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Abstract

The proposed thesis explores monitoring system calls in Android environments
to detect the presence of debuggers, identify anomalies that can be indicators of
security issues, and observe how user-sensitive data is handled. System calls are
fundamental for every application since they are the mandatory gateway to request
an action from the operating system; therefore, accessing any resource implies per-
forming one.
To achieve these goals, a system call capturing and analyzing tool named Ptracer
has been developed. It places itself between an application and kernel to intercept
every interaction among them and gather information like the stack backtrace and
used parameters for each observed system call.
Moreover, the captured information can be represented in a model based on a Non-
deterministic Finite state Automaton (NFA) and refined during multiple learning
iterations, effectively linking all the observed kernel interactions by a causal re-
lationship. Such a model describes what is considered a “normal” application
behaviour and will be used to detect anomalies by enforcing it during future ap-
plication executions.
The collected information will be extremely useful in detecting whether an exter-
nal actor is trying to debug, tamper or breach the application since such attempts
would alter its normal behaviour, execution speed, or pace. The final results will
show how system calls interception is a rich source of information that can be used
to protect the application from various attacks. Furthermore, by analyzing what
actions are requested to the kernel, it is possible to determine what sensitive data
the application requests and how often, with the goal of identifying privacy issues.
The proposed future developments aim to reduce Ptracer ’s analysis overhead, ac-
tively protect user privacy, and provide new and more sophisticated techniques for
detecting MATE attacks and anomalies. These future goals will be achieved by
improving the analysis quality to reach a deeper insight into the application and
expanding the behavioural model by including different data types to counter a
wider variety of attacks (e.g., DoS attacks). Moreover, new interception technolo-
gies like eBPF will be considered and discussed.

Keywords Syscall Monitoring, Android Security, Debugger Detection, Anomaly
Detection, Android Privacy
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Chapter 1

Introduction

A System Call is the main way used by user-space processes to request a service
from the operating system and it is part of the kernel interface. They are per-
formed temporarily transferring control to the kernel and are needed to perform
any sort of process creation and management, file access, file system management,
I/O, networking, and more. Without performing a system call a process can only
perform calculations and operate on its own volatile memory, even its termination
would require one. Linux systems offer various ways to gain control over system
calls performed by any application, one of the most common ones is using ptrace,
which effectively allows a process in user space to control another one. Taking
control of every communication between an application and the kernel is an effec-
tive way to have a complete view of its behavior since every potentially malicious
action must involve a system call. Moreover, altering system calls it is possible to
This thesis focuses on what can be achieved by monitoring and potentially alter-
ing system calls performed by an application running on the Android operating
system.

Android has become the most popular mobile operating system worldwide, with
millions of users and developers relying on its open-source platform for their daily
activities. This implies that a wide amount of people are very often in the proximity
of an Android system capable of capturing a variety of information, and every
software able to run on this platform is bound to have a vast potential user base.
Inevitably, its popularity has also made Android a target for malicious actors, who
are interested in gaining sensitive information, control over the whole device, and
software piracy. Achieving any of these goals can imply a strategic and economical
advantage for attackers, especially in all those cases where information secrecy is
critical or it is important to protect the program’s internal mechanics and data
flow.

This thesis proposes an approach to monitoring application behavior based on
System Calls inspection, analysis, and correlation with the end goal of detecting
reverse engineering attempts, security intrusions, and privacy issues.

1.1 MATE Attacks
Man-At-The-End (MATE) attacks occur in any setting where an adversary has
physical access to a device and aims to compromise it. They are particularly
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hard to detect and prevent for various reasons: the attacker has limitless and
authorized access to the target; all major protections stand up to a determined
attacker only for a certain period of time; the attacker is human and, therefore,
utilizes motivation, creativity, and ingenuity. Hence there are various software
protection primitives that aim to address MATE attacks, but none of them is
expected to hold off an attacker for an indefinite period of time since with enough
motivation, time, and money all protections will eventually fall.

Reverse engineering is often one of the first steps in a MATE attack, it consists
in the act of dismantling a previously made device, process, system, or piece of
software to understand how it accomplishes a task. Since it can be a means to find
vulnerabilities and pirating software, it is often prohibited by the software terms
of service, and multiple technical measures are set in place to make it harder.

To reverse engineer an application one of the most useful too is a Debugger, which
can be used to analyze the behavior of an application, it can help developers detect
and solve bugs running the target program under controlled conditions allowing
them to track its execution and identify malfunctioning code. At the same time
debuggers can give attackers valuable insight into what algorithms and data are
used, especially when paired with decompilers, they can provide a combined view
of what algorithms are used, what data is flowing, and a human-readable version
of the running instructions. Moreover, Android applications are often written in
Java, given the wide support for it offered by the platform, which is an interpreted
language that includes a lot of metadata in its bytecode and makes it easy to
retrieve the original source code.

In literature, some of the techniques used to hinder MATE attacks are often cat-
egorized in the following categories: Obfuscation, which allows transforming the
program into a new one with the same functionality but harder to analyze for
an attacker; Tamper-Proofing, which consists in transforming the code by adding
self-checks aiming to detect if the intended program behavior has been altered and
react consequently; Watermarking, which allows unauthorized copies to be traced
by embedding unique identifiers in a piece of software [8]. The work done in this
thesis wants to propose a new technique to address MATE attacks detecting the
presence of a debugger, this will be done by modeling the acceptable time between
one system call and another and the acceptable sequences of calls. Hence, allow-
ing identifying debuggers, since attaching one or setting a break-point will heavily
delay the modeled times, and modifying the code will likely alter the sequence of
allowed invocations.

1.2 Intrusion Detection and Prevention

An Intrusion Detection System (IDS) is a monitoring system that aims to detect
malicious activities or policy violations and raise alerts when found. To do that
a variety of data can be used, some of the most common IDS use network traffic,
since it is one of the main vectors to attack a system, but there are also IDS based
on events that occur within a host at various levels. The type of data used also
offers a way to categorize them, in this thesis a Host-based Intrusion Detection
System will be proposed (HIDS), since the acquired data come from the operating
system.
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Another way of categorizing IDS is based on their detection method, hence how
they decide what behavior is malicious or allowed. Their detection policies are of-
ten subdivided into categories based on how their models are built: A specification-
based detection scheme is used when patterns of allowed activities are known, a
Misuse detection scheme base its decision on a known list of malicious activities,
and an Anomaly detection scheme is used when patterns of normal activities are
known. This thesis focuses on HIDS based on Anomaly detection, since System
Calls will be observed during a learning period, a model of normal activities will
be built and eventually used to enforce it.

This approach can also be used to counter MATE attacks preventing code temper-
ing since such an attacker is going to be interested in manipulating the strategic
part of code in order to gain various advantages (e.g., bypassing license checks or
cheating in a game). Once learned what is the normal sequence of System Calls
and their stack trace, it is possible to enforce it by detecting behaviors that cannot
happen.

1.3 Privacy
Android devices often have access to a multitude of sensors (GPS, microphone,
camera, and more), which, combined with their high level of connectedness to the
Internet and other devices, exponentially increase the risk of leaking sensitive infor-
mation either to malicious actors or companies (e.g., for advertisement profiling).
Recent versions of the Android operating system provide a granular permission
system that forces every application to explicitly request authorization to use ev-
ery sensor. Despite this, once granted, it is not possible to see on how often a
permission is used or what happens to the captured information. For example,
once permission to access the microphone is granted the user has no way to know
if the application is using this privilege just when expected or if it is constantly
listening and sending data to a remote server.

This thesis wants to propose a way of monitoring what an Android application is
doing with the granted permissions, what files are opened, and identify where the
data flows. Eventually, trying to correlate the exfiltrated data with the information
acquired from the operating system.

Since every acquisition of sensitive information needs to happen to invoke some
System Calls then monitoring them allows having a view of what data has been
requested and provided to the application. The project developed as part of this
thesis is also able to provide an understanding of what actions have been attempted
by observing the System Calls and providing a final summary. Moreover, it also
allows modification of the data provided to the application by the operating system
in order to preserve user privacy. For instance, when the system call open is
observed then the application is trying to get access to a file, reading its path
from the parameters of the call and looking for the returned file descriptor in
the subsequent read and write will allow having a higher level view on what
application is trying to achieve.

In the next chapters, it will be analyzed how Android applications can request
permission to access a sensor, how data can be acquired from it via the Hardware
Abstraction Layers, and how these actions translate into System Calls.
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Chapter 2

Related work

This chapter wants to provide an overview of what is the current state of the art
of the three main problems addressed in this thesis: Debugger detection, Anomaly
detection, and Privacy monitoring.
All three areas have seen an increasing interest in the last years, especially in
the context of Android applications, which is going to be the scope of this work,
together with the application of System Call analysis.

2.1 MATE Attacks

Software protection has been an intrinsic problem of software engineering since
commercial software appeared, which made it crucial to mitigate MATE attacks
aiming to protect the integrity of data and code of applications running on un-
trusted devices. Hence, over time it has become more evident that it is necessary
to develop solutions to make reverse engineering, piracy and tampering harder for
an attacker. Some of the solutions developed try various measures to hide data and
code [12, 4], detect and prevent tampering, perform remote attestation of devices
[32] and code renewability [2].

There are various implementations of the techniques described above, two of the
most complete examples are the ASPIRE Project [9], and Tigress [7]. The first
targets mobile devices and aims to establish a trustworthy software execution on
untrusted platforms; it does that by proposing multiple lines of defence into a
plugin-based software protection toolchain [11].
On the other hand, Tigress is also able to apply multiple layers of defence and it is
described as a source-to-source transformer for the C language that supports many
defences against both static and dynamic reverse engineering and de-virtualization
attacks.

In the specific area of debugger detection and prevention, the ASPIRE Project
offers an implementation of self-debugging [1]. This protection tightly couples a
custom debugger to the application to protect and migrates code fragments to
the debugger, effectively making reverse engineering harder and preventing other
debuggers from attaching to the application since the only available seat will be
taken.

The OWASP foundation offers an extensive section in their Mobile Application
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Security Testing Guide (MASTG) [5] where various Android Anti-Reversing De-
fenses are described.
The guide proposes various solutions that can be composed together, forming a
more extensive multi-layer approach to preventing and detecting reverse engineer-
ing attempts. These solutions involve detecting if an Android device has been
rooted or does not have an official ROM, preventing and/or detecting debugging
in various ways, identifying tampering checking executable files and much more.
One of the techniques proposed is using timer checks, and it is based on the fact
that a debugger slows down process execution, then measuring how much time it
takes to execute a specific code section would give an indication of a potentially
attached debugger.

Nowadays, mobile devices are often embedded with many sensors that can provide
helpful information regarding the environment surrounding the platform; they can
also be used to determine if the application is running in an emulator [30, 28].
This technique involves gathering data from as many sensors as possible to identify
anomalies that the running platform is not a real user device. For example, if the
motion sensor never detects any movement, not even when the user touches the
screen, then this can be considered a first hint that the platform might not be legit.
When multiple hints are raised, then a server can consider an execution platform
as untrusted and take the appropriate measures.

The debugging detection approach proposed in this thesis is going to extend time
checks to the whole program, offering a way to apply it to all the system calls
generated by an application.

2.2 Anomaly Detection

Starting from the mid-90s, it is possible to see an interest in developing intrusion
detection systems that base their choices on System Call analysis; for example,
[17] proposes an n-gram model to validate small sequences of calls.
System Calls were soon identified as a valuable indicator to respond to the question:
can the application behaviour be considered normal?
Various detection techniques based on System Calls analysis have emerged in the
following years, some determining the normal behaviour of the program through
static analysis [33], others using dynamic analysis [24] or a combination of both
[27] to leverage on the advantages of both approaches.

There has been an evolution also on the models used to capture the expected
behaviour of an application; automaton transition verification was first described
in [24], then formalized first as a Finite State Automaton (FSA) in [29], and then as
a Non-Deterministic Finite State Automaton (NFA) in [33], eventually it has been
shown that the call stack provides a valuable contribution in detecting anomalies,
and the model has been further improved using Push Down Automata (PDA)
leveraging on their stack to maintain the function call context [33].
All the previously mentioned models are based on static analysis, even though
they also have applications in black-box contexts. They have evolved in the most
recent state-of-the-art models such as Dyck [21], VPStatic [16], and the Inlined
Automaton Model (IAM) [23], in the attempt to reduce the overhead of the PDA
approach.
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Using a black-box or grey-box approach, other more advanced paradigms have
been developed to detect anomalies. Some notable examples are: VtPaths which
utilize return address information extracted from the call stack to build virtual
paths [15], Execution Graphs which provide a grey-box approach that accepts
only system call sequences consistent with the program control flow graph [19],
hidden Markov models where the hidden stochastic process are the aggregated
tasks performed by the process (e.g., reading a file) and is observed by the emitted
system calls [20], and its improved STILO model [35].

Very different are the approaches based on various data mining [26] and neural
network models, which are recently evolving.
Other contributions approach this problem from a different level, e.g., from the
hardware point of view, hence proposing an even stricter semantic checking not
only system calls but also jumps [6].
This contribution proposes a further analysis layer that can be placed on top of
other existing approaches to learn properties on system call parameters [38].

In the context of Android applications, similar models have been applied to System
Call monitoring to detect anomalies in the form of malware [13, 36, 3], where clas-
sification algorithms have been used to discern benign and malicious behaviours.
Other contributions aim to provide a different level of insight on the actions per-
formed by an application [40, 31, 39] which can help analyse malware.
At the moment of writing this thesis, a contribution targeting generic anomalies
in Android systems is unknown.

This thesis would like to provide a practical approach that specifically targets
Android applications and aims to construct a behavioural model based on NFA
and Stack traces similar to VtPaths [15] and Execution Graphs [19].

2.3 Privacy monitoring

Given the wide adoption of Android and the level of information sensitivity that
is often handled in mobile devices (e.g., banking apps, sensors, etc.), there has
been a rising interest and number of contributions in the area of detecting Privacy
issues in understanding how applications use the granted permissions.

Since Android applications are often executed in an interpreter VM, hence based
on languages that are able to produce bytecode targeting that platform (e.g.,
Java and Kotlin), a first attempt has been made using static analysis to identify
code portions that acquire sensitive data or communicate with the Internet. This
solution is adequate but not complete since the application can also dynamically
at run-time download and execute code from a remote server.

Other approaches involve using dynamic analysis at various levels to gain an insight
into the application behaviour at runtime; TaintDroid [14] uses a modified version
of the interpreter VM to perform a taint analysis on the acquired data, hence
aiming to trace the full path of sensitive information and have a clear picture of
what data is leaked. One of its limitations is that it is able to monitor only the
interpreted instructions and does not have any insight into native code.

Projects like CopperDroid and DroidScope [31, 25] offers a virtualization-based
malware analysis platform and a view from the point of view of the QEMU Android
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emulator, parsing system call invocations to detect what sensitive data has been
acquired. This approach is very powerful for malware and has goals similar to this
thesis, but it does not target real devices, contrary to the approach proposed in
this work.

Aurasium [37] offers an approach at a different level since it repacks applications
inserting user-level sandboxing and policy enforcing code to be able to watch for
security and privacy violations. It effectively places itself between the code and the
native libraries used. This technique is very effective in determining what and how
sensitive data is handled but presents some limitations: the presence of the new
instrumentation code can be easily spotted, using native code, it would be possible
to circumvent Aurasium, and the used sandbox is prone to “time of check/time of
use” (TOCTTOU) race conditions.

Other tools use a combination of static and dynamic analysis and leverage on the
Linux process tracing interface ptrace; for example, DroidTrace [40] has been de-
signed for studying malware and uses static analysis to identify code sections that
dynamically load new code, and dynamic analysis to monitor all the application
behaviours. Despite the fact that its original goal is not identifying privacy issues,
its analysis also provides valuable information in this regard.
Another relevant example is ProfileDroid [34]; it aims to be a system for moni-
toring and profiling Android applications. It uses static analysis to identify what
permissions are requested by the application and if Intents are used for accessing
resources indirectly through other apps. The tool strace is used to obtain a view
of the flow of system calls, and tcpdump is used for inspecting the network layer.
The final analysis is not thorough as it does not perform a deep inspection of what
Inter-Process Communications (IPC) is performed.

This thesis would like to propose a new system that targets real Android devices,
based on dynamic analysis via ptrace, and is able to deeply inspect system calls
that might impact the user’s privacy, e.g., IPC calls.
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Chapter 3

Background

The approach proposed in this thesis relies on ptrace to halt the traced process
every time a System Call occurs and be notified in order to have the chance
to extract the stack trace. Moreover, it is focused on Android, which has its
particularities and complex system design.
This implies that there are multiple aspects related to the structure of executable
files, their linking to libraries and how Android applications are executed, which
need to be considered. This chapter aims to give a high-level overview of the
relevant aspects of these topics.

3.1 Linux System Calls Tracing

The ptrace Linux kernel process tracing interface (in place since kernel 1.0) pro-
vides a means by which one process (the “tracer”) may observe and control the
execution of another process (the “tracee”) and examine and change the tracee’s
memory and registers. In this context, the tracee will always be referred to as a
generic process, which could also be a thread, also known as a lightweight process.

This interface can be used via the system call ptrace, which allows one first to
specify the identifier of the process to trace and then specify how it should be
traced. The identifier is normally known as the Process ID (PID), but it also
accepts a Thread ID, which in Linux terms is often referred to as SPID. If the PID
of a thread group leader is selected, this does not mean that also the system calls
of all the threads in its group will be received.
Moreover, it is important to notice that once a tracer is attached to a tracee, no
other tracers for the same process (or thread) are admitted.

In an Android environment, the usage of ptracer is further restricted in such a
way that only the parent of a process can trace it. Therefore, making it impossible
to attach to an application since they are always executed by the same parent (as
will be described later).
A way around this limitation is running the tracer process as root, granting it the
possibility to attach to any process.
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3.2 Executable Structure
When an executable requires to use of a library, it can either embed it and hence
be statically linked to it or leverage on the shared libraries present in the system.
At runtime, the linker will ensure all the right libraries are loaded before starting
the application.
One very common protection against buffer overflow and ROP attacks is Address
space layout randomization (ASLR), which randomizes the memory structure of a
program every time it is run. Hence, each execution will have libraries, stack and
heap in different memory positions.

Despite this being a very strong mitigation against attacks, it also poses a problem
while acquiring stack traces, as will be discussed later. To circumvent this issue,
instead of leveraging on Program Counter addresses, the function name will be
extracted.

3.3 Android applications
Every Android system has a Zygote process, which preloads all the system re-
sources and classes used by the Android Framework, it is launched at the system
startup and is the parent of every running application.
To speed up the execution of new applications, the Zygote process maintains a
pool of its clones that are ready to specialize into an application once needed.
This pool is called the “Blastula Pool”.

The Android runtime (ART) is the managed runtime used by Android applications.
ART, as the runtime, executes the Dalvik Executable format and Dex bytecode
specification.
Dalvik is a discontinued process virtual machine (VM) in the Android operating
system that executes applications written for Android (Dalvik bytecode format
is still used as a distribution format, but no longer at runtime in newer Android
versions.)

The particularity about Android applications is that they do not have a single
entry-point, but being heavily event-driven they can have multiple, as it will be
seen in the next sections.

3.4 Android Binder IPC
Processes in Android have separate address spaces, and a process cannot directly
access another process’s memory. Therefore, they need a way to communicate
among themselves, and this is where the Android Binder IPC comes to the rescue.
The Binder is an inter-process communication (IPC) mechanism heavily used in
every Android application since, without it, no system interaction would be pos-
sible, even receiving the event for a touch on the screen requires interacting with
it.

It allows waiting for events, e.g., the completion of a task or just a user input to
come.
Moreover, it is one of the ways to enforce Android permission since every time an
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application needs to use a service exposed by the system, e.g., the microphone, it
will need to perform a Remote Procedure Call to the service exposing the methods
to read from it, methods who will check if the requester has enough permission to
use the microphone.

It allows to share memory transparently and to use reference counting for objects,
this enables to efficiently exchange data between applications and system services
since, for example, the latter could directly write on a file descriptor provided by
the application.

The Binder also supports exchanging messages between applications or services,
this is done by encapsulating them in Parcels, which are containers that support
being sent through the Binder.

Effectively, this component can be considered the “heart” of Android since it is
extremely important for every application and enables all the system components
to communicate efficiently.
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Chapter 4

Solution

This chapter presents the developed system call monitoring solution and its various
capabilities. The following chapters will cover its usage from the perspective of
the three main areas covered by this thesis: detecting a debugger, identifying
anomalies and privacy issues.

The developed application is called “Ptracer” and can be used to:

• Easily interact with the Linux process tracing interface ptrace to capture
system calls invocations.

• Learn and enforce a Non-Deterministic Finite State Automata that correlates
all the observed system calls sequences and stack traces.

• Provide a deep understanding of the observed system calls to have a higher-
level view of the application behaviour.

The project has been developed in C++ and targets the x86_64 and ARMv8-A
(also called AArch64) architectures running Linux or Android, different executa-
bles have been made for all four possible combinations, and various adaptations
are applied to each version. This implies that the project is compatible with most
modern Android physical devices, emulators, and any other Linux-based operating
systems running on a supported CPU architecture.
Further technical details and instructions on how to build the project are specified
in Appendix A.

4.1 Architecture

Since it is necessary to stop the tracee each time a system call is invoked, then using
Ptracer may imply a performance degradation for the applications, especially in
Android, where many system calls are needed to deal with the interactive nature of
the system and the need to communicate among multiple components (as described
in Section 3.4). Every time a system call notification is received, the tracee will
be in a stopped state, and it will be necessary to:

1. Read the CPU registers of the traced process since they are used to specify
the identifier of the requested system call and the memory address of its
parameters (described in Section 4.2);
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2. Extract the sequence of stack frames that lead to the invocation of the system
call, if enabled, this may result in multiple read operations from the tracee’s
memory which come at the cost of a further slowdown (described in Section
4.3);

3. Learning or Enforcing the NFA model depending on what mode has been
chosen, and eventually authorizing or not the system call (described in Sec-
tion 4.4).

4. Analyze the parameters of specific system calls to get an insight into the
behaviour of the traced application (described in Section 4.5);

Depending on the desired outcome, it is possible to choose not to extract some
data to speed up the traced process; for example, stack traces may not be needed
when the goal is only to have an overview of the potential privacy issues.
Despite that, it is necessary to have an internal architecture that allows tracing
multiple processes simultaneously and efficiently since even the most straightfor-
ward Android application is composed of many of them to optimize its perfor-
mance.
For these reasons, the tracer has been optimized to keep the traced process in a
stopped state for the least amount of time possible and to minimize the number
of processes blocked on a system call.

Some of the overhead is unavoidable and directly linked with the notification mech-
anism performed by the Linux kernel since just pausing a process so often, deliv-
ering the signal and performing a context-switch to the tracer is an expensive
operation; hence, this part cannot be optimized further without radically chang-
ing the monitoring approach with all its consequences (e.g., as mentioned in the
future developments Section 6.1).

Ptracer

Tracing thread

TID: x1 TID: x2 TID: x3 ...

Linux Kernel
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Figure 4.1: Internal architecture of Ptracer in an Android environment

In Figure 4.1, it is possible to see the internal architecture of Ptracer where the
two main threads are running and tracing a typical Android application. In this
case, the Android application is composed of multiple processes (which is a very
usual scenario), and since a normal application is depicted, they are all children
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of a specialized fork of the Zygote process.
The Tracing thread is responsible for handling all the notifications received from
the traced processes via ptrace. While the Analyzer component retrieves an in-
ternal representation of the received system calls, handles the NFA-based model
and has been delegated to make the final decision on whether a system call is
authorized.

A concurrent queue of system calls has been created to link the Tracing thread
and Analyzer, effectively decoupling them. This is necessary since the two main
components will run in two separate threads, and it is desired to keep the Tracing
thread as busy as possible handling system call notifications.
This architectural choice has been made to optimize handling applications com-
posed of multiple threads and processes that heavily interact with the kernel, which
is the case for Android applications. This came at the cost of slowing down ap-
plications that operate on a single thread, which would benefit unifying the two
Ptracer ’s internal processing threads.
There are three different types of notifications produced by the Tracing Thread,
each identifying a different type of event:

• System Call Entry: this notification type represents the invocation of a
new system call by a traced process, it contains the CPU registers and can
also embed the stack trace. It will be necessary to have all the information
to approve each of them explicitly.

• System Call Exit: represents the completion of a system call and carries
its return value. These notifications do not require explicit approval since,
when received, the action performed by the call has already happened.

