
CA’ FOSCARI UNIVERSITY OF VENICE
DEPARTMENT OF ENVIRONMENTAL SCIENCES, INFORMATICS AND

STATISTICS
PHD IN COMPUTER SCIENCE, XXXIV CYCLE

MITIGATING UNFAIRNESS AND ADVERSARIAL

ATTACKS IN MACHINE LEARNING

Doctoral Dissertation of:
Seyum Assefa Abebe

Supervisor:
Prof. Claudio Lucchese

Co-supervisor:
Prof. Salvatore Orlando

Corso di Dottorato di ricerca
in Informatica

ciclo XXXIV

Tesi di Ricerca

Mitigating Unfairness and Adversarial Attacks
in Machine Learning

SSD:INF/01

Coordinatore del Dottorato:
ch. prof. Agostino Cortesi

Supervisore:
ch.Prof. Claudio Lucchese

Co-Supervisore:
ch.Prof. Salvatore Orlando

Dottorando:
Seyum Assefa Abebe
Matricola: 854877

To Bella,
My love, my life, my light.

This thesis is affectionately dedicated.

Abstract

Machine learning (ML) advanced and increased processing and storage ca-
pacity have changed the technological environment. Algorithms such as
decision trees and decision tree ensembles are widely used and achieve
state-of-the-art performance in many application areas, ranging from finan-
cial systems to computer security. Despite the high level of performance
frequently achieved by these systems, there is widespread agreement that
their dependability should be carefully evaluated, especially when used in
vital applications, such as medical, criminal justice, financial markets, sys-
tem security, or self-driving cars. The risk of these algorithms unwittingly
making incorrect conclusions while misdirected by artefacts or misleading
correlations, during training or after training of a model, is not negligi-
ble, especially in the era of big data and extensive use of machine learning
models. Accordingly, to increase users’ trust and identify potential vul-
nerabilities of machine learning approaches, a research area of adversarial
machine learning has been started to explore vulnerabilities of algorithms
in adversarial settings and develop techniques to make models robust to
attacks. Thus, many works were introduced by considering adversarial en-
vironments in machine learning, by studying potential weaknesses, evalu-
ating models’ performance under adversarial attacks, and designing defen-
sive mechanisms against attacks.

In parallel, addressing the trustworthiness of systems in decision mak-
ing, many scientists also explored the research field of fair machine learn-
ing, with the goal of designing systems that use machine learning that is not
only able to perform tasks accurately but also bias-free towards a particular

III

group or individual which might originally come from biased datasets or
algorithm design.

In this thesis, after giving a thorough background on adversarial and fair
machine learning and motivating the simultaneous desirability of robust-
ness and fairness properties along with notable works, we first present a
literature review of adversarial learning, focused mainly on decision tree
and tree ensembles by putting together attacks, defences, robustness verifi-
cation, and performance evaluations to better understand the existing works
and techniques. Additionally, we summarized unfairness mitigation mech-
anisms designed for tree-based models and grouped recent research works
of literature into pre-processing, in-processing, and post-processing strate-
gies.

In this work, we propose a novel decision tree learning algorithm, called
TREANT, that on the basis of a formal threat model, minimizes an evasion-
aware loss function at each step of the tree construction based on two tech-
nical concepts: robust splitting and attack invariance, which jointly guaran-
tee the soundness of the learning process. The algorithm employs a formal
threat model to generate attacks with a more flexible approach to specify-
ing attacker capabilities. As a result, it can generate decision tree ensembles
that are simultaneously accurate and nearly insensitive to evasion attacks,
outperforming state-of-the-art adversarial learning techniques.

Finally, we present EiFFFeL: Enforcing Fairness in Forests by Flipping
Leaves, a novel post-processing algorithm that, given a forest of decision
trees for a binary classification task, modifies the prediction of a carefully
chosen set of leaves to reduce the forest’s discrimination degree.

This research calls for future efforts to investigate the convergence of the
robustness and fairness of models, which is critical in achieving trustwor-
thy and responsible ML. This also allows exploring and connecting with
other areas like interpretability in ML, which seeks to explain the model
prediction to a human.

IV

Acknowledgments

IN THE NAME OF GOD, THE MOST GRACIOUS, THE MOST MERCIFUL

My at most gratitude to Professor Claudio Lucchese and Professor Sal-
vatore Orlando, especially to Professor Lucchese for his patience, scientific
guidance, encouragement and fruitful discussion during my Ph.D. program.
I am so grateful to you both.

I thank my external reviewers: Prof. Giuseppe Manco, and Prof. Pana-
giotis Papapetrou for the time they spent on carefully reading the thesis and
for their insightful comments and suggestions.

My friends Tinsu, Teddy,Leueel, Surafel, Josh, and Yoni. Please ac-
cept my sincere gratitude for being good friends, and for the unforgettable
moments in Venice.

To my wife Bella i can’t repay you back for everything you have done
for me. Thank you for your forgiveness, patience, perseverance, seemingly
inexhaustible well of support, and love. I owe you everything.

My boy, Adeel, you are my beacon of light in the uncharted hazy quest
of mine.

Extremely grateful to my sister Rawdi and my brother in law Mohammed.
My brothers Alex and Abdulkerim, my little sister Zubeyda thank you for
being there for me.

Finally, to my Mom and Dad i thank you from the bottom of my heart
for your unconditional love and for everything that you did in my life. Your
prayer kept me safe from all the troubles; and the love i have for you is
beyond expression.

V

Preface

This dissertation is submitted in partial fulfillment of the requirement for
the degree of doctor of philosophy at the Ca’Foscari University of Venice.
The thesis presents novel works in adversarial and fair machine learning.
The first chapter begins with a brief introduction; the second chapter pro-
vides background on machine learning, concepts of adversarial learning,
and fair machine learning. The third chapter presents a survey of adver-
sarial learning targeting tree-based models, submitted to ACM Computing
Surveys(CSUR) journal and is being reviewed. The Fourth chapter summa-
rizes recent research advances on fair machine learning implemented using
tree-based models. Chapter five discusses an evasion-aware decision tree
learning algorithm published in Data Mining and Knowledge Discovery
(DAMI). Finally, chapter six presents a work that ensures group fairness
in forests by flipping leaves, which is published at ACM Symposium on
Applied Computing (ACM SAC).

VII

Contents

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Outline . 3

2 Background 5
2.1 Machine Learning . 5

2.1.1 Supervised Learning 6
2.1.2 Decision Trees . 7
2.1.3 Decision Tree Ensembles 9

2.2 Adversarial Machine Learning 10
2.2.1 Threat Model . 10
2.2.2 The Machine Learning Attack Surface 11
2.2.3 Information Available to the Attacker 12
2.2.4 Adversarial Attack Timing 12
2.2.5 Adversarial Goals 14

2.3 Learning Robust Machine Learning Models 15
2.3.1 General Adversarial Attack Defense Methods 15

2.4 Fairness in Machine learning 17
2.4.1 Sources of Unfairness 18
2.4.2 Measuring Fairness 19
2.4.3 Unfairness Mitigation 21

2.5 Summary . 23

3 Adversarial Machine Learning Targeting Tree-Based Models 25

IX

Contents

3.1 Introduction . 25
3.2 Distortion . 27
3.3 Review of Attacks Against Decision tree and Tree ensembles 28

3.3.1 White-box Attacks 28
3.3.2 Black-box Attacks 30

3.4 Review of Defenses Proposed for Tree Ensembles 32
3.4.1 Adversarial Training 32
3.4.2 Robust Optimization 33

3.5 Robustness Verification and Evaluation 35
3.5.1 Verification . 36
3.5.2 Evaluation . 37

3.6 Datasets . 38
3.7 Summary . 39

4 Unfairness Mitigation Algorithms for tree-based models 41
4.1 Introduction . 41
4.2 Fairness-enhancing Mechanisms for Tree-based Models . . 42

4.2.1 Pre-processing Mechanisms 42
4.2.2 In-processing Mechanisms 43
4.2.3 Post-processing Mechanisms 44
4.2.4 Hybrid Mechanisms 44

4.3 Summary . 45

5 Treant: Training Evasion-Aware Decision Trees 47
5.1 Introduction . 48

5.1.1 Roadmap . 49
5.2 Related Work . 49
5.3 Threat Model . 51

5.3.1 Loss Under Attack and Adversarial Learning 51
5.3.2 Attacker Model . 52
5.3.3 Attack Generation 54

5.4 TREANT: Key Ideas & Design 56
5.4.1 Overview . 56
5.4.2 Robust Splitting . 59
5.4.3 Attack Invariance 62
5.4.4 Tree Learning Algorithm 65
5.4.5 Complexity Analysis 67
5.4.6 From Decision Trees to Tree Ensembles 69

5.5 Experimental Evaluation 69
5.5.1 Methodology . 69

X

Contents

5.5.2 Datasets and Threat Models 70
5.5.3 Experimental Evaluation 72

5.6 Summary . 79

6 EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves 81
6.1 Introduction . 81
6.2 Fairness in Machine Learning 82

6.2.1 Fairness and Discrimination Definitions 82
6.3 The EiFFFel Algorithm . 84

6.3.1 Leaf Scoring . 85
6.3.2 EiFFFeL Leaf Flipping Strategies 86

6.4 Experimental Evaluation 88
6.4.1 Datasets. 88
6.4.2 Experimental Setup. 89
6.4.3 Results. 90

6.5 Summary . 94

7 Conclusion 97

Bibliography 101

XI

List of Figures

2.1 Schematic representation of Machine learning process . . . 6
2.2 An example of a single decision tree that might be used for

credit card fraud detection. Given an input we can follow a
path through the decision nodes to reach a final prediction. . 7

2.3 Schematic representation of attack surface for machine learn-
ing based system . 11

2.4 Schematic representation of the distinction between evasion
and poisoning attack on the surface of machine learning based
system [52] . 14

2.5 Schematic representation of algorithmic interventions to achieve
statistical notions of fairness in machine learning. 21

5.1 A decision tree and an instance x that can be attacked by per-
turbing its feature 2 (by adding any value in interval [0, 3]).
Note that since the maximum budget of A is 2, and the cost
of applying the rule r is 1, the rule can be applied only twice
provided that the precondition holds. 55

5.2 Overview of the TREANT construction and its key challenges. 57
5.3 The impact of the attacker on RF and GBDT. 73
5.4 Comparison of adversarial learning techniques for different

test budgets and maximum train budget. 75
5.5 Comparison of adversarial learning techniques for different

train budgets and maximum test budget. 76

XIII

List of Figures

5.6 Feature importance for wine and credit datasets. The
grey background denotes attacked features. 77

5.7 Normalized training times for the wine and credit datasets.
The black line shows the amount of attacks generated dur-
ing training in terms of a multiplicative factor of the original
dataset size. 78

6.1 Accuracy vs. discrimination scores after relabeling for con-
straints ϵ = 0.01, 0.05, 0.1, 0.15. 92

6.2 Accuracy of the model as a function the ϵ constraint. 92
6.3 Discrimination scores as a function of the ϵ constraint. . . . 93

XIV

List of Tables

2.1 Summary of white-box and black-box attack settings 13
2.2 Summary of Adversarial defense Mechanisms with notable

works for each methods . 16

3.1 Summary of selected Algorithms,their running time and threat
model . 35

3.2 Summary of robustness verification algorithms for decision
tree, decision tree ensembles and stumps 37

4.1 A summary of pre-process, in-process, and post-process mech-
anisms targeting tree based models 45

4.2 A summary of pre-process, in-process, and post-process mech-
anisms targeting tree based models 45

5.1 Notation Summary . 59
5.2 Main statistics of the datasets used in our experiments. . . . 70
5.3 Comparison of adversarial learning techniques (training and

test budget coincide). The asterisk denotes statistically sig-
nificant difference against the best competitor with p value
0.01 under McNemar test. 74

6.1 Notation Summary . 84

XV

List of Tables

6.2 Comparison of accuracy reduction and discrimination de-
crease on Adult dataset with respect to baseline accuracy of
0.85 and discrimination 0.2. Along with ∆Accu and ∆Disc,
we also report (within parentheses) the final accuracy and
discrimination values obtained. 90

6.3 Comparison of accuracy reduction and discrimination de-
crease on Bank dataset with respect to baseline accuracy
of 0.82 and discrimination 0.18. Along with ∆Accu and
∆Disc, we also report (within parentheses) the final accu-
racy and discrimination values obtained. 90

6.4 Comparison of accuracy reduction and discrimination de-
crease on Compas dataset with respect to baseline accuracy
of 0.69 and discrimination 0.3. Along with ∆Accu and ∆Disc,
we also report (within parentheses) the final accuracy and
discrimination values obtained. 91

6.5 Accuracy and discrimination scores on the Adult dataset for
ϵ = 0.01 and α = 0.01, 0.02, 0.03, 0.05. The baseline accu-
racy and discrimination score are 0.85 and 0.2, respectively.

. 93

XVI

CHAPTER1
Introduction

Machine learning (ML) is becoming a prominent and integral part of many
applications and computing mainstreams. Deep neural networks(DNN) and
decision tree ensemble models demonstrate superior performance on many
real-world problems, for example, in speech recognition [74], facial recog-
nition [134], autonomous cars [34], and spam filtering [108, 174]. In addi-
tion, learning algorithms are finding their way into health informatics, fraud
detection, computer vision, machine translation, natural language under-
standing, and system security as a vital tool to data analysis and decision
making. Most ML algorithms are designed to approximate an unknown
mapping from an input domain to an output domain by observing sample
pairs of inputs and outputs from these domains, which is a key distinguish-
ing characteristic of ML. Rather than explicitly describing the solution to a
problem through code, the programmer describes how to discover this so-
lution through examples of solved problem instances or training data. The
result of learning is thus a model representing the approximate solution
learned through a principled exploration of this data.

Highly important applications such as search, financial trading, data ana-
lytics, autonomous vehicles, and malware detection are all critically depen-
dent on the underlying ML algorithms that interpret their respective domain

1

Chapter 1. Introduction

inputs to provide intelligent outputs that facilitate users’ decision-making
process or automated systems [65]. ML has traditionally been developed
with an assumption that the environment is benign and bias-free during
both training and evaluation of the model. Specifically, it is assumed that
the statistical properties of the data on which the model is deployed to make
predictions are identical to the ones of the data it was trained on. This as-
sumption has been useful for designing effective ML algorithms, but they
implicitly rule out the possibility that an adversary could alter some of these
statistical properties. As ML is used in more contexts where malicious ad-
versaries have an incentive to interfere with the operation of the ML system,
it is increasingly important to protect against such adversarial manipula-
tions.

A growing number of scientific works shows that machine learning sys-
tems can be attacked in different application domains, such as spam fil-
tering [108, 174] and intrusion detection [60, 157]. Hence, It is critical to
ensure that machine learning systems are secured and successful despite
these attacks. So, to assess vulnerabilities, understand attacks, and make
machine learning methods effective, a research field called adversarial ma-
chine learning was born [17]; to model and investigate attacks on machine
learning and develop learning techniques robust to adversarial manipula-
tion [170]. Thus, addressing the aims of adversarial machine learning has
become an open scientific challenge and huge research field.

Another challenge that comes along with the prominence of machine
learning and its deployment in critical areas of social, economic, and politi-
cal importance such as financial sector [26,113], criminal justice [56], child
welfare [166], and medicine [51,95] is: its far reaching implications in real
life. The fact that traditional machine learning algorithms aim to maximize
predictive performance only with regard to the historical training data may
force the resultant model to make unfair and undesired predictions, e.g.,
some individuals are unfavourably treated due to some sensitive informa-
tion. Due to this, serious concerns are coming from the general public re-
garding the reliability and fairness of machine learning in modelling human
behaviours and characteristics. To counter this problem, another research
field called fair machine learning started to rise.

1.1 Thesis Statement

Both adversarial and fair machine learning research areas gained attention
in classification and regression tasks and were well researched separately
using neural networks and linear models in recent years. Hence, Providing

2

1.2. Outline

a formal definition for an attack and defence methodologies in an adver-
sarial setting and defining fairness and its metrics relative to a group or
individual. Applications that use perceptual data saw remarkable advances
in both fields, especially using deep neural networks. Researchers propose
algorithmic solutions once it is known to suffers from adversarial attack
and bias in decision making. In contrast, tree-based models which achieve
state-of-the-art performance in the domain of non-perceptual data have not
been given much attention and recently discovered they are vulnerable to
adversarial attacks and prone to generating bias. Their interpretability com-
pared to other models [158], generating decisions that are easy to be under-
stood by humans in terms of syntactic checks over domain features, which
is particularly appealing in the security setting. Despite this success, there
is limited attention to tree-based models in adversarial and fair machine
learning research communities, resulting in a sub-optimal state of the art in
adversarial and fair machine learning techniques.

In this thesis, inspired by the previously mentioned challenges and the
appeal to have a robust and fair model, we explore adversarial and fair
machine learning techniques, propose an evasion attack aware robust tree
learning method, and also implement group fairness optimization which en-
sures non-discriminate decision in a post-process approach using decision
tree and tree ensembles. We hope our work contributes to the formulation
of more robust and fair learning algorithms in the future.

1.2 Outline

We start in chapter 2 by providing background and overview on machine
learning and its categories. In this chapter, we emphasise and explain, par-
ticularly the decision tree and tree ensembles, since our contributions on
both adversarial and fair machine learning are implemented using them.
We also broadly describe the main concepts of adversarial machine learn-
ing and fairness in learning algorithms.

Chapter 3 explores state-of-the-art adversarial machine learning tech-
niques targeting tree-based models. This chapter extensively studies the
current adversarial attack, defence, and verification and robustness evalua-
tion methodologies detailing recent contributions.

In Chapter 4, we summarize state-of-the-art unfairness mitigation strate-
gies applied to decision trees and tree-based models. The chapter details
recent contributions on works on pre-processing, in-processing, and post-
processing mitigation strategies.

Then, chapter 5 presents a novel learning algorithm designed to build

3

Chapter 1. Introduction

decision trees that are resilient against evasion attacks at test time.
In chapter 6, we study discrimination and bias in learning algorithms,

give a formal definition of discrimination, and present our post-process
group fairness enforcing approach.

Finally, in chapters 7 and ?? discuss future research directives and con-
clusive remarks.

Related Publications

This thesis includes research work of the following publications:

• Seyum Assefa Abebe, Claudio Lucchese, and Salvatore Orlando. EiFF-
FeL: enforcing fairness in forests by flipping leaves. Proceedings of
the 37th ACM/SIGAPP Symposium on Applied Computing, 429-436.

• Seyum Assefa Abebe, Claudio Lucchese, Salvatore Orlando, and Ste-
fano Calzavara. Adversarial Machine Learning Targeting Tree-Based
Models:A Survey[Under Review]

• Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum As-
sefa Abebe, and Salvatore Orlando. Treant: training evasion-aware
decision trees. Data Mining and Knowledge Discovery, 34(5):1390-
1420, 2020.

4

CHAPTER2
Background

In this chapter, we introduce the basic foundation of machine learning that
this thesis builds upon, including a description of the most used algorithms
and techniques, particularly giving emphasis to decision tree and tree en-
semble learning algorithms. We also discuss adversarial machine learning
by giving a formal definition, illustrating the state of the art, and describ-
ing how an adversary can attack learning algorithms using different ap-
proaches. By explaining a threat model, we review attacks and defence
techniques proposed. In addition, we explain the problem of bias in ma-
chine learning, the sources of unfairness, define fairness from a group and
individual point of view, and list unfairness mitigation strategies.

2.1 Machine Learning

Machine learning is a broad area that includes techniques for extracting
knowledge from data, as well as the theory and analysis around these algo-
rithms [84]. So, a machine learning algorithm is an algorithm that learns
from data. The learning aspect is described in [118] as: "A computer pro-
gram is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured

5

Chapter 2. Background

by P, improves with experience E." Many learning problems falls to this
definition, taking image classification as an example: task T is recognizing
the object presented in the image, experience E is a dataset of images with
the target labels, and performance P is the percentage of correctly classified
or identified images. A Machine learning system comprises a number of
steps and can be represented schematically as the pipeline shown in Fig-
ure 2.1. To tackle a task using a machine learning system, as depicted in
the figure, it starts by collecting raw data. The row data is then processed
to get features for each instance and create a feature vector, which becomes
processed data. The learning algorithm is applied to this data to have a
mathematical function called a model, which predicts the labels of future
instances.

Figure 2.1: Schematic representation of Machine learning process

Machine learning can be broadly categorized into three major areas:
supervised learning, unsupervised learning, and reinforcement learning.
Since our work builds upon decision tree and decision tree ensembles, we
discuss supervised learning, decision tree, and decision tree ensembles in
the following sections.

2.1.1 Supervised Learning

Methods that are given training examples in the form of inputs labeled with
corresponding outputs are supervised learning techniques. Formally, for a
given d-dimensional vector space of real-valued features X ⊆ Rd, an in-
stance x ∈ X is a d-dimensional feature vector (x1, x2, . . . , xd) represent-
ing an object. Each instance x ∈ X is assigned a label y ∈ Y by unknown
target function g : X 7→ Y . Given a set of hypothesesH, supervised learn-
ing algorithms search for a function ĥ ∈ H that best approximates the target
g. The error that ĥ makes in predicting the true label y is measured through
some loss function. By means of empirical risk minimization [168], ma-
chine learning algorithms search for the model ĥ ∈ H that minimizes the
given loss function on a given set of training instances. Supervised learn-
ing is subdivided in to two subcategories: regression, where labels are real-
valued, i.e., Y = R, and classification, where Y is a finite set of labels.

6

2.1. Machine Learning

Classic examples of supervised learning are spam filtering [108, 174], Im-
age classification [96], and machine translation [155].

There are a number of algorithms which are grouped under supervised
learning. Some of them are: Support Vector Machines (SVMs) [48], Deep
Neural Network(DNN), Recurrent Neural Network(RNN), Decision Trees,
and Decision Tree Ensembles(for example,Random Forest).

2.1.2 Decision Trees

An effective hypothesis space is that of decision trees [22, 139] which con-
sists of a set of tree structured decision tests that predict the value of a target
variable by learning simple decision rules inferred from the data. The pre-
diction is generated by traversing the tree starting at its root. Each internal
node of the tree represent a feature test which determines further split not
yet defined; according to this test data arriving on this node splits into sub-
sets according to their different values on the feature test. A leaf node is
associated with a label, which will be assigned to instances falling into this
node. For example let us take dummy single decision tree in Figure 2.2
which can be used for credit card fraud detection. The tree trained on credit
card transactions dataset where the goal is to distinguish between valid and
fraudulent transactions. By just using two features of the dataset,i.e. num-
ber of different cities the card has been used in the last 24hrs and the number
of transactions, the tree learned how to predict fraudulent transactions.

Figure 2.2: An example of a single decision tree that might be used for credit card fraud
detection. Given an input we can follow a path through the decision nodes to reach a

final prediction.

Decision tree learning algorithms are recursive processes. A given data
is split at a node and this split is used to divide the data into subsets, and
each subset is used as a given data in the next split. Thus, the key in decision
tree algorithms is the spitting criterion which determine how to select the

7

Chapter 2. Background

split.
The most known splitting criterion are information gain criterion for ID3

algorithm [139], gain ratio C4.5 algorithm [140], and gini index criterion
for CART algorithm [22].

Binary Decision Tree

A binary decision tree has internal nodes that perform thresholding over
feature values. Such trees can be inductively defined as follows: a deci-
sion tree t is either a leaf λ(ŷ) for some label ŷ ∈ Y or a non-leaf node
σ(f, v, tl, tr), where f ∈ [1, d] identifies a feature, v ∈ R is the threshold
for the feature f and tl, tr are decision trees (left and right respectively).
At test time, an instance x traverses the tree t until it reaches a leaf λ(ŷ),
which returns the prediction ŷ, denoted by t(x) = ŷ. Specifically, for each
traversed tree node σ(f, v, tl, tr), x falls into the left tree tl if xf ≤ v, and
into the right tree tr otherwise. We just write λ or σ to refer to some leaf or
node of the decision tree when its actual content is irrelevant. The problem
of learning an optimal decision tree is known to be NP-complete [81, 121];
as such, a top-down greedy approach is usually adopted [80], as shown in
Algorithm 1.

Algorithm 1 BUILDTREE

1: Input: training data D
2: ŷ ← argminy L(λ(y),D)
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr ← BESTSPLIT(D)
4: if L(σ(f, v, λ(ŷl), λ(ŷr)),D) < L(λ(ŷ),D) then
5: tl ← BUILDTREE(Dl)
6: tr ← BUILDTREE(Dr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if

Algorithm 2 BESTSPLIT

1: Input: training data D
▷ Build a set of candidate tree nodesN via exhaustive search over f and v

2: N ← {σ(f, v, λ(ŷl), λ(ŷr)) | ŷl, ŷr = argminyl,yr
L(σ(f, v, λ(yl), λ(yr)),D)}

▷ Select the candidate node t̂ ∈ N which minimizes the loss L on the training data D
3: t̂ = argmint∈N L(t,D) = σ(f, v, λ(ŷl), λ(ŷr))

▷ Split the training data D based on the best candidate node t̂ = σ(f, v, λ(ŷl), λ(ŷr))
4: Dl ← {(x, y) ∈ D | xf ≤ v}
5: Dr ← D \ Dl

6: return t̂,Dl,Dr

8

2.1. Machine Learning

The function BUILDTREE takes as input a dataset D and initially com-
putes the label ŷ which minimizes the loss on D for a decision tree com-
posed of just a single leaf; for instance, when the loss is the Sum of Squared
Errors (SSE), such label just amounts to the mean of the labels in D. The
function then checks if it is possible to grow the tree to further reduce the
loss by calling a splitting function BESTSPLIT (Algorithm 2), which at-
tempts to replace the leaf λ(ŷ) with a new sub-tree σ(f, v, λ(ŷl), λ(ŷr)).
This sub-tree is greedily identified by choosing f and v from an exhaustive
exploration of the search space consisting of all the possible features and
thresholds, and with the predictions ŷl and ŷr chosen so as to minimize the
global loss on D. If it is possible to reduce the loss on D by growing the
new sub-tree, the tree construction is recursively performed over the subsets
Dl = {(x, y) ∈ D | xf ≤ v} and Dr = D \ Dl, otherwise the original leaf
λ(ŷ) is returned. Real-world implementations of the algorithm typically
use multiple stopping criteria to prevent overfitting, e.g., by bounding the
tree depth, or by requiring a minimum number of instances in the recursive
calls.

2.1.3 Decision Tree Ensembles

Ensemble methods combine several learners in order to have a better perfor-
mance than a single learner. The main goal of having an ensemble model is
to create a strong learner from many weak ones. The main techniques used
to build ensembles of decision trees are bagging [21] and boosting [61,62].
These methods improve the performance over a decision tree by reducing
its bias or variance [71].

Bagging. Bootstrap aggregating (Bagging) is a technique proposed by
Leo Breiman [21] which reduces the variance of decision trees by training
several decision trees on different bags of the given training dataset. A bag
is achieved by bootstrap sample, i.e., random samples with replacement
with the same size of the given dataset. The results from individual trees
are eventually aggregated into the final prediction (outcome) for the tree
ensemble.

Boosting. Boosting [61, 62, 149] is an ensemble method which itera-
tively trains individual decision trees, where each tree focuses on the mis-
classifications of the previously learned ones. Improving the new treeâs
performance by reweighting the training data, so that data that is misclassi-
fied gets a higher weight.

Random Forest (RF) and Gradient Boosting Decision Trees (GBDT) are
popular ensemble learning methods for decision trees [20,63]. RFs are ob-

9

Chapter 2. Background

tained by independently training a set of trees T , which are combined into
the ensemble predictor ĥ, e.g., by using majority voting to assign the class
label. Each ti ∈ T is typically built by using bagging and per-node feature
sampling over the training set. In GBDTs, instead, each tree approximates a
gradient descent step along the direction of loss minimization. Both meth-
ods are very effective, where RF is able to train models with low variance,
while GDBTs are models of high accuracy yet possibly prone to overfitting.

