 31 

Others 47 1 

Buffalo 55 2 

Sheep 5 2 

Goats 5 0.22 

Pigs 1 7 

Horses 1.80 2.19 

Poultry 0.02 0.02 

Source: Yusuf et al. (2012) 

EF is generally nonrecoverable while MM can be managed through biogas plants that 

use animal slurry to produce energy. For this reason, farms that produce energy through 

biogas plants have the MM coefficient changed to zero. 

Outputs 

Table 6.4.4 reports the outputs for Data Envelopment Analysis. These outputs should 

not be mistaken for model outputs. In fact, in Data Envelopment Analysis the "model 

inputs" are both the inputs that a company uses to produce its outputs and these 

outputs. On the other hand, the "model outputs" are the efficiency scores.  

Table 6.4.3: Outputs for DEA (2020) 

Id GSP GSP Renewables Complementary Activities 
Revenues 

1 103357 0 0 

2 54934 0 0 

3 151803 0 0 

4 16825 0 0 

5 138995 0 0 

6 93090 0 0 

7 130407 0 95263 

8 28713 0 0 
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9 30063 0 0 

10 45431 0 1491 

Source: RICA (2022) 

There are three distinct outputs: GSP, GSP Renewables and Complementary Activities 

Revenues. These three variables are the addends that when added together produce 

total business revenues. 

• GSP: Gross Saleable Production, that is calculated as the sum of sale of products, 

stock variation, EU aids, increase in fixed assets and self-consumption and gifts. 

These addends refer to revenues closely related to agricultural activity.  

• GSP Renewables: GSP obtained from on-farm renewable energy sources. 

• Complementary Activities Revenues: Income from activities complementary to 

agricultural activities. This input is calculated as the sum of farmhouse revenues, 

contracting, rental income and other complementary revenues. 

6.5. Scores Distribution 

The analysis was conducted on a sample of 10,764 farms that were assigned a score 

between 0 and 1. Farms with an efficiency score of one are those considered efficient, 

while all others are considered with some degree in inefficiency, the more as they are 

close to zero. Remember that Data Envelopment Analysis methodology defines 

efficiency as a relative measure, based upon the best performers in the sample.  

Overall, 204 farms (1.91%) were found to be efficient while the other 10564 (98.09%) 

had some sort of inefficiencies. DEA identifies as relatively efficient only those DMUs 

that lay on the efficient frontier, and they thus have a score equals to one. Remember, 

though, that a score that is close to one, despite being significantly better than a score 

close to zero, is still considered inefficient by DEA. Nevertheless, DEA scores can be 

ordered from zero to one to create an efficiency ranking.  
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The lowest score value was 0 for the DMU identified with the number 7.231, which 

recorded positive or zero input values, but all three output values of zero. Excluding this 

last particular case, the DMU with the second lowest score was number 9.686 with a 

value of 0.004586.  

As previously mentioned, by the model definition, the highest value was obviously 1, 

obtained in 204 cases. The mean value was 0.273275, the median value was 0.215128 

and the standard deviation was 0.191385. Table 6.5.1 summarizes these values. 

Table 6.5.1: Scores Statistical Indicators 

Indicator Value 

Minimum Value 0.004586 

Maximum Value 1 

Mean Value 0.273275 

Median Value 0.215128 

Standard Deviation 0.191385 

 

Figure 6.5.2 shows the frequency distribution of the results, through 50 equidistant 

intervals of value 0.02 and a final singleton in [1]. Each interval, except the last one, is 

closed on the left and open on the right. Most of the mass resides in the first half of the 

possible values, the density initially increases from zero to a peak in the range [0.14-

0.16), from which it then falls gradually and with decreasing steepness to the range 

[0.98-1.00). Finally, in the last interval [1.00] the curve steeply rises again.  
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Figure 6.5.1: Score Frequency Distribution (2020) 

 

Distribution by Geographic Area 

Italy is often divided geographically into five areas: northwest, northeast, center, south 

and islands.  

Table 6.5.2 summarizes some characterizing statistics of different areas in Italy: area, 

population, density, GDP, percentage contribution to total GDP and GDP per capita. It 

can be seen that the center is the largest area in terms of area, but northwest is the 

more populated and the densest, it also contributes with the largest share of GDP and 

it has the highest GDP per capita. 