• Process Termination: received every time a tracee terminates its execu-
tion for any reason.

All the notifications mentioned above are specializations of the same common
interface, which contains general information like a timestamp and the identifiers
of the tracee that has generated it (e.g., its Process ID and Thread ID).
When the Analyzer wants to allow a system call, a signal will be sent to the
Tracing thread, whose handler will check the queue of allowed system calls and
issue a continue command to the desired Thread Identifier (TID) via ptrace. This
is necessary since only the specific thread attached to the tracee via ptrace can
issue a continue command, and the Tracing thread will always be busy waiting for
the next system call.
The most immediate solution to this problem would be to create a different tracing
thread per process, but this approach has some drawbacks and technical issues.
The first problem would be the workload since tracing an application with a high
level of parallelism would imply running twice as many threads and processes to
monitor it. Secondly, to ensure that no system calls are missed, when a tracee
decides to generate a child process, ptrace automatically attaches to it. Therefore
it would not be possible to detach from it safely to allow a second tracer to take
over, at least not without risking missing some system calls during the transition.

Thanks to the separation between a system call’s capture and analysis process,
it is possible to increment parallelism, enabling fetching the following system call
from a different process while another one is being analysed.
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To properly analyse the system calls’ parameters, it is necessary to read portions
of the traced application memory containing the system calls’ parameters. This
operation needs to happen from the Tracing thread since it is the only one allowed
to issue ptrace commands. A similar problem has been previously solved by
decoupling the two components and using signals.
In this case, a similar approach is not applicable since it would require interrupting
the Tracing thread too often to read all the various sections that are part of some
system calls.
Therefore, it has been decided to divide the decoders from the tracing thread only
from a logical perspective and have them running in the same thread.
The Observer pattern design has been implemented to link these two components.
Hence, every decoder will subscribe itself only to the system calls identifiers whose
parameters it can parse, and the Tracing thread will be able to notify only the
interested decoders.
Since the decoder’s implementations run in the Tracing thread, they will be able
to extract multiple portions of the tracees’ memory and store their analysis results
which will be printed and investigated once the application has terminated.
Thanks to this architecture, it is possible to easily create a new decoder just by
implementing the SyscallDecoder interface and declaring what system calls it shall
subscribe to. In this way, it is not necessary to know any detail about the tracing
logic to extend Ptracer ’s analysis capabilities.
More details on this component can be found in Section 4.5.

4.2 System calls monitoring

Leveraging on the Linux process trace interface ptrace, it is possible to attach to
a specific Identifier for a Process (PID) or Thread (TID) and be notified every
time a system call is invoked, or signal is received, hence every time the kernel
takes over control. One of the main advantages of this technique is that it cannot
be easily evaded and allows modification of system calls parameters and return
values.
In Figure 4.2, it is possible to see the point of view that can be obtained using this
tracing technique on an Android application; in fact, it allows to be notified every
time an action from the kernel is requested either directly by the application code
or indirectly by one of the underlying layers. Moreover, Ptracer can also extract
stack traces, allowing tracking of the sequence of nested functions called from the
application code through the ART framework and standard libraries.

Thanks to ptrace, it is possible to wait for notifications from a traced process using
the library function waitpid, which is typically used to wait for the termination
of a child process, and in this case, is “abused” to wait for events. It will be
necessary to filter those notifications to ensure they are coming from the tracing
interface and handled differently if they correspond to the reception of a signal by
the tracee, the invocation of a system call, its conclusion or the termination of the
entire process.
Moreover, it is also necessary to correctly recognize and implement special cases
for some system calls that create new processes or replace the running program.
For example, when a system call like clone, fork or vfork is executed, then the
tracee will spawn a new process or thread (depending on the clone parameters),
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Figure 4.2: Positioning of Ptracer in an Android environment

which will need to be traced too. To do that in the safest way possible, it is
possible to leverage on ptrace, which, thanks to some initialization options, allows
to attach to the generated children of all types automatically.
When an execve system call is executed, the running program will be replaced by
a new one. This implies that if it is composed of multiple threads, they will all
terminate, and only the thread group leader will be left, such behaviour needs to
be recognized, and all the data structures used to keep track of the system calls
must be modified accordingly.
Moreover, there are special system calls that never return and will generate only
one notification at their invocation (contrary to all other calls that generate another
one when they terminate). One example is rt_sigreturn which should never be
called directly and is used to return from a signal handler, hence used every time
a signal is received.

To improve security, Ptracer also allows placing the traced processes in a “jail” so
that if for any reason the tracer dies, then also the tracee will forcefully terminate.
In this way, it is possible to prevent the tracee from killing the tracer in an attempt
to free itself from its monitoring and control.

Each captured notification from the traced processes will be printed on the stan-
dard output, and its internal representation will be made available for further
internal processing by the Analyzer component.
In Figure 4.3, it is possible to see an extract output generated from tracing the
execution of the command ls in an Android environment and disabling the stack
trace acquisition.
The execution of this command is single-threaded and does not generate any child
process, hence the output is going to be a sequence of pairs of system call entries
and their relative exit, if no signals are received. In fact, for each system call in-
voked by the tracee, the tracer will receive two notifications (three in case of some
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special calls), one when the kernel has just received the invocation and the second
when it has terminated its execution. In the example, it is possible to see the entry
notification of a write system call (which identifier in the AArch64 Linux table of
system calls is 64), with the Process Identifier (PID) and Thread identifier (SPID)
of the process requesting the call.
Moreover, starting from line 8, the parameters passed to the system call are ex-
tracted from the CPU registers and reported, together with the Program Counter
(PC) and Stack Pointer (SP) in lines 19 and 20.
The subsequent notification type, starting from line 24, is a system call exit, hence
the notification received when the kernel has performed the operation and allows
to see the return value of the call.

1 ------------------ SYSCALL ENTRY START -----------------

2 Notification origin: ls

3 PID: 18470

4 SPID: 18470

5 Timestamp: 1673561040240989

6 NOT Authorized

7 Syscall = write (64)

8 Parameters = {

9 0x0000000000000001

10 0x00000078be7e4989

11 0x0000000000000001

12 0xffffffffffffffff

13 0xffffffffffffffff

14 0x0208001182080800

15 0x0000000000000020

16 000000000000000000

17 }

18 Registers = {

19 PC: 0x0000007a2e962258

20 SP: 0x0000007ffc286370

21 RET: 0x0000000000000001

22 }

23 ------------------ SYSCALL ENTRY STOP ------------------

24 ------------------ SYSCALL EXIT START ------------------

25 Notification origin: ls

26 PID: 18470

27 SPID: 18470

28 Timestamp: 1673561040241834

29 Authorized

30 Return value: 0x00000000000001

31 ------------------ SYSCALL EXIT STOP -------------------

Figure 4.3: Partial output of tracing ls in Android without capturing the stack
trace

4.3 Stack trace extraction
For each system call entry, it is possible to read the stack trace that leads to its
generation leveraging on the library libunwind [10] on generic Linux-based systems
and libunwindstack [22] on Android. These libraries offer the possibility to iterate
over all the stack frames on a stopped process via ptrace and generate a backtrace,
effectively fetching the function name and offset from its entry point for each frame.

There are multiple ways to generate a backtrace, which are all dependent on the
architecture. One is leveraging on the calling convention that imposes a prologue
and epilogue for every function, where the first saves the base stack pointer on the
stack and the second restores it when the function execution is over. An example
can be seen below:
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push rbp

mov rbp, rsp

;; Function body

pop rbp

ret

The information provided by this prologue and epilogue would allow linking all the
stack frames as a list, starting from the most nested one and unwinding the stack
upwards. Moreover, thanks to the fact that not only the stack pointer is on the
stack but also the return address (used by the final ret), it will also be possible
to identify the entry point of every function and match it with the relative symbol
representing its function name in the dedicated ELF section.

Unfortunately, this first method will not work in all those cases where the frame
pointer has been excluded for the sake of optimization. A more modern approach
to stack unwinding leverages particular sections of the ELF file format (e.g., the
section .eh_frame or .debug_frame) containing tables with the unwinding infor-
mation, which can be used to generate a full backtrace.
There are various special cases in unwinding the stack, which can be very platform-
specific, for example when a signal is received, a special signal frame is placed on
the stack and the process resumed in the signal handler, which will return to a
trampoline that will clean the stack and restore the previous situation. In such
cases, the unwinding library will need to recognize the trampoline and the special
frame to handle it correctly to not confuse frames generated by the handler with
the ones generated by the normal program execution.

Android applications run on the Android RunTime (ART) environment, and the
large majority are based on languages that can generate Java bytecode with some
parts of native code.
Therefore in Android environments, it will be very common to see transitions
between native and Java stack frames, hence it is essential to understand both.
Moreover, there is an added complexity given by other stack frame formats like
Chrome C++ frames, JITed Java frames and system library C++ frames, which
can have different call frame information (CFI) formats. Such formats include
debug data formats like DWARF and MiniDebugInfo, which describe additional
ELF sections containing unwinding data and much more, but also formats like
EHABI (Exception Handling ABI for the ARM Architecture), which can help an
unwinder in its job.
Thanks to the inclusion of libunwindstack and its dependencies from the Android
core, it is possible to offload this complexity to the library, which needs to know
how to parse the different CFI and move up the stack.

In Figure 4.4 it is possible to see a partial output of an ioctl system call invoked
by an Android application. It has been necessary to redact some unimportant
parts for the sake of readability since the total number of captured stack frames
is 135.
The traced application is a simple audio recorder developed for this thesis, it is
composed of four buttons: record, stop recording, play the last recording, and stop
playing. The reported system call is one of the many generated after the user has
pressed the start recording button.
The reported backtrace can be seen from line 9 to line 28, and it is always unwinded
starting from the most inner call: in this case, the C wrapper for the ioctl system
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call, which can be seen at lines 9 and 10.

1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: attached-process-14711

3 PID: 14711

4 SPID: 14711

5 Timestamp: 1673561963897680

6 NOT Authorized

7 Syscall = ioctl (29)

8 Stack unwinding = {

9 PC 0x000079d54b34d8 Relative PC 0x0000000009d4d8 SP 0000007fcfedfa50 - __ioctl @ 8

10 PC 0x000079d546f2f4 Relative PC 0x000000000592f4 SP 0000007fcfedfa50 - ioctl @ 152

11 PC 0x000079ca76e7ac Relative PC 0x000000000457ac SP 0000007fcfedfb50 - android::IPCThreadState::

talkWithDriver(bool) @ 288

12 PC 0x000079ca76e958 Relative PC 0x00000000045958 SP 0000007fcfedfbf0 - android::IPCThreadState::

flushIfNeeded() @ 84

13 PC 0x000079ca77a964 Relative PC 0x00000000051964 SP 0000007fcfedfc10 - android::Parcel::freeDataNoInit() @

64

14 PC 0x000079ca7861f8 Relative PC 0x0000000005d1f8 SP 0000007fcfedfc70 - android::Parcel::freeData() @ 16

15 ...

16 PC 0x000079dc6fe870 Relative PC 0x00000000000870 SP 0000007fcfee1740 - it.matteodegiorgi.audiorecorder.

MainActivity.CheckPermissions @ 32

17 ...

18 PC 0x000079dc6fed3c Relative PC 0x00000000000d3c SP 0000007fcfee1af0 - it.matteodegiorgi.audiorecorder.

MainActivity.startRecording @ 0

19 ...

20 PC 0x000079dc6fe8dc Relative PC 0x000000000008dc SP 0000007fcfee1e90 - it.matteodegiorgi.audiorecorder.

MainActivity.lambda$onCreate$0$it-matteodegiorgi-audiorecorder-MainActivity @ 0

21 ...

22 PC 0x000079dc6fe790 Relative PC 0x00000000000790 SP 0000007fcfee2230 - it.matteodegiorgi.audiorecorder.

MainActivity$$ExternalSyntheticLambda0.onClick @ 4

23 ...

24 PC 0x0000007286a62c Relative PC 0x0000000082f62c SP 0000007fcfee47a0 - com.android.internal.os.ZygoteInit.

main @ 2188

25 ...

26 PC 0x000079d9c1bfb4 Relative PC 0x000000000c0fb4 SP 0000007fcfee4ca0 - android::AndroidRuntime::start(...)

@ 836

27 PC 0x000057c299858c Relative PC 0x0000000000258c SP 0000007fcfee4d90 - main @ 1336

28 PC 0x000079d545e7dc Relative PC 0x000000000487dc SP 0000007fcfee5f00 - __libc_init @ 96

29 }

30 Parameters = {

31 0x000000000000003c

32 0x00000000c0306201

33 0x0000007fcfedfb68

34 0x00000076c8bee008

35 000000000000000000

36 0x00000077336274e8

37 000000000000000000

38 000000000000000000

39 }

40 Registers = {

41 PC: 0x00000079d54b34d8

42 SP: 0x0000007fcfedfa50

43 RET: 0x000000000000003c

44 }

45 ------------------ SYSCALL ENTRY STOP ------------------

Figure 4.4: Partial output from Ptracer of a system call coming from an Android
AudioRecorder including its stack trace

Moving up the stack, it is possible to see that the Android IPC interface has
requested the system call as part of the transmission of a Parcel (previously ex-
plained in Section 3.4), this can be observed from line 11 to 14.
As it is possible to see from the different function name formats, from lines 16
to 22, a portion of stack frames is generated from Java code. More precisely
and moving in an upwards direction on the stack, the function CheckPermissions

is making sure that the correct Android privileges have been granted (line 16),
which has been called by the startRecording method (line 18), which is the reg-
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istered onClick listener for its related button, as it is possible to see at line 22.
Near the top of the stack (from lines 24 to 26), it is possible to see that the ap-
plication is a specialized fork of the Zygote process, which is typical for Android
applications.
Eventually, at lines 27 and 28, it is possible the usual entry point for every process,
hence the main function called from the libc initialization wrapper.
For each stack frame, it is possible to see also:

• The Program Counter (PC): also known as the Instruction Pointer (IP),
is the address of the instruction after invoking the function generating the
underlying stack frame, hence the return address of the called procedure.

• The Relative PC: is the displacement between the entry point of the func-
tion generating the stack frame and the previously described PC.

• Stack Pointer (SP): is the address to the top of the stack frame, it can
also be intended as the stack base pointer.

In Figure 4.5 it is possible to see a diagram showing where the three pointers
mentioned above refer to. In this case, a simple example program called “EvenOdd”
has been used, it reads a number from standard input and prints on standard
output if it is even or odd.
The analysed system call is a read performed by scanf, and from the diagram, we
can see the stack trace that has been extracted. Looking at the highlighted line in
the stack trace, it is possible to see PC pointing to the instruction after the call to
scanf, since it is where the function __isoc99_scanf will return when completed.
Relative PC is the difference between PC and the address of the first instructions
of the function, in this case, it can be computed as follows:

0x5555555551B6 (PC) − 0x555555555169 (main entry point) = 0x4D = 77

SP refers to the top of the stack allocated by the main function call, it is the address
that is stored on the stack at the beginning of a function call (the RBP register),
when used, or retrieved via other ELF sections.

Ptracer always requests the name of the function that has generated a stack frame,
and in the proposed examples, the stack unwinder has always managed to retrieve
one. Whether the executable or the used libraries do not contain enough infor-
mation to retrieve such information, the relative PC will be used since both PC
and SP can change between various executions due to the Address Space Layout
Randomization (ASLR, better explained in Section 3.3).

As seen from the previous example, it is possible to use the stack trace to get
an insight into the context where a system call takes place and its purpose. This
information will provide a critical advantage in detecting anomalies as described
in Section 5.2
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------------------ SYSCALL ENTRY START ------------------
Notification origin: ./EvenOdd
PID: 1017334
SPID: 1017334
Timestamp: 1674634277419177
NOT Authorized
Syscall = read (0)
Stack unwinding =
PC 0x00007ffff7e922d1 Relative PC 0x0000000000000011 SP 0x00007fffffffd298 - read @ 17
PC 0x00007ffff7e1a656 Relative PC 0x0000000000000186 SP 0x00007fffffffd2a0 - _IO_file_underflow @ 390
PC 0x00007ffff7e1b686 Relative PC 0x0000000000000036 SP 0x00007fffffffd2f0 - _IO_default_uflow @ 54
PC 0x00007ffff7df7bf8 Relative PC 0x0000000000000bb8 SP 0x00007fffffffd310 - __vfscanf @ 3256
PC 0x00007ffff7dea3a2 Relative PC 0x00000000000000b2 SP 0x00007fffffffda10 - __isoc99_scanf @ 178
PC 0x00005555555551b6 Relative PC 0x000000000000004d SP 0x00007fffffffdaf0 - main @ 77
PC 0x00007ffff7dbe290 Relative PC 0x0000000000000080 SP 0x00007fffffffdb20 - __libc_init_first @ 144
PC 0x00007ffff7dbe34a Relative PC 0x000000000000008a SP 0x00007fffffffdbc0 - __libc_start_main @ 138
PC 0x0000555555555095 Relative PC 0x0000000000000025 SP 0x00007fffffffdc10 - _start @ 37
Parameters = {
  000000000000000000
  0x00005555555596b0
  0x0000000000000400
  0x0000000000001000
  0x0000000000021001
  0x0000000000000410
}
Registers = {
  PC: 0x00007ffff7e922d1
  SP: 0x00007fffffffd2a8
  RET: 0xffffffffffffffda
}
------------------ SYSCALL ENTRY STOP ------------------

0x555555555169 <main>        push   %rbp 
0x55555555516a <main+1>      mov    %rsp,%rbp 
0x55555555516d <main+4>      sub    $0x20,%rsp 
0x555555555171 <main+8>      mov    %edi,-0x14(%rbp) 
0x555555555174 <main+11>     mov    %rsi,-0x20(%rbp) 
0x555555555178 <main+15>     mov    %fs:0x28,%rax 
0x555555555181 <main+24>     mov    %rax,-0x8(%rbp) 
0x555555555185 <main+28>     xor    %eax,%eax 
0x555555555187 <main+30>     lea    0xe76(%rip),%rax 
0x55555555518e <main+37>     mov    %rax,%rdi 
0x555555555191 <main+40>     mov    $0x0,%eax 
0x555555555196 <main+45>     call   0x555555555050 <printf@plt> 
0x55555555519b <main+50>     lea    -0xc(%rbp),%rax 
0x55555555519f <main+54>     mov    %rax,%rsi 
0x5555555551a2 <main+57>     lea    0xe6d(%rip),%rax 
0x5555555551a9 <main+64>     mov    %rax,%rdi 
0x5555555551ac <main+67>     mov    $0x0,%eax 
0x5555555551b1 <main+72>     call   0x555555555060 <__isoc99_scanf@plt> 
0x5555555551b6 <main+77>     mov    -0xc(%rbp),%eax 
0x5555555551b9 <main+80>     and    $0x1,%eax 
0x5555555551bc <main+83>     test   %eax,%eax 
0x5555555551be <main+85>     jne    0x5555555551d1 <main+104> 
0x5555555551c0 <main+87>     lea    0xe52(%rip),%rax 
0x5555555551c7 <main+94>     mov    %rax,%rdi 
0x5555555551ca <main+97>     call   0x555555555030 <puts@plt> 
0x5555555551cf <main+102>    jmp    0x5555555551e0 <main+119> 
0x5555555551d1 <main+104>    lea    0xe4d(%rip),%rax 
0x5555555551d8 <main+111>    mov    %rax,%rdi 
0x5555555551db <main+114>    call   0x555555555030 <puts@plt> 
0x5555555551e0 <main+119>    mov    $0x0,%eax 
0x5555555551e5 <main+124>    mov    -0x8(%rbp),%rdx 
0x5555555551e9 <main+128>    sub    %fs:0x28,%rdx 
0x5555555551f2 <main+137>    je     0x5555555551f9 <main+144> 
0x5555555551f4 <main+139>    call   0x555555555040 <__stack_chk_fail@plt> 
0x5555555551f9 <main+144>    leave 
0x5555555551fa <main+145>    ret
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Figure 4.5: Diagram showing where the various information extracted by Ptracer
point in the example program EvenOdd
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4.4 NFA Model

When the system call and stack traces acquisition has been completed, it is
possible to produce a representation of the observed behaviour in the form of
a Non-Deterministic Finite state Automata (NFA). More specifically, the Non-
Deterministic version of the automaton has been chosen because of the nature of
the treated transitions. Such choice allows not to represent incorrect combinations,
which otherwise would need to all lead to an error sink state, and hence have a
simplified model given the large number of observed states. Moreover, system calls
that generate children (e.g., a fork) will result in two ε-transitions since, from that
moment on, there will be two machines performing computational activities.
For these reasons, it has been necessary to use an NFA (instead of its determin-
istic counterpart) and chosen not to opt for more complex models, e.g., based on
push-down automaton, since their expressivity power is not needed for the current
scope. This implies that the model will be able to describe a regular grammar
(type 3).

In the generated NFA, every state expresses an observed system call together
with the stack trace that leads to it, and each transition represents the observed
succession of system calls learnt.
It will be necessary to undergo a learning phase where the NFA will be built and
refined for each subsequent execution. In this phase, it is essential to test all the
possible execution paths of the application until the model converges, hence there
is no new transition or state.

1 #include <stdio.h>

2
3 int main(int argc, char** argv)

4 {

5 int n;

6
7 printf("Insert a number: ");

8 scanf("%d", &n);

9
10 if (n % 2 == 0) {

11 printf("Even number\n");

12 }

13 else {

14 printf("Odd number\n");

15 }

16
17 return 0;

18 }

Figure 4.6: Source code of the program EvenOdd with the resulting NFA

In Figure 4.6, it is possible to see the source code of the previously discussed
program called EvenOdd and an extract of its corresponding NFA on an x86_64
Linux system. Only the most important states are shown, hence the part covering
the program initialization (e.g., the execution of _start and __libc_start_main)
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Figure 4.7: Redacted example of system calls and stack traces mapped by the
Mapper function for EvenOdd
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have been omitted for the sake of clarity.
In such a simple case, the automata only needed two learning iterations before
reaching convergence since one covered odd numbers and the other even numbers.

The libc library functions printf and scanf boil down to, respectively, a write

and a read system call on the Standard Output and Standard Input file descriptors.
They can be seen in Figure 4.7 where the state q33 is performed at line 8 of the
source code and states q34 and q37 corresponds to the two printf at lines 11 and
14.
Moreover, it is possible to see from q34 and q37 stack traces how the compiler has
optimised these two calls converting them into two puts, which is more efficient
and limited than printf.
Thanks to the inclusion of stack traces, two distinct possible transitions are starting
from the state q33, both triggered by a write system call but with different stack
traces given the different position of printf in main, as it can be observed from
the stack traces.
Eventually, the state q36 is given by the system call exit_group, and it is marked
as final since it causes the process termination.

Every state in the NFA corresponds to a 3-tuple with the following content:

(ExecutableName, SystemCall , StackTrace)

It is necessary to specify also ExecutableName, whose value is a string since that
can change during program execution (e.g., due to an execve system call), and it
will be useful to prevent errors when selecting the NFA to use for multiple execu-
tions.
SystemCall is represented by its numeric identifier, uniquely defined per CPU ar-
chitecture, hence: SystemCall ∈ N. An example of this identifier can be seen in
Figure 4.4 at line 7 between parenthesis or in Figure 4.7 in the System Call col-
umn.
The StackTrace element is a tuple of variable length and composed itself by 2-
tuples of the type (FunctionName,Offset). In the previously mentioned example
reporting the stack backtrace output, FunctionName and Offset have been sepa-
rated by an @ symbol in the stack unwinding section.
The stack trace tuple can be expressed as follows:

((FunctionName0,Offset0), (FunctionName1,Offset1), ...)

Each state has assigned an integer identifier to ease automata management and
handling through a mapping function. Hence, allowing the separation of two
different concerns, on one side, the creation and manipulation of the automata,
and on the other, understanding stack traces and comparing them.
To do that a Mapper function has been defined as follows:

Mapper : {(ExecutableName, SystemCall , StackTrace)} 7−→ N>0

The identifier 0 is not part of the function codomain since it always represents the
initial state and does not correspond to any system call or stack trace.
This function has been implemented using a Hash Map data structure to retrieve
the state’s identifier, given its tuple, efficiently. Such operation will need to be
executed as fast as possible to reduce the performance deterioration of the tracee
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since it will take place every time a decision is made whether an observed state is
authorized or not.
This function is injective, therefore, two 3-tuple that are equivalent will map to
the same identifier.