2.2 Adversarial Machine Learning

Adversarial machine learning has received a great deal of attention recently,
with much attention being given to a phenomenon called adversarial exam-
ples. Commonly defined, an adversarial example takes an input and adds
a small, imperceptible amount of distortion, which changes the original to
create a new one [156]. Thus, adversarial machine learning embraces nec-
essary techniques to evaluate ML algorithms to identify between benign
and malicious samples(adversarial samples). In this context, an adversary
which adopts a method to modify benign samples with the aim of misguid-
ing a model with malicious input, this process is called adversarial attack.
For example, consider an ML model which is used by a bank to grant loans
to inquiring customers: a malicious customer may try to fool the model into
illicitly qualifying him for a loan. Unfortunately, traditional ML algorithms
proved vulnerable to a wide range of attacks.

This existence of attacks against machine learning systems prompts the
scientific community to design machine learning systems under the consid-
eration of an adversarial environment. In this case, studying vulnerabilities
in the pipeline of a machine learning process for a possible weakness, iden-
tifying the potential knowledge of an adversary, and what possible goals
can be achieved by an attacker helps to assess the threat posed by an at-
tacker and devise a solution, called adversarial defence. Thus, the primary
objective in designing a secure machine learning system is to model threats
and evaluate their robustness against the corresponding attacks.

2.2.1 Threat Model

The security of the machine learning system is measured with respect to
the adversarial goals and capabilities that it is designed to defend against
the system’s threat model. In this section, we go through the framework
and scope of threat models in ML systems and illustrate the space of secu-
rity models. We begin by identifying the attack surface of ML systems to

10

2.2. Adversarial Machine Learning

inform where and how an adversary will attempt to subvert the system.
The possibility of an adversary devising an attack against a machine

learning-based system can happen at any stage of the process. To under-
stand and identify where and how an adversary can attempt to subvert its
target, we study the attack surface of a machine learning system. To this
end, our work takes the insights and foundation from previous works and
build upon [10, 79, 132].

2.2.2 The Machine Learning Attack Surface

Taking a machine learning-based system as a generalized data processing
pipeline, an adversary can devise an attack at any stage of this pipeline
shown below in Figure 2.3. Hence, an attacker can compromise the train-
ing of the machine learning model by injecting carefully crafted instances
at the time of raw data collection [136]. An attacker can also affect the fea-
ture extraction to subvert the learning process and induce targeted model
behaviours by forcing corrupted or noisy training data. For example, such
kinds of attacks are used by adversaries to compromise anomaly detectors
in spam and network intrusion [93].

Figure 2.3: Schematic representation of attack surface for machine learning based
system

Attacks can also happen against the ML system at decision time in which
an adversary tries to subvert the learned model. A famous example for this
kind of attack is in spam email traffic when spammer replace the letter “i”
with a number “1” or a letter “l” in “Viagra” which becomes “V1agra”.

All the above scenarios show that machine learning techniques and algo-
rithms are not designed to be robust under an adversarial environment. To

11

Chapter 2. Background

avoid any attack or protect any ML-based system, an ML designer should
take into consideration adversarial consideration. To this end, the first step
will be modelling a threat.

A threat model can be defined from the perspective of an attacker in
terms of the objective an adversary want to achieve, the knowledge of the
adversary about the ML system, and the timing of an attack (when and
where an attack happens in the ML system pipeline) [18].

2.2.3 Information Available to the Attacker

The knowledge of the adversary has a big impact in the quest of attacking a
targeted system. The success and method of attack depends on the amount
of knowledge the attacker possesses regarding the model parameters, train-
ing data set, and the learning algorithm. Depending on this, there are two
categories: white-box attacks, in which the attacker know everything there
is to know, and black-box attacks, in which the attackers’ knowledge is
limited about the targeted system.

White-box attacks. This setting assumes all information is available to
the attacker and the adversary has full knowledge about the system or the
model it is attacking. This setting allows the adversary to conduct particu-
larly devastating attacks.

Black-box attacks. Contrary to white-box attacks, the adversary does
not have specific information about either the model or algorithm used by
the learner. Without substantial knowledge of the feature space, the learn-
ing algorithm, or the training data, the attacker can query the system and get
an output. The output can be in the form of predicted labels or classification
scores [38, 50, 131, 161].

Table 2.1 shows a brief difference between white-box and black-box
attacks. In a white-box attack, the attacker has access to the model’s pa-
rameters, whereas in a black-box attack, the attacker does not have access
to these parameters, therefore it generates adversarial instances with a dif-
ferent model or no model at all in the hopes that they will transfer to the
target model. Furthermore white-box attack can based its attack on the
gradient of the ML model, or heuristic approaches to find smallest pertur-
bation, while black-box attacks uses numerical estimation,boundary attack,
or tranferability strategies to produce adversarial instances.

2.2.4 Adversarial Attack Timing

Based on when and where the attack happens [170], i.e., before or after
the learning process(training), which can have a causative influence, that

12

2.2. Adversarial Machine Learning

Scenario
White-Box Black-Box

A
tt

ac
ke

r
Knowledge • adversary has Knowledge

about learned model,or
learning algorithm

• access to parameters, hyper-
parameters, and data distribu-
tion

• adversary does not
have knowledge
about either learning
algorithm or learned
model

• use the model as a
prediction oracle

Strategy • based on gradient for contin-
uous ML models

• use Linear programming to
find smallest perturbation

• heuristic approaches

• numerical estimation

• boundary attack

• transferability

Table 2.1: Summary of white-box and black-box attack settings

introduces vulnerability at the beginning in which the adversary is capable
of manipulating both training and test data, or exploratory influence which
exploits vulnerabilities after training the model by only manipulating test
data [9], we can generalize attacks into two groups evasion [11,32,66,156]
and poisoning [16, 83, 115, 175].

Evasion attacks. Evasion attacks are the most known type of attacks
where adversaries craft adversarial samples that look like normal data in-
stances yet force wrong predictions (wrong label), resulting in misclassi-
fication [11, 12, 14]. Adversarial samples are crafted at test time to evade
detection and exploit the vulnerabilities of the trained model [104]. Given
an instance x, the goal of an evasion attack is to add the smallest pertur-
bation δ, which gives adversarial sample x̄ = x + δ that is able to evade
the model into inaccurate prediction. A typical example is changing some
pixels of an image so that the model fails to label it correctly.

Different approaches have been used to model evasion attacks in white-
box setting. We adopt the abstraction of evasion attack from Vorobeychik
et al. [170] in which evasion attacks on a binary classifier (also can be
adopted to multi-class classifiers) can be represented in three conceptual
elements. Given a classifier f(x) and a scoring function g(x) in which a
classifier f(x) = sgn (g(x)), adversarial instance x̄ = x + δ, and a cost to
perturb x in to x̄ represented by a function c (x, x̄). So, an evasion attack
is an attack that changes the sign of the classifier function by using ad-
versarial instances generated by a minimum cost. The most familiar attack

13

Chapter 2. Background

model is using cost measured by norm based distances, c(x, x̄) = ∥x̄−x∥p.
This cost can also be represented as an optimization problem for find-
ing the smallest distortion; adopted from [49] it can be formulated as:
argmin

x̄
c(x, x̄), s.t. g(x) ̸= g(x̄). In Chapter 5 we provide an evasion

attack strategy with axis-aligned rule based adversarial sample generation
for decision trees and tree ensembles along with its defensive mechanism.

Poisoning attacks. poisoning is a training time attack in which the ad-
versary uses direct or indirect methods to deliberately manipulate the train-
ing data before training and causes the learning algorithm to make poor
choices, and can be used to achieve a specific goal. Influencing the training
data has major consequences. For example, in online learning, the model
always retrains using live data periodically; if an adversary can change that
data robustness of the model will be compromised immensely. Another
effect of poisoning is degrading model performance [3, 102] and injecting
backdoors [69] into the model, inducing errors when triggered.

Figure 2.4: Schematic representation of the distinction between evasion and poisoning
attack on the surface of machine learning based system [52]

2.2.5 Adversarial Goals

While attackers may have a variety of motivations and objectives for attack-
ing machine learning systems, attacks can be defined in terms of security
violation, attack specificity, and error specificity. We describe these attacks
based on previous works in [18, 84, 128].

Security violation. The attacker may aim to cause: an integrity vio-
lation, to penetrate the system without compromising its normal operation

14

2.3. Learning Robust Machine Learning Models

(minimizing the chance of being detected); and availability violation,to im-
pair the typical system functionality accessible to authorized users ; or a pri-
vacy violation, to obtain private information about the system or its users,
usually by reverse-engineering the underlying machine learning model.

Attack specificity.We differentiate between targeted and indiscriminate
assaults based on whether the attacker intends to misclassify a specified
group of samples or any accessible data. The former attacks are usually
performed to target a specific system user or protected service.

Error specificity. If the adversary aims to have a sample misclassified
as a precise class, we consider the attack as specific; or generic if the at-
tacker aims to have a sample misclassified as any of the available classes
excluding its true one. Other works [132] mix error and attack specificity
by defining targeted and indiscriminate attacks depending on whether the
attacker aims to cause specific or generic errors.

2.3 Learning Robust Machine Learning Models

2.3.1 General Adversarial Attack Defense Methods

Defending adversarial attacks have been studied along with the techniques
of attacks. Methods which have been proposed for models such as deep
neural network [66,68,133], support vector machine [15,176] can be men-
tioned. Though the state-of-the-art defence mechanisms for decision trees
and tree ensembles are a work in progress, recently, works in [31, 36, 90]
show defensive mechanisms for tree ensembles against evasion attacks. A
summary of selected recent advancements in adversarial defence mecha-
nisms is presented in Table 2.2.

• Adversarial Training: The main objective is to increase model ro-
bustness by including adversarial instances into training dataset [?,
156]. The defender simply generates adversarial samples and aug-
ment these instances while training the model.

• Gradient Hiding: Implemented with the aim of hiding the gradi-
ent of the model from the adversary [160]. It is ineffective for non-
continuous models and can be circumvented by learning a surrogate
Black-Box model having gradient and crafting examples using it [131].

• Defensive Distillation: Distillation introduced by Hinton et al. [75] is
a training procedure in which a model is trained using knowledge from
a previously trained model. Papernot et al. [133] proposed a variant of
the distillation method as a defensive mechanism in which it uses the

15

Chapter 2. Background

Defense Mechanism Notable Works Remark
Adversarial Training [29,66,90,97,110,145,

150, 156]
• adds adversarial samples into

the training data

• increases model robustness
Gradient Hiding [46] • defense against gradient-

based attacks

• hiding information about the
model’s gradient

Defensive Distillation [129, 133] • mitigates adversarial samples
crafted by FGSM but week to
defend against JSMA

Feature Squeezing [177] • reduces the search space avail-
able to an adversary

Transferability Blocking [77] • prevent the adversarial ex-
amples to transfer from one
model to another

Reject On Negative Impact [124] • removes adversarial samples
that are injected into training
data

Table 2.2: Summary of Adversarial defense Mechanisms with notable works for each
methods

knowledge extracted from the model to improve its resilience against
adversarial samples. This method smooths the model’s decision sur-
face in adversarial directions that could be exploited by the adversary.

• Feature Squeezing: This is a model hardening technique with the aim
of limiting the complexity of data representation so that the adversarial
perturbations disappear because of low sensitivity.

• Transferability Blocking: The main objective of this defensive method
is to block the transferability of adversarial samples to a model so that
a black-box attack will be ineffective. One of the proposed methods
called null labelling [77] augments with a new null label the dataset
and train the classifier to exclude adversarial cases by marking them
as null . Null labelling has three basic steps (1) initial Training of
the target classifier on the clean dataset to derive the decision bound-
aries for the classification task, (2) computing the null probabilities to
determine generated adversarial instances belong to a null class and
(3) adversarial Training to train the model again using clean training
samples and adversarially generated ones.

• Reject On Negative Impact: By measuring the incremental effect of
each individual suspicious training instance and discarding the ones

16

2.4. Fairness in Machine learning

with a relatively significant negative impact on the overall perfor-
mance, it tries to minimize the impact of adversarial instances. This
method has been implemented to defend against poisoning attacks in
spam filtering [9]. However, it is computationally ineffective since the
number of trained classifiers scales linearly with the training set.

2.4 Fairness in Machine learning

The usage of machine learning techniques and algorithms in systems and
applications affects our lives in many ways, from widespread algorithms
we use every day with small interactions, e.g., search, recommendation,
and social media, or specialized algorithms with fewer but higher-stakes in-
teractions that are deployed to make important and life-changing decisions
in critical areas, e.g., medicine, criminal justice, and finances. Thus, with
this level of impact, systems and applications which use machine learning
can have unintended consequences. As such, when using machine learn-
ing models or systems which are powered by it, accomplishing or aiming
low prediction error is not enough. Therefore, it is crucial to ensure that
decisions do not reflect discriminatory behaviour toward certain groups or
populations based on certain characteristics such as age, race, gender, or
political affiliation. A most known example of this problem is a case man-
agement and decision support tool used in the United States courts to as-
sess the probability of a defendant committing a crime again, which helps
to make pretrial detention and release decisions. The software called Cor-
rectional Offender Management Profiling for Alternative Sanctions (COM-
PAS) helps judges to decide whether to release or keep a defendant in
prison. It is revealed in an investigative article 1 that this tool has a bias
against African-American defendants [24]. Another example is a facial
recognition tool in a digital camera that over predicts Asians as blinking 2.

Recent studies [127, 148] showed the unintentional bias coming from
machine learning algorithms. A list of examples discovered where arti-
ficial intelligence systems and applications have unintentionally encoded
biases and introduced systematic discrimination in AI chatbots, loan ap-
plication [111], dating, flight routing, immigration algorithms, and hiring
processes. The problem also extends to other areas like face recognition
applications, voice recognition, and search engines [78].

Hence, to uncover and rectify the likes of biased predictions and deci-
sions mentioned above and address the problem,fairness in machine learn-

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
2http://content.time.com/time/business/article/0,8599,1954643,00.html

17

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://content.time.com/time/business/article/0,8599,1954643,00.html

Chapter 2. Background

ing become a prominent research field addressing the cause of bias and
discrimination, mitigation methods, and unfairness evaluation metrics.

2.4.1 Sources of Unfairness

Bias is frequently linked to inequities and prejudice in machine learning
systems. The word bias is frequently used in this context to refer to soci-
etal problems with demographic discrepancies. Defining disparities and the
learning problem from a statistical point of view, at different stages of the
machine learning pipeline discrepancies can happen and become a cause for
unfairness [7]. Thus, potentially discrimination can come from the training
data, learning algorithm, and predictive evaluation metrics.

2.4.1.1 The Data

The foundation of the machine learning model is the data on which it is
trained. The data available for training a predictive model, especially mea-
suring and categorizing tasks, When used as a basis for decision making,
can lead to unwanted properties. These kind of data with undesirable prop-
erties are called “biased data” [8]. The notion of bias in data can be grouped
into two depending on where the bias comes from. The first is statistical
bias, i.e., concerns about non-representative sampling and measurement er-
ror, and the second reason for data bias is societal bias, i.e., concerns about
objectionable social structures that are represented in the data.

Statistical bias– It is a systematic mismatch between the sample used to
train a model and the world as it currently is. Specifically, a statistical bias
comes from sampling bias and measurement error which induce fairness
implications that are usually unmeasured by fairness definitions. Sampling
bias occurs when a dataset is not representative of the full demographics to
which the ML model will be applied. Incorrectly assuming the sample is
representative can lead to a number of incorrect assumptions such as biased
estimation of conditional probabilities, biased estimation of utility, and in-
adequate fairness adjustments [85]. Similarly, when an error is greater for
some groups than others, differential measurement error [167] can occur
and will result in an outcome with a profound consequence. For example,
using historical loan repayment to predict future payments might be disad-
vantageous for groups that do not participate in a formal loan system in the
past.

Societal bias– Even though the training data has an accurate demo-
graphic representation, it may still have objectionable social structure data
points, if considered in a policy-making, will result in an outcome counter

18

2.4. Fairness in Machine learning

to the decision maker’s goals, and it is a non-statistical notion called soci-
etal bias [154]. For example, Using arrests as a metric of crime rate may
create statistical bias due to measurement inaccuracy that varies by race due
to a racist policing system. Moreover, even though we manage to measure
crime perfectly, the data might still contain bias from the normative sense
because of reasons like how crime is defined.

2.4.1.2 The Learning Algorithm

Even though there is no bias in the training data, there still be a bias that
comes from the learning algorithm [6]. The choices in algorithm design,
such as to use optimization functions, to use regularization, to apply re-
gression models on the data as a whole or to consider subgroups, and to
use statistically biased estimators in general, can contribute to a biased and
unfair decision.

2.4.1.3 Evaluation

The evaluation metrics used to select a trained model can be a source of
bias. Most measurements assume that final decisions as an aggregation of
separately evaluated individual decisions; in which it is assumed aggregated
decisions are similar are made simultaneously. Thus, deciding the extent
to which prediction measurements assuming those conditions will have a
potential impact in fair decision making.

2.4.2 Measuring Fairness

Considering philosophical and psychological points of view, fighting dis-
crimination has a long history, and in recent years in machine learning.
However, in order to achieve fairness and be able to remove discrimination
in decision making, one should first define fairness and evaluate according
to defined measurements.

2.4.2.1 Notion of Statistical Fairness

Though it is intuitive to understand and develop a sense of discrimination in
decision making, it is not clear what it means to be fair for systems that use
machine learning. In an algorithmic decision system, two families of fair-
ness notions are proposed: individual fairness and group fairness. Individ-
ual fairness deals with fairness guarantee at an individual level while group
fairness, on the other hand, require some statistic of a classifier to equally
hold across some defined protected subgroups; the subgroups defined by
sensitive feature(we will use a feature and attribute interchangeably) such

19

Chapter 2. Background

as gender, ethnicity, age, and political affiliation etc.; defining privileged
and unprivileged groups depending on whether the subgroup is favoured to
be positively classified.

Taking the notion introduced previously, let an individual instance i of a
datasetD with d-dimensional feature vector represented as xi and its corre-
sponding label yi, and a feature S ∈ {0, 1} representing a sensitive feature
which define the subgroup of an individual belongs to. In this regard, many
fairness definitions have been introduced [169]. In this work, we focus
on statistical fairness definitions in the binary classification setting. We
presented well-known group and individual fairness definitions below and
explained each with an example. Throughout the definitions below, we use
Ŷ as model prediction, Y true label, and S sensitive attribute.

Demographic Parity– Sometimes called statistical parity, which the pre-
diction to be independent of a sensitive attribute, i.e., its objective is that
subgroups defined by sensitive attribute must have the same positive predic-
tion rates [58]. Demographic parity is used in applications such as predict-
ing crime, hiring and giving loans. To explain more, let’s take an example of
predicting recidivism, assuming race as a sensitive feature, predicting the
rate of getting no recidivism for White-American and African-American
should be equal. In Chapter 6 we look into an approach to achieve the
demographic parity when we actually build a classifier.

P (Ŷ = 1|S = 0) = P (Ŷ = 1|S = 0) (2.1)

Equalized Odds– This measure ensures the criteria of demographic par-
ity and extends that subgroups defined by sensitive feature to have the same
positive prediction rates but for two cases: when the true label is 0 and when
it is 1. In other words, it ensures the false positive rate (FPR) and false neg-
ative rate (FNR) are equal across the subgroup [70].

P (Ŷ = 1|S = 0, Y = A) = P (Ŷ = 1|S = 0, Y = A), A ∈ {0, 1} (2.2)

Equality of opportunity– Also called predictive parity and a relaxed ver-
sion of equalized odds where only the true positive rate (TPR) of both sub-
groups to be the same [44].

P (Y = 1|S = 0, Ŷ = A) = P (Y = 1|S = 0, Ŷ = A), A ∈ {0, 1} (2.3)

Individual fairness– In another definition for fairness, Dework et al. [54]
introduced individual fairness criteria in which it ensures predictions for

20

2.4. Fairness in Machine learning

similar people are similar as well. This metric can be defined using a dis-
tance metric in which one can measure the degree of similarity between
individuals. Individuals with the same condition must have the same pre-
diction regardless of other criteria.

2.4.3 Unfairness Mitigation

There have been many attempts addressing fairness in machine learning;
most approaches addressing the statistical notion of fairness are categorized
into three: pre-processing, in-processing, and post-processing techniques.
Though these techniques decrease the discrimination level of a system, they
come with the cost of reducing predictive performance. A pictorial repre-
sentation of the three approaches is depicted in Figure 2.5.

Figure 2.5: Schematic representation of algorithmic interventions to achieve statistical
notions of fairness in machine learning.

Pre-processing– In this family of approaches, a dataset is pre-processed
to decrease discrimination before the learning algorithm is trained. In most
of the pre-processing approaches, fairness is achieved by transforming the
feature space independent of the sensitive attribute. The most known pre-
processing techniques are listed below.

• Suppression. This is a simple and straightforward approach that re-
moves features that are correlated with the sensitive feature [87]. If
the relation between the sensitive feature and other features is not lin-
ear, this approach might not be effective.

• Massaging. This approach changes the labels of some instances in the

21

Chapter 2. Background

dataset to remove discrimination in the input data [86]. The instances
chosen to be their labels changed are from both subgroups defined by
the sensitive attribute. To achieve a minimal effect on the predictive
performance, this method picks candidates that are close to the deci-
sion boundary using a ranker.

• Reweighing. In reweighing approach, instead of changing labels, it as-
signs different weights in each subgroup, labels combination to ensure
the training dataset is discrimination-free [87].

• Optimized preprocessing.This technique learns a probabilistic trans-
formation that transforms the features and labels in the data with group
fairness, individual distortion, and data fidelity constraints and objec-
tives [27].

In-processing– This technique is used for fairness intervention by miti-
gating disparities and modifying the training process. Generally, approaches
in this category can be grouped into two: Adversarial debiasing and preju-
dice removers.

Adversarial Debiasing. This technique learns two different classifiers at
the same time in which the first classifier tries to maximize accuracy, and
the second classifier an adversary tries to determine the sensitive attribute
from the prediction of the first classifier. In other words, the predictor tries
to reduce the adversary’s ability to determine the sensitive attribute while
the adversary tries to accomplish guessing the sensitive feature [181]. This
approach leads to a fair classifier where the predictions cannot carry any
group discrimination information that the adversary can exploit [67, 106,
172].

Prejudice Removers.This approach alters the training of the learning al-
gorithm to remove discrimination. By introducing fairness criteria as a
constraint, this method decreases discrimination while training. One such
algorithm proposed by Zafer et al. [180] formulate an optimization problem
in which, given a decision boundary-based classifier (e.g. logistic regres-
sion or linear support vector machines), it minimizes the loss subject to a
fairness constraint. Another approach takes fairness metric as part of input
in the meta-algorithm and returns an optimized classifier subject to the fair-
ness metric [1]. Kamiran et al. [88] included a discrimination factor into
the information gain splitting criterion of a single decision tree classifier by
considering the split of a node under the influence of a sensitive feature,
i.e., before a node split happens, not only the usual purity w.r.t. to the target
label is calculated, but also the purity of the split w.r.t. the sensitive feature.

22

2.5. Summary

A cost-sensitive constrained optimization problem with fairness constraints
for a classification problem of two players is proposed in [1].In this work,
while one player optimizes accuracy, the other imposes a particular fairness
constraint, yielding a randomized classifier with the lowest predictive error
while satisfying fairness definitions such as equal odds, equal opportunity,
and demographic parity.

Post-processing– The general technique in this category is to select a
subset of samples and modify their predicted labels to meet fairness re-
quirements. By choosing samples randomly works in [70, 138] solves a
linear program to find probabilities with which to change output labels
to optimize equalized odds. In another approach which gives favourable
outcomes to unprivileged groups and unfavourable outcomes to privileged
groups by choosing the most uncertain samples in the reject option band
around the decision boundary [89]. Another work proposed in this cate-
gory called relabeling which identifies the most discriminate leaves of a
tree to relabel [88]. The authors combine this approach with a discrimina-
tion aware in-processing approach to get a better accuracy-discrimination
trade-off. In Chapter 6 we extend the relabeling approach to a binary forest
classifier that flips leaves to satisfy group fairness.

2.5 Summary

In this chapter, we cover the basic foundation of machine learning and its
techniques. We started by discussing the basic concept of machine learning
and delved into supervised learning, giving an in-depth understanding of
decision trees and tree ensembles. In Section 2.2, by explaining the secu-
rity vulnerability of machine learning, we explain the study of adversarial
machine learning in-depth, define a threat model in which we cover the
attack surface, information available to an attacker, attack timing, and at-
tacker goals. We also provide general adversarial defence mechanisms and
how to learn robust machine learning in Section 2.3.1.

In Section 2.4, we gave an explanation of the need for fair machine
learning by listing and expanding sources of unfairness, fairness measure-
ments, and mitigation methods to unfairness.

23

CHAPTER3
Adversarial Machine Learning Targeting

Tree-Based Models

Alternative to Deep Neural Networks(DNNs), tree-based models achieve
state-of-the-art performance in the domain of non-perceptual data. How-
ever, research in the field of adversarial learning has been mainly focused
on linear models and neural network models. This has changed recently,
and the effect of an adversarial attack on tree-based models started to be
studied and showed that they are vulnerable to adversarial attacks and ex-
ploited by deceptive input samples. In this regard, we provide a survey of
adversarial machine learning targeting tree-based Models.

3.1 Introduction

Machine learning has been applied in a wide range of fields and improves
performance in any area of applications [17]. Applications in computer
vision [64, 91, 151], autonomous driving, and in applications of system se-
curity [45, 59, 76, 92, 94, 98, 123, 142] shows success and effectiveness of
machine learning. The emergence of big data from the internet of things
integrating the world increases the importance and use of machine learn-

25

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

ing [104]. Due to this, an attack on systems leveraging machine learning
has potential damage that leads to a compromised situation. These attacks
can damage the efficiency of a system, exploit any vulnerability or com-
promise predictive results [104]. Even though the development and design
of machine learning models increasingly advanced to accommodate many
shortcomings and vulnerabilities, there still exist methods of exploiting
weaknesses to devise attacks against systems that employ machine learning
models. Thus, crafting attacks in addition to defensive mechanisms of those
attacks, called adversarial learning, has become an active research area in
the past decade [10, 17, 117]. Thus, research [156] on the vulnerability of
machine learning algorithms to adversarial samples, i.e., carefully-designed
and imperceptible samples to fool a model [66], significantly increased and
led to extensive studies [119, 126, 156].

Mainly, researchers focused on linear models and deep neural networks [32,
103, 109, 116, 132, 133] to understand the effect of adversarial attacks and
devise defensive mechanisms. For example, Deep Neural Networks (DNNs)
become the big focus area of adversarial learning research once it is known
that they are vulnerable to deceptive samples [156]. Defence methods are
also proposed to counter proposed attacks. Since most of the models are
assumed to be differentiable and use gradient-based optimizers, the pro-
posed attacks and defensive mechanisms emanate from it. But, it is difficult
to generalize those methods of attacks and defences to non-differentiable
models, such as decision trees. Due to this, in recent years, studies of tree-
based models gained increasing interest in both attack and defence perspec-
tives [90].

Tree-based models are competitive and give state-of-the-art performance [35],
and in addition to their easiness to interpret and efficiency, it is known that
tree-based models generate understandable rules in processing and explor-
ing datasets. Such behaviours and advantages set them as an alternative to
DNNs, which appeals to many application areas, especially in the security
domain.