Table 6.5.2: Italian Areas Statistics (2019) 

Area Surface Inhabitants Population 
Density 

GDP 
(billion €) 

% GDP GDP 
per 
capita 

Northwest 57,950 km2 16,113,972 278.07 inh./km2 591.15 33.05% €36,937 

Northeast 62,310 km2 11,660,998 187.21 inh./km2 413.85 23.10% €35,420 

Center 68,884 km2 12,995,601 188.66 inh./km2 418.34 23.38% €32,192 

South 62,391 km2 12,180,295 195.22 inh./km2 240.29 13.42% €19,728 

Islands 49,801 km2 6,598,884 132.49 inh./km2 124,61 6.94% €18,886 

Source: Istat (2019) 
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Table 7.1.3 shows mean, median, standard deviation, minimum and maximum values, 

number of efficient farms, total number of farms, and percentage of efficient farms 

overall, divided by the above mentioned five macro-areas. It can be seen that companies 

in the northwest are on average more efficient than those in other areas, and the 

percentage of efficient companies in the total is significantly higher. On the other hand, 

central Italy turns out to be the area with the lowest average score and the lowest 

percentage of efficient companies in the area. 

Table 6.5.3: Score Statistics, by Area 

Source: Istat (2019) 

As can be seen from the distribution curves in fig. 6.5.2, for the center and south the 

bulk of the mass is toward zero. This fact is also true for the north and the islands, but 

the difference is that in the latter two cases the curve drops less rapidly going right 

toward the higher scores. Also, above the 0.5 score, many more firms tending trough 

efficiency are appreciable in the northern distribution. 

  

Area Average 
Score 

Median 
Score 

Standard 
Deviation 

Min. 
Value 

Efficient 
DMUs 

DMU 
Number 

% 
Efficiency 

North 
west  

0,32419 0,267719 0,218016 0,024771 60 1950 3.07% 

North 
east 

0,294668 0,240737 0,194811 0,018826 58 2524 2.30% 

Center 0,258034 0,199775 0,183707 0,015907 33 2,573 1.28% 

South 0,235701 0,187742 0,159541 0,038605 29 2,010 1.44% 

Islands 0,280227 0,223185 0,193038 0,004586 23 1,202 1.91% 
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Fig. 6.5.2: Score Frequency Distribution, by Area (2020) 

 

Distribution by Altitude 

When it comes to farms, a very important quality variable is altitude: it is very different, 

indeed, to run a farm in the plains, hills or mountains.  

As mentioned in chapter 6, the majority of the farms, 45%, reside on the hills, while 32% 

in the plains and 23% on the mountains. This current section tries to understand 

whether altitude could be an exogenous factor capable of determining a significant 

difference in the efficiency score.  



 

 

131 

 

Table 6.5.2 shows some descriptive statistics of the distribution of scores, separated by 

altitude, while figure 6.5.3 shows the distribution of scores, separated by altitude. 

Table 6.5.3: Score Statistics, by Altitude (2020) 

 

Fig. 6.5.3: Score Frequency Distribution, by Altitude (2020) 

As for the average score, the mountains have the highest value, but instead have the 

lowest percentage of efficient DMUs in the total. The supremacy belongs to the plains, 

which not only has the highest percentage of efficient farms out of the total with 2.65 

percent but is also the altitude with the highest absolute number of efficient DMUs, 

despite having only 3,399 DMUs compared to the 4,883 farms in the hills. 

 

Altitude Average 
Score 

Median 
Score 

Standard 
Deviation 

Min. Value Efficient 
DMUs 

DMU 
Number 

% Efficient 
DMUs 

Mountain 0,290115 0,252772 0,175402 0,004586 28 2,468 1.13% 

Hill 0,255095 0,198649 0,182823 0,015907 86 4,883 1.76% 

Plain 0,28735 0,217995 0,211282 0,016933 90 3,397 2.65% 
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Distribution by Economic Orientation 

Farms can have different economic orientations, the choice of this section is to divide 

them into three macro-categories: crop, mix and livestock. 

The average score is higher for livestock farms, while the number of most efficient DMUs 

belongs to crop farms. Anyway, the category that has relatively the highest number of 

efficient DMUs (3.01%) is the mix one. 

