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Abstract

This thesis introduces new stochastic process with values in the set of integers.
We introduce three different process to model the dynamics in the over-dispersion
and under-dispersion feature in the data. In Chapter 1 we introduce an applica-
tion of Generalized Poisson models for analysing over-dispersion in cyber-attacks.
This chapter is motivational for the Generalised Poisson difference INGARCH
model introduced in Chapter 2. In Chapter 3, we provide a generalisation defin-
ing a new Dynamic Conditional Score process with data distributed as Gener-
alised Poisson. Finally, in Chapter 4 we introduce a new generalisation regarding
the innovations. The model introduced is a Generalised Lagrangian Katz INAR
process.
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Introduction

The increased availability of count data has led to greater interest in the study
of integer-valued models. Since the first econometric model of Hausman et al.
(1984), namely the Poisson Regression Model (PRM), different models have been
introduced in various directions. In particular, extensions have been studied
in order to overcome the Poisson distribution’s equidispersion. Cameron and
Trivedi (1986) and Lee (1986) contributed by introducing new tests for overdis-
persion in the data. Since then, it has been noticed that many count data series
are not equally dispersed, and Binomial or Negative binomials marginal distri-
butions have been used in order to introduce over and under-dispersion. This
thesis introduces new processes to model times series of counts with over or
under-dispersion. All chapters are original papers.

Chapter 1 presents an application of Generalized Poisson models for analyz-
ing over-dispersion in cyber-attacks following a Bayesian inference approach, and
we apply a Markov Chain Monte Carlo algorithm for posterior approximation.
This case study shows the importance of introducing new dynamic models able
to capture the dispersion feature of count data.

Chapter 2 introduces a new dynamic model for integer-valued data with sign.
Namely, the model is an Integer-Valued GARCH, and the increments are Gener-
alised Poisson difference distributed. For this process, we studied its properties
and provided a Bayesian inference framework and an efficient posterior approx-
imation procedure based on Markov Chain Monte Carlo, and we show its cor-
rectness and effectiveness on simulated data. We proposed two applications on
an accident dataset and cyber threats data.

In Chapter 3, we introduce a new dynamic process where we assume a Dy-
namic Conditional Score (DCS) dynamics. We derived the score and provided a
Bayesian inference framework with an efficient Monte Carlo Markov Chain sam-
pler for posterior approximation. We proposed an application on fires data and
showed that the model proposed is suited for capturing persistence and disper-
sion in the data.

Chapter 4 introduces a novel integer-valued autoregressive process proposed
with Generalized Lagrangian Katz innovations. Theoretical properties of the

1



model, such as stationarity, moments, and semi-self-decomposability, are pro-
vided. A Bayesian approach to inference is proposed, and an efficient Markov
Chain Monte Carlo sampling procedure has been proposed. The simulation ex-
periments show the effectiveness of the MCMC. The application on the public
concern about climate change using Google Trend data, shows that the model
captures the dispersion feature of the data.

This thesis contributes to the literature on times series for integers and gives
new methods for the econometric analysis of such data. It also contributes to the
study of climate change, offering new models that can be easily used in practice
for estimating and predicting its determinants

2



Chapter 1

A Bayesian Generalized Poisson
Model for Cyber Risk Analysis 1

Abstract Cyber threats are now considered as a top risk for many economic
sectors which include retail, financial services, security, and healthcare. The
costs for damages from cyber-attacks and the number of cyber-attacks are two
of the main quantities of interest when measuring cyber-risk. In this chapter, we
focus on the frequency of cyber-attacks and analyse some features through the
lens of a generalized Poisson model. We follow a Bayesian inference approach
and apply a Markov Chain Monte Carlo algorithm for posterior approximation.
In the application to a well-known dataset on cyber-threats we find evidence of
over-dispersion and of time-variations in the features of the phenomenon.

1.1 Introduction

The digital transformation and the increased use of big data and cloud computing
make the economic system more vulnerable to cyber attacks. Among the most
exposed economic actors, financial and insurance companies are becoming in-
creasingly susceptible to cyber attacks since they possess substantial amounts of
confidential customers information. These facts make cyber-risk one of the most
relevant risks in finance and insurance (e.g., see EIOPA (2018),EIOPA (2019)).

On the other hand, the digital economy and the technology advances also
offer opportunities to the underwriters of cyber insurance policies EIOPA (2019).
A well-developed cyber insurance market can play a crucial role in favouring
the transformation to the digital economy, by raising awareness of cyber risks,
sharing knowledge on good cyber risk management practices and facilitating
responses to and recovery from cyber attacks.

1In collaboration with Christian P. Robert (Université Paris-Dauphine, France and Uni-
versity of Warwick, UK). This chapter appeared as Carallo, G., Casarin, R., and Robert, C.
(2022), A Bayesian Generalized Poisson Model for Cyber Risk Analysis in Corazza, M., Gilli,
M., Perna, C., Pizzi, C., Sibillo, M. (eds.), Mathematical and Statistical Methods for Actuarial
Sciences and Finance, Springer Verlag.
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The number of cyber-attacks is one of the relevant variables to model and
predict when measuring and managing the costs for damages originated by cy-
ber events. Despite the relevance of cyber risks, a few works focused on the
statistical modelling of cyber-attacks (e.g., see Chen and Lee (2016) Chen et al.
(2016), Xu et al. (2017)). Also, see Husák et al. (2018) for a review on statistical,
game-theoretic and machine learning methods for predicting cyber-attacks. In
this chapter, we focus on Poisson models which are well suited for integer-valued
data, such as the number of cyber-attacks. The standard Poisson distribution
has been proposed for modelling cyber risk, nevertheless this model is not flexi-
ble enough to capture some features of the data which are relevant for a correct
evaluation of cyber-risk Leslie et al. (2018). The aim of this chapter is to propose
Generalized Poisson models for analyzing over-dispersion in cyber-attacks. We
follow a Bayesian inference approach (e.g., see Zhu and Li (2009) and Scollnik
(1998)) which allows for including into the inference process extra-sample in-
formation, such as opinions of experts. This extra-sample information can be
appealing in cyber-risk modelling when a few observations are available.

The chapter is organized as follows: in Section 1.2 we present the model and
briefly discuss the inferential approach. Section 1.3 presents the empirical results
obtained on a well-known dataset on cyber-threats. Section 1.4 concludes.

1.2 A Bayesian Generalized Poisson Model

The Generalized Poisson (GP) distribution of a random variable X with param-
eters θ > 0 and λ ∈ (0, 1) is given by

P (X = x|θ, λ) =
θ(θ + λx)x−1

x!
e(−θ−λx), x = 0, 1, 2, . . . (1.1)

The GP distribution is part of the general class of Lagrangian distributions (see
Consul and Jain (1973)) and has the following moments

E(X) =
θ

1− λ
, µ(2) =

θ

(1− λ)3
(1.2)

µ(3) =
1 + 2λ√
θ(1− λ)

, µ(4) =
1 + 8λ+ 6λ2

θ(1− λ)
+ 3 (1.3)

where µ(r) = E(X − E(X))r. For λ = 0 one obtains the standard Poisson
distribution as special case, whereas for λ ∈ (0, 1) over-dispersion is obtained,
that is a greater variability than would be explained by the standard Poisson
model.

Following Scollnik (1998) we assume the following independent gamma and
beta prior distributions

θ ∼ Ga(a, b), λ ∼ Be(c, d) (1.4)
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Figure 1.1: Time series (left) and histogram (right) of the total number of cyber
threats collected at the daily frequency from 1st January 2018 to 31st December
2018. Data source: https://www.hackmageddon.com/.

where a and b are the shape and rate parameters of the gamma distribution.
Given a sequence of i.i.d. observations X1, . . . , XT from the GP distribution, the
joint posterior distribution of the parameters θ and λ is

π(θ, λ|X1, . . . , XT ) ∝ L(X1, . . . , XT |θ, λ)π(θ, λ) (1.5)

where L(X1, . . . , XT |θ, λ) denotes the likelihood function and π(θ, λ) the joint
prior distribution given in Eq. 1.4. The posterior distribution is not tractable
due to lack of conjugacy, thus we propose a Metropolis-Hastings (MH) algorithm
to generate random samples from π(θ, λ|X1, . . . , XT ) and to approximate the
Bayes estimators and all the posterior quantities of interest. At the i-th iteration
of the MH sampler a candidate for the parameters is generated from the two
independent random walk proposal distributions

θ∗ ∼ Ga(a(i), b(i)), λ∗ ∼ Be(c(i), d(i)) (1.6)

where b(i) = r/θ(i−1), a(i) = b(i)θ(i−1), c(i) = sλ(i−1), d(i) = s(1− λ(i−1)) and θ(i−1)

and λ(i−1) denote the previous iteration values of the parameters.

1.3 A Cyber Attacks Dataset

Our dataset contains observations on the number of cyber threats collected at
the daily frequency from the 1st January 2018 to the 31st December 2018. The
data source is https://www.hackmageddon.com/. The observations refer to the
following classes of threats: cyber crime, cyber espionage, cyber warfare, and
hacktivism. The series of the total number of cyber-threats is given in Figure
1.1.

In the following we consider the time series of the total number of cyber
events and the Bayesian model and the Markov Chain Monte Carlo (MCMC)
procedure proposed in Section 1.2. We set the gamma prior hyper-parameters
a = 10, b = 1 and the beta prior hyper-parameters c = 2 and d = 2. We
set the scale to r = 0.01 and the precision to s = 100 in the MH random walk
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Figure 1.2: Top: posterior MCMC draws (gray solid lines) and progressive aver-
ages (black dashed lines) for θ (left) and λ (right). Bottom: prior distributions
(red solid lines) and kernel density estimates of the posterior distributions (black
dashed lines) for θ (left) and λ (right).

proposal distributions, run the MCMC for 4,000 iterations and obtain an average
acceptance rate of 32%. The top plot of Figure 1.2 provides the posterior draws
(gray lines) and the progressive averages (black lines).

After a graphical inspection of the MCMC draws and of the progressive aver-
ages we can see the MCMC chain enter in the high probability region after about
1,000 iterations. Thus, we choose to discard an initial burn-in sample of 1,000
MCMC iterations and also to reduce dependence in the MCMC draws by remov-
ing one sample every two. Thus, the posterior approximation of all quantities of
interest is based on 1,500 MCMC samples.

Bottom plots show the prior distributions (red solid lines) and kernel density
estimates of the posterior distributions (black dashed lines) of λ and θ based on
the MCMC samples. The comparison between prior and posterior distribution
suggests that the prior has been revised and the data are informative about the
value of the parameters. The Bayesian estimates of θ and λ are θ̂B = 2.35 and
λ̂B = 0.24, respectively. We find substantial evidence of over-dispersion which
indicates the standard Poisson model is not well suited for this data. Figure 1.3
provides a comparison between the GP and the standard Poisson model and the
empirical distribution of the cyber-attack frequency. The left plot suggests the
GP (blue dots) can better capture than the Poisson (red dots) dispersion and
fat tails of the empirical distribution. The right plot provides the 95% HPD
region of the GP (blue area) and Poisson (red area) cumulative distributions.
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Figure 1.3: Left: empirical distribution of the data (black), generalized Poisson
distribution (blue) at θ = θ̂B = 2.35 and λ = λ̂B = 0.25 and the standard Poisson
distribution (red) at θ = θ̂B = 3.14. Right: empirical cumulative distribution of
the data (black dots), the high posterior density region at the 95% level for the
generalized Poisson distribution (blue) and the standard Poisson (red).

The empirical cumulative (black dots) is not entirely contained in the HPD of
the Poisson model.

Top plots of Figure 1.4 provide the whole sample estimates (horizontal dashed
lines), the sequential posterior mean (solid black lines) and sequential 95% HPD
region (gray shaded area) over time on a rolling window of 120 observations. We
find evidence of substantial temporal fluctuations in the parameters of the GP
distribution.

More specifically, the sequential estimation of the mean µ(1) (bottom-left plot
of Figure 1.4) indicates that the expected number of cyber attacks increased from
2.62 in 2017 to 3.85 in 2018 (blue solid line, right axis). In the same plot the
estimated coefficient of variation C = µ(2)/µ(1) (red dashed line) increased from
1.15 in April 2017 to 2.03 in December 2018. The estimated values of µ(3) and
µ(4) (bottom-right) indicate an increasing degree of asymmetry and tail heaviness
in the distribution of the attack frequency.

1.4 Conclusion

Our Bayesian analysis of the cyber-attacks frequency provides evidence of over-
dispersed data and of a better fitting of the generalised Poisson than the standard
Poisson model. Our sequential analysis confirms the escalation of the cyber
threats and the increased complexity of the phenomenon.
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Figure 1.4: Sequential inference on a rolling window of 120 observations. Top:
sequential estimates of θ (left plot, black solid lines) and λ (right plot, black
solid lines) and their 95% HPD regions (gray areas). In both plots horizontal red
dashed lines represent whole sample parameter estimates. Bottom: sequential
coefficient of variation (left plot) and of the asymmetry µ(3) (right plot, left scale)
and kurtosis µ(4) (right plot, right scale).
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Chapter 2

Generalised Poisson Difference
Integer-Valued GARCH Process
1

Abstract This chapter introduces a new stochastic process with values in the
set Z of integers with sign. The increments of the process are Generalized Pois-
son differences and the dynamics has an autoregressive structure. We study the
properties of the process and exploit the thinning representation to derive sta-
tionarity conditions, the stationary distribution of the process and its conditional
and unconditional moments. We provide a Bayesian inference framework and an
efficient posterior approximation procedure based on Markov Chain Monte Carlo.
Numerical illustrations on simulated data show the effectiveness of the proposed
inference. The applications to accidents data and cyber threats data show that
the proposed model is well suited for capturing persistence in the conditional
moments and in the over-dispersion feature of the data.
Keywords : Bayesian inference, Counts time series, Cyber risk, GARCH models.
MSC2010 subject classifications : 62G05, 62F15, 60G09, 60G57.

2.1 Introduction

In many real-world applications, time series of counts are commonly observed
given the discrete nature of the variables of interest. Integer-valued variables
appear very frequently in many fields, such as medicine (see Cardinal et al.
(1999)), epidemiology (see Zeger (1988) and Davis et al. (1999)), finance (see
Liesenfeld et al. (2006) and Rydberg and Shephard (2003)), economics (see Free-
land (1998) and Freeland and McCabe (2004)), in social sciences (see Pedeli and
Karlis (2011)), sports (see Shahtahmassebi and Moyeed (2016)) and oceanog-
raphy (see Cunha et al. (2018)). In this chapter, we build on Poisson models,

1In collaboration with Christian P. Robert (Université Paris-Dauphine, France and Univer-
sity of Warwick, UK). Appeared as working paper in https://arxiv.org/abs/2002.04470.
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which is one of the most used model for counts data and propose a new model for
integer-valued data with sign based on the generalized Poisson difference (GPD)
distribution. An advantage in using this distribution relies on the possibility to
account for overdispersed data with more flexibility, with respect to the standard
Poisson difference distribution, a.k.a. the Skellam distribution. Despite its flex-
ibility, GPD models have not been investigated and applied to many fields, yet.
Shahtahmassebi and Moyeed (2014) proposed a GPD distribution obtained as
the difference of two underling generalized Poisson (GP) distributions with differ-
ent intensity parameters. They showed that this distribution is a special case of
the GPD by Consul (1986) and studied its properties. They provided a Bayesian
framework for inference on GPD and a zero-inflated version of the distribution
to deal with the excess of zeros in the data. Shahtahmassebi and Moyeed (2016)
showed empirically that GPD can perform better than the Skellam model.

Two main classes of time-varying parameter models can be identified in the
literature: parameter driven and observation driven. In parameter-driven models
the parameters are functions of an unobserved stochastic process, and the obser-
vations are independent conditionally on the latent variable. In the observation-
driven models the parameter dynamics is a function of the past observations.
Since this chapter focuses on the observation-driven approach, we refer the reader
to MacDonald and Zucchini (1997) for a review of parameter-driven models.

Thinning operators are a key ingredient for the analysis of observation-driven
models. The mostly used thinning operator is the binomial thinning, introduced
by Steutel and van Harn (1979) for the definition of self-decomposable distri-
bution for positive integer-valued random variables. In mathematical biology,
the binomial thinning can be interpreted as natural selection or reproduction,
and in probability it is widely applied to study integer-valued processes. The
binomial thinning has been generalized along different directions. Latour (1998)
proposed a generalized binomial thinning where individuals can reproduce more
than once. Kim and Park (2008) introduced the signed binomial thinning, in or-
der to allows for negative values. Joe (1996) and Zheng et al. (2007) introduced
the random coefficient thinning to account for external factors that may affect
the coefficient of the thinning operation, such as unobservable environmental
factors or states of the economy. When the coefficient follows a beta distribution
one obtains the beta-binomial thinning (McKenzie (1985), McKenzie (1986) and
Joe (1996)). Al-Osh and Aly (1992), proposed the iterated thinning, which can
be used when the process has negative-binomial marginals. Alzaid and Al-Osh
(1993) introduced the quasi-binomial thinning, that is more suitable for gener-
alized Poisson processes. Zhang et al. (2010) introduced the signed generalized
power series thinning operator, as a generalization of Kim and Park (2008) signed
binomial thinning. Thinning operation can be combined linearly to define new
operations such as the binomial thinning difference (Freeland (2010)) and the
quasi-binomial thinning difference (Cunha et al. (2018)). For a detailed review
of the thinning operations and their properties different surveys can be consulted:
MacDonald and Zucchini (1997), Kedem and Fokianos (2005), McKenzie (2003),
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Weiß (2008), Scotto et al. (2015). In this chapter, we apply the quasi-binomial
thinning difference.

In the integer-valued autoregressive process literature, thinning operations
have been used either to define a process, such as in the literature on integer-
valued autoregressive-moving average models (INARMA), or to study the prop-
erties of a process, such as in the literature on integer-valued GARCH (IN-
GARCH). INARMA have been firstly introduced by McKenzie (1986) and Al-
Osh and Alzaid (1987) by using the binomial thinning operator. Jin-Guan and
Yuan (1991) extended to the higher order p the first-order INAR model of Al-Osh
and Alzaid (1987). Kim and Park (2008) introduced an integer-valued autore-
gressive process with signed binomial thinning operator, INARS(p), able for time
series defined on Z. Andersson and Karlis (2014) introduced SINARS, that is
a special case of INARS model with Skellam innovations. In order to allow
for negative integers, Freeland (2010) proposed a true integer-valued autoregres-
sive model (TINAR(1)), that can be seen as the difference between two inde-
pendent Poisson INAR(1) process. Alzaid and Al-Osh (1993) have studied an
integer-valued ARMA process with Generalized Poisson marginals while Alzaid
and Omair (2014) proposed a Poisson difference INAR(1) model. Cunha et al.
(2018) firstly applied the GPD distribution to build a stochastic process. The
authors proposed an INAR with GPD marginals and provided the properties of
the process, such as mean, variance, kurtosis and conditional properties.

Rydberg and Shephard (2000) introduced heteroskedastic integer-valued pro-
cesses with Poisson marginals. Later on, Heinen (2003) introduced an autoregres-
sive conditional Poisson model and Ferland et al. (2006) proposed the INGARCH
process. Both models have Poisson margins. Zhu (2012) defined an INGARCH
process to model overdispersed and underdispersed count data with GP margins
and Alomani et al. (2018) proposed a Skellam model with GARCH dynamics
for the variance of the process. Koopman et al. (2014) proposed a Generalized
Autoregressive Score (GAS) Skellam model. In this chapter, we extend Ferland
et al. (2006) and Zhu (2012) by assuming GPD marginals for the INGARCH
model, and use the quasi-binomial thinning difference to study the properties of
the new process.

Another contribution of the chapter regards the inference approach. In the lit-
erature, maximum likelihood estimation has been widely investigated for integer-
valued processes, whereas a very few papers discuss Bayesian inference proce-
dures. Chen and Lee (2016) introduced Bayesian zero-inflated GP-INGARCH,
with structural breaks. Zhu and Li (2009) proposed a Bayesian Poisson IN-
GARCH(1,1) and Chen et al. (2016) a Bayesian Autoregressive Conditional
Negative Binomial model. In this chapter, we develop a Bayesian inference pro-
cedure for the proposed GPD-INGARCH process and a Markov chain Monte
Carlo (MCMC) procedure for posterior approximation. As argued in Ardia
(2008) for non-Gaussian GARCH models, one of the advantages of the Bayesian
approach is that extra-sample information on the parameters value can be in-
cluded in the estimation process through the prior distributions. Moreover, it
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can be easily combined with a data augmentation strategy to make the like-
lihood function more tractable. Earlier example of Gibbs sampler using data
augmentation is Tanner and Wong (1987). In count data, data augmentation
has been implemented for logistic regression (e.g., see Fruehwirth-Schnatter and
Frühwirth, 2007; Frühwirth-Schnatter and Frühwirth, 2010; Fussl et al., 2013),
Poisson regression (Frühwirth-Schnatter and Wagner, 2006), Negative Binomial
regression (Frühwirth-Schnatter et al., 2009) and for INARMA processes (Neal
and Subba Rao, 2007).

We apply our model to a car accidents near the Schiphol airport dataset, pre-
viously studied in Brijs et al. (2008) and Andersson and Karlis (2014) with the
main purpose of evaluating our model performance with respect to models previ-
ously used for this dataset. We introduced a second application to cyber-threat
dataset and contribute to cyber-risk literature providing evidence of temporal
patterns in the mean and variance of the threats, which can be used to pre-
dict threat arrivals. Cyber threats are increasingly considered as a top global
risk for the financial and insurance sectors and for the economy as a whole (e.g.
EIOPA, 2019). As pointed out in Hassanien et al. (2016), the frequency of cyber
events substantially increased in the past few years and cyber-attacks occur on
a daily basis. Understanding cyber-threats dynamics and their impact is critical
to ensure effective controls and risk mitigation tools. Despite these evidences
and the relevance of the topic, the research on the analysis of cyber threats is
scarce and scattered in different research areas such as cyber security (Agrafiotis
et al., 2018), criminology Brenner (2004), economics Anderson and Moore (2006)
and sociology. In statistics there are a few works on modelling and forecasting
cyber-attacks. Xu et al. (2017) introduced a copula model to predict effective-
ness of cyber-security. Werner et al. (2017) used an autoregressive integrated
moving average model to forecast the number of daily cyber-attacks. Edwards
et al. (2015) apply Bayesian Poisson and negative binomial models to analyse
data breaches and find evidence of over-dispersion and absence of time trends in
the number of breaches. See Husák et al. (2018) for a review on modelling cyber
threats.

The chapter is organized as follows. In Section 2 we introduce the parametriza-
tion used for the GPD and define the GPD-INGARCH process. Section 3 aims
at studying the properties of the process. Section 4 presents a Bayesian inference
procedure. Section 5 and 6 provide some illustration on simulated and real data,
respectively. Section 7 concludes.

2.2 Generalized Poisson Difference INGARCH

A random variable X follows a Generalized Poisson (GP) distribution if and only
if its probability mass function (pmf) is

Px(θ, λ) =
θ(θ + xλ)x−1

x!
e−θ−xλ x = 0, 1, 2, . . . (2.1)
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with parameters θ > 0 and 0 ≤ λ < 1 (see Consul, 1986). We denote this
distribution with GP (θ, λ). Let X ∼ GP (θ1, λ) and Y ∼ GP (θ2, λ) be two
independent GP random variables, Consul (1986) showed that the probability
distribution of Z = (X−Y ) follows a Generalized Poisson Difference distribution
(GPD) with pmf:

Pz(θ1, θ2, λ) = e−θ1−θ2−zλ
∞∑
y=0

θ2(θ2 + yλ)y−1

y!

θ1(θ1 + (y + z)λ)y+z−1

(y + z)!
e−2yλ (2.2)

where z takes integer values in the interval (−∞,+∞) and 0 < λ < 1 and
θ1, θ2 > 0 are the parameters of the distribution. See Appendix 2.8.1 for a more
general definition of the GPD with possibly negative λ.

In the following Lemma we state the convolution property of the GPD dis-
tribution which will be used in this chapter. Appendix 2.8.2 provides an original
proof of this result.

Lemma 1 (Convolution Property). The sum of two independent random
GPD variates, X+Y , with parameters (θ1, θ2, λ) and (θ3, θ4, λ) is a GPD variate
with parameters (θ1 + θ3, θ2 + θ4, λ). The difference of two independent random
GPD variates, X−Y , with parameters (θ1, θ2, λ) and (θ3, θ4, λ) is a GPD variate
with parameters (θ1 + θ4, θ2 + θ3, λ).

We use an equivalent pmf and a re-parametrization of the GPD, which are
better suited for the definition of an INGARCH model. A random variable Z
follows a GPD if and only if its probability distribution is

Pz(µ, σ
2, λ) = e−σ

2−zλ
+∞∑

s=max(0,−z)

1

4

σ4 + µ2

s!(s+ z)!

[
σ2 + µ

2
+ (s+ z)λ

]s+z−1[
σ2 − µ

2
+ sλ

]s−1

e−2λs

(2.3)

We denote this distribution with GPD(µ, σ2, λ).

Remark 1. The probability distribution in Eq. 2.3 is equivalent to the one in
Eq. 2.2 up to the reparametrization µ = θ1 − θ2 and σ2 = θ1 + θ2. See Appendix
2.8.2 for a proof.

The mean, variance, skewness and kurtosis of a GPD random variable can be
obtained in closed-form by exploiting the representation of the GPD as difference
between independent GP random variables.

Remark 2. Let Z ∼ GPD(µ, σ2, λ), then mean and variance are:

E(Z) =
µ

1− λ
, V (Z) =

σ2

(1− λ)3
(2.4)

and the Pearson skewness and kurtosis are:

S(Z) =
µ

σ3

(1 + 2λ)√
1− λ

, K(Z) = 3 +
1 + 8λ+ 6λ2

σ2(1− λ)
(2.5)
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(a) GPD(µ, σ2, λ) distribution for σ2 = 10 (b) GPD(µ, σ2, λ) distribution for µ = 2
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Figure 2.1: Generalized Poisson difference distribution GPD(µ, σ2, λ) for some
values of λ, µ and σ2. The distribution with λ = 0.2, µ = 2 and σ2 = 10 (solid
line) is taken as baseline in both panels.

See Appendix 2.8.2 for a proof.

Fig. 2.1 shows the sensitivity of the probability distribution with respect to
the location parameter µ (panel a), the scale parameter σ2 (panel b) and the
skewness parameter λ (different lines in each plot). For given values of λ and µ,
when σ2 decreases the dispersion of the GPD increases (dotted and dashed lines
in the right plot). For given values of λ and σ2, the distribution is right-skewed
for µ = 8, which corresponds to S(Z) = 0.7155, and left-skewed for µ = −4,
which corresponds to S(Z) = −0.3578, (dotted and dashed lines in the left plot).
See Appendix 2.8.1 for further numerical illustrations.

Differently from the usual GARCH(p, q) process (e.g., see Francq and Zakoian
(2019)), the INGARCH(p, q) is defined as an integer-valued process {Zt}t∈Z,
where Zt is a series of counts. Let Ft−1 be the σ-field generated by {Zt−j}j≥1,
then the GPD-INGARCH(p, q) is defined as

Zt|Ft−1 ∼ GPD(µ̃t, σ̃
2
t , λ)

with
µ̃t

1− λ
= µt = α0 +

p∑
i=1

αiZt−i +

q∑
j=1

βjµt−j (2.6)

where µ̃t−j = µt−j(1 − λ), α0 ∈ R, αi ≥ 0, βj ≥ 0, i = 1, . . . , p, p ≥ 1,
j = 1, . . . , q, q ≥ 0. Another difference between our GPD-INGARCH and stan-
dard GARCH regards the parameters α0. Since GPD distirbuted variables can
take positive and negative values, modelling the location parameter allows for
α0 ∈ R. For q = 0 the model reduces to a GPD-INARCH(p) and for λ = 0
one obtains a Skellam INGARCH(p, q) which extends to Poisson differences the
Poisson INGARCH(p, q) of Ferland et al. (2006). From the properties of the

16



GPD, the conditional mean µt = E(Zt|Ft−1) and variance σ2
t = V (Zt|Ft−1) of

the process are:

µt =
µ̃t

1− λ
, σ2

t =
σ̃2
t

(1− λ)3
(2.7)

respectively. In the application, we assume σ2
t = |µt|φ. Following the parametriza-

tion defined in Remark 1, we need to impose the constrain φ > (1 − λ)−2, in
order to have a well-defined GPD distribution. In Fig. 2.2, we provide some
simulated examples of the GPD-INGARCH(1, 1) process for different values of
the parameters α0, α1 and β1.

Simulations from a GPD-INGARCH are obtained as differences of GP se-
quences

Zt = Xt − Yt, Xt ∼ GP (θ1t, λ), Yt ∼ GP (θ2t, λ)

where

θ1t =
σ2
t + µt

2
, θ2t =

σ2
t − µt

2
. (2.8)

Each random sequence is generated by the branching method in Famoye (1997),
which performs faster than the inversion method for large values of θ1t and θ2t.
We considered two parameter settings: low persistence, that is α1 +β1 much less
than 1 (first column in Fig. 2.2) and high persistence, that is α1 + β1 close to 1
(second column in Fig. 2.2). The first and second line show paths for positive
and negative value of the intercept α0, respectively. The last line illustrates the
effect of λ on the trajectories with respect to the baselines in Panels (a) and (b).
Comparing (I.a) and (I.b) in Fig. 2.3 one can see that increasing β1 increases
serial correlation and the kurtosis level (compare (II.a) and (II.b)).

We provide a necessary condition on the parameters αi and βj for a second-
order stationary process to have an INGARCH representation. First define the
two following polynomials: D(B) = 1−β1B−. . .−βqBq and G(B) = α1B+. . .+
αpB

p, where B is the backshift operator. Assume the roots of D(z) lie outside the
unit circle. For non-negative βj this is equivalent to assume D(1) =

∑q
j=1 βj < 1.

Then, the operator D(B) has inverse D−1(B) and it is possible to write

µt = D−1(B)(α0 +G(B)Zt) = α0D
−1(1) +H(B)Zt (2.9)

where H(B) = G(B)D−1(B) =
∑∞

j=1 ψjB
j and ψj are given by the power ex-

pansion of the rational function G(z)/D(z) in the neighbourhood of zero. If we
denote K(B) = D(B) − G(B) we can write the necessary condition as in the
following proposition.

Proposition 1. A necessary condition for a second-order stationary process
{Zt}t∈Z to satisfy Eq. 2.6 is that K(1) = D(1) − G(1) > 0 or equivalently∑p

i=1 αi +
∑q

j=1 βj < 1.

Proof. See Appendix 2.8.2
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Low persistence High persistence
(α1 = 0.23, β1 = 0.25) (α1 = 0.32, β1 = 0.59)

(a) α0 = 1.55, λ = 0.4, φ = 3 (b) α0 = 1.55, λ = 0.4, φ = 3

(c) α0 = −1.55, λ = 0.4, φ = 3 (d) α0 = −1.55, λ = 0.4, φ = 3

(e) α0 = 1.55, λ = 0.1, φ = 3 (f) α0 = 1.55, λ = 0.7, φ = 3

Figure 2.2: Simulated INGARCH(1, 1) paths for different values of the parame-
ters α0, α1 and β1. In Panels from (a) to (d) the effect of α0 (α0 > 0 in the first
line and α0 < 0 in the second line) with λ = 0.4 and φ = 3. In Panels (e) and
(f) the effect of lambda (λ = 0.1 left and λ = 0.7 right) in the two settings.