In recent years surveys on adversarial learning have been done [17,104,
117], giving a general overview of adversarial machine learning. In those
works, a comprehensive literature review on machine learning, adversar-
ial learning and recent works on attacks and defensive techniques are dis-
cussed. Besides an in-depth analysis and history of Adversarial machine
learning, Biggio et al. [17] explained a well-defined adversarial model con-
sisting of four dimensions: goal, knowledge, capability, and attack strategy.
Q.Liu et al. [104] review literature that covers threats in the training and
testing phase of machine learning and their defensive mechanisms from a

26

3.2. Distortion

data-driven point of view. Miller et al. [117] focused on defensive mecha-
nisms for test-time evasion, data poisoning, backdoor, and reverse engineer-
ing attacks targeting deep neural network classifiers. Most of the reviews
mentioned are focused on deep neural networks, giving small attention to
those researches focused on decision trees and tree ensemble-based models.
Hence, in this chapter, we provide a comprehensive review of the research
efforts of adversarial machine learning by giving particular attention to de-
cision trees and tree ensemble models.

3.2 Distortion

In most of the attacks, distortion using adversarial perturbation can be cal-
culated as a distance, that is, the distance between the original instance and
its’ generated malicious version. It also can be modelled as a cost to be
minimized, capturing the difficulty of modifying the benign instance, with
the adversary incurring no cost for leaving the instance unperturbed. The
following three metrics are well known in the adversarial learning research
community for measuring distortion.

• ℓ0−norm: captures localized perturbations with arbitrary magnitude.
Given an instance x ∈ X ⊆ Rd and a possible perturbation x̄, we
have that ∥x̄ − x∥0 = |{f ∈ [1, d] | x̄f ̸= xf}|, and thus the ℓ0-norm
simply counts the dimensions of x that were actually perturbed. For
example, attacks that use ℓ0 − norm on image counts the number of
modified pixels.

• ℓ2 − norm: attacks that calculate their cost using ℓ2 − norm calcu-
lates the sum of squared differences between original and perturbed
features of an instance. Given an instance x ∈ X ⊆ Rd and a possible
perturbation x̄, we have ∥x̄− x∥2 =

∑
f (x̄f − xf)

2.

• ℓ∞ − norm: this measurement is the simplest one and aims to min-
imize the amount of perturbation that can be applied to generate ad-
versarial samples. It encourages uniformly spread perturbations with
small magnitude. Given an instance x ∈ X ⊆ Rd and a possible
perturbation x̄, we have that ∥x̄− x∥∞ = maxf |x̄f − xf |.

Though the above cost measurements are the most well known, there
are works of literature that use different approaches for perturbation cost
as in the works of Calzavara et al. [31], which we will discuss in detail in
Chapter 5.

27

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

3.3 Review of Attacks Against Decision tree and Tree ensem-
bles

In an adversarial attack, we look for the smallest perturbation that will lead
to the wrong classification of the instance we perturb. Several adversar-
ial attack strategies were proposed for neural networks and other contin-
uous models. Some of the attacks are gradient-based methods, formulat-
ing the attack into an optimization problem based on a specially devel-
oped loss function for attacks, with the gradient obtained using either back-
propagation in a white-box scenario [32,112] or numerical estimation in the
soft-label black-box setting [38, 82, 163]. In hard label black-box settings,
where the only access is the output label, decision-based attack methods
can be applied, which usually starts with an initial adversarial example and
minimizes the perturbation along the decision boundary [23,25,37,41,42].

Because tree ensemble models are non-continuous models, the above-
mentioned gradient-based attacking methods can not be used. Decision-
based attacking methods in black-box settings can be used against decision
tree and tree ensemble models, but it may require a large number of queries
to find the smallest perturbation to generate an adversarial instance. Due
to this, in recent years, new approaches have been proposed for attacking
decision trees and tree ensembles. Next, we will see those attack strategies
by grouping them into white-box and black-box attacks depending on their
settings.

3.3.1 White-box Attacks

In a white-box setting, it is assumed that an attacker has full access to the
features, thresholds, and structure of a single tree or an ensemble. Attacks
are proposed to show the weakness of tree-based models in this approach.
Early work is a greedy search approach algorithm for attacking a single
tree proposed by [130]. The algorithm exploits the structure of a tree and
uses a leaf with a true label to find another leaf in its neighbourhood with
a different label, then changing the feature values according to the splitting
conditions along this path, forcing the same sample to be misclassified. The
algorithm does not limit the amount of perturbation to produce adversarial
samples. In later work, a variant of this algorithm with l∞ − norm pertur-
bation is implemented by [35], with the minimum perturbation size it takes
to attack a robust single decision tree.

An Evasion attack against tree ensembles has been proposed by [90].
This algorithm, by relying on Mixed Integer Linear Programming (MILP)

28

3.3. Review of Attacks Against Decision tree and Tree ensembles

finds the smallest perturbation measured by lp − norm(p = 0, 1, 2,∞).
Constructing the attack using mixed-integer linear program, where the vari-
ables are tree nodes, and the objective is to minimize a distance between
the evasive sample and the attacked data instance, and the constraints of the
program are based on the model structure. The constraints include model
mislabel requirement logical consistency among leaves and predicates. But,
relying on MILP when attacking large scale tree ensembles makes it too ex-
pensive and time-consuming.

Finding the exact solution of minimal adversarial perturbation requires
exponential time. Due to this, Kantchelian et al. [90] introduce a faster
approximation method to generate adversarial samples using symbolic pre-
diction for minimizing l0−norm. The algorithm iteratively changes feature
values until the label of the instance being perturbed changes. In a later
implementation of this algorithm by Chen et al. [35] use (RobustTrees)
lp(p = 1, 2,∞)-norm minimization to check its effectiveness as evaluation
of robustness in the adversarial training setting, and the authors indicated
that the fast approximation method is not effective for norms other than l0.

A faster algorithm Zhang et al. [183], which simplified the optimal eva-
sion attack in [90] to a reduced and less costly strategy of 0−1 Integer Lin-
ear programming (ILP), has been introduced for a particular type of model
which restricts both input and prediction of every tree of the ensemble to
binary values. This algorithm depends on the input and output analysis of
the targeted system. An optimal evasion problem as the minimization of l0
distance is formulated as 0−1 ILP with constraints. The constraints are (1)
ensuring any successful attack will change the label(sign) of the output (2)
ensure that there is only one decision making path (3). Even with the intro-
duction of attacks, it preserves the semantics of the binary decision tree. As
a complement to their optimal evasion problem solution, Zhang et al. intro-
duced a heuristic evasion algorithm that finds the most important features
which appears most frequently and closer to the root node in a decision tree
and greedily modify the single best feature at each iteration until the attack
become successful in producing adversarial samples. This approach is also
extended in black-box settings, which will be discussed in the next section.

Another specially designed attack method, called LT-Attack, proposed
in [182], transforms an attack into a discrete search problem for generating
adversarial examples for tree ensembles by exploiting the structure of the
ensemble. By Transforming the input space into a tuple consisting of the
number of leaves in a single tree for each tree of the ensemble, they create
a new input space called "leaf tuple". After selecting a random adversarial
sample from potential candidates to start the attack, their algorithm greedily

29

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

updates the initially chosen adversarial samples until it is "close" to the
target (in terms of lp norm). This is done by performing an iterative search
over the leaf tuples space and stopping when no more adversarial examples
with a smaller lp norm exist.

Young et al. [178], exploring the theoretical aspects of search space for
adversarial samples, pointed out that not only the non-continuity behaviour
of tree-based models that makes it difficult to craft an attack, there is also a
challenging aspect of no change in prediction within a sub-group of input
space. If the input sub-space is large enough, continuous perturbation of in-
stance to change the label within the region is inefficient. On the other hand,
well-separated data points of input space lead to classification regions that
are robust to adversarial attack, which comes from low-dimensionality. The
authors analyzed the fore-mentioned theoretical concepts and proposed di-
viding the input space into a smaller subset of NK (where N is the number
of leaves of a single tree and K is the number of trees in the forest) convex
polyhedrons containing training instances. Perturbing an instance is finding
the closest polyhedron to the selected instance where the classifier predicts
a different label and output the closest point in this region. The authors
solve convex problems and get the optimal solution or upper bound. Ac-
knowledging the exact solution might be computationally expensive, they
provide a heuristic method for an approximate solution, called approximate
region-based attack (RBA-Appr).

3.3.2 Black-box Attacks

In a real-world scenario, a white-box setting is not realistic due to the fact
that the possibility that underlying information about the machine learn-
ing model will be revealed is slim, and thus white-box attacks cannot be
applied. A valid attacking strategy is to make queries to the model and
get the corresponding output without having the architecture or smooth-
ness assumptions of the model. A number of algorithms and methods are
proposed for a black-box attack using either numerical estimation in the
soft-label black-box settings where the attacker has full access to the out-
put probabilities of the model or decision-based black-box attacks where
the attacker only have access to the output label. Comparing the soft-label
and hard-label black-box attacks, queries in the soft-label setting will have
more information for each query, which makes the strategy more open to a
variety of attack strategies.

An early work on black-box attack is using transfer attack by Papernot
et al. [130]. Instead of attacking the original model, attackers try to con-

30

3.3. Review of Attacks Against Decision tree and Tree ensembles

struct a substitute model to mimic the original and then attack the substitute
model using white-box attack methods. Adversarial examples crafted using
a substitute model can be used on the original model to which the attacker
has no direct access. The authors showed an intra and cross technique trans-
ferability attack for decision trees. Transfer attacks between two decision
trees (intra-transferability) are more robust to such an attempt, but this work
shows that decision trees and tree ensembles are more vulnerable to adver-
sarial samples, which are crafted using other models such as DNN, SVM,
and others.

In [23] Brendel et al. a boundary attack in which attacks are generated
via random walks along the decision boundary with rejection sampling and
only rely on the final model decision. The algorithm starts from a large ad-
versarial perturbation and then seeks to reduce the perturbation while stay-
ing in the adversarial region. In other words, the algorithm is initialized
with an input of the desired class and then takes small steps along the de-
cision boundary to minimizing the distance between the original input and
the adversarial sample. To reach to the smallest perturbation to the benign
class, random sampling is used at each step to find the direction that leads
to the region which has the smallest distance and still remains adversarial.
The algorithm does not guarantee convergence though it aims to generate a
high-quality adversarial sample.

Brunner et al. [25] pointed out that the boundary attack by Brendel et
al. uses unbiased sampling for perturbation and makes it easy to implement
and avoid this attack using either detection or filtering method of defensive
mechanisms. To avoid this, they introduce constraints to the boundary at-
tack to narrow the perturbation search space to samples which give a higher
probability of getting a successful attack.

Using random walk around the boundary to find an upper bound solution
needs a lot of queries to explore, even in a constrained setting that avoids
samples with less probability of leading to a successful perturbation. To
avoid computing too many queries and non-convergence issues Cheng et
al. [41] propose an algorithm that formulates a hard-label black-box attack
as a real-valued optimization problem, where the objective function can be
evaluated by binary search with additional model queries. Though primar-
ily devised for continuously differentiable models, the authors showed an
untargeted attack against gradient boosting tree successfully find the small-
est distortion to attack the model. Even though it shows how effectively
attacks the model, the implementation of this method to high dimensional
spaces will be computationally expensive since it uses many optimization
solvers [183], hence requiring a large number of queries [42].

31

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

To reduce the number of queries required, authors of [42] reformu-
late [41] algorithm for calculating the sign of the directional derivative in-
stead of the magnitude using a single query using an optimization algorithm
based on zeroth-order optimization called, Sign-OPT and leads to fast con-
vergence. In [37] Chen et al. proposed an unbiased estimate of the gradient
direction at the decision boundary to improve the Boundary Attack. In each
iteration, the adversarial example first approaches the boundary via a binary
search, then moves along the estimated gradient direction to deviate from
the decision boundary.

Even though the above mentioned attacking strategies are highly effec-
tive on continuous models and can be used on non-continuous models, their
effectiveness does not scale to the decision tree, and tree ensembles due to
their discrete nature need a large number of queries and have poor perfor-
mance under the ℓ∞ setting [39].

Another black-box attack proposed by Andriushchenko and Hein [4] is
a query-efficient ℓ∞ attack on boosted trees called cube-attack. The al-
gorithm is based on an evolutionary algorithm, and on every iteration, a
random subset of samples are selected and perturbed, success as a mini-
mum perturbation that changes the final output. The new instance is kept
if there are no potential other adversarial examples that are better than the
old value. The adversarial sample is always positioned at a corner of the
feasible set of ℓ∞ ball. The algorithms’ stochastic updating along the ℓ∞
boundary usually achieves a better result than decision-based attacks.

3.4 Review of Defenses Proposed for Tree Ensembles

3.4.1 Adversarial Training

Adversarial training is an approach of creating adversarial samples and in-
cluding them into the training process so that the learned model is going
to be aware of attacks and become more hardened to an adversary [66, 97].
Unlike other defence strategies, the augmentation of training data with ad-
versarial examples in the training phase is done intrinsically with the aim of
enhancing robustness. Thus, it makes models which are trained adversari-
ally to behave normally when encountered adversarial samples than models
which are trained in standard settings.

The first adversarial training method for tree ensembles is introduced
by Kantchelian et al. with the concept of including adversarial samples
into training data, called adversarial boosting [90], focusing on l0 perturba-
tions. This method at each iteration of the boosting generates perturbations

32

3.4. Review of Defenses Proposed for Tree Ensembles

greedily until it gets to the smallest, which have the largest impact on the
model trained in that boosting round. Though this method provides a way
to coerce the learning algorithm to minimize error, it does not necessarily
guarantee an effective robustness performance under attack.

Prominently known adversarial learning methods assuming models to be
differentiable makes it difficult to apply those techniques to decision trees
and tree ensembles. by addressing this, Calzavara et al. [29] generalize ad-
versarial training for gradient-boosted decision trees. By taking advantage
of the nature of growing a decision tree and its use of thresholds, the au-
thors pre-compute all possible thresholds which can be used during the tree
growth and reduce the number of possible instances to be perturbed into
a finite set of instances. Since adversarial training has to assure the min-
imization of loss of a model under attack, available optimization methods
can not be employed on tree-based models. To address this, the authors im-
plement classifier independent approximation function LogSumExp (LSE)
function. In addition to this, their work includes a method that specifies the
attacker’s capabilities, which are described as rewriting rules and subjected
to a budget limitation.

A genetic adversarial training algorithm is applied to decision trees and
tree ensembles by Ranzato et al. [145] called Meta-Silvae to make the
model more robust. The algorithm performs an abstract interpretation based
on static analysis of a decision tree classifier which abstractly computes the
exact set of leaves for a decision tree that is reachable from an adversarial
region. Using this information, the Meta-Silvae maximizes a function of
accuracy and robustness. This genetic algorithm uses elitist selection strat-
egy, roulette wheel selection, single-point, crossover, and offspring muta-
tion strategies. In addition, formal verification of robustness of a decision
tree is also included by taking advantage of abstract interpretation.

3.4.2 Robust Optimization

The first defence mechanism, which accounts for the attacker in the process
of decision tree training and optimally finding the best splitting feature and
the threshold at the node level, is proposed by Chen et al. [35] as a robust
optimization problem, which is called Robust Trees– considering ℓ∞ norm
bounded ball with a radius of ϵ to be used as a budget, the distance be-
tween instances is taken into consideration (along the boundaries of the ℓ∞
ball) to find robust feature and threshold, then evaluate the worst-case per-
formance under the smallest perturbation distance and worst-case accuracy
under adversarial attack.

33

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

Given an instance x, perturbation within ℓ∞ ball of radius ϵ is expressed
as, B∞

ϵ (x) := [x−ϵ, x+ϵ]. Chen et al. consider the worst-case perturbation,
which results in the worst tree splitting function score with feature j and
threshold η. Then they present the max-min optimization problem (we use
the name robsut_score as presented in the referenced work). An instance x
with feature j and threshold η, the best feature j∗ and best threshold η∗ for
x which yields the split under robust training that uses all the perturbations
of x in ℓ∞ ball of radius ϵ is:

j∗, η∗ = argmax
j,η

min
x̄

score(j, η, x̄),

s.t: x̄ ∈ B∞
ϵ

The authors pointed out that the optimal tree construction will constitute
an exponential number of attacks. Under adversarial attacks, instances will
fall into the right or left side of the decision tree. But, there are instances
that will fall to the left or right depending on the perturbation, which they
put those unknown instances in a set and called ambiguity set. The authors
state that those unknown instances under maximum attack needed to be
optimal in tree construction, and the optimal tree construction on the ele-
ments of this set constitute an exponential number of attack and formulate
it as a 0 − 1 optimization problem, which is nonlinear. To approximate
this optimization problem, the authors propose four cases 1)No perturba-
tion(original split), 2) perturb all instances to the left, 3) perturb all in-
stances to the right and 4) swap left and right instances. Even though this
method can increase the robustness compared to regular training but does
not scale.

A cost-aware and security domain constrained algorithm is presented
in [40], in which a robust tree ensemble is trained with a robust split. This
greedy algorithm takes inspiration from [35] and approximates the worst
quality of node split into a best worst-case split. The cost constraint func-
tion allows change to feature value in a specified interval by using the secu-
rity domain knowledge, which can be used to specify the cost constraints.
The authors show the algorithms’ application in the security domain using
spam URL detection on Twitter.

A recent work called, GROOT [171] takes inspiration from TREANT
Chapter 5 and [35], and come up with a faster implementation with flex-
ibility that allows users to specify attacks in terms of axis-aligned pertur-
bations. It fits binary classification decision trees such that they are robust
against user-specified adversarial examples.

Another approach of robustness via robust optimization problem, which

34

3.5. Robustness Verification and Evaluation

finds the minimal perturbation with respect ℓ∞−distance and results prov-
ably guaranteed robust decision trees and optimal robust decision stumps,
called robust loss bound. Andriushchenko and Hein [4] introduce element-
wise bounding of an ensemble for boosted trees which minimize an upper
bound on the worst-case loss not just of a new weak learner but also of
the whole ensemble. In this way, every new tree learned in the ensem-
ble is able to focus on the undecided instances that the previous ensemble
couldn’t classify robustly well according to the upper bound on the worst-
case loss. For decision stumps, they come with a method of finding the
exact robust boosted decision stumps by solving the attack model and opti-
mization objective function with respect to the input dimensions separately,
which results in solving simple one-dimensional optimization problems.

Algorithm Run Time Threat Model
TREANT [31] O(n2) Re-writting Rule based
GROOT [171] O(n log n) Norm (ℓ∞) and Re-writting Rule based
Provably robust boosting [4] O(n2) Norm based (ℓ∞)
Heuristic Chen et al. [35] O(n log n) Norm based(ℓ∞)
Exact Chen et al. [35] O(n2) Norm Based(ℓ∞)

Table 3.1: Summary of selected Algorithms,their running time and threat model

3.5 Robustness Verification and Evaluation

The idea of robustness is that a model’s prediction is stable in the face
of small changes in the input, ideally because the prediction is based on
reliable abstractions of the real task that reflect how a human would perform
the task. Given an input x and a model f , we want the model’s prediction
to stay the same for all inputs x′ in the neighbourhood of x, where the
neighbourhood is defined by some distance function c and some maximum
distance ∆ [65]. Therefore, the robustness of the model can be defined as
follows:

∀x′, c(x, x′) ≤ ∆ => f(x) = f(x′).

Robustness verification for deep neural network has been given much
attention due to the fast-evolving adversarial ML studies in the area. This
can be achieved by searching for adversarial instances in the neighbourhood
of a particular example or testing a model with a large number of data
points within a given bound. Those strategies are not effective on tree-
based models, and recently, literature on verification of tree-based models’
robustness started to emerge. In the next sections, we present state-of-the-

35

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

art works on methods and strategies to verify and evaluate robustness on
decision tree and tree-based models.

3.5.1 Verification

Verifying robustness requires either finding the exact smallest adversarial
perturbation or a guaranteed lower bound of the minimal adversarial per-
turbation. It is shown in [90] finding the exact smallest perturbation for tree
ensemble is NP-hard, and finding minimal perturbation is proven to be NP-
complete and they proposed Mixed integer linear programming approach
which is used to achieve a complete verification that requires exponential
time. This makes the algorithm unrealistic to implement for large tree en-
sembles.

Representing ℓ∞ perturbation ball and the decision boundary of a leaf
node as boxes, Chen et al. [36] formulate robustness verification problem
of tree-based models as a graph problem by checking the intersection be-
tween those boxes. For an ensemble with K trees, it is possible to use the
boxicity property to obtain intersections, and verifying robustness is equiv-
alent to finding maximum cliques in K − partite graph. The max-clique
enumeration problem on a multi-partite graph with bounded boxicity gives
lower bound robustness verification. The number of features is considered
equal to the boxicity of the graph. The authors state that by level hierar-
chical enumeration of max-cliques, it is possible to find the lower bound
verification of tree ensemble faster and also for input which has low fea-
ture dimension verification is in order of polynomial time using max-clique
algorithm.

A domain agnostic algorithm framework based on an abstract interpre-
tation that uses hyperrectangles of real intervals for formal verification of
robustness of decision tree ensembles is introduced by [144]. The algorithm
approximates functions in decision tree growing and can produce complete
robustness verification against adversarial perturbations under certain con-
ditions. Another notable work related to this to formal verification method
for tree ensembles that leverage an abstraction-refinement approach is also
introduced in [159].

The interpretability of decision trees comes as an advantage to verify
the security of decision tree models against attacks. Representing an at-
tacker and transforming decision trees into the imperative program [28]
implement an abstract implementation framework to certify decision tree
security guarantees against evasion attacks.

All the above mentioned works considered ℓ∞ perturbation model, which

36

3.5. Robustness Verification and Evaluation

makes verification easier since the perturbation of features is independent of
each other. In this regard, a generalized ℓp robustness verification method is
introduced in [173]. While they prove complete verification is NP-complete,
this work dynamic programming based algorithm for decision stumps and
extend a previous work [36] to include ℓp norm robustness verification. In
addition, this work includes ℓp norm certification for robust training algo-
rithms for ensemble stumps and trees.

A general summary of robustness verification algorithms for decision
tree, decision tree ensembles and stumps are presented in table 3.2.

ML Model Paper Verification Bounded norm Complexity

Single Tree [36, 173] Complete ℓ∞, ℓ0 Linear

Tree Ensemble

[36] Incomplete ℓ∞ Multi-level
[90] Complete ℓ∞ NP-complete

[173] Incomplete ℓP , P ∈ (0.∞) Extended Multi-level
[144] Complete ℓ∞ –

Stump Ensemble [4] Complete ℓ∞ Polynomial
[173] Incomplete ℓP , P ∈ (0.∞) Approximate Knapsack

Table 3.2: Summary of robustness verification algorithms for decision tree, decision tree
ensembles and stumps

3.5.2 Evaluation

Evaluating a model for how well it resists attack has become an integral
part of adversarial learning research. Evaluating robustness indicates how
powerful an attack is to be successful and how sufficient enough the de-
fence mechanism is integrated with the model. Most attacks and defence
mechanisms related to decision trees and tree ensembles are based ℓp norm
bounded perturbation [35,41,90]. Chen et al. indicated attacking strategies
based on greedy search needs a larger perturbation of instances to attack a
decision tree than other attacking methods. For instance, compared to [35]
Papernot’s method [130], generating adversarial samples need a larger ℓ∞
norm for attacking decision trees. Kantchelian’s attack, though it is not
scalable, can find the minimum perturbation needed for generating adver-
sarial samples, giving the true norm distortion value and robustness of the
model.

To evaluate robustness is related to how large the perturbation has to be
to attack a model; the larger the magnitude of distortion needed to attack,
the more the model is robust. The average ℓ∞ perturbation is used to show
how strong a model is against an attack [35]. Since it is preferred to have
adversarial samples with the smallest perturbation for the sake of not be-

37

Chapter 3. Adversarial Machine Learning Targeting Tree-Based Models

ing detected, models which are attacked by adversarial samples with larger
perturbation are more resistant to attacks. In relation to evaluation, other
methods are also used in works of literature, Such as test error, robust test
error, accuracy, macro F1, and ROC AUC on attacked data.

3.6 Datasets

Datasets are useful in evaluating and validating new methodologies since
they can be utilized for experimentation. In this section we will list com-
monly used datasets that are used in most adversarial learning literature
related to decision trees and tree ensembles. The main statistics of all the
datasets are shown in Table 5.2.

• MNIST: The MNIST dataset comprising of 10-class handwritten dig-
its, was first introduced by LeCun et al [100] is a benchmark dataset
used for classification tasks in many research works.This is because of
the reason that the dataset has a manageable size, allowing researchers
to quickly check and prototype their algorithms. In addition, machine
learning libraries (e.g. scikit-learn) and deep learning frameworks
(e.g. Tensorflow, Pytorch) provide helper functions and convenient
examples that use MNIST out of the box that makes it more familiar
and easy to use. It is represented in binary; each feature represents a
gray level on each pixel.

• MNIST 2-6: The binary mnist dataset [100] contains hand-written
digits of “2” and “6”. The attributes represent the gray levels on each
pixel location. It is used for identifying between the two digits in
classification tasks.

• FMNIST: This dataset is a representation of unique fashion products
represented in 28 × 28 gray scale associated with a label from 10
classes which can be used as a replacement for MNIST dataset for
machine learning algorithms 1.

• Breast-cancer: The breast cancer dataset [53] contains 2 classes of
samples, each representing benign and malignant cells.The attributes
represent different measurements of the cell’s physical properties 2.

• Diabetes: The objective of the dataset [152] is to diagnostically pre-
dict whether or not a patient has diabetes based on certain diagnostic

1https://github.com/zalandoresearch/fashion-mnist
2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

38

3.7. Summary

measurements included in the dataset 3.

• cod-rna: The cod-rna dataset [165] contains 2 classes of samples rep-
resenting sequenced genomes, categorized by the existence of non-
coding RNAs. The attributes contain information onthe genomes, in-
cluding total free-energy change, sequencelength, and nucleotide fre-
quencies 4.

• Census Income: The objective of this dataset [53] is to determine
whether a person makes over $50K a year based on given features,
such as age, education, occupation, gender, race, etc. 5

• Wine Quality: Predicting quality of wine given 11 physiochemical
attributes and designed as multi-class classification problem. This task
is turned into a binary classification in [31], where the positive class
identifies good-quality wines (i.e., those whose quality is at least 6, on
a 0-10 scale) and the negative class contains the remaining instance 6

• Credit Cards: Credit cards dataset [179] aimed at the case of cus-
tomers’ default payments as a response variable using 23 variables.
Default Payment as a response attribute (Yes = 1, No = 0) and other
attributes include amount of given credit, gender, education, marital
status, age, and etc. 7

3.7 Summary

In this chapter, we presented a thorough overview of works related to adver-
sarial machine learning focusing on decision trees and tree ensembles with
the aim of providing a systematic survey on attack and defensive mecha-
nisms for tree-based models. Specifically, we have revisited existing works
of attacks from white-box and black-box strategy approaches and also re-
viewed proposed defences considering adversarial training and robust opti-
mization as a broad categorization for proposed methods. In addition, we
include methodologies used for robust verification and evaluation.

Finally, we observe that even though more works are being done recently
on adversarial machine learning focusing on tree-based models, there needs
to be much focus on this area since tree-based models are utilized in real-
world system more often.

3https://www.kaggle.com/uciml/pima-indians-diabetes-database
4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#cod-rna.
5https://archive.ics.uci.edu/ml/datasets/census+income
6https://www.kaggle.com/c/uci-wine-quality-dataset/data
7https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

39

CHAPTER4
Unfairness Mitigation Algorithms for

tree-based models

Artificial intelligence and machine learning (ML) algorithms control an in-
creasing number of choices affecting people’s everyday lives, ranging from
the criminal justice system, healthcare, transportation, and education to col-
lege admissions, recruiting, loan provision, and many others. Therefore, it
is critical to create machine learning algorithms that are not just accurate
but also objective and fair. Unfortunately, recent research suggests that
algorithmic decision-making is intrinsically prone to bias, even when the
intention is not to be such. In this chapter, we present a recent algorithmic
solutions for fairness focusing on tree-based models.