Table 6.5.4: Score Statistics, by Economic Orientation (2020) 

Orientation Average 
Score 

Median 
Score 

Standard 
Deviation 

Min. 
Value 

Efficient 
DMUs 

DMU 
Number 

% 
Efficient 
Farms 

Crop 0,255741 0,199322 0,183365 0,004586 116 7345 1.16% 

Mix 0,237769 0,175192 0,195039 0,023988 15 497 3.01% 

Livestock 0,323661 0,274462 0,201065 0,031772 73 2917 2.50% 

 

Fig. 6.5.4: Score Frequency Distribution, by Econ. Orientation (2020) 
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Table 6.5.4 shows some descriptive statistics of the distribution of scores, separated by 

the economic orientation, while figure 6.5.4 shows the distribution of those scores. 

Also from the distribution density graph it is possible to guess what the statistics in Table 

6.5.3 show: indeed, it can be seen that the mass of the livestock distribution is less 

shifted toward the left end, resulting in a higher mean score than the other two 

distributions. In addition, it is clearly seen that the mix and livestock distributions have 

more elements, relative to the total number, in the last singleton [1.00], thus resulting 

in a higher percentage of efficient farms over the relative population. 

Distribution by Economic Dimension 

As in the previous section, farms were divided by class of economic size, indexed from 

1 to 5. Table 6.5.5 shows that the average score increases as the economic dimension 

class increases. 

Table 6.5.5: Score Statistics, by Economic Dimension Class (2020) 

Dim. 
Class 

Economic 
Dimension 

Average 
Score 

Median 
Score 

Standard 
Deviation 

Minimum 
Value 

DMU 
Number 

Efficient 
DMUs 

% 

 1 4.000€ - 
25.000€ 

0,212283 0,158722 0,173512 0,004586 2232 45 2.02% 

 2 25.000€ - 
50.000€ 

0,231117 0,185918 0,159427 0,015907 2468 30 1.21% 

 3 50.000€ - 
100.000€ 

0,264584 0,219938 0,165375 0,019242 2499 21 0.08% 

 4 100.000€ - 
500.000€ 

0,31391 0,259011 0,188823 0,019109 2824 43 1.52% 

 5 500.000€ or 
more 

0,473684 0,397901 0,255394 0,061459 737 65 8.81% 
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Fig. 6.5.4: Score Frequency Distribution, by Econ. Dimension (2020) 

Although the first four dimensions are definitely the most populous, dimension 5 

(€500,000 or more) has the largest number of efficient firms and the highest percentage 

of efficiency. Of all the distinctions made so far, dimension class 5 is the one that by far 

accommodates the largest percentage of efficient firms and the highest average score. 

Looking at the density distributions in Fig. 6.5.5, one can see the gradual shift of mass to 

the right that justifies the growth of the average score.  

The density distribution of dim. class 5 (500.000€ or more) is markedly different from 

the previous ones; in fact, the last interval [1.00] is the densest one, and the mass 
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distribution in the other intervals is more homogeneous than the other distributions 

that place most of the companies below the score of 0.5. 

6.6. Renewable Production Scores 

This section will compare data on the efficiency of companies that produce, and do not 

produce, renewable energy.  Internalized energy production in itself is already a factor 

that is expected to enhance a farm's efficiency, since, on the one hand, it reduces costs 

for energy that is no longer purchased from providers and, on the other hand, it adds 

positive cash flow to normal farming activities. In some cases, renewable energy 

production is a complementary activity that complements "regular" farming practices, 

while in others it is so important that it becomes the core business.  

In some cases, producing renewable energy requires a huge investment and produces 

returns big enough to become the core business. Is the case, for example, of some plants 

that generate biogas, with a cost that can range from €800,000 up to €15 million 

(Birchsolutions, 2021). 

Table 6.6.1 shows some statistics characterizing the distribution of efficiency scores: on 

average, farms producing renewable energy get a higher score by almost 13 percentage 

points, moreover, relatively many more efficient DMUs are found among these farms. 