The generated NFA can be formally represented using the following 5-tuple:

A = (Q, Σ, δ, q0, F )

Where each element consists of the following:

• Q = {q0, q1, ...} It is a finite set and contains all the possible states of
the automata. Thanks to the Mapper function, every received system call
entry notification will be mapped to a positive integer, and its value will be
collected in this set.

• Σ = {1, 2, 3, ...} Represents the finite set of input symbols. In this case, it
corresponds with all the identifiers generated by the Mapper function during
the learning phase, hence with all the unique acquired states.

• δ : Q× Σ 7→ P(S) This function defines the transitions from one state to
another, given the current state and input symbol. Where P(S) denotes the
power set of Q since, theoretically, there can be multiple destination states
for each pair of state and input symbol. In our case, this happens only when
the process flow forks, action represented by two ε-transitions from the same
state. These transitions are learnt from the succession of states observed
during the learning phase, making the anomaly detection process as good as
its learning phase.

• q0 = q0 The initial state does not correspond with any system call or
stack trace and can be interpreted as the program launch or the initial attach
operation on a running process.

• F ⊂ Q The set of final states is going to contain all those states where the
tracee has terminated its execution during the learning phase. These states
are represented by special termination notifications from the tracee and can
happen either because of a system call in the exit family or a signal. When
the model is enforced, a tracee termination that does not happen in any of
these states will raise an anomaly alert.

Now that the used model has been formally described, it is necessary to define one
algorithm to learn it by constructing the automata and another to enforce it by
checking whether a new system call notification is allowed. The first will be used
during the learning phase, which is required before using the anomaly detector,
and the second will need to traverse the automata and keep track of the current
state for each tracee.

The automata construction process can be done by first collecting the following
sets of data:

• The set of identifiers of the observed system calls entry notifications equal
to Σ and Q − {0}. Created by iterating over all states retrieved through
the relative queue (shown in Figure 4.1), computing their identifier via the
Mapper function, and then storing them.
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• The set of final states F , composed of all the states where a tracee is placed
when its termination notification is received.

• The allowed transitions expressed by the δ function, which can be described
as a list of 3-tuples, each of the form: (Source, Symbol ,Destination). Every
transition not contained in this list is not authorised and will need to be
handled by the Authorizer component. The list can be created by keeping
track of what is the last state for each tracee and, for each new state, compose
the tuple with the identifier of the old state as Source and the identifier
returned by the Mapper function for the new state as both Symbol and
Destination. In the case of a child-generating system call, it will be necessary
to create two ε-transitions, which symbolize the bifurcation of the execution
flow.

The above sets are constructed and augmented over multiple learning iterations
until convergence is reached. At this point, it is possible to construct the NFA
model since all five elements of its tuple can be defined given the above information.

The second necessary algorithm is necessary to determine whether a state is au-
thorised. This algorithm not only needs to produce a yes or no answer but also
needs to keep track of the position of each tracee in the NFA and identify the type
of anomaly among the following:

• Unknown State Anomaly: happens every time a state that has never
been seen during the learning phase occurs. This means that the stack trace
and system call combination has never been observed before; e.g., this can
happen if a backdoor is triggered.

• Unknown Transition Anomaly: occurs when the received state has been
previously mapped by the Mapper function, but a transition from the current
state to it has never been observed. E.g., this can happen in the case of a
Return-Oriented Programming (ROP) attack when an ROP gadget is called.

• Anomalous Termination: occurs every time a tracee terminates its exe-
cution without being in a terminal state. This anomaly can happen when
a termination signal is sent, or a critical error happens; hence the program
does not follow its typical termination path.

In Algorithm 1, it is possible to see the pseudo-code of this algorithm. The Hash
Map currentStates is used to keep track of the traced processes’ position using as
key the Thread Identifier (TID), which is unique overall to the whole Operating
System.
To simplify handling the automata, it has been decided not to include ε-transitions
in its representation but only implement them in this algorithm. This can be done
by performing the equivalent operation of adding a new machine computing the
NFA starting from the state that has generated the new child, as can be seen in
line 14.

Leveraging the previously defined algorithms to learn and enforce the model, it is
possible to use Ptracer to detect anomalies successfully.
When one is detected, the Authorizer component will raise an alert if it is a
Termination Anomaly or prompt the user for a choice in case it is an Unknown
State or Transition anomaly.
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Algorithm 1 Implementation of the enforce algorithm
1: procedure IsAuthorised(state)
2: if Authorizer.learningMode then
3: ▷ It will be used for the offline model generation
4: stateStorage.add(state)
5: return AUTHORISED

6: end if
7: ▷ Obtain the current tracee’s state
8: current← currentStates[state.TID]
9: if current = ∅ then

10: if stateStorage.isEmpty() then
11: currentStates[state.TID]←Model.initialStates
12: else if state is the first state of a child then
13: ▷ Set the child current position to the same as its parent
14: parent← The state in childGenerators that generates state.TID
15: currentStates[state.TID]←Mapper.find(parent)
16: else ▷ The state comes from an unknown tracee
17: return ERROR

18: end if
19: end if
20: if state.isTerminationNotification() then
21: ▷ Check if the tracee is in a final state
22: if current ∩Model.FinalStates ̸= ∅ then
23: return AUTHORISED

24: else
25: return TERMINATION_ANOMALY

26: end if
27: end if
28: symbol←Mapper.find(state)
29: if symbol = NOT_FOUND then
30: return UNKNOWN_STATE_ANOMALY

31: end if
32: future←Model.transition(current, symbol)
33: if future = ∅ then
34: return UNKNOWN_TRANSITION_ANOMALY

35: end if
36: currentStates[state.TID]← future
37: if state.SystemCall ∈ {clone, fork, vfork} then
38: ▷ The child’s TID is not yet known, store the current position to place

the child in the future
39: childGenerators.add(state)
40: end if
41: return AUTHORISED

42: end procedure

The user will be able to choose one of the following actions:

• Terminate the traced program: all the tracees are forcefully terminated to-
gether with their tracers;
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• Add a new transition: applicable only in case of an Unknown Transition
anomaly, the model will be modified by adding the missing transition;

• Add a new state and transition: applicable in case of an Unknown State
anomaly, a new state will be inserted in the model together with a transition
that leads to it from the current state.

The produced model can be very useful for detecting anomalies in a program and
getting a visual representation of the program’s behaviour.
It will be leveraged in Section 5.2 for detecting anomalies in Android applications
and will provide a data structure that can be expanded for debugging detection,
which will be discussed further in Section 5.3.

4.5 System call decoders

In all those occasions where it is desired to get an insight into a program’s be-
haviour, it is helpful to analyse its interactions with the kernel since each of them
needs to be explicitly requested via a system call. This implies that any Linux
process needs to perform a system call to request any action that does not involve
calculations and memory operations in its already pre-allocated virtual memory.
Currently, Linux offers more than 300 system calls, which differ per CPU archi-
tecture and perform various actions; hence, it is important to isolate the most
meaningful ones as those that could give the best insight into the performed ac-
tions.
For example, if the tracee is requesting the operating system to open a file, then it
is of interest to capture its full path and what read/write operations are requested.
Similarly, when an Internet connection is requested, having information like the
destination address and what data has been transmitted and received can provide
valuable clues on the final intentions of the analysed program. Moreover, in an
Android application, capturing inter-process communications via the Binder will
provide a view into what data are accessed by the application.

System calls with similar effects have been grouped together, and the most insight-
ful groups have been selected:

• Open a file path: this group includes all the system calls which accept a file
path and, if the requester has enough permissions, return an identifier that
can then be used to perform operations on the file or directory. Moreover,
this group also contains all those system calls that can read or write from a
file descriptor. This family of calls provides insight into the files used by the
analysed program.

• Initiate a connection: this group includes system calls used to connect
various sockets (e.g., TCP, UDP, UNIX, and more). This analysis will give
a clear picture of what network communications are requested by the appli-
cation.

• Usage of the ptrace interface: This group covers various usages of the
Linux process tracing interface. Its main usage is to take control of a process
for various purposes like monitoring and debugging, but it can also be used
as an anti-debugger technique (as seen in [1]). Analysing this call will allow
knowing if the tracee is interacting with any external processes.

27



• Android Binder IPC Framework: In an Android environment, every
communication between activities, system components, and services needs
to pass through the Binder IPC interface (more information on it can be
found in Section 3.4). Thanks to this design, there is a central point that all
the inter-process communications have to go across. Analysing such commu-
nications will grant insight into the program’s interactions with the Android
system, components and services (e.g., the microphone).

• Execute a new program: This group includes system calls able to com-
pletely replace the currently running program, fundamentally altering the
application behaviour. They are mostly used to run different programs and
will be useful to know if any external command has been executed.

The composition of these different views, which, taken in isolation, may not mean
a lot, will result in a greater understanding of the program’s behaviour and provide
a holistic view.

Thanks to its privileged position between the kernel and the processes, Ptracer
also offers the possibility of analysing the actions performed by these system calls,
which can give clues on the analysed program’s final intentions. Such capability
is particularly useful in detecting privacy issues, which will be discussed further in
Section 5.4.
Moreover, the developed tool also allows for retrieving parameters passed to the
system call, which are specified in standard CPU registers according to the system
call convention, which is architecture-specific. Such a feature will be leveraged to
provide a deeper insight into the requested action.

This kind of analysis has been embedded in the architecture as the component
“System Call Decoders” which contains various decoders, each able to analyze a
specific family of system calls. Each implements a common interface that can be
seen in Figure 4.8, where every declared method is purely virtual and must be
implemented.
The two decode methods will be used by the Tracing thread to notify a specific
decoder that a call of its interest has been received or has just been completed.
Being able to receive both notification types is necessary to be able to see the
passed parameters in the entry notification, which are extracted from the CPU
registers and may be altered during the call execution, and see the return value in
the exit notification.
When the traced program’s execution is terminated, every decoder will be asked to
print on standard output a report of the observed behaviour via the printReport

function.

1 class SyscallDecoder {

2 public:

3 virtual bool decode(const ProcessSyscallEntry& syscall) = 0;

4 virtual bool decode(const ProcessSyscallExit& syscall) = 0;

5 virtual void printReport() const = 0;

6 };

Figure 4.8: Interface implemented by every system call decoder

It is desired that all the logic concerning a particular system call family is con-
tained only within its corresponding decoder; hence, each of them shall be able to
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subscribe to a list of system call identifiers it can analyse. Moreover, it is essential
to minimize as much as possible the time spent in decoders since, in the meantime,
it is not possible to process new notifications because decoders are executed by
the Tracing thread (this architectural choice has been discussed in Section 4.1).
These requirements have been satisfied by introducing a mapper from System Call
to Decoder. This component will be the external entry point to all the decoders
and handles all the subscription requests. It is based on a Hash Map data structure
that maps a system call identifier to the list of decoders that previously subscribed
to it; in addition, it allows fetching this list in constant time. It will receive every
System call entry and exit notification from the Tracing thread, and it will forward
it to any interested decoder.

Together with all the standard information extracted for every system call (e.g.,
CPU registers, stack backtrace, timestamp), every entry and exit notification also
contains a handler to the specific Tracer instance that has generated it. It provides
methods to copy portions of the tracee memory into the tracer, operations used
by all the decoders that wish to follow a memory pointer specified in the system
call parameters (e.g., to a structure specifying other parameters).

In Figure 4.9, it is possible to see a diagram of the described decoders’ architecture.
The diagram shows how the decoders interact with the tracing threads and how
they get notified of a new system call from the tracing thread.
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Figure 4.9: Architecture of the System Call Decoders

At any moment, it is possible to request a full report for each decoder through
the Decoders Mapper. By default, Ptracer will request the final report after the
termination of all the traced processes.
The report will be subdivided per Process ID since most of the analysed system
calls have a meaning only in that context, e.g., the returned file descriptors are
unique per PID. The only exception is Ptrace Decoder which will be subdivided

29



per Thread ID since the Linux tracing interface always refers to that level of
granularity.

The implementation of Decoders in Ptracer still has a lot of potential developments
in terms of widening the set of supported system calls and deepening the extracted
insights. Hence, the current implementation does not aim to be complete but to
provide a solid foundation for future developments, which will be discussed in
Section 6.2.

4.5.1 File Decoder

The File Decoder handles system calls that can open and perform I/O operations
on file descriptors. The current implementation covers the following system calls
categories for the x86_64 and ARMv8 architecture:

• Open a file and bind it to a file descriptor: open (available only in x86_64),
openat, openat2, name_to_handle_at, and creat.

• Read the content from a file descriptor: read, recvfrom, and pread64.

• Write data to a file descriptor: write, sendto, and pwrite64.

In the following paragraphs, these three categories will be better analysed.

To bind a file descriptor to a data source, it is necessary to use one of the system
calls in the first category. Even though their behaviour is slightly different and,
for some, can be heavily influenced by the specified flags, they all follow a common
line of action: given a path to a file, if the requester has enough permissions, they
will return an identifier that can then be used to perform operations on it.
From their function signature specified below, it is possible to see that each accepts
a string parameter named pathname.
int open(const char *pathname, int flags, mode_t mode);

int openat(int dirfd, const char *pathname, int flags, mode_t mode);

// Standard libraries do not provide a wrapper for this system call

long syscall(SYS_openat2,

int dirfd,

const char *pathname,

struct open_how *how,

size_t size);

int name_to_handle_at(int dirfd,

const char *pathname,

struct file_handle *handle,

int *mount_id,

int flags);

int open_by_handle_at(int mount_fd,

struct file_handle *handle,

int flags);

int creat(const char *pathname, mode_t mode);

For each of the system calls mentioned above, this decoder registers itself to the en-
try notification to extract the string pointed by pathname and the exit notification
to retrieve the returned file descriptor or the error code. It will then be possible
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to match the file descriptor with other I/O operations that the application might
request.

The second category of system calls analysed by this decoder can read data from
a file descriptor. Hence, they all require specifying a file descriptor and a pointer
to the buffer that can accommodate the read data.
Their specifications can be seen below:
ssize_t read(int fd, void *buf, size_t count);

ssize_t recvfrom(int sockfd,

void *buf,

size_t len,

int flags,

struct sockaddr *src_addr,

socklen_t *addrlen);

ssize_t pread(int fd, void *buf, size_t count, off_t offset);

The File Decoder will register itself to the entry, and exit notification of the system
calls mentioned above.
When an entry notification is received, it will be necessary to store the file de-
scriptor and buffer address since the buffer will be empty until the system call is
successfully executed, and this is the only moment when these parameters can be
retrieved.
Once the exit notification is received, it will be possible to reuse the previously
stored parameters to extract the buffer and use the return value of the system call,
which represents the number of bytes read as its length.
Data read by these calls will be stored on files in the file system, they will be
placed in a folder having as name the Process ID (PID), since file descriptors are
unique per PID, and concatenated with the timestamp since file descriptors can
be reused once freed.

The last category of system calls whose analysis is delegated to this decoder can
write data to a file descriptor. All these calls accept a file descriptor and the
address of a buffer containing the data to write, together with its size in bytes.
Their specifications can be seen below:
ssize_t write(int fd, const void *buf, size_t count);

ssize_t sendto(int sockfd,

const void *buf,

size_t len,

int flags,

const struct sockaddr *dest_addr,

socklen_t addrlen);

ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

The decoder will register itself to the entry notifications of the system calls men-
tioned above. Once a notification is received, it can directly extract the buffer that
the application wants to write to the file descriptor together with its length. The
extracted data will be stored on the file system in a similar fashion as the read
data.

In Figure 4.10, it is possible to see the final report generated by the decoder after
monitoring the execution of the following bash command:
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$ cat /etc/passwd

Since this command has a very simple and reproducible behaviour in every Linux
distribution, to generate the attached report it has been run on a generic one.
From this execution, we can see the program initialization from lines 6 to 9, which
happens before giving control to the main function. In this case, the archive that
contains the cached locations of shared libraries has been opened in line 6, it
is reasonable to assume that it has provided the location of libc, which is the
standard C library, since it has been opened and read just after that to link it
dynamically.
In lines 10 and 11, the file path /etc/passwd has been opened, assigned the file
descriptor 3, and its whole content read.
Eventually, we can see from line 4 that the same number of bytes as those read
from /etc/passwd has been written to standard output.
Some file descriptors have been opened and not read using the usual system calls
traced by this decoder, for example, the file at line 6 has been mapped in the virtual
address space using a mmap system call, this operation does not allow to know what
portions of data has been accessed and will be analysed in future developments.

1 ------------------ FILE DECODER START ------------------

2 File Descriptor: 0 <---> STDIN

3 File Descriptor: 1 <---> STDOUT

4 Write content extracted in: "./FileDecoder/455143/1-write-1675561338553", bytes: 2308

5 File Descriptor: 2 <---> STDERR

6 File Descriptor: 3 <---> /etc/ld.so.cache

7 File Descriptor: 3 <---> /usr/lib/libc.so.6

8 Read content extracted in: "./FileDecoder/455143/3-read-1675561338466", bytes: 2400

9 File Descriptor: 3 <---> /usr/lib/locale/locale-archive

10 File Descriptor: 3 <---> /etc/passwd

11 Read content extracted in: "./FileDecoder/455143/3-read-1675561338551", bytes: 2308

12 ------------------ FILE DECODER STOP ------------------

Figure 4.10: Final report generated by the Open Decoder

This group provides insight into what paths are accessed by the analysed program
or, in case an error occurs, which ones it is trying to access. This will be useful
to know what files are accessed by an application to be able to identify potential
privacy intrusions.
Future implementations will expand this set and improve the analysis capabilities.

4.5.2 Socket Decoder

Initiating a new connection to an external source or, more generally, starting to
transmit data via the network requires creating and operating on a socket. Hence,
it is possible to know what external hosts the application is communicating with
by analysing all those system calls that perform actions on them.
This section will describe all the system calls handled by the Socket Decoder and
will focus only on TCP and UDP sockets using IPv4 or IPv6 addresses, and Unix
sockets. The rationale behind this choice is limiting the decoder complexity given
the large amount of supported address families and protocols by the Linux kernel
and the fact the selected ones are used for communicating over the Internet and
with system components.
Protocols like Bluetooth are handled by their relative Hardware Abstraction Layer,
hence their sockets are not directly accessible by applications but are indirectly
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accessible via the Binder IPC, an interaction which will be analysed in Section
4.5.4.

To create a socket, it is necessary to use the socket system call, whose C wrapper
can be seen below:
int socket(int domain, int type, int protocol);

It accepts as a parameter the communication domain (e.g., IPv4, Unix, etc.), the
socket type which defines the communication semantics (e.g., two-way connection-
based stream of bytes, datagrams, etc.), and eventually, the protocol to use (e.g.,
TCP, UDP, etc.).
Its return value is a socket file descriptor, which will be used by the subsequent
calls operating on the created socket. This decoder will not analyse this system call
since it does not provide useful information and needs to be used in conjunction
with the following calls to be meaningful.

Once the socket is created, it is possible to “assign a name to it”, which consists
of binding it to an address. This is done in all those cases where it is desired to
receive data at an address using the system call bind, this call has the following
syntax:
int bind(int sockfd, const struct sockaddr *addr, socklen_t len);

It accepts as parameters the socket file descriptor generated by the previous call,
a structure containing the address information and its length.
The sockaddr parameter is a generic container for more specialised structures that
can describe different address formats (e.g., IPv4, IPv6, Unix, etc.). This structure
declaration can be seen below:
struct sockaddr {

sa_family_t sa_family; // Address family

char sa_data[14]; // Address data e.g. sockaddr_in

};

To know which is used among the various implementations of address types, it is
necessary to check the value of the member sa_family.
If its value is equal to the constant AF_INET, then that instance of sockaddr can
be interpreted as a sockaddr_in, which allows specifying an IPv4 address (32 bits)
together with the destination port (16 bits). This data structure can be seen below:
struct sockaddr_in {

sa_family_t sin_family; // e.g. AF_INET

unsigned short sin_port; // e.g. htons(3490)

struct in_addr sin_addr; // 32 bit unsigned integer

unsigned char sin_zero[8]; // Pad to size of sockaddr

};

Instead, if the value of sa_family is AF_INET6, then it is possible to reinterpret
the structure as a sockaddr_in6 which allows specifying an IPv6 address and port
together with other protocol-specific parameters. Below it is possible to see this
data structure:
struct sockaddr_in6 {

sa_family_t sin6_family; // AF_INET6

unsigned short sin6_port; // port number

uint32_t sin6_flowinfo; // IPv6 flow information

struct in6_addr sin6_addr; // IPv6 address

uint32_t sin6_scope_id; // Scope ID (new in 2.4)
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};

struct in6_addr {

unsigned char s6_addr[16]; // IPv6 address

};

Eventually, if its value is AF_LOCAL, then a sockaddr_un structure can be expected,
which contains the path to the UNIX socket on the file system. Its specification
can be seen below:
struct sockaddr_un {

sa_family_t sun_family; // AF_UNIX

char sun_path[108]; // Pathname

};

Tracing the bind system call will allow knowing the local address and port where
the application is expecting to receive data.
This analysis is necessary since, in sockets that are not connection-based, it is
enough to bind an address to start waiting for data on it, therefore, this call is the
only chance to extract the local listening address.

Once an address has been bound to the socket, if its type is connection-based (e.g.,
TCP or Unix), it is possible to set it in listening mode (via the listen system call,
not analysed here) and begin to accept connections using the accept system call.
This call accepts as parameters the socket file descriptor, a structure that will be
populated with the peer socket information (e.g., the IP of the remote host) and
an optional flags parameter to specify various options.
The Linux kernel offers the following two system calls, their only difference is the
possibility to specify the flags parameter, as can be seen below:
int accept(int sockfd, struct sockaddr *addr, socklen_t len);

int accept4(int sockfd, struct sockaddr *addr, socklen_t len, int flags);

By analysing these system calls, it will be possible to know what hosts connect to
the traced application by extracting the address specification.

In case it is desired to act as a client and connect to a remote host (e.g., establish
a TCP connection to a remote server), or more generically, the underlying socket
is connection-based, it will be necessary to connect the socket actively using the
connect system call.
If the socket is connection-less, then this call can be used to set the default desti-
nation and allow incoming data only from a specific address.
This call accepts as parameters a socket file descriptor and the usual sockaddr

structure containing the destination address.
Below it is possible to see the specification of the system call wrapper exposed by
the standard C library and the data structure it uses.
int connect(int sockfd, const struct sockaddr *addr, socklen_t len);

Analysing this call will allow having a clear picture of what external parties the
application is requesting to communicate with.

The Socket Decoder registers itself to the entry, and exit notification of bind,
accept, accept4, and connect system calls. When such entry notifications are
received, the decoder will extract the address definition sockaddr, which is specified
as the second parameter in the analysed calls. This address will be used to generate
a final report which specifies, for each socket, all the addresses involved.
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In Figure 4.11, it is possible to see the final report generated by the Socket Decoder
after tracing the following bash command, which fetches Google’s homepage, on a
generic Linux system:
$ curl http://www.google.com

1 ------------------ SOCKET DECODER START ------------------

2 Local socket, to address: [/var/run/nscd/socket], error: -2, No such file or directory

3 Local socket, to address: [/run/systemd/resolve/io.systemd.Resolve], error: -2, No such file or directory

4 IPv4, to address: [8.8.8.8]:53

5 IPv4, to address: [142.250.184.100]:80

6 IPv6, to address: [2a00:1450:4002:405::2004]:80, error: -101, Network is unreachable

7 IPv4, to address: [142.250.184.100]:80, error: -115, Operation now in progress

8 ------------------ SOCKET DECODER STOP ------------------

Figure 4.11: Final report generated by the Socket Decoder on a generic Linux
system

In this example, curl needs first to resolve the provided domain name using a
resolver (www.google.com), connect to the resulting IP address, send an HTTP
request and then print the response on standard output.
Resolving the domain name is done via the C standard library, which first tries to
reach the Name Service Cache Daemon (NSCD) Unix socket in line 2, then the
SystemD Resolver in line 3, and falls back to the primary Google DNS server in
line 4.
The requested domain name offers an IPv4 and IPv6 address, and they are both
tried, the latest can be seen in line 6 but will fail because the used machine does
not have any IPv6 connectivity, eventually, the request to the other IP address
succeeds in line 5.