4.1 Introduction

In recent years automation of the decision-making process has become
more and more common in many application areas. In this decision pro-
cess, machine learning models are used increasingly. However, despite de-
livering superior performance, those models are difficult to interpret since
most are black boxes. Hence, it causes concern regarding the consequences

41

Chapter 4. Unfairness Mitigation Algorithms for tree-based models

on people, potentially producing discrimination against a group or individ-
ual. Moreover, algorithms trained on biased data, in particular, are prone
to learning, perpetuating, or even reinforcing these discrimination [19]. In
this context, many organizations and governments introduced rules and le-
galization frameworks; for example, the EU introduced the General Data
Protection Regulation (GDPR) security and privacy law in 2018, regulating
the use and collection of sensitive personal data.

In addition to introducing laws and regulations combating bias, many
fairness methodologies have been proposed. One of the methods is remov-
ing the sensitive attribute from the dataset, which is called ”fairness through
unawareness” [135], which does not solve algorithmic discrimination com-
ing from datasets that have a complex correlation with sensitive attribute.
Hence, bias mitigation strategies are introduced for machine learning. Re-
cently, algorithmic solutions for decision trees and tree ensembles to im-
prove their fairness have been proposed.

In this chapter, building on the foundations and main concepts of fair
machine learning we presented in section 2.4, we summarize state-of-the-
art works targeting tree-based models on fairness.

4.2 Fairness-enhancing Mechanisms for Tree-based Models

There are three different unfairness mitigation ways in machine learning de-
scribed in section 2.4.3: data pre-processing, optimization approach during
in-processing , and post-processing results of the algorithm. The following
three sections review studies in each one of these categories targeting deci-
sion trees and tree ensembles. The below discussed works are summarized
in Table 4.2.

4.2.1 Pre-processing Mechanisms

As mentioned in section 2.4.3 pre-processing approach involves modifying
the training data before it is fed into an ML algorithm. Mechanisms in
this category involve modifying the training data before it is fed into an
ML algorithm. Preliminary mechanisms, such as Kamiran and Calders [86,
87] proposed changing or reweighing the labels of some instances before
training to improve classification fairness. Changed labels are typically
associated with samples closer to the decision boundary, as they are more
likely to be discriminated. Recent mechanisms propose modifying feature
representations. One of the methods [58] changes the dataset’s features to
make the distributions for both privileged and unprivileged groups become
similar, making it more difficult for the algorithm to distinguish between the

42

4.2. Fairness-enhancing Mechanisms for Tree-based Models

two groups(defined by sensitive attribute), while in [27] it transforms the
data to a new mapping that improves group fairness and individual fairness.

4.2.2 In-processing Mechanisms

The mechanisms in this category modifies the algorithm to account for fair-
ness [2, 57, 67, 88, 141, 143, 184].

For example, Kamiran et al. [88] included a discrimination factor into
the information gain splitting criterion of a single decision tree classifier by
considering the split of a node under the influence of a sensitive feature,
i.e., before a node split happens, not only the usual purity w.r.t. to the tar-
get label is calculated, but also the purity of the split w.r.t. the sensitive
feature. Three alternative splitting criteria are given based on the way dis-
crimination is accounted. The first option is subtracting discrimination gain
from accuracy gain, which allows for a split if it is non-discriminatory; the
second option is an accuracy-discrimination trade-off split where the ac-
curacy gain is divided by discrimination gain to have the final gain value.
The third option is adding the accuracy and discrimination gain to decide
the best feature to split a node. The authors claim the additive information
gain criterion with a post-process relabeling approach produces lower dis-
crimination. [184] uses the same concept of adjusting split criterion of a
decision tree to maximize information gain between the splitting attribute
and the class label for online stream based decision-making. With closest
to [88], we implement this method in Chapter 6 for the base trees of our
forest and evaluate its impact on the overall forest discrimination value.

Aghaei et al. [2] proposed a framework for training fair decision trees by
adding regularization terms to the Mixed-Integer Programming to penalize
discrimination. The approach mitigates unfairness with the high compu-
tational cost. [141] put forward regularization-based approach to train fair
decision tree and fair random forest.

Fantin et al. [57] exploits randomly generated decision trees and filter
them by their fairness before adding them to the forest. This is achieved
through a hyper-parameter fairness constraint, which forces to accept only
decision trees with statistical parity below the given threshold. Each tree’s
generation and fairness thresholding can be done in a distributed framework
that optimizes the trade of between discrimination and accuracy before be-
ing added to the forest. Furthermore, this algorithm uses randomness con-
straints to train base trees in which one feature is randomly selected to split
a node for building a randomized decision tree.

Grari et al. [67] proposed the adversarial debiasing for decision trees.

43

Chapter 4. Unfairness Mitigation Algorithms for tree-based models

They use gradient boosting the output while minimizing the ability of ad-
versarial neural network predicting the sensitive feature.

4.2.3 Post-processing Mechanisms

Post-processing mitigation approaches focus on adjusting the final output
of the trained model rather than the underline loss function or training data.
The algorithms discussed in [70, 138] aim at achieving same error rates
between privileged and unprivileged groups, [70] uses equalized odd and
equalized opportunity to promote features which are more dependent on
the target label than the sensitive attribute. While in [138] the proposed
algorithm aims to achieve both privileged and unprivileged groups to have
the same false negative rate and false positive rate by taking into account a
calibrated probability estimates. Both proposed techniques flips some de-
cisions of a classifier to enhance equalized odds or equalized opportunity.
Another post-processing algorithm called Reject Option based Classifica-
tion (ROC) [89] takes in to consideration the decision boundary of classi-
fiers; in a region where uncertainty is high, it gives favorable outcomes to
the unprivileged group and unfavorable outcomes to the privileged group
to reduce discrimination. In [47] minimize discrimination by selecting dif-
ferent thresholds for each group in a manner which maximizes accuracy.

Dwork et al. [55] learn different classifier for each group by using de-
coupling method. Lohiaet al. [105] used individual and group debiasing
method to balance accuracy with both individual and group fairness by de-
tecting samples that are prone to individual bias and consider them for pre-
diction change for enhancing the disparate impact.

4.2.4 Hybrid Mechanisms

Methods mentioned in the previous sections might not be enough to achieve
the desired fairness level. Hence, a hybrid mechanism combining mitiga-
tion strategies can be used. Foe example, [88] uses in-processing to op-
timize node splitting criterion and post-processing for changing the class
label of some leaves in a decision tree classifier.

44

4.3. Summary

Table 4.1: A summary of pre-process, in-process, and post-process mechanisms targeting
tree based models

Mitigation Strategy Paper Description

Pre-processing
[86, 87] uses methods like massaging, suppression,

sampling, and reweighing (section 2.4.3
for explanation)

[58] Pre-process data to decrease the distance
between distributions of both groups.

[27] transforms the data to a new mapping
that improves group fairness and individ-
ual fairness

In-processing

[88, 184] Discrimination aware node splitting
[2, 141] Regularization based approach
[143] Use abstract interpretation and adversarial

training to train fair decision trees
[67] adversarial debiasing
[57] filter base trees of a forest using fairness

parameter to add only fair trees

Post-processing

[47, 70, 138] selecting different decision thresholds for
different groups to enhance equalized odds
and equalized opportunity

[89] Reject Option based Classification
(ROC),takes in to consideration the deci-
sion boundary of classifiers

[55] decoupling technique to learn a different
classifier for each group

[105] detecting samples that are prone to individ-
ual bias and consider them for prediction
change

Table 4.2: A summary of pre-process, in-process, and post-process mechanisms targeting
tree based models

4.3 Summary

In this chapter, we presented an overview of works related to fair machine
learning focusing on decision trees and tree ensembles with the aim of
providing systematically summarized survey. Existing works on mitiga-
tion strategies are presented grouped as pre, in, and post-processing ap-
proaches.

45

CHAPTER5
Treant: Training Evasion-Aware Decision

Trees

Despite its success and popularity, machine learning is now recognized as
vulnerable to evasion attacks, i.e., carefully crafted perturbations of test in-
puts designed to force prediction errors. In this paper we focus on evasion
attacks against decision tree ensembles, which are among the most suc-
cessful predictive models for dealing with non-perceptual problems. Even
though they are powerful and interpretable, decision tree ensembles have
received only limited attention by the security and machine learning com-
munities so far, leading to a sub-optimal state of the art for adversarial
learning techniques. Thus, in this chapter we propose TREANT, a novel
decision tree learning algorithm that, on the basis of a formal threat model,
minimizes an evasion-aware loss function at each step of the tree construc-
tion. TREANT is based on two key technical ingredients: robust splitting
and attack invariance, which jointly guarantee the soundness of the learn-
ing process. Experimental results on publicly available datasets show that
TREANT is able to generate decision tree ensembles that are at the same
time accurate and nearly insensitive to evasion attacks, outperforming state-
of-the-art adversarial learning techniques.

47

Chapter 5. Treant: Training Evasion-Aware Decision Trees

5.1 Introduction

To date, research on evasion attacks has mostly focused on linear clas-
sifiers [15, 107] and, more recently, on deep neural networks [66, 156].
Whereas deep learning obtained remarkable and revolutionary results on
many perceptual problems, such as those related to computer vision and
natural language understanding, decision trees ensembles are nowadays
one of the best methods for dealing with non-perceptual problems, and are
one of the most commonly used techniques in Kaggle competitions [43].
Decision trees are also considered interpretable compared to other mod-
els [158], yielding predictions which are human-understandable in terms of
syntactic checks over domain features, which is particularly appealing in
the security setting. Unfortunately, despite their success, decision tree en-
sembles have received only limited attention by the security and machine
learning communities so far, leading to a sub-optimal state of the art for
adversarial learning techniques (see Section 5.2).

In this chapter, we thus propose TREANT,1 a novel learning algorithm
designed to build decision trees which are resilient against evasion attacks
at test time. Based on a formal threat model, TREANT optimizes an evasion-
aware loss function at each step of the tree construction [112]. This is par-
ticularly challenging to enforce correctly, considered the greedy nature of
traditional decision tree learning [80]. In particular, TREANT has to en-
sure that the local greedy choices performed upon tree construction are not
short-sighted with respect to the capabilities of the attacker, who has the
advantage of choosing the best attack strategy based on the fully built tree.
TREANT is based on the combination of two key technical ingredients: a
robust splitting strategy for decision tree nodes, which reliably takes into
account at training time the attacker’s capability of perturbing instances at
test time, and an attack invariance property, which preserves the correct-
ness of the greedy construction by generating and propagating constraints
along the decision tree, so as to discard splitting choices which might be
vulnerable to attacks.

We finally deploy our learning algorithm within a traditional random for-
est framework [20] and show its predictive power on real-world datasets.
Notice that, although there have been various proposals that tried to im-
prove robustness against evasion attacks by using ensemble methods [13,
73,137,162], it was shown that ensembles of weak models are not necessar-
ily strong [72]. We avoid this shortcoming by employing TREANT to train

1The name comes from the role playing game “Dungeons & Dragons”, where it identifies giant tree-like
creatures.

48

5.2. Related Work

an ensemble of decision trees which are individually resilient to evasion
attempts.

5.1.1 Roadmap

To show how TREANT improves over the state of the art, we proceed as
follows:

1. We introduce our formal threat model, discussing an exhaustive white-
box attack generation method, which allows for an accurate evaluation
of the performance of decision trees under attack and proves scalable
enough for our experimental analysis (Section 5.3).

2. We present TREANT, the first tree learning algorithm which greed-
ily, yet soundly, minimizes an evasion-aware loss function upon tree
construction (Section 5.4).

3. We experimentally show that TREANT outperforms existing adver-
sarial learning techniques on four publicly available datasets (Sec-
tion 5.5).

Our analysis shows that TREANT is able to build decision tree ensembles
that are at the same time accurate and nearly insensitive to evasion attacks,
providing a significant improvement over the state of the art.

5.2 Related Work

Adversarial learning, which investigates the safe adoption of ML in adver-
sarial settings [79], is a research field that has been consistently increasing
of importance in the last few years. In this paper we deal with evasion
attacks, a research sub-field of adversarial learning, where deployed ML
models are targeted by attackers who craft adversarial examples that re-
semble normal data instances, but force wrong predictions. Most of the
work in this field regards classifiers, in particular binary ones. The attacker
starts from a positive instance that is classified correctly by the deployed
ML model and is interested in introducing minimal perturbations on the in-
stance to modify the prediction from positive to negative, thus “evading” the
classifier [11, 14, 32, 50, 66, 90, 125, 153, 183]. Contrary to robust machine
learning [164] where some form of probabilistic random noise is assumed,
in the adversarial setting even a single perturbation which is able to fool
the classifier is assumed to be adopted by the attacker with 100% probabil-
ity. To prevent evasion attacks, different techniques have been proposed for

49

Chapter 5. Treant: Training Evasion-Aware Decision Trees

different models, including support vector machines [15, 176], deep neural
networks [66,68,133], and decision tree ensembles [35,90]. Unfortunately,
the state of the art for decision tree ensembles is far from satisfactory.

The first adversarial learning technique for decision tree ensembles is
due to [90] and is called adversarial boosting. It is an empirical data
augmentation technique, borrowing from the adversarial training approach
[156], where a number of evading instances are included among the training
data to make the learned model aware of the attacks and, thereby, possibly
more resilient to them. Specifically, at each boosting round, the training
set is extended by crafting a set of possible perturbations for each original
instance and by picking the one with the smallest margin, i.e., the largest
misprediction risk, for the model trained so far. Adding perturbed instances
to the training set forces the learning algorithm to minimize the average er-
ror over both the original instances and the chosen sample of evading ones,
but this does not provide clear performance guarantees under attack. This
is both because evading instances exploited at training time might not be
representative of test-time attacks, and because optimizing the average case
might not defend against the worst-case attack. Indeed, the experiments in
Section 5.5 show that the performance of ensembles trained via adversarial
boosting can be severely downgraded by evasion attacks.

The second adversarial learning technique for decision tree ensembles
was proposed in a very recent work by Chen et al., who introduced the first
tree learning algorithm embedding the attacker directly in the optimization
problem solved upon tree construction [35]. The key idea of their approach,
called robust trees, is to redefine the splitting strategy of the training exam-
ples at a tree node. They first identify the so-called unknown instances of
D, which may fall in either inDl or inDr, depending on adversarial pertur-
bations. The authors thus claim that the optimal tree construction strategy
would need to account for an exponential number of attack configurations
over these unknown instances. To tame such algorithmic complexity, they
propose a sub-optimal heuristic approach based on four “representative” at-
tack cases. Though the key idea of this algorithm is certainly interesting and
shares some similarities with our own proposal, it also suffers from signif-
icant shortcomings. First, representative attack cases are not such anymore
when the attacker is aware of the defense mechanism, and they are not any-
way sufficient to subsume the spectrum of possible attacks: our algorithm
takes into account all the possible attack cases, while being efficient enough
for practical adoption. Moreover, the approach in [35] does not implement
safeguards against the incremental greedy nature of decision tree learning:
there is no guarantee that, once the best splitting has been identified, the

50

5.3. Threat Model

attacker cannot adapt his strategy to achieve better results on the full tree.
Indeed, the experimental evaluation in Section 5.5 shows that it is very
easy to evade the trained models, which turn out to be even more fragile
than those trained through adversarial boosting in some cases.

5.3 Threat Model

The possibility to craft adversarial examples was popularized by [156] in
the image classification domain: their seminal work showed that it is pos-
sible to introduce minimal perturbations into an image so as to modify the
prediction of its class by a deep neural network.

5.3.1 Loss Under Attack and Adversarial Learning

At an abstract level, we can see the attacker A as a function mapping each
instance to a set of possible perturbations, which might be able to evade the
ML model. Depending on the specific application scenario, not every at-
tack is plausible, e.g., A cannot force some perturbations or behaves surrep-
titiously to avoid detection. For instance, in the typical image classification
scenario, A is usually assumed to introduce just slight modifications that
are perceptually undetectable to humans. This simple similarity constraint
between the original instance x and its perturbed variant z is well captured
by a distance [66], e.g., one could have A(x) = {z | ∥z − x∥∞ ≤ ε}.

Similarly, assuming that the attacker can run independent attacks on ev-
ery instance of a given dataset D, we can define A(D) as the set of the
datasetsD′ obtained by replacing each (x, y) ∈ D with any (z, y) such that
z ∈ A(x).

The hardness of crafting successful evasion attacks defines the robust-
ness of a given ML model at test time. The goal of learning a robust model
is therefore to minimize the harm an attacker may cause via perturbations.
This learning goal was formalized as a min-max problem by [112]:

ĥ = argmin
h∈H

max
D′∈A(D)

L(h,D′)︸ ︷︷ ︸
LA(h,D)

. (5.1)

The inner maximization problem models the attacker A replacing all
the given instances with an adversarial example aimed at maximizing the
loss. We call loss under attack, noted LA(h,D), the solution to the inner
maximization problem. The outer minimization resorts to the empirical
risk minimization principle, aiming to find the hypothesis that minimizes
the loss under attack on the training set.

51

Chapter 5. Treant: Training Evasion-Aware Decision Trees

5.3.2 Attacker Model

Distance-based constraints for defining the attacker’s capabilities are very
flexible for perceptual problems and proved amenable for heuristic algo-
rithms for solving the inner maximization problem of Equation 5.1 [112].
However, they cannot be easily generalized to other realistic application
scenarios, e.g., where perturbations are not symmetric, where the attacker
may not be able to alter some of the features, or where categorical attributes
are present. To overcome such limitations, we model the attacker A as a pair
(R,K), where R is a set of rewriting rules, defining how instances can be
corrupted, and K ∈ R+ is a budget, limiting the amount of alteration the
attacker can apply to each instance. Each rule r ∈ R has form:

[a, b]
f−→k [δl, δu],

where [a, b] and [δl, δu] are intervals on R ∪ {−∞,+∞}, with the former
defining the precondition for the application of the rule and the latter defin-
ing the magnitude of the perturbation enabled by the rule; f ∈ [1, d] is the
index of the feature to corrupt; and k ∈ R+ is the cost of the rule. The se-
mantics of the rewriting rule can be explained as follows: if an instance x
satisfies the condition xf ∈ [a, b], then the attacker can corrupt it by adding
any v ∈ [δl, δu] to xf and spending k from the available budget. Note that v
can possibly be negative, leading to a subtraction. The attacker can corrupt
each instance by using as many rewriting rules as desired in whatever order,
up to budget exhaustion.

According to this attacker model, we define A(x), the set of the attacks
against an instance x, as follows.

Definition 5.3.1 (Attacks). Given an instance x and an attacker A =
(R,K), we let A(x) be the set of the attacks that can be obtained from x,
i.e., the set of the instances z such that there exists a sequence of rewriting
rules r1, . . . , rn ∈ R and a sequence of instances x0, . . . ,xn where:

1. x0 = x and xn = z;

2. for all i ∈ [1, n], the instance xi−1 can be corrupted into the instance
xi by using the rewriting rule ri;

3. the sum of the costs of r1, . . . , rn is not greater than K.

Notice that x ∈ A(x) for any A by picking an empty sequence of rewriting
rules.

52

5.3. Threat Model

We highlight that this rule-based attacker model includes novel attack
capabilities like asymmetric perturbations, easily generalizes to categorical
variables, and still covers or approximates standard distanced-based mod-
els. For instance, L0-distance attacker models where the attacker can cor-
rupt at will a limited number of features can be easily represented [90]. The
use of a budget is convenient to fine-tune the power of the attacker and en-
ables the adoption of standard evaluation techniques for ML models under
attack, like security evaluation curves [18].

Example 5.3.1 (L0-Distance). The L0-distance captures localized perturba-
tions with arbitrary magnitude. Specifically, given an instance x ∈ X ⊆ Rd

and a possible perturbation z, we have that ∥z − x∥0 = |{f ∈ [1, d] | zf ̸=
xf}|, and thus the L0-distance simply counts the dimensions of x that were
actually perturbed.

In our framework, we can model this by means of an attacker A =
(R,K), where the budget K stands for the largest L0-distance allowed on
adversarial perturbations and R includes, for all features f , a rewriting rule
of the form:

[−∞,+∞]
f−→1 [−∞,+∞].

It is easy to show that for all z we have z ∈ A(x) if and only if
∥z − x∥0 ≤ K. In particular, the largest perturbation is obtained from the
original x by applying exactly K distinct rules, each perturbing a different
dimension.

Example 5.3.2 (L1-Distance). The L1-distance also captures localized per-
turbations, but constrains their magnitude. Specifically, given an instance
x ∈ X ⊆ Rd and a possible perturbation z, we have that ∥z − x∥1 =∑

f |zf − xf |.
In our framework, we can model this by means of an attacker A =

(R,K), where the budget K stands for the largest L1-distance allowed on
adversarial perturbations and R includes, for all features f , a rewriting rule
of the form:

[−∞,+∞]
f−→ε [−ε,+ε],

where ε ∈ R+ models a maximum discrete step of perturbation (and its
cost).

It is easy to show that the set A(x) can approximate {z | ∥z−x∥1 ≤ K}
with arbitrarily large accuracy by choosing appropriately small values of
ε. Note that the largest perturbation is obtained from the original x by
applying exactly ⌊K/ε⌋ rules, always choosing the maximum or minimum
magnitude ±ε.

53

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Example 5.3.3 (L∞-Distance). The L∞-distance encourages uniformly spread
perturbations with small magnitude. Specifically, given an instance x ∈
X ⊆ Rd and a possible perturbation z, we have that ∥z−x∥∞ = maxf |zf−
xf |.

We observe that this form of non-localized perturbations is not currently
supported by our threat model, since, once a rewriting rule is defined for
a given feature, it can always be (locally) applied up to budget exhaustion.
However, a straightforward solution to this issue would be to transform
our current global budget into a set of per-feature budgets {K1, . . . , Kd}.
Then, if K is the largest L∞-distance allowed on adversarial perturbations,
one could let Ki = K for all i and just reuse the rewriting rules defined
for the case of the L1-distance. We do not implement this extension of the
model for the sake of simplicity.

5.3.3 Attack Generation

Computing the loss under attack LA is useful to evaluate the resilience of
ML models to evasion attacks at test time; yet this might be intractable,
since it assumes the ability to identify the most effective attack for all the
test instances. This issue is thus typically dealt with by using a heuristic
attack generation algorithm, e.g., the fast gradient sign method [66] or any
of its variants, to craft adversarial examples which empirically work well.
However, our focus on decision trees and the adoption of a rule-based at-
tacker model enables an exhaustive attack generation strategy for the test
set which, though computationally expensive, proves scalable enough for
our experimental analysis and allows the actual identification of the most
effective attacks. This enables the most accurate security assessment in
terms of the actual value of LA.

We consider a white-box attacker model, where the attacker has the com-
plete knowledge of the trained decision tree ensemble. We thus assume that
the attacker exploits the knowledge of the structure of the trees in the tar-
geted ensemble and, most importantly, of the features and thresholds which
are actually used in the prediction process.

Note that a decision tree ensemble induces a finite partition of the input
vector space X , defined by the features and thresholds used in the internal
nodes of the trees in the ensemble, where instances falling in the same
element of the partition share the same prediction. This partition of the
vector space makes it possible to significantly reduce the set of attacks that
are relevant to computeLA by considering at most one representative attack
for each element of the partition [30]. Once this is done, one can feed all

54

5.3. Threat Model

6 10

Figure 5.1: A decision tree and an instance x that can be attacked by perturbing its
feature 2 (by adding any value in interval [0, 3]). Note that since the maximum budget
of A is 2, and the cost of applying the rule r is 1, the rule can be applied only twice

provided that the precondition holds.

the attack representatives to the tree ensemble and identify the one that
maximizes the loss.

For the sake of simplicity, we just sketch the algorithm that generates
the attack representatives. For any given instance x, we first identify the
set of applicable rules: if a rule targets the feature f with magnitude [δl, δr],
the interval of possible perturbations [xf + δl, xf + δu] is split into the
sub-intervals induced by (i) the ensemble’s thresholds relative to feature
f , since this might change the prediction of the tree ensemble, and (ii)
the extremes of the pre-conditions of a rewriting rule operating on feature
f , since this might enable further perturbations which will eventually lead
to prediction changes. We then generate a single attack for each of the
identified sub-intervals by applying maximal perturbations therein and re-
cursively apply the algorithm up to budget exhaustion. Finally, we return
just the attacks which actually crossed some threshold of the tree ensemble,
since only those could lead to changes in predictions.

Example 5.3.4 (Attack Generation). Consider the instance x = (7, 9) with
label +1 and the decision tree in Figure 5.1, which classifies the instance
correctly. Pick then the attacker A = ({r}, 2), where r is a rewriting rule
of cost 1 which allows the corruption of the feature 2 by adding any value
in [0, 3], provided that the feature value is in the interval [6, 10]. In our
formalism, this is represented as follows:

r = [6, 10]
2−→1 [0, 3].

55

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Only three values of the feature 2 are relevant in our setting to generate
representative attacks: besides 12 (the threshold used by the decision tree),
which actually partitions the second dimension into the intervals (−∞, 12]
and (12,+∞), also 6 (the lower bound of the pre-condition of rule r) and 10
(the upper bound of the pre-condition of rule r). We include these bounds
because rule r might be applied again, as long as the perturbations fall
within the interval [6, 10], and this might be useful to eventually cross a
threshold of the decision tree.

Our algorithm thus applies r multiple times to perturb the second feature
of x = (7, 9): in particular, the value 9 can initially be perturbed into any
value from [9, 12] after an application of the rule. Perturbations in this range
can only cross one of the previously identified thresholds, i.e., 10. This
induces a partitioning of [9, 12] in the sub-intervals [9, 10] and (10, 12]. The
first attack x1 = (7, 10) does not lead to a change of the prediction outcome
of the decision tree, yet moved towards the decision threshold and can still
be corrupted by rule r. The alternative attack x′

1 = (7, 12) also does not
lead to any prediction change and cannot be corrupted any further due to the
pre-condition of rule r. However, the attacker can target the second feature
of x1 = (7, 10) to corrupt it into any value from [10, 13]. Perturbations in
this range can cross the decision threshold 12, inducing the sub-intervals
[10, 12] and (12, 13]. In particular, the attack x2 = (7, 13) is generated by
the algorithm and it is the only returned attack, since it is representative of
all the attacks causing the instance x to fall into the partition (12,+∞) of
the second dimension of the feature space.

5.4 TREANT: Key Ideas & Design

In this section, we present a novel decision tree learning algorithm that, by
minimizing the loss under attack LA at training time, enforces resilience to
evasion attacks at test time. We call TREANT the proposed algorithm.

5.4.1 Overview

Compared to Algorithm 1, TREANT replaces the BESTSPLIT function by
revising: (i) the computation of the predictions on the new leaves, (ii) the
selection of the best split and (iii) the dataset partition along the recursion.