Table 6.6.1: Score Statistics, by Renewable Production (2020) 

Farm Type Average 
Score 

Median 
Score 

Standard 
Deviation 

Min Value DMU 
number 

Efficient 
DMUs 

% 

Renewable  0,395412 0,310379 0,26453 0,046651 459 40 8.71% 

Non 
Renewable  

0,267795 0,211974 0,185616 0,004586 10302 164 1.59% 

 

The result then tells that companies that produce renewables are, on average, more 

efficient than those that do not, and that the chance of a company being efficient is 

more than five times higher in farms that produce renewables than those that do not.  
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Table 6.6.2 collects data divided by type of renewable energy production. It can be seen 

that most of the companies in the sample use solar energy and only about one ninth of 

them produce energy from different sources. Among those that produce solar energy 

the average score is lower than the other renewables but still significantly higher than 

those that do not produce, the efficiency rate is similarly lower than the other sources 

but higher than those that do not produce renewables. 

There are only 26 biogas companies in the sample, and it should be noted that the 

numerical scarcity could lead to inaccuracies in the results. The same argument applies 

even more to the companies gathered in the "others" field: of the 27 collected 11 exploit 

wind power, 5 produce energy from wood, and the remaining 11 are classified as 

"others" directly in the FADN database. In any case, according to the sample data, biogas 

companies are by far the most efficient with an average score of more than 0.83 and an 

efficiency rate of 53.84 percent. As for "others," they rank ahead of solar farms but 

significantly behind biogas farms. 

Table 6.6.2: Score Statistics, by Renewable Source (2020) 

Renewable 
Source 

Average 
Score 

Median 
Score 

Standard 
Deviation 

Min 
Value 

DMU 
Number 

Efficient 
DMUs 

% 

Solar 0,366451 0,292722 0,243148 0,046651 406 25 6.15% 

Biogas 0,838021 1 0,207368 0,345107 26 14 53.84% 

Others 0,419337 0,391872 0,239736 0,052873 27 1 3.7% 

 

As in the previous section the next figures show the density distribution of the efficiency 

scores, that are gathered into 50 intervals from zero to one.  

Figure 6.6.1 shows that the distributions of farms that produce renewable energies 

scores and farms that do not produce renewable scores looks very different, but with 

some common features: they both have a large mass in the first half and then they both 

have the last interval more populated than the previous ones. In any case, it is clear that 
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renewables are on average more efficient and that is more plausible finding an efficient 

DMU among those that produce renewables energies. 

Fig. 6.6.1: Score Frequency Distribution, Farms producing R. E. and Not 

producing R. E. (2020) 

 

In figure 6.6.2 are shown the distribution of the three renewable sources. Since solar 

covers for more than 88 percent of the producing renewable farms, visually its scores 

distribution looks a lot like the renewables one. Looking at the biogas and “others” 

scores distribution it is clear that the sample is very limited and every consideration built 

upon must be very cautious. Even with few data, these distribution look very different 

than the other ones. In particular the distribution of biogas scores that has almost its 

entire mass in the right side of the scores. The other sources distribution looks like it is 

shaped in a more uniform manner. 



 

 

138 

 

Fig. 6.6.2: Score Frequency Distribution, by Renewables Source (2020) 

6.7. The Efficient DMUs 

As said before, only those DMUs that have a score equal to one belong to the efficient 

frontier and therefore are considered to be efficient. This section aims to present and 

describe those DMUs. 

Of all 10,764 farms only 204 are considered efficient. The next tables show those 

efficient DMUs, divided by renewable production and then by macro area, altitude, 

economic size, and orientation, respectively. This distinction is necessary to understand 

whether indeed the higher score of renewable companies is also influenced by other 

factors within the sample.  

In Table 6.7.1 we see that most of the efficient companies producing renewables are 

located in the North, which, as seen above generally has higher efficiency than other 

regions. Specifically, of 40 efficient farms, 29 are located in the North, or 72.50 percent. 
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Table 6.7.1: Efficient DMUs, divided by Ren. Source and Macro Area (2020) 

None 164 % 

Center 25 15% 

Islands 21 13% 

Northwest 55 34% 

Norteast 34 21% 

South 29 18% 

Biogas 16 % 

Center 3 19% 

Northwest 3 19% 

Northeast 10 62% 

Others 1 % 

Northwest 1 100% 

Solar 23 % 

Center 5 22% 

Islands 2 9% 

Northwest 1 4% 

Northeast 14 61%% 

South 1 4% 

 

In Table 6.7.2, with regard to renewables we see a clear preponderance toward the hills 

and plains. Specifically, no efficient biogas-producing farm is located in the mountains. 