2.3 Properties of the GPD-INGARCH

We study the properties of the process by exploiting a suitable thinning represen-
tation following the strategy in Ferland et al. (2006) and Zhu (2012) for Poisson
and Generalized Poisson INGARCH, respectively. We use the quasi-binomial
thinning as defined in Weiß (2008) and the thinning difference (Cunha et al.
(2018)) operators.
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(I) Autocorrelation function (II) Unconditional histograms
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Figure 2.3: Autocorrelation functions (Panel I) and unconditional distributions
(Panel II) of {Zt}t∈Z for the different cases presented in Fig. 2.2 (different
columns in each panel).

2.3.1 Thinning representation

For the purpose of studying the properties of the GPD-INGARCH process, we
show that it can be obtained as a limit of successive GPD-INAR approximations
using the thinning operator. Let us define:

X
(n)
t =


0, n < 0

(1− λ)U1t, n = 0

(1− λ)U1t + (1− λ)
∑n

i=1

∑X
(n−i)
t−i
(1−λ)
j=1 V1t−i,i,j, n > 0

(2.10)

and

Y
(n)
t =


0, n < 0

(1− λ)U2t, n = 0

(1− λ)U2t + (1− λ)
∑n

i=1

∑Y
(n−i)
t−i
(1−λ)
j=1 V2t−i,i,j, n > 0

(2.11)

where {U1t}t∈Z and {U2t}t∈Z are sequences of independent GP random variables
and for each t ∈ Z and i ∈ N, {V1t,i,j}j∈N and {V2t,i,j}j∈N represent two sequences
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of independent integer random variables. Moreover, assume that all the variables
Us, Vt,i,j, with s ∈ Z, t ∈ Z, i ∈ N and j ∈ N, are mutually independent.

It is possible to show that X
(n)
t and Y

(n)
t have a thinning representation.

We define a suitable thinning operation, first used by Alzaid and Al-Osh (1993)
and follow the notation in Weiß (2008), let ρθ,λ◦ be the quasi-binomial thinning
operator, such that it follows a QB(ρ,θ/λ,x).

Proposition 2. If X follows a GP(λ,θ) distribution and the quasi-binomial thin-
ning is performed independently on X, then ρθ,λ◦X has a GP(ρλ,θ) distribution.

Proof. See Alzaid and Al-Osh (1993).

Both X
(n)
t and Y

(n)
t in Eq. 2.10 and 2.11 admit the representation

X
(n)
t = (1− λ)U1t + (1− λ)

n∑
i=1

ϕ
(t−i)
1i ◦

(
X

(n−i)
t−i

1− λ

)
, n > 0 (2.12)

and

Y
(n)
t = (1− λ)U2t + (1− λ)

n∑
i=1

ϕ
(t−i)
2i ◦

(
Y

(n−i)
t−i

1− λ

)
, n > 0 (2.13)

where ϕ ◦X is the quasi-binomial thinning operation. See Appendix 2.8.1 for a
definition.

In the following we introduce the thinning difference operator and show that
Z

(n)
t = X

(n)
t − Y

(n)
t has a thinning representation.

Definition 1. Let X ∼ GP (θ1, λ) and Y ∼ GP (θ2, λ) be two independent
random variables and Z = X − Y , then Z ∼ GPD(µ, σ2, λ), with µ = θ1 − θ2

and σ2 = θ1 + θ2. We define the new operator � as:

ρ � Z|Z d
= (ρθ1,λ ◦X)− (ρθ2,λ ◦ Y )|(X − Y ) (2.14)

where (ρθ1,λ ◦X) and (ρθ2,λ ◦Y ) are the quasi-binomial thinning operations such
that (ρθ1,λ ◦X)|X = x ∼ QB(p, λ/θ1, x) and (ρθ2,λ ◦ Y )|Y = y ∼ QB(p, λ/θ2, y).

The symbol “A
d
= B” means that the random variables A and B have the same

distribution.

See Cunha et al. (2018) for an application of the thinning operation to GPD-
INAR processes and Appendix 2.8.1 for further details. Using the new operator
as defined in Eq. 2.14, we can represent Z

(n)
t as follows.

Proposition 3. The process Z
(n)
t = X

(n)
t − Y

(n)
t has the representation:

Z
(n)
t = (1− λ)Ut + (1− λ)2

n∑
i=1

ϕ
(t−i)
i �

(
Z

(n−i)
t−i

1− λ

)
, n > 0 (2.15)

where ϕ
(τ)
i � indicates the sequence of random variables with mean ψi/(1−λ), in-

volved in the thinning operator at time τ and {Ut}t∈Z is a sequence of independent
GPD random variables with mean ψ0/(1− λ) with ψ0 = α0/D(1).
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Proof. See Appendix 2.8.2

The proposition above shows that Z
(n)
t is obtained through a cascade of thin-

ning operations along the sequence {Ut}t∈Z. For example:

Z
(0)
t = (1− λ)Ut

Z
(1)
t = (1− λ)Ut + (1− λ)2

[
ϕ

(t−1)
1 � (Z

(1−1)
t−1 /(1− λ))

]
= (1− λ)Ut + (1− λ)2(ϕ

(t−1)
1 � Ut−1)

Z
(2)
t = (1− λ)Ut + (1− λ)2

[
ϕ

(t−1)
1 � (Z

(2−1)
t−1 /(1− λ)) + ϕ

(t−2)
2 � (Z

(2−2)
t−2 /(1− λ))

]
= (1− λ)Ut + (1− λ)2

[
ϕ

(t−1)
1 � Ut−1 + ϕ

(t−1)
1 � (ϕ

(t−2)
1 � Ut−2) + ϕ

(t−2)
2 � Ut−2

]
Z

(3)
t = (1− λ)Ut + (1− λ)2[ϕ

(t−1)
1 � (Z

(3−1)
t−1 /(1− λ)) + ϕ

(t−2)
2 � (Z

(3−2)
t−2 /(1− λ))+

+ ϕ
(t−3)
3 � (Z

(3−3)
t−3 /(1− λ))]

= (1− λ)Ut + (1− λ)2[ϕ
(t−1)
1 � Ut−1 + ϕ

(t−1)
1 � (ϕ

(t−2)
1 � Ut−2)+

+ ϕ
(t−2)
2 � Ut−2 + ϕ

(t−1)
1 � (ϕ

(t−2)
1 � (ϕ

(t−3)
1 � Ut−3))+

+ ϕ
(t−1)
1 � (ϕ

(t−3)
2 � Ut−3) + ϕ

(t−2)
2 � (ϕ

(t−3)
1 � Ut−3) + ϕ

(t−3)
3 � Ut−3].

Since Z
(n)
t is a finite weighted sum of independent GPD random variables,

the expected value and the variance of Z
(n)
t are well defined. Moreover, it can be

seen that E[Z
(n)
t ] does not depend on t but only on n, hence it can be denoted as

µn. Using Proposition 3 and µk = 0 if k < 0, it is possible to write µn as follows

µn = (1− λ)E[Ut] + (1− λ)2

n∑
i=1

E

[
ϕ

(t−i)
i �

(
Z

(n−i)
t−i

1− λ

)]

= ψ0 +
∞∑
j=1

ψjµn−j = D−1(B)α0 +H(B)µn

(2.16)

from which it follows D(B)µn = G(B)µn + α0 ⇔ K(B)µn = α0, where K(B) =
D(B) − G(B). From the last equation it can be seen that the sequence {µn}
satisfies a finite difference equation with constant coefficients. The characteristic
polynomial is K(z) and all its roots lie outside the unit circle if K(1) > 0. Under
the assumption K(1) > 0, the following holds true.

Proposition 4. If K(1) > 0 then the sequence {Z(n)
t }n∈N has an almost sure

limit.

Proof. See Appendix 2.8.2.

Proposition 5. If K(1) > 0 then the sequence {Z(n)
t } has a mean-square limit.

Proof. See Appendix 2.8.2.
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2.3.2 Stationarity

Given Proposition 4, if we can show that {Z(n)
t } is a strictly stationary process,

for any given n, then also its almost sure limit {Zt}t∈Z will be a strictly stationary

process. In order to show stationarity for {Z(n)
t }, we follow a procedure similar to

the one in Ferland et al. (2006). Let us define the probability generating function
(pgf) gW(t) of the random vector W = (W1, . . . ,Wk)

gW(t) = E

[
k∏
i=1

tWi
i

]
=
∑

W∈Nk
p(w)

k∏
i=1

tWi
i (2.17)

where p(W) = Pr(W = (W1, . . . ,Wk)
′) and t = (t1, . . . , tk)

′ ∈ Ck. The proba-
bility generating function has the following properties.

Proposition 6. Let Z
(n)
1...k = (Z

(n)
1 , . . . , Z

(n)
k ) be a subsequence of {Z(n)

t }t∈Z where,

without loss of generality, we choose the first k periods. Let X
(n)
1...k = (X

(n)
1 , . . . , X

(n)
k )

and Y
(n)
1...k = (Y

(n)
1 , . . . , Y

(n)
k ) be such that Z

(n)
1...k = (X

(n)
1...k −Y

(n)
1...k)

′ then

gZ1...k
(t) = gX1...k

(t)gY1...k
(t−1) (2.18)

Proof. See Appendix 2.8.2

Using the probability generating function, in the following we know the sta-
tionarity of the process.

Proposition 7. {Z(n)
t }t∈Z is a strictly stationary process, for any fixed value of

n.

Proposition 8. The process {Zt}t∈Z is a strictly stationary process.

Proposition 9. The first two moments of {Zt}t∈Z are finite.

Proof. See Appendix 2.8.2.

Since {Zt}t∈Z is the almost sure limit of {Z(n)
t } one can find the conditional

distribution of {Zt}t∈Z using the properties of the thinning representation.

Proposition 10. Let Ft−1 = σ({Zu}u≤t−1), for t ∈ Z, the conditional law of

{Z(n)
t }t∈Z given Ft−1 converges to a GPD(µ̃t, σ̃

2
t , λ).

2.3.3 Moments of the GPD-INGARCH

The conditional mean and variance of the process Zt are

E(Zt|Ft−1) =
µ̃t

1− λ
= µt, V (Zt|Ft−1) =

σ̃2
t

1− λ
= φ3σ̃2

t (2.19)

where φ = 1
1−λ .
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The unconditional mean and variance of the process are

E(Zt) = µt =
α0

1−
∑p

i=1 αi −
∑q

j=1 βj

V (Zt) = E [V (Zt|Ft−1)] + V [E (Zt|Ft−1)]

= E(φ3σ̃2
t ) + V (µt)

= φ3E(σ̃2
t ) + V (µt)

(2.20)

From Th. 1 in Weiß (2009) we know a set of equations from which the variance
and autocorrelation function of the process can be obtained. Suppose Zt follows
the INGARCH(p,q) model in Eq. 2.6 with

∑p
i=1 αi +

∑q
j=1 βj < 1. From Th. 1

part (iii) in Weiß (2009), the autocovariances γZ(k) = Cov[Zt, Zt−k] and γµ(k) =
Cov[µt, µt−k] satisfy the linear equations

γZ(k) =

p∑
i=1

αiγZ(|k − i|) +

min(k−1,q)∑
j=1

βjγZ(k − j) +

q∑
j=k

βjγµ(j − k), k ≥ 1;

γµ(k) =

min(k,p)∑
i=1

αiγµ(|k−i|)+
p∑

i=k+1

αiγZ(i−k)+

q∑
j=1

βjγµ(|k−j|), k ≥ 0. (2.21)

In order to have an explicit expression for the variance of µt and Zt and for the
autocorrelations, we consider two special cases as in Zhu (2012) and Weiß (2009).
For a proof of the results in these examples, see Section 2.8.2.

Example 1 (INARCH(1)). Consider the INARCH(1) model

µt = α0 + α1Zt−1 (2.22)

then the linear equations in Eq. 2.21, become

γZ(k) =

p∑
i=1

αiγZ(|k − i|) + δk0 · µ, k ≥ 0

γµ(k) =

min(k,p)∑
i=1

αiγµ(|k − i|) +

p∑
i=k+1

αiγZ(i− k), k ≥ 0.

Where the second equation comes from Example 2 in Weiß (2009). We derive
the following autocovariances

γZ(k) =

{
αk−1

1 γZ(1), for k ≥ 2

α1[φ3E(σ̃2
t )] + α1V (µt), for k = 1

(2.23)

γµ(k) =

{
αk1V (µt), for k ≥ 1

α2
1[φ3E(σ̃2

t )] + α2
1V (µt), for k = 0

(2.24)
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Therefore, the variance of µt is

V (µt) =
α2

1[φ3E(σ̃2
t )]

1− α2
1

(2.25)

and the variance of Zt is

V (Zt) =
φ3E(σ̃2

t )

1− α2
1

(2.26)

where φ = 1
1−λ .

Lastly, the autocorrelations are

ρµ(k) = αk1 (2.27)

ρZ(k) = αk1 (2.28)

Example 2 (INGARCH(1,1)). Consider the INGARCH(1,1) model

µt = α0 + α1Zt−1 + β1µt−1 (2.29)

From Eq. 2.21,

γZ(k) =

{
(α1 + β1)k−1γZ(1), for k ≥ 2

α1[φ3E(σ̃2
t )] + (α1 + β1)V (µt), for k = 1

(2.30)

We can now determine V (µt). First note that we have

γµ(k) =

{
(α1 + β1)kV (µt), for k ≥ 1

α2
1[φ3E(σ̃2

t )] + (α1 + β1)2V (µt), for k = 0
(2.31)

where the second equation in Eq. 2.31 is equal to V (µt). From this latter
equation, we can derive the expression for V (µt)

V (µt) =
α2

1[φ3E(σ̃2
t )]

1− (α1 + β1)2
(2.32)

Combining Eq. 2.20 and 2.32, we can derive a close expression for the variance
of Zt:

V (Zt) =
φ3E(σ̃2

t )[1− (α1 + β1)2 + α2
1]

1− (α1 + β1)2
(2.33)

The autocorrelations are given by

ρµ(k) = (α1 + β1)k (2.34)

ρZ(k) = (α1 + β1)k−1 α1[1− β1(α1 + β1)]

1− (α1 + β1)2 + α2
1

(2.35)
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Figure 2.4: Contour lines of the log-prior density function for α1 and β1 (left)
and φ and λ (right).

2.4 Bayesian Inference

We propose a Bayesian approach to inference for GPD-INGARCH, which allows
the researcher to include extra-sample information through the prior choice and
allows us to exploit the stochastic representation of the GPD and the use of
latent variables to make more tractable the likelihood function.

2.4.1 Prior assumption

We assume the following prior distributions. A Generalized Dirichlet prior dis-
tribution for ϕ = (α1, . . . , αp, β1, . . . , βq), ϕ ∼ Dird+1(c), with density:

π(ϕ) =
Γ
(∑d

i=0 ci

)
∏d

i=0 Γ(ci)

d∏
i=1

ϕci−1
i

(
1−

d∑
i=1

ϕi

)(c0−1)

(2.36)

where ϕi ≥ 0 and
∑d

i=1 ϕi ≤ 1 (Wong, 1998). Panel (a) in Fig. 2.4 provides the
level sets of the joint density function of α1 and β1 with hyper-parameters c0 = 3,
c1 = 4 and c2 = 3. For λ and φ we assume a joint prior distribution with uniform
marginal prior λ ∼ U[0,1] and shifted gamma conditional prior φ ∼ Ga∗(a, b, c),
with density function:

π(φ) =
ba

Γ(a)
(φ− c)(a−1)e−b(φ−c) for φ > c (2.37)

where c = (1−λ)−2. Panel (b) provides the level sets of the joint density function
of φ and λ, with hyper-parameters a = b = 5. The joint prior distribution of
the parameters will be denoted by π(θ) = π(ϕ)π(α0)π(λ)π(φ). Since we found
high autocorrelation in the estimation of α0, in the simulation study and in the
real data application we fix the value of α0, to a value close to the unconditional
mean, to improve the efficiency of the MCMC algorithm.
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2.4.2 Data augmentation

Denote the probability distribution of Zt with

ft(Zt = z|θ) = e−σ
2
t−zλ

+∞∑
s=s

1

4

σ4
t + µ2

t

s!(s+ z)!

[
σ2
t + µt

2
+ (s+ z)λ

]s+z−1[
σ2
t − µt

2
+ sλ

]s−1

e−2λs

(2.38)
with s = max(0,−z). Since the posterior distribution

π(θ|Z1:T ) ∝
T∏
t=1

ft(Zt|θ)π(θ) (2.39)

is not analytically tractable we apply Markov Chain Monte Carlo (MCMC)
for posterior approximation in combination with a data-augmentation approach
(Tanner and Wong, 1987). Alternative approaches can be nested Laplace ap-
proximation (e.g., see Gómez-Rubio and Rue, 2018; Rue et al., 2009) and particle
Gibbs sampling (Andrieu et al., 2010). Our model is still tractable, hence we
don’t need this alternative methods. See Robert and Casella (2013) for an intro-
duction to MCMC. As in Karlis and Ntzoufras (2006), we exploit the stochastic
representation in Eq. 2.8 and introduce two GP latent variables Xt and Yt with
pmfs

ft(Xt = x|θ1t, λ) =
θ1t(θ1t + λx)x−1

x!
e(−θ1t−λx) (2.40)

ft(Yt = y|θ2t, λ)) =
θ2t(θ2t + λy)y−1

y!
e(−θ2t−λy), (2.41)

where the subscript index t to the pmfs indicates the dependence of the two latent
variables on the past values of the observed process Zt−k, k ≥ 1, through the
dynamic parameters θ1t and θ2t. Note that, the Zt are conditionally independent
given the two latent variables. We summarize our Bayesian model in the Directed
Acyclic Graph (DAG) representation of Fig. 2.5.

Let Z1:T = (Z1, . . . , ZT ), X1:T = (X1, . . . , XT ) and Y1:T = (Y1, . . . , YT ). Fol-
lowing the conditional independence of the observables, the complete-data like-
lihood factorizes as follows

f(Z1:T , X1:TY1:T |θ) =
T∏
t=1

f(Zt|Xt, Yt,θ)ft(Xt, Yt|θ)

=
T∏
t=1

δ(Zt −Xt + Yt)ft(Xt|θ)ft(Xt − Zt|θ).

(2.42)

where δ(z− c) is the Dirac function which takes value 1 if z = c and 0 otherwise.
The joint posterior distribution of the parameters θ and the two collections of
latent variables X1:T and Y1:T is

π(X1:T , Y1:T ,θ|Z1:T ) ∝ f(Z1:T , X1:TY1:T |θ)π(θ) (2.43)
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Figure 2.5: DAG of the Bayesian GPD-INGARCH(1,1) model. It exhibits the
hierarchical structure of the observations Zt (boxes), the latent variables Xt and
Yt (gray circles), the time-varying and the static parameters, θt = (θ1t, θ2t) and
θ = (ϕ, α0, λ, φ), respectively (white circles) and the hyperparameters c, a, b, c.
The directed arrows show the causal dependence structure of the model.

2.4.3 MCMC sampler

We apply a Gibbs algorithm (Robert and Casella, 2013, Ch. 10) with a Metropolis-
Hastings (MH) steps. In the sampler, we draw the latent variables and the
parameters of the model by iterating the following steps:

1. draw (Xt, Yt) from ft(Xt, Yt|Zt,θ);

2. draw ϕ from π(ϕ|Z1:T , Y1:T , X1:T ,θ−ϕ);

3. draw φ from π(φ|Z1:T , Y1:T , X1:T ,θ−φ);

4. draw λ from π(λ|Z1:T , Y1:T , X1:T ,θ−λ),

where θ−η indicates the collection of parameters excluding the element η.
The full conditional for the latent variables is

(Xt, Yt) ∼ f(Zt|Xt, Yt,θ)ft(Xt, Yt|Zt,θ). (2.44)

We draw from the full conditional distribution by MH. Differently from Karlis and
Ntzoufras (2006), we use a mixture proposal distribution which allows for a better

27



mixing of the MCMC chain. At the j-th iteration, we generate a candidate X∗t
fromGP (θ1t, λ) with probability ν and (X∗t−Zt) fromGP (θ2t, λ) with probability
1− ν, and accept with probability

% = min

{
1,

ft(X
∗
t |θ1t, λ)ft(X

∗
t − Zt|θ2t, λ)

ft(X
(j−1)
t |θ1t, λ)ft(X

(j−1)
t − Zt|θ2t, λ)

q(X
(j−1)
t )

q(X∗t )

}
(2.45)

where q(Xt) = νf(Xt|θ1t, λ)+(1−ν)f(Xt−Zt|θ2t, λ) and X
(j−1)
t is the (j−1)-th

iteration value of the latent variable Xt. The method extends to the GPD the
technique proposed in Karlis and Ntzoufras (2006) for the Poisson differences.

As regards to the parameter ϕ, its full conditional distribution is

ϕ ∼ π(ϕ|Z1:T , Y1:T , X1:T ,θ−ϕ) ∝ π(ϕ)
T∏
t=1

ft(Xt, Yt|θ). (2.46)

We consider a MH with Dirichlet independent proposal distribution

ϕ∗ ∼ Dir(c∗) (2.47)

where c∗ = (c∗0, c
∗
1, c
∗
2) and acceptance probability

% = min

{
1,

π(ϕ∗|Z1:T , Y1:T , X1:T ,θ−ϕ)

π(ϕj−1|Z1:T , Y1:T , X1:T ,θ−ϕ)

}
. (2.48)

The full conditional distribution of φ is

π(φ|Z1:T , Y1:T , X1:T ,θ−φ) ∝ π(φ)
T∏
t=1

ft(Xt, Yt|θ). (2.49)

We consider the change of variable ζ = log(φ − c) with Jacobian exp(ζ) and a
MH step with a random walk proposal

ζ∗ ∼ N(ζj−1, γ
2) (2.50)

where ζj−1 = log(φj−1− c), φj−1 is the previous iteration value of the parameter
and c = 1

(1−λ)2
. The acceptance probability is

% = min

{
1,

π(φ∗|Z1:T , Y1:T , X1:T ,θ−φ) exp(ζ∗)

π(φj−1)|Z1:T , Y1:T , X1:T ,θ−φ) exp(ζj−1)

}
(2.51)

where φ∗ = c+ exp(ζ∗).
The full conditional distribution of λ is

π(λ|Z1:T , Y1:T , X1:T ,θ−λ) ∝ π(λ)
T∏
t=1

ft(Xt, Yt|θ). (2.52)
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We consider a MH step with Beta random walk proposal

λ∗ ∼ Be(sλ(j−1), s(1− λ(j−1))) (2.53)

where s is a precision parameter. The acceptance probability is:

% = min

{
1,

π(λ∗|Z1:T , Y1:T , X1:T ,θ−λ)Be(sλ
∗, s(1− λ∗))

π(λ(j−1)|Z1:T , Y1:T , X1:T ,θ−λ)Be(sλ(j−1), s(1− λ(j−1)))

}
. (2.54)

To have an acceptance rate in the range [0.15, 0.5], the values for the hyper-
parameters of the proposal are: = (3, 3, 4), γ ∼ N(0, 0.0001), s = 100 while the
parameter ν is set to be the proportion of positive values in the series.

2.4.4 Forecasting

Given the samples Z1, . . . , ZT , the Gibbs sampler can be used to approximate
point and distribution forecasts for the variable of interest ZT+h, h = 1, . . . , H

where H is the forecasting horizon. At the j-th MCMC iteration we draw Z
(j)
T+h

from the conditional distribution given past observations and the parameter draw
θ(j)

Z
(j)
T+h|Z

(j)
T+h−1,FT ,θ

(j) ∼ GPD
(
µ̃

(j)
T+h, σ̃

2 (j)
T+h, λ

(j)
)

(2.55)

h = 1, . . . , H, where µ̃
(j)
T+h = µ

(j)
T+h

(
1− λ(j)

)
, σ̃

2 (j)
T+h = σ

2 (j)
T+h

(
1− λ(j)

)2
and

µ
(j)
T+h =

{
α

(j)
0 + α

(j)
1 ZT + β

(j)
1 µ

(j)
T , for h = 1

α
(j)
0 + α

(j)
1 Z

(j)
T+h−1 + β

(j)
1 µ

(j)
T+h−1, for h = 2, . . . , H

(2.56)

σ
2 (j)
T+h = |µ(j)

T+h|φ
(j) (2.57)

with j = 1, . . . , J indicating the MCMC draws. The point forecast E(ZT+h|FT )
can be approximated as follows

̂E(ZT+h|FT ) =
1

J

J∑
j=1

Z
(j)
T+h (2.58)

and similarly other quantities of interest, such as predictive distribution and
quantiles, can be approximated by using the simulated values Z

(j)
T+h.

For example, in some applications the process {Zt}t∈Z represents the time
increments of the process {Vt}t∈Z that is Zt = Vt − Vt−1. Random samples for
VT+h = VT+h−1 + ZT+h can be easily obtained from the recursion

V
(j)
T+h = V

(j)
T+h−1 + Z

(j)
T+h, h = 1, . . . , H (2.59)

with initial value V
(j)
T equal to the sample VT available at time T , where the GPD

increments Z
(j)
T+h are sampled from GPD

(
µ̃

(j)
T+h, σ̃

2 (j)
T+h, λ

(j)
)

under the constrain:

Z
(j)
T+h ≥ V

(j)
T+h−1. The point forecast E(VT+h|FT ) can be approximated as follows

̂E(VT+h|FT ) =
1

J

J∑
j=1

V
(j)
T+h. (2.60)
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2.5 Simulation study

The purpose of our simulation exercises is threefold: first we test for the cor-
rect implementation of the MCMC, algorithm presented in Section 2.4, second
we study the efficiency of the MCMC and finally we show the effect of miss-
specification of the overdispersion parameter λ on the estimates of the GARCH
coefficient.

We apply the Geweke (2004) procedure to test the correct implementation
of the Gibbs sampler. The test used 2000 MCMC samples and the first three
moments as test functions for each parameter. Our Gibbs sampler passes the
tests. Background material on the Geweke’s test and the value of the statistics
are reported in Appendix 2.8.3.

As regards the efficiency of the MCMC we evaluated the Geweke (1992)
convergence diagnostic measure (CD), the inefficiency factor (INEFF)2 and the
Effective Sample Size (ESS).

We simulated 50 independent data-series of 400 observations each. We run the
Gibbs sampler for 1,010,000 iterations on each dataset, discard the first 10,000
draws to remove dependence on initial conditions, and finally apply a thinning
procedure with a factor of 250, to reduce the dependence between consecutive
draws. For each setting we provide in Appendix 2.8.3 the output of one of
the experiments. Since we obtain better results than previous models, we set
p = q = 1 and in the following for ease of notation we use α1 = α and β1 = β.
We leave the study for models with p+ q > 2 for future works.

As commonly used in the GARCH and stochastic volatility literature (e.g.,
see Chib et al., 2002; Casarin et al., 2009; Billio et al., 2016; Bormetti et al.,
2019, and references therein), we test the efficiency of the algorithm in two
different settings: low persistence and high persistence. The true values of the
parameters are: α = 0.25, β = 0.23, λ = 0.4 in the low persistence setting and
α = 0.53, β = 0.25, λ = 0.6 in the high persistence setting. Table 4.1 shows,
for the parameters α, β and λ, the INEFF, ESS and ACF averaged over the 50
replications before (BT subscript) and after thinning (AT subscript).

The thinning procedure is effective in reducing the autocorrelation levels and
in increasing the ESS, especially in the high persistence setting. The p-values
of the CD statistics indicate that the null hypothesis that two sub-samples of
the MCMC draws have the same distribution is accepted. The efficiency of the

2The inefficiency factor is defined as

INEFF = 1 + 2

∞∑
k=1

ρ(k)

where ρ(k) is the sample autocorrelation at lag k for the parameter of interest and are computed
to measure how well the MCMC chain mixes. An INEFF equal to n tells us that we need to
draw MCMC samples n times as many as uncorrelated samples.
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Low persistence High persistence
(α = 0.25, β = 0.23, λ = 0.4) (α = 0.53, β = 0.25, λ = 0.6)

α β λ α β λ

ACF (1)BT 0.96 0.97 0.97 0.91 0.88 0.98
ACF (10)BT 0.86 0.83 0.81 0.70 0.52 0.83
ACF (30)BT 0.75 0.69 0.63 0.52 0.37 0.60
ACF (1)AT 0.43 0.39 0.27 0.21 0.13 0.16
ACF (10)AT 0.25 0.18 0.12 0.20 0.06 0.11
ACF (30)AT 0.18 0.15 0.07 0.15 0.06 0.09

ESSBT 0.02 0.02 0.02 0.02 0.03 0.02
ESSAT 0.07 0.07 0.09 0.09 0.12 0.11

INEFFBT 50.53 51.07 43.88 48.39 43.35 49.25
INEFFAT 26.36 27.29 13.99 17.21 16.84 12.59

CDBT 11.81 -28.69 0.78 0.93 -6.27 2.40
(0.11) (0.14) (0.10) (0.04) (0.06) (0.05)

CDAT 5.72 -13.18 0.2 0.74 -3.84 1.17
(0.23) (0.23) (0.23) (0.13) (0.15) (0.11)

Table 2.1: Autocorrelation function (ACF), effective sample size (ESS) and in-
efficiency factor (INEFF) of the posterior MCMC samples for the two settings:
low persistence and high persistence. The results are averages over a set of 50
independent MCMC experiments on 50 independent datasets of 400 observations
each. We ran the proposed MCMC algorithm for 1,010,000 iterations and eval-
uate the statistics before (subscript BT) and after (subscript AT) removing the
first 10,000 burn-in samples, and applying a thinning procedure with a factor of
250. In parenthesis the p-values of the Geweke’s convergence diagnostic.

MCMC after thinning generally improved. On average, the inefficiency measures
(19.05), the p-values of the CD statistics (0.18) and the acceptance rates (0.35)
achieved the values recommended in the literature (e.g., see Roberts et al., 1997).

Finally, we study the estimation bias when the model is not correctly spec-
ified. Since the GARCH dynamics in µt is related to the over-dispersion λ and
location µ̃t (see equation 2.19) one can expect some estimation bias when λ is
not correctly specified. In our experiments, when a PD-INGARCH is estimated
on data generated from a GPD-INGARCH, the GARCH parameters are biased.
For illustrative purposes we report in Figure 2.6 the results of some of our ex-
periments. The estimation bias for α and β is 0.11 and -0.09, respectively in the
low persistence case and 0.1 and 0.02, respectively in the high persistence.
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(I) Low Persistence (II) High Persistence

GPD-GARCH PD-GARCH GPD-GARCH PD-GARCH

Figure 2.6: Posterior histograms for α (first row) and β (second row) in the
low persistence case (left panel) and high persistence case (right panel) when
we fit the correct model GPD− INGARCH and the misspecified model PD−
INGARCH.

2.6 Real data examples

2.6.1 Accident data

Data in this application are the number of daily car accidents near Schiphol air-
port in The Netherlands during 2001 (Fig. 2.7) sampled at daily frequency. This
set of 365 observations have been previously considered in Brijs et al. (2008) and
Andersson and Karlis (2014). Following the results of the Augmented Dickey-
Fueller and Phillips-Perron tests for unit roots, the time series of accident counts
is non-stationary, whereas the first differences do not exhibit unit root (see Tab.
2.6 in Appendix 2.8.4). We applied our Bayesian estimation procedure, as de-
scribed in Section 2.4.

For each parameters, in Fig. 2.8 are presented the histograms for the Gibbs
draws. Table 2.2 presents the parameter posterior mean and standard error
and the 95% credible interval for the unrestricted INGARCH(1,1) model (model
M1). In the data, we found evidence of high persistence in the expected accident
arrivals, i.e. α̂ + β̂ = 0.8673 and heteroskedastic effects, i.e. β̂ = 0.4753. Also,
there is evidence in favour of overdispersion, λ̂ = 0.5892 and overdispersion
persistence φ̂ = 179.7905. We study the contribution of the heteroskedasticy
and persistence by testing some restrictions of the INGARCH(1,1) (models from
M2 to M4 in Table 2.2).