1 ------------------ SOCKET DECODER START ------------------

2 Socket File Descriptor: 7 <---> Local socket, to address: [/dev/socket/dnsproxyd]

3 Socket File Descriptor: 6 <---> Local socket, to address: [/dev/socket/fwmarkd]

4 Socket File Descriptor: 5 <---> IPv4 Internet protocol, to address: [142.251.36.36]:80, error: -115,

Operation now in progress

5 Socket File Descriptor: 6 <---> Local socket, to address: [/dev/socket/fwmarkd]

6 ------------------ SOCKET DECODER STOP -------------------

Figure 4.12: Final report generated by the Socket Decoder on an Android system

In Figure 4.12 it is possible to see another example where the same command has
been run on a phone using Android 12.
In this case, the used resolver differs, as can be seen in line 2, since every Android
application delegates this task to the system resolver available via the UNIX socket
/dev/socket/dnsproxyd.
Moreover, in Android, it is necessary an extra step that can be seen in lines 3 and
5. The FwmarkServer is contacted via its UNIX socket at /dev/socket/fwmarkd,
its role is enforcing the permission system, hence only allowing connections from
applications that have properly requested permission to do so (e.g., via the Android
Manifest) and handling packet routes, e.g., allowing an application to bypass a
VPN. This is done by setting a Firewall Mark (fwmark) on the socket if the
application is allowed and using its value to determine the packets’ routes.
In this case, the application communicates the socket file descriptor to allow it
to be “marked” by the service and performs a second call after the connection for
reporting purposes.
Eventually, in line 4, the connection is requested and made.
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This decoder will be useful to gain a picture of what external parties over the
network the analysed application is communicating with. Such information is
going to be very important to identify potential information exfiltration.

4.5.3 Ptrace Decoder

This decoder aims to analyse all the various usages of the Linux process tracing
interface by monitoring the ptrace system call. Its main usage is to take control
of a process for various purposes like monitoring and debugging, but it can also
be used as an anti-debugger technique (as seen in [1]).
Analysing this call will allow knowing if some anti-debugging techniques are being
used or if the tracee is interacting with any external processes since this behaviour
could represent an attempt to evade analysis.
Moreover, tampering with the return value of this system call could allow deceiving
the tracee into believing that no tracer is present.

All the requests to the process tracing interface are made through the ptrace

system call, whose syntax can be seen below:
long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);

This decoder will need to register itself to the entry notifications of this system
call to be able to store the most important passed parameters: the request type
and the target Thread ID (TID). These two pieces of information will be displayed
in the final report, and it will be possible to see in a human-readable format what
operations the application is performing via ptrace and on what process.

1 ------------------ PTRACE DECODER START ------------------

2 ...

3 Command: PTRACE_SEIZE on SPID: 494775

4 Command: PTRACE_INTERRUPT on SPID: 494775

5 Command: PTRACE_LISTEN on SPID: 494775

6 Command: PTRACE_SYSCALL on SPID: 494775

7 Command: PTRACE_GETSIGINFO on SPID: 494775

8 Command: PTRACE_SYSCALL on SPID: 494775

9 Command: PTRACE_GET_SYSCALL_INFO on SPID: 494775

10 Command: PTRACE_SYSCALL on SPID: 494775

11 Command: PTRACE_GETEVENTMSG on SPID: 494775

12 Command: PTRACE_SYSCALL on SPID: 494775

13 Command: PTRACE_GET_SYSCALL_INFO on SPID: 494775

14 Command: PTRACE_SYSCALL on SPID: 494775

15 Command: PTRACE_GET_SYSCALL_INFO on SPID: 494775

16 ...

17 Command: PTRACE_SYSCALL on SPID: 494775

18 Command: PTRACE_GET_SYSCALL_INFO on SPID: 494775

19 Command: PTRACE_SYSCALL on SPID: 494775

20 Command: PTRACE_GET_SYSCALL_INFO on SPID: 494775

21 Command: PTRACE_SYSCALL on SPID: 494775

22 Command: PTRACE_SYSCALL on SPID: 494775

23 ------------------ PTRACE DECODER START ------------------

Figure 4.13: Final report generated by the Ptrace Decoder

In Figure 4.13, it is possible to see the final report generated by the Ptrace Decoder
after tracing the following bash command:
$ strace cat /etc/passwd

The specified command has been run on a phone using Android 12, and it launches
strace, a generic tool to display the system calls requested by a process, in this
case, it will spawn a child process, which will run the cat command and trace it
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while it prints the content of /etc/passwd on standard output.
To be able to let strace correctly attach to its child, it has been necessary to use
the Ptracer options that disable automatically attaching to every child of traced
processes since only one tracer per process is admitted.
The shown report has been redacted for the sake of clarity, only the part concern-
ing the traced command has been left and truncated in the middle, given the large
number of system calls.
From the report, it is possible to see the initial PTRACE_SEIZE command in line 3,
which is used to attach to the target process (the cat command in this case).
Subsequently, strace will put its tracee in a stopped state (line 4) and start lis-
tening for events (line 5), e.g., the invocation of a system calls or a signal.
After this initial setup, a loop is started, where for each notification received from
the tracee, if it is a signal, then the request type PTRACE_GETSIGINFO is used to
gather information about it, if it is a system call, then the necessary data is fetched
using the request PTRACE_GET_SYSCALL_INFO. Then, after retrieving the necessary
information, the request PTRACE_SYSCALL is used to allow the tracee to proceed
until the next event.

This decoder will be useful to detect usages of the Linux process tracing interface,
have an insight into the dynamics present among the traced processes, and detect
reverse engineering prevention techniques.

4.5.4 Binder IPC Decoder

Whether an Android application needs to acquire data from a sensor or trigger
an action in another component (e.g., open the dialer), it will need to perform
inter-process communications (IPC). In any Android environment, every commu-
nication between activities, system components, and services needs to pass through
the Binder IPC interface (more information can be found in Section 3.4) since it
handles passing messages between applications, synchronization, shared memory,
shared object’s lifespans, and remote procedure calls.
Thanks to this design, there is a central point that all such communications need
to cross, often considered the "heart" of Android. Therefore, intercepting and
analysing data crossing such a core part of the system is bound to provide valu-
able insight into the application behaviour.
Please, note that the data structures reported in this section refer to Android 12
and might differ in other versions.

The Binder exposes the character device /dev/binder, and every process can per-
form read and write operations on it using the ioctl system call. Such communi-
cations are performed by the libbinder.so library and abstracted away from the
user.
From a user perspective, there are multiple services that the application can inter-
act with, and they all have their Java interface that describes what the available
method calls are.

To be able to capture and analyse all the communications with the Binder, it is
necessary to intercept the ioctl system call, which has the following signature:
int ioctl(int fd, unsigned long request, ...);

Its generic usage is manipulating the underlying device-specific parameters of spe-
cial files, allowing controlling many operating characteristics in a way that cannot
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be expressed by regular system calls.
It requires specifying a file descriptor for the target device, a device-dependent
request code, and, optionally, a third parameter (traditionally called char *argp) as
an untyped pointer to an additional data structure.
The passed parameters are highly dependent on the target device since each device
accepts operations of different types and natures, e.g. setting the transfer rate on
a serial port.

In the case of the Android Binder, the file descriptor will always be associated
with the device /dev/binder, while the request type and additional parameter are
variable and dependent on each other.
There are various request types, most of which are used during the initial hand-
shake with the Binder or to detach from it. It has been decided not to analyse
requests that are always performed and do not carry any information for our pur-
poses.
Therefore only the most important request type is analysed: BINDER_WRITE_READ,
which is used to write and read commands to and from the Binder.
When this request type is used the third parameter needs to be a pointer to a
structure of type binder_write_read, its specification can be seen below:
struct binder_write_read {

binder_size_t write_size;

binder_size_t write_consumed;

binder_uintptr_t write_buffer;

binder_size_t read_size;

binder_size_t read_consumed;

binder_uintptr_t read_buffer;

};

The main role of this structure is to point to the read and write buffers as well as
carry their size and number of bytes already consumed by either the Binder or the
client.
Once this structure is fetched from the tracee’s memory, it will be necessary to
extract the read and write buffers. The write buffer is used to send data to the
Binder driver, and the read buffer is used to receive data.
Therefore, during the system call entry notification, it will be necessary to extract
write_size bytes starting from the address write_buffer + write_consumed.
Since the read buffer will be written by the Binder driver, it is necessary to ex-
tract it when the ioctl system call terminates. Therefore, its address will be saved
during the entry notification to be then extracted when the call will return since
there is no guarantee that system call parameters are preserved after its execu-
tion. The buffer that will be extracted during the exit notification is pointed by
read_buffer + read_consumed, and its size is read_size bytes.

The buffers thus obtained contain a list of concatenated commands sent from the
Binder to the application, each has a different meaning and might be followed by
additional data structures.
Each of these commands is part of the binder_driver_commaand_protocol enu-
meration, which has been reported below:
enum binder_driver_command_protocol {

BC_TRANSACTION = _IOW('c', 0, struct binder_transaction_data),

BC_REPLY = _IOW('c', 1, struct binder_transaction_data),

BC_ACQUIRE_RESULT = _IOW('c', 2, __s32),

BC_FREE_BUFFER = _IOW('c', 3, binder_uintptr_t),
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BC_INCREFS = _IOW('c', 4, __u32),

BC_ACQUIRE = _IOW('c', 5, __u32),

BC_RELEASE = _IOW('c', 6, __u32),

BC_DECREFS = _IOW('c', 7, __u32),

BC_INCREFS_DONE = _IOW('c', 8, struct binder_ptr_cookie),

BC_ACQUIRE_DONE = _IOW('c', 9, struct binder_ptr_cookie),

BC_ATTEMPT_ACQUIRE = _IOW('c', 10, struct binder_pri_desc),

BC_REGISTER_LOOPER = _IO('c', 11),

BC_ENTER_LOOPER = _IO('c', 12),

BC_EXIT_LOOPER = _IO('c', 13),

BC_REQUEST_DEATH_NOTIFICATION = _IOW('c', 14, struct binder_handle_cookie),

BC_CLEAR_DEATH_NOTIFICATION = _IOW('c', 15, struct binder_handle_cookie),

BC_DEAD_BINDER_DONE = _IOW('c', 16, binder_uintptr_t),

BC_TRANSACTION_SG = _IOW('c', 17, struct binder_transaction_data_sg),

BC_REPLY_SG = _IOW('c', 18, struct binder_transaction_data_sg),

};

In the reported enumeration, it is possible to see also the expected data struc-
tures for each command type, for example, BC_INCREFS is followed by an unsigned
32-bit integer (__u32), and BC_INCREFS_DONE is followed by a structure of type
binder_ptr_cookie.
The decoder will need to iterate over the buffer, check what command types have
been specified, and parse the following bytes according to the data structure as-
sociated with each command. Moreover, it also needs to take into consideration
that there can be multiple commands in a single buffer.
Although the implemented decoder can parse all the commands mentioned above,
those that contain transactions are the most informative: BC_TRANSACTION, BC_REPLY,
BC_TRANSACTION_SG, and BC_REPLY_SG. These commands are always followed by
a transaction definition, in the case of the first two, its type is the structure
binder_transaction_data, and in the others, it will be binder_transaction_data_sg.
The specification of these structures can be seen below:

struct binder_transaction_data {

union {
__u32 handle;

binder_uintptr_t ptr;

} target; // 32-bit handle or pointer

binder_uintptr_t cookie; // Used to detect mismatched handles
__u32 code; // Transaction code, built-in or application-defined
__u32 flags; // Defined in enum transaction_flags

pid_t sender_pid; // Process identifier of sender

uid_t sender_euid; // UID of message sender

binder_size_t data_size; // Buffer size pointed by data

binder_size_t offsets_size; // Size of offsets pointer by data

union {

struct {

binder_uintptr_t buffer; // Transaction data

binder_uintptr_t offsets; // Offsets to flat_binder_object's

} ptr;
__u8 buf[8];

} data;

};

struct binder_transaction_data_sg {

struct binder_transaction_data transaction_data;

binder_size_t buffers_size; // Total size of all buffers

};
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The second structure is newer and contains the first with the addition of the pa-
rameter buffers_size, in fact, they have the same end goal: deliver a transaction
to the Binder. Their only difference lies in the transfer of the transaction object
from the client through the Binder to its destination since the second one enables
using Scatter/Gather I/O.
This optimization speeds up the Binder operations significantly and has been dis-
cussed in Section 3.4.

Once extracted from the tracee’s memory, it is necessary to parse the two obtained
structures binder_transaction_data, an operation that will be done in the entry
or exit notification, as previously discussed.
There are two pointers in every transaction structure, the first is data.buffer,
and the second is data.offsets. Their value is valid only if their size in bytes,
respectively, data_size for the first and offsets_size for the second, is greater
than 0. If valid, the decoder will also extract and store those memory areas to
represent them while printing the final report.
These two memory areas will be used to transfer data and object references about
the desired inter-process method call or response, their combination represents a
Parcel: a message container commonly used in Android environments.

The data format used inside buffer is highly variable, and depending on the end
party the application is interacting with, there are hundreds of available services
that are exposed to the Binder, and each can contain custom methods and data
classes.
For this reason, it has been decided to limit the provided insight into the exchanged
Parcels, future developments will be proposed in Section 6.2 to provide a deeper
understanding of methods and data classes used by each available Android system
service.

The buffer memory can contain information regarding what method has been
invoked and the passed parameters, as well as external object references. In fact,
it also has the role of object reference management, which is handled via the
pointer data.offsets, which points to a memory area containing offsets_size / 8
elements, where each of them can be interpreted as an offset from data.buffer for
a separate Binder Object.
Such structures reference live objects of various natures, e.g., file descriptors or
handles to remote objects, and all their possible types can be seen below:
enum {

BINDER_TYPE_BINDER = B_PACK_CHARS('s', 'b', '*', B_TYPE_LARGE),

BINDER_TYPE_WEAK_BINDER = B_PACK_CHARS('w', 'b', '*', B_TYPE_LARGE),

BINDER_TYPE_HANDLE = B_PACK_CHARS('s', 'h', '*', B_TYPE_LARGE),

BINDER_TYPE_WEAK_HANDLE = B_PACK_CHARS('w', 'h', '*', B_TYPE_LARGE),

BINDER_TYPE_FD = B_PACK_CHARS('f', 'd', '*', B_TYPE_LARGE),

BINDER_TYPE_FDA = B_PACK_CHARS('f', 'd', 'a', B_TYPE_LARGE),

BINDER_TYPE_PTR = B_PACK_CHARS('p', 't', '*', B_TYPE_LARGE),

};

For each offset, the decoder computes the position in the buffer where the Binder
Object is located, for example, the first object can be referenced as follows:
transaction.data.buffer + *(transaction.data.offsets[0]) and then cast the obtained
pointer to one of the data structures corresponding with the specific object type.
To do that, their generic interface is used to acquire their type, which can be seen
below:
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struct binder_object_header {
__u32 type;

};

Hence, the first 4 bytes are matched with the previously mentioned types to be
able to identify the referenced structure. The associations between object types
and data structures can be seen below, together with the specifications of all the
structures:
// Used for BINDER_TYPE_BINDER, BINDER_TYPE_WEAK_BINDER, BINDER_TYPE_HANDLE and

BINDER_TYPE_WEAK_HANDLE

struct flat_binder_object {

struct binder_object_header hdr;
__u32 flags;

union {

binder_uintptr_t binder;
__u32 handle;

};

binder_uintptr_t cookie;

};

// Used for BINDER_TYPE_FD

struct binder_fd_object {

struct binder_object_header hdr;
__u32 pad_flags;

union {

binder_uintptr_t pad_binder;
__u32 fd;

};

binder_uintptr_t cookie;

};

// Used for BINDER_TYPE_PTR

struct binder_buffer_object {

struct binder_object_header hdr;
__u32 flags;

binder_uintptr_t buffer;

binder_size_t length;

binder_size_t parent;

binder_size_t parent_offset;

};

// Used for BINDER_TYPE_FDA

struct binder_fd_array_object {

struct binder_object_header hdr;
__u32 pad;

binder_size_t num_fds;

binder_size_t parent;

binder_size_t parent_offset;

};

Even though it would have been possible to go deeper into some of these data
structures (since they can reference other memory areas), it has been decided not
to do that since it would imply an additional slowdown of the traced application
without providing any further insight.

In Figure 4.14, it is possible to see a diagram of the extracted memory areas in a
typical scenario where the client sent a transaction and the driver is responding,
acknowledging its competition and with a full transaction reply.
The diagram shows the relationship between the various memory areas, as previ-
ously discussed, and how they cascade from the initial binder_write_read struc-
ture all the way to the Parcel buffer and offsets.
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Figure 4.14: Representation of the Read/Write buffer structure extracted by the
Android Binder Decoder

To demonstrate how the Binder Decoder works, it has been decided to trace a
simple interaction with the Android Binder where the phone service is invoked,
and a number is dialled. This can be done using the service Android command,
which is used to invoke remote procedures in one of the exposed services via the
Binder.
To do that, it is necessary to use the phone service, which exposes a method to
dial a number passed as a parameter.
The full list of services registered in the Binder can be visualized using the following
command, where the service in question has been highlighted:
$ service list

When run using the tested device (running Android 12), the above command
produces a list of 229 services associated with their interface declaration.
A snippet of this output can be seen in Figure 4.15 where in line 8 there is the one
that will be used.

Now it is possible to visualize all the methods exposed by the phone service opening
its AIDL interface definition from the Android 12 source code repository.
AIDL stands for “Android Interface Definition Language”, it allows the definition
of a service’s programming interface and lets Android handle all the necessary
operations to invoke methods and send back the return values remotely.
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1 ...

2 146 performance_hint: [android.os.IHintManager]

3 147 permission: [android.os.IPermissionController]

4 148 permission_checker: [android.permission.IPermissionChecker]

5 149 permissionmgr: [android.permission.IPermissionManager]

6 150 persistent_data_block: [android.service.persistentdata.IPersistentDataBlockService]

7 151 phone: [com.android.internal.telephony.ITelephony]

8 152 pinner: []

9 153 platform_compat: [com.android.internal.compat.IPlatformCompat]

10 154 platform_compat_native: [com.android.internal.compat.IPlatformCompatNative]

11 155 pocket: [android.pocket.IPocketService]

12 156 power: [android.os.IPowerManager]

13 ...

Figure 4.15: Snippet of the services exposed via the Binder with their interface
declaration

A snippet from this interface containing the interested method has been reported
in Figure 4.16 where it can be seen in line 13.

1 package com.android.internal.telephony;

2
3 /* ... */

4
5 interface ITelephony {

6 /**
7 * Dial a number. This doesn't place the call. It displays the Dialer screen.

8 * @param number the number to be dialed. If null, this

9 * would display the Dialer screen with no number pre-filled.

10 */

11 @UnsupportedAppUsage

12 void dial(String number);

13
14 /* ... */

15 }

Figure 4.16: Snippet of the ITelephony interface definition containing the method
that will be called

Now that the service interface is known, it is possible to compose the command
to invoke the dial method remotely, passing as a parameter a string containing
the number that should be typed into the dialer. The used command will be the
following:
$ service call phone 1 s16 "000"

Where the argument call is used to specify that it is desired to perform a remote
method invocation, subsequently, the target service name is specified: phone, fol-
lowed by the method number, which in this case is 1 since it is the first in its
interface, and eventually the specification of the parameter that should be passed
in the form of a UTF-16 string (the standard Java character set) specified via the
s16 specifier.

Thanks to the Binder Decoder, it is possible to have an insight into all the inter-
actions that the above command has triggered. To better explain them, they will
be split into sections extracted from the final report generated by the decoder.
In fact, the client will first need to discover the target service, get a handle to
communicate with it, and eventually perform the requested method call and fetch
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the result.

1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40406300 (BC_TRANSACTION)

4 Target: 0x0 (0)

5 Code: 2

6 Flags: 16 (TF_ACCEPT_FDS)

7 Buffer pointer: 0x7b09b3ec30 (528443763760), Data size: 88

8 Buffer content:

9 0x7b09b3ec30: 00 00 00 80 ff ff ff ff 54 53 59 53 1a 00 00 00 ........ TSYS....

10 0x7b09b3ec40: 61 00 6e 00 64 00 72 00 6f 00 69 00 64 00 2e 00 a.n.d.r. o.i.d...

11 0x7b09b3ec50: 6f 00 73 00 2e 00 49 00 53 00 65 00 72 00 76 00 o.s...I. S.e.r.v.

12 0x7b09b3ec60: 69 00 63 00 65 00 4d 00 61 00 6e 00 61 00 67 00 i.c.e.M. a.n.a.g.

13 0x7b09b3ec70: 65 00 72 00 00 00 00 00 05 00 00 00 70 00 68 00 e.r..... ....p.h.

14 0x7b09b3ec80: 6f 00 6e 00 65 00 00 00 o.n.e...

15 Interface: android.os.IServiceManager

16
17 Received:

18 Protocol: 0x720c (BR_NOOP)

19 Protocol: 0x7206 (BR_TRANSACTION_COMPLETE)

20 Protocol: 0x80407203 (BR_REPLY)

21 Target: 0x0 (0)

22 Sender EUID: 1000

23 Buffer pointer: 0x7a199dc000 (524415778816), Data size: 32

24 Buffer content:

25 0x7a199dc000: 00 00 00 00 85 2a 68 73 13 01 00 00 01 00 00 00 .....*hs ........

26 0x7a199dc010: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 0c ........ ........

27 Offsets pointer: 0x7a199dc020 (524415778848), Offsets size: 8

28 Offsets content:

29 0x7a199dc020: 04 00 00 00 00 00 00 00 ........

30 Offset 0:

31 Type: 0x73682a85 (BINDER_TYPE_HANDLE)

32 Flags: 275 (BINDER_BUFFER_FLAG_HAS_PARENT|FLAT_BINDER_FLAG_PRIORITY_MASK|FLAT_BINDER_FLAG_ACCEPTS_FDS)

33 Handle: 1

34 ------------------ BINDER CALL STOP -------------------

Figure 4.17: Binder Decoder output showing the application request for a handle
to the phone service

After the usual initial steps to initialize the data exchange with the Binder, the
application will request a handle to the phone service to then be able to call the
desired method, such operations can be seen in Figure 4.17. This operation is done
by querying the android.os.IServiceManager, as can be seen in line 15.

1 package android.os;

2
3 /* ... */

4
5 interface IServiceManager {

6 /* ... */

7
8 /**
9 * Retrieve an existing service called @a name from the service

10 * manager. Non-blocking. Returns null if the service does not exist.

11 */

12 @UnsupportedAppUsage

13 @nullable IBinder checkService(@utf8InCpp String name);

14
15 /* ... */

16 }

Figure 4.18: Snippet of the IServiceManager interface definition containing the
method that will be called
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The Service Manager is a special service, it is the official Android endpoint map-
per and gets started at the system start-up, if it fails, the whole system crashes.
The main role of this service is managing all the other services by maintaining a
mapping between a service name and a proxy handle to the service.
The invoked method is specified in the code field and can be seen in line 5.
In this case, it corresponds to the second method of the IServiceManager AIDL
interface definition, which can be seen in Figure 4.18.

From the received response, we can see that the transaction has been completed
(in line 19), and the reply starts from line 20.
The Service Manager has replied with an external object specified in the offsets
(starting from line 30), which, given its type (BINDER_TYPE_HANDLE) carries a handle
that can be used to reach the phone service. The handle value can be seen in line
33 and corresponds to "1".

1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40046304 (BC_INCREFS)

4 Handle: 1

5 ------------------ BINDER CALL STOP -------------------

6 ------------------ BINDER CALL START ------------------

7 Sent:

8 Protocol: 0x40046305 (BC_ACQUIRE)

9 Handle: 1

10 ------------------ BINDER CALL STOP -------------------

11 ------------------ BINDER CALL START ------------------

12 Sent:

13 Protocol: 0x40086303 (BC_FREE_BUFFER)

14 Buffer: 0x7a199dc000 (524415778816)

15 ------------------ BINDER CALL STOP -------------------

Figure 4.19: Binder Decoder output showing the claim of a handle and a request
to free a buffer

At this point, the client is interested in declaring its interest in the received handle
and that it should be kept alive, such operation can be seen in Figure 4.19.
This is done by first increasing the count of weak references to the handle and
then the count of strong references, since this is the first time that the service is
referenced by this application. These operations can be seen in line 3, where the
count of weak references is increased via the BC_INCREFS command and then in line
8, where the strong references count is increased via the BC_ACQUIRE command.
Eventually, the client can send a BC_FREE_BUFFER command (in line 13) to inform
the driver that it can free the kernel buffer used for the reply.