Table 6.7.2: Efficient DMUs, divided by Ren. Source and Altitude (2020) 

 

 

 

 

 

 

 

None 164 % 

Hill 67 41% 

Mountain 25 15% 

Plain 72 44% 

Biogas 16 % 

Hill 5 31% 

Plain 11 69% 

Others 1 % 

Mountain 1 100% 

Solar 23 % 

Hill 14 61% 

Mountain 2 9% 

Plain 7 30% 
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Table 6.7.3 shows that efficient farms that do not produce renewables are mostly crop 

farms, while on the other hand, efficient farms that produce renewables are livestock 

farms. The statistical trend is completely reversed here, and it would certainly be 

interesting to investigate this fact further. 

In Table 6.7.4 it comes out clearly that efficient biogas companies have an economic 

dimension at least above €100,000 and, in the vast majority, above €500,000. As seen 

before, farms larger than €500,000 tend to be more efficient than smaller farms. There 

is also a tendency to see relatively fewer farms with average economic size, between 

€25,000 and €100,000. Specifically, there is no average size farm that produces 

renewables in the DMU efficient list. 

Table 6.7.4: Efficient DMUs, divided by Ren. Source and Economic 

Orientation (2020) 

 

 

 

 

 

 

 

 

  

None 164 % 

Crop 107 65% 

Livestock 44 27% 

Mix 13 8% 

Biogas 16 % 

Crop 4 25% 

Livestock 11 69% 

Mix 1 6% 

Others 1 % 

Livestock 1 100% 

Solar 23 % 

Crop 5 22% 

Livestock 17 74% 

Mix 1 4% 
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Table 6.7.4: Efficient DMUs, divided by Renewable Source and Economic 

Dimension (2020) 

None 164 % 

[€100.000 - €500.000) 33 20% 

[€25.000 - €50.000) 30 18% 

[€4.000 - €25.000) 40 24% 

[€50.000 - €100.000) 21 13% 

€500.000 or more 40 24% 

Biogas 16 % 

[€100.000 - €500.000) 2 13% 

€500.000 or more 14 88% 

Others 1 % 

[€4.000 - €25.000) 1 100% 

Solar 23 % 

[€100.000 - €500.000) 8 35% 

[€4.000 - €25.000) 4 17% 

€500.000 or more 11 48% 

6.8. Results and discussion 

In light of what has been addressed in this chapter, it can be said that the farms defined 

as efficient by the DEA model are relatively few, only 1.91 percent, and that most of 

the farms in the sample are relatively inefficient, since they mostly rank far from score 

1 representing efficiency and instead closer to score 0. 

The distribution of scores in almost all cases takes on a characteristic shape that grows 

rapidly from zero and finds its peak toward the first third of the distribution, then 

decreases rapidly and finally grows back to the last value it can take in its domain, which 

is 1. 

Next, the distribution of scores was divided into categories, and these were analyzed 

separately to see whether certain characteristics could be determinants of efficiency 

scores.  
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As a first step, companies were divided according to their macro geographical area, and 

it was seen that companies in the northwest are generally more efficient than those in 

the northeast, center, south and islands. Then, farms were divided according to altitude. 

Then, farms were separated by economic orientation into crop, livestock and mix. Crop 

farms were found to be the most efficient on average, and mix farms were found to be 

the least efficient on average. But looking at the number of efficient farms in the total, 

the mix farms had the highest relative number of farms. Next, the farms were divided 

into five economic size classes, and it was seen that the average score increases as 

economic size increases. Instead, the relative share of efficient farms in the total is 

higher at the extremes, especially toward the largest class farms, and for the middle 

class farms it decreases to almost zero. 

Finally, the companies were divided between those that produce renewable energy and 

those that do not. The result in this case is strongly different: in fact, the companies 

producing renewable energy obtained a significantly higher average score, and also 

from a relative point of view, there are relatively many more efficient companies 

among those producing renewables. 

Specifically of the 459 renewable companies, the vast majority operate in the solar 

energy sector and only a few use other facilities. The other companies are divided 

between biogas producers and "others" due to an insufficient number of companies in 

the sample. 