Bayesian inference compares models via the so-called Bayes factor, which is
the ratio of normalizing constants of the posterior distributions of two different
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Figure 2.7: Frequency (top) and month-on-month changes (bottom) of the acci-
dents at the Schiphol airport in The Netherlands in 2001.
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Figure 2.8: Histograms of the MCMC draws for the parameters of the Schiphol’s
accident data of Fig. 3.2.
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Parameters Mean Std CI

Model M1: GPD-INGARCH(1,1)

α 0.3920 0.0246 (0.3347, 0.4297)
β 0.4753 0.0096 (0.4582, 0.4999)
λ 0.5892 0.0246 (0.53833, 0.6349)
φ 179.7905 22.8040 (138.2406, 226.99)

Model M2: PD-INGARCH(1,1) and λ = 0

α 0.1121 0.0095 (0.1004, 0.1340)
β 0.1798 0.0101 (0.1549, 0.1989)
λ - - -
φ 94.9340 8.6488 (77.0653, 110.6276)

Model M3: GPD-INARCH(1,0)

α 0.2286 0.0485 (0.1407, 0.3287)
β - - -
λ 0.5682 0.0243 (0.5195, 0.6166)
φ 218.6333 36.2307 (155.7151, 297.2252)

Model M4: PD-INARCH(1,0) and λ = 0

α 0.1013 0.0013 (0.1000, 0.1050)
β - - -
λ - - -
φ 104.4131 7.4362 (86.4588, 115.8723)

Table 2.2: Posterior mean (Mean), 95% credible intervals (CI), and standard de-
viation (Std) for different specifications (different panels) of the GPD-INGARCH.

models (see Cameron et al. (2014) for a review). MCMC methods allow for
generating samples from the posterior distributions which can be used to estimate
the ratio of normalizing constants.

In this chapter we use the method proposed by Geyer (1994). The method
consists in deriving the normalizing constants by reverse logistic regression. The
idea behind this method is to consider the different estimates as if they were
sampled from a mixture of two distributions with probability

pj(x, η) =
hj(x) exp(ηj)

h1(x) exp(η1) + h2(x) exp(η2)
, j = 1, 2 (2.61)

to be generated from the j-th distribution of the mixture. Geyer (1994) proposed
to estimate the log-Bayes factor κ = η2 − η1 by maximizing the quasi-likelihood
function

`n(κ) =
n∑
i=1

log p1(Xi1, η1) +
n∑
i=1

log p2(Xi2, η2) (2.62)

where n is the number of MCMC draws for each model and

Xij = log f(Z1:T , X
(i)
1:T , Y

(i)
1:T |θ

(i))

is the log-likelihood evaluated at the i-th MCMC sample for each model of Table
2.2.
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BF(Mi,Mj) M2 M3 M4

M1
333.45 25.19 121.44
(5.818) (0.253) (0.521)

M2
-226.86 -300.96
(2.024) (2.522)

M3
-73.25
(0.358)

Table 2.3: Logarithmic Bayes Factor, BF(Mi,Mj), of the model Mi (rows)
against model Mj (columns), with i < j. Where M1 is the GPD-
INGARCH(1,1), M2 is the PD-INGARCH(1,1) with λ = 0, M3 is the GPD-
INARCH(1,0) and M4 is the PD-INARCH(1,0) with λ = 0. Numbers in paren-
thesis are standard deviations of the estimated Bayes factors.
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Figure 2.9: Changes in the number of car accidents and their sequential one-
step-ahead forecast (red line) and 95% HPD region (gray area)

We performed six reverse logistic regressions, in which we compare our mod-
els pairwise. The approximated logarithmic Bayes factors BF (Mi,Mj) are
given in Table 2.3. It is possible to see that our GPD-INGARCH(1, 1), M1, is
preferable with respect to the other models. Notice that M2 corresponds to an
INGARCH(1, 1) where the observations are form a standard Poisson-difference
model PD-INGARCH(1, 1), M3 corresponds to an autoregressive model, GPD-
INARCH(1, 0), whereasM4 is a standard Poisson difference autoregressive model,
PD-INARCH(1, 0).

We present the results of one-step-ahead forecasting exercise over a period of
120. We follow an approach based on predictive distributions which quantifies all
uncertainty associated with the future number of car accidents. We account for
parameter uncertainty and approximate the predictive distribution by MCMC.

2.6.2 Cyber threats data

According to the Financial Stability Board (FSB, 2018, pp. 8-9), a cyber incident
is any observable occurrence in an information system that jeopardizes the cyber
security of the system, or violates the security policies and procedures or the
use policies. Over the past years there have been several discussions on the
taxonomy of incidents classification (see, e.g. ENISA, 2018), in this chapter we
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use the classification provided in the Passeri (2019) dataset. Passeri (2019) is a
well-known cyber-incident website that collects public reports and provides the
number of cyber incidents for different categories of threats: crimes, espionage
and warfare.

Fig. 2.10 shows the total and category-specific number of cyber attacks at
a daily frequency from January 2017 to December 2018. Albeit limited in the
variety of cyber attacks the dataset covers some relevant cyber events and is
one of the few publicly available datasets (Agrafiotis et al., 2018). The daily
threats frequencies are between 0 and 12 which motivates the use of a discrete
distribution. We remove the upward trend by considering the first difference and
fit the GPD-INGARCH model proposed in Section 2.2.

We applied our estimation procedure, as described in Section 2.4. As in the
previous application, we fix α0 = 1.05 that is coherent with the conditional mean
of the time series. We ran the Gibbs sampler for 110000 iterations, where we
discarded the first 10000 iterations as burn-in sample. In Fig. 2.11 are presented
the histograms for the Gibbs draws for each parameters.

BF(Mi,Mj) M2 M3 M4

M1
4.72e+03 -558.34 -229.88
(1.068) (-0.115) (-0.028)

M2
102.567 102.567

(2.737e-15) (8.024e-16)

M3
102.567

(4.447e-17)

Table 2.4: Logarithmic Bayes Factor, BF(Mi,Mj), of the model Mi (rows)
against model Mj (columns), with i < j. Where M1 is the GPD-
INGARCH(1,1), M2 is the PD-INGARCH(1,1) with λ = 0, M3 is the GPD-
INARCH(1,0) and M4 is the PD-INARCH(1,0) with λ = 0. Numbers in paren-
thesis are standard deviations of the estimated Bayes factors.

Fig. 2.11 shows that, as before, it is reasonable to fit a GPD-INGARCH
process to the difference of cyber attacks since both the autoregressive parameter
α and β, that represent the heteroskedastic feature of the data, are different from
zero. Additionally, the value of λ suggests the presence of over-dispersion in the
data.
As in the previous application, we performed six reverse logistic regressions, in
which we compare our models pairwise. The approximated logarithmic Bayes
factors BF (Mi,Mj) are given in Table 2.4. It is possible to see that our GPD-
INGARCH(1, 1), M1, is preferable with respect to the other models. Notice
that M2 corresponds to an INGARCH(1, 1) where the observations are form a
standard Poisson-difference model PD-INGARCH(1, 1), M3 corresponds to an
autoregressive model, GPD-INARCH(1, 0), whereas M4 is a standard Poisson
difference autoregressive model, PD-INARCH(1, 0).
Given the importance of forecasting cyber-attacks, in this section we present the
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Figure 2.10: Daily cyber-threats counts between 1st January 2017 and 31st De-
cember 2018.
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Figure 2.11: Histograms of the MCMC draws for the parameters.
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Figure 2.12: Changes in the number of cyber threats and their sequential one-
step-ahead forecast (red line) and 95% HPD region (gray area) between 1st
November 2018 (vertical dashed line) and 31st December 2018.

results of one-step-ahead forecasting exercise over a period of 120. We follow
an approach based on predictive distributions which quantifies all uncertainty
associated with the future number of attacks and is used in a wide range of
applications (see, e.g. McCabe and Martin, 2005; McCabe et al., 2011, and
references therein). We account for parameter uncertainty and approximate the
predictive distribution by MCMC.

2.7 Conclusions

We introduce a new family of stochastic processes with values in the set of integers
with sign. The increments of the process follow a generalized Poisson difference
distribution with time-varying parameters. We assume a GARCH-type dynam-
ics, provide a thinning representation and study the properties of the process.
We provide a Bayesian inference procedure and an efficient Monte Carlo Markov
Chain sampler for posterior approximation. Inference and forecasting exercises
on accidents and cyber-threats data show that the proposed GPD-INGARCH
model is well suited for capturing persistence in the conditional moments and in
the over-dispersion feature of the data.

38



Bibliography

Abramowitz, M. and Stegun, I. A. (1965). Handbook of mathematical functions:
with formulas, graphs, and mathematical tables, volume 55. Courier Corpora-
tion.

Agrafiotis, I., Nurse, J. R. C., Goldsmith, M., Creese, S., and Upton, D. (2018).
A taxonomy of cyber-harms: Defining the impacts of cyber-attacks and un-
derstanding how they propagate. Journal of Cybersecurity, 4(1).

Al-Osh, M. and Alzaid, A. A. (1987). First-order integer-valued autoregressive
(INAR (1)) process. Journal of Time Series Analysis, 8(3):261–275.

Al-Osh, M. A. and Aly, E.-E. A. (1992). First order autoregressive time series
with negative binomial and geometric marginals. Communications in Statistics
- Theory and Methods, 21(9):2483–2492.

Alomani, G. A., Alzaid, A. A., Omair, M. A., et al. (2018). A Skellam GARCH
model. Brazilian Journal of Probability and Statistics, 32(1):200–214.

Alzaid, A. and Al-Osh, M. (1993). Generalized Poisson ARMA processes. Annals
of the Institute of Statistical Mathematics, 45(2):223–232.

Alzaid, A. A. and Omair, M. A. (2014). Poisson difference integer valued autore-
gressive model of order one. Bulletin of the Malaysian Mathematical Sciences
Society, 37(2):465–485.

Anderson, R. and Moore, T. (2006). The economics of information security.
Science, 314(5799):610–613.

Andersson, J. and Karlis, D. (2014). A parametric time series model with co-
variates for integers in Z. Statistical Modelling, 14(2):135–156.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269–342.

Ardia, D. (2008). Bayesian estimation of a Markovswitching threshold asym-
metric GARCH model with Studentt innovations. The Econometrics Journal,
12(1):105–126.

39



Billio, M., Casarin, R., and Osuntuyi, A. (2016). Efficient Gibbs sampling for
Markov switching GARCH models. Computational Statistics and Data Anal-
ysis, 100:37 – 57.

Bormetti, G., Casarin, R., Corsi, F., and Livieri, G. (2019). A stochastic volatil-
ity model with realized measures for option pricing. Journal of Business &
Economic Statistics, 0(0):1–31.

Brenner, S. W. (2004). Cybercrime metrics: Old wine, new bottles? Virginia
Journal of Law and Technology, 9(13):1–53.

Brijs, T., Karlis, D., and Wets, G. (2008). Studying the effect of weather con-
ditions on daily crash counts using a discrete time-series model. Accident
Analysis & Prevention, 40(3).

Brockwell, P. J., Davis, R. A., and Fienberg, S. E. (1991). Time Series: Theory
and Methods: Theory and Methods. Springer Science & Business Media.

Cameron, E., Pettitt, A., et al. (2014). Recursive pathways to marginal likelihood
estimation with prior-sensitivity analysis. Statistical Science, 29(3).

Cardinal, M., Roy, R., and Lambert, J. (1999). On the application of integer-
valued time series models for the analysis of disease incidence. Statistics in
Medicine, 18(15):2025–2039.

Casarin, R., Marin, J.-M., et al. (2009). Online data processing: Comparison
of Bayesian regularized particle filters. Electronic Journal of Statistics, 3:239–
258.

Chen, C. W. and Lee, S. (2016). Generalized Poisson autoregressive models for
time series of counts. Computational Statistics & Data Analysis, 99:51–67.

Chen, C. W., So, M. K., Li, J. C., and Sriboonchitta, S. (2016). Autoregressive
conditional negative binomial model applied to over-dispersed time series of
counts. Statistical Methodology, 31:73–90.

Chib, S., Nardari, F., and Shephard, N. (2002). Markov chain Monte Carlo
methods for stochastic volatility models. Journal of Econometrics, 108(2):281–
316.

Consul, P. (1990). On some properties and applications of quasi-binomial distri-
bution. Communications in Statistics-Theory and Methods, 19(2):477–504.

Consul, P. and Famoye, F. (1986). On the unimodality of generalized Poisson
distribution. Statistica neerlandica, 40(2):117–122.

Consul, P. and Famoye, F. (1992). Generalized Poisson regression model. Com-
munications in Statistics-Theory and Methods, 21(1):89–109.

40



Consul, P. and Mittal, S. (1975). A new urn model with predetermined strategy.
Biometrische Zeitschrift, 17(2):67–75.

Consul, P. and Shenton, L. (1975). On the probabilistic structure and proper-
ties of discrete Lagrangian distributions. In A modern course on statistical
distributions in scientific work, pages 41–57.

Consul, P. C. (1986). On the differences of two generalized Poisson variates.
Communications in Statistics - Simulation and Computation, 15(3):761–767.

Consul, P. C. (1989). Generalized Poisson Distributions. Dekker New York.

Consul, P. C. and Famoye, F. (2006). Lagrangian probability distributions.
Springer.

Consul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution.
Technometrics, 15(4):791–799.

Consul, P. C. and Shenton, L. (1973). Some interesting properties of Lagrangian
distributions. Communications in Statistics-Theory and Methods, 2(3):263–
272.

Cunha, E. T. d., Vasconcellos, K. L., and Bourguignon, M. (2018). A skew
integer-valued time-series process with generalized Poisson difference marginal
distribution. Journal of Statistical Theory and Practice, 12(4):718–743.

Davis, R. A., Dunsmuir, W. T., and Wang, Y. (1999). Modeling time series of
count data. Statistics Textbooks and Monographs, 158:63–114.

Demirtas, H. (2017). On accurate and precise generation of generalized Pois-
son variates. Communications in Statistics-Simulation and Computation,
46(1):489–499.

Edwards, B., Hofmeyr, S. A., and Forrest, S. (2015). Hype and heavy tails: A
closer look at data breaches. J. Cybersecurity, 2:3–14.

EIOPA (2019). Cyber risk for insurers - challenges and opportunities. Available
at https://eiopa.europa.eu/Publications/Reports/EIOPA_Cyber_risk_

for_insurers_Sept2019.pdf.

ENISA (2018). Reference incident classification taxonomy.
Available at https://www.enisa.europa.eu/publications/

reference-incident-classification-taxonomy.pdf.

Famoye, F. (1993). Restricted generalized Poisson regression model. Communi-
cations in Statistics-Theory and Methods, 22(5):1335–1354.

Famoye, F. (1997). Generalized Poisson random variate generation. American
Journal of Mathematical and Management Sciences, 17(3-4):219–237.

41

https://eiopa.europa.eu/Publications/Reports/EIOPA_Cyber_risk_for_insurers_Sept2019.pdf
https://eiopa.europa.eu/Publications/Reports/EIOPA_Cyber_risk_for_insurers_Sept2019.pdf
https://www.enisa.europa.eu/publications/reference-incident-classification-taxonomy.pdf
https://www.enisa.europa.eu/publications/reference-incident-classification-taxonomy.pdf


Famoye, F. (2015). A multivariate generalized Poisson regression model. Com-
munications in Statistics-Theory and Methods, 44(3):497–511.

Famoye, F. and Consul, P. (1995). Bivariate generalized Poisson distribution
with some applications. Metrika, 42(1).

Famoye, F., Wulu, J. T., and Singh, K. P. (2004). On the generalized Poisson
regression model with an application to accident data. Journal of Data Science,
2(2004):287–295.

Ferland, R., Latour, A., and Oraichi, D. (2006). Integer-valued GARCH process.
Journal of Time Series Analysis, 27(6):923–942.

Francq, C. and Zakoian, J.-M. (2019). GARCH models: structure, statistical
inference and financial applications. Wiley.

Freeland, R. and McCabe, B. P. (2004). Analysis of low count time series data
by Poisson autoregression. Journal of Time Series Analysis, 25(5):701–722.

Freeland, R. K. (1998). Statistical analysis of discrete time series with application
to the analysis of workers’ compensation claims data. PhD thesis, University
of British Columbia.

Freeland, R. K. (2010). True integer value time series. AStA Advances in Sta-
tistical Analysis, 94(3):217–229.
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2.8 Appendix

2.8.1 Distributions used in this chapter

Poisson Difference distribution

The Poisson difference distribution, a.k.a. Skellam distribution, is a discrete dis-
tribution defined as the difference of two independent Poisson random variables
N1 − N2, with parameters λ1 and λ2. It has been introduced by Irwin (1937)
and Skellam (1946).

The probability mass function of the Skellam distribution for the difference
X = N1 −N2 is

P (X = x) = e−(λ1+λ2)

(
λ1

λ2

)x/2
I|x|(2

√
λ1λ2), with X ∈ Z (2.63)
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where Z = . . . ,−1, 0, 1, . . . is the set of positive and negative integer numbers,
and Ik(z) is the modified Bessel function of the first kind, defined as (Abramowitz
and Stegun, 1965)

Iv(z) =
(z

2

)2
∞∑
k=0

(
z2

4

)k
k!Γ(v + k + 1)

(2.64)

It can be used, for example, to model the difference in number of events,
like accidents, between two different cities or years. Moreover, can be used to
model the point spread between different teams in sports, where all scored points
are independent and equal, meaning they are single units. Another applications
can be found in graphics since it can be used for describing the statistics of the
difference between two images with a simple Shot noise, usually modelled as a
Poisson process.

The distribution has the following properties:

• Parameters: λ1 ≥ 0, λ2 ≥ 0

• Support: {−∞,+∞}

• Moment-generating function: e−(λ1+λ2)+λ1et+λ2e−t

• Probability generating function: e−(λ1+λ2)+λ1t+λ2/t

• Characteristic function: e−(λ1+λ2)+λ1eit+λ2e−it

• Moments

1. Mean: λ1 − λ2

2. Variance: λ1 + λ2

3. Skewness: λ1−λ2
(λ1+λ2)3/2

4. Excess Kurtosis: 1
λ1+λ2

• The Skellam probability mass function is normalized:
∑+∞

k=−∞ p(k;λ1, λ2) =
1

Generalized Poisson distribution

The Generalized Poisson distribution (GP) has been introduced by Consul and
Jain (1973) in order to overcome the equality of mean and variance that char-
acterizes the Poisson distribution. In some cases the occurrence of an event, in
a population that should be Poissonian, changes with time or dependently on
previous occurrences. Therefore, mean and variances are unequal in the data.
In different fields a vastness of mixture and compound distribution have been
considered, Consul and Jain introduced the GP distribution in order to obtain a
unique distribution to be used in the cases said above, by allowing the introduc-
tion of an additional parameter.
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See Consul and Famoye (2006) for some applications of the Generalized Pois-
son distribution. Application of the GP distribution can be find as well in eco-
nomics and finance. Consul (1989) showed that the number of unit of different
commodities purchased by consumers in a fixed period of time follows a Gen-
eralized Poisson distribution. He gave interpretation of both parameters of the
distribution: θ denote the basic sales potential for the commodity, while λ the
average rates of liking generated by the product between consumers. Tripathi
et al. (1986) provide an application of the GP distribution in textile manufactur-
ing industry. In particular, given the established use of the Poisson distribution
in the field, they compare the Poisson and the GP distributions when firms want
to increase their profit. They found that the Generalized Poisson, considering
different values of the parameters, always yield larger profits. Moreover, the
Generalized Poisson distribution, as studied by Consul (1989), can be used to
describe accidents of various kinds, such as: shunting accidents, home injuries
and strikes in industries. Another application to accidents has been carried out
by Famoye and Consul (1995), where they introduced a bivariate extension to
the GP distribution and studied two different estimation methods, i.e. method
of moments and MLE, and the goodness of fit of the distribution in accidents
statistics. Hubert Jr et al. (2009) test for the value of the GP distribution ex-
tra parameter by means of a Bayesian hypotheses test procedure, namely the
Full Bayesian Significance Test. Famoye (1997) and Demirtas (2017) provided
different methods of sampling from the Generalized Poisson distribution and al-
gorithms for sampling. As regard processes, the GP distribution has been used
in different models. For example, Consul and Famoye (1992) introduced the GP
regression model, while Famoye (1993) studied the restricted generalized Poisson
regression. Wang and Famoye (1997) applied the GP regression model to house-
holds’ fertility decisions and Famoye et al. (2004) carried out an application of
the GP regression model to accident data. Zamani and Ismail (2012) develop
a functional form of the GP regression model, Zamani et al. (2016) introduced
a few forms of bivariate GP regression model and different applications using
dataset on healthcare, in particular the Australian health survey and the US
National Medical Expenditure survey. Famoye (2015) provide a multivariate GP
regression model, based on a multivariate version of the GP distribution, and two
applications: to the healthcare utilizations and to the number of sexual partners.

The Generalized Poisson distribution of a random variable X with parameters
θ and λ is given by

Px(θ, λ) =

{
θ(θ+λx)x−1

x!
e(−θ−λx), x = 0, 1, 2, . . .

0, for x > m if λ < 0.
(2.65)

The GP is part of the class of general Lagrangian distributions. The GP has
Generating functions and moments

• Parameters:

1. θ > 0
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2. max(−1,−θ/m) ≤ λ ≤ 1

3. m(≥ 4) is the largest positive integer for which θ + mλ > 0 when
λ < 0

• Moment generating function (mgf): Mx(β) = eθ(e
s−1), where z = es and

u = eβ

• Probability generating function (pgf): G(u) = eθ(z−1), where z = ueλ(z−1)

• Moments:

1. Mean: µ = θ(1− λ)−1

2. Variance: σ2 = θ(1− λ)−3

3. Skewness: β1 = 1+2λ√
θ(1−λ)

4. Kurtosis: β2 = 3 + 1+8λ+6λ2

θ(1−λ)

The pgf of the GP is derived by Consul and Jain (1973) by means of the Lagrange
expansion, namely:

z =
∞∑
x=1

ux

x!
{Dx−1(g(z))x}z=0 (2.66)

f(z) =
∞∑
x=0

ux

x!
Dx−1{(g(z))xf ′(z)}|z=0

= f(0) +
∞∑
x=1

ux

x!
Dx−1{(g(z))xf ′(z)}|z=0

(2.67)

where Dx−1 = dx−1

dzx−1 . In particular, for the GP distribution we have (Consul and
Famoye, 2006) :

f(z) = eθ(z−1) and g(z) = eλ(z−1) (2.68)

Now, by setting G(u) = f(z) we have the expression above for the pgf. (see
proof in

Properties Consul and Jain (1973), Consul (1989), Consul and Famoye (1986)
and Consul and Famoye (2006) derived some interesting properties of the Gen-
eralized Poisson distribution.

Theorem 1 (Convolution Property). The sum of two independent random
Generalized Poisson variates, X + Y , with parameters (θ1, λ) and (θ2, λ) is a
Generalized Poisson variate with parameters (θ1 + θ2, λ).

For a proof of Th. 1 see Consul and Jain (1973).

49



Theorem 2 (Unimodality). The GP distribution models are unimodal for all
values of θ and λ and the mode is at x = 0 if θe−λ < 1 and at the dual points
x = 0 and x = 1 when θe−λ = 1 and for θe−λ > 1 the mode is at some point
x = M such that:

(θ − e−λ)(eλ − 2λ)−1 < M < a (2.69)

where a is the smallest value of M satisfying the inequality

λ2M2 +M [2λθ − (θ + 2λ)eλ] > 0 (2.70)

For a proof of Th. 2 see Consul and Famoye (1986).
Consul and Shenton (1975) and Consul (1989) derived some recurrence rela-

tions between noncentral moments µ′k and the cumulants Kk:

(1− λ)µ′k+1 = θµ′k + θ
∂µ′k
∂θ

+ λ
∂µ′k
∂λ

, k = 0, 1, 2, . . . (2.71)

(1− λ)Kk+1 = λ
∂Kk

∂λ
+ θ

∂Kk

∂θ
+, k = 1, 2, 3, . . . . (2.72)

Moreover, a recurrence relation between the central moments of the GP dis-
tribution has been derived:

µk+1 =
θk

(1− λ)3
µk−1 +

1

1− λ

{
d µk(t)

dt

}
t=1

, k = 1, 2, 3, . . . (2.73)

where µk(t) is the central moment µk with θt and λt in place of θ and λ.

Generalized Poisson Difference distribution

The random variable X follows a Generalized Poisson distribution (GP) Px(θ, λ)
if and only if

Px(θ, λ) =
θ(θ + xλ)x−1

x!
e−θ−xλ x = 0, 1, 2, . . . (2.74)

with θ > 0 and 0 ≤ λ < 1.
Let X ∼ Px(θ1, λ) and Y ∼ Py(θ2, λ) be two independent random variables,

Consul (1986) showed that the probability distribution of D, D = X − Y , is:

P (D = d) = e−θ1−θ2−dλ
∞∑
y=0

θ2(θ2 + yλ)y−1

y!

θ1(θ1 + (y + d)λ)y+d−1

(y + d)!
e−2yλ (2.75)

where d takes all integer values in the interval (−∞,+∞). As for the GP dis-
tribution, we need to set lower limits for λ in order to ensure that there are at
least five classes with non-zero probability when λ is negative. Hence, we set

max(−1,−θ1/m1) < λ < 1

max(−1,−θ2/m2) < λ < 1

where, m1,m2 ≥ 4 are the largest positive integers such that θ1 + m1λ > 0 and
θ2 +m2λ > 0.
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Proposition 11. The probability distribution in (2.75) can be written as

P (D = d) = e−(θ1+θ2) · e−dλ
∞∑
y=0

θ1θ2

y!(y + d)!
(θ2 + yλ)y−1(θ1 + (y + d)λ)y+d−1 · e−2yλ

(2.76)

= Cd(θ1, θ2, λ). (2.77)

Therefore, equation (2.76) is the pgf of the difference of two GP variates,
from which is possible to obtain the following particular cases:

Cd(θ1, 0, λ) = θ1(θ1+dλ)d−1

d!
e−θ1−dλ, for d = 0, 1, 2, . . .

Cd(0, θ2, λ) = θ2(θ2−dλ)−d−1

(−d)!
e−θ2+dλ, for d = 0,−1,−2, . . .

Cd(θ1, θ2, 0) = e−θ1−θ2(θ1)d/2(θ2)−d/2Id(2
√
θ1θ2),

(2.78)
where d is any integer (positive, 0 or negative) and Id(z) is the modified Bessel
function of the first kind, of order d and argument z.

The last result in equation (2.78) is the Skellam distribution (Skellam, 1946).
Therefore, the Skellam distribution is a particular case of the difference of two
GP variates.

By Consul and Shenton (1973):

G1(u) = eθ1(t1−1) , where t1 = ueλ(t1−1)

and
G2(u) = eθ2(t2−1 , where t2 = u−1eλ(t2−1).

Therefore, given that G(u) = G1(u)G2(u), the probability generating function
(pgf) of the random variable D = X − Y is

G(u) = exp[(θ1(t1 − 1) + (θ2(t2 − 1)]. (2.79)

From the cumulant generating function

ψ(β) =
(T1 − β)θ1

λ
+

(T2 + β)θ2

λ

where T1 = β + λ(eT1 − 1) and T2 = −β + λ(eT2 − 1), it is possible to define the
mean,variance, skewness and kurtosis:

L1 =
(θ1 − θ2)

1− λ
is the first cumulant and the mean. (2.80)

L2 =
(θ1 + θ2)

(1− λ)3
is the second cumulant and the variance. (2.81)
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β1 =
(θ1 − θ2)2

(θ1 + θ2)3

(1 + 2λ)2

1− λ
is the skewness. (2.82)

β2 = 3 +
1 + 8λ+ 6λ2

(θ1 + θ2)(1− λ)
is the kurtosis. (2.83)

In Fig. 2.13-2.14, we show the GPD for various setting of λ, σ2 and µ.

(a) GPD for µ = −4 and σ2 = 8 (b) GPD for µ = 4 and σ2 = 8
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(c) GPD for µ = 2 and σ2 = 5 (d) GPD for µ = 2 and σ2 = 15
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Figure 2.13: Generalized Poisson difference distribution for different values of λ.
Panels (a) and (b) show the GPD when λ varies, for a fixed value of σ2 = 8 and
two different values of µ. Panels (c) and (d) show the GPD when λ varies, for a
fixed value of µ = 2 and two different value of σ2.
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(a) GPD for different values of µ (b) GPD for different values of σ2
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Figure 2.14: Generalized poisson difference distribution for different values of µ
and σ and fixed λ. In panel (a) µ varies, while σ2 = 15 and λ = 0.1 are fixed.
In panel (b) σ2 varies and µ = 1 and λ = 0.1 are fixed.

Figure 2.13 shows how the GPD distribution varies when λ varies. We set
λ = (0, 0.1, 0.2, 0.3, 0.4) since smaller values and, possibly, negative values do not
met the conditions for the selected values of θ1 and θ2. From panel (a) and es-
pecially in panel (b) can be seen that when λ increases the distribution becomes
longer tailed. From panel (c) and (d) we can see that for fixed values µ, when λ
decreases, the GPD is more skewed respectively to the right for µ > 0 (θ1 > θ2)
and to the left for µ < 0 (θ1 < θ2). Therefore, the sign of µ determines the
skewness of the GPD.

From figure 2.14 we can see again, that for positive values of µ the distribution
becomes more right-skewed, panels (a) and (b), and more left-skewed for negative
values of µ in panels (c) and (d). Moreover, here can be seen better that has θ1

increases the distribution has longer tails.

Quasi-Binomial distribution

A first version of the Quasi-Binomial distribution, defined as QB-I by Consul
and Famoye (2006), was investigated by Consul (1990) as an urn model. In their
definition of the QB thinning, however, Alzaid and Al-Osh (1993) used the QB
distribution introduced in the literature by Consul and Mittal (1975) and defined
byConsul and Famoye (2006) as QB-II.

P (X = x) =

(
n

x

)
ab

a+ b

(a+ xθ)x−1(b+ nθ − xθ)n−x−1

(a+ b+ nθ)n−1
(2.84)

for x = 0, 1, 2, . . . , n and zero otherwise. where a > 0, b > 0 and θ > −a/n.
However, Alzaid and Al-Osh (1993), when defining the QB thinning operator,
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used a particular case of the QB-II distribution:

P (X = x) = pq

(
n

x

)
(p+ xθ)x−1(q + (n− x)θ)n−x−1

(1 + nθ)n−1
(2.85)

where a = p, q = b, 0 < q = 1 − p < 1 and θ is such that nθ < min(p, q).
We denote the QB-II with QB(p,θ,n). For large n, such that np → λ, the QB
distribution tends to the Generalized Poisson distribution.

The quasi-binomial (QB) thinning has been introduced by Alzaid and Al-Osh
(1993) as a generalization of the binomial thinning to model processes with GP
distribution marginals. Unlike the binomial thinning, the QB thinning is able
to obtain the distribution of the corresponding innovation. In particular, the
authors argued in many counting process is more suitable to consider that the
probability of retaining an element may depend on the time and/or the number of
already retained elements. They assumed that, at time t, the number of retained
elements follows a QB distribution. Using the notation in Weiß (2008), the QB
thinning is defined as follows:

Proposition 12 (Quasi-Binomial Thinning). Let ρθ,λ◦ be the quasi-binomial
thinning operator such that ρθ,λ◦ follows a QB(ρ,θ/λ,x). If X follows a GP(λ,θ)
distribution and the quasi-binomial thinning is performed independently on X,
then ρθ,λ ◦X has a GP(ρλ,θ) distribution.

The thinned variable, ρθ,λ ◦X, can be interpreted as the number of survivors
from a population described by X.