In Figure 4.20, it is possible to see the client requesting the canonical interface
descriptor to the previously acquired handle.
Starting from line 3, it is possible to see the request sent by the application, it
does not need any buffer since its intent is clear by the specified flag in line 5
(INTERFACE_TRANSACTION).
The response comes directly from the phone service and can be seen starting from
line 9, it contains its interface descriptor (extracted in line 22), which corresponds
with its fully-qualified Java interface name.
Eventually, just like before, the client informs the driver that the buffer at the
address 0x7a199dc000 used for the reply can be freed (operation omitted in the
report snippet).
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1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40406300 (BC_TRANSACTION)

4 Target: 0x1 (1)

5 Code: 1598968902 (INTERFACE_TRANSACTION)

6 Flags: 16 (TF_ACCEPT_FDS)

7
8 Received:

9 Protocol: 0x720c (BR_NOOP)

10 Protocol: 0x7206 (BR_TRANSACTION_COMPLETE)

11 Protocol: 0x80407203 (BR_REPLY)

12 Target: 0x0 (0)

13 Sender EUID: 1001

14 Buffer pointer: 0x7a199dc000 (524415778816), Data size: 88

15 Buffer content:

16 0x7a199dc000: 29 00 00 00 63 00 6f 00 6d 00 2e 00 61 00 6e 00 )...c.o. m...a.n.

17 0x7a199dc010: 64 00 72 00 6f 00 69 00 64 00 2e 00 69 00 6e 00 d.r.o.i. d...i.n.

18 0x7a199dc020: 74 00 65 00 72 00 6e 00 61 00 6c 00 2e 00 74 00 t.e.r.n. a.l...t.

19 0x7a199dc030: 65 00 6c 00 65 00 70 00 68 00 6f 00 6e 00 79 00 e.l.e.p. h.o.n.y.

20 0x7a199dc040: 2e 00 49 00 54 00 65 00 6c 00 65 00 70 00 68 00 ..I.T.e. l.e.p.h.

21 0x7a199dc050: 6f 00 6e 00 79 00 00 00 o.n.y...

22 Interface: com.android.internal.telephony.ITelephony

23 Offsets pointer: 0x7a199dc058 (524415778904), Offsets size: 0

24 ------------------ BINDER CALL STOP -------------------

Figure 4.20: Binder Decoder output showing the application acquiring the interface
descriptor of the phone service

Now the client has all the necessary information to perform the desired remote
procedure call, which requires: having a handle for the remote service, its interface
descriptor, and knowing the interface method number and the parameters to pass
to it.

1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40406300 (BC_TRANSACTION)

4 Target: 0x1 (1)

5 Code: 1

6 Flags: 16 (TF_ACCEPT_FDS)

7 Buffer pointer: 0x7b09b3d0a0 (528443756704), Data size: 112

8 Buffer content:

9 0x7b09b3d0a0: 00 00 00 80 ff ff ff ff 54 53 59 53 29 00 00 00 ........ TSYS)...

10 0x7b09b3d0b0: 63 00 6f 00 6d 00 2e 00 61 00 6e 00 64 00 72 00 c.o.m... a.n.d.r.

11 0x7b09b3d0c0: 6f 00 69 00 64 00 2e 00 69 00 6e 00 74 00 65 00 o.i.d... i.n.t.e.

12 0x7b09b3d0d0: 72 00 6e 00 61 00 6c 00 2e 00 74 00 65 00 6c 00 r.n.a.l. ..t.e.l.

13 0x7b09b3d0e0: 65 00 70 00 68 00 6f 00 6e 00 79 00 2e 00 49 00 e.p.h.o. n.y...I.

14 0x7b09b3d0f0: 54 00 65 00 6c 00 65 00 70 00 68 00 6f 00 6e 00 T.e.l.e. p.h.o.n.

15 0x7b09b3d100: 79 00 00 00 03 00 00 00 30 00 30 00 30 00 00 00 y....... 0.0.0...

16 Interface: com.android.internal.telephony.ITelephony

17
18 Received:

19 Protocol: 0x720c (BR_NOOP)

20 Protocol: 0x7206 (BR_TRANSACTION_COMPLETE)

21 Protocol: 0x80407203 (BR_REPLY)

22 Target: 0x0 (0)

23 Sender EUID: 1001

24 Buffer pointer: 0x7a199dc000 (524415778816), Data size: 4

25 Buffer content:

26 0x7a199dc000: 00 00 00 00 ....

27 Offsets pointer: 0x7a199dc008 (524415778824), Offsets size: 0

28 ------------------ BINDER CALL STOP -------------------

Figure 4.21: Binder Decoder output showing the remote method call of the dial

method

In Figure 4.21, it is possible to see the procedure call to the dial method via the
Binder.
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Starting from line 3, there is the transaction sent to the phone service via the
previously acquired handle (which is specified as the transaction target.handle in
line 4).
In line 16, it is possible to see that the targeted interface is the one exposed by
ITelephony, and in line 5, which prints the code field, the method number is
specified, in this case, it is the number 1 corresponding to dial.
Moreover, in the hexadecimal dump of the buffer data, the string parameter passed
to the method can be seen immediately after the interface descriptor in line 15.
Since the invoked function has void return type, the reply starting from line 21
does not carry any additional data.

At this point, the desired method has been invoked successfully, and the dialer
pops up on the phone screen with the requested number ("000") already typed.

1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40086303 (BC_FREE_BUFFER)

4 Buffer: 0x7a199dc000 (524415778816)

5 ------------------ BINDER CALL STOP -------------------

6 ------------------ BINDER CALL START ------------------

7 Sent:

8 Protocol: 0x40046306 (BC_RELEASE)

9 Handle: 1

10 ------------------ BINDER CALL STOP -------------------

11 ------------------ BINDER CALL START ------------------

12 Sent:

13 Protocol: 0x40046307 (BC_DECREFS)

14 Handle: 1

15 ------------------ BINDER CALL STOP -------------------

Figure 4.22: Binder Decoder output showing the release of a handle and a request
to free a buffer

It is now necessary to release the used resources, an operation that can be seen in
Figure 4.22.
First, in line 3, the driver will be informed that it can release the buffer used for
the reply request.
Then the previously received handle to the phone service with value 1 will be
released, to do that, first the count of its strong references is decreased using the
BC_RELEASE command in line 8, and then the count of weak references is decreased
using BC_DECREFS in line 13.

In Android, every inter-process interaction requires interacting with the IPC Binder,
to the point that an application can do very little without it. Monitoring interac-
tions between Binder and applications will prove to be very useful in identifying
privacy issues and will be discussed further in Section 5.4.

4.5.5 Execve Decoder

This decoder aims to analyse the usage of the system calls that can replace the
currently running program with an executable from the file system. The system
calls able to do that are the following: execve and execveat.

When an application would like to execute an external executable, the typical
behaviour is generating a child process (e.g., via a fork) and then using one of these
system calls to inform the kernel that the running program should be substituted.
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This operation has many security implications since it is not only used for legit
cases, but it is often a way for an attacker to spawn a remote shell and take
control of the machine. Moreover, it also has implications in terms of privacy
issues detection since running external executables can give clues on what is the
relationship between the various application components and be interpreted as a
way to evade some monitoring techniques.

The specifications of the two system calls analysed by this decoder are the follow-
ing:
int execve(const char *pathname, char *const argv[], char *const envp[]);

int execveat(int dirfd,

const char *pathname,

const char *const argv[],

const char *const envp[],

int flags);

They both take as input parameters a string pathname, which specifies the loca-
tion of the executable that shall replace the currently running program, an array
of strings argv, which communicates the list of arguments that should be passed to
the executable, and a second array of strings envp with the environment variables
for the new process image.
Their difference is in the fact that the second also takes a dirfd file descriptor,
which specifies a folder, and in this case, the executable path must be interpreted as
relative from this directory. Moreover, thanks to the flags parameter in execveat,
it allows specifying additional behaviours like not following symbolic links or in-
terpreting dirfd as a file descriptor to the target executable.

This decoder will need to register itself to the entry notification of the system
calls mentioned above and extract the string parameter pathname and the list of
arguments argv by iterating over them until a NULL pointer is encountered.
It has been decided not to analyse dirfd for this implementation and include it in
the relative future developments Section 6.2.

In Figure 4.23, it is possible to see the final report from the Execve Decoder after
tracing the following command:
$ /bin/sh -c 'cat /etc/passwd'

This is a legitimate case of using the execve system call used to run the cat

command, which is an executable in /system/bin/cat and can be found since the
/system/bin directory is in the PATH environment variable.
The output shows that in line 2, where it is possible to see that the shell has
identified the executable location and in lines 4 and 5, the passed arguments are
specified. By convention, the first passed argument is always the name used to
invoke the executable.

1 ------------------ EXECVE DECODER START ------------------

2 Executable: /system/bin/cat

3 Arguments:

4 [0] = cat

5 [1] = /etc/passwd

6 ------------------ EXECVE DECODER STOP -------------------

Figure 4.23: Execve Decoder output showing the shell executing a command
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Chapter 5

Validation

This chapter aims to validate that Ptracer ’s tracing and analysing capabilities can
be used for detecting debuggers, anomalies and privacy issues.
To do that, a demo application has been developed and used in various tests to
assess how well the developed tool will perform.
Moreover, it will be shown how this will open the door for more complex analysis
of complex and widespread applications.

All the tests described in the following sections have been performed on a phone
model “OnePlus 6T” running Android 12.

5.1 Use case

To validate the effectiveness of Ptracer in detecting debuggers, anomalies and pri-
vacy issues, it is necessary to test it on an application with a well-known behaviour.
This led to the development of “AudioRecorder ”, a basic Java-based application
that implements a simple audio recorder which can acquire data from the micro-
phone, save the recording and replay it.
After this first validation, it will be possible to leverage Ptracer to monitor more
complex and well-recognised applications pursuing the same end goals.

When first started, AudioRecorder will show the user its interface, which is re-
ported in Figure 5.1. In the screenshot, it is possible to see the four main buttons:
start/stop recording and start/stop playing the recording.
In the latest Android versions, it is necessary to request some permissions at run-
time, hence the application will check if the necessary user permissions have been
granted, if not, when the record button is pressed, the typical Android prompt
will appear to ask the user to grant them. More specifically, the RECORD_AUDIO and
WRITE_EXTERNAL_STORAGE permissions will be requested, the first will be used to be
allowed to access the microphone and the second to write on the external storage
the resulting file.
The recorded data will be saved in the file AudioRecording.3gp stored in an
application-specific directory in the external memory.

To record audio from the microphone, the application uses the Java class in the An-
droid multimedia framework android.media.MediaRecorder, which includes sup-
port for capturing and encoding various common audio and video formats.
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Figure 5.1: Main screen of the test application used for the validation

This class will be used after the user presses the record button, hence, a listener for
this action has been created, which will invoke the method shown in Figure 5.3.
The reported source code shows the settings used to initialize MediaRecorder,
which can be seen from lines 14 to 17 and corresponds to setting the audio input,
the output file format together with the encoding and eventually the destination
file.
The recording is started in line 23, which is also the method that will trigger the in-
teraction with the Android Binder since at this point, all the necessary parameters
to acquire audio are specified.

To check if the user has already been granted permission to record audio and write
to the external storage, the class androidx.core.content.ContextCompat is used.
This class is a helper to accessing features in Context, which is the interface to
global information about an application environment.
This class allows querying the Android system to check if a specific process is
allowed to do a particular action.

AudioRecorder is also able to replay the recorded audio, also in this case, MediaRecorder
has been used since it can replay any audio file (using a supported format) given
its path. This operation does not require additional permission and does not check
if it can access files in the external storage since the button invoking this method
is available only after a recording has been created.
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1 package it.matteodegiorgi.audiorecorder;

2
3 /* .. */

4
5 public class MainActivity extends AppCompatActivity {

6 /* ... */

7
8 private void startRecording() {

9 if (CheckPermissions()) {

10 /* ... Redacted buttons handling ...*/

11 File dir = ContextCompat.getExternalFilesDirs(getApplicationContext(), "audio")

[0];

12 recording = new File(dir, "/AudioRecording.3gp");

13 this.mRecorder = new MediaRecorder();

14 this.mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

15 this.mRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

16 this.mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

17 this.mRecorder.setOutputFile(recording);

18 try {

19 this.mRecorder.prepare();

20 } catch (IOException e) {

21 Log.e("TAG", "MediaRecorder preparation failed");

22 }

23 this.mRecorder.start();

24 statusTV.setText("Recording Started");

25 } else {

26 RequestPermissions();

27 }

28 }

29
30 /* ... */

31 }

Figure 5.2: Source code snippet from AudioRecorder showing how the recording
is started

Another feature added to the basic AudioRecorder functionalities is the possibil-
ity to load a configuration file at startup. It contains the name of the file where
recordings will be saved, and it is read and generated by using the Java native
serialization on the class Configurations, which can be seen in Figure 5.3.

Configurations is a POJO class that, for simplicity, contains only one config-
uration and implements the Serializable interface, which makes it a suitable
candidate to be serialized and deserialized from and to its binary format.
To do that, it is possible to leverage an ObjectOutputStream for serialization and
a ObjectInputStream for deserialization, where the first writes the result into an
OutputStream, and the second requires a InputStream to read a previously serial-
ized object.
In Figure 5.4, it is possible to see the code snippet that reads the configuration
file at startup.

The rationale behind the inclusion of this feature is to make the application vul-
nerable to an Unsafe Deserialization Vulnerability, where an attacker is able to
execute arbitrary code by letting the victim application parse a malicious serial-
ized object. In fact, when deserializing, the fully qualified class name is read from
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1 package it.matteodegiorgi.audiorecorder;

2
3 import java.io.Serializable;

4
5 class Configurations implements Serializable {

6 private final String recordingPath;

7
8 public Configurations(String recordingPath) {

9 this.recordingPath = recordingPath;

10 }

11
12 public String getRecordingPath() {

13 return recordingPath;

14 }

15 }

Figure 5.3: Source code of the Configurations class

1 File dir = ContextCompat.getExternalFilesDirs(getApplicationContext(), "config")[0];

2 File configurationFile = new File(dir, "config.bin");

3 Configurations configurations;

4 try (FileInputStream file = new FileInputStream(configurationFile);

5 ObjectInputStream in = new ObjectInputStream(file)) {

6 configurations = (Configurations) in.readObject();

7 } catch (IOException | ClassNotFoundException e) {

8 Log.e("TAG", "Error occurred deserializing the configuration file", e);

9 }

Figure 5.4: Source code snippet from AudioRecorder showing how the configura-
tions file is read

the object, hence before casting the result to the desired class, as can be seen in
line 4, a completely different type might have been already constructed. Therefore,
an attacker can craft a malicious object that, when deserialized, will run the code
he desires.
To do that, the attacker can leverage all the serializable classes in the classpath and
also chain them to build a complex payload, effectively using classes and method
invocations as gadgets to achieve the desired behaviour.
For this thesis, the malicious object has been prepared reusing the payload named
“CommonsCollections6” prepared by [18] via the tool ysoserial, which requires the
dependency commons-collections:3.1 (from the Maven Central repository) on the
classpath. This dependency is very common since it is considered the recognised
standard for collection handling in Java.
Leveraging this tool, it has been possible to generate a payload that invokes the
/bin/sh shell when the application tries to deserialize the malicious object.

In an Android environment, there is an increased risk of encountering such vulnera-
bilities because of the inter-process communications performed via the Binder. One
of the many functions of the Binder is allowing Activities and, more generically,
processes to send objects among themselves. Such objects can be serialized and
then transported through the IPC driver via a wrapper class (android.content.Intent),
used as messaging object to request an action from another component.
When the object is received by the destination app, the same vulnerability might
be triggered if the data source and content are not properly validated.
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For simplicity, it has been decided to trigger such vulnerability just by reading a
file, a more realistic scenario would be allowing other applications to send Intent
instances to AudioRecorder containing a serialized custom class (e.g., to request a
previously recording).

An application is vulnerable to such an attack when insufficient checks are made on
the parsed objects, more specifically, it is necessary to ensure that the deserializer
can instantiate only the intended object classes and that the data source is trusted.
A potential mitigation is reducing the availability of gadgets in the classpath, but
this vulnerability lies in the fact that the application parses untrusted objects and
not in the availability of gadgets.

Despite AudioRecorder being a simple application, the fact that it is Java based
and runs in an Android environment makes it very complex from the point of view
of a system calls observer like Ptracer.
It will be observed that a large number of system calls is requested because of the
event-driven nature of Android since every user interaction and communication
with the system or specific service (e.g., the audio service) requires one.
Moreover, Java applications require a further level of abstraction from the operat-
ing system since the code is not directly compiled to native machine instructions
but into bytecode, typically executed by the Java Virtual Machine (JVM), which
can invoke additional system calls. In an Android environment, the intermediate
code targets the Dalvik Executable Format (DEX) instead of the JVM; Therefore,
it is fundamentally different but nevertheless still abstracted from the underlying
native machine instructions. This is also valid in the most recent Android RunTime
(ART), which runs applications using a hybrid approach between Ahead-Of-Time
(AOT) compilation, which produces native machine code, and JIT interpretation,
since there is still a middle layer handling the application.

In the next sections, this application will be analysed using Ptracer to validate
its tracing and monitoring capabilities to detect anomalies, debuggers and privacy
issues.

5.2 Anomaly detection

This section aims to evaluate the Anomaly detection capabilities of Ptracer and, in
particular, if it can be applied to an Android application, given its particularities
previously discussed.
The technique used to identify anomalies is based on an initial learning phase,
where an NFA will be generated and refined over multiple learning cycles, followed
by an enforcing phase, where every kernel interaction that is not expected by the
model will be flagged as an anomaly, and the application halted.
The target application is going to be AudioRecorder, and the validation goals can
be summarized in the following points:

• The learning phase converges to a stable NFA in a finite and reasonable
number of iterations, i.e. the number of observed states and transitions stop
increasing after a certain number of application executions.

• The enforce phase presents as few false positives as possible and only when
events that have not happened during the learning phase occur since the
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effectiveness of the Anomaly Detection System is as good as its training
phase.

• If instead of the legitimate configurations file, a malicious object is dese-
rialized, then the exploit payload is not executed because detected as an
anomaly.

In the following sections it will be discussed the method decided to attach to the
application, the learning process and eventually, the enforcing phase will be tested
against the introduced vulnerability.

5.2.1 Attach to the application

When using the Linux process tracing interface, there are two main ways of at-
taching to a process:

1. Attach to a process that is already running, which will be stopped as a
consequence of this operation;

2. Generate a child who will ask to be traced via a ptrace system call using
the PTRACE_TRACEME parameter, which will stop the process until the parent
successfully attaches to it. When done, it will be possible to use an execve

system call to replace itself with the desired executable to trace.

Ptracer supports both cases, which can be specified using its command line.
When building the NFA model, it is advised to use the second approach since
it guarantees to be able to observe all the generated system calls, while using
the first, inevitably, some calls will go untraced. Moreover, the second approach
ensures more stability in the model since it guarantees that the NFA will contain
all the system calls. The first method generates a partial automaton because of
the missed system calls, and it has an increased risk of finding false positives when
enforced because it will be necessary to ensure that the attach operation always
happens on the same automaton state.

As discussed in the related Background Section 3.3, every Android application is
always launched by the Zygote process as a fork of itself. This process is always
present and maintains a pool composed of its forks (called “Blastula” pool), where
each preloads all the necessary libraries and Android Runtime to be ready to
specialize into an individual application upon request.
This system design implies that it is not possible to use an execve system call
to run an Android application, therefore, it is necessary to use the first tracing
technique seen before.

To identify anomalies, it has been decided to start tracing the application only
once its initialization is complete, hence from the moment its main activity is dis-
played and waiting for events.
Since Android applications are event-based, the first system call that will be en-
countered will always be waiting for a new event from the dedicated queue. Such
behaviour will allow the establishment of a stable attach point for Ptracer, as it
will be shown during the learning phase, with the downside of not capturing the
initialization system calls.
Section 6.3 will cover the proposed future developments for this approach, and a
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brand new one will be proposed to be able to trace Android applications starting
from Zygote forks.

To minimize every involuntary interaction with AudioRecorder before attaching
Ptracer, the application will not be started directly from the usual Android appli-
cation launcher on the phone, but instead using the Activity Manager command
line tool am. This operation is equivalent of opening the app through the usual
Android application launcher directly from the phone, but it can be done remotely
via a shell on the Android phone.
This is a precautionary measure since every interaction with the application would
trigger an event, e.g., a touch on any part of the screen while displaying the main
activity or minimizing the application, operations that would be notified as an
event.
The command that will be used requires to specify the application package name
and the specific activity that shall be launcher separated by a slash symbol (“/”),
which is equivalent to the following:
$ am start -n it.matteodegiorgi.audiorecorder/\

it.matteodegiorgi.audiorecorder.MainActivity

In Figure 5.5, it is possible to see a redacted output from the pstree command,
which shows the process tree of AudioRecorder once started.
When launching Ptracer, it will be necessary to specify the process ID it should
attach to. Since all of the source code developed for the application runs in the
principal application process (which in the example can be seen in line 1 with PID
5663), it has been decided to trace only this one.
The rationale behind this choice is that AudioRecorder is a very simple application,
and all the other observed processes do not have a role in its main logic.
Tracing more complex applications, which effectively leverage multiple processes
and threads, will be covered in the future developments Section 6.4.

1 init(1)-+-main(858)-+-i.audiorecorder(5663)-+-{ADB-JDWP Connec}(9589)

2 | | |-{Binder:5663_1}(9607)

3 | | |-{Binder:5663_2}(9610)

4 | | |-{Binder:5663_2}(9625)

5 | | |-{Binder:5663_3}(9611)

6 | | |-{FinalizerDaemon}(9603)

7 | | |-{FinalizerWatchd}(9606)

8 | | |-{HeapTaskDaemon}(9601)

9 | | |-{Jit thread pool}(9591)

10 | | |-{Profile Saver}(9618)

11 | | |-{ReferenceQueueD}(9602)

12 | | |-{RenderThread}(9619)

13 | | |-{Signal Catcher}(9587)

14 | | |-{hwuiTask0}(9623)

15 | | |-{hwuiTask1}(9624)

16 | | \-{perfetto_hprof_}(9588)

17 ...

Figure 5.5: Process tree of AudioRecorder

Moreover, it has been noticed that the Android RunTime continuous code profiling
and optimization can pose another factor of instability for the acquired stack
traces. In fact, ART, by default, will analyse the executed code and record profiling
samples that will be used to determine which code sections can be considered “hot”
or not. Hot code consists of frequently used methods which will be compiled into
machine code by the Ahead Of Time (AOT) compiler when identified as such.
This implies that over multiple runs, the executed code will evolve from being
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completely Just In Time interpreted to a mix of interpreted bytecode and pre-
compiled (hence, machine code). Moreover, thanks to the On-Stack Replacement
(OSR) feature of ART, it is possible to replace JIT code right after it gets compiled
and at run-time.
Such replacements will cause stack traces not to be reproducible until ART has
reached a stable equilibrium between interpreted and compiled code, which might
depend on the specific user’s behaviour. This is because between compiled and
interpreted code, there are bridging stack frames that will be inserted, and if they
are not always in the same position, then an Unknown State Anomaly will be
generated.
Hence, handling both machine and JIT code is not a problem for Ptracer, but the
constantly changing balance between these parts would make the learning process
harder.

For these reasons, to validate Ptracer ’s capability to identify anomalies, it has
been decided to remove this uncertainty factor by disabling AOT compilation for
the tested application.
This can be done by modifying the AndroidManifest.xml file by including the fol-
lowing parameter in the application XML element: android:vmSafeMode="true".
To ensure that the previously compiled code is not used, the related AOT code
cache has been deleted using the following command run via a shell on the Android
phone:

$ cmd package compile --reset it.matteodegiorgi.audiorecorder

Such change has greatly improved the stability of stack traces, also after multiple
executions, since now the application code is not adaptively compiled.
It has been possible to validate that no application code is getting compiled by
observing that the stack frames to transition from JIT to AOT are now always in
fixed positions. Hence, after multiple executions, it is faster to reach the model
convergence, and there are no new states which differ from a previously observed
one just for the bridging stack frames.