Before discussing the technical details, we build on the toy example in
Figure 5.2 to illustrate the non-trivial issues arising when optimizing LA.
Figure 5.2.(a) shows a dataset D for which we assume the attacker A =
({r}, 1), where r is a rewriting rule of cost 1 which allows the corruption

56

5.4. TREANT: Key Ideas & Design

True False

(a) (b) (c)

21

(d) (e)

Figure 5.2: Overview of the TREANT construction and its key challenges.

of the feature p by adding any value in the interval [−1,+1].
Assuming SSE is used as the underlying loss function L, the decision

stump initially generated by Algorithm 1 is shown in Figure 5.2.(b) along
with the result of the splitting. Note that while the loss L = 2 is small,2 the
loss under attack LA = 5 is much larger.3 This is because the attacker may
alter x2 into a perturbed instance x̃2 so as to reverse the outcome of the test
xp ≤ 1, i.e., the original instance x2 falls into the left leaf of the stump,
but the perturbed instance x̃2 falls into the right leaf. The first issue of
Algorithm 1 is thus that the estimated loss L on the training set, computed
when building the decision stump, is smaller than the loss under attack LA

we would like to minimize. We solve this issue by designing a novel robust
splitting strategy to identify the best split of D, which directly minimizes
LA when computing the leaves predictions and leads to the generation of a
tree that is more robust to attacks. In particular, the decision stump learnt
by using our robust splitting strategy is shown in Figure 5.2.(c), where the
leaves predictions have been found by assuming that x2 actually falls into
the right leaf (according to the best attack strategy). For this new decision
stump, the best move for the attacker is still to corrupt x2, but the resulting
LA = 3.7 is much smaller than that of the previous stump.4 The figure also

2L(t,D) = (−2 + 1)2 + (−1 + 1)2 + (−1− 0)2 + 4 · (2− 2)2 = 2.
3LA(t,D) = (−2 + 1)2 + (−1 + 1)2 + (2− 0)2 + 4 · (2− 2)2 = 5.
4LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.6)2 + 4 · (2− 1.6)2 = 3.7.

57

Chapter 5. Treant: Training Evasion-Aware Decision Trees

shows the outcome of the robust splitting.
However, a second significant issue arises when the decision stump is

recursively grown into a full decision tree. Suppose to further split the
right leaf of Figure 5.2.(c), therefore considering only the instances falling
therein, including the instance x2 put there by the robust splitting. We
would find that the best split is given by xq ≤ 3, where the feature q cannot
be modified by the attacker. The resulting tree is shown in Figure 5.2.(d).
Note however that, by creating the new sub-tree, new attacking opportuni-
ties show up, because the attacker now finds more convenient to just leave
x2 unaltered and let it fall directly into the left child of the root. As a
consequence, by adding the new sub-tree, we observe an increased loss un-
der attack LA = 3.75.5 This second issue can be solved by ensuring that
any new sub-tree does not create new attacking opportunities that gener-
ate a larger loss. We call this property attack invariance. The proposed
algorithm grows the sub-tree on the right leaf by carefully adjusting its pre-
dictions as shown in Figure 5.2.(e), still decreasing the loss under attack
to LA = 3 with respect to the tree in Figure 5.2.(c).6 This is enforced by
including constraints along the tree construction, as shown in the figure.

To sum up, the key technical ingredients of TREANT are:

1. Robust splitting: given a candidate feature f and threshold v, the ro-
bust splitting strategy evaluates the quality of the corresponding node
split on the basis of a ternary partitioning of the instances falling into
the node. It identifies those instances for which the outcome of the
node predicate xf ≤ v depends on the attacker’s moves, and those
that cannot be affected by the attacker, thus always traversing the left
or the right branch of the new node. In particular, the LA minimiza-
tion problem is reformulated on the basis of left, right and unknown
instances, i.e., instances which might fall either left or right depend-
ing on the attacker. Finally, the recursion on the left and right child of
the node is performed by separating the instances in a binary partition
based on the effects of the most harmful attack (Section 5.4.2).

2. Attack invariance: a security property requiring that the addition of a
new sub-tree does not allow the attacker to find better attack strategies
that increase LA. Attack invariance is achieved by imposing an ap-
propriate set of constraints upon node splitting. New constraints are
generated for each of the attacked instances present in the split node
and are propagated to the child nodes upon recursion (Section 5.4.3).

5LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.5)2 + (2− 1)2 + 3 · (2− 2)2 = 3.75.
6LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.5)2 + (2− 1.5)2 + 3 · (2− 2)2 = 3.

58

5.4. TREANT: Key Ideas & Design

Table 5.1: Notation Summary

Symbol Meaning

D Training dataset
Dλ Local projection of D on the leaf λ
A(x) Set of all the attacks A can generate from x
A(D) Set of all the attacks A can generate from D
λ(ŷ) Leaf node with prediction ŷ

σ(f, v, tl, tr) Node testing xf ≤v and having sub-trees tl, tr
Dl(f, v, A) Left elements of ternary partitioning on (f, v)
Dr(f, v, A) Right elements of ternary partitioning on (f, v)
Du(f, v, A) Unknown elements of ternary partitioning on (f, v)
DL(t̂, A) Left elements of robust splitting on t̂
DR(t̂, A) Right elements of robust splitting on t̂
CL(t̂, A) Set of constraints for the left child of t̂
CR(t̂, A) Set of constraints for the right child of t̂

The pseudo-code of the algorithm is given in Section 5.4.4. To assist the
reader, the notation used in the present section is summarized in Table 6.1.

5.4.2 Robust Splitting

We present our novel robust splitting strategy that grows the current tree t
by replacing a leaf λ with a new sub-tree so as to minimize the loss under
attack LA. For the sake of clarity, we discuss it as if the splitting was
employed on the root node of a new tree, i.e., to learn the decision stump
that provides the best loss reduction on the full input dataset D. The next
subsection discusses the application of the proposed strategy during the
recursive steps of the tree-growing process.

Aiming at greedily optimizing the min-max problem in Equation 5.1, we
have to find the best decision stump t̂ = σ(f, v, λ(ŷl), λ(ŷr)) such that:

t̂ = argmin
t
LA (t,D) =

= argmin
t

max
D′∈A(D)

L(t,D′) =

= argmin
t

∑
(x,y)∈D

max
z∈A(x)

ℓ(t(z), y).

However, the equation shows that this is not trivial, because the loss
incurred by an instance (x, y) may depend on the attacks it is possibly
subject to. Similarly to [35], we thus define a ternary partitioning of the
training dataset as follows.

59

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Definition 5.4.1 (Ternary Partitioning). For a feature f , a threshold v and
an attacker A, the ternary partitioning of the dataset D = Dl(f, v, A) ∪
Dr(f, v, A) ∪ Du(f, v, A) is defined by:

Dl(f, v, A) = {(x, y) ∈ D | ∀z ∈ A(x) : zf ≤ v}
Dr(f, v, A) = {(x, y) ∈ D | ∀z ∈ A(x) : zf > v}
Du(f, v, A) = (D \ Dl(f, v, A)) \ Dr(f, v, A).

In words, Dl(f, v, A) includes those instances (x, y) falling into the left
branch regardless of the attack, hence the attacker has no gain in perturb-
ing xf . A symmetric reasoning applies to Dr(f, v, A), containing those
instances which fall into the right branch for all the possible attacks. The
instances that the attacker may actually want to target are those falling into
Du(f, v, A), thus aiming at the largest loss. By altering those instances, the
attacker may force each (x, y) ∈ Du(f, v, A) to fall into the left branch
with a loss of ℓ(ŷl, y), or into the right branch, with a loss of ℓ(ŷr, y).

Example 5.4.1 (Ternary Partitioning). The test node xp ≤ 1 and the attacker
considered in Figure 5.2.(c) determine the following ternary partitioning of
D:

• Dl(p, 1, A) = {(x0,−2), (x1,−1)}

• Dr(p, 1, A) = {(x3, 2), (x4, 2), (x5, 2), (x6, 2)}

• Du(p, 1, A) = {(x2, 0)}

In other words, the instance x2 is the only instance for which the branch
taken at test time is unknown, as it depends on the attacker A.

By construction, given (f, v), the loss LA can be affected by the pres-
ence of the attacker A only for the instances in Du(f, v, A), while for all
the remaining instances it holds that LA = L. Since the attacker may force
each instance of Du(f, v, A) to fall into either the left or the right branch,
the authors of [35] acknowledge a combinatorial explosion in the computa-
tion of LA. Rather than evaluating all the possible configurations, they thus
propose a heuristic approach evaluating four “representative” attack cases:
i) no attack, ii) all the unknown instances are forced in the left child, iii) all
the unknown instances are forced in the right child, and iv) all the unknown
instances are swapped by the attacker, i.e., they are forced in the left/right
child when they would normally fall in the right/left child. Then, the loss
L is evaluated for these four split configurations and the maximum value
is used to estimate LA, so as to find the best stump t̂ to grow. Note that

60

5.4. TREANT: Key Ideas & Design

L is computed as in a standard decision tree learning algorithm. Unfortu-
nately, this heuristic strategy does not offer soundness guarantees, because
the above four configurations leave potentially harmful attacks out of sight
and do not induce an upper-bound of LA.

To avoid this soundness issue, while keeping the tree construction tractable,
we pursue a numerical optimization as follows. For a given (f, v), we high-
light that finding the best attack configuration and finding the best left/right
leaves predictions ŷl, ŷr are two inter-dependent problems, yet the strategy
adopted in [35] is to first evaluate a few different attack configurations, and
then find the leaves predictions. We instead solve these two problems si-
multaneously via a formulation of the min-max problem that, fixed (f, v),
is expressed solely in terms of ŷl, ŷr:

(ŷl, ŷr) = argmin
yl,yr

LA(σ(f, v, λ(yl), λ(yr)),D), (5.2)

where LA is decomposed via the ternary partitioning as:

LA(σ(f, v, λ(yl), λ(yr)),D) =

= L(λ(yl),Dl(f, v, A)) + L(λ(yr),Dr(f, v, A)) +

+
∑

(x,y)∈Du(f,v,A)

max{ℓ(yl, y), ℓ(yr, y)}.

Observe that if the instance-level loss ℓ is convex, then LA is also con-
vex7 and it can be efficiently optimized numerically. Convexity is indeed a
property enjoyed by many loss functions such as SSE (for regression) and
Log-Loss (for classification). This allows one to overcome the exploration
of the exponential number of attack configurations, still finding the optimal
solution (up to numerical approximation).

Given the best predictions ŷl, ŷr, we can finally produce a binary split of
D (as in Algorithm 1). To do this, we split the instances by applying the
best adversarial moves, i.e., by assuming that every (x, y) ∈ Du(f, v, A)
is pushed into the left or right child so as to generate the largest loss. If
the two children induce the same loss, then we assume the instance is not
attacked.

Definition 5.4.2 (Robust Splitting). For a sub-tree to be grown t̂ = σ(f, v, λ(ŷl), λ(ŷr))
and an attacker A, the robust split of D = DL(t̂, A) ∪ DR(t̂, A) is defined
as follows:

7The pointwise maximum and the sum of convex functions preserve convexity.

61

Chapter 5. Treant: Training Evasion-Aware Decision Trees

• DL(t̂, A) contains all the instances of Dl(f, v, A) and DR(t̂, A) con-
tains all the instances of Dr(f, v, A);

• for each (x, y) ∈ Du(f, v, A), the following rules apply:

– if ℓ(ŷl, y) > ℓ(ŷr, y), then (x, y) goes to DL(t̂, A);
– if ℓ(ŷl, y) < ℓ(ŷr, y), then (x, y) goes to DR(t̂, A);
– if ℓ(ŷl, y) = ℓ(ŷr, y), then (x, y) goes to DL(t̂, A) if xf ≤ v and

to DR(t̂, A) otherwise.

Example 5.4.2 (Robust Splitting). Once identified ŷl and ŷr for the decision
stump t̂ = (p, 1, λ(−1.5), λ(1.6)) in Figure 5.2.(c), the datasets obtained
for the leaves by robust splitting are:

• DL(t̂, A) = {(x0,−2), (x1,−1)}

• DR(t̂, A) = {(x2, 0), (x3, 2), (x4, 2), (x5, 2), (x6, 2)}

Notice that, unlike a standard decision tree learning algorithm, the right
partition contains the instance x2 due to the presence of the attacker, even
though such instance normally satisfies the root node test.

To summarize, the ternary partitioning allows LA to be optimized for
a given (f, v) and dataset D, hence it can be used to find the best tree-
growing step by an exhaustive search over f and v. Once this is done, the
robust splitting allows the dataset D to be partitioned in order to feed the
algorithm recursion on the left and right children of the newly created sub-
tree. Ultimately, the goal of the proposed construction is solving the min-
max problem of Equation 5.1 for a single tree-growing step and pushing the
attacked instances into the partition induced by the most harmful attack.

5.4.3 Attack Invariance

The optimization strategy described in Section 5.4.2 needs some additional
refinement to provide a sound optimization of LA on the full dataset D.
When growing a new sub-tree at a leaf λ, we denote with Dλ the local pro-
jection of the full dataset at λ, i.e., the subset of the instances inD falling in
λ along the tree construction by applying the robust splitting strategy. The
key observation now is that the robust splitting operates by assuming that
the attacker behaves greedily, i.e., by locally maximizing the generated loss,
but as new nodes are added to the tree, new attack opportunities arise and
different traversal paths towards different leaves may become more fruitful
to the attacker. If this is the case, the robust splitting becomes unrepresen-
tative of the possible attacker’s moves and any learning decision made on

62

5.4. TREANT: Key Ideas & Design

the basis of such splitting turns out to be unsound, i.e., with no guarantee of
minimizing LA. Notice that this is a major design problem of the algorithm
proposed in [35], and experimental evidence shows how the attacker can
easily craft adversarial examples in some cases (see Section 5.5).

In the end, the computation of the best split for a given leaf λ cannot
be done just based on the local projection Dλ, unless additional guarantees
are provided. We thus enforce a security property called attack invariance,
which ensures that the tree construction steps preserve the correctness of
the greedy assumptions made on the attacker’s behavior. Given a decision
tree t and an instance (x, y) ∈ D, we let ΛA(t, (x, y)) stand for the set of
leaves of t which are reachable by some attack z ∈ A(x) that generates the
largest loss among A(x).

Attack invariance requires that the tree construction steps preserves ΛA,
in that the attacker has no advantage in changing the attack strategy which
was optimal up to the previous step, thus recovering the soundness of the
greedy construction. We define attack invariance during tree construction
as follows.

Definition 5.4.3 (Attack Invariance). Let t be a decision tree and let t′ be
the decision tree obtained by replacing a leaf λ of t with the new sub-tree
σ(f, v, λl, λr). We say that t′ satisfies attack invariance for the dataset D
and the attacker A iff:

∀(x, y) ∈ Dλ : ΛA(t′, (x, y)) ∩ {λl, λr} ≠ ∅.

The above definition states that, after growing a new sub-tree from λ,
the set of the best options for the attacker against the instances in λ must
include the newly created leaves, so that the path originally leading to λ
still represents the most effective attack strategy against those instances.
Example 5.4.3 (Attack Invariance). Let t be the decision tree of Figure 5.2.(c).
Figure 5.2.(d) shows an example where adding a new sub-tree to t leads to
a decision tree t′ which breaks the attack invariance property. Indeed, we
have ΛA(t′, (x2, 0)) = {λ(−1.5)}, which contains neither λ(1), nor λ(2).
Notice that the best attack strategy has indeed changed with respect to t, as
leaving x2 unaltered now produces a larger loss (2.25) than the originally
strongest attack (1.0).

We enforce attack invariance by introducing a set of constraints into
the optimization problem of Equation 5.2. Suppose that the new sub-tree
σ(f, v, λ(ŷl), λ(ŷr)) replaces the leaf λ and that an instance (x, y) ∈ Dλ is
placed in the right child by robust splitting, because one of its corruptions
traverses the threshold v and ℓ(ŷr, y) ≥ ℓ(ŷl, y). Then, attack invariance is

63

Chapter 5. Treant: Training Evasion-Aware Decision Trees

granted if, whenever the leaves λ(ŷl) and λ(ŷr) are later replaced by sub-
trees tl and tr, there exists an attack z ∈ A(x) that falls into a leaf of
tr generating a loss larger than (or equal to) the loss of any other attack
falling in tl. We enforce such constraint during the recursive tree building
process as follows. The requirement ℓ(ŷr, y) ≥ ℓ(ŷl, y) is transformed in
the pair of constraints ℓ(tr(x), y) ≥ γ and ℓ(tl(x), y) ≤ γ, where γ =
min{ℓ(ŷr, y), ℓ(ŷl, y)}. These two constraints are respectively propagated
into the recursion on the right and left children. As long as any sub-tree tr
replacing λ(ŷr) satisfies the constraint ℓ(tr(x), y) ≥ γ and any sub-tree tl
replacing λ(ŷl) satisfies the constraint ℓ(tl(x), y) ≤ γ, the attacker has no
advantage in changing the original attack strategy, hence attack invariance
is enforced.

To implement this mechanism, each leaf λ is extended with a set of con-
straints, which is initially empty for the root of the tree. When λ is then split
upon tree growing, the constraints therein are included in the optimization
problem of Equation 5.2 to determine the best predictions ŷl, ŷr for the new
leaves. These constraints are then propagated to the new leaves and new
constraints are generated for them based on the following definition, which
formalizes the previous intuition.

Definition 5.4.4 (Constraints Propagation and Generation). Let λ be a leaf
to be replaced with sub-tree t̂ = σ(f, v, λ(ŷl), λ(ŷr)) and let C be its set of
constraints. The sets of constraints CL(t̂, A) and CR(t̂, A) for the two new
leaves are defined as follows:8

• if ℓ(t(x), y) ≶ γ ∈ C and there exists z ∈ A(x) such that zf ≤ v,
then ℓ(tl(x), y) ≶ γ is added to CL(t̂, A);

• if ℓ(t(x), y) ≶ γ ∈ C and there exists z ∈ A(x) such that zf > v,
then ℓ(tr(x), y) ≶ γ is added to CR(t̂, A);

• if (x, y) ∈ Dλ
u(f, v, A)∩Dλ

L(t̂, A), then ℓ(tl(x), y) ≥ ℓ(ŷr, y) is added
to CL(t̂, A) and ℓ(tr(x), y) ≤ ℓ(ŷr, y) is added to CR(t̂, A);

• if (x, y) ∈ Dλ
u(f, v, A)∩Dλ

R(t̂, A), then ℓ(tl(x), y) ≤ ℓ(ŷl, y) is added
to CL(t̂, A) and ℓ(tr(x), y) ≥ ℓ(ŷl, y) is added to CR(t̂, A).

Example 5.4.4 (Enforcing Constraints). The tree in Fig. 5.2.(e) is gener-
ated by enforcing a constraint on the loss of x2. After splitting the root,
the constraint ℓ(tr(x2), 0) ≥ ℓ(ŷl, 0) is generated for the right leaf of the
tree in Fig. 5.2.(c), where ℓ(ŷl, 0) = (−1.5 − 0)2 = 2.25. The solution
of the constrained optimization problem on the right child of the tree in

8We use the symbol ≶ to stand for either ≤ or ≥ when the distinction is unimportant.

64

5.4. TREANT: Key Ideas & Design

Fig. 5.2.(c) finally grows two new leaves, generating the tree in Fig. 5.2.(e).
The difference from the tree in Fig. 5.2.(d) is that the prediction on the left
leaf of the right child of the root has been enforced to satisfy the required
constraint. For this tree, the attacker has no gain in changing attack strategy
over the previous step of the tree construction, shown in Figure 5.2.(c).

More formally, after growing the tree in Fig. 5.2.(c) with suitable con-
straints we obtain the tree t′ in Fig. 5.2.(e), where the leaf λ(1.6) has been
substituted with a decision stump with the two new leaves {λ(1.5), λ(2)}.
This gives ΛA(t′, (x2, 0)) = {λ(−1.5), λ(1.5)}, where ΛA(t′, (x2, 0)) ∩
{λ(1.5), λ(2)} = {λ(1.5)} ̸= ∅, thus satisfying the attack invariance prop-
erty.

Note that constraints grant attack invariance at the cost of reducing the
space of the possible solutions for tree-growing. Nevertheless, in the exper-
imental section we show that this property does not prevent the construction
of robust decision trees that are also accurate in absence of attacks.

5.4.4 Tree Learning Algorithm

Our TREANT construction is summarized in Algorithm 3. The core of the
logic is in the call to the TREANTSPLIT function (line 3), which takes as
input a dataset D, an attacker A and a set of constraints C initially empty,
and implements the construction detailed along the present section. The
construction terminates when it is not possible to further reduce LA (line
4).

Function TREANTSPLIT is summarized in Algorithm 4. Specifically,
the function returns the sub-tree minimizing the loss under attack LA on D
subject to the constraints C, based on the ternary partitioning (lines 2-3). It
then splits D by means of the robust splitting strategy (lines 4-5) and re-
turns new sets of constraints (lines 6-7), which are used to recursively build
the left and right sub-trees. The optimization problem (line 2) can be nu-
merically solved via the scipy implementation of the SLSQP (Sequential
Least SQuares Programming) method, which allows the minimization of a
function subject to inequality constraints, like the constraint set C generat-
ed/propagated by TREANT during tree growing.

There is an important point worth discussing about the implementation
of the algorithm. As careful readers may have noticed, the TREANTSPLIT
function splits each leaf λ by relying on the set of attacks A(x) for all in-
stances (x, y) ∈ Dλ. Though one could theoretically pre-compute all the
possible attacks against the instances in D, this would be very inefficient
both in time and space, given the potentially huge number of instances and

65

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Algorithm 3 TREANT

1: Input: training data D, attacker A, constraints C
2: ŷ ← argminy LA(λ(y),D) subject to C
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr, Cl, Cr ← TREANTSPLIT(D, A, C)
4: if LA(σ(f, v, λ(ŷl), λ(ŷr)),D) < LA(λ(ŷ),D) then
5: tl ← TREANT(Dl, A, Cl)
6: tr ← TREANT(Dr, A, Cr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if

Algorithm 4 TREANTSPLIT

1: Input: training data D, attacker A, constraints C
▷ Build a set of candidate tree nodes N using Ternary Partitioning to optimize LA

2: N ← {σ(f, v, λ(ŷl), λ(ŷr)) | ŷl, ŷr =
argminyl,yr

LA(σ(f, v, λ(yl), λ(yr)),D) subject to C}
▷ Select the candidate node t̂ ∈ N which minimizes the loss LA on the training data
D

3: t̂ = argmint∈N LA(t,D) = σ(f, v, λ(ŷl), λ(ŷr))
▷ Robust Splitting (see Definition 5.4.2)

4: Dl ← DL(t̂, A)
5: Dr ← DR(t̂, A)

▷ Constraint Propagation and Generation (see Definition 5.4.4)
6: Cl ← CL(t̂, A)
7: Cr ← CR(t̂, A)
8: return t̂,Dl,Dr, Cl, Cr

attacks. Our implementation, instead, incrementally computes a sufficient
subset of A(x) along the tree construction. This makes the construction
computationally feasible by exploiting the observation that the ternary par-
titioning used for node splitting only requires the identification of a single
attack against the feature which is tested in the node predicate, hence the
computation of the full set of attacks is not actually needed.

More specifically, each instance (x, y) is enriched with a cost annotation
k, denoted by (x, y)k, initially set to 0 on the root. Such annotation keeps
track of the cost of the adversarial manipulations performed to push (x, y)
into λ during the tree construction. When splitting the leaf λ on (f, v), the
algorithm generates only the attacks against the feature f and assumes that
k was already spent from the attacker’s budget to further reduce the number
of possible attacks. When the instance (x, y)k is pushed into the left or right
partition of Dλ by robust splitting, the label k is updated to k + k′, where

66

5.4. TREANT: Key Ideas & Design

k′ is the minimum cost the attacker must spend to achieve the desired node
outcome. The same idea is applied when propagating constraints, which
are also associated with specific instances (x, y) for which the computation
of A(x) is required.

Observe that this implementation assumes that only the cost of adversar-
ial manipulations is relevant, not their magnitude, which is still sound when
none of the corrupted features is tested multiple times on the same path of
the tree. We enforce such restriction during the tree construction, which
further regularizes the growing of the tree. Since we are eventually inter-
ested in decision tree ensembles, this does not impact on the performance
of whole trained models.

5.4.5 Complexity Analysis

In a standard decision tree construction algorithm, the cost of splitting a
node λ is O(d · |Dλ|), since this requires a scan of the instances in λ to find
the best feature and threshold for tree growing [114]. Similarly, TREANT
splits each decision tree node by means of an exhaustive search over all pos-
sible features and thresholds. The key difference lies in the node splitting
procedure (Algorithm 4). In particular, given a fixed feature and threshold,
TREANT pays an extra cost over traditional tree constructions coming from
two factors: the ternary partitioning and the corresponding LA optimization
problem (see Eq. 5.2). As we anticipated, the optimization problem can be
solved by the SLSQP method, which has cubic complexity in the number
of variables slsqp. Our problem only has two variables, corresponding to
the predictions on the left and right leaf respectively.

Regarding the computational complexity of the ternary partitioning, we
analyse below the cost of deciding whether or not an instance x belongs
to Dλ

u(f, v, A). This has to be paid for every instance in the dataset and it
is a multiplicative factor with respect to the standard decision tree growing
algorithm.

Proposition 1. Given a split candidate pair (f, v), an instance (x, y) ∈ D
and an attacker A = (R,K), the computational complexity of deciding

whether x belongs to Dλ
u(f, v, A) is O

((√
2|R|+ 1

) 2K
k∗

)
, where k∗ is the

cost of the cheapest rule in R.

To assess whether x can be attacked, we are interested in finding (if
it exists) a sequence of perturbations with minimum cost which leads to
crossing the threshold v. Being of minimum cost, we can assume that each
rule r in such chain is maximally exploited so as to perturb the instance

67

Chapter 5. Treant: Training Evasion-Aware Decision Trees

x to the extremes of the interval [xf + δl, xf + δu] or to the ends of a
precondition interval enabling some other rule in R. Therefore, in the worst
case, each rule r ∈ R can modify x into 2 + 2|R| different ways, and
this process is repeated up to budget exhaustion, i.e., at most K/k∗ times
where k∗ is the cost of the cheapest rule in R. We finally get a total cost of

O
(
(|R|(2 + 2|R|))

K
k∗
)

, or equivalently O

((√
2|R|+ 1

) 2K
k∗

)
.

Note that this bound is not tight as not all rules are always applicable,
k∗ might be far from the cost of other rules, and it might not always be
possible to generate 2+ 2|R| perturbed instances. In fact, we may not need
to enumerate all the possible perturbations.

Below we consider a setting where the set of rules R encodes a L1-
distance attacker, which is one of the most commonly used models in lit-
erature. As discussed in Section 5.3.2, the above attacker can be encoded
with one single rule per feature, which leads to a significantly lower com-
putational complexity.

Proposition 2. Given a split candidate pair (f, v), a dataset D and an at-
tacker A such that there is only one rule per feature of the form r : [−∞,+∞]

f−→ε

[−ε,+ε], the computational complexity of deciding whether x belongs to
Dλ

u(f, v, A) is O(1).

Supposing xf ≤ v (a similar reasoning holds for xf > v), an attacked
instance z with zf > v can be crafted with minimum cost by applying the
rule r to x a total of ⌊(v − xf)/ε⌋+ 1 times, where each application bears
a cost equal to ε. If the attacker’s budget K is sufficient to cover such cost,
then the instance x belongs toDλ

u(f, v, A), and this check can be performed
in constant time O(1). By repeating this for every instance in D, we have a
total cost of O(|D|).

The above strategy can be easily generalized to L0-distance attackers
and to every other rule set R where only one rule per feature is given.
Specifically, an analogous yet slightly more involved argument proves the
following result.

Proposition 3. Given a split candidate pair (f, v), a dataset D and an at-
tacker A such that there is only one rule per feature of the form r : [a, b]

f−→k

[δl, δu], the computational complexity of deciding whether x belongs to
Dλ

u(f, v, A) is O(1).

Our experimental evaluation builds on the threat model supported by
the proposition above, which shows that the ternary partitioning can be
efficiently performed in practical use cases.

68

5.5. Experimental Evaluation

5.4.6 From Decision Trees to Tree Ensembles

In this section we introduce a new tree learning algorithm, yet individual
decision trees are rarely used in practice and ensemble methods are gener-
ally preferred for real-world tasks. As anticipated in Section 2.1.1, the most
popular ensemble methods for decision trees are Random Forest (RF) and
Gradient Boosting Decision Trees (GBDT). Extending TREANT to these
ensemble methods is straightforward, because both methods can be seen
as meta-algorithms which build on top of existing tree learning algorithms.
RF builds multiple independent trees t1, . . . , tn by using bagging and per-
node feature sampling in each tj , while in GBDT each tree ti adds a gradi-
ent descent step to minimize the cumulative loss incurred by the previous
trees. Hence, both methods eventually apply an underlying tree learning
algorithm multiple times to different training data.