Properties

• Expected value: E[ρθ,λ ◦X] = ρ · µX

• Covariance: E[ρθ,λ ◦X,X] = ρ · σ2
X

2.8.2 Proofs of the results of the chapter

Proofs of the results in Section 2.2

Proof of Lemma 1. Let X ∼ GPD(θ1, θ2, λ) and Y ∼ GPD(θ3, θ4, λ). We can
write each r.v. as

X = X1 −X2 and Y = Y1 − Y2 (2.86)

where X1 ∼ GP (θ1, λ), X2 ∼ GP (θ2, λ), Y1 ∼ GP (θ3, λ) and Y2 ∼ GP (θ4, λ).
Therefore we can write

X + Y = X1 −X2 + Y1 − Y2

= (X1 + Y1)− (X2 + Y2)

= GP (θ1 + θ3, λ)−GP (θ2 + θ4, λ) ∼ GPD(θ1 + θ3, θ2 + θ4, λ).

(2.87)
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We can generalized the result as follows. Let Zi
i.i.d∼ GPD(θ1, θ2, λ). Then we

have
n∑
i=1

Zi ∼ GPD(
n∑
i=1

θ1i,

n∑
i=1

θ2i, λ). (2.88)

In the same way we can prove that the difference of two r.v. GPD distributed,
is again a GPD.

Let X ∼ GPD(θ1, θ2, λ) and Y ∼ GPD(θ3, θ4, λ). We can write each r.v. as

X = X1 −X2 and Y = Y1 − Y2 (2.89)

where X1 ∼ GP (θ1, λ), X2 ∼ GP (θ2, λ), Y1 ∼ GP (θ3, λ) and Y2 ∼ GP (θ4, λ).
Therefore we can write

X − Y = X1 −X2 − Y1 + Y2

= (X1 + Y2)− (X2 + Y1)

= GP (θ1 + θ4, λ)−GP (θ2 + θ3, λ) ∼ GPD(θ1 + θ4, θ2 + θ3, λ).

(2.90)

Proof of Remark 1. Let X ∼ GP (θ1, λ) and Y ∼ GP (θ2, λ), then Z = (X − Y )
follows a GPD(θ1, θ2, λ). We know that P (Z = z) = P (X = x) · P (Y = y),
therefore we can name S = Y and we substitute S in Z = X − Y , obtaining
X = S + Z. Now we can write:

P (Z = z) = e−(θ1+θ2)·e−zλ
+∞∑

s=max(0,−z)

θ1θ2

s!(s+ z)!
(θ2+λs)s−1(θ1+λ(s+z))s+z−1·e−2λs

(2.91)
which is the probability of a GPD(θ1, θ2, λ). We can now introduce the new
parametrization of the probability density function of the GPD. Define{

µ = θ1 − θ2

σ2 = θ1 + θ2

, (2.92)

thus, we can rewrite both parameters θi, i = 1, 2, with respect to µ and σ2:{
θ1 = σ2+µ

2

θ2 = σ2−µ
2

(2.93)

By substituting 2.93 into equation 2.91 we have

P (Z = z) = e(σ
2+µ
2

+σ2−µ
2

)e−zλ
+∞∑

s=max(0,−z)

(
σ2+µ

2

)(
σ2−µ

2

)
s!(s+ z)!

[
σ2 + µ

2
+ (s+ z)λ

]s+z−1

[
σ2 − µ

2
+ sλ

]s−1

e−2λs (2.94)

Carrying out the operations in Eq. 2.94 we obtain Eq. 2.92.
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Proof of Remark 2. If Z ∼ GPD(θ1, θ2, λ) in the parametrization of Consul
(1986), the moments are given in Appendix 2.8.1. By using our reparametriza-
tion of the GPD

θ1 =
σ2 + µ

2
, θ2 =

σ2 − µ
2

(2.95)

we obtain mean, variance, skewness and kurtosis:

E(Z) =
θ1 − θ2

1− λ
=

µ

1− λ

V (Z) =
θ1 + θ2

(1− λ)3
=

σ2

(1− λ)3
= κ2

S(Z) =
µ(3)

σ3
=

κ3

κ
3/2
2

=
µ

σ3

(1 + 2λ)√
1− λ

K(Z) =
κ4 + 3κ2

2

σ4
= 3 +

1 + 8λ+ 6λ2

σ2(1− λ)

(2.96)

where κi, i = 2, 3, 4 are respectively the second, third and fourth cumulants.

Proof of Proposition 1. Let ψj be the coefficient of zj in the Taylor expansion of
G(z)D(z)−1. We have

µ = E[Zt] = E[E[Zt|Ft−1]]

= E

[
α0D

−1(1) +
∞∑
j=1

ψjZt−j

]
= α0D

−1(1) + µD−1(1)G(1)
(2.97)

⇔ µ =
α0

D(1)−G(1)
= α0

(
1−

p∑
i=1

αi −
q∑
j=1

βj

)−1

= α0K
−1(1). (2.98)

Where we go from line two to line three of eq 2.97 as follows

E[Zt|Ft−1] = E[α0D
−1(1) +H(B)Zt|Ft−1]

= E[α0D
−1(1)] + E[H(B)Zt|Ft−1]

= α0D
−1(1) +

∞∑
j=1

ψjZt−j.

(2.99)

Following Ferland et al. (2006), to go from line three to line four of 2.97:

E[α0D
−1(1) +

∞∑
j=1

ψjZt−j] = E[α0D
−1(1)] + E[

∞∑
j=1

ψjZt−j]

= α0D
−1(1) +

∞∑
j=1

ψjE[Zt−j]

= α0D
−1(1) + µH(1)

= α0D
−1(1) + µD−1(1)G(1).

(2.100)

From 2.98, a necessary condition for the second-order stationarity of the integer-

valued process {Zt} is:
(

1−
∑p

i=1 αi −
∑q

j=1 βj

)
> 0.
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Proof of the results in Section 2.3

Proof of Proposition 3.

Z
(n)
t = X

(n)
t − Y

(n)
t

= (1− λ)U1t + (1− λ)
n∑
i=1

ϕ
(t−i)
1i ◦X(n−i)

t−i − (1− λ)U2t − (1− λ)
n∑
i=1

ϕ
(t−i)
2i ◦ Y (n−i)

t−i

= (1− λ)(U1t − U2t) + (1− λ)
n∑
i=1

[
(ϕ

(t−i)
1i ◦X(n−i)

t−i )− (ϕ
(t−i)
2i ◦ Y (n−i)

t−i )
]

= (1− λ)Ut + (1− λ)
n∑
i=1

ϕ
(t−i)
i � Z(n−i)

t−i .

Proof of Proposition 4. From Zhu (2012) and Ferland et al. (2006), we know

that a sequence of GP random processes X
(n)
t has an almost sure limit and that

is Xt. In order to prove the almost sure convergence of {Z(n)
t } we will prove

that the difference of two sequences {X(n)
t } and {Y (n)

t } that have an almost sure
convergence, will have an almost sure convergence.
We know that Z

(n)
t = X

(n)
t −Y

(n)
t , where X

(n)
t and Y

(n)
t are two sequences of GP

random variable. From Zhu (2012) we have

Xn(ω)
a.s.−→ X(ω) =⇒ P({ω : lim

n→∞
Xn(ω) = X(ω)}) = 1

and

Yn(ω)
a.s.−→ Y (ω) =⇒ P({ω : lim

n→∞
Yn(ω) = Y (ω)}) = 1.

Let

A = {ω : lim
n→∞

Xn(ω) = X(ω)}

and

B = {ω ∈ Ω× Ω : lim
n→∞

(aXn(ω) + bYn(ω)) = aX(ω) + bY (ω)}, ∀a, b ∈ R.

Now we show the almost sure convergence of the sum (aXn(ω) + bYn(ω)).
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∫
Ω

IB(ω)dP(ω) =

∫
(Ω∩A)∪(Ω∩AC)

IB(ω)dP(ω)

=

∫
Ω

IB(ω)IA(ω)dP(ω) +

∫
Ω

IB(ω)IAC (ω)dP(ω)

=

∫
Ω

IB(ω)IA(ω)dP(ω) +

∫
Ω

IAC (ω)

(∫
Ω

IB∩AC (ω)dP(ω|ω′)
)
dP(ω′)

= P(B|A)P(A) + P(B|AC)P(AC)︸ ︷︷ ︸
=0

= P({ω : lim
n→∞

(aXn(ω) + bYn(ω)) = aX(ω) + bY (ω)}|A)P(A)︸ ︷︷ ︸
=1

= P({ω : a lim
n→∞

Xn(ω) = aX(ω)− bY (ω) + bY (ω)}) = 1

(2.101)

Therefore, if X
(ω)
n

a.s.−→ X(ω) and Y
(ω)
n

a.s.−→ Y (ω)

⇒ aXn(ω) + bYn(ω)
a.s.−→ aX(ω) + bY (ω), ∀a, b ∈ R.

∀a, b ∈ R. Hence, for a = 1 and b = −1, this is true for the difference Z
(n)
t =

X
(n)
t − Y

(n)
t .

Proof of Proposition 5. We use again the fact that Z
(n)
t = X

(n)
t − Y

(n)
t and the

following lemma.

Lemma 2. If Xn(ω) and Yn(ω) have a mean-square limit

Xn(ω)
L2

−→ X(ω)

Yn(ω)
L2

−→ Y (ω) (2.102)

also their sum will have a mean-square limit.

aXn(ω) + bYn(ω)
L2

−→ aX(ω) + bY (ω), ∀a, b ∈ R (2.103)

Hence, by setting a = 1 and b = −1 we will obtain that Lemma 2 will be
valid also for the difference of two sequences

Xn(ω)− Yn(ω)
L2

−→ X(ω)− Y (ω) (2.104)

and we can say that Z
(n)
t converges to Zt in L2(Ω,F ,P).

Proof of Proposition 6.

gZ(t) = E

[
k∏
i=1

tZii

]
= E

[
k∏
i=1

tXii

]
E

[
k∏
i=1

1

tYii

]
= gX(t)gY(t−1) (2.105)
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Proof of Proposition 7. Let k and h be two positive integers. As pointed out
by Ferland et al. (2006), Brockwell et al. (1991) show that to prove strictly
stationarity we only need to show that

Z
(n)
1+h...k+h = (Z

(n)
1+h, . . . , Z

(n)
k+h)

′ and Z
(n)
1...k = (Z

(n)
1 , . . . , Z

(n)
k )′ (2.106)

have the same joint distribution, where we can rewrite both vectors in Eq. 2.106
as

Z
(n)
1+h...k+h = (X

(n)
1+h...k+h −Y

(n)
1+h...k+h)

′

= ((X
(n)
1+h − Y

(n)
1+h), . . . , (X

(n)
k+h − Y

(n)
k+h))

′
(2.107)

and

Z
(n)
1...k = (X

(n)
1...k −Y

(n)
1...k)

′

= ((X
(n)
1 − Y (n)

1 ), . . . , (X
(n)
k − Y

(n)
k ))′

(2.108)

To show that the two vectors have the same probability generating function, we
first write the pgfs of X, Y and Z as shown above.

g
X

(n)
1...k

(t) = E

[
k∏
j=1

t
X

(n)
j

j

]
= E

[
E

X
(n)
1...k|U1,1−n...k

[
k∏
j=1

t
X

(n)
j

j

]]

=
∑

v1∈N(k+n)

E
X

(n)
1...k|U1,1−n...k=v1

[
k∏
j=1

t
X

(n)
j

j

]
Pr (U1,1−n...k = v1)

(2.109)

g
Y

(n)
1...k

(t) =
∑

v2∈N(k+n)

E
Y

(n)
1...k|U2,1−n...k=v2

[
k∏
j=1

t
Y

(n)
j

j

]
Pr (U2,1−n...k = v2) (2.110)

G
Z
(n)
1...k

(t) =
∑

v∈N(k+n)

E
Z
(n)
1...k|U1−n...k=v

[
k∏
j=1

t
(X

(n)
j −Y

(n)
j )

j

]
Pr (U1−n...k = v) (2.111)

By the thinning representation, for a any given value u1,t−n...t+k = (u1,t−n, . . . , u1,t+k)
′

of the vector U1,t−n...t+k = (U1,t−n, . . . , U1,t+k)
′ and u2,t−n...t+k = (u2,t−n, . . . , u2,t+k)

′

of the vector U2,t−n...t+k = (U2,t−n, . . . , U2,t+k)
′, the components of the vec-

tors (X
(n)
1 , . . . , X

(n)
k )′ and (Y

(n)
1 , . . . , Y

(n)
k )′ are computed using a set of well-

determined variables from the sequences V1,τ,η and V2,τ,η, where τ = t−n, . . . , t+
k − 1 and η = 1, . . . , n. Therefore, if U1,t−n...t+k and U1,t−n+h...t+k+h are both
fixed to the same value v1 and U2,t−n...t+k and U2,t−n+h...t+k+h are both fixed to
the same value v2, it follows that the conditional distribution of

Z
(n)
1+h...k+h = ((X

(n)
1+h − Y

(n)
1+h), . . . , (X

(n)
k+h − Y

(n)
k+h))

′

and
Z

(n)
1...k = ((X

(n)
1 − Y (n)

1 ), . . . , (X
(n)
k − Y

(n)
k ))′

59



given Ut−n...t+k and Ut−n+h...t+k+h, are the same. Accordingly,

E
Z
(n)
1+h...k+h|U1−n+h...k+h=v

[
k∏
j=1

t
Z

(n)
j+h

j

]
= E

Z
(n)
1...k|U1−n...k=v

[
k∏
j=1

t
Z

(n)
j

j

]
and, since

Pr (U1−n+h...k+h = v) = Pr (U1−n...k = v) ,

it is possible to write

g
Z
(n)
1...k

(t) =
∑

v∈Z(k+n)

E
Z
(n)
1+h...k+h|U1−n+h...k+h=v

[
k∏
j=1

t
Z

(n)
j+h

j

]
Pr (U1−n+h...k+h = v)

= g
Z
(n)
1+h...k+h

(t)

and claim that Z
(n)
1+h...k+h and Z

(n)
1...k have the same joint distribution.

Proof of Proposition 9. As said before, Z
(n)
t = X

(n)
t −Y

(n)
t . Where X

(n)
t and Y

(n)
t

are finite sums of independent Generalized Poisson variables and it follows that
Z

(n)
t is a finite sum of Generelized Poisson difference variables. As shown by

Zhu (2012), the first two moments of Xt and Yt are finite: E[Xt] = µX ≤ C1,
E[Yt] = µY ≤ C ′1, V [Xt] = σ2

X ≤ C2, V [Yt] = σ2
Y ≤ C ′2, therefore,

E[Zt] = E[Xt]− E[Yt] = µX − µY ≤ µX + µY ≤ C1 + C ′1 (2.112)

is finite and

V [Xt − Yt] = V [Xt] + V [Xt] = σ2
X + σ2

Y ≤ C2 + C ′2 (2.113)

is also finite, where Cov(Xt, Yt) = 0 given that Xt and Yt are independent and
where Ci and C ′i, with i = 1, 2 are constants.

Proof of Proposition 10. To verify that the distributional properties of the se-
quence are satisfied, we will follow the same arguments in Ferland et al. (2006)
adjusted for our sequence. Given Ft−1 = σ({Zu}u≤t−1), for t ∈ Z, let

µt = α0D
−1(1) +

n∑
j=1

ψjZt−j.

The sequence {µt} satisfies

µt = α0 +

p∑
i=1

αiZt−i +

q∑
j=1

bjµt−j. (2.114)

Moreover, recalling that Zt = Xt − Yt, for a fixed t, we can consider three
sequences, {r(n)

1t }n∈N, {r(n)
2t }n∈N and {r(n)

t }n∈N, defined by

r
(n)
1t = (1− λ)U1t + (1− λ)

n∑
i=1

Xt−i∑
j=1

V1t−i,i,k (2.115)
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r
(n)
2t = (1− λ)U2t + (1− λ)

n∑
i=1

Yt−i∑
j=1

V2t−i,i,k. (2.116)

and
r

(n)
t = r

(n)
1t − r

(n)
2t . (2.117)

As claimed by Ferland et al. (2006), there is a subsequence {nk} such that r
(nk)
t

converges almost surely to Zt. We know that

Xt − r(n)
1t = (Xt −X(n)

t ) + (X
(n)
t − r

(n)
1t ) (2.118)

and
Yt − r(n)

2t = (Yt − Y (n)
t ) + (Y

(n)
t − r(n)

2t ). (2.119)

Since X
(n)
t

a.s.−→ Xt and Y
(n)
t

a.s.−→ Yt, we know that the first term in both Eq.
2.118 and 2.119 goes to zero. Therefore, we can write

Zt − r(n)
t = (Xt − Yt)− (r

(n)
1t − r

(n)
2t )

=
[
(Xt −X(n)

t )− (Yt − Y (n)
t )

]
+
[
(X

(n)
t − r

(n)
1t )− (Y

(n)
t − r(n)

2t )
]

= (Zt − Z(n)
t ) +

[
(X

(n)
t − Y

(n)
t )− (r

(n)
1t − r

(n)
2t )
]

= (Zt − Z(n)
t ) +

[
Z

(n)
t − (r

(n)
1t − r

(n)
2t )
]
,

(2.120)

and, as before, (Zt−Z(n)
t ) goes to zero since we have proven almost sure conver-

gence.
We have now to show that the second term in the last line of Eq. 2.120 goes to
zero, for this purpose we need to find a sequence

W
(n)
t = (r

(n)
1t − r

(n)
2t )− Z(n)

t

that converges almost surely to zero. For this reason it is more suitable to rewrite
the previous sequence as follows

W
(n)
t = (r

(n)
1t − r

(n)
2t )− (Xt − Yt)

= (r
(n)
1t −Xt)− (r

(n)
2t − Yt)

(2.121)

Ferland et al. (2006) show that

lim
n→∞

E
[
(r

(n)
1t −Xt)

]
= 0

lim
n→∞

E
[
(r

(n)
2t − Yt)

]
= 0 (2.122)

therefore, we can conclude that also

lim
n→∞

E
[
(r

(n)
t − Zt)

]
= 0. (2.123)
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Equation 2.123 implies that W
(n)
t converges to zero in L1, therefore there exist

a subsequence W
(nk)
t converging almost surely to the same limit. From this

it follows directly that the distributional properties of Xt are satisfied. Since
r

(nk)
1t

a.s.−→ Xt and r
(nk)
2t

a.s.−→ Yt, it is also true that r
(nk)
t

a.s.−→ Zt. Hence,

r
(n)
t |Ft−1

a.s.−→ Zt|Ft−1.

However,

r
(n)
t |Ft−1 = (r

(n)
1t − r

(n)
2t )|Ft−1

and from Zhu (2012) we know that both r
(n)
1t and r

(n)
2t have a Generalized Poisson

distribution. Since the difference of two GP distributed random variables is GPD
distributed, we can write

r
(n)
t |Ft−1 ∼ GPD

(
α0D

−1(1) +
n∑
j=1

ψjZt−j

)
(2.124)

and conclude that

Zt|Ft−1 ∼ GPD(µ̃t, σ̃
2
t , λ). (2.125)

Proof of the results in Example 1. For k ≥ 2:

γZ(k) = α1γZ(k − 1) = αk−1
1 γZ(1) (2.126)

For k = 1:

γZ(1) = Cov(Zt, Zt−1 = α1γZ(0) = α1V (Zt = α1[φ3E(σ2∗

t )] + α1V (µt). (2.127)

For k ≥ 1 we have

γµ(k) = α1γµ(k − 1) = αk1V (µt). (2.128)

For k = 0:

γµ(k) = V (µt) = α1γZ(1)

= α1

{
α1[φ3E(σ2∗

t ) + V (µt)]
}

= α2
1[φ3E(σ2∗

t )] + α2
1V (µt)

(2.129)

Therefore,

V (µt) =
α2

1[φ3E(σ2∗
t )]

1− α2
1

(2.130)

and

V (Zt) = φ3E(σ2∗

t ) + V (µt)

= φ3E(σ2∗

t ) +
α2

1[φ3E(σ2∗
t )]

1− α2
1

=
φ3E(σ2∗

t )

1− α2
1

(2.131)
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where φ = 1
1−λ . Finally, the autocorrelations are derived as follows:

ρµ(k) =
γµ(k)

V (µt)
=
αk1 V (µt)

V (µt)
= αk1 (2.132)

ρZ(k) =
γZ(k)

V (Zt)
= αk−1

1 γZ (1)
1− α2

1

φ3E(σ2∗
t )

= αk−1
1

α1(1− α2
1)φ3E(σ2∗

t ) + α3
1φ

3E(σ2∗
t )

1− α2
1

1− α2
1

φ3E(σ2∗
t )

= αk1

(2.133)

Proof of the results in Example 2. For k ≥ 2:

γZ(k) = α1γZ(k − 1) + β1γZ(k − 1) = (α1 + β1)k−1γZ(1) (2.134)

For k = 1:

γZ(1) = Cov(Zt, Zt−1) = α1γZ(0) + β1γµ(0)

= α1V (Zt) + β1V (µt) = α1[φ3E(σ2∗

t )] + (α1 + β1)V (µt).
(2.135)

For k ≥ 1 we have

γµ(k) = α1γµ(k − 1) + β1γµ(k − 1) = (α1 + β1)kV (µt). (2.136)

For k = 0:

γµ(k) = V (µt) = α1γZ(1) + β1γµ(1)

= α1

{
α1[φ3E(σ2∗

t )] + (α1 + β1)V (µt)
}

+ β1 [(α1 + β1)V (µt)]

= α2
1[φ3E(σ2∗

t )] + (α1 + β1)2V (µt)

(2.137)

Therefore,

V (µt) =
α2

1[φ3E(σ2∗
t )]

1− (α1 + β1)2
(2.138)

and

V (Zt) = φ3E(σ2∗

t ) + V (µt) = φ3E(σ2∗

t ) +
α2

1[φ3E(σ2∗
t )]

1− (α1 + β1)2

=
φ3E(σ2∗

t )[1− (α1 + β1)2 + α2
1]

1− (α1 + β1)2

(2.139)

where φ = 1
1−λ . The autocorrelations are derived as follows:

ρµ(k) =
γµ(k)

V (µt)
=

(α1 + β1)k V (µt)

V (µt)
= (α1 + β1)k (2.140)

ρZ(k) =
γZ(k)

V (Zt)
= (α1 + β1)k−1 γZ (1)

1− (α1 + β1)2

φ3E(σ2∗
t )[1− (α1 + β1)2 + α2

1]

= (α1 + β1)k−1 α1[1− β1(α1 + β1)]

1− (α1 + β1)2 + α2
1

(2.141)
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2.8.3 Further details for the numerical illustration

Correct implementation test

When programming a posterior simulator errors may arise, therefore we are in-
terested in testing if the algorithm is mathematically correct or the mixing of the
Markov chain. One technique to detect errors in the MCMC algorithm is pro-
posed by Geweke (2004) and is a joint distribution test. Consider a model over
parameters θ and data x, the idea is to test an MCMC sampler for the posterior
p(θ|y) by means of the joint density of the of the data and the parameters, that
is p(θ,y).

Let g be any function g : Θ× Y such that∫
Θ

∫
Y

g2(θ,y)p(θ,y)dµ(y)dν(θ) <∞

that is σ2
g = V ar[g(θ,y)] < ∞. Therefore, the joint distribution test compares

two different simulation approximation of

ḡ = E[g(θ,y)] =

∫
Θ

∫
Y

g(θ,y)p(θ,y)dµ(y)dν(θ).

The two approximation use two simulator: (a) the marginal-conditional simula-
tor and (b) the successive-conditional simulator.

The marginal-conditional simulator works as follows

θ(m) ∼ p(θ)

y(m) ∼ p(y|θ(m))

g(m) = g(θ(m),y(m))

where ḡM
a.s.−−→ ḡ, M1/2(ḡM − ḡ)

d−→ N(0, σ2
g) and σ̂

2(M)
g

a.s.−−→ σ2
g .

For the successive-conditional simulator, first we need to draw ˜θ(0) ∼ p(θ),
and then iterate the following steps

ỹ(m) ∼ p(y|θ̃(m−1))

θ̃(m) ∼ q(θ|θ̃(m−1), ỹ(m))

g̃(m) = g(θ̃(m), ỹ(m))

where ¯̃g(M) a.s.−−→ ḡ and M1/2(¯̃g(M))− ḡ d−→ N(0, τ 2
g ).

Then, for M1 →∞ and M2 →∞, if the MCMC algorithm is error free, the
statistics for the joint distribution test will be

Z =
ḡ(M1) − ¯̃g(M2)

(M−1
1 σ̂

2(M1)
g +M−1

2 τ̂
2(M1)
g )1/2

d−→ N(0, 1). (2.142)
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Figure 2.15 shows the Geweke’s statistics evaluated on the first n MCMC
samples, n = 1, . . . , 2000, for the parameters α, β and λ and the first three mo-
ments. A graphical inspection indicates convergence of the statistics. Table 2.5
reports the statistics on the 2000 samples for the different parameters (columns)
and choices of the test function (rows). The absolute value of the statistics Z
is always below 2.58 that is the critical value of the Geweke’s statistics at the
1% level. Thus, the null hypothesis of correct implementation of the MCMC is
accepted.

First-order moment (g(x) = x) Second-order moment (g(x) = x2)
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Figure 2.15: Plot of the Geweke’s statistics for the correctness of the MCMC.
The statistics is evaluated on the first n MCMC samples, n = 1, . . . , 2000, for
the parameters α (solid line), β (dashed line) and λ (dotted line) and the first
three moments (different plots). Grey is the acceptance region of the test at the
1% level.

Sampling efficiency

We consider 400 samples from a two GPD-INGARCH(1,1) and two simula-
tion settings: one with low persistence and the other with high persistence.
The first setting has parameters λ = 0.4, α1 = 0.25, β1 = 0.23, α0 = −0.2
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g(x) α β λ

x -1.32 0.14 1.17

x2 0.0881 0.3472 1.5581

x3 1.4672 0.5406 1.8321

Table 2.5: Value of the Geweke’s test statistics for the correctness of the MCMC,
for the three parameters of the GPD-INGARCH(1,1) for different choice of the
test function g(x).

and φ = 22.78, while the second setting with parameters λ = 0.6,α1 = 0.53,
β1 = 0.25, α0 = −0.2 and φ = 26.25. We run the Gibbs sampler for 1,010,000
iterations, discard the first 10,000 draws to avoid dependence from initial condi-
tions, and finally apply a thinning procedure with a factor of 100 to reduce the
dependence between consecutive draws.

The following figures show the posterior approximation of α1,β1 and λ. For il-
lustrative purposes we report in Fig. 2.16-2.18 the MCMC output for one MCMC
draw before removing the burn-in sample and thinning, while in Fig.2.19-2.21
the MCMC output after removing the burn-in sample and thinning.

2.8.4 Further details for the real-data applications

Mean Variance Skewness Kurtosis ADF PP KS
Car Accident 8.78 24.55 0.91 3.89 -9.21∗∗ -15.66∗∗ 0.94∗∗

∆ Car accident -0.0055 39.71 0.06 3.59 -18.35∗∗ -34.84∗∗ 0.36∗∗

Table 2.6: Descriptive statistics, stationary tests and normality test for the ac-
cident and cyber datasets. ADF is the Augmented Dickey-Fuller test with sta-
tionarity as null hypothesis, PP is the Phillips-Perron test with stationarity as
null hypothesis, KS is Kolmogorov-Smirnov test where the null hypothesis states
that the data comes from a Normal distribution. The symbol ∗∗ means that the
null hypothesis is rejected at 5% significance level.

Mean Variance Skewness Kurtosis ADF PP KS
Cyber 3.72 8.08 1.07 5.07 -23.16∗∗ -26.98∗∗ 0.74∗∗

∆ Cyber 9.14e-04 11.72 0.12 4.53 -30.89∗∗ -48.91∗∗ 0.29∗∗

Table 2.7: Descriptive statistics, stationary tests and normality test for the ac-
cident and cyber datasets. ADF is the Augmented Dickey-Fuller test with sta-
tionarity as null hypothesis, PP is the Phillips-Perron test with stationarity as
null hypothesis, KS is Kolmogorov-Smirnov test where the null hypothesis states
that the data comes from a Normal distribution. The symbol ∗∗ means that the
null hypothesis is rejected at 5% significance level.
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(a) Low persistence (b) High persistence
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Figure 2.16: MCMC plot for the parameters in the two setting: low persistence
and high persistence.
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(a) Low persistence (b) High persistence

Figure 2.17: Histograms of the MCMC draws for the parameters in both settings:
low persistence and high persistence.
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(a) Low persistence (b) High persistence
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Figure 2.18: Autocorrelation function for the parameters in both low persistence
and high persistence settings.
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(a) Low persistence (b) High persistence

0 2000 4000 6000 8000 10000

nGibbs

0.2

0.25

0.3

0.35

0.4

a
lp

h
a
G

ib
b
s

0 2000 4000 6000 8000 10000

nGibbs

0.2

0.3

0.4

0.5

0.6

0.7

a
lp

h
a
G

ib
b
s

0 2000 4000 6000 8000 10000

nGibbs

0.1

0.15

0.2

0.25

0.3

0.35

b
e
ta

G
ib

b
s

0 2000 4000 6000 8000 10000

nGibbs

0.1

0.2

0.3

0.4

0.5

0.6

b
e
ta

G
ib

b
s

0 2000 4000 6000 8000 10000

nGibbs

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

la
m

b
d
a
G

ib
b
s

0 2000 4000 6000 8000 10000

nGibbs

0.56

0.58

0.6

0.62

0.64

0.66

la
m

b
d
a
G

ib
b
s

Figure 2.19: MCMC plot for the parameters in the two setting: low persistence
and high persistence, after removing the burn-in sample and thinning.
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(a) Low persistence (b) High persistence

Figure 2.20: Histograms of the MCMC draws for the parameters in both settings:
low persistence and high persistence, after removing the burn-in sample and
thinning.
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(a) Low persistence (b) High persistence
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Figure 2.21: Autocorrelation function for the parameters in both low persistence
and high persistence settings, after removing the burn-in sample and thinning.
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Chapter 3

Dynamic Conditional Score
Generalised Poisson Process 1

Abstract. A new score driven is introduced with Generalised Poisson (GP)
conditional distribution. GP is a flexible model for count data which allows
for under- and over-dispersion. We provide a Bayesian inference framework and
an efficient posterior approximation procedure based on Markov Chain Monte
Carlo. The applications to fires show that the proposed model is well suited for
capturing the over-dispersion feature of the data.

3.1 Introduction

The Generalized Poisson (GP) distribution has been introduced by Consul and
Jain (1973) in order to overcome the equality of mean and variance (equidisper-
sion) that characterizes the Poisson distribution. Consul (1989) and Consul and
Famoye (2006) have studied the properties of the GP distribution. This distribu-
tion family has been used in many fields. Consul (1989) applied GP distribution
to the purchasing of commodities, Tripathi et al. (1986) to profit maximization
in textile manufacturing industry, Famoye (2015) and Zamani et al. (2016) to
health care utilization, Wang and Famoye (1997) to households fertility decisions
and (see, e.g. Consul, 1989; Famoye and Consul, 1995; Famoye et al., 2004) to
modelling the number of accidents.

In time series analysis various dynamic models with GP distributed innova-
tions have been proposed to account for over-and under-dispersion. Alzaid and
Al-Osh (1993) introduced the integer-valued ARMA (INARMA) process with
GP marginal distribution while Al-Nachawati et al. (1997) provided estimation
method for the parameters of the GP-INAR(1). Yang et al. (2019) defined a
new GP-INAR process by using a GP thinning operator. Finally, a model able

1In collaboration with Dario Palumbo (Ca’ Foscari University of Venice, Italy and University
of Cambridge, UK).
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to deal with the heteroskedastic feature of count data using GP conditionally
distributed observations, the GP-INGARCH process, has been introduced by
Zhu (2012) while Chen and Lee (2016) introduced a zero-inflated ZIGP-GARCH
version. We propose a new flexible dynamic GP model based on Dynamic Con-
ditional Score (DCS).