Alternatively, it would also be possible to trigger a complete application compila-
tion by the AOT compiler since, from the point of view of the Anomaly Detector,
it is just desired that the produced stack frames are as reproducible as possible.
This can be done using the following command:

$ cmd package compile -m speed -f it.matteodegiorgi.audiorecorder

Now it will be necessary to disable the JIT interpreter since if both JIT and AOT
code exists, then the first is preferred. This can be done by running the following
command, which sets the related system property:

$ setprop dalvik.vm.usejit false

From the performed experimentation, this method has provided less stable results.
Hence, it has been chosen not to use AOT code to detect anomalies, also because
the generated bytecode is less machine-specific than the machine code generated
by this approach, and this would make the learnt model more portable among
multiple devices.
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5.2.2 Learn the model

The detection accuracy and effectiveness of Ptracer as an Anomaly Detection
System (ADS) are directly linked with the training quality of its model of normal
behaviour since it identifies as attacks any divergence from normal behaviour.
Hence, it is first necessary to have a model of what can be considered “normal” to
be then able to enforce it and raise alerts. This type of detection can detect any
unexpected behaviour, which must be analyzed and classified as malicious or an
application malfunction.

The objective of this section is to learn the NFA model and iteratively refine it by
running the application and operating it. As discussed in the previous section, the
target application is going to be AudioRecorder, and Ptracer is going to attach to
it following the procedure previously discussed.

To assess how fast the model will converge, it will be measured how many learning
iterations will be needed to obtain a steady number of NFA states, transitions and
final states. In fact, it is necessary to ensure that the model is as stable as possible
during learning to minimize the number of false positives during the subsequent
enforcing phase.
The desired outcome is given by extensive learning, where all the possible user
behaviours are covered.

It is now possible to start the learning process by launching the application, re-
trieving the PID of the main process and running Ptracer. The application launch
has been described in the previous section, and the tracing program can be started
using the following command:

./ptracer --decoders false \ # Disable system call decoders

--authorizer true \ # Enable the Authorizer component

--learn true \ # Set learning mode

--nfa audiorecorder.nfa \ # NFA model file

--associations audiorecorder.ass \ # Mapper associations file

--dot audiorecorder.dot \ # NFA DOT representation file

--name it.matteodegiorgi.audiorecorder \ # Name of the trace application

--pid $(ps -A | grep matteo | awk '{ print $2;}') # Find the PID to trace

The first option disables the System Call Decoders (described in Section 4.5) since
they would slow down the overall process and are not used in this instance.
The other parameters are used to enable the Authorizer component, which contains
the logic to learn and enforce the NFA model. Its configurations include activating
learning mode and specifying the files where are the NFA model and associations
file (which contains the associations created by the Mapper function, explained
in Section 4.4), which will be imported (if they already exist) or saved when the
traced application terminates.
The shown command also shows how to generate the DOT representation of the
learnt NFA, this format can be used to visualize the generated automata later,
and it is optional.
The last necessary parameters are the PID to trace and the executable name, and
the last is used to set the application’s package name, which is necessary because
the tracer always needs to place this information in the 3-tuples associated with
the NFA states. The Process ID is not directly specified in the provided command,
but it is fetched using the reported concatenation of commands, which will list all
the processes, look for AudioRecorder, isolate its PID and place it in the command
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Figure 5.6: Partial representation of the NFA model obtained after the first learn-
ing iteration on AudioRecorder
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that will launch Ptracer.
More information about how to run Ptracer and its parameters will be provided
in Appendix A.

Once the application is started and Ptracer attached, it is necessary to simulate
the normal application usage. For the first learning iteration, it has been decided
to do the following: start/stop the recording and replay and pause it. Eventually,
the application was closed by swiping it up from the list of recent applications on
the Android phone.
This simple interaction has generated 378 unique states (including q0, the initial
state), with 418 transitions among them and 3 states marked as final.

In Figure 5.6, it is possible to see the graphical representation of the NFA obtained
after the first learning iteration, it has been necessary to crop it given its large
size.
The NFA structure is a direct reflection of the application’s internal structure,
which is always waiting for events coming from a queue and dispatching them to
multiple listeners that have registered their interest in some specific type of event.
In the NFA representation, the state q0 is the entry point, which is pointed by an
arrow without any source in the top right area of the automaton. This state is
not associated with any 3-tuple mapped by Mapper , but it represents the attach
operation performed by Ptracer, which, in this case, has immediately encountered
the system call epoll_pwait, identified by the transition 1 leading to q1.
Looking into the list of produced associations, it is possible to see that state 1 has
the following method call in its stack trace:
android::android_os_MessageQueue_nativePollOnce(_JNIEnv*, _jobject*, long, int)@44

Hence, it is reasonable to assume that when the tracer attached to the application,
it was waiting for new events coming from the event queue. In fact, starting from
q1, it is possible to see multiple outgoing transitions, which lead to the various event
handlers and have been manually coloured in red in the reported automaton.
Moreover, there is a recurring pattern among all the handlers since, every time
they complete their operations, they lead back to state q87, all such transitions
have been coloured in blue. From the extracted stack trace for this state, it is
possible to see that it corresponds to a call to the following method, which is part
of the final clean-up after an event is handled:
android::IPCThreadState::clearCallingIdentity()@40

Therefore, the action sequence used during the various tests is not inherently
reflected in the model if the generated events are not logically dependent among
them, e.g., a touch on a blank part of the screen will not influence any of the
button-pressed events, but if the recording button is pressed twice in a row, then
the second event will be influenced by the first since it will do nothing. This is a
significant property since it ties the model to the logic that developers implemented
and not to the action sequences performed during testing, which will only need to
guarantee that all the possible combinations are covered.

Eventually, the states marked as final are all of those states where it has been
observed the termination of any of the traced threads or processes. In this case,
they are 3, where two can be seen from the partially reported automaton (q152
and q154), and one is further away and has not been shown (q258).
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The reason why there are multiple termination states is that the application is
actually multithreaded, in fact, states q331 (visible in the figure) and q227 (not
visible) corresponds to clone system calls. These calls are triggered by the audio
media player invoked by pressing the play recording button.

Iteration States Transitions Final States Included Event Types

1 378 418 3 Only button usage
2 412 506 4 Random display events
3 550 679 5 Minimize and restore
4 1058 1241 5 Minimize and reopen
5 1075 1270 6 Activation of notification bar
6 1094 1290 7 Same as above
7 1108 1329 8 Same as above
8 1113 1339 8 Same as above
9 1117 1346 8 Same as above
10 1148 1389 9 Same as above
11 1148 1389 9 Same as above
12 1152 1395 10 Same as above
13 1178 1432 10 Same as above
14 1179 1434 10 Same as above
15 1179 1436 11 Same as above
16 1179 1437 12 Same as above
17 1181 1446 13 Same as above
18 1181 1446 13 Same as above
19 1190 1465 13 Same as above
20 1198 1480 13 Same as above
21 1203 1489 13 Same as above
22 1207 1497 13 Same as above
23 1227 1525 13 Same as above
24 1227 1525 13 Same as above
25 1229 1528 13 Same as above
26 1232 1532 13 Same as above
27 1233 1534 14 Same as above
28 1247 1557 14 Same as above
29 1272 1590 14 Same as above
30 1274 1594 14 Same as above
31 1274 1594 14 Same as above
32 1274 1594 14 Same as above

Table 5.1: Table reporting the NFA model data per each learning iteration

After the first learning iteration, it was necessary to re-run the application multiple
times and add different user action sequences and combinations. For example, in
the second learning iteration, also touch events in blank parts of the screen (hence,
not handled by any button) were included, and this already implied a significative
increment of the NFA model.
Since the automaton complexity increased every iteration, it has been possible to
graphically report only the result of the first iteration since the other ones would
be too big and complex for this document. For this reason, the generation of the
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NFA representation in a DOT file format has been disabled after the first iteration.
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Figure 5.7: Plots the NFA model status during the various learning iterations

In Table 5.1, it is possible to see a summary of how the NFA model evolved during
the various learning iterations. It has been decided to incrementally include events
to be able to observe the various growths in the automaton. Hence, each iteration
contains all the actions performed in the previous ones plus the newly included
events.
In iteration 3, it was included the application minimization and restoration via the
"Recent Applications" menu. This has been expanded in iteration 4, where the
application was minimized and reopened via the activity launcher, this triggered
the recreation of the activity from scratch, which is explained by the significant
growth of the model. The last included event was swiping down the notification
bar.

In Figure 5.7a and Figure 5.7b, it is possible to see plotted the growth trend of
the NFA, more specifically the first plot shows transitions and NFA states, and
the second the final states.
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From the reported plots, it is possible to see how, after the first three iterations,
the model starts to converge to its stability. For this test, the model has been con-
sidered stable only if, after three learning cycles, the automaton did not grow. This
condition happens only from the 30th learning iteration; hence the last iteration
was the 32nd, where the model has finally been considered stable.

The final stable model has 1279 states, 1603 transitions and 14 final states, its
enforcement will be discussed in the next section, where it will be tested and
evaluated.

5.2.3 Enforcement phase

The desired outcome from this section is assessing the number of false positives,
which are anomalies during the normal application execution, and evaluating
whether the learning phase performed in the previous section produced a satis-
factory model.
Moreover, the model will be tested to determine whether it will be able to pre-
vent the execution of arbitrary code triggered by an unsafe deserialization attack
vector. These vulnerabilities have been better described in Section 5.1.

To identify potential false positives, AudioDecoder has been started via the phone
activity launcher (instead of using the am command line utility used during learn-
ing), and Ptracer attached using the following command:
./ptracer --decoders false \ # Disable system call decoders

--authorizer true \ # Enable the Authorizer component

--learn false \ # Set enforce mode

--nfa audiorecorder.nfa \ # NFA model file

--associations audiorecorder.ass \ # Mapper associations file

--name it.matteodegiorgi.audiorecorder \ # Name of the trace application

--pid $(ps -A | grep matteo | awk '{ print $2;}') # Find the PID to trace

The main difference between the learning and enforcement phase is the deactivation
of the --learn option since all the other parameters are still needed (except --dot,
which has only a graphical function).

To identify potential false positives, it has been decided to follow the same action
order followed during the learning phase. Therefore, first, the buttons will be used,
then other display events will be included, and eventually, the app minimization
and restoration or reopening will be performed.

The NFA model proved well-trained in the normal execution of start/stop record-
ing and replaying the audio file. Running this action sequence and its various
combinations have not triggered any anomaly after 10 complete application ex-
ecutions. Hence, this also validates that attaching to the application while it is
waiting for an event consists of a stable attachment point.
When the range of actions was extended by including also display events, touching
blank parts of the screen, and the application minimization and restoration, no
anomalies were registered.
This is a very satisfactory result, as it shows that the learnt model is a good fit
for the normal application usage.

After eight executions of AudioRecorder, a false positive unknown state anomaly
occurred while restoring an application from its minimized state. This anomaly
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can be seen in Figure 5.8, while its stack trace has been partially redacted for the
sake of clarity.

1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: it.matteodegiorgi.audiorecorder

3 PID: 18983

4 SPID: 18983

5 Timestamp: 1676730433865611

6 NOT Authorized

7 Syscall = futex (98)

8 Stack unwinding = {

9 PC 0x0000007c4d0a3260 Relative PC 0x000000000004c260 SP 000000007ffb554520 - syscall @ 32

10 PC 0x0000007c4d109b48 Relative PC 0x00000000000b2b48 SP 000000007ffb554520 - pthread_mutex_unlock @ 112

11 PC 0x0000007c40738a38 Relative PC 0x00000000000eea38 SP 000000007ffb554550 - android::Singleton<android::

ComposerService>::getInstance() @ 112

12 PC 0x0000007c40738ed4 Relative PC 0x00000000000eeed4 SP 000000007ffb554580 - android::ComposerService::

getComposerService() @ 36

13 PC 0x0000007c407414f0 Relative PC 0x00000000000f74f0 SP 000000007ffb5545c0 - android::SurfaceComposerClient

::onFirstRef() @ 48

14 PC 0x0000007c40738668 Relative PC 0x00000000000ee668 SP 000000007ffb554620 - android::SurfaceControl::

readFromParcel(android::Parcel const&, android::sp<android::SurfaceControl>*) @ 724

15 PC 0x0000007c27464390 Relative PC 0x000000000012e390 SP 000000007ffb5546c0 - android::nativeReadFromParcel(
_JNIEnv*, _jclass*, _jobject*) @ 56

16 ...

17 PC 0x0000007c273f6fb4 Relative PC 0x00000000000c0fb4 SP 000000007ffb557ba0 - android::AndroidRuntime::start

(char const*, android::Vector<android::String8> const&, bool) @ 836

18 PC 0x00000055e36d258c Relative PC 0x000000000000258c SP 000000007ffb557c90 - main @ 1336

19 PC 0x0000007c4d09f7dc Relative PC 0x00000000000487dc SP 000000007ffb558e00 - __libc_init @ 96

20 }

21 Parameters = {

22 0x0000007c4077f760

23 0x0000000000000081

24 0x0000000000000001

25 000000000000000000

26 000000000000000000

27 000000000000000000

28 000000000000000000

29 000000000000000000

30 }

31 Registers = {

32 PC: 0x0000007c4d0a3260

33 SP: 0x0000007ffb554520

34 RET: 0x0000007c4077f760

35 }

36 ------------------ SYSCALL ENTRY STOP ------------------

37 State not found in the list of associations -> Not authorised

38 Warning! Encountered a state that has never been observed before!

39
40 Possible actions:

41 1 - Kill the target process

42 2 - Allow it by adding a new state in the model

43 Choice: 2

44 Added a new transition from q495 to q1247

45 ...

Figure 5.8: Unknown State Anomaly found while restoring the application

It was possible to recover from this anomaly by choosing to add a new state (q1247
since they are numbered starting from 0) and a transition to it. Alternatively, in
case the observed behaviour is too suspicious, it would have been possible to decide
to terminate the traced application and leave the automaton unaltered.
Anomalies rarely involve only one state, in fact, it was necessary to repeat the
same operation for the next 3 states before going back to a previously known path
inside the automaton.
When this execution path, which was missed in the learning phase, was added, all
the subsequent executions manage to restore the application from its minimized
state without further anomalies.
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1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: it.matteodegiorgi.audiorecorder

3 PID: 18984

4 SPID: 18984

5 Timestamp: 1676731779196358

6 NOT Authorized

7 Syscall = clock_gettime (113)

8 Stack unwinding = {

9 PC 0x0000007c5192a618 Relative PC 0x0000000000000618 SP 000000007ffb552020 - __kernel_clock_gettime @ 680

10 PC 0x0000007c4d0a2438 Relative PC 0x000000000004b438 SP 000000007ffb552020 - clock_gettime @ 24

11 PC 0x0000007990473fb0 Relative PC 0x0000000000673fb0 SP 000000007ffb552040 - art::Thread::GetCpuMicroTime()

const @ 56

12 PC 0x000000799023fc10 Relative PC 0x000000000043fc10 SP 000000007ffb552080 - art::(anonymous namespace)::

ScopedCheck::CheckPossibleHeapValue(art::ScopedObjectAccess&, char, art::(anonymous namespace)::

JniValueType) @ 2944

13 PC 0x000000799023e8ac Relative PC 0x000000000043e8ac SP 000000007ffb552140 - art::(anonymous namespace)::

ScopedCheck::Check(art::ScopedObjectAccess&, bool, char const*, art::(anonymous namespace)::

JniValueType*) @ 644

14 PC 0x000000799023b45c Relative PC 0x000000000043b45c SP 000000007ffb5521e0 - art::(anonymous namespace)::

CheckJNI::GetPrimitiveArrayCritical(_JNIEnv*, _jarray*, unsigned char*) (.llvm.11011294371123972320)

@ 664

15 ...

16 PC 0x0000007c273f6fb4 Relative PC 0x00000000000c0fb4 SP 000000007ffb557ba0 - android::AndroidRuntime::start

(char const*, android::Vector<android::String8> const&, bool) @ 836

17 PC 0x00000055e36d258c Relative PC 0x000000000000258c SP 000000007ffb557c90 - main @ 1336

18 PC 0x0000007c4d09f7dc Relative PC 0x00000000000487dc SP 000000007ffb558e00 - __libc_init @ 96

19 }

20 Parameters = {

21 0x00000000fffdaebe

22 0x0000007ffb552040

23 0x0000000000000045

24 0x0000007a53e54b90

25 0x0000007ffb552240

26 000000000000000000

27 000000000000000000

28 000000000000000000

29 }

30 Registers = {

31 PC: 0x0000007c5192a618

32 SP: 0x0000007ffb552020

33 RET: 0x00000000fffdaebe

34 }

35 ------------------ SYSCALL ENTRY STOP ------------------

36 There are no possible transitions from q2 to q1034

37 System call NOT authorised

38 Warning! Encountered a transition that has never been observed before!

39
40 Possible actions:

41 1 - Kill the target process

42 2 - Allow it by adding a new transition in the model

43 Choice: 2

44 Added a new transition from q2 to q1034

Figure 5.9: Unknown Transition Anomaly found while reopening the application

While testing the recreation of the application’s main activity, it was discovered
that it is triggered only when the application is started via the am command line
utility, then minimized and reopened using the Android activity launcher on the
phone (hence, clicking on the application icon). Therefore, it was necessary to
use am to trigger it and not only the Android application launcher as done for the
previous tests.
While testing the model quality during the recreation of the main activity, plenty
of anomalies were encountered. One of them can be seen in Figure 5.9, it is an
unknown transition anomaly and, in this case, Ptracer asks whether it is desired
to add a new transition or kill the application.
It was decided to add it to the automaton and proceed, then another 10 unknown
state anomalies followed and as many states were added to the automaton.
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In this case, the quality of the trained model is not good enough. Looking at
the produced anomalies, it is possible to hypothesize that during the application
start-up, many synchronization operations on mutexes need to occur, and in this
case, it is very hard to be able to capture all the possible combinations in the
model.
In the future development Section 6.5, it will be discussed how to improve the
model to be able to be more flexible in these cases.

1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: it.matteodegiorgi.audiorecorder

3 PID: 28738

4 SPID: 28738

5 Timestamp: 1676751181776975

6 NOT Authorized

7 Syscall = read (63)

8 Stack unwinding = {

9 PC 0x0000007c4d0f4238 Relative PC 0x000000000009d238 SP 000000007ffb5527e0 - read @ 8

10 PC 0x0000007986469b6c Relative PC 0x0000000000029b6c SP 000000007ffb5527e0 - Linux_readBytes(_JNIEnv*,
_jobject*, _jobject*, _jobject*, int, int) @ 172

11 ...

12 PC 0x000000798fa76e00 Relative PC 0x00000000000bde00 SP 000000007ffb553ac0 - java.io.

ObjectInputStream$BlockDataInputStream.readBlockHeader @ 56

13 ...

14 PC 0x000000798fa77cd8 Relative PC 0x00000000000becd8 SP 000000007ffb553e20 - java.io.

ObjectInputStream$BlockDataInputStream.skipBlockData @ 16

15 ...

16 PC 0x0000007c405522de Relative PC 0x00000000000012de SP 000000007ffb5549b0 - it.matteodegiorgi.

audiorecorder.MainActivity.startRecording @ 78

17 ..

18 PC 0x0000007c273f6fb4 Relative PC 0x00000000000c0fb4 SP 000000007ffb557ba0 - android::AndroidRuntime::start

(char const*, android::Vector<android::String8> const&, bool) @ 836

19 PC 0x00000055e36d258c Relative PC 0x000000000000258c SP 000000007ffb557c90 - main @ 1336

20 PC 0x0000007c4d09f7dc Relative PC 0x00000000000487dc SP 000000007ffb558e00 - __libc_init @ 96

21 }

22 Parameters = {

23 0x0000000000000060

24 0x00000079a3e636f0

25 0x0000000000000001

26 0xffffffffffffffff

27 0xffffffffffffffff

28 0x0000000000000049

29 0x284801ff3a445328

30 000000000000000000

31 }

32 Registers = {

33 PC: 0x0000007c4d0f4238

34 SP: 0x0000007ffb5527e0

35 RET: 0x0000000000000060

36 }

37 ------------------ SYSCALL ENTRY STOP ------------------

38 There are no possible transitions from q57 to q64

39 System call NOT authorised

40 Warning! Encountered a transition that has never been observed before!

41
42 Possible actions:

43 1 - Kill the target process

44 2 - Allow it by adding a new transition in the model

45 Choice:

Figure 5.10: Anomaly found when trying to exploit the unsafe deserialization
vulnerability

The overall result can be considered positive since, during the normal operations
performed inside the application, no anomalies were identified.
Two false positive anomalies were identified while interacting with Android fea-
tures, like restoring the app from the background or recreating its main activity.
These two activities proved to be very system-call intensive, which has, as a con-
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sequence, an increased chance of raising anomalies.

It is now possible to test whether the learnt model could prevent the unsafe dese-
rialization vulnerability from being exploited.
The configuration file is read when the recording button is pressed for the first
time. Hence, it will be enough to swap the configuration file config.bin located
in the following path:
/sdcard/Android/data/it.matteodegiorgi.audiorecorder/files/config/

with its previously generated malicious version, which will try to execute the
/bin/sh executable.
Ptracer successfully managed to halt the application execution and detected an
anomaly that can be seen in Figure 5.10.
In this case, the anomaly was detected before the exploit payload was reached, and
it was triggered by the fact that the structure of the new configuration object is
very different from the expected one. Therefore, since now there is a more complex
structure to parse, which also contains nested complex objects, different method
calls in different orders are needed.
If it is decided to continue, it will be possible to see many unknown state anomalies
given by the multiple reads invoked by the various parsers for specific data types
never used in the legitimate configuration file. Eventually, the execution would
lead to a state like the one in Figure 5.11, which would surely be identified as an
anomaly, but before then, plenty more would be raised.

Ptracer has demonstrated to be effective in detecting the exploitation of this kind
of vulnerability, and more generically, it is effective in all those cases where Re-
mote Code Execution capabilities are achieved given its capability to describe the
program behaviour in such a strict way.
Despite the fact that satisfactory results have been achieved in this area, it is
necessary to note that the used anomaly detection mechanism would not be ef-
fective against all kinds of vulnerabilities. For example, logic vulnerabilities could
go unnoticed since they keep the program on its legitimate track but exploit flows
in the application design and implementation. Only limited effectiveness against
denial of service attacks is possible, they would be detected only if unusual errors
are triggered or the program terminates in a non-final state.
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1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: it.matteodegiorgi.audiorecorder

3 PID: 4028

4 SPID: 4028

5 Timestamp: 1676754300545058

6 NOT Authorized

7 Syscall = execve (221)

8 Stack unwinding = {

9 PC 0x0000007c4d0f3d98 Relative PC 0x000000000009cd98 SP 000000007ffb54f020 - execve @ 8

10 PC 0x0000007c4d0a9b38 Relative PC 0x0000000000052b38 SP 000000007ffb54f020 - execvpe @ 96

11 PC 0x0000007985c330e4 Relative PC 0x000000000002c0e4 SP 000000007ffb54f0b0 - startChild @ 936

12 PC 0x0000007985c329ec Relative PC 0x000000000002b9ec SP 000000007ffb550140 - UNIXProcess_forkAndExec @ 784

13 ....

14 PC 0x000000798fa9823a Relative PC 0x00000000000df23a SP 000000007ffb550fc0 - java.lang.Runtime.exec @ 2

15 ...

16 PC 0x000000791bd5d426 Relative PC 0x0000000000285426 SP 000000007ffb551ca0 - org.apache.commons.collections

.functors.InvokerTransformer.transform @ 46

17 ...

18 PC 0x000000791bd5c322 Relative PC 0x0000000000284322 SP 000000007ffb552100 - org.apache.commons.collections

.functors.ChainedTransformer.transform @ 18

19 ...

20 PC 0x000000791bd6c510 Relative PC 0x0000000000294510 SP 000000007ffb552540 - org.apache.commons.collections

.map.LazyMap.get @ 20

21 ...

22 PC 0x000000791bd62444 Relative PC 0x000000000028a444 SP 000000007ffb552970 - org.apache.commons.collections

.keyvalue.TiedMapEntry.getValue @ 8

23 ...

24 PC 0x000000791bd623d8 Relative PC 0x000000000028a3d8 SP 000000007ffb552da0 - org.apache.commons.collections

.keyvalue.TiedMapEntry.hashCode @ 0

25 ...

26 PC 0x000000798fb67fe4 Relative PC 0x00000000001aefe4 SP 000000007ffb553150 - java.util.HashMap.hash @ 8

27 ...

28 PC 0x000000798fb68618 Relative PC 0x00000000001af618 SP 000000007ffb5532e0 - java.util.HashMap.put @ 0

29 ...

30 PC 0x000000798fb6952c Relative PC 0x00000000001b052c SP 000000007ffb5534b0 - java.util.HashSet.readObject @

152

31 ...

32 PC 0x000000798fa7fe46 Relative PC 0x00000000000c6e46 SP 000000007ffb554130 - java.io.ObjectStreamClass.

invokeReadObject @ 26

33 ...