The only delicate point to notice is that, since the TREANT algorithm is
parametric over an attacker A = (R,K), using the same attacker in the in-
dividual tree constructions is a conservative approach to ensemble learning.
This comes from two factors: first, the construction of each tree tj relies on
a robust splitting procedure which only accounts for attacks against tj , yet
other trees in the ensemble might contribute to make such attacks ineffec-
tive; second, the attacker’s budget K is essentially refreshed along each tree
construction. This conservative approach overestimates the power of the at-
tacker and cannot harm security, though it might unnecessarily downgrade
performance in the unattacked setting. That said, our experimental evalua-
tion in the next section shows that ensembles built using TREANT are very
accurate also in such setting. We leave the design of more sophisticated
ensemble learning techniques to future work.

5.5 Experimental Evaluation

5.5.1 Methodology

We compare the performance of classifiers trained by different learning
algorithms: two standard approaches, i.e., Random Forest [20] (RF) and
Gradient Boosting Decision Trees [63] (GBDT) as provided by the Light-
GBM9 framework; two state-of-the-art adversarial learning techniques, i.e.,
Adversarial Boosting [90] (AB) and Robust Trees [35] (RT); and a Ran-
dom Forest of trees trained using the proposed TREANT algorithm (RF-
TREANT). Notice that the original implementation of AB exploited a heuris-
tic algorithm to quickly find effective adversarial examples, which does not

9https://github.com/microsoft/LightGBM

69

https://github.com/microsoft/LightGBM

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Dataset census wine credit malware

n. of instances 45,222 6,497 30,000 47,580
n. of features 13 12 24 1,000

class distribution (pos.÷neg. %) 25÷75 63÷37 22÷78 96÷4

Table 5.2: Main statistics of the datasets used in our experiments.

guarantee to find the most damaging attack. Our own implementation of
AB, which is built on top of LightGBM, exploits the white-box attack gen-
eration method described in Section 5.3.3 to identify the best adversarial
examples. In this regard, our implementation of AB is more effective than
the original algorithm.

We perform our experimental evaluation on four publicly available data
sets, using three standard validity measures: accuracy, macro F1 and ROC
AUC. We compute all measures both in absence of attacks and under at-
tack, using our white-box attack generation method. We used a 60-20-20
train-validation-test split through stratified sampling. Hyper-parameter tun-
ing on the validation data was conducted to set the number of trees (≤ 100),
number of leaves ({8, 32, 256}) and learning rate ({0.01, 0.05, 0.1}) of the
various ensembles so as to maximize ROC AUC. All the results reported
below were measured on the test data. Observe that all the compared adver-
sarial learning techniques are parametric with respect to the budget granted
to the attacker, modeling his power: we consider multiple instances of such
budget both for training (train budget) and for testing (test budget).

5.5.2 Datasets and Threat Models

We perform our experimental evaluation on four datasets: Census Income,10

Wine Quality,11 Default of Credit Cards,12 and Malware Analysis.13 We
refer to such datasets as census, wine, credit, and malware, re-
spectively. Their main statistics are shown in Table 5.2; each dataset is
associated with a binary classification task.14

We therefore design different threat models by means of sets of rewriting
rules indicating the attacker capabilities, with each set tailored to a given

10https://archive.ics.uci.edu/ml/datasets/census+income
11https://www.kaggle.com/c/uci-wine-quality-dataset/data
12https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
13https://ieee-dataport.org/open-access/malware-analysis-datasets-top-1000-pe-imports
14The wine dataset was originally conceived for a multiclass classification problem; we turned that into a

binary one, where the positive class identifies good-quality wines (i.e., those whose quality is at least 6, on a 0-10
scale) and the negative class contains the remaining instances.

70

https://archive.ics.uci.edu/ml/datasets/census+income
https://www.kaggle.com/c/uci-wine-quality-dataset/data
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://ieee-dataport.org/open-access/malware-analysis-datasets-top-1000-pe-imports

5.5. Experimental Evaluation

dataset. The features targeted by those rules have been selected after a pre-
liminary data exploration stage, where we investigated the importance and
the data distribution of all the features, e.g., to identify the magnitude of
adversarial perturbations. Of course, in a real-world deployment the defi-
nition of the appropriate threat model would depend on the specific appli-
cation scenarios of the trained classifiers: the definitions here considered
are evocative of plausible attack scenarios possibly anticipated by domain
experts, yet they are primarily intended as a way to test the robustness of
the trained models against evasion attacks.

In the case of census, we define six rewriting rules: (i) if a citizen
never worked, he can pretend that he actually works without pay; (ii) if a
citizen is divorced or separated, he can pretend that he never got married;
(iii) a citizen can present his occupation as a generic “other service”; (iv)
a citizen can cheat on his education level by lowering it by 1; (v) a citizen
can add up to $2,000 to his capital gain; (vi) a citizen can add up to 4 hrs
per week to his working hours. We let (i),(ii), and (iii) cost 1, (iv) cost
20, (v) cost 50, and finally (vi) cost 100 budget units. We consider 30, 60,
90, and 120 as possible values for the budget.

In the case of wine, we specify four rewriting rules: (i) the alcohol
level can be increased by 0.5% if its original value is less than 11%; (ii)
the residual sugar can be decreased by 0.25 g/L if it is already greater than
2 g/L; (iii) the volatile acidity can be reduced by 0.1 g/L if it is already
greater than 0.25 g/L; (iv) free sulfur dioxide can be reduced by -2 g/L if it
is already greater than 25 g/L. We let (i) cost 20, (ii) and (iii) cost 30, and
(iv) cost 50 budget units. We consider 20, 40, 60, 80 and 100 as possible
values for the budget.

For credit, the attacker is represented by three rewriting rules: (i) the
repayment status of August and September can be reduced by 1 month if
the payment is delayed up to 5 months; (ii) the amount of bill statement in
September can be decreased by 4,000 NT dollars if it is between 20,000 and
500,000; and (iii) the amount of given credit can be increased by 20,000
NT dollars if it is below 200,000. For each rule, a cost of 10 budget units is
required. We consider 10, 30, 40, and 60 as possible budget values.

Finally, the attacker targeting the malware dataset is modelled by three
rewriting rules, which allow one to flip three binary features from 0 to 1.
These features represent invocations to the following functions: _cexit,
SearchPathW, exit. Each rule has cost 20 and we pick three possible
values of the budget: 20, 40 and 60. Note that since the malware dataset
is imbalanced, at training time we oversampled the minority class so as to
increase ten times the corresponding instances, yet the oversampling was

71

Chapter 5. Treant: Training Evasion-Aware Decision Trees

not applied at test time. For such imbalanced datasets, accuracy values are
less relevant than macro F1 and ROC measures, for which measures a trivial
classifier always predicting the majority class would barely score 0.50.

5.5.3 Experimental Evaluation

The primary goal of our experiments is answering the following research
questions:

1. What is the robustness of standard decision tree ensembles like RF
and GBDT against evasion attacks?

2. Can adversarial learning techniques improve robustness against eva-
sion attacks and which technique is the most effective?

3. What is the impact of the training budget on the effectiveness of ad-
versarial learning techniques?

4. What are the key structural properties of the decision trees trained by
TREANT, i.e., why do they provide appropriate robustness guarantees?

5. What is the performance overhead of TREANT compared to other ad-
versarial learning techniques?

We report on the answer to each research question in a separate sub-section.

5.5.3.1 Robustness of Standard Decision Tree Ensembles

In Figure 5.3, we show how the accuracy, F1 and ROC AUC of standard
ensembles of decision trees trained by RF and GBDT change in presence of
attacks. The x-axis indicates the testing budget of the attacker, normalized
in the range [0, 1], with a value of 0 denoting the unattacked scenario.

Two main findings appear clear from the plots. First, both GBDT and RF
are severely impacted when they are attacked, and their performance dete-
riorates to the point of turning them into almost random classifiers already
when the attacker spends just half of the maximum budget, e.g., in the case
of the wine dataset. On that dataset, the drop of ROC AUC ranges from
-25.8% to -40.6% for GBDT and from -15.5% to -28.4% for RF, when the
attacker is supplied just half of the budget. Second, RF typically behaves
better than GBDT on our validity measures, with a few cases where the im-
provement is very significant. A possible explanation of this phenomenon
is that RF usually exhibits better generalization performance, while GBDT
is known to be more susceptible to jiggling data, therefore more likely to
overfit [122]. Since robustness to adversarial examples in a way resembles

72

5.5. Experimental Evaluation

Figure 5.3: The impact of the attacker on RF and GBDT.

the ability of a model to generalize, RF is less affected by the attacker than
GBDT. Still, the performance drop under attack is so massive even for RF
that none of the traditional methods can be reliably adopted in an adversar-
ial setting.

The higher resiliency of RF to adversarial examples motivated our choice
to deploy TREANT on top of such ensemble method in our implementation.
It is worth remarking though that TREANT is still general enough to be
plugged into other frameworks for ensemble tree learning.

5.5.3.2 Robustness of Adversarial Learning Techniques

We now measure the benefit of using adversarial learning techniques to con-
trast the impact of evasion attacks at test time. More specifically, we vali-
date the robustness of our method in comparison with the two state-of-the-
art adversarial learning methods: Adversarial Boosting (AB) and Robust
Trees (RT). Note that the authors of RT did not experimentally compare RT
against AB in their original work [35].

We first investigate how robust a model is when it is targeted by an at-
tacker with a test budget exactly matching the training budget. This simu-
lates the desirable scenario where the threat model was accurately defined,
i.e., each model is trained knowing the actual attacker capabilities. Ta-
ble 5.3 shows the results obtained by the different adversarial learning tech-
niques for the different training/test budgets. It is clear how our method im-
proves over its competitors, basically for all measures and datasets. Most
importantly, the superiority of our approach often becomes more apparent

73

Chapter 5. Treant: Training Evasion-Aware Decision Trees

AB RT RF-TREANT

Acc. F1 ROC Acc. F1 ROC Acc. F1 ROC

census
B

ud
ge

t

30 0.85 0.78 0.90 0.81 0.69 0.88 0.85 0.77 0.90
60 0.78 0.69 0.83 0.81 0.70 0.87 0.85∗ 0.77 0.89
90 0.80 0.71 0.83 0.78 0.61 0.86 0.85∗ 0.77 0.89
120 0.79 0.69 0.79 0.74 0.56 0.53 0.84∗ 0.76 0.89

wine

B
ud

ge
t

20 0.76 0.74 0.82 0.73 0.70 0.80 0.76 0.74 0.82
40 0.72 0.69 0.79 0.63 0.57 0.67 0.73∗ 0.69 0.80
60 0.72 0.69 0.79 0.59 0.49 0.55 0.72 0.68 0.80
80 0.72 0.68 0.77 0.62 0.54 0.63 0.73∗ 0.69 0.80
100 0.70 0.67 0.76 0.65 0.57 0.71 0.73∗ 0.69 0.80

credit

B
ud

ge
t

10 0.81 0.64 0.75 0.81 0.63 0.75 0.82∗ 0.66 0.77
30 0.79 0.54 0.66 0.81 0.61 0.73 0.81 0.62 0.75
40 0.78 0.55 0.66 0.81 0.62 0.73 0.81 0.62 0.74
60 0.78 0.53 0.62 0.81 0.62 0.72 0.81 0.62 0.74

malware

B
ud

ge
t 20 0.94 0.78 0.95 0.94 0.83 0.97 0.94 0.83 0.97

40 0.94 0.79 0.95 0.94 0.83 0.97 0.94 0.83 0.97
60 0.88 0.69 0.94 0.94 0.83 0.97 0.95 0.83 0.97

Table 5.3: Comparison of adversarial learning techniques (training and test budget
coincide). The asterisk denotes statistically significant difference against the best

competitor with p value 0.01 under McNemar test.

as the strength of the attacker grows. For example, the percentage improve-
ment in ROC AUC over AB on the credit dataset amounts to 2.1% for
budget 10, while this improvement grows to 19.6% for budget 60. It is also
interesting to show that the heuristic approach implemented in RT is not
always representative of all the possible attacks which might occur at test
time: RT behaves similarly to our method on the credit and malware
datasets, but it performs way worse on the census and wine datasets.
In particular, the heuristic approach exploited by RT is most effective on
the malware dataset, likely due to the presence of simple binary features.
Indeed, this proves the effectiveness of our proposed strategy in presence
of more complex datasets where the attacker behaviour cannot be approxi-
mated through simple heuristic approaches.

The second analysis we carry out considers the case of adversarial learn-
ing techniques trained with the maximum available budget. We use secu-
rity evaluation curves to measure how the performance of the compared

74

5.5. Experimental Evaluation

Figure 5.4: Comparison of adversarial learning techniques for different test budgets and
maximum train budget.

methods changes when the test budget given to the attacker increases up
to the maximum available. The results are shown in Figure 5.4, where we
normalized the test budget in [0, 1]. The security evaluation curves show
that our method constantly outperforms its competitors on all datasets and
measures, especially when the attacker gets stronger. The price to pay for
this increased protection is just a slight performance degradation in the
unattacked setting, which is always compensated under attack. Indeed, the
performance of our method is nearly constant and insensitive to variations
in the attacker’s budget, which is extremely useful when such information
is hard to exactly quantify for security experts. We observe again that RT
cannot always cope with strong attackers: this is particularly apparent in the
case of the census dataset, where the model trained by RT is completely
fooled when the test budget reaches its maximum.

5.5.3.3 Impact of the Training Budget

Another intriguing aspect to consider is how much adversarial learning
techniques are affected by the assumptions made on the attacker’s capa-
bilities upon learning, i.e., the value of the training budget. Figure 5.5 is
essentially the “dual” of Figure 5.4, where we consider the strongest possi-
ble attacker (with the largest test budget) and we analyze how much mod-
els learned with different training budgets are able to respond to evasion
attempts.

75

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Figure 5.5: Comparison of adversarial learning techniques for different train budgets
and maximum test budget.

We draw the following observations. First, our method leads to the
most robust models for all measures and datasets, irrespective of the budget
used for training. Moreover, our method is the one which most evidently
presents a healthy, expected trend: the greater the training budget used to
learn the model, the better its performance under attack. This trend eventu-
ally reaches its peak when the training budget matches the test budget. AB
and RT show a more unpredictable behavior, as their performance fluctu-
ates up and down, and sometimes suddenly drops. This is likely due to the
fact that these approaches are heuristics and eventually shortsighted with
respect to the set of all the attacks which might occur at test time. Finally,
we remark a last appealing, distinctive aspect of our method: even when
the training uses a significantly smaller budget than the one used by the
attacker at test time, it already achieves nearly optimal performance. The
same is not true for its competitors, which complicates their deployment in
real-world settings, since it requires security experts to be very precise in
their budget estimates.

5.5.3.4 Structural Properties of Decision Trees

To better understand why our approach provides improved robustness against
attacks, we studied the feature importance of the trained adversarial learn-
ing models on the different datasets (considering the highest training bud-
get). Figure 5.6 shows the plots built for the wine and credit datasets,

76

5.5. Experimental Evaluation

Figure 5.6: Feature importance for wine and credit datasets. The grey background
denotes attacked features.

where we use a grey background to denote attacked features.
In the case of the wine dataset, we observe that the alcohol level (though

attacked) is a very useful feature for all the models. The importance of this
feature seems inherent to the training data, however the figure is very dif-
ferent for other attacked features, like residual sugar and volatile acidity.
These features are quite useful overall for AB and RT, while they are es-
sentially not used by our model: this justifies the improved robustness of
our method over its competitors. As to the case of the credit dataset,
the feature importance of RT follows the same lines of our model: attacked
features are essentially not used, while AB is fooled into giving a lot of
importance to them. This motivates why AB performs quite worse than the
other two methods there.

5.5.3.5 Efficiency Analysis

We conclude our experiments with an efficiency evaluation of our algo-
rithm. We note that code optimization was not the main goal of our pro-
totype implementation, i.e., we were more concerned about robustness to
attacks than about efficiency. However, it is still possible to draw interest-
ing conclusions about efficiency as well. Figure 5.7 compares the training
times of our models against those of the models trained by our implemen-
tation of RT on the wine and credit datasets. This analysis is insightful,
because RT is essentially a simplified version of our approach, where the
ternary partitioning is heuristically approximated and attack invariance is
not enforced upon tree construction.

The figure reports the normalized running times with respect to the
fastest training time, i.e., RT with the lowest train budget, as a function
of the attacker budget. The figure also plots the amount of generated at-
tacks in terms of the multiplicative increase of the original training dataset,

77

Chapter 5. Treant: Training Evasion-Aware Decision Trees

Figure 5.7: Normalized training times for the wine and credit datasets. The black
line shows the amount of attacks generated during training in terms of a

multiplicative factor of the original dataset size.

due to the corrupted instances an attacker can generate for each budget.
Regarding RF-TREANT, we report a breakdown of its cost into loss op-

timization and tree growing. The impact of the loss optimization ranges
between 20% and 30% of the total time. Fluctuations in the loss optimiza-
tion cost are due to the use of a numerical solver, whose inner workings
and resolution strategies may change on the basis of the number of vari-
ables, constraints, etc., of the optimization problem. The remaining cost of
the tree growing phase, which includes the ternary partitioning, dominates
the overall RF-TREANT training time. Overall, the cost of RF-TREANT is
pretty stable when varying the attacker budget.

The figure confirms that RT is indeed faster than our approach, for all
budgets. For the wine dataset, the overhead is essentially of a 3x factor,
while for credit the cost of the two algorithms is actually very close. The
overhead on wine however is largely justified by the complete coverage
of all the possible attack strategies, which greatly improves the robustness
guarantees provided by our approach (see Table 5.3). An interesting trend
is shown on the credit dataset, where with an increased budget the cost
of solving the optimization problem increases, while the tree growing itself
becomes cheaper than that of RT. This is likely due to the larger number of
attacks that induces more complex optimization problems to be solved, i.e.,
with more constraints required to enforce attack invariance. At the same
time, such constraints reduce the tree growing opportunities, thus reducing
the cost of the tree growing.

It is also interesting to note that the number of generated attacks grows
much faster than the training times: for example, when moving from budget
20 to budget 100, the number of generated attacks for the wine dataset in-
creases from around 4x to around 9x the dataset size, yet the overall training
time does not significantly increase. This means that the attack generation
takes only a limited fraction of the training time, because each feature just

78

5.6. Summary

needs to be attacked independently of all the others. Similar considerations
apply to the credit dataset, though it is worth noticing that the overhead
of our approach over RT is much more limited there for all budgets.

5.6 Summary

This chapter proposes TREANT, a new adversarial learning algorithm that
is able to grow decision trees that are resilient against evasion attacks.
TREANT is the first algorithm which greedily, yet soundly, minimizes an
evasion-aware loss function, capturing the attacker’s goal of maximizing
prediction errors. Our experiments, conducted on four publicly available
datasets, confirm that TREANT produces accurate tree ensembles, which
are extremely robust against evasion attacks. Compared to the state of the
art, TREANT exhibits a significant improvement.

79

CHAPTER6
EiFFFeL: Enforcing Fairness in Forests by

Flipping Leaves

Nowadays, Machine Learning (ML) techniques are extensively adopted in
many socially sensitive systems, thus requiring to carefully study the fair-
ness of the decisions taken by such systems. Many approaches have been
proposed to address and to make sure there is no bias against individuals or
specific groups which might originally come from biased training datasets
or algorithm design.

In this chapter, we propose a fairness enforcing approach called EiFF-
FeL –Enforcing Fairness in Forests by Flipping Leaves– which exploits
tree-based or leaf-based post-processing strategies to relabel leaves of se-
lected decision trees of a given forest. Experimental results show that our
approach achieves a user-defined group fairness degree without losing a
significant amount of accuracy.

6.1 Introduction

Algorithms proposed recently in bias mitigation has focused on neural net-
works. However, the efficiency and explainability of tree ensembles for

81

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

many applications makes them preferable to be implemented in many ar-
eas. Even though there are few works focused on studying fairness for
trees and tree ensembles, notably [67, 88, 141, 184], most of them are fo-
cused on single decision tree classifiers and in-processing approaches. Our
interest mainly lies in developing fair random forest classifiers with post-
processing approaches designed to relabel leaves with accuracy and dis-
crimination constraints. We take advantage of implementing a post-process
approach, in which we do not require to know the training process.

Contributions. We focus on decision tree ensembles for binary classi-
fication tasks susceptible to group discrimination with respect to attributes
sensitive classes such as age, gender, race, etc. We propose a post-processing
approach named EiFFFeL –Enforcing Fairness in Forests by Flipping Leaves–
that given a forest, however trained, selects a subset of its leaves and changes
their predictions so as to reduce the discrimination degree of the forest.

We summarize the main contributions of our work as follows.

1. We propose an iterative leaf flipping post-processing algorithm to en-
sure group fairness .

2. We devise tree-based and leaf-based flipping methodologies on top of
random forest classifier to enforce fairness.

3. We report experimental evaluations of group fairness on three dif-
ferent datasets, aiming to empirically show the effectiveness of our
method.

6.2 Fairness in Machine Learning

Without loss of generality, we consider a binary classifier g : X → Y that
maps an input feature vector x ∈ X to a binary class label y ∈ Y =
{0, 1}. Among the attributes in the feature spaceX , a binary attribute called
sensitive feature S ∈ {0, 1} identifies the aspects of data which are socio-
culturally precarious for the application of machine learning. Specifically,
given x ∈ X and x.S the value of the sensitive attribute S for the given
instance, if x.S = 0 then we say that x belongs to the unprivileged group
that could possibly be discriminated.

6.2.1 Fairness and Discrimination Definitions

To achieve non-discriminatory and fair machine learning model, it is essen-
tial to first define fairness. In a broad context, fairness can be seen from an
individual or a group point of view. Individual fairness requires that similar

82

6.2. Fairness in Machine Learning

individuals being treated similarly. Group fairness requires fairness of the
classification model to apply on the two groups, defined through the binary
sensitive feature S [54]. Our work focuses on group fairness, in which a
group of individuals identified by S risks for experiencing discrimination.

We define the discrimination of a classifier measured by group fairness
as follows. Recall that attribute S = 0 identifies the unprivileged group,
while S = 1 corresponds to the privileged one, whose members are not
discriminated but rather favoured by a learnt ML model. Moreover, we
assume that the values 1 and 0 of class label Y represent favorable and
unfavorable outcomes, respectively. For example, Y = 1 might correspond
to the decision of granting a loan, thus favouring a bank customer.

A classifier g applied over x ∈ X is non-discriminatory if its predic-
tion g(x) is statistically independent of the sensitive attribute S. Hence, a
classifier is fair if both groups have equal probability of being classified as
belonging to the favorable class, which is the desirable outcome.

Using the problem formalization by [88], the discrimination of a model
g with respect to a sensitive attribute S and a dataset D = {(xi, yi)}Ni=1 can
be computed as follows:

discD,S,g :=
|{(x, y) ∈ D | x.S = 1 ∧ g(x) = 1}|

|{(x, y) ∈ D | x.S = 1}|

− |{(x, y) ∈ D | x.S = 0 ∧ g(x) = 1}|
|{(x, y) ∈ D | x.S = 0}|

,

where x.S refers to the sensitive attribute of the instance x. When S and
D are clear from the context we simply use the notation discg.

To clarify the above definition, let’s consider the case of a classifier g
used by the HR staff of a company. The classifier g suggests hiring when
g(x) = 1 vs. not hiring when g(x) = 0. We may wonder whether the
classifier favours men (S = 1) over women (S = 0). The value of discg is
large if the ratio of men with a favorable hiring prediction is larger than the
ratio of women with a favorable hiring prediction. By minimizing discg we
can provide a fairer classifier w.r.t. the gender attribute.

83

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

Table 6.1: Notation Summary

Symbol Meaning

D Dataset
S Sensitive feature
λ leaf
Λ Set of Leaves to be flipped

discF Forest discrimination
disct Tree discrimination
accuF Forest accuracy
∆discλ change in discrimination after flipping
∆accuλ change on accuracy after flipping

γ Ratio of change in accuracy and discrimination

6.3 The EiFFFel Algorithm

We propose a novel post-processing algorithm named EiFFFeL that, given
a forest of decision trees for a binary classification task, modifies the pre-
diction of a carefully chosen set of leaves so as to reduce the forest’s dis-
crimination degree. This process is named leaf relabeling, or, since we are
focusing on a binary prediction task, leaf flipping.

The rationale is to flip the prediction of the leaves that contribute the
most to the model discrimination degree so as to make them fair. Recall that
the score discD,S,g adopted to evaluate the model’s discrimination depends
on the number of privileged/unprivileged instances with a favorable predic-
tion. Therefore, by flipping a leaf label we can increase or decrease the
number of instances that contribute to the discrimination score. Note that,
while leaf relabeling can be done judiciously so as to reduce discrimination,
modifying the leaf predictions determined at training time may reduce the
accuracy of the whole forest.

Therefore the goal of EiFFFeL is to find a sweet-spot in the accuracy vs.
discrimination trade-off. While leaf relabeling was introduced by [88] for
a single tree, we improve such strategy and extend it to a forest of decision
trees.

In this work we focus on Random Forests ensembles, which, for their
high accuracy and limited bias, are an optimal candidate for building a fair
classifier. The approach is however general and we leave to future work the
application to other tree ensembles, such as those obtained by bagging and
boosting approaches.

The proposed EiFFFel algorithm accepts a user-defined maximum dis-
crimination constraint ϵ and a minimum relative accuracy drop constraint α.
Given a forestF , it iteratively modifies the prediction associated with a sub-
set of the leaves of F , until either the desired discrimination ϵ is achieved,

84

6.3. The EiFFFel Algorithm

or the maximum required accuracy drop α is hit.
Below we first illustrate the Leaf Scoring strategy used to find the most

discriminative leaves of a tree, and then we illustrate two variants of the
EiFFFeL algorithm.

Algorithm 5 SCORE_LEAVES

Input: Decision Tree t, Dataset D, Sensitive feature S
Output: Candidate flipping leaves Λ

1: Λ← ∅
2: for all λ ∈ t | ¬λ.flipped do

3: ∆accuλ ← −abs
(

|Dλ
y=1|−|Dλ

y=0|
|D|

)
4: ∆discλ ← sign

(
|Dλ

y=1| − |Dλ
y=0|

)
·
(

|Dλ
S=1|

|DS=1| −
|Dλ

S=0|
|DS=0|

)
5: γ ← ∆discλ

∆accuλ

6: if γ ≥ 0 then
7: λ.score← γ
8: Λ← Λ ∪ {λ}
9: end if

10: end for
11: return Λ

6.3.1 Leaf Scoring

EiFFFeL borrows from [88] a simple strategy for scoring leaves according
to their impact ∆accuλ and ∆discλ on accuracy and discrimination respec-
tively. Then, the ratio γ between the two is used as a score to greedily select
the best leaves to be flipped.

We proceed as described in Alg. 5. We consider only leaves of the tree
that were not flipped during previous iteration of the EiFFFeL algorithm
(see subsection below). For those leaves we compute the accuracy and
discrimination variation in the case of flipping the leaf prediction. We illus-
trate shortly the computations below, please refer to [88] for a more detailed
description.

The change in accuracy ∆accuλ clearly depends on the number of in-
stances of D that fall into the leaf λ denoted with Dλ. The training process
sets the leaf prediction to the majority class among such instances. There-
fore, when flipping the leaf prediction the accuracy may only decrease de-
pending on the instances with label 1 and 0, denoted by Dλ

y=1 and Dλ
y=0

respectively. The difference between the size of these two sets results in
the accuracy loss as computed in line 3.