DCS models are observation-driven models introduced by Creal et al. (2011,
2013) as Generalized Autoregressive Score models and studied in Harvey (2013).
In DCS models the time-varying parameters are driven by the score function
of the predictive density. DCS models have several advantages. First Creal
et al. (2013) show that by an appropriate scaling of the score function other
observation-driven models can be recovered as special cases, such as GARCH
models, Autoregressive Conditional Duration (ACD) models and Autoregressive
Conditional Intensity models (ACI). Second, the likelihood function is available
in closed form. Lastly, structural components such as trend, seasonality and
cycles can be easily included in the formulation of the parameter dynamics (see
Harvey, 2007, 2013).
Application of these models can be found for example in credit risk modelling
(Lucas et al., 2017), stock volatility (Koopman et al., 2018; Ayala and Blazsek,
2018), modelling of high frequency data (De Lira Salvatierra and Patton, 2015;
Buccheri et al., 2020). Koopman et al. (2018) proposed Skellam GAS model for
high-frequency stock price changes. Blasques et al. (2019) introduced a zero-
inflated Negative Binomial GAS model for trade durations. In this chapter we
provide an original application to climate change data. Climate change has been
a key risk factor, affecting wildfire events in many regions of the world. Wildfires
have a tremendous impact on the environment and human society in different
directions. They are essential drivers of the inter-annual variability in the at-
mospheric growth rate of carbon dioxide and contribute significantly to the fine
particulate emissions from biomass burning. Fires affect regional temperature,
clouds, precipitation, and regional to large-scale atmospheric circulation pat-
terns. See Hantson et al. (2016) for a discussion of the effects of fire occurrences
and the challenges in fire-regime modeling. The impacts of fire-related pollution
on human life can be deleterious by increasing health risks related to respiratory
and cardiovascular conditions (e.g. see Buchholz et al., 2022; Woo et al., 2020).
Wildfires put biodiversity at risk via the removal of vegetation, change habitat
conditions, destroy food sources and increasing vulnerability of animals (e.g. see
Pastro et al., 2011). In addition, fire, vegetation, and climate are intimately
connected: climate changes modify vegetation that provides fuels for fire, and
fire alters vegetation structure and composition with further feedback on climate
change Hantson et al. (2016). Thus, designing fire risk policies and fire planning
is fundamental for mitigating the consequences of wildfires on humans and the
environment. Effective risk management requires a deep knowledge of the fea-
tures of wildfires. This paper provides a simple and flexible statistical approach
to fire-regime modelling and focuses only on the fire frequency at a spatially
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aggregated level. Since the focus is on the characteristics of fire dynamics, the
relationships with climate, vegetation, burnt area, and other aspects of fires are
not considered. Addressing feedback effects is not in the scope of this research,
requiring a much more elaborated approach, including dynamic vegetation and
terrestrial ecosystem models. Our score-driven models do not require any knowl-
edge of the vegetation and ecosystem features of the region considered and can be
used to identify and predict periodic, long-term, and idiosyncratic components.
The analysis of the components can help achieve better risk management and
a more efficient long- and short-term allocation of fire-fighting resources. The
abundance of remote sensed data allows for the analysis of key features of wild-
fires such as the frequency and the impact on society and ecosystem (Jin et al.,
2015; Gebert et al., 2007; Gebert and Black, 2012; Houtman et al., 2013).

3.2 A Dynamic Generalized Poisson Model

Let G (θ,ψ), θ ∈ Θ, ψ ∈ Ψ be a parametric family of distributions where θ is
a vector of parameters subject to temporal variation and ψ a parameter vector
which is stable over time. Under the DCS framework the conditional distribution
of the variable yt with values in Y , given all the past observations up to t− 1, is
G
(
θt|t−1,ψ

)
, that is

yt | Ft−1 ∼ G
(
θt|t−1,ψ

)
, t = 1, . . . , T, (3.1)

where Ft = σ({yu}u≤t) is the sigma-algebra generated by the past values of
the process, ψ is a vector of time invariant hyperparameters, θt|t−1,t = 1, . . . , T
is a sequence of time-varying parameters with initial condition θ1|0, such that
θt|t−1 ∈ Ft−1. In the most simple DCS model the dynamics of the parameters is
modelled as a first order Quasi-ARMA specification (Harvey, 2013) that can be
represented as

θt+1|t = (1− φ)ω + φθt|t−1 + κut, t = 1, . . . , T (3.2)

where φ and κ are constant parameters to be estimated and ut is defined as the
score of the conditional density with respect to the dynamic parameters θt|t−1

evaluated at yt

ut =
∂ log ft

(
yt; θt|t−1, ψ

)
∂θt|t−1

, t = 1, . . . , T (3.3)

It can sometimes be beneficial to standardise the score, a natural choice for the
scaling matrix is the information quantity Iθθ that gives a measure of the vari-
ance of the score (Creal et al., 2013). The important feature of this framework
is that dynamics can be introduced in other elements of the time invariant pa-
rameter vector evaluating their conditional score and assuming a Quasi-ARMA
specification.
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3.2.1 Scores for the Generalized Poisson distribution

For the current study we will consider the modeling of data series yt conditionally
distributed with a Generalized Poisson distribution. Following the parametriza-
tion in Consul and Jain (1973), a non-negative random variable yt GP distributed
with parameters ν and λ has probability mass function (pmf)

ft (yt; ν, λ) =

{
ν(ν+ytλ)yt−1

yt!
e−ν−ytλ, yt = 0, 1, 2, . . .

0, for yt > m if λ < 0
(3.4)

where ν > 0, max (−1,−ν/m) ≤ λ ≤ 1, with m defined as the largest positive
integer for which ν + mλ > 0 when λ < 0. To avoid empirical difficulties and
make the model more tractable, we take 0 < λ < 1. The GP reduces to a
Poisson distribution when λ → 0 at the limit. Following standard practice in
time series modelling location and scale reparametrization is applied. Since for
a GP variable E [yt] = ν(1−λ)−1 and V ar (yt) = ν(1−λ)−3, we set the location
parameter µ = ν(1− λ)−1 and the scale parameter ϕ = (1 − λ)−1 we have that
E [yt] = µ and V ar (yt) = µϕ2. The GP pmf, ft, in the location and scale
parametrization becomes

ft (yt;µ, ϕ) =
µ

ϕ

1

yt!

(
µ

ϕ
+ yt

(ϕ− 1)

ϕ

)yt−1

e−
µ+yt(ϕ−1)

ϕ , yt = 0, 1, 2, . . .(3.5)

where µ > 0 and ϕ > 1.

Proposition 1. The full information matrix with respect to the parameters
(µ, ϕ)′ is

I =

(
Iµµ Iµϕ
Iϕµ Iϕϕ

)
=

(
µ+2ϕ(ϕ−1)

µϕ2(µ+2(ϕ−1))
2(ϕ−1)

ϕ2(µ+2(ϕ−1))
2(ϕ−1)

ϕ2(µ+2(ϕ−1))
2µ

ϕ2(µ+2(ϕ−1))

)
(3.6)

See Appendix 3.6.1 for a proof. In order to have a strictly positive µ and ϕ
larger than 1 we introduce two link functions of the form µ = eθ1 and ϕ = 1+eθ2 .
The information matrix in the new parametrization is given in the following.

Proposition 2. The information matrix of θ1 and θ2 is

I =

(
Iθ1θ1 Iθ1θ2
Iθ2θ1 Iθ2θ2

)
with

Iθ1θ1 = Iµµµ2 =
µ (µ+ 2ϕ (ϕ− 1))

ϕ2 (µ+ 2 (ϕ− 1))
(3.7)

Iθ2θ2 = Iϕϕ (ϕ− 1)2 =
2µ (ϕ− 1)2

ϕ2 (µ+ 2 (ϕ− 1))
(3.8)
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See Appendix 3.6.1 for a proof.

In the following, we provide two specification of the model. In the application,
our specification strategies relies on the analysis of the residuals of the model.
Hence, we analyse the fitted score as in (Harvey, 2013, Chapter 2) to decide
which component should be modelled.

3.2.2 Dynamic Location

Following the re-parametrization introduced in the previous section: log µt|t−1 =
θ1,t|t−1. In order to fit the time series we are proposing the following specification
for the θ1,t|t−1 dynamics of the GP-DCS model.

yt | Ft−1 ∼ GP
(
µt|t−1;ϕ

)
, µt|t−1 = eθ1,t|t−1

θ1,t|t−1 = α1,t|t−1 + γ1,t|t−1 + ξ1,t|t−1, t = 1, . . . , T

α1,t|t−1 is a non stationary trend component that captures the persistent fea-
ture of the data with dynamics, γ1,t|t−1 is a dynamic seasonal component and
ξ1,t|t−1 is a cyclical component, modelled as in Harvey (2013). The component
dynamics is modelled as follows.

• Trend component:

α1,t+1|t = (1− φ1)ω1 + φ1α1,t|t−1 + κ1,αu1,t, t = 1, . . . , T (3.9)

where u1,t = ∂ log ft
∂θ1
I−1
θ1θ1

be the standardized score with respect to θ1 and
φ1 ∈ (−1, 1).

• Seasonal component:

γ1,t|t−1 = z′1,tγ1,t|t−1

γ1,t+1|t = γ1,t|t−1 + g(s1, t)κ1,γu1,t,
(3.10)

where s1 ∈ N indicates the number of seasons, z1,t is a deterministic time
varying vector with value ej with j = 1 + (t− 1)mods where ej is the j-th
component of the standard orthonormal basis of Rs. The vector valued
function g(s1, t) with values in Rs such that the j-th element is equal to
1 if j = 1 + (t − 1)mods and equal to −1/(s1 − 1) otherwise. κ1,γ is an
unknown parameter to estimate (e.g., see Harvey, 2013, Ch. 3; Harvey,
1990, Ch. 2). In this way it can be sure that the amount of each season’s
component at each time period t sums to 0.

• Cyclical component: ξ1,t|t−1 where

ξ1,t|t−1 = ρ1 cos(f1)ξ1,t−1|t−2 + ρ1 sin(f1)ξ∗1,t−1|t−2 + κ1,ξu1,t−1

ξ∗1,t|t−1 = −ρ1 sin(f1)ξ1,t−1|t−2 + ρ1 cos(f1)ξ∗1,t−1|t−2 + κ∗1,ξu1,t−1

(3.11)
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with j = 1, ..., [s/2] and f1 ∈ {2πj/T, j = 1, . . . , [T/2]}. Since sin(π) = 0,
the two processes decouple at frequency π, and the component becomes
autoregressive. The component reverts to a sine-cosine wave when the
corresponding κ1,ξ and κ∗1,ξ are both zero. For ρ1 = 1 the cycle is non
stationary. For identification purposes we assume κ1,ξ = κ∗1,ξ.

In order to initialize the filter, since both the components γt|t−1 and µt|t−1 are
non stationary, µ0 and γ1|0 are treated as parameters and estimated. However,
since the elements of γ1|0 have to sum up to zeros, there are only s1 − 1 free
parameters in γ1|0 to estimate. To estimate the model on the proposed dataset
there are s1 = 12 season to be modelled. This can be also confirmed by an
analysis of the spectrum [FFT] of the time series which reveal a peak around
period 9 and 12. Hence, the vector of the static parameters to be estimated is
ψ = (φ1, ω1, κ1,α, γ1|0, κ1,γ, ρ1, κ1,ξ).

3.2.3 Dynamic Scale

Following the re-parametrization introduced in the previous section: ϕt|t−1 =
1 + exp(θ2,t|t−1). In order to fit the time series we are proposing the following
specification for the ϕt|t−1 dynamics of the GP-DCS model, while the dynamics
for µt|t−1 is the same as in Section 3.2.2.

yt | Ft−1 ∼ GP
(
µt|t−1, ϕt|t−1

)
, ϕt|t−1 = 1 + eθ2,t|t−1

θ2,t|t−1 = α2,t|t−1 + γ2,t|t−1 + ξ2,t|t−1, t = 1, . . . , T
(3.12)

α2,t|t−1 is a non stationary trend component, γ2,t|t−1 is a dynamic seasonal com-
ponent and ξ2,t|t−1 is a cyclical component. The components are modelled as
before:

• Trend component:

α2,t+1|t = (1− φ2)ω2 + φ2α2,t|t−1 + κ2,αu2,t, t = 1, . . . , T (3.13)

where u2,t = ∂ log ft
∂θ2
I−1
θ2θ2

be standardized score with respect to θ2 and φ2 ∈
(−1, 1).

• Seasonal component:

γ2,t|t−1 = z′2,tγ2,t|t−1

γ2,t+1|t = γ2,t|t−1 + g(s2, t)κ2,γu2,t,
(3.14)

where s2 ∈ N indicates the number of seasons, z2,t is a deterministic time
varying vector with value ej with j = 1 + (t − 1)mods where ej is the j-
th component of the standard orthonormal basis of Rs. The vector valued
function g(s2, t) with values in Rs such that the element j = 1+(t−1)mods
equal to 1 and −1/(s2 − 1) otherwise. κ2,γ is an unknown parameter to
estimate. In this way it can be sure that the amounts of each season’s
component at each time period t sums to 0.
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• Cyclical component: Cyclical component: ξ2,t|t−1 where

ξ2,t|t−1 = ρ2 cos(f2)ξ2,t−1|t−2 + ρ2 sin(f2)ξ∗2,t−1|t−2 + κ2,ξu2,t−1

ξ∗2,t|t−1 = −ρ2 sin(f2)ξ2,t−1|t−2 + ρ2 cos(f2)ξ∗2,t−1|t−2 + κ∗2,ξu2,t−1,
(3.15)

with j = 1, ..., [s/2] and f2 ∈ {2πj/T, j = 1, . . . , [T/2]}. Since sin(π/2) =
0, the two processes decouple at frequency π/2, and the component be-
comes autoregressive. The component reverts to a sine-cosine wave when
the corresponding κ2,ξ and κ∗2,ξ are both zero. For ρ2 = 1 the cycle is non
stationary. For identification purposes we need κ2,ξ = κ∗2,ξ.

Hence, the vector of the static parameters to be estimated isψ = (φ1, ω1, κ1,α, γ1|0,
κ1,γ, ρ1, κ1,ξ, φ2, ω2, κ2,α, γ2|0, κ2,γ, ρ2, κ2,ξ).

3.2.4 Model properties

In the context of observation-driven time varying parameter models, filter in-
vertibility is essential to obtain consistent statistical inference, (Straumann and
Mikosch, 2006; Wintenberger, 2013, e.g., see). Blasques et al. (2018) lay down
strict conditions for the invertibility of a score-driven model for continuous data
with a smooth probability density function. We focus on a special case of our
GP-DCS model, given by a first-order location score-driven model with trend
component, that can be constructed as

yt | Ft−1 ∼ GP
(
θ1,t|t−1;ψ

)
, θ1,t|t−1 = log µt|t−1 (3.16)

θ1,t+1|t = g(θ1,t|t−1, yt,ψ) (3.17)

where θ1,t|t−1(ψ) = log µt|t−1 is the time-varying parameter, with values in Fψ ⊂
R, u1,t = ∂ log ft

∂θ1
I−1
θ1θ1

is the scaled score, ψ = (ω1, φ1, κ1, ϕ)′ is a vector of time-
invariant hyperparameters to be estimated taking values in the compact set Ψ
and g is a continuous function from Fψ × Y × Ψ into Fψ differentiable on its
first coordinate. In our dynamic-location model g(θ1,t|t−1, yt,ψ) = (1 − φ1)ω1 +
φ1θ1,t|t−1 + κ1u1,t.

The filter {θ̂1,t|t−1(ψ)}t∈N initialized at some point θ̂1,1 = ω1 ∈ R is said to

be invertible if θ̂1,t|t−1(ψ) converges almost surely exponentially fast (e.a.s.)2 to
a unique strictly stationary and ergodic sequence {θ1,t|t−1(ψ)}t∈N that is∣∣∣θ̂1,t|t−1(ψ)− θ1,t|t−1(ψ)

∣∣∣ e.a.s.−−−→ 0 as t→∞

Let Λt(ψ) be the Lipschitz coefficient defined as

Λt(ψ) := sup
θ1∈Fψ

|xt (θ1,ψ)|

2A sequence of random variables {wt}t∈N is said to converge e.a.s. to another sequence

{ŵt}t∈N if there exists a constant γ > 1 such that γt|ŵt − wt|
a.s.→ 0 as t diverges.
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where xt (θ1,ψ) = ∂g (θ1, yt,ψ) /∂θ1. Following Proposition 3.1 in Blasques et al.
(2018) we can establish invertibility of the score-driven filter if the following result
holds

Proposition 3. (Filter Invertibility). Let the observed data process {yt}t∈N be
strictly stationary and ergodic with bounded logarithmic moments E

[
log+ |yt|

]
<

∞. Moreover let Ψ be a compact set which ensures that

(i) There exists a θ̂1,1 = ω1 ∈ Fψ such that E log+ supψ∈Ψ

∣∣∣g (θ̂1,1, yt,ψ
)∣∣∣ <

∞.

(ii) E supψ∈Ψ supθ1∈Fψ log+ |xt (θ1,ψ)| <∞.

(iii) log Λ1(ψ) is a.s. continuous on Ψ and E log Λ1(ψ) < 0 for any ψ ∈ Ψ.

Then the filter {θ̂1,t|t−1(ψ)}t∈N is invertible, uniformly in ψ ∈ Ψ.

See Appendix 3.6.1 for a proof of the proposition.

3.3 Bayesian Inference

We propose a Bayesian approach to inference for our Generalized Poisson DCS
model which allows us to include extra-sample information about the model and
the parameter through the prior choice. Bayesian estimation comes naturally
with a quantification of the parameter and model uncertainty.

3.3.1 Prior Distributions

For the dynamic location model in Section 3.2.2 we propose the following prior
distributions. A uniform distribution for φj, j = 1, 2, φj ∼ U(aφ, bφ), and ρj,
ρj ∼ U(aρ, bρ). The proposal of aφ = −1 and bφ = 1 comes from the stationarity
assumptions of the trend component, while we set aρ = 0 and bρ = 1 from the
assumptions of the model.

For the other parameters we propose a Normal prior with location-scale
parametrization N (m, s). Setting mω = 0 e sω = 1, ωj, j = 1, 2, takes values in
the interval [−1.64, 1.64] with the 95% of probability, which seems a reasonable
assumption in our applications. Despite of the informative-prior assumption, in
our example the posterior concentrates on values far from zero. We set mκ = 0
and sκ = 2 with κi, i = α1, γ1,2, ξ1,2, taking values in the interval [−3.92, 3.92]
with the 95% of probability, which seems a reasonable assumption in our appli-
cations. We set mκ,2 = 0 e sκ,2 = 0.05, for κα,2 which takes values in the interval
[−0.098, 0.098] with the 95% of probability. For automatic use, we recommend
this default setting which tends to avoid extremes in the time-varying param-
eters. Finally, setting mγ = 0 e sγ = 2, γi with i = 1, 2, takes values in the
interval [−1.64, 1.64] with the 95% of probability.
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3.3.2 Posterior Approximation

Let y = (y1, . . . , yT )′ be the collection of observations and ψ is the parameter
vector, the likelihood associated to the model in Eq. 3.12 is

L(y|ψ) =
T∏
t=1

µt
ϕt

1

yt!

(
µt
ϕt

+ yt
(ϕt − 1)

ϕt

)yt−1

e
−µt+yt(ϕt−1)

ϕt . (3.18)

For the dynamic location model in 3.2.2, ψ = (θ2, φ1, ω1, κ1,α, κ1,γ, ρ1, κ1,ψ)′. For
the dynamic scale-location model in 3.2.3, ψ = (φ1, ω1, κ1,α, κ1,γ, ρ1, κ1,ψ, φ2, ω2,
κ2,α, κ2,γ, ρ2, κ2,ψ)′. Let π(ψ) be the joint prior distribution defined in the pre-
vious section, the joint posterior distribution π(ψ,y) ∝ f(y|ψ)π(ψ) is not
tractable, but efficient Monte Carlo Markov Chain (MCMC) approximation
methods can be applied. In this chapter , we consider the adaptive random
scan adaptive Metropolis-within-Gibbs studied in  Latuszyński et al. (2013). Let
(Ψ,B(Ψ)) be a d-dimensional space, such that Ψ = Ψ1 × . . . × Ψd and write

ψ(n) ∈ Ψ as ψ(n) = (ψ
(n)
1 , . . . ,ψ

(n)
d ). Let ψ

(n)
−i = (ψ

(n)
1 , . . . ,ψ

(n)
i−1,ψ

(n)
i+1, . . . ,ψ

(n)
d )

be the parameter vector obtained dropping the i-th component from ψ(n) with
values in Ψ−i = Ψ1×. . .×Ψi−1×Ψi+1×. . .×Ψd and with π(·|ψ−i) the conditional
distribution of ψi given ψ−i. The adaptive random scan adaptive Metropolis
within Gibbs, draws ψ(n) given ψ(n−1) performing a Metropolis Hastings step,
by first choosing coordinates at random according to some selection probabil-
ities α = (α1, . . . , αd). Therefore, given ψ

(n−1)
−i the i-th coordinate is selected

with probability αi and ψ
(n−1)
i is updated by drawing ψ∗ from the proposal

distribution Q
ψ

(n−1)
−i ,v

(n−1)
i

(ψ
(n−1)
i , ·). The proposal is chosen adaptively from the

distribution family QΨ−1,v by setting the parameters to γ
(n)
i . The sampler iterates

the following steps

1. Set α(n) = Rn(α(0), . . . , α(n−1),ψ(n−1), . . . ,ψ(0), v(n−1), . . . , v(0)) ∈ A.

2. Set v(n) = R′n(α(0), . . . , α(n−1),ψ(n−1), . . . ,ψ(0), v(n−1), . . . , v(0)) ∈ G1×· · ·×
Gn.

3. Choose coordinate i ∈ 1, . . . , d according to selection probabilities αn

4. Draw ψ∗i ∼ Q
ψ

(n−1)
−i ,v

(n−1)
i

(ψ
(n−1)
i , ·).

5. With probability

ρ
(n)
i = min

1,
π(ψ∗i |ψ

(n−1)
−i )Q

ψ
(n−1)
−i ,v

(n−1)
i

(ψ∗i |ψ
(n−1)
i )

π(ψ
(n−1)
i |ψ(n−1)

−i )Q
ψ

(n−1)
−i ,v

(n−1)
i

(ψ
(n−1)
i ,ψ∗i )

 (3.19)

accept the proposal and set ψ(n) = (ψ
(n−1)
1 , . . . ,ψ

(n−1)
i−1 ,ψ∗,ψ

(n−1)
i+1 , . . . ,ψ

(n−1)
d )

otherwise reject and set ψ(n) = ψ(n−1).
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The adaptive proposal distribution is chosen following Andrieu and Thoms
(2008). In particular, we assume the distribution Qψ−i,vi(ψi, ·) has parameters
vi = {gi, li,mi, Si} which update as follows:

log(l
(n+1)
i ) = log(l

(n)
i ) + g

(n+1)
i (ρ

(n+1)
i − ρ̄) (3.20)

m
(n+1)
i = m

(n)
i + g

(n+1)
i (ψ

(n+1)
i −m

(n)
i ) (3.21)

S
(n+1)
i = S

(n)
i + g

(n+1)
i ((ψ

(n+1)
i −m

(n)
i )(ψ

(n+1)
i −m

(n)
i )′ − S(n)

i )(3.22)

where g
(n+1)
i = (n + 1)−ai is the adaptive scale for the i-th parameter, ρ̄ is

the expected acceptance probability. Following the suggestions in Roberts et al.
(1997) and Andrieu and Thoms (2008) we choose ρ̄ = 0.44.

3.4 Real Data Application

3.4.1 Fires Dataset

We focus on fires in Brazil collected by INPE (Instituto Nacional de Pesquisas
Espaciais) at monthly frequency from June 1998 to September 2020 (see top plot
in Figure 3.1). There are used all ten satellites having optical sensors operating
in the average thermal range of 4um and which INPE is able to receive. At
September 2020, polar satellite images are operationally processed in the Imag-
ing Division, DGI, and Satellite and Environmental Systems Division, DSA, such
as the AVHRR-NOAA (Ressl et al., 2009; Chuvieco and Martin, 1994; Kidwell,
1991), the NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS),
which is a remotely sensed fire datasets (Giglio et al., 2016, 2003) providing ob-
servations of fires over the entire globe, the VIIRS (Li et al., 2018; Csiszar et al.,
2016) and the images of the geostationary satellites, VA-16 and MSG-3.
Each polar-orbiting satellite produces at least two sets of images per day and
the geostationary generates six images per hour, with a total of INPE automati-
cally processing over 200 images per day specifically to detect vegetation burning
points. Receptions are held at the stations of Cachoeira Paulista, SP (near the
border with RJ) and Cuiab, MT. INPE monitors fires through the use of satellite
images therefore they can collect the number of fires but not their extent.
The series is stationary (see ADF test in Table 3.1), exhibits over-dispersion (see
index of dispersion in Table 3.1), autocorrelation and seasonality (see mid and
bottom panel in Figure 3.1). Hence, the decision to fit our GP-DCS model with
trend, seasonal and cyclical components in the dynamics of the location. Since
the square of the number of fires exhibits autocorrelation and periodicity (see
Figure 3.2) additional trend and cyclical components are included in the dynam-
ics of the scale.
The estimation results are reported in Table 3.2. One AR(1) component in
both dynamic location and dynamic scale is sufficient to significantly reduce
the residual autocorrelation. There is evidence of large persistence in the scale
(φ̂2 = 0.932) and in the location (φ̂1 = 0.797). The evidence of an upward trend,
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calls for the adoption long-term planning strategies to reduce wildfire events and
their impact on climate change.
As regards the seasonal components, the spectrum of the series shows clear
picks at 0.527 (twelve months), 1.0431 (six months), 1.5708 (four months) and
2.61 (two months). Thus, an yearly cycle component and twelve monthly sea-
sonal components are included. There is evidence of the reduced number of
fires during the less hot months of the year ((−1.277 ≤ γ̂j ≤ −0.004 with
j ∈ (1, 7, 8, 9, 10, 11, 12)) and increased number in the hottest months with a
peak in September (γ̂4 = 1.71) consistently with the dynamics of the maximum
temperature levels in Brazil. This evidence can be used for an efficient allocation
of fire-fighting resources, for example by increasing the number of fire-fighters
during the months with an higher expected number of wildfires.

Table 3.1, shows additional information about the INPE dataset.

Mean Variance Skewness Kurtosis Idx Disp. ADF PP
Fires 1.87e+04 5.7e+08 2.098 7.992 86.215 -8.828∗∗ -7.327∗∗

Table 3.1: Descriptive statistics, stationary tests and normality test for the fires
datasets. ADF is the Augmented Dickey-Fuller test with stationarity as null
hypothesis, PP is the Phillips-Perron test with stationarity as null hypothesis.
The symbol ∗∗ means that the null hypothesis is rejected at 5% significance level.
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Parameters Mean Std CI

ω1 8.599 0.026 (8.549, 8.637)
κ1,α 0.561 0.003 (0.555, 0.567)
φ1 0.797 0.003 (0.788, 0.800)
κ1,γ 0.242 0.001 (0.240, 0.244)
γ0,1 -0.004 0.002 (−0.008,−0.001)
γ0,2 0.233 0.011 (0.206, 0.247)
γ0,3 1.570 0.017 (1.539, 1.610)
γ0,4 1.710 0.014 (1.686, 1.741)
γ0,5 1.209 0.009 (1.193, 1.222)
γ0,6 0.323 0.007 (0.309, 0.333)
γ0,7 -0.034 0.005 (−0.043,−0.024)
γ0,8 -1.105 0.010 (−1.124,−1.085)
γ0,9 -0.908 0.007 (−0.927,−0.897)
γ0,10 -1.223 0.010 (−1.239,−1.202)
γ0,11 -1.277 0.017 (−1.304,−1.233)
γ0,12 -0.493 0.010 (−0.516,−0.473)
κ1,ξ 0.155 0.022 (0.126, 0.209)
ρ1 0.957 0.052 (0.794, 0.999)
ω2 3.386 0.027 (3.330, 3.431)
φ2 0.932 0.049 (0.786, 0.984)
κ2,α 0.047 0.009 (0.028, 0.067)
κ2,ξ 0.070 0.013 (0.051, 0.092)
ρ2 0.997 0.002 (0.993, 1.000)

Table 3.2: GP-DCS parameter estimates. Posterior mean (Mean), standard
deviation (Std) and 95% credible intervals (CI) of the parameters.

In Figure 3.3 we show the estimated components of the model. The cycle
component is less evident int he first part of the series, while it becomes more
pronounced in the second part due to the effect of climate change. We finally
report the estimated dynamic parameters of the Generalised Poisson distribution,
ν and λ, and the estimated over-dispersion in the data in Figure 3.4. From the
figure, we can notice that the overdispersion heavily increase when the series
takes large values.

3.5 Conclusions

We introduce a new family of stochastic processes with values in the set of the
integers. The data series follows a generalized Poisson distribution with time-
varying parameters. We assume a DCS dynamics and we derived the scores of
the process. We provide a Bayesian inference procedure and an efficient Monte
Carlo Markov Chain sampler for posterior approximation. Inference fires data
show that the proposed DCS model is well suited for capturing persistence in
the conditional moments and in the over-dispersion feature of the data.
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Figure 3.1: Top: total number of fires at a monthly frequency from June 1998 to
September 2020 in Brazil. Middle: autocorrelation of the series. Bottom: partial
autocorrelation of the series.
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Figure 3.2: Top: autocorrelation of the squared number of fires. Bottom: Partial
autocorrelation of the squared number of fires.
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(a) Location components
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(b) Scale components
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Figure 3.3: Estimated components for the location (a) and scale (b) of the GP-
DCS model. In each plot the median (solid line) and 95% credible intervals (grey
area).
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Figure 3.4: Estimated parameters of the GP-DCS model (top and mid figures)
and estimated overdispersion in the data (bottom figure). In each plot the median
(solid line) and 95% credible intervals (grey area).
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Blasques, F., Holỳ, V., and Tomanová, P. (2019). Zero-Inflated Autoregressive
Conditional Duration Model for Discrete Trade Durations with Excessive Ze-
ros. Technical report, Tinbergen Institute Discussion Paper.

Buccheri, G., Bormetti, G., Corsi, F., and Lillo, F. (2020). A score-driven con-
ditional correlation model for noisy and asynchronous data: An application to
high-frequency covariance dynamics. Journal of Business & Economic Statis-
tics, pages 1–17.

Buchholz, R. R., Park, M., Worden, H. M., Tang, W., Edwards, D. P., Gaubert,
B., Deeter, M. N., Sullivan, T., Ru, M., Chin, M., et al. (2022). New seasonal
pattern of pollution emerges from changing north american wildfires. Nature
communications, 13(1):1–9.

Chen, C. W. and Lee, S. (2016). Generalized Poisson autoregressive models for
time series of counts. Computational Statistics & Data Analysis, 99:51–67.

Chuvieco, E. and Martin, M. P. (1994). Global fire mapping and fire danger es-
timation using avhrr images. Photogrammetric Engineering and Remote Sens-
ing, 60(5):563–570.

89



Consul, P. C. (1989). Generalized Poisson Distributions. Dekker New York.

Consul, P. C. and Famoye, F. (2006). Lagrangian probability distributions.
Springer.

Consul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution.
Technometrics, 15(4):791–799.

Creal, D., Koopman, S. J., and Lucas, A. (2011). A dynamic multivariate heavy-
tailed model for time-varying volatilities and correlations. Journal of Business
& Economic Statistics, 29(4):552–563.

Creal, D., Koopman, S. J., and Lucas, A. (2013). Generalized autoregressive
score models with applications. Journal of Applied Econometrics, 28(5):777–
795.