34 PC 0x000000798fa7a494 Relative PC 0x00000000000c1494 SP 000000007ffb5542e0 - java.io.ObjectInputStream.

readSerialData @ 116

35 ...

36 PC 0x000000798fa79bb6 Relative PC 0x00000000000c0bb6 SP 000000007ffb5544a0 - java.io.ObjectInputStream.

readOrdinaryObject @ 174

37 ...

38 PC 0x000000798fa79996 Relative PC 0x00000000000c0996 SP 000000007ffb554650 - java.io.ObjectInputStream.

readObject0 @ 406

39 ...

40 PC 0x000000798fa79760 Relative PC 0x00000000000c0760 SP 000000007ffb554800 - java.io.ObjectInputStream.

readObject @ 24

41 ...

42 PC 0x0000007c405522de Relative PC 0x00000000000012de SP 000000007ffb5549b0 - it.matteodegiorgi.

audiorecorder.MainActivity.startRecording @ 78

43 ...

44 PC 0x0000007c273f6fb4 Relative PC 0x00000000000c0fb4 SP 000000007ffb557ba0 - android::AndroidRuntime::start

(char const*, android::Vector<android::String8> const&, bool) @ 836

45 PC 0x00000055e36d258c Relative PC 0x000000000000258c SP 000000007ffb557c90 - main @ 1336

46 PC 0x0000007c4d09f7dc Relative PC 0x00000000000487dc SP 000000007ffb558e00 - __libc_init @ 96

47 }

48 Parameters = {

49 0x00000079a3e5dbf0

50 0x00000079b3ead3c0

51 0x0000007ffb558ea0

52 0x0000000000000020

53 0x00000000c0300c03

54 0xa8008101aaaa0aa0

55 0xffffffffffffffff

56 000000000000000000

57 }

58 Registers = {

59 PC: 0x0000007c4d0f3d98

60 SP: 0x0000007ffb54f020

61 RET: 0x00000079a3e5dbf0

62 }

63 ------------------ SYSCALL ENTRY STOP ------------------

Figure 5.11: Execve state triggered when the unsafe deserialization exploit is used

67



5.3 Debugger detection
This section wants to evaluate how suitable is Ptracer in being used for the pur-
pose of detecting debuggers.
In an Android environment, applications are often written either in Java (or al-
ternatives able to produce compatible bytecode) or in languages that can generate
machine code directly, e.g., C or C++. These two categories are approached very
differently by a MATE attacker since the toolset used to get a deeper understand-
ing of the code are different.
Debuggers are one of the most used and useful tool categories for these attach
types, given their possibility to halt the code and inspect and alter its internal
proprieties (e.g., variable values). For example, an attacker could use a debugger
to view the data transmitted to a remote server before it gets encrypted or alter a
game’s dynamics to gain an unfair advantage.

There are various types of debuggers, and they are implemented differently based
on the languages that they target. In the case of an interpreted language, they will
connect to the interpreter and drive the code execution from there, and in the case
of compiled languages, they will use the Linux Process Tracing interface, hence
the ptrace system call. For example, a Java debugger would setup the interpreter
(e.g., the JVM or ART) to allow itself to connect to it and control the application,
instead, a C++ debugger would use ptrace to directly control the target process
and inspect or alter its memory.
In this section, both cases will be investigated, and various ways to detect the
usage of debuggers will be covered.

To detect debuggers, there are various possible strategies, for example, the ones
mentioned in the OWASP MASTG [5]. Some of them aim to prevent the attacker
from being able to attach a debugger in various ways, for example, by tampering
with the data structures used by a debugger or using ptrace to attach to them-
selves, therefore, excluding other tracers (since only one per process is admitted).
Other techniques involve detecting whether a debugger is attached, for example,
reading the process status (in /proc/self/status) and checking if the field “Trac-
erPid” is not 0.
All these techniques can be easily bypassed when an attacker has full control of
the application from its start since he can prevent it from tampering with some
data and alter the return values of methods and system calls.

One of the most effective techniques for detecting the presence of a debugger is
using time checks, leveraging on the fact that a debugger would inevitably slow
down the process. To evade this detection mechanism, an attacker must tamper
with all the system calls that return the current time and provide values coher-
ent with the application model. An operation that is extremely time-consuming
and, in the case of a client-server application, this process might happen on the
server, which would not clearly inform the application about a detected tampering
attempt.

To prevent debuggers from attaching to an application via ptrace, one of the
most effective techniques is embedding a tracer in the application, which will not
only be attached to the main processes, preventing other tracers from doing the
same, but also actively have a role in the application logic. Hence, introducing a
strong dependency among these two components that is difficult to break from an
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attacker’s point of view.
A similar example can be seen in [1], where the code fragments are transferred
between the tracer and processes, making the application useless without its tracer.

The approach investigated in this section is specialized for client-server applica-
tions, where there is already a strong dependency between client and server. Such
dependence will be relied on to provide tracing data to the server as a “price” to
pay for the application to be considered genuine and remain part of the network
of the authorized devices.
Therefore, a MATE attacker would not be able to simply kill Ptracer to be able
to attach to the application since the server would stop receiving tracing data and
act accordingly. The server response could vary, and it is advised to give the client
as few clues as possible when identified as tampered with.

An attacker could run two instances of the application simultaneously, one legit-
imately used while the second being debugged, and then feed to the server the
same tracing data for both.
For this reason, it is always advised to use multiple layers of protection against
MATE attacks, for example, challenging every client to execute diversified mobile
code challenges and expecting a coherent result in Ptracer ’s data. This approach
implies sending a different challenge to execute to each client, which could perform
remote attestation (e.g., sending hashes of memory areas to the server) and trigger
specific sequences of system calls that are unique per client.

5.3.1 Architecture

Android system

Application

tracing data

Ptracer traces Main process

Server

Figure 5.12: Architecture used for detecting debuggers

A diagram of the proposed architecture to detect debuggers can be seen in Fig-
ure 5.12 and consists of a client application that needs to be protected, a remote
server which is interested in knowing if a client is being tampered with and the
monitoring tool: Ptracer.
In this case, Ptracer is embedded in the target application, placing it inside its
APK since Android strictly enforces a W^X policy, i.e. if a file is in a writable
location, then it cannot be executed.
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The data collected by the tracer will be sent to the server, which will analyse
them and make a decision whether the client is still genuine or not. This decision
considers the timings between system calls and if the execution path taken by the
application is conformant with the previously learnt NFA model.

Therefore, in this case, Ptracer ’s architecture (previously seen in Figure 4.1) is
split into two machines, where the Tracer component will acquire data on the
device, and the Analyzer thread will run on the server.
These two elements are already separated in the original architecture, hence this
change can be implemented by substituting the Syscall Queue with a network
adapter that sends the data to the server. Moreover, this endeavour does not
require NFA states to be approved before being allowed to continue, hence it is
possible to authorise system calls as soon as all their data has been collected,
greatly improving the application execution speed.

This thesis does not implement the full architecture, which is left for future devel-
opments but wants to assess the feasibility of this approach and how effective it is.
Therefore, two main tests will be executed, the first will aims to assess if attaching
a Java debugger to an Android application would generate execution anomalies, to
do this, the NFA model previously learnt in Section 5.2.2 will be reused; a second
test will measure the time between one system call and the next one, to validate
that there is effectively a significant and noticeable difference.

5.3.2 Debugger as an anomaly

This test has been executed by leveraging Android Studio, which is the most
common IDE for Android application development, to automatically run the ap-
plication in debug mode and attach to it using the Java debugger. Android Studio
also offers the possibility to debug C and C++ code, but in this case, this would
not be possible since all the used debuggers leverage on ptrace, but the role of
tracer is already taken by Ptracer.

Once the application was started from Android Studio, Ptracer was attached to it
using the same command used to enforce the learnt model in Section 5.2.3.
The result was that starting from the first system call, which is always an epoll_pwait

awaiting new events on the dedicated queue, an anomaly was found.
It has been reported in Figure 5.13, where it is possible to see that the stack trace
has never been observed before. The reason behind it is that the library used to
unwind the stack has not managed to extract a function name for all the frames,
and it has stopped halfway, as can be seen in line 17, where it has not managed
to extract the function name and exited.
It can be hypothesised that the stack frame format is altered when using a debug-
ger, even if no breakpoints or custom variable evaluations have been used.

Another performed test consists in attaching a debugger to a running instance of
AudioRecorder.
This was done by executing the following operations in order:

1. Start the application via the Activity Manage command like utility am, as
described in Section 5.2.1;

2. Attaching Ptracer and ensuring that no anomalies are detected after creating
a recording and replaying it;
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1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: it.matteodegiorgi.audiorecorder

3 PID: 13108

4 SPID: 13108

5 Timestamp: 1676798934727175

6 NOT Authorized

7 Syscall = epoll_pwait (22)

8 Stack unwinding = {

9 PC 0x00000075f00ce498 Relative PC 0x000000000009e498 SP 000000007fe4bc1880 - __epoll_pwait @ 8

10 PC 0x00000075ed52f628 Relative PC 0x0000000000016628 SP 000000007fe4bc1880 - android::Looper::pollInner(int

) @ 180

11 PC 0x00000075ed52f50c Relative PC 0x000000000001650c SP 000000007fe4bc1a30 - android::Looper::pollOnce(int,

int*, int*, void**) @ 112

12 PC 0x00000075ed77ebb0 Relative PC 0x0000000000157bb0 SP 000000007fe4bc1a70 - android::

android_os_MessageQueue_nativePollOnce(_JNIEnv*, _jobject*, long, int) @ 44

13 ...

14 PC 0x000000733e1d574c Relative PC 0x00000000003d574c SP 000000007fe4bc2cc0 - art::interpreter::Execute(art

::Thread*, art::CodeItemDataAccessor const&, art::ShadowFrame&, art::JValue, bool, bool) @ 304

15 PC 0x000000733e537714 Relative PC 0x0000000000737714 SP 000000007fe4bc2d80 - artQuickToInterpreterBridge @

776

16 PC 0x000000733e022488 Relative PC 0x0000000000222488 SP 000000007fe4bc2f60 -

art_quick_to_interpreter_bridge @ 88

17 PC 0x000000733e02269c Relative PC 0x000000000022269c SP 000000007fe4bc3040

18 }

19 Parameters = {

20 0x000000000000003e

21 0x0000007fe4bc18c0

22 0x0000000000000010

23 0x00000000ffffffff

24 000000000000000000

25 0x0000000000000008

26 0x00000073df072d70

27 000000000000000000

28 }

29 Registers = {

30 PC: 0x00000075f00ce498

31 SP: 0x0000007fe4bc1880

32 RET: 0x000000000000003e

33 }

34 ------------------ SYSCALL ENTRY STOP ------------------

35 State not found in the list of associations -> Not authorised

36 Warning! Encountered a state that has never been observed before!

37
38 Possible actions:

39 1 - Kill the target process

40 2 - Allow it by adding a new state in the model

41 Choice:

Figure 5.13: Anomaly detected in the application started by the Java debugger

3. While the running application was waiting for new events, the Java Debugger
was attached by selecting AudioRecorder in Android Studio.

From Ptracer, it was observed that attaching the Java debugger did not trigger
any system call in the application. The reason behind this is that not all of its
processes are traced since the same attach procedure described in Section 5.2.1
was followed.
In case all the application child processes are traced, then it would be possible to
see a new connection to the JDWP (Java Debug Wire Protocol) agent, which is
the process responsible for executing debugger commands.
Now that both Ptracer and the Java debugger are attached, it is possible to trig-
ger a first event, which was done by pressing the start recording button. This
operation immediately halted the application since an anomaly was found at the
first executed system call, which is reported in Figure 5.14.
The reason behind this is the same as before: the stack trace is altered and trun-
cated after attaching the Java debugger, as can be seen in line 18.
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1 ------------------ SYSCALL ENTRY START ------------------

2 Notification origin: it.matteodegiorgi.audiorecorder

3 PID: 13109

4 SPID: 13109

5 Timestamp: 1676799535175863

6 NOT Authorized

7 Syscall = recvfrom (207)

8 Stack unwinding = {

9 PC 0x00000075f00ce058 Relative PC 0x000000000009e058 SP 000000007fe4bc1d80 - recvfrom @ 8

10 PC 0x00000075e72900b4 Relative PC 0x00000000000440b4 SP 000000007fe4bc1d80 - android::InputChannel::

receiveMessage(android::InputMessage*) @ 48

11 PC 0x00000075e72915f4 Relative PC 0x00000000000455f4 SP 000000007fe4bc1db0 - android::InputConsumer::

consume(android::InputEventFactoryInterface*, bool, long, unsigned int*, android::InputEvent**) @ 196

12 PC 0x00000075ed74502c Relative PC 0x000000000011e02c SP 000000007fe4bc1ed0 - android::

NativeInputEventReceiver::consumeEvents(_JNIEnv*, bool, long, bool*) @ 288

13 PC 0x00000075ed744e38 Relative PC 0x000000000011de38 SP 000000007fe4bc1fa0 - android::

NativeInputEventReceiver::handleEvent(int, int, void*) @ 180

14 PC 0x00000075ed52f904 Relative PC 0x0000000000016904 SP 000000007fe4bc1ff0 - android::Looper::pollInner(int

) @ 912

15 PC 0x00000075ed52f50c Relative PC 0x000000000001650c SP 000000007fe4bc21a0 - android::Looper::pollOnce(int,

int*, int*, void**) @ 112

16 PC 0x00000075ed77ebb0 Relative PC 0x0000000000157bb0 SP 000000007fe4bc21e0 - android::

android_os_MessageQueue_nativePollOnce(_JNIEnv*, _jobject*, long, int) @ 44

17 PC 0x0000000070f42fb8 Relative PC 0x00000000001a5fb8 SP 000000007fe4bc2200 - art_jni_trampoline @ 120

18 PC 0x000000733e02269c Relative PC 0x000000000022269c SP 000000007fe4bc22b0

19 }

20 Parameters = {

21 0x000000000000004e

22 0x000000748f074368

23 0x0000000000000920

24 0x0000000000000040

25 000000000000000000

26 000000000000000000

27 0xff2f1f3c3b1f6479

28 000000000000000000

29 }

30 Registers = {

31 PC: 0x00000075f00ce058

32 SP: 0x0000007fe4bc1d80

33 RET: 0x000000000000004e

34 }

35 ------------------ SYSCALL ENTRY STOP ------------------

36 State not found in the list of associations -> Not authorised

37 Warning! Encountered a state that has never been observed before!

38
39 Possible actions:

40 1 - Kill the target process

41 2 - Allow it by adding a new state in the model

42 Choice:

Figure 5.14: Anomaly detected in the application after the Java debugger attached

The final result is satisfactory since it shows that a debugger can easily be spotted
by the altered stack traces, but a deeper investigation is needed to understand the
exact reason why libunwindstack is not able to fully unwind the stack when a
Java debugger is attached.
This demonstrates that Ptracer could be used to detect debuggers, considering
them anomalies from the normal program execution. Nevertheless, the tracer used
in isolation does not guarantee to detect and counter debuggers since it would be
vulnerable to a MATE attacker, who could terminate it, but it is necessary to
leverage an architecture that makes the tracing data a requisite for the application
usage. For example, the proposed architecture, where the tracing data is constantly
evaluated by a server to decide whether the client is being tampered with.
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5.3.3 Time checks

This section aims to test whether the Java debugger, when attached, produces
a significant slowdown of the traced application. To do that, the time between
system calls will be measured in microseconds (10−6 of a second) and compared
between multiple runs.
More specifically, the AudioRecorder application will be executed three times to
measure times in the following different conditions:

1. Only with Ptracer attached and no Java debugger.

2. With the Java debugger attached but without any breakpoint set.

3. With the Java debugger attached and one breakpoint set in the start record-
ing button listener.

To perform the first test, the application will be started using the am command line
utility, while for the other two, Android Studio will be used to start the application
in debug mode and automatically attach to it.

To collect the execution times between system calls, Ptracer has been slightly
modified by adding an additional Hash Map that maps TIDs and exit timestamps,
and for each system call notification received through the Syscall Queue:

• If it is an entry notification, then look for its TID in the map, if present,
then subtract the associated timestamp from the timestamp of the entry
notification and print it on standard output.

• If it is an exit notification, then save its TID and timestamp in the Hash
Map.

In this way, the time between a system call and the subsequent one is measured,
i.e. the time between a system call exit and the notification of the next entry for
the same TID. It would not make sense to measure the time between a system call
entry and exit since that time is used by the kernel and is also influenced by the
user’s behaviour.
After disabling the usual printing of the received notifications, it is now possible
to execute the three tests and plot the obtained data and start analysing them.

It has been decided to perform the same user actions for each test, hence pressing
all four buttons: starting a recording, pausing it and then replaying the audio file
and stop replaying.

The three test results have been plotted and reported below, where it is clearly
possible to see that Figure 5.15a, where the first test results are reported, shows
faster execution times than Figure 5.15b and Figure 5.15c, where a debugger was
used.
It can also be noticed that setting a breakpoint does not have a noticeable impact.

More data on the collected datasets can be seen in Table 5.2, where, for each test,
some statistics on the collected timings between the observed system calls.
Also from this data, it is evident how the first test, without a debugger, is con-
siderably faster than the other two. Moreover, it is also possible to see that the
average time of the third test, where an extra breakpoint has been set, is slightly
higher than the second.
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(a) Plot showing time elapsed between system calls with no Java debugger attached
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(b) Plot showing time elapsed between system calls when a Java debugger is attached
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(c) Plot showing time elapsed between system calls when a Java debugger is attached
and a breakpoint set

Figure 5.15: Plots showing the different execution times when a debugger is at-
tached
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Test Average Median Standard Deviation Range Samples

1 399,918 163 644,683 28 - 5667 803
2 921,925 267.5 2598,898 28 - 39832 794
3 962,643 251 2939,837 27 - 39775 765

Table 5.2: Statistics on the timings collected during the three tests

The final result of these tests clearly highlights that a Java debugger, when at-
tached to a process, produces a considerable slowdown, which could be identified
as an anomaly using statistical methods. Future developments in this regard will
be proposed in Section 6.6.

5.4 Privacy issues

This section aims to validate that Ptracer can be used to identify privacy issues
while tracing an Android application.
It is considered a privacy issue, every operation that acquires or exfiltrates user
data in a covert fashion and unknowingly from the user.

To validate this capability, Ptracer ’s System Call Decoders will be heavily used
since they provide a deeper insight into the application’s behaviour. They have
been described in Section 4.5, where more technical details about their implemen-
tation can be found.

To validate this feature, the System Call Decoders will be activated tracing Au-
dioRecorder to validate that the following information can be seen:

1. The microphone is accessed via the Android audio service;

2. The recording file is written on the external memory;

3. There are no external internet connections;

4. No external processes have been executed.

The first two of these actions are executed by interacting with the Android Binder
IPC, which allows to delegate them to other Android services. In fact, Android
does not allow direct access to resources like the microphone, but it requires every
application to go through the available services and their interface. Therefore,
most of the above actions will boil down to IPC method calls.

To run and attach to AudioRecorder, the same method described in Section 5.2.1
will be used, therefore, the same considerations about not being able to capture
all the system calls apply also here.
It is now possible to disable many Ptracer options that were used before since they
are not needed anymore, this will result in a speedup of the application execution.
To do that, the following command is used:

./ptracer --decoders true \ # Enables the system call decoders

--authorizer false \ # Disable the Authorizer component

--backtrace false \ # Not necessary when not building the NFA model

--pid $(ps -A | grep matteo | awk '{ print $2;}') # Find the PID to trace
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Where the decoders are explicitly enabled, the Authorizer is disabled since it is
desired to authorise all the system calls immediately, and the stack unwinder is
also disabled since stack information is not needed in this context.

During the first application execution, it was possible to identify several calls to
the Android service media.player, which is implemented by the interface named
android.media.IMediaRecorder. AudioRecorder obtains a handle to communicate
with the media recorder, whose value is 50 and initiates to configure it to start
recording.

1 Sent:

2 Protocol: 0x40406300 (BC_TRANSACTION)

3 Target: 0x32 (50)

4 Code: 16

5 Flags: 16 (TF_ACCEPT_FDS)

6 Buffer pointer: 0x73af054ac0 (496857598656), Data size: 100

7 Buffer content:

8 0x73af054ac0: 04 00 00 c2 ff ff ff ff 54 53 59 53 1c 00 00 00 ........ TSYS....

9 0x73af054ad0: 61 00 6e 00 64 00 72 00 6f 00 69 00 64 00 2e 00 a.n.d.r. o.i.d...

10 0x73af054ae0: 6d 00 65 00 64 00 69 00 61 00 2e 00 49 00 4d 00 m.e.d.i. a...I.M.

11 0x73af054af0: 65 00 64 00 69 00 61 00 52 00 65 00 63 00 6f 00 e.d.i.a. R.e.c.o.

12 0x73af054b00: 72 00 64 00 65 00 72 00 00 00 00 00 85 2a 64 66 r.d.e.r. .....*df

13 0x73af054b10: 7f 01 00 00 60 00 00 00 00 00 00 00 00 00 00 00 ....`... ........

14 0x73af054b20: 00 00 00 00 ....

15 Interface: android.media.IMediaRecorder

16 Offsets pointer: 0x735f07ba00 (495515580928), Offsets size: 8

17 Offsets content:

18 0x735f07ba00: 4c 00 00 00 00 00 00 00 L.......

19 Offset 0:

20 Type: 0x66642a85 (BINDER_TYPE_FD)

21 File Descriptor: 96

22
23 Received:

24 Protocol: 0x720c (BR_NOOP)

25 Protocol: 0x7206 (BR_TRANSACTION_COMPLETE)

26 Protocol: 0x80407203 (BR_REPLY)

27 Target: 0x0 (0)

28 Sender EUID: 1013

29 Buffer pointer: 0x73286fc000 (494599651328), Data size: 4

30 Buffer content:

31 0x73286fc000: 00 00 00 00 ....

32 Offsets pointer: 0x73286fc008 (494599651336), Offsets size: 0

33 ------------------ BINDER CALL STOP -------------------

Figure 5.16: Binder Decoder snippet showing the request to record on a specific
file descriptor

In Figure 5.16, it is possible to see the invocation of method number 16 (visible in
line 4) on the media recorder handle (specified as a target in line 3), which sends
the file descriptor number 96 (in line 21) to the media player service.

As the File Decoder shows in Figure 5.17 in line 7, this file descriptor corresponds
to AudioRecording.3gp in the external storage, and after this method invocation,
the media player will be able to write directly into it.
After having communicated the file descriptor, AudioRecorder will invoke the
method void prepare(), which has the number 9 and then the method void start(),
which has the number 8. These calls have not been reported since they do not
carry any extra parameters or return any.

From the final File Decoder report, in Figure 5.17, it is also possible to see that
the configuration file was read when the start recording button was pressed.
As expected, the Socket and Execve decoders produced an empty report since none
of those system calls are invoked.
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1 ------------------ FILE DECODER START ------------------

2 ...

3 File Descriptor: 96 <---> /storage/emulated/0/Android/data/it.matteodegiorgi.audiorecorder/files/config/

config.bin

4 Read content extracted in: "./FileDecoder/5942/96-read-1676819124624", bytes: 125

5 File Descriptor: 71 <---> fd-71

6 Write content extracted in: "./FileDecoder/5942/71-write-1676819124677", bytes: 16

7 File Descriptor: 96 <---> /storage/emulated/0/Android/data/it.matteodegiorgi.audiorecorder/files/audio/

AudioRecording.3gp

8 ------------------ FILE DECODER STOP ------------------

Figure 5.17: Snippet of the File Decoder final report after the application has
started recording

This result was expected since the tested application is very simple, to be able to
test all the decoders on a more complex application, it was decided to use Ptracer
to monitor a more mature and complex application, like Instagram.
Instagram contains a multitude of features which make an advanced usage of many
system services, but it also represents one of those applications whose behaviour
is uncertain from a privacy point of view. To monitor it, the same approach as
before has been used, but this time the phone internet connection was disabled
until Ptracer attached to the application.

After just 3 minutes of usage, the application has generated more that 90 thousand
system calls and 1300 interactions with the Android Binder. Given the large
amount of these calls, it was not possible to provide the same level of detail as
with the previous application, but Ptracer can automatically extract the name
of the interfaces that the application communicated with, they can be seen in
Figure 5.18.