Of these, companies producing solar energy and “others” are more efficient on average 

than those that do not produce renewables, while farms producing biogas are 

extremely more efficient, both from the average point of view and from the point of 

view of efficient companies out of the total. 

It should be noted that a sample of only 26 biogas companies has limited statistical 

significance. In addition, it was noted that biogas companies are part of the two largest 

economic size classes, which, as mentioned earlier, are relatively more efficient than the 

smaller ones.  
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That being said, it is possible to say that, according to the DEA model specified in Chapter 

6, renewable energy producing farms, that belong to the Italian RICA sample, are 

economically more efficient than those that do not produce renewables instead. 
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7. CONCLUDING REMARKS 

The result of the analysis is, basically, that farms that produce renewable energy appear 

to be more efficient than those that do not. How does this result translate into practice?  

Starting from a point of view close to neoclassical economics, the significance of this 

thesis statement could be of interest both to farms as a unit in an economic system and 

to policy makers in resources allocation. 

On the one hand, farms might consider solutions that allow them to produce 

renewable energy, not only out of a desire for the environment to be better, but also 

to gain an economic return in terms of efficiency. In addition, given the emergency 

situation in the energy market to date February 2023, the related energy prices have 

risen disproportionately and the choice to internalize energy production turns out to 

be relatively more convenient than before. 

Thus, an educated guess might be that farms will tend in the future, due to the nature 

of the market itself, to produce more renewable energy. 

This statement should not be understood as an exact prediction of the future, as many 

factors and possible market failures could come into play. For example, as noted, biogas 

farms are of considerable economic size, and barriers to entry in this market sector may 

be too high and prevent the full realization of equilibrium. 

On the other hand, Italian and European policy makers might be interested in injecting 

more funds specifically for farms producing renewable energy. In fact, the relatively 

higher efficiency found on farms producing R. E., compared with those that do not 

produce them, implies that, at the overall level, if many more farms decided to produce 

renewable energy, then the overall economic efficiency of the sector would increase. 

This means that this support would not be a mere subsidy but would become, from a 

macroeconomic point of view, an investment that would promote growth. 
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Again, therefore, it is natural to think that policy makers would act in this way, and 

indeed, as seen in section 3.3 with NRRP funds, actions in this direction are already in 

place. 

Turning to a more modern economic point of view, in which utility does not depend 

only on the consumption of goods, but also on hard-to-quantify factors related to well-

being and quality of life, the expectation is the same, namely a likely gradual increase 

in renewable energy producing farms.  

In fact, as seen in Chapter 2, the current dependence on fossil fuels is not only time-

limited due to resource scarcity, but also produces harm for human beings, from an 

ecological point of view, also from a geopolitical point of view. Thus, the maximization 

of social welfare, which should be the ultimate goal of policy makers, also comes 

through the conversion of farms to renewable energy production, since, as stated 

earlier, renewable production both increases the economic efficiency of companies, 

thereby increasing social welfare, but also offers a clean alternative solution to fossil 

fuels and their negative externalities and would reduce social malaise. 

A proliferation of renewable energy farms would surely be good, but there are risks.  

Undoubtedly, the energy situation at today's date (February 2023) is a further push 

toward this ecological transition. However, it must be kept in mind that the hurry 

resulting from the emergency situation could bring problems related to landscape 

constraints. 

Recent Italian legislation, following the worsening of the energy crisis, has expanded the 

areas suitable for production plants from renewable sources and this could lead to a 

degradation of the agricultural landscape. The systems and connection works to be 

built in agricultural areas are, in fact, today declared to be of public utility and so far, 

subject to accelerated administrative procedures, in which the administrations in charge 

of landscape and archaeological protection must express their opinion, but their opinion 

is not binding. 
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In conclusion, the results of this paper have the advantage and limitation of being 

general, that is, referring to a population of farms that represent Italian farms as a 

whole. There are farms from all parts of Italy, located in mountains, hills and plains, of 

different economic size classes and with different economic orientations. 

Thus, it would be interesting to develop further research in which to evaluate the 

specific efficiency of farms in a full producing renewable energy sample, based on a 

larger volume of data, maybe European, in order to understand the efficiency of the 

different sources associated with different farms' own characteristics.  
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