Csiszar, I., Schroeder, W., Giglio, L., Mikles, V., and Tsidulko, M. (2016). The
NOAA NDE active fire EDR external users manual, edited.

De Lira Salvatierra, I. and Patton, A. J. (2015). Dynamic copula models and
high frequency data. Journal of Empirical Finance, 30:120–135.

Famoye, F. (2015). A multivariate generalized Poisson regression model. Com-
munications in Statistics-Theory and Methods, 44(3):497–511.

Famoye, F. and Consul, P. (1995). Bivariate generalized Poisson distribution
with some applications. Metrika, 42(1):127–138.

Famoye, F., Wulu, J. T., and Singh, K. P. (2004). On the generalized Poisson
regression model with an application to accident data. Journal of Data Science,
2:287–295.

Gebert, K. M. and Black, A. E. (2012). Effect of suppression strategies on federal
wildland fire expenditures. Journal of Forestry, 110(2):65–73.

Gebert, K. M., Calkin, D. E., and Yoder, J. (2007). Estimating suppression
expenditures for individual large wildland fires. Western Journal of Applied
Forestry, 22(3):188–196.

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An en-
hanced contextual fire detection algorithm for MODIS. Remote Sensing of
Environment, 87(2):273–282.

Giglio, L., Schroeder, W., and Justice, C. O. (2016). The collection 6 MODIS
active fire detection algorithm and fire products. Remote Sensing of Environ-
ment, 178:31–41.

90



Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin,
S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., et al. (2016). The
status and challenge of global fire modelling. Biogeosciences, 13(11):3359–3375.

Harvey, A. C. (1990). Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press.

Harvey, A. C. (2007). Long memory in stochastic volatility. In Forecasting
volatility in the financial markets, pages 351–363. Elsevier.

Harvey, A. C. (2013). Dynamic models for volatility and heavy tails: with applica-
tions to financial and economic time series, volume 52. Cambridge University
Press.

Houtman, R. M., Montgomery, C. A., Gagnon, A. R., Calkin, D. E., Dietterich,
T. G., McGregor, S., and Crowley, M. (2013). Allowing a wildfire to burn:
estimating the effect on future fire suppression costs. International Journal of
Wildland Fire, 22(7):871–882.

Jin, Y., Goulden, M. L., Faivre, N., Veraverbeke, S., Sun, F., Hall, A., Hand,
M. S., Hook, S., and Randerson, J. T. (2015). Identification of two distinct fire
regimes in Southern California: Implications for economic impact and future
change. Environmental Research Letters, 10(9):094005.

Kidwell, K. B. (1991). NOAA Polar Orbiter Data (TIROS-N, NOAA-6, NOAA-
7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, and NOAA-12) Users Guide.
National Oceanic and Atmospheric Administration, National Environmental .

Koopman, S. J., Lit, R., Lucas, A., and Opschoor, A. (2018). Dynamic dis-
crete copula models for high-frequency stock price changes. Journal of Applied
Econometrics, 33(7):966–985.
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3.6 Appendix

3.6.1 Proof of the results in Section 3.2

Proof of Proposition 1. To prove Theorem 1, we need some preliminary results.

Let us define

S (k, ν, λ) =
∞∑
x=0

(ν + xλ)x+k−1

x!
e−(ν+xλ), k = 0, 1, 2, . . .

It has been shown (Consul and Jain, 1973) that S (k, ν, λ) satisfies the following
recursion form

S (k, ν, λ) =
∞∑
i=0

λi (ν − λi)S (k − 1, ν + λi, λ) , k = 0, 1, 2, . . .

from which it is clear that νS (0, ν, λ) = 1, S (1, ν, λ) = 1/ (1− λ) and then also
the following recursion holds S (k, ν, λ) = νS (k − 1, ν, λ) + λS (k, ν + λ, λ).

Moreover we define,

SP (j, k, ν, λ) =
∞∑
x=0

xj
(ν + xλ)x+k−1

x!
e−(ν+xλ), k = 0, 1, 2, . . .

From this we have that

SP (1, k, ν, λ) = S (k + 1, (ν + λ) , λ)

SP (2, k, ν, λ) = S (k + 2, (ν + 2λ) , λ) + S (k + 1, (ν + λ) , λ)

SP (3, k, ν, λ) = S (k + 3, (ν + 3λ) , λ) + 3S (k + 2, (ν + 2λ) , λ) + S (k + 1, (ν + λ) , λ)

Since log-likelihood function for a single observation is

log f (yt) = log µ−logϕ+(yt − 1) log

(
µ

ϕ
+ yt

(ϕ− 1)

ϕ

)
−log (yt!)−

µ

ϕ
−yt

(ϕ− 1)

ϕ
,

we evaluate the first derivative with respect to the parameters µ and ϕ as

∂ log ft
∂µ

=
ϕ− µ
µϕ

+
yt − 1

µ+ yt (ϕ− 1)

∂ log ft
∂ϕ

=
1

ϕ

[(
(yt − 1)ϕ

µ+ yt (ϕ− 1)
− 1

)
(yt − µ)

ϕ
− 1

]
Then, given a random variable X distributed as a GP with parameters µ and ϕ,
the expectations of its non-standardized scores with respect to µ and ϕ can be
derived as

E

[
∂ log f

∂µ

]
=
ϕ− µ
µϕ

+
1

ϕ

∞∑
x=0

(x− 1)

µ/ϕ+ x (ϕ− 1) /ϕ
f (x;µ, ϕ)
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=
1

ϕ

[
ϕ− µ
µ

+
µ

ϕ

∞∑
x=0

x
(µ/ϕ+ x (ϕ− 1) /ϕ)x−2

x!
e
−µ+x(ϕ−1)

ϕ −
µ

ϕ

∞∑
x=0

(µ/ϕ+ x (ϕ− 1) /ϕ)x−2

x!
e
−µ+x(ϕ−1)

ϕ

]

=
1

ϕ

(
ϕ− µ
µ

+
µ

ϕ
SP

(
1,−1,

µ

ϕ
,

(ϕ− 1)

ϕ

)
−
µ

ϕ
S

(
−1,

µ

ϕ
,

(ϕ− 1)

ϕ

))
=

1

ϕ

[
ϕ− µ
µ

+
µ

ϕ
S

(
0,
µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)
− S

(
0,
µ

ϕ
,

(ϕ− 1)

ϕ

)
+

(ϕ− 1)

ϕ
S

(
0,
µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)]
=

1

ϕ

[
ϕ− µ
µ

+
µ

µ+ ϕ− 1
−
ϕ

µ
+

(ϕ− 1)

µ+ ϕ− 1

]
= 0

E

[
∂ log f

∂ϕ

]
=

1

ϕ

(
E

[
(x− 1) (x− µ)

µ+ x (ϕ− 1)

]
−

1

ϕ
(E [x]− µ)− 1

)
=

1

ϕ

∞∑
x=0

x2 − x (µ+ 1) + µ

µ+ x (ϕ− 1)
f (x;µ, ϕ)−

1

ϕ

=
1

ϕ2

[
µ

ϕ

∞∑
x=0

x2
(µ/ϕ+ x (ϕ− 1) /ϕ)x−2

x!
e
−µ+x(ϕ−1)

ϕ −
µ (µ+ 1)

ϕ

∞∑
x=0

x
(µ/ϕ+ x (ϕ− 1) /ϕ)x−2

x!
e
−µ+x(ϕ−1)

ϕ +

+
µ2

ϕ

∞∑
x=0

x2
(µ/ϕ+ x (ϕ− 1) /ϕ)x−2
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e
−µ+x(ϕ−1)

ϕ − ϕ
]

=
1

ϕ2
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µ

ϕ
SP

(
2,−1,

µ

ϕ
,

(ϕ− 1)

ϕ

)
−
µ (µ+ 1)

ϕ
SP

(
1,−1,

µ

ϕ
,

(ϕ− 1)

ϕ

)
+
µ2

ϕ
S

(
−1,

µ

ϕ
,

(ϕ− 1)

ϕ

)
− ϕ

]
=

1

ϕ2

[
µ

ϕ
S

(
1,
µ+ 2 (ϕ− 1)

ϕ
,

(ϕ− 1)

ϕ

)
+
µ

ϕ
S

(
0,
µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)
−

−
µ (µ+ 1)

ϕ
S

(
0,
µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)
+ µS

(
0,
µ

ϕ
,

(ϕ− 1)

ϕ

)
−

−
µ (ϕ− 1)

ϕ
S

(
0,
µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ
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− ϕ

]
=

1

ϕ2

[
µ+

µ

µ+ ϕ− 1
−
µ (µ+ 1)

µ+ ϕ− 1
+ ϕ−

µ (ϕ− 1)

µ+ ϕ− 1
− ϕ

]
= 0

The information matrix of the parameters of the distribution can be derived
as the expectation of the negative second derivative of the likelihood with respect
to the parameters. The second derivative of the likelihood with respect to µ and
ϕ are

i. ∂2 log ft
∂µ2

= − 1
µ2
− (yt−1)

(µ+yt(ϕ−1))2

ii. ∂2 log ft
∂ϕ2 = 1

ϕ2

[
2(yt−µ)

ϕ
− (yt−1)(yt−µ)(µ+yt(2ϕ−1))

(µ+yt(ϕ−1))2
+ 1
]

iii. ∂2 log ft
∂ϕ∂µ

= − 1
ϕ2 − x(x−1)

(µ+x(ϕ−1))2

Taking the expectation with respect to x one obtains:

i. E

[
∂2 log ft

∂µ2

]
= −

1

µ2
− E

[
(x− 1)

(µ+ x (ϕ− 1))2

]

= −
1

µ2
−
∞∑
x=0

(x− 1)

(µ+ x (ϕ− 1))2
f (x;µ, ϕ)

= −
1

µ2
−

µ

ϕ3
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(µ/ϕ+ x (ϕ− 1) /ϕ)x−3
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e
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µ+ 2 (ϕ− 1)

ϕ
,

(ϕ− 1)

ϕ

)
−

− (2ϕ− 1)S

(
1,
µ+ 3 (ϕ− 1)

ϕ
,

(ϕ− 1)

ϕ

)
+ µ2S

(
−1,

µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)
−

−µ2
[
ϕ

µ
S

(
−1,

µ

ϕ
,

(ϕ− 1)

ϕ

)
−

(ϕ− 1)

µ
S

(
−1,

µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)]}
=

1

ϕ2
+

µ

ϕ5

{
2ϕ

2µ (ϕ− 1) + (2ϕ− 1)

µ+ 2 (ϕ− 1)
− ϕ (2ϕ− 1)− ϕ2S

(
0,
µ

ϕ
,

(ϕ− 1)

ϕ

)
+

+ [µϕ+ ϕ (ϕ− 1)]S

(
0,
µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)
− µ (ϕ− 1)S

(
0,
µ+ 2 (ϕ− 1)

ϕ
,

(ϕ− 1)

ϕ

)}
=

µ

ϕ4
[ϕ− (2ϕ− 1)] +

µ

ϕ4 (µ+ 2 (ϕ− 1))
[µ (ϕ− 1)− 2 (2ϕ− 1)]

=
µ

ϕ4

[
µ (ϕ− 1)− 2 (2ϕ− 1)

µ+ 2 (ϕ− 1)
− (ϕ− 1)

]
= −

2µ

ϕ2 (µ+ 2 (ϕ− 1))
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iii. E

[
∂2 log ft
∂ϕ∂µ

]
= − 1

ϕ2
− E

[
x (x− 1)

(µ+ x (ϕ− 1))
2

]

= − 1

ϕ2
− µ

ϕ3

[
SP

(
2,−2,

µ

ϕ
,

(ϕ− 1)

ϕ

)
− SP

(
1,−2,

µ

ϕ
,

(ϕ− 1)

ϕ

)]
= − 1

ϕ2
− µ

ϕ3

[
S

(
0,
µ+ 2 (ϕ− 1)

ϕ
,

(ϕ− 1)

ϕ

)
+ S

(
(−1,

µ+ ϕ− 1

ϕ
,

(ϕ− 1)

ϕ

)
−

−S
(
−1,

µ+ 2 (ϕ− 1)

ϕ
,

(ϕ− 1)

ϕ

)]
= − 1

ϕ2
− µϕ

ϕ3 (µ+ 2 (ϕ− 1))

= − 2 (ϕ− 1)

ϕ2 (µ+ 2 (ϕ− 1))
.

The information matrix can be derived as

Iµµ = −E
[
∂2 log ft
∂µ2

]
=

µ+ 2ϕ (ϕ− 1)

µϕ2 (µ+ 2 (ϕ− 1))
,

Iϕϕ = −E
[
∂2 log ft
∂ϕ2

]
=

2µ

ϕ2 (µ+ 2 (ϕ− 1))
,

Iµϕ = −E
[
∂2 log ft
∂ϕ∂µ

]
=

2 (ϕ− 1)

ϕ2 (µ+ 2 (ϕ− 1))
.

Proof of Proposition 2. Keeping in mind the two link functions µ = eθ1 and
ϕ = 1 + eθ2 , to evaluate the information matrix for the parameters θ1 and θ2 we
start with the derivatives:

∂ log ft
∂θ1

=
∂ log ft
∂µ

∂µ

∂θ1

=
∂ log ft
∂µ

µ,

∂ log ft
∂θ2

=
∂ log ft
∂ϕ

∂ϕ

∂θ2

=
∂ log ft
∂ϕ

(ϕ− 1) .

The second derivatives of the likelihood with respect to θ1 and θ2 are

∂2 log ft
∂θ2

1

=
∂ log ft
∂µ

∂µ

∂θ1

+
∂2 log ft
∂µ

µ2,

∂2 log ft
∂θ2

2

=
∂ log ft
∂ϕ

∂ϕ

∂θ2

+
∂2 log ft
∂ϕ

(ϕ− 1)2 .

The information matrix can be derived as

Iθ1θ1 = Iµµµ2 =
µ (µ+ 2ϕ (ϕ− 1))

ϕ2 (µ+ 2 (ϕ− 1))
,

Iθ2θ2 = Iϕϕ (ϕ− 1)2 =
2µ (ϕ− 1)2

ϕ2 (µ+ 2 (ϕ− 1))
.
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Proof of Proposition 3. To prove Proposition 3 we need a preliminary result
about log moments. Given a strictly positive sequence {an}n∈N, where its se-
ries its convergent as

∞∑
n=0

n an = L ≤ ∞

we have that

log+ n an ≤ n an,
∞∑
n=0

log+ n an ≤
∞∑
n=0

n an.

Then if

an =
µ

ϕ

(µ/ϕ+ n (ϕ− 1) /ϕ)n−1

n!
e−

µ+n(ϕ−1)
ϕ

we have that

E
[
log+ yt

]
≤ E [yt] ≤ ∞.

Let’s consider a compact parameter space of the form

Ψ = [ω−1 , ω
+
1 ] · [φ−1 , φ+

1 ] · [κ−1 , κ+
1 ] · [ϕ−, ϕ+]

Hence, the standardised score is

u1,t =

[
µt|t−1(θ1,t|t−1)− ϕ
µt|t−1(θ1,t|t−1)ϕ

− (yt − 1)

µt|t−1(θ1,t|t−1) + yt(ϕ− 1)

]
ϕ2(µt|t−1(θ1,t|t−1) + 2(ϕ− 1))

µt|t−1(θ1,t|t−1) + 2ϕ(ϕ− 1)

where µt|t−1(θ1,t|t−1) = exp(θ1,t|t−1), after suppressing the time subscript becomes

u1,t =
ϕ[µ(θ1)2 − y(µ(θ1) + ϕ(ϕ− 1))](µ(θ1) + 2(ϕ− 1))

(µ(θ1) + y(ϕ− 1))(µ(θ1) + 2ϕ(ϕ− 1))

and xt is defined as

xt
(
θ1,t|t−1,ψ

)
=
∂g
(
θ1,t|t−1, yt,ψ

)
∂θ1,t|t−1

= φ1 + κ1
∂u1,t

∂θ1,t|t−1

where suppressing the time subscripts

∂u1

∂θ1
=
ϕ2(µ(θ1) + 2(ϕ− 1))

(µ(θ1) + 2ϕ(ϕ− 1))

[
y(y − 1)(ϕ− 1)

(µ(θ1) + y(ϕ− 1))2
− 1

ϕ
−

−
(
ϕ− µ(θ1)

ϕ
+

µ(θ1)(y − 1)

µ(θ1) + y(ϕ− 1)

)(
1

µ(θ1) + 2ϕ(ϕ− 1)
− 2(ϕ− 1)

µ(θ1)(µ(θ1) + 2(ϕ− 1))

)]
.
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To verify condition i) we make use of Lemma 2.2 of Straumann and Mikosch
(2006)

E log+

(
sup
ψ∈Ψ

∣∣∣g (θ̂1,1, yt,ψ
)∣∣∣) ≤ 4 log 2 + E log+

(
sup
ψ∈Ψ
|(1− φ1)ω1|

)
+ E log+

(
sup
ψ∈Ψ
|φ1|

)

+E log+

(
sup
ψ∈Ψ

∣∣∣θ̂1,1

∣∣∣)+ +E log+

(
sup
ψ∈Ψ
|κ1|

)
+ E log+

(
sup
ψ∈Ψ
|u1,1|

)
<∞

which is satisfied taking the supremum of ψ in the compact space Ψ and for
bounded E log+

(
supψ∈Ψ |u1,1|

)
. Since

E log+

(
sup
ψ∈Ψ
|u1,t|

)
≤ E log+

(
sup
ψ∈Ψ

∣∣∣∣∣ϕ[µ̂(θ̂1)2 − y(µ̂(θ̂1) + ϕ(ϕ− 1))](µ̂(θ̂1) + 2(ϕ− 1))

(µ̂(θ̂1) + y(ϕ− 1))(µ̂(θ̂1) + 2ϕ(ϕ− 1))

∣∣∣∣∣
)

Applying Lemma 2.2 of Straumann and Mikosch (2006) we have that

≤2 log 2 + log+

(
sup
ψ∈Ψ

∣∣∣µ̂(θ̂1)2
∣∣∣)+ E

[
log+ |y|

]
+ log+

(
sup
ψ∈Ψ

∣∣∣µ̂(θ̂1) + ϕ(ϕ− 1)
∣∣∣)+

+ log+

(
sup
ψ∈Ψ

∣∣∣ϕ(µ̂(θ̂1) + 2(ϕ− 1))
∣∣∣)− 2 log 2− log+

(
sup
ψ∈Ψ

∣∣∣µ̂(θ̂1)
∣∣∣)− E [log+ |y|

]
−

− E log+ |(ϕ− 1)| − log+

(
sup
ψ∈Ψ

∣∣∣µ̂(θ̂1) + 2ϕ(ϕ− 1)
∣∣∣)

≤ log+

(
sup
ψ∈Ψ

∣∣∣µ̂(θ̂1)2
∣∣∣)+ log+

(
sup
ψ∈Ψ

∣∣∣µ̂(θ̂1) + ϕ(ϕ− 1)
∣∣∣)+ log+

(
sup
ψ∈Ψ

∣∣∣ϕ(µ̂(θ̂1) + 2(ϕ− 1))
∣∣∣)

which is satisfied taking the supremum of ψ in the compact space Ψ and for the
bounded logarithmic moment E log+ |y| <∞. Condition ii) can be also verified
by the use of the Lemma 2.2 of Straumann and Mikosch (2006) to have that

E sup
ψ∈Ψ

sup
θ1∈Fψ

log+ |xt (θ1,ψ)| ≤2 log 2 + sup
ψ∈Ψ

log+ |φ1|+ sup
ψ∈Ψ

log+ |κ1|+

+ E sup
ψ∈Ψ

sup
θ1∈Fψ

log+

∣∣∣∣∂u1

∂θ1

∣∣∣∣ <∞
which is satisfied by taking the supremum of ψ in the compact space Ψ and

for bounded E supψ∈Ψ supθ1∈Fψ log+
∣∣∣∂u1∂θ1

∣∣∣. Using Lemma 2.2 of Straumann and

Mikosch (2006) we have that

E sup
ψ∈Ψ

sup
θ1∈Fψ

log+

∣∣∣∣∂u1

∂θ1

∣∣∣∣ ≤E sup
ψ∈Ψ

sup
θ1∈Fψ

log+

∣∣∣∣ϕ2(µt|t−1(θ1) + 2(ϕ− 1))

(µt|t−1(θ1) + 2ϕ(ϕ− 1))

∣∣∣∣+
+ E sup

ψ∈Ψ
sup
θ1∈Fψ

log+

∣∣∣∣ y(y − 1)(ϕ− 1)

(µ(θ1) + y(ϕ− 1))2
− 1

ϕ
+

+
µ(θ1)− ϕ

ϕ

(
1

µ(θ1) + 2ϕ(ϕ− 1)
− 2(ϕ− 1)

µ(θ1)(µ(θ1) + 2(ϕ− 1))

)
−
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− µ(θ1)(y − 1)

µ(θ1) + y(ϕ− 1)

(
1

µ(θ1) + 2ϕ(ϕ− 1)
− 2(ϕ− 1)

µ(θ1)(µ(θ1) + 2(ϕ− 1))

)∣∣∣∣
≤ E sup

ψ∈Ψ
sup
θ1∈Fψ

log+

∣∣∣∣ϕ2(µt|t−1(θ1) + 2(ϕ− 1))

(µt|t−1(θ1) + 2ϕ(ϕ− 1))

∣∣∣∣+
+ E sup

ψ∈Ψ
sup
θ1∈Fψ

log+

∣∣∣∣ y(y − 1)(ϕ− 1)

(µ(θ1) + y(ϕ− 1))2
+

µ(θ1)

ϕ(µ(θ1) + 2ϕ(ϕ− 1))
+

+
2ϕ(ϕ− 1)

µ(θ1)(µ(θ1) + 2(ϕ− 1))
+

2(y − 1)(ϕ− 1)

(µ(θ1) + y(ϕ− 1))(µ(θ1) + 2(ϕ− 1))
−

− 1

ϕ

∣∣∣∣
and taking the supremum of θ1 in the space Fψ we have that

≤ sup
ϕ∈Ψ

log+
(
ϕ2
)

+ sup
ϕ∈Ψ

log+

(
1

ϕ
− 1

ϕ

)
< sup

ϕ∈Ψ
log+

(
ϕ2
)
<∞

which is satisfied taking the supremum of ψ in the compact space Ψ. Condition
iii) can be also verified by the use of Lemma 2.2 of Straumann and Mikosch
(2006) to have that

E log Λt(ψ) ≤ E log+ sup
θ1∈Fψ

|xt (θ1,ψ)|

≤ E sup
θ1∈Fψ

log+

∣∣∣∣φ1 + κ1
∂u1

∂θ1

∣∣∣∣
≤ log+ |φ1| ≤ 0

that implies |φ1| < 1, which, following Harvey (2013), implies also the stationar-
ity of θ1 completing the proof.
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Chapter 4

Generalised Lagrangian Katz
Integer-Valued Autoregressive
Process 1

Abstract. A new integer-valued autoregressive process (INAR) with Gener-
alised Lagrangian Katz (GLK) innovations is defined. We show that our GLK-
INAR process is stationary, discrete semi-self-decomposable, infinite divisible,
and provides a flexible modeling framework for count data allowing for under-
and over-dispersion, asymmetry, and excess of kurtosis. A Bayesian inference
framework and an efficient posterior approximation procedure based on Markov
Chain Monte Carlo are provided. The proposed model family is applied to a
Google Trend dataset which proxies the public concern about climate change
around the world. The empirical results show that the larger flexibility of the
GLK-INAR returns a better fitting in comparison with a simple INAR model
on more than half of the 130 time series considered. The application provides
new evidence of heterogeneity across countries and keywords in the persistence,
uncertainty, and long-run public awareness level about climate change.

Keywords: Bayesian inference, Big Data, Counts time series, Climate Risk,
Generalized Lagrangian Katz distribution.

4.1 Introduction

In the recent years there has been a large interest in discrete-time integer-valued
models, also due to increased availability of count data in very diverse fields in-
cluding finance (Liesenfeld et al., 2006; Rydberg and Shephard, 2003; Aknouche
et al., 2021), economics (Freeland, 1998; Freeland and McCabe, 2004; Berry and
West, 2020), social sciences (Pedeli and Karlis, 2011), sports (Shahtahmassebi
and Moyeed, 2016), image processing (Afrifa-Yamoah and Mueller, 2022) and

1In collaboration with Federico Bassetti (Polytechnic University of Milan, Italy).
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oceanography (Cunha et al., 2018). Among the modelling approaches, integer-
valued autoregressive processes (INAR), introduced independently by Al-Osh
and Alzaid (1987) and McKenzie (1985), become vary popular. The stochas-
tic construction of the INAR relies on the binomial thinning operator and the
properties of the model on the discrete self-decomposability of the stationary
distribution of the process (Steutel and van Harn, 1979). See also Weiß (2008)
and Scotto et al. (2015) for a review on thinning operators.

The original INAR model has been studied further in Al-Osh and Alzaid
(1987) and has been extend along different directions. (McKenzie, 1986) intro-
duced an INAR model with negative-binomial and geometric marginal distribu-
tions, Jin-Guan and Yuan (1991) extended the INAR(1) model of Al-Osh and
Alzaid (1987) to the higher order INAR(p). Al-Osh and Aly (1992) introduced a
negative-binomial INAR with a new iterated thinning operator. Other extensions
of the INAR process has been made in order to include a seasonal structure in the
model (e.g., see Bourguignon et al., 2016). INAR models with valued in the set of
signed integers have been propose firstly by Kim and Park (2008) and generalised
by Alzaid and Omair (2014) and Andersson and Karlis (2014). Freeland (2010)
proposed a true integer-valued autoregressive model (TINAR(1)). More flexible
INAR models have been introduced by assuming more flexible distributions for
the innovations terms. Alzaid and Al-Osh (1993) propose integer-valued ARMA
process with Generalized Poisson marginals and Kim and Lee (2017) introduced
INAR with Katz innovations.

In this chapter we extend further the Negative Binomial, Generalized Poisson
and Katz INAR processes by assuming a more general distribution for the inno-
vations which includes some well-known distributions used in time series of count
data and some distributions which have not yet been used in modelling time se-
ries of counts. The two-parameter Katz distribution belongs to the Lagrangian
Katz family together with the three-parameter Lagrangian Katz (e.g., see Con-
sul and Famoye, 2006, ch. 12). The Lagrangian Katz is a flexible distribution
and naturally arises as first crossing probabilities, which is a common problem in
actuarial mathematics, e.g. claim number distribution in cascading processes or
ruin probability in discrete-time risk models. The Lagrangian Katz distribution
has been extended further by Janardan (1998) and Janardan (1999) which intro-
duced the four-parameter generalized Pólya-Eggenberger (GPED) distributions
of the first and second kind. Janardan (1998) showed that both families contain
the Lagrangian Katz distribution as a special case. See also Johnson et al. (2005),
ch. 2,5 and 7, for a review on the relationships between Lagrangian Katz distri-
butions and other discrete distribution families. In this chapter we consider the
four-parameter GPED of the first kind, or Generalized Lagrangian Katz (GLK)
distribution in the following, since it enjoys the properties of the Lagrangian
distributions and includes some well-known distributions such as Generalized
Poisson and Negative Binomial as special cases.

Another contribution of this chapter regards the inference method. Various
approaches to inference have traditionally presented for count data models, such
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as conditional likelihood approach, generalized method of moments and Yule-
Walker approach. See Weiß and Kim (2013) for a review. Despite the popularity
gained in the recent years by Bayesian methods, the applications to count data
models are still limited (e.g., see McCabe and Martin, 2005; Neal and Subba Rao,
2007; Drovandi et al., 2016; Shang and Zhang, 2018; Garay et al., 2020b). Thus,
we provide a Bayesian inference procedure for our model and illustrate the ef-
ficiency of the procedure on a synthetic dataset. The Bayesian approach to
inference entirely considers parameter uncertainty in the prior knowledge about
a random process and allows for imposing parameter restrictions through the
specification of the prior distribution (Chen and Lee, 2016). The posterior dis-
tribution of the parameters quantifies uncertainty in the estimation (Chen and
Lee, 2017), which can be included in the prediction. The inference from the
Bayesian perspective may result in richer inferences in the case of small samples
(Garay et al., 2020a) and extra-sample information and in robust inference in
the presence of outliers (Fried et al., 2015). Finally, model selection for both
nested and non-nested models can be easily carried out.

We illustrate the model’s flexibility with an application to an original Google
Trend dataset on measures of public concern about climate change in different
countries. Assessing the level of public awareness and knowledge in a specific
topic and understanding the dynamics in the social consciousness allows for de-
signing more effective public policies. For this reason, researchers measured and
studied the level of awareness about the effects of climate change in different sec-
tors of society such as households (Frondel et al., 2017), winegrowers (Battaglini
et al., 2009), farmers (Fahad and Wang, 2018; Singh et al., 2017), mountain peo-
ples (Ullah et al., 2018). Most of these studies rely on surveys conducted in a
specific geographical area and sector of society, with a few exceptions. For ex-
ample, Ziegler (2017) proposed a cross-country analysis of climate change beliefs
and attitudes. Lineman et al. (2015) provided a broader and global perspective
by exploiting the potentiality of big data provided by Google Trend. This ex-
tended climate change perception literature along two lines. First, we consider
a multi-country dataset including country-specific measures to capture hetero-
geneity across the world in public awareness. Moreover, we offer a model-based
approach and an inference procedure to analyze these measures, which allow for
a better comprehension of the cross-country and cross-keyword heterogeneity in
the long-run level of public perception and perception uncertainty and persis-
tence.

The chapter is organized as follows. Section 2 introduces the Generalized
Lagrangian Katz family, the INAR process, and some of their properties. Sec-
tion 3 proposes a Bayesian inference procedure and provides some simulation re-
sults. Section 4 illustrates the model and inference framework on a multi-country
Google Trend dataset on climate change and provides some new findings in the
public interest in climate change. Section 5 concludes.
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4.2 INAR(1) with generalized Katz innovations

4.2.1 Generalized Lagrangian Katz family

The Generalized Lagrangian Katz (GLK) distribution has been introduced by
(Janardan, 1998), which named the distribution Generalized Polya Eggenberger
distribution. (Consul and Famoye, 2006) argued that since the distribution is
not related to the Polya, it should be named Generalized Lagrangian Katz distri-
bution. The GLK has probability mass function (pmf), P (X = x) = px, defined
as

px =
1

x!
βx
a

c

1

(a
c

+ x b
c

+ x)
(1− β)

a
c

+x b
c

(
a

c
+ x

b

c
+ 1

)
x↑

x = 0, 1, 2, . . . (4.1)

where (x)k↑ = x(x+ 1) . . . (x+ k − 1) is the rising factorial with the convention
that (x)0 = 1, and a > 0, c > 0, b ≥ 0 and 0 < β < 1 are the parameters. In the
following, we denote the distribution with GLK(a, b, c, β).

The GLK distribution has probability generating function (pgf)

H(u) =
∞∑
x=0

pxu
x (4.2)

which satisfies:

H(u) = (1− β + βz)a/c, z = u(1− β + βz)b/c+1, (4.3)

or alternatively

H(u) =

(
1− β
1− βz

)a/c
, z = u

(
1− βz
1− β

)b/c
, (4.4)

see Janardan (1998).

Remark 1 (Lagrangian family). The definition of GLK given in Janardan (1998)
is obtained as a special case of ”generalized Lagrangian distribution” starting from
the Lagrangian expansion

H(u) = f(0) +
∞∑
x=1

ux

x!

∣∣∂x−1(gx(z)f ′(z))
∣∣
z=0

where H(u) = f(z) for u satisfying z = ug(z), (Consul and Famoye, 2006, p. 10-
11). Choosing g(z) = ((1−β)/(1−βz))b/β and f(z) = ((1−β)/(1−βz))a/c, one
gets (4.3) and (4.1) follows after some algebra. See Appendix 4.6.1 for details.