The change in discrimination ∆discλ depends on the number of privi-
leged and unpriviledged instances that fall in the leaf λ respectively denoted

85

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

by Dλ
S=1 and Dλ

S=0, and on their analogous on the whole dataset DS=1 and
DS=0. If the leaf prediction equals 1 (favourable class), then increasing
Dλ

S=1 would increase the discrimination, while increasing Dλ
S=0 would de-

crease it. The opposite holds if the prediction of the leaf equals 0 (un-
favourable class). As the original leaf prediction depends on the majority
of the instances betweenDλ

y=1 andDλ
y=0, the sign of their difference is used

to correct the above contributions as computed in line 4.
The ratio γ = ∆discλ/∆accuλ is positive if the flipping generates a

discrimination drop, and it is large if the benefit to discrimination is larger
than the harm to accuracy. If the value of γ is positive, then this is stored
with the leaf λ, and λ is recorded into the set of candidate leaves Λ. The set
Λ is eventually returned and exploited during the iterations of EiFFFeL.

Algorithm 6 EiFFFeL-TF (Tree-based Flipping)

Input: Random Forest classifier F , Discrimination Constraint ϵ ∈ [0, 1],Accuracy Constraint α ∈
[0, 1],Training Dataset D,Sensitive feature S

Output: Fair Random Forest F
1: for all t ∈ F do
2: t.f lipped← false
3: for all λ ∈ t do
4: λ.flipped← false
5: end for
6: end for
7: accu∗

F ←
|Dy=1∧F(x)=1| + |Dy=0∧F(x)=0|

|D|
8: ∆accuF ← 0
9: while |{t ∈ F | ¬t.f lipped}| > 0 ∧ discD,S,F > ϵ ∧ ∆accuF < α do

10: t† ← argmaxt∈F discD,S,t

11: Λ← SCORE_LEAVES(t†,D, S)
12: if Λ ̸= ∅ then
13: for all λ ∈ Λ do
14: λ.pred = 1− λ.pred
15: end for
16: end if
17: t†.f lipped = true

18: accuF ← |Dy=1∧F(x)=1| + |Dy=0∧F(x)=0|
|D|

19: ∆accuF ← accu∗
F − accuF

20: end while
21: return F

6.3.2 EiFFFeL Leaf Flipping Strategies

By exploiting the scoring technique discussed before, we propose two strate-
gies to choose which trees and which leaves in those trees to flip.

The first strategy, named Tree-based Flipping, is illustrated in Alg. 6.
During each iteration of EiFFFeL, the tree t† with the largest discrimina-

86

6.3. The EiFFFel Algorithm

tion degree is greedily selected: this is the best tree to be attacked in order
to significantly reduce the discrimination of the full forest. Then, we use
the previous scoring technique to find the set of leaves Λ in t† that should
be relabeled. If Λ is not empty, the predictions λ.pred of such leaves will
be flipped. Then, the whole tree is marked as already flipped. The selec-
tion is repeated by considering only the remaining non-flipped trees. The
algorithm ends when all trees have been flipped, or when the desired dis-
crimination ϵ is achieved, or when tolerated accuracy drop α is met. Note
that the accuracy drop is computed by comparing the accuracy of the orig-
inal forest with the accuracy of the current forest after the flipping step.

Algorithm 7 EiFFFeL-LF (Leaf-based Flipping)

Input: Random Forest classifier F , Discrimination Constraint ϵ ∈ [0, 1], Accuracy Constraint α ∈
[0, 1], Training Dataset D, Sensitive feature S

Output: Fair Random Forest F
1: for all t ∈ F do
2: t.f lipped← false
3: for all λ ∈ T do
4: λ.flipped← false
5: end for
6: end for
7: accu∗

F ←
|Dy=1∧F(x)=1| + |Dy=0∧F(x)=0|

|D|
8: ∆accuF ← 0
9: while |{t ∈ F | ¬t.f lipped}| > 0 ∧ discD,S,F > ϵ ∧ ∆accuF < α do

10: t† ← argmaxt∈F discD,S,t

11: Λ← SCORE_LEAVES(t†,D, S)
12: if Λ = ∅ then
13: t.f lipped← true
14: else
15: λ† ← argmaxλ∈Λ λ.score
16: λ†.f lipped = true
17: λ†.pred = 1− λ.pred

18: accuF ← |Dy=1∧F(x)=1| + |Dy=0∧F(x)=0|
|D|

19: ∆accuF ← accu∗
F − accuF

20: end if
21: end while
22: return F

Such tree-based strategy might be too aggressive, as it immediately flips
all the candidate leaves of the selected tree. Indeed, only a few leaves may
be sufficient to meet our discrimination and accuracy requirements. There-
fore we propose a second strategy, named Leaf-Based Flipping, illustrated
in Alg 7. As in the former strategy, we first select the tree t† with the largest
discrimination. Then we use the leaf scoring technique to find a set of can-
didate leaves from t†. If such set is empty, e.g., because they were already

87

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

flipped or they cannot improve the discrimination, the full tree is marked
as flipped and the procedure is repeated on the remaining non-flipped trees.
Otherwise, the leaf with the largest score λ† is selected, marked as flipped,
while its prediction is inverted. The process is repeated until all trees have
been flipped, or the desired discrimination ϵ is achieved, or the tolerated
accuracy drop α is met.

We argued that the Leaf-based approach exploits a more fine-grained
tuning of the given forest, and therefore it can achieve the desired accuracy
with a smaller set of alterations. Indeed, reducing the flips applied to the
forest provides a larger accuracy.

6.4 Experimental Evaluation

6.4.1 Datasets.

We use datasets publicly available, widely used in fairness literature, con-
cerning binary classification. We pre-process them using one-hot encoding
for categorical features, binary encoding of sensitive feature, and removing
of instances containing missing values. Moreover, we use an 80/20 train-
ing/test split.

• Adult: The Adult UCI income dataset [53] contains 14 demographic
attributes of more than 45,000 individuals, together with class labels
which states whether their income is higher than $50K or not. As
sensitive attribute, we use the gender encoded as a binary attribute 1/0
for male/female respectively.

• COMPAS: The COMPAS dataset [5] contains data collected on the
use of the COMPAS (Correctional Offender Management Profiling for
Alternative Sanctions) risk assessment tool. It contains 13 attributes
of more than 7,000 convicted criminals, with class labels that state
whether or not the individual reoffend within 2 years of her/his most
recent crime. We use race as sensitive attribute encoded as a binary
attribute 1/0 for Others/African-American, respectively.

• Bank: Bank marketing dataset [120] contains 16 features about 45,211
clients of direct marketing campaigns of a Portuguese banking insti-
tution. The goal is to predict whether the client will subscribe or not
to a term deposit. We consider the age as sensitive attribute, encoded
as a binary attribute 1/0, indicating whether the clientâs age is ≥25 or
<25, respectively.

88

6.4. Experimental Evaluation

6.4.2 Experimental Setup.

We apply our proposed EiFFFeL algorithm over a Random Forest classi-
fier with/without the fair splitting of nodes for individual base trees, and
evaluate the performance of the algorithms in terms of model accuracy and
discrimination over the three datasets mentioned above.

We compare our results against a DFRF classifier (Distributed fair ran-
dom forest) [57], which only includes fair decision trees within the for-
est. The setting of hyper-parameters of DFRF are the same as the one
described in the original work. We use fair split and sensitive feature as
hyper-parameters, along with tree number and maximum tree depth. Ad-
ditionally, we also compare our results against EOP (Equalized Odds Post-
processing) [70, 138], a random forest classifier with the same number of
base estimators and maximum depth as ours. After training and achieving
the desired equalized odd we score the discrimination in the same approach
we used for our experiments.

In conclusion, the comparisons of accuracy and discrimination values
are among the following methods:

• DFRF [57],1 which adds base trees to the forest only if they are fair;

• EOP [70, 138],2 which adopts a post-processing method based on
achieving equalized odds requiring the privileged and unprivileged
groups to have the same false negative rate and same false positive
rate;

• our implementations of EiFFFeL-TF and EiFFFeL-LF algorithms, whose
post-processing is applied to a plain Random Forest of trees;

• the same post-processing techniques of EiFFFeL-TF and EiFFFeL-
LF applied on top of a random forest with discrimination aware base
trees [88]. These versions are denoted by EiFFFeL-TF⋆ and EiFFFeL-
LF⋆.

Finally, the baseline accuracy and discrimination used to compare the
various methods are the ones obtained by a plain Random Forest of trees,
trained on the three datasets through the scikit-learn algorithm Random
Forest Classifier3. The various EiFFFeL methods are applied to the same
baseline Random Forest.

1https://github.com/pjlake98/Distributed-Fair-Random-Forest
2https://github.com/Trusted-AI/AIF360/blob/master/aif360/algorithms/

postprocessing/calibrated_eq_odds_postprocessing.py
3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

89

https://github.com/pjlake98/Distributed-Fair-Random-Forest
https://github.com/Trusted-AI/AIF360/blob/master/aif360/algorithms/postprocessing/calibrated_eq_odds_postprocessing.py
https://github.com/Trusted-AI/AIF360/blob/master/aif360/algorithms/postprocessing/calibrated_eq_odds_postprocessing.py
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

6.4.3 Results.

Tables 6.2), 6.3), and 6.4) compare the decreases in accuracy and discrim-
ination, obtained by the different algorithms, on the three datasets with
respect to the baseline results obtained by plain Random Forest models.

DFRF EOP EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF⋆ EiFFFeL-LF⋆

∆Accu↓ ∆Disc ↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑

Adult ϵ

0.01 7(0.78) 18(0.02)

2(0.83) 7(0.13)

4(0.81) 19(0.01) 4(0.81) 20(0) 6(0.79) 15(0.05) 3(0.82) 17(0.03)

0.05 3(0.82) 13(0.07) 3(0.82) 16(0.04) 2(0.83) 15(0.05) 6(0.79) 16(0.04) 3(0.82) 16(0.04)

0.10 4(0.81) 15(0.05) 2(0.83) 12(0.08) 1(0.84) 12(0.08) 1(0.84) 12(0.08) 2(0.83) 10(0.1)

0.15 2(0.83) 10(0.1) 0(0.85) 8(0.12) 0(0.85) 9(0.11) 0(0.85) 7(0.13) 0(0.85) 7(0.13)

Table 6.2: Comparison of accuracy reduction and discrimination decrease on Adult
dataset with respect to baseline accuracy of 0.85 and discrimination 0.2. Along with

∆Accu and ∆Disc, we also report (within parentheses) the final accuracy and
discrimination values obtained.

DFRF EOP EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF⋆ EiFFFeL-LF⋆

∆Accu↓ ∆Disc ↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑

Bank ϵ

0.01 9(0.73) 13(0.05)

0(0.82) 14(0.04)

7(0.75) 17(0.01) 10(0.72) 15(0.03) 8(0.74) 14(0.04) 5(0.77) 10(0.08)

0.05 4(0.78) 11(0.07) 3(0.79) 13(0.05) 8(0.74) 14(0.04) 8(0.74) 13(0.05) 5(0.77) 13(0.05)

0.10 4(0.78) 6(0.12) 2(0.80) 10(0.08) 1(0.81) 7(0.11) 7(0.75) 9(0.09) 4(0.78) 8(0.10)

0.15 4(0.78) 9(0.09) 0(0.82) 4(0.14) 0(0.82) 4(0.14) 6(0.76) 5(0.13) 2(0.80) 5(0.13)

Table 6.3: Comparison of accuracy reduction and discrimination decrease on Bank
dataset with respect to baseline accuracy of 0.82 and discrimination 0.18. Along with

∆Accu and ∆Disc, we also report (within parentheses) the final accuracy and
discrimination values obtained.

Recall that increasing ϵ, we reduce the space for improving discrimi-
nation, and as a side effect, we preserves the baseline accuracy. Indeed,
in these experiments the accuracy constraint α was set to 1, so that there
are no limits in the possible accuracy reduction ∆Accu. This allows us to
compare our methods against DFRF and EOP, which do not have this α
constraint. Indeed, EOP is completely parameter free, and does not support
neither α nor ϵ.

In more details, Tables 6.2), 6.3), and 6.4) report, for different values of
ϵ in the set {0.01, 0.05, 0.10, 0.15}, the ∆Accu and ∆Disc values obtained
by the different algorithms, where ∆Accu and ∆Disc indicate the abso-
lute difference in accuracy and discrimination w.r.t. the baselines. Indeed,
we express these ∆ absolute differences in points/hundredths (each point
corresponds to 1/100). Note that while greater values of ∆Disc are better,
greater values of ∆Accu are worse, so a trade-off is needed. In addition,

90

6.4. Experimental Evaluation

DFRF EOP EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF⋆ EiFFFeL-LF⋆

∆Accu↓ ∆Disc ↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑ ∆Accu↓ ∆Disc↑

COMPAS ϵ

0.01 11(0.58) 28(0.02)

4(0.65) 5(0.25)

25(0.44) 29(0.01) 5(0.64) 26(0.04) 9(0.60) 29(0.01) 1(0.68) 7(0.23)

0.05 5(0.64) 13(0.17) 12(0.57) 28(0.02) 5(0.64) 22(0.08) 9(0.60) 28(0.02) 1(0.68) 7(0.23)

0.10 4(0.65) 7(0.23) 7(0.62) 21(0.09) 5(0.64) 21(0.09) 1(0.68) 21(0.09) 1(0.68) 7(0.23)

0.15 2(0.67) 6(0.24) 1(0.68) 19(0.11) 2(0.67) 15(0.15) 0(0.69) 16(0.14) 1(0.68) 7(0.23)

Table 6.4: Comparison of accuracy reduction and discrimination decrease on Compas
dataset with respect to baseline accuracy of 0.69 and discrimination 0.3. Along with

∆Accu and ∆Disc, we also report (within parentheses) the final accuracy and
discrimination values obtained.

besides the absolute ∆ values, we also report (within parentheses) the fi-
nal values for accuracy and discrimination score obtained by the various
techniques.

For example, for the Adult dataset (Table 6.2) and ϵ = 0.01, EiFFFeL-
TF can reach a very low discrimination score of 0.01, by only losing 4
points in accuracy (from 0.85 of the baseline to 0.81). In comparison, the
best results we can obtain with DFRF in terms of discrimination is a score
of 0.02, by losing 7 points in accuracy (from 0.85 of the baseline to 0.78).
Overall, our algorithms are capable of reducing discrimination better than
DFRF while maintaining the same accuracy. Also EOP does not work well,
as the best discrimination score is only 0.13, by losing 2 points in accu-
racy. In addition, using ϵ = 0.15 for EiFFFeL-TF and EiFFFeL-LF (also
EiFFFeL-TF⋆ and EiFFFeL-LF⋆), we can decrease the baseline discrimina-
tion of about 7− 9 points, by keeping the same accuracy of the baseline.

Results for the Bank dataset (Table 6.3) shows that EiFFFeL-TF can
reach for ϵ = 0.01 the desired discrimination score, but losing 7 points
in accuracy (from 0.82 to 0.75), whereas DFRF has worse discrimination
score of 0.05 and a worse accuracy of 0.73. EOP does not lose any accuracy
for lowering the discrimination score by 14 points to 0.04.

Finally, considering the results obtained for the COMPAS dataset (Table
6.4), we observe in some cases DFRF works pretty well, but always one of
our algorithms gets better results. For example, for ϵ = 0.01, the best
discrimination score of 0.01 is obtained by EiFFFeL-TF⋆, by only losing 9
points in accuracy, against the 11 points lost by DFRF with a discrimination
score of 0.02.

Figures 6.1, 6.2, and 6.3 report the same data of the above tables, where
we varied the discrimination constraint ϵ = {0.01, 0.05, 0.1, 0.5}, with no
constraints on accuracy. The results obtained by EOP are not plotted, as its
results are always worse than the competitors and do not vary with ϵ.

91

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

Specifically, Figure 6.1 reports results for the three datasets, and aims at
showing the tradeoff of accuracy vs. discrimination when we vary ϵ. Recall
that we are interested in achieving low discrimination and high accuracy,
and thus the best tradeoff corresponds to points of curves falling in the top-
left quadrant.

Figure 6.1: Accuracy vs. discrimination scores after relabeling for constraints
ϵ = 0.01, 0.05, 0.1, 0.15.

Figure 6.2: Accuracy of the model as a function the ϵ constraint.

First, we highlight that DRFR performs poorly on most settings com-
pared to the proposed EIFFFeL variants. On the Adult dataset, EIFFFeL-LF
dominates the other algorithms for all values of ϵ and achieves the desired
or better discrimination with the largest accuracy. To appreciate the strict
relationships between of the setting of ϵ and the discrimination/accuracy
obtained, the reader can refer to the other two Figures 6.1 and 6.2.

Returning to Figure 6.1, the COMPAS EIFFFeL-LF provides the best
performance together with EIFFFeL-TF⋆. This is the only dataset where
EIFFFeL-TF⋆ provides interesting performance, and thus the discrimina-

92

6.4. Experimental Evaluation

Figure 6.3: Discrimination scores as a function of the ϵ constraint.

EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF⋆ EiFFFeL-LF⋆

Accu Disc Accu Disc Accu Disc Accu Disc

Adult ϵ=0.01 α

0.01 0.83 0.09 0.84 0.08 0.84 0.10 0.84 0.11
0.02 0.83 0.09 0.83 0.06 0.83 0.10 0.83 0.07
0.03 0.82 0.04 0.82 0.05 0.82 0.07 0.82 0.04
0.05 0.81 0.01 0.81 0.00 0.80 0.08 0.82 0.03

Table 6.5: Accuracy and discrimination scores on the Adult dataset for ϵ = 0.01 and
α = 0.01, 0.02, 0.03, 0.05. The baseline accuracy and discrimination score are 0.85

and 0.2, respectively.

tion aware splitting at training time provides some benefits. We also high-
light that when using ϵ = 0.15 (see Figure 6.3) the algorithm DFRF only
gets a discrimination score of 0.25. Note that EIFFFeL-LF⋆ is not able
to provide better performance when varying ϵ, thus resulting in a constant
curve.

Finally, on the Bank Dataset, EIFFFeL-TF and EIFFFeL-LF achieve the
best results, with an advantage for EIFFFeL-TF for smaller values of ϵ. Fi-
nally, the results show how we can obtain the desired discrimination degree
with a limited drop in accuracy. Overall, the proposed EIFFFEL algorithm
outperforms the competitor DFRF, and, on average, it is advisable to avoid
the discrimination aware node splitting. We believe that working only at
post-processing allows us to exploit a richer set of trees grown, by explor-
ing a larger and unconstrained search space.

The effect of varying the discrimination constraint ϵ without constrain-
ing accuracy can be observed in Figure 6.2, where we discover that lower
discrimination is achieved with large accuracy reduction. This is due to
the fact that a small discrimination threshold allows our flipping strategies
to force the change of many leaves, thus changing more the classification
decision regions, with a final lower accuracy. However our approach of se-

93

Chapter 6. EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves

lecting potential leaves to relabel seems better than training random forest
with only fair trees. In addition, training and then rejecting trees (because
they are not fair) makes longer the training of the forest, particularly when
we fail often in finding fair trees.

Finally, Figure 6.3 contrasts the discrimination measured on the test set
against the desired discrimination constraint ϵ. Clearly, the twos do not
always match. In particular, DFRF has an unstable behaviour, meaning that
filtering the tree to be added to the forest is not the best option. Conversely,
EiFFFeL-TF and EiFFFeL-LF provide a much more stable behaviour.

We also discuss the results of other experiments, aiming to evaluate
the effects of different values for the α constraints. Note that only the
EiFFFeL algorithms support the α parameter, so we cannot reports any
results for the competitors DFRF and EOP. Specifically, Table 6.5 reports
results relative to the Adult dataset, where, for a fixed ϵ = 0.01, we vary
the α constraint over the expected accuracy, with values ranging in the set
{0.01,0.02,0.03,0.05}. For each α value, we show in bold the best results
in terms of discrimination score. We observe that the accuracy constraint
α has an indirect impact on the final discrimination score obtained. Using
EiFFFeL-LF with α = 0.01, the loss in accuracy is 1 point as expected,
while the baseline discrimination score decreases by more than half (from
0.2 to 0.08). Furthermore, as the α value increases, discrimination score de-
creases further. With α = 0.05, EiFFFeL-LF is able to reduce by 4 points
the final accuracy, by also achieving a discrimination score of 0, thus show-
ing the power of our method in achieving a very good trade-off between
accuracy and discrimination.

6.5 Summary

In this chapter, we deal with fairness in machine learning, and specifically
in binary classifiers trained by a Random Forest algorithm. We are inter-
ested in group fairness, so as to mitigate the effect of bias against specific
groups, which may comes from biased training datasets or algorithm de-
sign.

We develop EiFFFeL, a novel post-process approach, which maintains
good predictive performance of the trained model with a low discrimina-
tion score. Our approaches flips the label of selected leaf (or leaves) of
base trees in a random forest by using two algorithms: (i) an aggressive
tree-based approach, which flips all candidate leaves of a tree, and (ii) a
leaf-based strategy which only flips the label of the most discriminative
leaf of a tree. Both strategies are implemented by considering accuracy and

94

6.5. Summary

discrimination constraints. Indeed, the constraints are used to control the
minimum accuracy decrease we can tolerate in order to achieve the desired
discrimination value. In addition, we have tested the impact of incorporat-
ing discrimination aware node split strategies for base trees of the forest,
by adding discrimination gain value in their node splitting criterion [88].

By using three publicly available datasets, our experimental results show
that effective non-discriminative models can be obtained, while keeping
a strict control over both accuracy and discrimination level. Compared
to state-of-the-art methods, which adopt both in-process and post-process
bias mitigation approaches, EiFFFeL resulted to produce the most accurate
models that also exhibit the best levels of fairness.

95

CHAPTER7
Conclusion

Machine learning models are increasingly used in many areas such as health-
care, energy, transportation, and education, becoming essential element of
decision-making processes–sometimes to the point where models replace
humans and make decisions autonomously. Given the vast areas of appli-
cations and their input domain machine learning is applied to, it is expected
models exhibit errors since it is impossible to have sample representative
training data that capture the input domain. As a result, machine learning
models are vulnerable to attackers that may methodically exploit the attack
surface. In addition to security vulnerability, there is also a concern for
unfair treatment and discrimination by machine learning models.

In recent years the debate over responsible Artificial Intelligence in-
creases where arguments how to achieve Robustness and Fairness while
using a machine learning model, and a framework how to satisfy them to-
gether. Robust and fair training are desired properties in many applications,
such as fraud detection, combining and satisfying both properties has be-
come challenging and a debating topic among researchers in both areas.

In this thesis, we focused on mitigating unfairness and adversarial at-
tacks in machine learning, introducing the concepts in Chapter 1.

Chapter 2 provides background information on machine learning, par-

97

Chapter 7. Conclusion

ticularly on decision tree and decision tree ensembles. In this chapter we
also provide fundamentals of adversarial machine learning, covering attack
surface, knowledge of an attacker, and attackers goal and timing; adding
general defensive mechanisms for adversarial attacks. In addition, we go
through the sources of unfairness, how to measure fairness, and unfairness
mitigation methodologies while studying fair machine learning.

In Chapter 3 and Chapter 4, we explored state-of-the-art works on adver-
sarial and fair machine learning targeting decision tree and tree ensembles.
Chapter 3 study the vulnerabilities, attack strategies, and defense mech-
anisms proposed, and Chapter 4 summarize pre, in, and post-processing
unfairness mitigation strategies.

In Chapter 5 focusing on evasion attacks, we proposed a novel decision
tree learning algorithm,TREANT, which is resilient against evasion attacks.
At each step of tree construction our algorithm minimizes evasion-aware
loss function which captures the attacker’s goal of maximizing prediction
error allowing robust model. TREANT model an attacker with asymmet-
ric changes and different constraints, with a “budget” to spend on chang-
ing data points, which allows robustness on a different level of attacker
strength. Our experiments, conducted on publicly available datasets, con-
firm that TREANT produces accurate tree ensembles, which are extremely
robust against evasion attacks, and compared to the state of the art, TREANT
exhibits a significant improvement. TREANT is published on Data Mining
and Knowledge Discovery (DAMI), and also presented in the Journal Track
of ECML/PKDD 2020.

In Chapter 6 dealing with unfairness in machine learning, we presented
EiFFFeL:Enforcing Fairness in Forests by Flipping Leaves, a post-processing
unfairness mitigation approach in which we flip a selected leaves of a tree
dealing with group fairness. Using a tree-based and leaf-based approach
for selecting a potential leaves of a tree to flip, our algorithm finds a trade-
off between user define discrimination level and accuracy drop. By us-
ing publicly available datasets, our experimental results show that effective
non-discriminative models can be obtained, while keeping a strict control
over both accuracy and discrimination level. Compared to state-of-the-art
methods, which adopt both in-process and post-process bias mitigation ap-
proaches, EiFFFeL resulted to produce the most accurate models that also
exhibit the best levels of fairness. EiFFFel is published on Proceedings of
the 37th ACM/SIGAPP Symposium on Applied Computing.

Finally, we want to highlight promising and challenging research areas
for future work. We summarize the main identified ones in the following
sections. First, we point out the future works related to Chapter 5 and

98

6. Then we will discuss research directions in achieving robustness and
fairness together: to make fairness more robust(robust fair training) and to
integrate robust and fair training in equal terms.

Extension to Current Research works

In Chapter 5, we add evasion aware decision tree in to ensemble by training
individual base trees. Revising this approach to make the decision tree con-
struction aware of its deployment inside an ensemble would exploit the in-
formation that the currently grown ensemble is particularly strong or weak
against some classes of attacks to guide the construction of the next mem-
ber of the ensemble. At the same time, we want to explore ways to relax
the restriction that each attacked feature is only tested once on each path
of the decision trees, without sacrificing the soundness and scalability of
the construction. It is also intriguing to explore further applications and
extensions of our proposed threat model: for example, we consider to take
advantage of work on inverse classification [99] to express dependencies
between different features, e.g., features which cannot be manipulated, but
are computed as a function of other corrupted features.

In chapter 6 we consider group fairness only, and how to extend it to
individual fairness is understudied. In the future, we will extend this to
other fairness definitions,e.g., individual fairness; this is also entails how
to approach multiple fairness constraints while they may not be compatible
to satisfy together. In addition, the effect of multiple sensitive features in
relation to discrimination and accuracy needs to be explored, and we want
to evaluate our approach to other tree ensemble learning methods. Hence,
extending this work in both directions.

Convergence of Robustness and Fairness

Trustworthy algorithms has become a crucial component of modern ma-
chine learning frameworks [33,147]. Making AI systems fair, robust, inter-
pretable, and transparent have become a main research focus for big tech-
nology companies like Google1, Microsoft2, and IBM3.

As fairness and robustness are two critical components of trustworthy
AI, and addressing both together has become a focal point to it. Fairness en-
tails learning an unbiased model, whereas robustness is learning a resilient

1https://ai.google/responsibilities/responsible-ai-practices
2https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%

3Aprimaryr6
3https://research.ibm.com/teams/trusted-ai

99

https://ai.google/responsibilities/responsible-ai-practices
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3Aprimaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3Aprimaryr6
https://research.ibm.com/teams/trusted-ai

Chapter 7. Conclusion

model from tainted data, and it is well recognized that addressing only one
of these may have a negative impact on the other. Improving fairness in
a model while ignoring robustness may led to unwanted fairness-accuracy
tradeoff [146]; and focusing on robustness only may have an adverse af-
fect on fairness. In this regard,two research directions has been proposed to
combine robustness and fairness together [101]: Obtaining robustness and
fairness objective together and make fairness more robust.

Research works in [88, 141] used fair-splitting criterion to improve dis-
crimination metric in decision trees and decision tree forests. By taking the
approach of achieving robustness and fairness together, we want to explore
training a decision tree which is robust-using adversarial training, and fair-
using fair-splitting criterion.