1 android.app.IActivityManager

2 android.app.INotificationManager

3 android.app.job.IJobCallback

4 android.app.job.IJobScheduler

5 android.content.IContentProvider

6 android.content.pm.IPackageManager

7 android.gui.DisplayEventConnection

8 android.gui.ITransactionComposerListener

9 android.location.ILocationManager

10 android.net.IConnectivityManager

11 android.os.IMessenger

12 android.os.IPowerManager

13 android.os.IServiceManager

14 android.os.storage.IStorageManager

15 android.ui.ISurfaceComposer

16 android.view.IWindowSession

17 com.android.internal.view.IInputMethodManager

18 com.facebook.push.fbns.ipc.IFbnsAIDLService

Figure 5.18: List of interfaces used by Instagram during the test

From the list of interfaces, it is possible to see some significant names, like the lo-
cation service android.location.ILocationManager, which can be used to retrieve
the last geographical location of the phone.
Digging deeper into what methods have been called on this interface, it was possi-
ble to find the transaction reported in Figure 5.19. This transaction calls method
number 1 in the AIDL interface ILocationManager, as can be seen in line 5, and the
service replies with an object, which at the moment is not extracted by Ptracer.
The invoked method signature can be seen in the code snippet reported in Fig-
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ure 5.20, and it is clear that it can be used to acquire the last geographical location
of the phone.

1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40406300 (BC_TRANSACTION)

4 Target: 0x43 (67)

5 Code: 1 (FLAG_ONEWAY)

6 Flags: 16 (TF_ACCEPT_FDS)

7 Buffer pointer: 0x73ef136890 (497932265616), Data size: 164

8 Buffer content:

9 0x73ef136890: 04 00 00 c2 ff ff ff ff 54 53 59 53 21 00 00 00 ........ TSYS!...

10 0x73ef1368a0: 61 00 6e 00 64 00 72 00 6f 00 69 00 64 00 2e 00 a.n.d.r. o.i.d...

11 0x73ef1368b0: 6c 00 6f 00 63 00 61 00 74 00 69 00 6f 00 6e 00 l.o.c.a. t.i.o.n.

12 0x73ef1368c0: 2e 00 49 00 4c 00 6f 00 63 00 61 00 74 00 69 00 ..I.L.o. c.a.t.i.

13 0x73ef1368d0: 6f 00 6e 00 4d 00 61 00 6e 00 61 00 67 00 65 00 o.n.M.a. n.a.g.e.

14 0x73ef1368e0: 72 00 00 00 03 00 00 00 67 00 70 00 73 00 00 00 r....... g.p.s...

15 0x73ef1368f0: 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

16 0x73ef136900: 15 00 00 00 63 00 6f 00 6d 00 2e 00 69 00 6e 00 ....c.o. m...i.n.

17 0x73ef136910: 73 00 74 00 61 00 67 00 72 00 61 00 6d 00 2e 00 s.t.a.g. r.a.m...

18 0x73ef136920: 61 00 6e 00 64 00 72 00 6f 00 69 00 64 00 00 00 a.n.d.r. o.i.d...

19 0x73ef136930: ff ff ff ff ....

20 Interface: android.location.ILocationManager

21
22 Received:

23 Protocol: 0x720c (BR_NOOP)

24 Protocol: 0x7206 (BR_TRANSACTION_COMPLETE)

25 Protocol: 0x80407203 (BR_REPLY)

26 Target: 0x0 (0)

27 Sender EUID: 1000

28 Buffer pointer: 0x72ca4df000 (493020377088), Data size: 8

29 Buffer content:

30 0x72ca4df000: 00 00 00 00 00 00 00 00 ........

31 Offsets pointer: 0x72ca4df008 (493020377096), Offsets size: 0

32 ------------------ BINDER CALL STOP -------------------

Figure 5.19: RPC performed by Instagram on the Android location service

1 package android.location;

2
3 ...

4
5 interface ILocationManager

6 {

7 @nullable Location getLastLocation(String provider,

8 in LastLocationRequest request,

9 String packageName,

10 @nullable String attributionTag);

11 ...

12 }

Figure 5.20: Code snippet from the AIDL interface ILocationManager

Another potentially interesting service the application interacts with is the follow-
ing: com.facebook.push.fbns.ipc.IFbnsAIDLService. In this case, there is only
one transaction directed to this service, and it has been reported in Figure 5.21.
Since the AIDL interface exposed by Facebook is not public, then it is not possible
to know more information about the called method. But, given the extracted infor-
mation, it can be assumed that it is related to the communication of a “Analytics
UID”, which can be hypothesised related to advertisements.

Although it would have been possible to go deeper into the actions performed by
the traced applications, it has been decided to stop since the initial objectives have
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1 ------------------ BINDER CALL START ------------------

2 Sent:

3 Protocol: 0x40406300 (BC_TRANSACTION)

4 Target: 0x56 (86)

5 Code: 2

6 Flags: 17 (TF_ONE_WAY | TF_ACCEPT_FDS)

7 Buffer pointer: 0x742f04ed50 (499005058384), Data size: 484

8 Buffer content:

9 0x742f04ed50: 00 00 00 80 ff ff ff ff 54 53 59 53 2b 00 00 00 ........ TSYS+...

10 0x742f04ed60: 63 00 6f 00 6d 00 2e 00 66 00 61 00 63 00 65 00 c.o.m... f.a.c.e.

11 0x742f04ed70: 62 00 6f 00 6f 00 6b 00 2e 00 70 00 75 00 73 00 b.o.o.k. ..p.u.s.

12 0x742f04ed80: 68 00 2e 00 66 00 62 00 6e 00 73 00 2e 00 69 00 h...f.b. n.s...i.

13 0x742f04ed90: 70 00 63 00 2e 00 49 00 46 00 62 00 6e 00 73 00 p.c...I. F.b.n.s.

14 0x742f04eda0: 41 00 49 00 44 00 4c 00 53 00 65 00 72 00 76 00 A.I.D.L. S.e.r.v.

15 0x742f04edb0: 69 00 63 00 65 00 00 00 01 00 00 00 fa 84 d1 01 i.c.e... ........

16 0x742f04edc0: 00 00 00 00 64 01 00 00 42 4e 44 4c 05 00 00 00 ....d... BNDL....

17 0x742f04edd0: 20 00 00 00 4c 00 4f 00 47 00 47 00 49 00 4e 00 ...L.O. G.G.I.N.

18 0x742f04ede0: 47 00 5f 00 48 00 45 00 41 00 4c 00 54 00 48 00 G._.H.E. A.L.T.H.

19 0x742f04edf0: 5f 00 53 00 54 00 41 00 54 00 53 00 5f 00 53 00 _.S.T.A. T.S._.S.

20 0x742f04ee00: 41 00 4d 00 50 00 4c 00 45 00 5f 00 52 00 41 00 A.M.P.L. E._.R.A.

21 0x742f04ee10: 54 00 45 00 00 00 00 00 01 00 00 00 1e 00 00 00 T.E..... ........

22 0x742f04ee20: 0f 00 00 00 41 00 4e 00 41 00 4c 00 59 00 54 00 ....A.N. A.L.Y.T.

23 0x742f04ee30: 49 00 43 00 5f 00 46 00 42 00 5f 00 55 00 49 00 I.C._.F. B._.U.I.

24 0x742f04ee40: 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D....... ........

25 0x742f04ee50: 13 00 00 00 41 00 4e 00 41 00 4c 00 59 00 54 00 ....A.N. A.L.Y.T.

26 0x742f04ee60: 49 00 43 00 5f 00 59 00 45 00 41 00 52 00 5f 00 I.C._.Y. E.A.R._.

27 0x742f04ee70: 43 00 4c 00 41 00 53 00 53 00 00 00 01 00 00 00 C.L.A.S. S.......

28 0x742f04ee80: ff ff ff ff 14 00 00 00 41 00 4e 00 41 00 4c 00 ........ A.N.A.L.

29 0x742f04ee90: 59 00 54 00 49 00 43 00 5f 00 49 00 53 00 5f 00 Y.T.I.C. _.I.S._.

30 0x742f04eea0: 45 00 4d 00 50 00 4c 00 4f 00 59 00 45 00 45 00 E.M.P.L. O.Y.E.E.

31 0x742f04eeb0: 00 00 00 00 09 00 00 00 00 00 00 00 0c 00 00 00 ........ ........

32 0x742f04eec0: 41 00 4e 00 41 00 4c 00 59 00 54 00 49 00 43 00 A.N.A.L. Y.T.I.C.

33 0x742f04eed0: 5f 00 55 00 49 00 44 00 00 00 00 00 00 00 00 00 _.U.I.D. ........

34 0x742f04eee0: 24 00 00 00 38 00 39 00 61 00 39 00 32 00 32 00 $...8.9. a.9.2.2.

35 ---------- REDACTED ANALYTICS UID ----------

36 0x742f04ef20: 66 00 34 00 35 00 63 00 34 00 30 00 00 00 00 00 f.4.5.c. 4.0.....

37 0x742f04ef30: 04 00 00 00 ....

38 Interface: com.facebook.push.fbns.ipc.IFbnsAIDLService

39
40 ...

41 ------------------ BINDER CALL STOP -------------------

Figure 5.21: RPC performed by Instagram on a Facebook AIDL service

been achieved.
Ptracer can provide useful information to detect privacy issues, but it requires to
be improved implementing automatic ways to correlate Binder transactions and
increasing the set of analysed system calls. More details will be discussed in the
future developments section 6.2.
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Chapter 6

Future Developments

This chapter will discuss what the proposed future developments are, effectively
formalizing what are the lessons learnt during the development and validation of
Ptracer.

6.1 eBPF
The Extended Berkeley Package Filter (eBPF) is a Linux kernel technology (avail-
able since 4.4) which allows running sandboxed programs in the kernel without
altering the kernel source code.
An eBPF program can register itself to various kernel hooks, allowing it to re-
trieve information about system calls, function entries and exits, network events
and kprobes or uprobes (probes for kernel or user functions). For each of these
data categories, an eBPF can collect a multitude of data points for the whole sys-
tem and have the chance to make decisions such as dropping a network packet or
modifying a system call parameter.
Moreover, they can send the collected data to another program in the userland,
which could perform more advanced operations since the eBPF program has a
limited size and has to formally guarantee its termination before being loaded by
the kernel.

One possible future development of Ptracer is supporting inputs from an eBPF
probe custom-made for the purpose. This approach would guarantee an increased
speed but would not allow holding system calls one by one until the model decides
whether they are authorised or not.
Despite this would imply a lowered security level, it can be a good solution for
adapting the tracer program to a world made of more and more complex programs
which cannot accept to be slowed down more than a certain threshold.

6.2 System Call Decoders
The implemented decoders should be intended as a proof of concept of the level
of insight into an application behaviour reachable by analysing its system calls
parameters.
For this reason, not all the system calls have been treated, and some signifi-
cant ones are missing. For instance, the system calls name_to_handle_at and
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open_by_handle_at are not handled by the File Decoder yet and could allow open-
ing files. Another system call not fully implemented is execveat, where the pa-
rameters dirfd and flags are not taken into consideration by the relative decoder
and can significantly change its behaviour.
Other examples of missing decoding are available (e.g., mmap should also be anal-
ysed), and more should be discovered, hence a thorough analysis is needed.

One key point in making Ptracer able to analyse commercial applications is im-
proving the Binder IPC Decoder. At the current status, its implementation does
not deeply understand the exchanged data and not all the Parcel types are under-
stood.
Since the Binder is such a central point in every Android system, one important
future development is not only being able to parse complete transactions and give
them their correct meaning (e.g., identify also the called interface method) but also
correlate the various Remote Procedure Calls or exchanged Intents. This could
lead to the generation of a graph that maps all the communications performed by
an application.

Eventually, all the information collected from the decoders could be captured in
the NFA model to provide an even more accurate description of the program
behaviour.

6.3 Attach to Zygote

One of the current main limitations of Ptracer is its inability to trace applications
from their initialization, hence missing potentially important system calls. A way
to solve this issue is to attach to the child of the Zygote process that will specialise
in the desired application.

When the Zygote process receives a request to launch a new application, it will
select one of its unspecialized forks from the Blastula pool and communicate to it
the package and activity name it shall start.
Both these communications take place on UNIX sockets, thus, it would be possible
to trace the Zygote process and intercept the communication between it and its
fork, where all the application details are sent. Hence, when the desired application
is started, Ptracer could trace the target application from its initialization phase.

6.4 Improve the tracing mechanism

At the moment, when starting to trace an application, Ptracer will attach only
the specified Thread ID. When tracing more complex applications, it would be
necessary to automatically attach to the entirety of their process tree, or at least
leave the final choice to the user.

Moreover, one of the current limitations is the slowdown imposed by the stack
analysis since it is a very demanding operation and requires multiple reads from
the tracee’s memory. Especially in Android, where stack traces can easily reach
hundreds of entries.
For these reasons, it shall be considered to allow heuristics that allow stopping
parsing the stack frames earlier, for example, it may not always be needed to
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reach the function main on top of the stack.

While testing Ptracer ’s debugger detection capabilities in Section 5.3.2 it was
discovered that libunwindstack is not able to parse certain stack frames when a
debugger is attached. This should be investigated further to assess the library’s
limitations and decide if it is a feature worth implementing.

6.5 Model improvements
While assessing Ptracer’s ability to detect anomalies by enforcing its NFA model in
Section 5.2.3, many false positives were encountered when AudioRecorder ’s main
activity was recreated. After a quick investigation, it was found that there are
many mutexed and synchronization operations happening, thus, depending on the
order of events, they would hold the process or not. Which caused a multitude of
different system call combinations.
One way to solve this issue, especially while tracing big programs written in in-
terpreted languages, would be to exclude from the NFA all the code that is not
directly or indirectly invoked from one of the application’s functions.
Alternatively, moving away from the current black-box approach would allow the
developers to define only some security-critical functions that should be traced.
This could be done via code annotations and deeper integration into the applica-
tion’s logic.

In some cases, the NFA model is too strict for the target application, for example,
because of a large number of threads performing synchronisation operations among
them and invoking many system calls. In such cases, it might be desired to adopt
a more relaxed strategy based on policies instead of an automaton, where generic
rules like “This application only writes files in this directory” can be learnt or
specified by the user.

The current model is not able to counter exploits that target logic vulnerabilities
or denial of service attacks.
A future development could be introducing into the model also information about
the system call parameters, which could be acquired from the dedicated decoders.
This would allow to capture information like: “The executable path passed to an
execve is always x ”.
To prevent denial of service attacks, it would be possible to include statistical
information in the model, effectively transforming it into a Markov chain.

6.6 Debugger detection evolutions
Section 5.3 validates that Ptracer is suitable to be used to detect debuggers and
indirectly prevent them from attaching to an application.
One of the requisites for Ptracer to be effective in protecting the application from
this kind of MATE attack is that it is used in an architecture that establishes a
dependency between the client and server.
A future development is detaching the tracing and analyser components of Ptracer
in order to place the first inside the client application and the second in the server.
In this way, only the server knows the NFA model and will be able to make decisions
accordingly.
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Moreover, to implement this architecture, it would also be necessary to create a
statistical model to identify whether the client is too slow and raise this as an
anomaly. This operation needs to happen on the server and could benefit from
the previously mentioned effort of linking through the network the two internal
components of the tracer or simply be based on the logs produced by it.
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Chapter 7

Conclusions

The proposed tool Ptracer proved to be a valuable asset for monitoring and analyz-
ing the behaviour of Android applications. By intercepting and recording system
calls, it is possible to gain a detailed understanding of the actions the applica-
tion is taking, identify unusual patterns of behaviour, and detect the presence of
debuggers.

The anomaly detection capabilities provided by Ptracer are based on a Non-
Deterministic Finite Automaton where not only the system call number is cap-
tured but also the full stack trace that leads to them.
This model has proven to be effective in protecting Android applications against
vulnerabilities and debuggers, but at the same time quite strict when dealing with
interpreted languages. This implied that several learning iterations were needed
before it stabilized, and some false positives were found when enforced.
Nevertheless, it proved suitable to be enforced over normal application usage and
very effective in detecting any diversion from normal behaviour.
Future developments were proposed to make the model suitable also to very com-
plex applications and to be able to identify logic vulnerabilities and denial of service
attacks

It was proposed an architecture for detecting debuggers in the scenario of a server
and client application, where the server needs to ensure that all its clients are not
being tampered with. A client application embeds Ptracer, whose role is to trace
the application itself and send the resulting data to the server. The latter will
be able to decide whether the client is genuine or not by leveraging on the time
distance between two system calls and if the NFA model detects any anomaly.
It was successfully validated that in case a Java debugger is attached, then the
NFA model would immediately spot an anomaly, given the immediate difference in
the generated stack traces. Moreover, when a debugger is attached, it was shown
that the execution times between two system calls are significantly slower, easily
allowing the detection of an anomaly.
Ptracer is effective in the proposed architecture only when integrated with other
multi-layered protections against MATE attacks, e.g., introducing remote attesta-
tion from the server.

Ptracer was also evaluated for its capability of identifying privacy issues by deeply
analysing system calls extracting and understanding their parameters. This was
validated over AudioRecorder, a custom Android application developed for the
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purpose, and tested over the Instagram.
It was possible to validate the effectiveness of this feature over AudioRecorder with
good results since it was able to highlight the access to the microphone successfully.
While over Instagram, it was able to identify the fact that it accessed the current
phone location and its communication with the Facebook application.
Eventually, future developments were proposed to build an even more insightful
data model and make it easier to spot privacy issues.
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Appendix A

Build and installation

This appendix describes how to compile and install Ptracer, which supports x86_64
and AArch64 (ARMv8-A) Linux platforms and leverages on ptrace to capture Sys-
tem Calls and signals.
Depending on the target platform, it is possible to choose between a version that
targets generic Linux distributions and one specific for Android. The main dif-
ference between the two is the library used to unwind the stack, since the second
contains a library specialised for Android (libunwindstack), while the first con-
tains the generic library libunwind. Moreover, the Android version includes the
Binder IPC decoder.

A.1 Usage

It is mandatory to specify either a command whose execution will be traced or a
process to attach to. To specify one or another, it is possible to use the command
line options --run or --pid as follows:

$ ./ptracer --run ls -la

For example, in case it is desired to trace the Facebook application, then it is
possible to get its PID using the following command:

ps -A | grep facebook

Which would produce an output similar to the following:
OnePlus6T:/data/local/tmp # ps -A | grep facebook

u0_a373 4580 858 17095988 283656 SyS_epoll_wait 0 S com.facebook.katana

u0_a393 6894 858 16899220 218856 SyS_epoll_wait 0 S com.facebook.orca

And then run Ptracer as follows:

OnePlus6T:/data/local/tmp # ./ptracer --pid 6894

Please note that to be able to attach to a process in Android, it is necessary to
run as root. Therefore, an Android phone which has been previously “rooted” is
needed, or, alternatively, it is possible to use an emulator.

More options are available as described in the help section of the command line
interface, whose output can be invoked by using the --help parameter and is
reported below:
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$ ./ptracer --help

Ptracer usage:

--help Display this help message

--pid arg PID of the process to trace

--run arg Run and Trace the specified program with

parameters, if specified, needs to be the last

option

--follow-threads arg (=1) Trace also child threads

--follow-children arg (=1) Trace also child processes

--jail arg (=0) Kill the traced process and all its children if

ptracer is killed

--decoders arg (=1) Enables or disables system call decoders

--backtrace arg (=1) Extract the full stacktrace that lead to a

systemcall

--authorizer arg (=0) Enable or disables the Authorizer module and all

its options

--learn arg (=1) Sets the Authorizer module in learning mode

--nfa arg Specifies the path where the NFA managed by the

Authorizer is present or will be created

--dot arg Specifies the path where the DOT representation of

the NFA managed by the Authorizer will be created

--associations arg Specifies the path where the associations between

state IDs and System Calls are present or will be

created by the Authorizer

--name arg Name of the executable to attach to, used only

when a PID is specified

For example, to attach to a specific SPID (which is a Thread ID in Linux terms)
and:

• follows all the threads that it will generate;

• follows all the processes that it will generate;

• terminate it if Ptracer is terminated.

Then the following command can be used:
./ptracer --follow-threads true --follow-children true --jail true --backtrace true --pid 6894

The Authorizer module can be used to generate a model of the observed behaviour
of a program in the form of an NFA. This module can be in “learn” or “enforce”
mode, in the first case, it will create an NFA based on the observed behaviour,
in the second, it will stop the tracee every time the combination of a System Call
and its stack trace has never been encountered before, or the transition between
two states has not been observed before.
In the generated NFA, every state corresponds with a System Call number together
with the Stack Trace that has to lead to its generation (if not explicitly disabled
with the --backtrace option).

To use the Authorizer module, it is necessary to specify at least the location where
the NFA should be saved and the location where the list of associations between
NFA states and the combination of (SystemCall , StackTrace) will be saved. Op-
tionally it is possible to generate the DOT representation of the NFA if the --dot

option has been specified.

The following command can be used to run the command ls -la, learn a new NFA
from its execution and save its DOT representation:
./ptracer --authorizer true --learn true --nfa ls.nfa --dot ls.dot --associations ls.ass --run ls -la

Please note that attaching to a process in the middle of its execution might result
in unstable results when using the Authorizer module.
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The project also contains some System Call Decoders, which will provide a final
report with a deeper analysis of some system calls. They are active by default,
if they are not needed, the program execution can be speedup by disabling them
using the option --decoders false.

The parameter --name can be used when it is desired to attach to a running process
to specify its name. It is needed every time the Authorizer component is active,
since it will need a name to associate to the states the will be saved in the model.

A.2 Dependencies
The project dependencies tree for Acan be seen below:
ptracer

boost 1.80.0 (Conan)

android-ndk r25 (Conan)

libunwind 1.6.2 (Conan) (Only in x86_64 on Linux generic)

libalf

libunwindstack-ndk

lzma-ndk

libdexfile-ndk

libartbase-ndk

libziparchive-ndk

libbase-ndk

libtinyxml2

libartpalette-ndk

libbase-ndk

liblog-ndk

libcutils-ndk

libutils-ndk

libsystem-ndk

libcap-official

libartpalette-ndk

libziparchive-ndk

libbase-ndk

libbase-ndk

Some of these dependencies are provided by Conan, which is the Package Manager
for C++, while all the other dependencies had to be manually integrated into the
project.
A big part of this effort was related to extracting all the dependency tree of
libunwindstack from the Android source code. Multiple adaptations were nec-
essary and all of its dependencies are currently hosted together with Ptracer.

A.3 Build
The following tools are expected to be pre-installed to be able to compile the
project:

• Conan version 1.50 or above: Used to handle dependencies like Boost and
Android NDK.

• CMake version 3.23 or above: Use to control the software compilation and
link together all the other dependencies.

Depending on what architecture you are targeting, it is possible to use the following
build scripts in order to invoke Conan and CMake properly:

• ./build/aarch64/build.sh: Used to build an executable and statically linked
library for ARMv8 architectures
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• ./build/x86_64/build.sh: Used to build an executable and statically linked
library for x86_64 architectures but not Android

• ./build/x86_64-android/build.sh: Used to build an executable and stati-
cally linked library for x86_64 architectures running Android

Once the build process has terminated, the ptracer executable file will be in
./build/$ARCH/cmake-build-debug/bin, and the statically and dynamically linked
libraries will be in ./build/$ARCH/cmake-build-debug/lib.

It has been necessary to subdivide the build for x86_64 architectures running
Android and not because the last ones will benefit from the stack unwinding capa-
bilities of libunwindstack and to do that, it requires to be compiled using Android
NDK.

A.4 Debug
The project uses the user-defined signal SIGUSR1, and by default, GDB will stop
at every signal, to modify this behaviour it is possible to use the following GDB
command:
handle SIGUSR1 nostop noprint pass

This can be done automatically by putting this command into the file /.gdbinit.

Debugging native Android applications can be done using the GDB server, which
can be found in the Android NDK distribution and copied to the Android device
via:
adb push $ANDROID_SDK/ndk-bundle/prebuilt/android-arm64/gdbserver/gdbserver /data/local

/tmp/

The folder /data/local/tmp/ is used since executables in there are allowed to be
executed.

The GDB Server can be used as follows:
./gdbserver --once 0.0.0.0:7777 ./ptracer --run ls -la

If the Android system is not directly reachable (e.g., it is an emulated instance in
Android Studio), it is possible to forward a socket connection using the adb utility
tool. For example, to forward the local TCP port 5000 to the Android TCP port
5001, it is possible to use the following command:
adb forward tcp:5000 tcp:50001

For more information regarding adb and forwarding, please check the related sec-
tion in the adb manual.
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