The following remarks clarify the relationship with other definitions of Katz
distributions and with other discrete distributions. For some values of the pa-
rameters, the GLK distribution reduces either to some well known distributions
in time series analysis, or to distributions which have not yet been used in count
data modelling.
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Remark 2. Three distributions related to our research are: (i) the Lagrangian
Katz distribution LK(a, b, β) by replacing c with β, (which is called Generalized
Katz in (Consul and Famoye, 2006)); (ii) the Katz distribution K(a, β) for b = 0
and by replacing c with β (Katz, 1965); (iii) the Polya-Eggenberger distribution
PE(a, c, β) for b = 0 (Janardan, 1998). Note that the Katz distribution in Consul
and Famoye (2006), Tab. 2.1, is not the Katz distribution of Katz (1965), it cor-
responds instead to the Generalized Polya Eggenberger of the first type (GPED1-I)
of Janardan (1998) and can be obtain as the limit of the zero-truncated GLK for
a→ −c.

The probability mass function of the GLK for different parameter settings
given in Fig. 4.1. In the top-left plot we compare K(a, c), LK(a, b, β) and
GLK(a, b, c, β) with the same mean. The top-right plot illustrates the sensi-
tivity of the GLK(a, b, c, β) pmf with respect to the different parameters. All
distributions have the same mean (vertical dashed line). The bottom plots il-
lustrate the effects of the parameters on the tails (log-scale) for a GLK(a, b, c, β)
with over-dispersion VMR = 50/15 (left) and under-dispersion VMR = 13/15
(right).

Remark 3. The following standard distributions have been used to define INAR
processes: (i) the Negative Binomial distribution NB(r, p) for b = 0 β = 1−p and
r = a/c; (ii) the Binomial distribution Bin(n, p) for c = 1, b = −1, a = n ∈ N
and β = p; the Poisson distribution P(θ) for c→ 0, b→ 0 s.t. aβ/c = θ.

Remark 4. The GLK family includes also the generalizations of the distribu-
tions given in the previous remark, that are the Generalized Negative Binomial
distribution GNB(r, γ, p) for c = 1, a = r, b = γ−1 and β = p and the General-
ized Poisson (GP) distribution GP(θ, λ) for c→ 0 s.t. b

a
= λ and aβ/c = θ > 0

with 0 < λ < θ−1. The GP limit of the GLK distribution is stated in (Consul
and Famoye, 2006) without proof. In Appendix 4.6.1 we provide a proof of the
result.

Studying the moments allows for a better understanding of the flexibility of
the GLK distribution. Four moments relevant to our analysis are the following.

Proposition 1. Let X ∼ GLK(a, b, c, β), define µ′k = E((X − E(X))k) and
µk = E(Xk) then

µ1 =
aθ

κ
, µ′2 =

(1− β)aθ

κ3
, µ′3 =

aθ(1− 2β)(1− β)

κ4
+

3aθ2(1− β)2(b+ c)

κ5

µ′4 = aθ(1− β)(1 + 2θb− (b+ c)βθ)

(
1− β − β2

κ6
+

5aθ(1− β)(b+ c)

κ7

)
+ 3(µ′2)2

where κ = 1− β − bβ/c and θ = β/c.

For a proof, see Janardan (1998) Theorems 1-3. Another quantity of interest
is the coefficient of variation which represents a measure of relative dispersion,
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Figure 4.1: Probability mass function of the Generalized Lagrangian Katz for
different parameter settings. Top left: comparison between LK(a, c), LK(a, b, β)
and GLK(a, b, c, β). Top right: sensitivity of GLK(a, b, c, β) with respect to
the parameters. Bottom: effect of the parameters on the tails (log scale) for a
GLK(a, b, c, β) with over-dispersion (VMR = 50/15, left) and under-dispersion
(VMR = 13/15, right). In each plot the distribution mean (vertical dashed line).

given by the standard deviation to mean ratio. From the previous result it follows
that the coefficient of variation is

CV =

(
(1− β)

aθκ

)1/2

.

Another classical measure of dispersion is the Fisher index, given by the variance-
to-mean ratio

VMR =
(1− β)

κ2
,

which does not depend on the parameter a. For a given β, following the values of
κ (b and c), the distribution allows for various degree of dispersion: not dispersed
(VMR = 0), under-dispersed (VMR < 1), equally dispersed (VMR = 1) and
over-dispersed (VMR > 1).

The skewness and the kurtosis of the distribution are

S =
(1− 2β)κ1/2

((1− β)aθ)1/2
+

3((1− β)θ)1/2(b+ c)

aκ1/2
, (4.5)
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Figure 4.2: GLK moments when increasing the value of β (horizontal axis) for
different values of b (lines).

K = (1 + 2bθ − (b+ c)cθ2)

(
(1− β − β2)

aθ(1− β)
+

5(b+ c)

κ

)
+ 3, (4.6)

respectively. For a given value of θ, there is negative skewness if β < (1+ξ)/(2κ+
ξ) with ξ = 3θ(b+ c)a−1/2 and positive otherwise.

Figure 4.2 illustrates the effect of the parameter values on the mean, index of
dispersion, skewness and kurtosis. Increasing the value of β (horizontal axis) the
GLK(a, b, c, β) distribution allows for different types of dispersion (panel b), for
both negative and positive skewness (panel c) and for various degrees of excess
of kurtosis (panel d).

We conclude this section with an important property of the GLK distribution.

Proposition 2. A random variable X ∼ GLK(a, b, c, β) is infinite divisible, in

particular X
L
=
∑n

j=1Xjn where Xjn
iid∼ GLK(a/n, b, c, β).

See Appendix for a proof based on the properties of the pgf function.

4.2.2 A INAR(1) process

The Generalized Katz INAR(1) process (GLK-INAR(1)) is defined by means of
the binomial thinning operator, ◦. The binomial thinning for a non-negative
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discrete random variable X is defined as

α ◦X =
X∑
i=1

Bi(α) (4.7)

where Bi(α) are iid Bernoulli r.v.s with success probability P (Bi(α) = 1) = α.

Definition 1 (GLK-INAR process). For α ∈ (0, 1), the GLK-INAR(1) process
is defined by

Xt = α ◦Xt−1 + εt, t ∈ Z (4.8)

where εt are iid random variables with Generalized Lagrangian Katz distribution
GLK(a, b, c, β), independent of Xs, s ≤ t− 1.

Figure 4.3 provides some trajectories of T = 100 points each, simulated
from a GLK-INAR(1) with innovation distributions given by the solid lines in
the bottom plots of Fig. 4.1, that are GLK(3.86, 0, 0.60, 0.70) (overdispersion)
and GLK(25.00, 0.00, 0.70, 0.42) (underdispersion). The trajectories correspond
to two parameter settings we find the empirical application to climate change
discussed in Section 4.4, that are: (i) high persistence setting (α = 0.7, left);
(ii) low persistence setting (α = 0.3, right). In all plots, the empirical mean of
the observations is reported (dashed line) as a reference to illustrate the different
level of persistence in the trajectories.

Thanks to the general parametric family assumed, by setting b = 0, c =
β = θ1 and a = θ2, our GLK-INAR(1) nests the INARKF(1) of Kim and Lee
(2017) as special case. The GLK-INAR(1) naturally nests the Poisson INAR(1)
of Al-Osh and Alzaid (1987), the Negative Binomial INAR(1) of Al-Osh and Aly
(1992), and the Generalized Poisson INAR(1) of Alzaid and Al-Osh (1993).

As any INAR process, the GLK-INAR(1) has the following representation

Xt+k = αk ◦Xt +
k−1∑
j=0

αj ◦ εt+k−j (4.9)

and its conditional pgf can be written as

HXt+k|Xt(u) = (1− αk + αku)Xt
k−1∏
j=0

H(1− αj + αju) (4.10)

where H(u) is defined in Eq. 4.3 or in Eq. 4.4. Details are given in Appendix
4.6.1. The previous representation allows us to derive the following properties,
which are useful in forecasting.

Theorem 1. The conditional mean and variance of the process GLK-INAR(1)
{Xt, t ∈ Z} are

E(Xt+k|Xt) = αkXt +
1− αk−1

1− α
aθ

κ
(4.11)
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(a) Over-dispersed innovations
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(a) Under-dispersed innovations
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Figure 4.3: Trajectories of the GLK-INAR(1) in the high (α = 0.7, left column)
and low persistence (α = 0.3, right column) regimes. The trajectories in the
over- and under-dispersion settings are in the rows. In all plots, the dashed line
is the empirical mean of the observations.

V(Xt+k|Xt) = (αk − α2k)Xt +
1− α2k

1− α2

(
a(1− β)θ

κ3
− aθ

κ

)
+

1− αk

1− α
aθ

κ
(4.12)

where κ = 1− β − bβ/c and θ = β/c.

Remark 5. Setting b = 0, c = β = θ1 and a = θ2 the results in Kim and Lee
(2017) Th. 2.2 are obtained.

Remark 6. Since α < 1, lim
k→∞

E(Xt+k|Xt) = aθ/(κ(1−α) and lim
k→∞

V(Xt+k|Xt) =

aθ((1− β) + ακ2)/((1− α2)κ3) where κ = 1− β − bβ/c and θ = β/c.

The process {Xt}t∈Z is a Markov Chain on N and the transition probability
Pi,j = P(Xt = j|Xt−1 = i) can be expressed as

Pi,j =

min(i,j)∑
k=0

P(α ◦Xt−1 = k|Xt−1 = i)P(ε = j − k)

=

min(i,j)∑
k=0

(
i

k

)
αk(1− α)i−kpj−k (4.13)
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where px is the pmf given in Eq. 4.1.

Theorem 2. The process {Xt}t∈Z is an irreducible, aperiodic and positive re-
current Markov chain. Hence there is a unique stationary distribution for the
process {Xt}t∈Z.

See Appendix 4.6.1 for a proof. The result extends to the case of GLK
innovations, the stationarity for INAR(1) with power series innovations given in
Bourguignon and Vasconcellos (2015) and with Katz distribution given in Kim
and Lee (2017).

From Th. 2 it follows that there is a strong stationary process with stationary
distribution Pj, j ∈ N, given by the marginal distribution

Pj =
∞∑
i=0

Pi,jPi. (4.14)

Since at stationarity the process satisfiesX = α◦X+ε, where ε ∼ GLK(a, b, c, β),
and the innovation terms are infinite divisible by Theorem 2, the stationary dis-
tribution satisfies the following definition of discrete semi-self-decomposability
given in Bouzar (2008).

Definition 2. A nondegenerate distribution {px, x ∈ N} on N is said to be
discrete semi-self-decomposable (DSSD) of order α ∈ (0, 1) if its pgf Ψ(z) satisfies
for all |z| ≤ 1

Ψ(z) = Ψ(1− α− αz)Ψα(z)

where Ψα(z) is the pgf of an infinitely divisible distribution.

Being the stationary distribution a DSSD, Th. 2 in Bouzar (2008) yields that
it is also infinitely divisible.

Theorem 3. The marginal distribution of the stationary process {Xt}t∈Z is
infinitely divisible.

Since the GLK distribution satisfies the convolution property (see Janardan,
1998, Th. 8), then the GLK-INAR(1) is stable by aggregation as stated in the
following

Theorem 4. Let {Xjt}t∈Z with j = 1, 2, . . . , J be a sequence of independent
GLK-INAR(1) which satisfy:

Xjt = α ◦Xjt−1 + εjt, εjt ∼ GLK(aj, b, c, β) (4.15)

The process Yt = X1t + . . .+XJt is GLK-INAR(1) which satisfies:

Yt = α ◦ Yt−1 + εt, εt ∼ GLK(a1 + . . .+ aJ , b, c, β) (4.16)
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Stationarity yields the following unconditional movements of the process.

Theorem 5. Let µε, µ
(2)
ε and σ2

ε the mean, second order non-central moment
and variance given in Prop. 1 for a GLK(a, b, c, β). For a GLK-INAR(1) process,
the following unconditional moments can be derived:

(i) µX = E(Xt) = µε/(1− α)

(ii) µ
(2)
X = E(X2

t ) = (αµε + 2αµ2
ε/(1− α) + µ

(2)
ε )/(1− α2)

(iii) E(XtXt−k) = αE(Xt−1Xt−k) + µεµX

(iv) Higher order non-central moments can be derived using the formula:

µ
(m)
X =

m∑
i=0

i−1∑
k=0

i−k∑
l=0

(
i

k

)
(1− αi)−1S(m, i)s(i− k, l)αkµ(k)

X µ(l)
ε (4.17)

where s(m, k) and S(m, k) denote the Stirling’s numbers of the I and II
kind, respectively.

From the previous theorem one obtains the unconditional variance of the
process σ2

X = V(Xt) = (σ2
ε + αµε)/(1 − α2) and the dispersion index of the

process

VMRX =
σ2
X

µX
=
VMRε + α

1 + α
=

1

1 + α

(
α +

1− β
(1− β − bβ/c)2

)
(4.18)

where VMRε = σ2
ε/µε is the innovation index of dispersion. It follows that

there is under- or over-dispersion in the marginal distribution, VMRX < 1 and
VMRX > 1, if and only if there is under- or over-dispersion in the innovation,
VMRε < 1 or VMRε < 1 respectively.

The autocorrelation function is

γk = Cov(Xt, Xt−k) = E(XtXt−k)− µ2
X = αkσ2

X (4.19)

as in the INAR(1) process (e.g., see Al-Osh and Alzaid, 1987).

4.3 Bayesian inference

4.3.1 Prior distribution

With the construction in Eq. 4.1 the constraint
∑

x≥0 px = 1 is granted by the
condition H(1) = f(1) = 1, nevertheless some constrains on the parameters are
needed in order to have all the px := 1

x!
∂x−1(gx(z)f ′(x))|x=0 > 0. Three different

cases are discussed below.
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• For parameter values a > 0, b ≥ 0, c > 0 the pmf are positive. Moreover, for
a/c, b/c ∈ N the extended binomial coefficient ((a+bx)/c+1)x↑/x! coincides

with the standard binomial coefficient
(a+bx

c
+x

x

)
(Consul and Famoye, 2006,

p. 8).

• For −c < b < 0, a/c, b/c ∈ N and (c− a)/(c+ b) ≤ (a+ c)/|b|, the pmf are
positive for x < x∗ = (a+ c)/|b|, while px = 0 for x ≥ x∗.

• If −c < b < 0 but the additional constraints of the previous point are not
satisfied, the terms appearing in the product ((a+ bx)/c+1)x↑ change sing
and there is no guarantee that the result is positive. Indeed, for all the x
such that x > max{(a+1)/|b|, (c−a)/(c+ b), 2} one has (a+ bx)/c+1 < 0
and (a + bx)/c + x − 1 > 0 and hence there is an integer q = qx such
that (a + bx)/c + m < 0 for 1 ≤ m ≤ q and (a + bx)/c + m > 0 for
q + 1 ≤ m ≤ k − 1. Hence

1
a+bx
c

+ x

((a+ bx)

c
+1
)
x↑

= (−1)q
q∏

m=1

∣∣∣(a+ bx)

c
+m

∣∣∣ k−1∏
m=q+1

∣∣∣(a+ bx)

c
+m

∣∣∣
which is negative whenever qx is odd. For example take a = 10, b = −1
and c = 2, for x = 20 one has q20 = 5, which shows that p20 < 0 which
clearly is impossible.

In this paper we restrict our attention on the family of GLK and rule out
negative pmf values by assuming b ≥ 0. Our modelling and inference framework
can be easily extend to account for these distributions.

Remark 7. It should be noted that alternative definitions for −c < b < 0
can be considered. For example one can set to 0 the px < 0, i.e. when x >
max{(a + 1)/|b|. In this case re-scaling the px is necessary to get

∑x∗

x=0 px = 1.
The resulting pmf is no more a generalized Lagrangian distribution (due to the
truncation and rescaling) and the normalizing constant is not in closed form. See
for example McCabe and Skeels (2020) for a discussion on the parameter values
for the Katz distributions.

In a Bayesian framework, the parameters constraints can be easily included
in the inference process through a suitable choice of the prior distributions. We
assume:

α ∼ Be(κα, τα), a ∼ Ga(κa, τa), b ∼ Ga(κb, τb), (4.20)

c ∼ Ga(κc, τc), β ∼ Be(κβ, τβ) (4.21)

where Be(κ, τ) is the beta distribution with shape parameters κ and τ and
Ga(κ, τ) the gamma distribution with shape and scale parameters κ and τ , re-
spectively. In the empirical applications we assume a non-informative hyper-
parameter setting for α and β, that is κα = τα = κβ = τβ = 1 and an informative
prior for a, b and c with κa = τa = 1, κb = κc = 2 and τb = τc = 1/2.
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4.3.2 Posterior distribution

Let x1, . . . , xT be a sequence of observations for the GLK-INAR(1) process, then
the joint posterior distribution is given by

π(θ|x1, . . . , xT ) ∝ π(θ)
T∏
t=1

∞∏
i=0

∞∏
j=0

Pij(θ)
I(xt−j)I(xt−1−i) (4.22)

where θ = (α, a, b, c, β) is the parameter vector π(θ) the joint prior and

Pij(θ) =

min(i,j)∑
k=0

(
i

k

)
αk(1−α)i−k

a
c

a+bx
c

+ j − k

(a+b(j−k)
c

+ j − k
j − k

)
βj−k(1−β)

a+b(j−k)
c .

Remark 8 (Parameters space). Following the discussion above in this section,
if the parameter constrain c > 0 is not imposed the coefficients of the Lagrangian
expansion can be negative. In this case a truncated GLK can be used, similarly to
what is proposed in McCabe and Skeels (2020) for the Katz distribution, and the
inference procedure can be easily extended to include this type of distributions.
The truncation can be imposed by using the following recursion for the transition
probability:

pi(θ) = p0

i−1∏
j=0

max

{
0,
U(θ) + V (θ)j

a+ j

}
(4.23)

where U(θ) = aβ/c, V (θ) = U(b+ c)/(a+ b) and

p0 =

(
1 +

∞∑
j=1

j−1∏
k=0

max

{
0,
U(θ) + V (θ)j

a+ j

})−1

. (4.24)

The probability pi becomes null for i > j if U(θ) + V (θ)j < 0 at j.

Since the joint posterior is not tractable we follow a Markov Chain Monte
Carlo (MCMC) framework to posterior approximation. See Robert and Casella
(2013) for an introduction to MCMC methods. We overcome the difficulties
in tuning the parameters of the MCMC procedure by applying the Adaptive
MCMC sampler (AMCMC) proposed in Andrieu and Thoms (2008). Following
a standard procedure, the following reparametrization is considered to impose the
constrains to the parameters of the GLK-INAR(1). Let η be the 5-dimensional
parameter vector obtained by the transformation ϕ(θ)

η1 = log(θ1/(1− θ1)), η2 = log(θ2) (4.25)

η3 = log(θ3), η4 = log(θ4), η5 = log(θ5/(1− θ5)) (4.26)

and let π(η|x1, . . . , xT ) = π(ϕ−1(η)|x1, . . . , xT )J(η) be the posterior of η, with
J(η) = θ1θ2θ3θ4θ5(1 − θ1)(1 − θ5) the Jacobian of the transformation ϕ given
above. Given the adaptation parameters µj and Σ(j), at the j-th iterations, the
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AMCMC consists of the following three steps. First, a candidate η∗ is generated
from the following proposal distribution

η∗ = η(j−1) + λ(j)w(j), w(j) ∼ Nq(0,Σ(j)). (4.27)

Second, the candidate is accepted with probability ρ(j) = ρ(η(j−1), η∗), where

ρ(η(j−1), η∗) = min

(
1,

π(ϕ−1(η∗)|x1, . . . , xT )J(η∗)

π(ϕ−1(η(j−1))|x1, . . . , xT )J(η(j−1))

)
(4.28)

and third, the adaptive parameters are updated as follows:

µ(j+1) = µ(j) + γ(j)(µ(j) − η(j)) (4.29)

Σ(j+1) = Σ(j) + γ(j)((µ(j) − η(j))(µ(j) − η(j))′ − Σ(j)) (4.30)

log λ(j+1) = log λ(j) + γ(j)(ρ(j) − ρ∗) (4.31)

where ρ∗ is the target acceptance probability and γ(j) = j−a, a > 0 is the adaptive
scale (Andrieu and Thoms, 2008, , Algorithm 4). Following the suggestions in
Roberts et al. (1997) we set ρ∗ = 0.44.

4.3.3 Simulation results

We illustrate the effectiveness of the Bayesian procedure in recovering the true
value of the parameters and the efficiency of the MCMC procedure through some
simulation experiments. We test the efficiency of the algorithm in two different
settings, which can be commonly found in the data: low persistence and high
persistence (see trajectories in Fig. 4.3). The true values of the parameters are:
α = 0.3, a = 5.3239,b = 0.0592, c = 0.6, β = 0.5917 in the low persistence
setting, and α = 0.7, a = 5.3239,b = 0.0592, c = 0.6, β = 0.5917 in the
high persistence setting. For each setting we run the Gibbs sampler for 50,000
iterations on each dataset, discard the first 10,000 draws to remove dependence
on initial conditions, and finally apply a thinning procedure with a factor of 10,
to reduce the dependence between consecutive draws.

For illustrative purposes, we show in Figures 4.4 the MCMC posterior approx-
imation for the parameter α (first row), the unconditional mean of the process
(second row), and the marginal likelihood (last row), in one of our experiments
for the high- and low-persistence settings. In each plot the true value (solid black
line) and the Bayesian estimates approximated by using 4,000 MCMC samples
after thinning and burn-in removal (dashed red line). For illustrative purposes,
Fig. 4.10-4.11 and 4.12-4.13 in Appendix 4.6.2 exhibit 10,000 MCMC posterior
draws and the MCMC approximation of the posterior distribution for all the
parameters, in the high- and low-persistence settings.

In our experiments the acceptance rate is in the range of 40%-53% for both
parameter settings. Table 4.1 shows, for all the parameters the autocorrela-
tion function (ACF), effective sample size (ESS), inefficiency factor (INEFF)
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Figure 4.4: MCMC approximation of the posterior distribution (histogram) of
the parameters α (top), the unconditional mean µε/(1 − α) (middle) and the
marginal likelihood (bottom) of the GLK-INAR(1) in the high-persistence (left)
and low-persistence (right) setting. In all plots, the true parameter value (red
dashed) and the estimated one (black solid).
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and Geweke’s convergence diagnostic (CD) before (BT subscript) and after thin-
ning (AT subscript). The numerical standard errors are evaluated using the nse
package (Geyer, 1992; Ardia and Bluteau, 2017; Ardia et al., 2018).

The thinning procedure is effective in reducing the autocorrelation levels and
in increasing the ESS. The p-values of the CD statistics indicate that the null
hypothesis that two sub-samples of the MCMC draws have the same distribution
is always accepted. The efficiency of the MCMC after the thinning procedure is
generally improved. After thinning, on average the inefficiency measures (5.83),
the p-values of the CD statistics (0.36) and the NSE (0.02) achieved the values
recommended in the literature (e.g., see Roberts et al., 1997). Overall, this
implies that the Gibbs sampler is computationally efficient, and the Monte Carlo
estimator of the posterior quantities of interest has low variance.

4.4 Application to climate change

4.4.1 Data description

We used Google Trends data to measure the changes in public concern about
climate change. Google Trend represents a source of big data (Choi and Varian,
2012; Scott and Varian, 2014) which have been used in many studies for exam-
ple Anderberg et al. (2021) studied domestic violence during covid-19, Guolo
and Varin (2014) and Yang et al. (2021) studied respectively flu and influenza
trends, Schiavoni et al. (2021) and Yi et al. (2021) presented applications to
unemployment while Yu et al. (2019) studied oil consumptions. In this study,
we follow Lineman et al. (2015) and use Google search volumes as a proxy for
public concern about “Climate Change” (CC) and “Global Warming” (GW).
The search volume is the traffic for the specific combination of keywords relative
to all queries submitted in Google Search in the world or in a given region of
the world over a defined period. The indicator is in the range from 0 to 100,
with 100 corresponding to the largest relative search volume during the period
of interest. The search volume is sampled weekly from 4th December 2016 un-
til 21st November 2021. We analysed the dynamics at the global and country
level. Countries with an excess of zeros, above 95%, in the search volume se-
ries, have been excluded. The final dataset includes 65 countries of the about
200 countries provided by Google Trend. For illustration purposes, we report
in the top plots of Fig. 4.5 the series of the world volume. The CC global

volume exhibits overdispersion with V̂ MR = 102/27.33 = 3.73, skewness and

kurtosis Ŝ = 2.09 and K̂ = 13.47, respectively. The GW global volume has

over-dispersion V̂ MR = 170.42/48.56 = 3.51, skewness Ŝ = 0.27 and kurtosis

K̂ = 3.22 (see also the histograms in the bottom plots). The country-specific
indexes exhibit different levels of persistence and over-dispersion.
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Figure 4.5: Time series (top) and histograms (bottom) of the global Google
search of the words “Climate Change” (left) and “Global Warming” (right).
Weekly frequency from 4th December 2016 to 21st November 2021. Empirical
mean (dashed line).

4.4.2 Estimation results

The posterior distribution of the autoregressive coefficient is given in Fig. 4.6.
The coefficient estimate and posterior credible interval (in parenthesis) are α̂ =
0.56 (0.50, 0.62) and α̂ = 0.62 (0.56, 0.67) for the GW and the CC dataset,
respectively. This result indicates that the public concern in climate risk is
persistent over time worldwide at an aggregate level. The estimated parameter
of the innovation process and their 0.95% credible intervals (in parenthesis) are

â = 3.53 (1.56, 6.08), b̂ = 0.04 (0.01, 0.11), ĉ = 0.21 (0.05, 0.47) and β̂ = 0.48

(0.20, 0.65) for the GW dataset and â = 3.26 (1.44, 5.72), b̂ = 0.12 (0.021, 0.310),

ĉ = 0.26 (0.032, 0.726) and β̂ = 0.35 (0.067, 0.623) for the CC one. The results
indicate a deviation from the Negative Binomial model, thus we apply the DIC
criterion DIC = −4E(log p(X|θ)|y) + 2 log p(X|θ̂) to compare GLK-INAR(1)
and NB-INAR(1). The DIC is computed following (Spiegelhalter et al., 2002):

DIC = −4
1

N

N∑
j=1

log p(X|θ(j)) + 2 log p(X|θ̂) (4.32)

where p(X|θ) is the likelihood of the model, θ(j) j = 1, . . . , N the MCMC draws

after thinning and burn-in sample removal, and θ̂ is the parameter estimate. The
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(a) Google search dataset “Climate Change”

(b) Google search dataset “Global Warming”

Figure 4.6: Posterior approximation of the persistence parameter α (left) and
the unconditional moment µε/(1− α) (right) for the global search volume.

DICs for the GLK (NB) INARs fitted on the aggregate CC and GW series are
1.6743 · 103 (1.6862 · 103) and 1.8735 · 103 (1.8834 · 103), respectively.

We run the analysis at a disaggregate level. The results are given in Fig.
4.7-4.8 and Tab. 4.2-4.3. Figure 4.7 provides evidence of an inverse relationship

between estimated persistence α̂ and dispersion V̂ MR cross countries (reference
lines in the left plot). There is evidence of this inverse relationship in both the
CC (blue dots) and GW (red dots) datasets. The plot on the right indicates an
inverse (direct) relationship between the estimated unconditional mean µ̂ε/(1−α̂)

and the dispersion index V̂ MR for the GW (CC). We indicate the parameter
estimates for the world volume of searches (stars) in the same picture.

The terms “Climate Change” and “Global Warming” are used interchange-
ably, nevertheless, they describe different phenomena and can be used to deter-
mine the level of understanding of the public about these two parallel concepts
Lineman et al. (2015). We investigate the relationships in the search volumes
through the lens of our GLK-INAR(1) model. The left plot in Fig. 4.8 shows the
unconditional mean of the search volumes for the two concepts in all countries
(dots). In public attention, the two concepts are connected in the long run. We
find a positive association for both countries with large (percentage of zeros <
21%) and low search volumes (percentage of zeros > 21%). There is an asymmet-
ric effect in the overdispersion (right plot), and in all countries, the GW search
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Figure 4.7: Persistence-dispersion (α̂ and V̂ MR, left) and unconditional mean

and dispersion (µ̂ε/(1− α̂) and V̂ MR, right) scatter plots for all countries in the
“Climate Change” (•) and “Global Warming” (•) datasets. Only countries with
less than 21% of zeros are reported. Stars indicate the parameters of the world
volume of searches. “*” indicates the parameter estimates for the aggregated
search volume.
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Figure 4.8: Unconditional mean (left) and dispersion index (right) of the GW
(horizontal) and CC (vertical) for countries with more than 21% of zeros (•) less
then 21% (•, values rescaled by five for visualization purposes) in the number of
searches. In each plot the 45◦ reference line.
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Climate Change dataset Climate Warming dataset
Country α̂ CI GLK LK α̂ CI GLK LK
Australia 0.547 (0.501,0.589) -882.43∗ -885.87 0.343 (0.287,0.397) -1125.99 -1120.90∗

Bangladesh 0.018 (0.002,0.053) -1118.68 -1111.99∗ 0.001 (0.001,0.005) -1166.74 -1162.50∗

Brazil 0.011 (0.001,0.029) -1187.96 -1165.17∗ 0.001 (0.001,0.002) -1027.29 -1024.77∗

Canada 0.672 (0.615,0.714) -711.55∗ -716.70 0.512 (0.468,0.554) -1003.35 -1000.60∗

Emirates 0.010 (0.001,0.029) -1200.72 -1182.74∗ 0.005 (0.001,0.020) -1158.09 -1149.59∗

France 0.184 (0.127,0.248) -1069.66 -1068.36∗ 0.006 (0.001,0.019) -1140.59 -1130.91∗

Germany 0.298 (0.209,0.373) -1023.87 -1022.87∗ 0.021 (0.001,0.060) -1099.04 -1094.57∗

India 0.499 (0.420,0.562) -922.74∗ -923.57 0.482 (0.417,0.541) -1019.07 -1018.57∗

Indonesia 0.021 (0.003,0.064) -1123.06 -1108.15∗ 0.253 (0.193,0.311) -1195.34 -1172.30∗

Ireland 0.333 (0.279,0.388) -953.35 -952.64∗ 0.001 (0.001,0.002) -1093.97 -1094.39∗

Italy 0.169 (0.090,0.241) -983.83 -982.26∗ 0.001 (0.001,0.004) -1036.21 -1034.28∗

Malaysia 0.002 (0.001,0.008) -1171.22 -1167.40∗ 0.006 (0.001,0.031) -1135.02 -1129.73∗

Mexico 0.009 (0.001,0.031) -1160.49 -1148.85∗ 0.001 (0.001,0.001) -1098.96 -1097.73∗

Netherlands 0.148 (0.075,0.218) -1064.29 -1061.30∗ 0.001 (0.001,0.005) -1066.26 -1059.54∗

NewZealand 0.353 (0.283,0.412) -894.23∗ -895.29 0.013 (0.001,0.044) -1151.01 -1136.31∗

Nigeria 0.129 (0.068,0.191) -1043.77 -1041.80∗ 0.017 (0.001,0.062) -974.18 -966.83∗

Pakistan 0.212 (0.148,0.272) -1131.60∗ -1124.74 0.023 (0.001,0.064) -1135.66 -1128.55∗

Philippine 0.409 (0.354,0.460) -1069.39 -1066.66∗ 0.383 (0.327,0.432) -1150.86 -1138.26∗

Singapore 0.159 (0.095,0.222) -1099.02 -1094.02∗ 0.006 (0.001,0.023) -1132.94 -1122.04∗

SouthAfrica 0.413 (0.353,0.467) -923.33∗ -925.21 0.334 (0.274,0.391) -865.23∗ -868.48
Spain 0.253 (0.193,0.320) -883.65∗ -886.68 0.001 (0.001,0.002) -1049.48 -1041.62∗

Thailand 0.008 (0.001,0.035) -1082.74 -1078.49∗ 0.004 (0.001,0.012) -1218.44 -1193.67∗

UK 0.535 (0.486,0.587) -932.80∗ -937.25 0.319 (0.246,0.388) -1084.84 -1081.81∗

US 0.601 (0.549,0.649) -867.57∗ -871.12 0.606 (0.558,0.649) -941.39∗ -942.22
Vietnam 0.003 (0.001,0.012) -1189.79 -1178.82∗ 0.001 (0.001,0.001) -987.59 -986.21∗

Table 4.2: Estimated GLK-INAR(1) autoregressive coefficient (α̂) and its 95%
credible interval (CI), and marginal likelihood of the GLK-INAR(1) and the
INARKF(1) models, for the “Climate Change” and “Global Warming” search
volumes in different countries. Countries with less than 21% of zeros in the two
series. “*” indicate the model with the largest marginal likelihood.

volume has a larger VMR than the CC volume. This can be explained by the
GW larger variability induced by the changes in the use of the GW term in the
official communications.