Robust and Fair split

One of the most known criterion for splitting decision tree node is Gini
impurity. Decision trees greedily trained using this criterion are vulnerable
to adversarial attacks and produce unfair decisions. To make this training
robust [171] uses adversarial Gini impurity and propagate attacked samples
in to child nodes for a single class, while [35] also uses the same strategy but
move samples in both direction of two classes. Hence, finding the optimal
split which more accurately represent a potential adversarial attack.

In the future, we want to combine the adversarial Gini impurity with a
splitting criterion that encourages fair splits. For example, by subtracting
the Gini gain of a protected attribute from adversarial Gini gain on a node,
the score function will stimulate a more robust and fair split at the node.
Hence, the convergence of fairness and robustness.

The above solution is one of the methods for converging fairness and
robustness together for decision tree algorithm, but not the only one. Hence,
we also want to investigate the direction of making fair training more robust
and robust training more fairer. For example, we want to extend our evasion
aware robust training TREANT in Chapter 5 and post-processing method
EiFFFeL in Chapter 6 to include fairness and robustness, respectively; or
pursue any other work we find on the way.

100

Bibliography

[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In International Conference on Machine Learning,
pages 60–69. PMLR, 2018.

[2] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair decision
trees for non-discriminative decision-making. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1418–1426, California, USA, 2019. AAAI Press.

[3] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against autoregressive
models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAIâ16,
page 1452â1458, Phoenix, Arizona, 2016. AAAI Press.

[4] Maksym Andriushchenko and Matthias Hein. Provably robust boosted decision stumps and
trees against adversarial attacks. In Advances in Neural Information Processing Systems,
pages 12997–13008, Vancouver, Canada, 2019. NIPS.

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. propublica
(2016), 2016.

[6] Ricardo Baeza-Yates. Bias on the web. Communications of the ACM, 61(6):54–61, 2018.

[7] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. Nips
tutorial, 1:2, 2017.

[8] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671,
2016.

[9] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of ma-
chine learning. Machine Learning, 81(2):121–148, 2010.

[10] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can
machine learning be secure? In Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, pages 16–25, 2006.

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
Joint European conference on machine learning and knowledge discovery in databases, pages
387–402. Springer, 2013.

101

Bibliography

[12] Battista Biggio, Igino Corona, Blaine Nelson, Benjamin IP Rubinstein, Davide Maiorca,
Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. Security evaluation of support vector
machines in adversarial environments. In Support Vector Machines Applications, pages 105–
153. Springer, 2014.

[13] Battista Biggio, Giorgio Fumera, and Fabio Roli. Multiple classifier systems for robust clas-
sifier design in adversarial environments. Int. J. Machine Learning & Cybernetics, 1(1-4):27–
41, 2010.

[14] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern classifiers
under attack. IEEE Transactions on Knowledge and Data Engineering, 26(4):984–996, 2014.

[15] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial
label noise. In ACML Asian conference on machine learning, pages 97–112, 2011.

[16] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. Proceedings of the 29th International Conference on Machine Learning (ICML),
pages 1807–1814, 2012.

[17] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

[18] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

[19] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
Advances in neural information processing systems, 29, 2016.

[20] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[21] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[22] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, 1984.

[23] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. International Conference on
Learning Representations, 2017.

[24] Tim Brennan, William Dieterich, and Beate Ehret. Evaluating the predictive validity of the
compas risk and needs assessment system. Criminal Justice and behavior, 36(1):21–40, 2009.

[25] Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. Guessing smart:
Biased sampling for efficient black-box adversarial attacks. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4957–4965, 2019.

[26] Ajay Byanjankar, Markku Heikkilä, and Jozsef Mezei. Predicting credit risk in peer-to-peer
lending: A neural network approach. In 2015 IEEE symposium series on computational
intelligence, pages 719–725. IEEE, 2015.

[27] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R Varshney. Optimized pre-processing for discrimination prevention. Advances in
neural information processing systems, 30, 2017.

[28] Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese. Certifying decision trees against
evasion attacks by program analysis. In European Symposium on Research in Computer
Security, pages 421–438. Springer, 2020.

[29] Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. Adversarial training of gradient-
boosted decision trees. In Proceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management, pages 2429–2432, 2019.

102

Bibliography

[30] Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. Adversarial training of gradient-
boosted decision trees. In Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A.
Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu, editors, Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, CIKM 2019,
Beijing, China, November 3-7, 2019, pages 2429–2432. ACM, 2019.

[31] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salva-
tore Orlando. Treant: training evasion-aware decision trees. Data Mining and Knowledge
Discovery, pages 1–31, 2020.

[32] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
In IEEE symposium on security and privacy S&P, pages 39–57, 2017.

[33] Hongyan Chang, Ta Duy Nguyen, Sasi Kumar Murakonda, Ehsan Kazemi, and Reza
Shokri. On adversarial bias and the robustness of fair machine learning. arXiv preprint
arXiv:2006.08669, 2020.

[34] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affor-
dance for direct perception in autonomous driving. In Proceedings of the IEEE international
conference on computer vision, pages 2722–2730, 2015.

[35] Hongge Chen, Huan Zhang, Duane S. Boning, and Cho-Jui Hsieh. Robust decision trees
against adversarial examples. In International Conference on Machine Learning ICML, pages
1122–1131, 2019.

[36] Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, and Cho-Jui Hsieh. Robustness
verification of tree-based models. In Advances in Neural Information Processing Systems,
pages 12317–12328, Vancouver,Canada, 2019. Neural Information Processing Systems.

[37] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-
efficient decision-based attack. In 2020 ieee symposium on security and privacy (sp), pages
1277–1294. IEEE, 2020.

[38] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth or-
der optimization based black-box attacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
pages 15–26, 2017.

[39] Weilun Chen, Zhaoxiang Zhang, Xiaolin Hu, and Baoyuan Wu. Boosting decision-based
black-box adversarial attacks with random sign flip. In European Conference on Computer
Vision, pages 276–293. Springer, 2020.

[40] Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana. Cost-aware robust
tree ensembles for security applications. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2291–2308. USENIX Association, August 2021.

[41] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. In International Con-
ference on Learning Representations, 2019.

[42] Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh.
Sign-opt: A query-efficient hard-label adversarial attack. International Conference on Learn-
ing Representations, 2019.

[43] Francois Chollet. Deep Learning with Python. Manning Publications Co., Greenwich, CT,
USA, 1st edition, 2017.

[44] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

103

Bibliography

[45] Asaf Cidon, Lior Gavish, Itay Bleier, Nadia Korshun, Marco Schweighauser, and Alexey
Tsitkin. High precision detection of business email compromise. In 28th {USENIX} Secu-
rity Symposium ({USENIX} Security 19), pages 1291–1307, Santa Clara, CA, USA, 2019.
USENIX.

[46] T Ciodaro, D Deva, JM De Seixas, and D Damazio. Online particle detection with neural
networks based on topological calorimetry information. In Journal of physics: conference
series, volume 368, page 012030. IOP Publishing, 2012.

[47] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic
decision making and the cost of fairness. In Proceedings of the 23rd acm sigkdd international
conference on knowledge discovery and data mining, pages 797–806, 2017.

[48] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[49] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adversarial classifi-
cation. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 99–108, 2004.

[50] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading classifiers by morphing in the dark.
In ACM SIGSAC Conference on Computer and Communications Security, pages 119–133,
2017.

[51] Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Ne-
nad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan OâDonoghue, Daniel
Visentin, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease.
Nature medicine, 24(9):1342–1350, 2018.

[52] Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. A survey on adversarial rec-
ommender systems: from attack/defense strategies to generative adversarial networks. ACM
Computing Surveys (CSUR), 54(2):1–38, 2021.

[53] Dheeru Dua and Casey Graff. Uci machine learning repository (2017). URL http://archive.
ics. uci. edu/ml, 37, 2017.

[54] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pages 214–226, 2012.

[55] Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Max Leiserson. Decoupled
classifiers for group-fair and efficient machine learning. In Conference on fairness, account-
ability and transparency, pages 119–133. PMLR, 2018.

[56] Equivalent. Practitionerâs guide to compas core. URL http://www.equivant.com/wp-
content/uploads/Practitioners-Guide-to-COMPAS-Core-040419.pdf, 2022.

[57] James Fantin. A Distributed Fair Random Forest. PhD thesis, University of Wyoming, 2020.

[58] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. In proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 259–268,
2015.

[59] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to detect phishing emails. In
Proceedings of the 16th International Conference on World Wide Web, WWW â07, page
649â656, New York, NY, USA, 2007. Association for Computing Machinery.

[60] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: formal reason-
ing and practical techniques. In Proceedings of the 13th ACM conference on Computer and
communications security, pages 59–68, 2006.

104

Bibliography

[61] Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation,
121(2):256–285, 1995.

[62] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning
and an application to boosting. In European conference on computational learning theory,
pages 23–37, Berlin, Heidelberg, 1995. Springer.

[63] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pages 1189–1232, 2001.

[64] Sunila Gollapudi. Deep learning for computer vision. In Learn Computer Vision Using
OpenCV, pages 51–69. Springer, Berkeley, CA, 2019.

[65] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning robust
against adversarial inputs. Communications of the ACM, 61(7):56–66, 2018.

[66] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-
versarial examples. In International Conference on Learning Representations ICLR, 2015.

[67] Vincent Grari, Boris Ruf, Sylvain Lamprier, and Marcin Detyniecki. Achieving fairness with
decision trees: An adversarial approach. Data Science and Engineering, 5(2):99–110, 2020.

[68] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adver-
sarial examples. In International Conference on Learning Representations ICLR, Workshop
Track Proceedings, 2015.

[69] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities
in the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[70] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[71] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media, New York, 2009.

[72] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example
defense: Ensembles of weak defenses are not strong. In USENIX Workshop on Offensive
Technologies WOOT, 2017.

[73] Shlomo Hershkop and Salvatore J. Stolfo. Combining email models for false positive reduc-
tion. In ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pages 98–107, 2005.

[74] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[75] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[76] Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Paxson, Stefan Savage,
Geoffrey M Voelker, and David Wagner. Detecting and characterizing lateral phishing at
scale. In 28th {USENIX} Security Symposium ({USENIX} Security 19), pages 1273–1290,
Santa Clara, CA, USA, 2019. USENIX.

[77] Hossein Hosseini, Yize Chen, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
Blocking transferability of adversarial examples in black-box learning systems. arXiv
preprint arXiv:1703.04318, 2017.

[78] Ayanna Howard and Jason Borenstein. The ugly truth about ourselves and our robot creations:
the problem of bias and social inequity. Science and engineering ethics, 24(5):1521–1536,
2018.

105

Bibliography

[79] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, and J. D. Ty-
gar. Adversarial machine learning. In ACM Workshop on Security and Artificial Intelligence
AISec, pages 43–58, 2011.

[80] Earl B Hunt, Janet Marin, and Philip J Stone. Experiments in induction. 1966.

[81] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5(1):15–17, 1976.

[82] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks
with limited queries and information. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2137–2146. PMLR, 10–15 Jul 2018.

[83] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression learn-
ing. In 2018 IEEE Symposium on Security and Privacy (SP), pages 19–35. IEEE, 2018.

[84] Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD Tygar. Adversarial ma-
chine learning. Cambridge University Press, 2018.

[85] Nathan Kallus and Angela Zhou. Residual unfairness in fair machine learning from prejudiced
data. In International Conference on Machine Learning, pages 2439–2448. PMLR, 2018.

[86] Faisal Kamiran and Toon Calders. Classifying without discriminating. In 2009 2nd interna-
tional conference on computer, control and communication, pages 1–6. IEEE, 2009.

[87] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and information systems, 33(1):1–33, 2012.

[88] Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree
learning. In 2010 IEEE International Conference on Data Mining, pages 869–874, 2010.

[89] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-
aware classification. In 2012 IEEE 12th International Conference on Data Mining, pages
924–929. IEEE, 2012.

[90] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree ensem-
ble classifiers. In International Conference on Machine Learning ICML, pages 2387–2396,
2016.

[91] Asharul Islam Khan and Salim Al-Habsi. Machine learning in computer vision. Procedia
Computer Science, 167:1444–1451, 2020.

[92] Amin Kharraz, William Robertson, and Engin Kirda. Surveylance: automatically detecting
online survey scams. In 2018 IEEE Symposium on Security and Privacy (SP), pages 70–86,
San Francisco, CA, 2018. IEEE.

[93] Marius Kloft and Pavel Laskov. Online anomaly detection under adversarial impact. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 405–412. JMLR Workshop and Conference Proceedings, 2010.

[94] Maria Konte, Roberto Perdisci, and Nick Feamster. Aswatch: An as reputation system to
expose bulletproof hosting ases. SIGCOMM Comput. Commun. Rev., 45(4):625â638, August
2015.

[95] Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V Karamouzis,
and Dimitrios I Fotiadis. Machine learning applications in cancer prognosis and prediction.
Computational and structural biotechnology journal, 13:8–17, 2015.

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097–
1105, 2012.

106

Bibliography

[97] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
International Conference on Learning Representations, 2017.

[98] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and Tudor Dumitraş. The dropper
effect: Insights into malware distribution with downloader graph analytics. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS â15,
page 1118â1129, New York, NY, USA, 2015. Association for Computing Machinery.

[99] Michael T. Lash, Qihang Lin, W. Nick Street, and Jennifer G. Robinson. A budget-constrained
inverse classification framework for smooth classifiers. In IEEE International Conference on
Data Mining Workshops ICDMW, pages 1184–1193, 2017.

[100] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten
digits, 1998. URL http://yann. lecun. com/exdb/mnist, 10:34, 1998.

[101] Jae-Gil Lee, Yuji Roh, Hwanjun Song, and Steven Euijong Whang. Machine learning robust-
ness, fairness, and their convergence. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 4046–4047, 2021.

[102] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on
factorization-based collaborative filtering. In Advances in neural information processing sys-
tems, pages 1885–1893, Barcelona,Spain, 2016. NIPS.

[103] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional
filter statistics. In Proceedings of the IEEE International Conference on Computer Vision,
pages 5764–5772, Venice,Italy, 2017. IEEE.

[104] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM Leung. A survey on
security threats and defensive techniques of machine learning: A data driven view. IEEE
access, 6:12103–12117, 2018.

[105] Pranay K Lohia, Karthikeyan Natesan Ramamurthy, Manish Bhide, Diptikalyan Saha, Kush R
Varshney, and Ruchir Puri. Bias mitigation post-processing for individual and group fairness.
In Icassp 2019-2019 ieee international conference on acoustics, speech and signal processing
(icassp), pages 2847–2851. IEEE, 2019.

[106] Gilles Louppe, Michael Kagan, and Kyle Cranmer. Learning to pivot with adversarial net-
works. Advances in neural information processing systems, 30, 2017.

[107] Daniel Lowd and Christopher Meek. Adversarial learning. In ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, pages 641–647, 2005.

[108] Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters. In CEAS,
volume 2005, 2005.

[109] Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safetynet: Detecting and rejecting adver-
sarial examples robustly. In Proceedings of the IEEE International Conference on Computer
Vision, pages 446–454, Venice, Italy, 2017. IEEE.

[110] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regularization family
for adversarial examples. In 2015 IEEE International Conference on Data Mining, pages
301–309, 2015.

[111] Xiaojun Ma, Jinglan Sha, Dehua Wang, Yuanbo Yu, Qian Yang, and Xueqi Niu. Study on a
prediction of p2p network loan default based on the machine learning lightgbm and xgboost
algorithms according to different high dimensional data cleaning. Electronic Commerce Re-
search and Applications, 31:24–39, 2018.

[112] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International Con-
ference on Learning Representations ICLR, 2018.

107

Bibliography

[113] Milad Malekipirbazari and Vural Aksakalli. Risk assessment in social lending via random
forests. Expert Systems with Applications, 42(10):4621–4631, 2015.

[114] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. Sliq: A fast scalable classifier for
data mining. In International conference on extending database technology, pages 18–32.
Springer, 1996.

[115] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[116] Dongyu Meng and Hao Chen. Magnet: A two-pronged defense against adversarial examples.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS â17, page 135â147, New York, NY, USA, 2017. Association for Computing
Machinery.

[117] David J Miller, Zhen Xiang, and George Kesidis. Adversarial learning targeting deep neural
network classification: A comprehensive review of defenses against attacks. Proceedings of
the IEEE, 108(3):402–433, 2020.

[118] Tom Mitchell. Machine learning. 1997.

[119] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A sim-
ple and accurate method to fool deep neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition CVPR, pages 2574–2582, 2016.

[120] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of
bank telemarketing. Decision Support Systems, 62:22–31, 2014.

[121] Sreerama K. Murthy. Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Minining and Knowledge Discovery, 2(4):345–389, 1998.

[122] Said Nawar and Abdul Mouazen. Comparison between random forests, artificial neural net-
works and gradient boosted machines methods of on-line vis-nir spectroscopy measurements
of soil total nitrogen and total carbon. Sensors, 17(10):2428, 2017.

[123] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad. Towards mea-
suring and mitigating social engineering software download attacks. In 25th {USENIX} Se-
curity Symposium ({USENIX} Security 16), pages 773–789, Austin, TX, 2016. USENIX.

[124] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubin-
stein, Udam Saini, Charles Sutton, JD Tygar, and Kai Xia. Misleading learners: Co-opting
your spam filter. In Machine learning in cyber trust, pages 17–51. Springer, 2009.

[125] Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Shing-hon Lau,
Steven J. Lee, Satish Rao, Anthony Tran, and J. Doug Tygar. Near-optimal evasion of convex-
inducing classifiers. In International Conference on Artificial Intelligence and Statistics AIS-
TATS, pages 549–556, 2010.

[126] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In IEEE Conference on Computer
Vision and Pattern Recognition CVPR, pages 427–436, 2015.

[127] Osonde A Osoba and William Welser IV. An intelligence in our image: The risks of bias and
errors in artificial intelligence. Rand Corporation, 2017.

[128] Nicolas Papernot. Characterizing the limits and defenses of machine learning in adversarial
settings. PhD dissertation, Penn State: The Pennsylvania State University, 2018.

[129] Nicolas Papernot and Patrick McDaniel. Extending defensive distillation. arXiv preprint
arXiv:1705.05264, 2017.

108

Bibliography

[130] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

[131] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Proceedings of the
2017 ACM on Asia conference on computer and communications security, pages 506–519,
2017.

[132] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In IEEE European
symposium on security and privacy EuroS&P, pages 372–387, 2016.

[133] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Dis-
tillation as a defense to adversarial perturbations against deep neural networks. In IEEE
symposium on security and privacy S&P, pages 582–597, 2016.

[134] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. 2015.

[135] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 560–568, 2008.

[136] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif. Misleading
worm signature generators using deliberate noise injection. In 2006 IEEE Symposium on
Security and Privacy (S&P’06), pages 15–pp. IEEE, 2006.

[137] Roberto Perdisci, Guofei Gu, and Wenke Lee. Using an ensemble of one-class SVM classi-
fiers to harden payload-based anomaly detection systems. In IEEE International Conference
on Data Mining ICDM, pages 488–498, 2006.

[138] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On
fairness and calibration. Advances in neural information processing systems, 30, 2017.

[139] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[140] JR Quinlan. C4. 5: Programs for machine learning morgan kaufmann san francisco. CA,
USA, 1993.

[141] Edward Raff, Jared Sylvester, and Steven Mills. Fair forests: Regularized tree induction to
minimize model bias. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pages 243–250, New Orleans, USA, 2018. ACM.

[142] M Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and Nick Niki-
forakis. It’s free for a reason: Exploring the ecosystem of free live streaming services. In
Proceedings of the 23rd Network and Distributed System Security Symposium (NDSS 2016),
pages 1–15, San Diego, California, 2016. Internet Society.

[143] Francesco Ranzato, Caterina Urban, and Marco Zanella. Fair training of decision tree classi-
fiers. arXiv preprint arXiv:2101.00909, 2021.

[144] Francesco Ranzato and Marco Zanella. Robustness verification of decision tree ensembles.
OVERLAY@ AI* IA, 2509:59–64, 2019.

[145] Francesco Ranzato and Marco Zanella. Genetic adversarial training of decision trees. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 358–367, 2021.

[146] Yuji Roh, Kangwook Lee, Steven Whang, and Changho Suh. Fr-train: A mutual information-
based approach to fair and robust training. In International Conference on Machine Learning,
pages 8147–8157. PMLR, 2020.

[147] Yuji Roh, Kangwook Lee, Steven Whang, and Changho Suh. Sample selection for fair and
robust training. Advances in Neural Information Processing Systems, 34, 2021.

109

Bibliography

[148] Michael Roy. Cathy oâneil. weapons of math destruction: How big data increases inequality
and threatens democracy. new york: Crown publishers, 2016. College & Research Libraries,
78(3):403, 2017.

[149] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

[150] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training:
Increasing local stability of supervised models through robust optimization. Neurocomputing,
307:195–204, 2018.

[151] Himanshu Shekhar, Sujoy Seal, Saket Kedia, and Amartya Guha. Survey on applications of
machine learning in the field of computer vision. In Emerging Technology in Modelling and
Graphics, pages 667–678. Springer, 2020.

[152] Jack W Smith, JE Everhart, WC Dickson, WC Knowler, and RS Johannes. Using the adap
learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Annual
Symposium on Computer Application in Medical Care, page 261, Washington, D.C, 1988.
American Medical Informatics Association.

[153] Nedim Srndic and Pavel Laskov. Practical evasion of a learning-based classifier: A case study.
In IEEE symposium on security and privacy S&P, pages 197–211, 2014.

[154] Harini Suresh and John V Guttag. A framework for understanding unintended consequences
of machine learning. arXiv preprint arXiv:1901.10002, 2, 2019.

[155] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[156] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations ICLR, 2014.

[157] Kymie MC Tan, Kevin S Killourhy, and Roy A Maxion. Undermining an anomaly-based
intrusion detection system using common exploits. In International Workshop on Recent
Advances in Intrusion Detection, pages 54–73. Springer, 2002.

[158] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable
predictions of tree-based ensembles via actionable feature tweaking. In ACM SIGKDD Inter-
national Conference on Knowledge Discovery in Data Mining, pages 465–474, 2017.

[159] John Törnblom and Simin Nadjm-Tehrani. An abstraction-refinement approach to formal
verification of tree ensembles. In International Conference on Computer Safety, Reliability,
and Security, pages 301–313. Springer, 2019.

[160] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

[161] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing ma-
chine learning models via prediction {APIs}. In 25th USENIX security symposium (USENIX
Security 16), pages 601–618, 2016.

[162] Tich Phuoc Tran, Pohsiang Tsai, and Tony Jan. An adjustable combination of linear regression
and modified probabilistic neural network for anti-spam filtering. In International Conference
on Pattern Recognition ICPR, pages 1–4, 2008.

[163] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui
Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization
method for attacking black-box neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 742–749, 2019.

110

Bibliography

[164] David E Tyler. Robust statistics: Theory and methods, 2008.

[165] Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding rnas on
the basis of predicted secondary structure formation free energy change. BMC bioinformatics,
7(1):173, 2006.

[166] Rhema Vaithianathan, Emily Putnam-Hornstein, Nan Jiang, Parma Nand, and Tim Maloney.
Developing predictive models to support child maltreatment hotline screening decisions: Al-
legheny county methodology and implementation. Center for Social data Analytics, 2017.

[167] Tyler J VanderWeele and Miguel A Hernán. Results on differential and dependent measure-
ment error of the exposure and the outcome using signed directed acyclic graphs. American
journal of epidemiology, 175(12):1303–1310, 2012.

[168] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural
information processing systems, pages 831–838, Denver, Colorado, 1992. NIPS.

[169] Sahil Verma and Julia Rubin. Fairness definitions explained. In 2018 ieee/acm international
workshop on software fairness (fairware), pages 1–7. IEEE, 2018.

[170] Yevgeniy Vorobeychik and Murat Kantarcioglu. Adversarial machine learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 12(3):1–169, 2018.

[171] Daniël Vos and Sicco Verwer. Efficient training of robust decision trees against adversar-
ial examples. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 10586–10595. PMLR, 18–24 Jul 2021.

[172] Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through adver-
sarial learning: an application to recidivism prediction. arXiv preprint arXiv:1807.00199,
2018.

[173] Yihan Wang, Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. On lp-norm
robustness of ensemble decision stumps and trees. In International Conference on Machine
Learning, pages 10104–10114. PMLR, 2020.

[174] Gregory L Wittel and Shyhtsun Felix Wu. On attacking statistical spam filters. In CEAS.
Citeseer, 2004.

[175] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli.
Is feature selection secure against training data poisoning? In international conference on
machine learning, pages 1689–1698. PMLR, 2015.

[176] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio Roli. Sup-
port vector machines under adversarial label contamination. Neurocomputing, 160:53–62,
2015.

[177] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples
in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

[178] Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. Robustness for
non-parametric classification: A generic attack and defense. In International Conference on
Artificial Intelligence and Statistics, pages 941–951. PMLR, 2020.

[179] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications,
36(2):2473–2480, 2009.

[180] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.
Fairness constraints: Mechanisms for fair classification. In Artificial Intelligence and Statis-
tics, pages 962–970. PMLR, 2017.

111

Bibliography

[181] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. AIES ’18, page 335â340, New York, NY, USA, 2018. Association for
Computing Machinery.

[182] Chong Zhang, Huan Zhang, and Cho-Jui Hsieh. An efficient adversarial attack for tree en-
sembles. Advances in Neural Information Processing Systems, 33, 2020.

[183] Fuyong Zhang, Yi Wang, Shigang Liu, and Hua Wang. Decision-based evasion attacks on
tree ensemble classifiers. World Wide Web, pages 1–21.

[184] Wenbin Zhang and Eirini Ntoutsi. Faht: An adaptive fairness-aware decision tree classifier.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pages 1480–1486, Macao, 7 2019. International Joint Conferences on Artificial
Intelligence Organization.

112

	Introduction
	Thesis Statement
	Outline

	Background
	Machine Learning
	Supervised Learning
	Decision Trees
	Decision Tree Ensembles

	Adversarial Machine Learning
	Threat Model
	The Machine Learning Attack Surface
	Information Available to the Attacker
	Adversarial Attack Timing
	Adversarial Goals

	Learning Robust Machine Learning Models
	General Adversarial Attack Defense Methods

	Fairness in Machine learning
	Sources of Unfairness
	Measuring Fairness
	Unfairness Mitigation

	Summary

	Adversarial Machine Learning Targeting Tree-Based Models
	Introduction
	Distortion
	Review of Attacks Against Decision tree and Tree ensembles
	White-box Attacks
	Black-box Attacks

	Review of Defenses Proposed for Tree Ensembles
	Adversarial Training
	Robust Optimization

	Robustness Verification and Evaluation
	Verification
	Evaluation

	Datasets
	Summary

	Unfairness Mitigation Algorithms for tree-based models
	Introduction
	Fairness-enhancing Mechanisms for Tree-based Models
	Pre-processing Mechanisms
	In-processing Mechanisms
	Post-processing Mechanisms
	Hybrid Mechanisms

	Summary

	Treant: Training Evasion-Aware Decision Trees
	Introduction
	Roadmap

	Related Work
	Threat Model
	Loss Under Attack and Adversarial Learning
	Attacker Model
	Attack Generation

	Treant: Key Ideas & Design
	Overview
	Robust Splitting
	Attack Invariance
	Tree Learning Algorithm
	Complexity Analysis
	From Decision Trees to Tree Ensembles

	Experimental Evaluation
	Methodology
	Datasets and Threat Models
	Experimental Evaluation

	Summary

	EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves
	Introduction
	Fairness in Machine Learning
	Fairness and Discrimination Definitions

	The EiFFFel Algorithm
	Leaf Scoring
	EiFFFeL Leaf Flipping Strategies

	Experimental Evaluation
	Datasets.
	Experimental Setup.
	Results.

	Summary

	Conclusion
	Bibliography