Comparing the coefficients across the rows of Tables 4.2-4.3, we find evidence
of two types of series, one with high persistence and the other with low persis-
tence. Moreover, for each country the level of persistence is similar across the
two datasets (compare columns of Tables 4.2-4.3).

Tables 4.2-4.3 report the marginal likelihood of the GLK-INAR(1) and La-
grangian Katz INAR(1) in columns GLK and LK respectively. We find evidence
of a better fitting of the GLK-INAR(1) for some countries and variables, e.g.
CC searches in India and CC and GW searcher in South Africa. In order to get
further insights into the results, we study the relationship between the dynamic
and dispersion properties of the series and the actual level of climate risk of
the countries. We consider the Global Climate Risk Index (CRI), which ranks
countries and regions following the impacts of extreme weather events (such as
storms, hurricanes, floods, heatwaves, etc.). The lower the index value, the larger
the climate risk is. Following the values of the CRI for 2021, based on the events
recorded from 2000 to 2019, our dataset includes some of the countries most
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Climate Change dataset Climate Warming dataset
Country α̂ CI GLK LK α̂ CI GLK LK

Argentina 0.001 (0.001,0.001) -1022.22∗ -1044.08 0.001 (0.001,0.001) -803.30∗ -850.10
Austria 0.001 (0.001,0.001) -1085.17 -1082.50∗ 0.001 (0.001,0.001) -717.08∗ -754.18
Belgium 0.002 (0.001,0.012) -1141.59 -1136.92∗ 0.001 (0.001,0.001) -879.09∗ -944.73
Colombia 0.001 (0.001,0.002) -1040.35∗ -1053.91 0.001 (0.001,0.001) -848.15∗ -882.50
Denmark 0.008 (0.001,0.023) -1123.97 -1101.34∗ 0.002 (0.001,0.005) -973.88 -950.20∗

Egypt 0.001 (0.001,0.002) -1103.36∗ -1114.87 0.001 (0.001,0.002) -855.84∗ -867.85
Ethiopia 0.002 (0.001,0.011) -1089.74 -1081.68∗ 0.001 (0.001,0.001) -876.11∗ -914.27
Finland 0.027 (0.001,0.084) -987.30 -983.16∗ 0.001 (0.001,0.001) -670.46∗ -679.12
Ghana 0.003 (0.001,0.012) -992.09 -980.8∗3 0.001 (0.001,0.001) -854.44∗ -922.58

Jamaica 0.001 (0.001,0.005) -995.13 -994.24∗ 0.001 (0.001,0.001) -900.84∗ -947.66
Greece 0.001 (0.001,0.001) -1070.08∗ -1095.69 0.001 (0.001,0.001) -620.97∗ -687.79

HongKong 0.005 (0.001,0.040) -1116.20 -1104.70∗ 0.001 (0.001,0.001) -1070.33∗ -1076.02
Iran 0.001 (0.001,0.002) -1046.05∗ -1107.53 0.001 (0.001,0.002) -945.79∗ -992.93

Israel 0.001 (0.001,0.001) -914.20∗ -959.02 0.001 (0.001,0.001) -726.50∗ -797.23
Japan 0.008 (0.001,0.026) -1209.16 -1193.53∗ 0.002 (0.001,0.004) -1099.15∗ -1109.15
Kenya 0.104 (0.049,0.170) -1100.01 -1092.16∗ 0.001 (0.001,0.001) -1073.55∗ -1096.71

Lebanon 0.001 (0.001,0.001) -761.11∗ -776.44 0.001 (0.001,0.001) -800.14∗ -850.50
Morocco 0.001 (0.001,0.001) -755.97∗ -839.02 0.001 (0.001,0.002) -471.85∗ -534.09
Mauritius 0.001 (0.001,0.002) -887.72∗ -926.89 0.001 (0.001,0.001) -601.12∗ -655.86
Myanmar 0.001 (0.001,0.001) -917.99∗ -979.43 0.001 (0.001,0.002) -602.14∗ -665.81

Nepal 0.001 (0.001,0.001) -1148.05 -1145.39∗ 0.001 (0.001,0.001) -1027.36∗ -1060.00
Norway 0.016 (0.003,0.051) -1121.71 -1105.17∗ 0.001 (0.001,0.001) -1002.83∗ -1004.64

Peru 0.001 (0.001,0.001) -915.67∗ -950.87 0.001 (0.001,0.001) -666.93∗ -712.80
Polish 0.001 (0.001,0.001) -1078.86∗ -1090.00 0.001 (0.001,0.001) -1000.76∗ -1063.99

Portugal 0.002 (0.001,0.010) -1035.62 -1030.57∗ 0.001 (0.001,0.001) -800.35∗ -851.13
Qatar 0.001 (0.001,0.001) -879.41∗ -917.09 0.001 (0.001,0.001) -674.32∗ -701.04

Romania 0.001 (0.001,0.001) -880.49∗ -901.20 0.001 (0.001,0.001) -819.31∗ -896.17
Russia 0.001 (0.001,0.003) -1038.70∗ -1050.47 0.001 (0.001,0.001) -984.09∗ -1023.75

StHelena 0.001 (0.001,0.001) -873.70∗ -914.40 0.001 (0.001,0.002) -374.81∗ -394.04
SouthKorea 0.004 (0.001,0.019) -1149.02∗ -1142.78 0.001 (0.001,0.003) -1051.25∗ -1057.01

SriLanka 0.001 (0.001,0.001) -1086.31∗ -1109.74 0.001 (0.001,0.003) -842.37∗ -863.17
Sweden 0.136 (0.067,0.205) -1031.72 -1026.82∗ 0.001 (0.001,0.001) -1078.30∗ -1089.70
Swiss 0.028 (0.005,0.063) -1055.02 -1046.17∗ 0.001 (0.001,0.001) -835.78∗ -878.17

Taiwan 0.001 (0.001,0.001) -1074.92∗ -1085.60 0.001 (0.001,0.001) -794.34∗ -815.63
TrinidadTobago 0.001 (0.001,0.001) -920.81∗ -955.62 0.001 (0.001,0.001) -809.94∗ -858.50

Turkey 0.004 (0.001,0.019) -1095.99 -1091.08∗ 0.001 (0.001,0.001) -1085.46∗ -1091.38
Ukraine 0.001 (0.001,0.001) -902.24∗ -949.78 0.001 (0.001,0.002) -709.80∗ -745.82
Hungary 0.001 (0.001,0.001) -935.84 -953.58∗ 0.001 (0.001,0.001) -642.03∗ -717.52
Zambia 0.001 (0.001,0.003) -1075.30 -1053.65∗ 0.001 (0.001,0.001) -746.07∗ -789.78

Zimbabwe 0.001 (0.001,0.002) -1130.16 -1128.73∗ 0.001 (0.001,0.002) -658.24∗ -690.68

Table 4.3: Estimated GLK-INAR(1) autoregressive coefficient (α̂) and its 95%
credible interval (CI), and marginal likelihood of the GLK-INAR(1) and the
INARKF(1) models, for the “Climate Change” and “Global Warming” search
volumes in different countries. Countries with more than 21% of zeros in the two
series. “*” indicate the model with the largest marginal likelihood.

exposed to the climate risk, such as Japan, Philippines, Germany, South Africa,
India, Sri-Lanka and Canada (Eckstein et al., 2021, see).

We study the relationship between public interest in climate related topics
and the level of climate risk by fitting the GLK-INAR unconditional mean and
the CV on the CRI of each country, that is

Mj = ξ + ζCj + ηj, ηj
iid∼ (0, σ2

η) j = 1, . . . , J (4.33)

where J is the number of countries, Cj is the country-specific CRI value, and
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Mj is alternatively the unconditional mean µ(θj) or the CV(θj), which are both
functions of the country-specific GLK-INAR parameter vector θj.

The Least Squares (LS) fitting of M is denoted by M̂LS(θ,C) = ξ̂(θ)+ ζ̂(θ)C

where ξ̂LS and ζ̂LS are the LS estimator. They are functions of two arguments:
the collection of unknown country-specific parameters θ = (θ1, . . . , θJ) and the
collection of CRI observations c = (C1, . . . , CJ). For the easy of notation, we
drop the argument c.

It is possible to account for the parameter uncertainty when studying the
relationship between public concern and CRI. Since M̂LS(θ, C) is a deterministic
transformation of θ it has a distribution naturally induced by the posterior of θ.
MCMC approximation of the posterior distribution can be used to evaluate the
quantiles of M̂LS(θ, C) for C ∈ [0, 132]. We report in all plots of Fig. 4.9 the

posterior median of M̂LS (solid line) together with the 95% credible interval for
each value of C varying on a regular grid over [0, 132] (shaded area).

The left plot in Fig. 4.9 shows unconditional mean against the CRI. There is
evidence of a positive relationship between the public interest in climate-related
topics and the actual level of climatic risk. Otherwise said, the lower the CRI
level, the larger the Google search volumes are (see dashed lines). For example
India has high risk (CRI equal to 7) and very high long-run level of public
attention.

The right plot reports the coefficient of variation against the CRI for all
countries in the “Climate Change” (blue) and “Global Warming” (red) datasets.
The dashed lines represent linear regressions estimated on the data. There is
evidence of a negative relationship between dispersion of the public concern and
climatic risk; that is, in countries with more significant risk levels, the Google
search volumes are less over-dispersed.

4.5 Conclusion

A novel integer-valued autoregressive process is proposed with Generalized La-
grangian Katz innovations. Theoretical properties of the model, such as sta-
tionarity, moments, and semi-self-decomposability are provided. A Bayesian ap-
proach to inference is proposed, and an efficient Gibbs sampling procedure has
been proposed. The modeling framework is applied to a Google Trend dataset on
the public concern about climate change for 65 countries. New evidence is pro-
vided about the long-run level of public attention, its persistence and dispersion
in countries with low and high level of climate risk.
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Figure 4.9: Climate Risk Index and unconditional mean scatter plot (CRI-µε/(1−
α), left) and Climate Risk Index and dispersion scatter plot (CRI-CV , right)
scatter plots for all countries in the “Climate Change” (•) and “Global Warming”
(•) datasets. Dashed lines represent the linear regression estimated on the data
and shaded areas provide the 95% credible regions.
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4.6 Appendix

4.6.1 Proof of the results in Section 4.2

Proof of the resutls in Remark 1

Following (Consul and Famoye, 2006, p. 10-11) the general Lagrangian expansion
of f(u) is

f(z)

1− zg′/g(z)
=
∞∑
j=0

uj

j!

∣∣∂j(gj(z)f(z))
∣∣
z=0

(4.34)

where u satisfies z = ug(z). The definition of Lagrangian distribution given in
Janardan (1998) can is obtained from the one given above by replacing f(z) with
f(z)(1 − zg′(z)/g(z))). By applying iteratively the derivative ∂ to the product
of functions we obtain the coefficient in the j-th term of the expansion

1

j!
|∂j
(
g(z)jf(z)(1− zg′(z)/g(z))

)
|z=0 =

1

j!
|∂j−1(g(z)jf ′(z) (4.35)

+(j − 1)g′(z)g(z)j−1f(z)− z∂gj−1(z)g′(z)f(z))|z=0 = . . . (4.36)

=
1

j!
|∂j−1(g(z)jf ′(z))|z=0 + |∂j−`

(
(j − `)∂`−1(g′(z)g(z)j−1f(z)) (4.37)

−z∂`(gj−1(z)g′(z)f(z))
)
|z=0 =

1

j!
|∂j−1(g(z)jf ′(z))|z=0 (4.38)

where we set ` = j to get the result and the following equivalent Lagrangian
expansion

f(z)

1− zg′/g(z)
=
∞∑
j=0

uj

j!

∣∣∂j(gj(z)f(z))
∣∣
z=0

(4.39)

⇔ f(z) =
∞∑
j=0

uj

j!

∣∣∂j−1(gj(z)f ′(z))
∣∣
z=0

(4.40)

In particular, for j ≥ 1,

pj =
1

j!

∣∣∂j−1(gj(z)f ′(z))
∣∣
z=0

provided that pj ≥ 0. Let f(z) =
(

1−β
1−βz

)a/c
and g(z) =

(
1−β
1−βz

)b/c
be the

transformed and the transformer function, respectively. Then

f ′(z) =
a

c

(
1− β
1− βz

)a
c

+1
β

1− β
, (4.41)

gk(z)f ′(z) =
a

c

(
1− β
1− βz

)a
c

+k b
c
+1

β

1− β
. (4.42)
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Hence

p0 = f(0) = (1− β)
a
c p1 = g1(0)f ′(0) =

a

c
(1− β)

a
c

+ b
c β.

while, for k ≥ 2, the k-th coefficient of the Lagrangian expansion in Eq. 4.39 is

pk =
1

k!
|∂k−1(g(z))kf ′(z)|z=0 =

1

k!
∂k−2|(a

c

β2

(1− β)2
ξk

(
1− β
1− βz

)ξk+1

)|z=0 (4.43)

=
1

k!
|∂k−3(

a

c

β3

(1− β)3
(ξk(ξk + 1))

(
1− β
1− βz

)ξk+2

)|z=0 (4.44)

= ... (4.45)

=
1

k!
βk
a

c
(1− β)

a
c

+k b
c

k−2∏
m=0

(ξk +m) (4.46)

=
1

k!
βk
a

c
(1− β)

a
c

+k b
c

k−1∏
m=1

(
a

c
+ k

b

c
+m

)
(4.47)

=
1

k!
βk
a

c
(1− β)

a
c

+k b
c

(
a

c
+ k

b

c
+ 1

)
k−1↑

(4.48)

=
1

k!
βk
a

c

1

(a
c

+ k b
c

+ k)
(1− β)

a
c

+k b
c

(
a

c
+ k

b

c
+ 1

)
k↑

(4.49)

(4.50)

where ξk = a
c

+ k b
c

+ 1 and (x)k↑ = x(x+ 1) . . . (x+ k− 1) is the rising factorial.

• If a > 0, b > 0, c > 0 one has pk > 0 for every k ≥ 1.

• If −c < b < 0, a/c, b/c ∈ N and (c − a)/(c + b) ≤ (a + c)/|b|, then for
k < k∗ = (a+ c)/|b| one has

a+ bk

c
+ 1 > 0

and hence also
k−1∏
m=1

(
a

c
+ k

b

c
+m

)
> 0

proving that pk > 0. For k ≥ k∗ ≥ (c − a)/(c + b) one has that mk =
(|b|k − a)/c is an integer with 1 ≤ mk ≤ k − 1 and hence the product∏k−1

m=1

(
a
c

+ k b
c

+m
)

= 0 since for m = mk one has a
c

+ k b
c

+ m = 0. This
shows that pk = 0 for every k ≥ k∗.

Proof of the results in Remark 3

Replacing c by β one obtains a Lagrangian Katz distribution. The LK is one
of the few distributions which admits more pgfs. Let us consider the following
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definition of pgf for a LK(a, b, β)

G(u, a, b, β) =

(
1− βz
1− β

)− a
β

, with z(a, b, β) = u

(
1− βz
1− β

)− b
β

. (4.51)

given in (Consul and Famoye, 2006, p. 241). Defining n = (1 − βz)/(β(z − 1))
and 1/β = n(z − 1) + z the limiting pgf becomes

lim
β→0+

G(u; a, b, β) = lim
n→+∞

(
1 +

1

n

)n(z−1)+z
a

= ea(z−1), (4.52)

with

lim
β→0+

z(a, b, β) = lim
n→+∞

(
1 +

1

n

)n(z−1)+z
b

= eb(z−1) (4.53)

which is the pgf of a GP given in (Consul and Famoye, 2006, pp. 166).

Proof of the results in Theorem 2

A random variable X is infinite divisible if for every n ∈ N there exists a sequence
of random variables Xnj, j = 1, . . . , n such that X has the same distribution of
Xn1 + . . .+Xnn. From the pgf of a GLK given in Eq. 4.4

E(X) = E
(
uX
)

=

(
1− β
1− βz

)a
c

=
n∏
j=1

(
1− β
1− βz

) a
nc

(4.54)

which is the pgf of the sum of n independent GLKs with distribution GLK(a/n, b, c, β)
where a/n > 0 according to the definition of GLK.

Proofs of Equations (4.10)-(4.9)

Before proving the general result let us prove the following two properties of the
thinning operator

(i) α ◦ (α ◦X) = α2 ◦X

(ii) α ◦ (X + Y ) = α ◦X + α ◦ Y

where X and Y are two independent discrete-valued random variables. Prop-
erty (i) follows from the law of iterated expectations and the properties of the
probability generating function (pgf):

E(ϕα◦(α◦X)) = E(E(ϕα◦(α◦X)|α ◦X)) = E(
α◦X∏
j=1

E(ϕBj |α ◦X)) (4.55)

= E(((1− α) + ϕα)(α◦X)) = ((1− α) + ((1− α) + ϕα)α)X (4.56)
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= (1− α2 + ϕα2)X = E(ϕα
2◦X) (4.57)

which is the pgf of the r.v. α2 ◦X. Property (ii) follows from:

α ◦ (X + Y ) =
X+Y∑
j=1

Bj =
X∑
j=1

Bj +
X+Y∑
j=X+1

Bj (4.58)

= α ◦X +
Y∑
l=1

B̃l = α ◦X + α ◦ Y (4.59)

where we defined B̃l = Bl+X for l = 1, . . . , Y . Applying iteratively the two
properties of the binomial thinning operator returns the following representation

Xt+k = α ◦Xt+k−1 + εt+k = α2 ◦Xt+k−2 + α ◦ εt+k−1 + εt+k (4.60)

= . . . = αk ◦Xt +
k−1∑
j=0

αj ◦ εt+1−j (4.61)

where we defined α0 ◦X = X.
The conditional pgf follows from the above decomposition

HXt+k|Xt(u) = E(uXt+k |Xt) = E(uα
k◦Xt |Xt)

k−1∏
j=0

E(uα
j◦εt+1−j) (4.62)

= (1− αk + αku)Xt
k−1∏
j=0

H(1− αj + αju) (4.63)

where H(u) satisfies Eq. 4.3 and 4.4.

Proof of the results in Theorem 1

Using the expressions for the moments given in Th. 1 and the independent
assumption of the innovations on the thinning and on the past values of process
one obtains for the case k = 1

E(α ◦Xt + εt+1|Xt) = E(
Xt∑
i=1

Bit + εt+1|Xt) (4.64)

= αXt + E(εt+1) = αXt +
aθ

κ
(4.65)

and

V(α ◦Xt + εt+1|Xt) = V(
Xt∑
i=1

Bit|Xt) + V(εt+1) (4.66)

= Xt(α− α2) +
a(1− β)θ

κ3
(4.67)
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Following the recursive representation in 4.60 and by independence assump-
tion, the conditional variance writes as

E(α ◦Xt+k|Xt) = E(αk ◦Xt +
k−1∑
j=0

αj ◦ εt+1−j|Xt) (4.68)

= αkXt +
1− αk−1

1− α
aθ

κ
(4.69)

where we defined α0 ◦X = X. Similarly, the conditional variance writes as

V(α ◦Xt+k|Xt) = V(αk ◦Xt +
k−1∑
j=0

αj ◦ εt+1−j|Xt) (4.70)

= V(αk ◦Xt|Xt) + V(
k−1∑
j=0

αj ◦ εt+1−j) (4.71)

= (αk − α2k)Xt +
k−1∑
j=0

(V(E(αj ◦ εt+1−j|εt+1−j)) + E(V(αj ◦ εt+1−j|εt+1−j)))(4.72)

= (αk − α2k)Xt +
k−1∑
j=0

(α2j a(1− β)θ

κ3
+ (αj − α2j))

aθ

κ
) (4.73)

= (αk − α2k)Xt +
1− α2k

1− α2

(
a(1− β)θ

κ3
− aθ

κ

)
+

1− αk

1− α
aθ

κ
(4.74)

Proof of the result in Remark 5

Setting b = 0, c = β = θ1 and a = θ2, it follows κ = 1 − θ2 and θ = 1, thus the
conditional mean and variance become

αkXt +
1− αk−1

1− α
aθ

κ
= αkXt +

1− αk−1

1− α
θ1

1− θ2

(4.75)

and

(αk − α2k)Xt +
1− α2k

1− α2

(
a(1− β)θ

κ3
− aθ

κ

)
+

1− αk

1− α
aθ

κ
(4.76)

= (αk − α2k)Xt +
1− α2k

1− α2

(
θ1(1− θ2)

(1− θ2)3
− θ1

(1− θ2)

)
+

1− αk

1− α
θ1

(1− θ2)
(4.77)

= (αk − α2k)Xt +
1− α2k

1− α2

θ1

(1− θ2)2
+

θ1

(1− θ2)

(
1− αk

1− α
− 1− α2k

1− α2

)
(4.78)

= (αk − α2k)Xt +
1− α2k

1− α2

θ1

(1− θ2)2
+

θ1

(1− θ2)

(1− αk)(1 + α− 1− αk)
1− α2

(4.79)
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Proof of the result in Remark 6

Under the assumption |α| < 1 the limiting conditional variance becomes:

1

1− α2

(
a(1− β)θ

κ3
− aθ

κ
+
aθ(1 + α)

κ

)
(4.80)

1

1− α2

(
a(1− β)θ

κ3
− aθ − aθ(1 + α)

κ

)
(4.81)

1

1− α2

(
a(1− β)θ

κ3
+
aθα

κ

)
(4.82)

1

1− α2

aθ

κ3

(
(1− β) + ακ2

)
(4.83)

Proof of the results in Theorem 2

We follow the same argument as in Bourguignon and Vasconcellos (2015). Let
pl,k = P(Xt = k|Xt−1 = l) be the transition probability given in Eq. 4.13.
The process is irreducible since that every k ∈ N can be reached from every
l ∈ N. The transition are constant over t, thus the process admits a stationary
distribution. We need to show that

lim
t→∞

1

t

t∑
m=1

Pm
0,0 > 0 (4.84)

and bounded.
Next we show by induction that

Pm
x,0 = p0(1− αm)x

m−1∏
j=1

H(1− αj) (4.85)

where

H(1− αj) =
∞∑
z=0

pz(1− αj)z. (4.86)

For m = 1 the equation is satisfied since

P 1
x,0 = p0(1− α)x. (4.87)

Assume it is satisfied for m then for m+ 1 we have

Pm+1
x,0 =

∞∑
z=0

P 1
x,zP

m
z,0 (4.88)

=
∞∑
z=0

min(x,z)∑
k=0

(
x

k

)
αk(1− α)x−kpz−kP

m
z,0 (4.89)
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=
x∑
k=0

(
x

k

)
αk(1− α)x−k

∞∑
z=k

pz−kP
m
z,0 (4.90)

=
x∑
k=0

(
x

k

)
αk(1− α)x−k

∞∑
z=0

pzP
m
z+k,0 (4.91)

=
x∑
k=0

(
x

k

)
αk(1− α)x−kp0(1− αm)k

∞∑
z=0

pz(1− αm)z (4.92)

=
x∑
k=0

(
x

k

)
αk(1− α)x−k

∞∑
z=0

pzp0(1− αm)z+k
m−1∏
j=1

H(1− αj) (4.93)

= p0

m−1∏
j=1

H(1− αj)
x∑
k=0

(
x

k

)
αk(1− α)x−k(1− αm)k

∞∑
z=0

pz(1− αm)z (4.94)

= p0

m−1∏
j=1

H(1− αj)
x∑
k=0

(
x

k

)
αk(1− α)x−k(1− αm)kH(1− αm) (4.95)

= p0

m∏
j=1

H(1− αj)
min(x,z)∑
k=0

(
x

k

)
αk((1− αm)/(1− α))k(1− α)x (4.96)

(4.97)

where px is the pmf of the GLK and the summation in the last line is the pgf of
the GLK. It follows that

Pm+1
x,0 = p0

m∏
j=1

H(1− αj)
min(x,z)∑
k=0

(
x

k

)
αk((1− αm)/(1− α))k(1− α)x (4.98)

Pm+1
x,0 = p0

m∏
j=1

H(1− αj)
min(x,z)∑
k=0

(
x

k

)
αk(1 + α + . . .+ αm)k(1− α)x (4.99)

= p0(1− α)x(1 + α + . . .+ αm−1)x
m∏
j=1

H(1− αj) (4.100)

= p0(1− αm+1)x
m∏
j=1

H(1− αj) (4.101)

Consider the logarithm

log(Pm+1
0,0 ) = log p0 +

m∑
j=1

logH(1− αj) = log p0 +
m∑
j=1

log(1 +H(1− αj)− 1).

Now, recalling that 0 < α < 1, one has 0 ≥ H(1 − αj) − 1 ≥ H(1 − α) − 1 =:
−kα > −1 for every j ≥ 1. Since, by Taylor expansion, for every |z| ≤ kα < 1,

| log(1 + z)| ≤ |z|+ C|z|2
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for a suitable constant C = C(kα), then

| log(Pm+1
0,0 )| ≤ | log p0|+

m∑
j=1

(
|H(1− αj)− 1|+ C|H(1− αj)− 1|2).

Note that
1−H(1− αj) = H(1)−H(1− αj) = (−αj)Ḣ(ξα)

for some ξα ∈ ((1− αj), 1). Now for any x ∈ (0, 1)

Ḣ(x) =
∑
z≥1

zxz−1pz ≤
∑
z≥1

zpz =: M1

since the GLK distribution has finte first moment. Hence one gets

|H(1− αj)− 1| ≤ αjM1

and
| log(Pm+1

0,0 )| ≤ | log p0|+
∑
j≥1

(
M1α

j + CM2
1α

2j
)
< +∞

since α ∈ (0, 1).

Remark 9. We note that the proof only uses the fact that

Xt+1 = α ◦Xt + εt

with E[εt] < +∞.

Proof of the results in Theorem 5

(i) Under stationarity assumption one has µX = E(Xs) for all s ∈ Z, thus
µX = αµX + E(εt) which implies µX = µε/(1− α).

(ii) Let µ
(2)
X = E(X2

s ) for all s ∈ Z, then E(X2
t ) = E((α ◦ Xt−1)2) + E(ε2

t ) +
E(2(α ◦Xt−1)εt) = V((α ◦Xt−1)2) + (E(α ◦Xt−1))2 + E(ε2

t ) + E(2(α ◦Xt−1)εt).
By the law of iterated expectation

µ
(2)
X = α2(µ

(2)
X − µ

2
X) + α(1− α)µX + α2µ2

X + µ(2)
ε + αµXµε (4.102)

⇔ µ
(2)
X =

1

1− α2

(
αµε + µ(2)

ε +
2α

1− α
µ2
ε

)
(4.103)

From (i) and (ii) one can obtain the unconditional variance

σ2
X = µ

(2)
X − µ

2
X (4.104)

= σ2
X =

1

1− α2

(
αµε + µ(2)

ε +
2α

1− α
µ2
ε

)
− 1

(1− α)2
µ2
ε (4.105)

=
1

1− α2

(
αµε + µ(2)

ε +
2α

1− α
µ2
ε −

1 + α

(1− α)
µ2
ε

)
(4.106)
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=
1

1− α2

(
αµε + σ2

ε

)
(4.107)

From (i) and (ii) one can obtain the unconditional variance

σ2
X = µ

(2)
X − µ

2
X (4.108)

=
1

1− α2

(
αµε + σ2

ε

)
− 1

(1− α)2
µ2
ε (4.109)

=
1

(1− α2)(1− α)

(
α(1− α)µε + (1− α)σ2

ε − (1 + α)µ2
ε

)
(4.110)

=
1

(1− α2)

(
αµε + σ2

ε/(1− α)− µ2
ε

)
(4.111)

(4.112)

(iii) E(XtXt−k) = E((α ◦Xt−1 + εt)Xt−k) = E(E((α ◦Xt−1)Xt−k|Xt−k, Xt−1)) +
E(εt)E(Xt−k) = αE(Xt−1Xt−k) + µεµX . From (i) and (iii) and stationarity
Cov(Xt, Xt−k) = γk for all t ∈ Z one obtains the autocorrelation function

Cov(Xt, Xt−k) = E(XtXt−k)− E(Xt)E(Xt−k) (4.113)

= αE(Xt−1Xt−k) + µεµX − (αE(Xt−1) + µε)µX (4.114)

= αCov(Xt−1Xt−k) = αγk = α2γk−2 = · · · = αkσ2
X (4.115)

(iii) Let us denote with (x)m = x(x− 1) . . . (x−m+ 1) the falling factorial and
with µ(k) = E((X)k) the m-order falling factorial moment of a random variable
X. The following two results will be used. The relationships between non-central
moments and falling factorial moments are

E(Xm
t ) =

m∑
k=0

S(m, k)E((Xt)k) (4.116)

E((Xt)m) =
m∑
k=0

s(m, k)E(Xk
t ) (4.117)

where s(m, k) and S(m, k) are the Stirling numbers of the I and II kind, respec-
tively (e.g., see Consul and Famoye, 2006, p. 18). Let X and Y be two random
variables then

E((X + Y )m) =
m∑
k=0

(
m

k

)
E((X)k)E((X)m−k) (4.118)

which can be proved by induction. Let α ◦ X a binomial thinning with X a
discrete random variable, then

E((α◦X)k) = E((
X∑
j=1

Bj)k) = E

∑
|κ|=k

X∏
j=1

B
κj
j

 = E
((

X

k

)
k!αk

)
= αkE((X)k)

(4.119)
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where |κ| = κ1 + . . . + κX . Using the results given above and stationarity (i.e.

E((Xt)m) = µ
(m)
X one obtains

E((Xt)m) = E((α ◦Xt−1 + εt)m) (4.120)

=
m∑
k=0

(
m

k

)
E ((α ◦Xt−1)k)E((εt)m−k) (4.121)

=
m∑
k=0

(
m

k

)
αkE((Xt−1)k)µ

(m−k)
ε (4.122)

which implies the m-order falling factorial moment of a INAR(1) is (see also ).

µ
(m)
X =

1

1− αm
m−1∑
k=0

(
m

k

)
αkµ

(k)
X µ

(m−k)
ε (4.123)

=
1

1− αm
m−1∑
k=0

m−k∑
l=0

(
m

k

)
s(m− k, l)αkµ(k)

X µ(l)
ε (4.124)

and the m-order moment is

µ
(m)
X =

m∑
i=0

S(m, i)
1

1− αi
i−1∑
k=0

i−k∑
l=0

(
i

k

)
s(i− k, l)αkµ(k)

X µ(l)
ε (4.125)

For example the second moment (m = 2) is

µ
(2)
X = (1− α2)−1

1∑
k=0

(
2

k

)
αkµ

(k)
X µ

(2−k)
ε (4.126)

= (1− α2)−1(µ(2)
ε − µε + 2αµXµε) (4.127)

where we use µ
(2)
ε = −µε + µ

(2)
ε from Eq. 4.116. The third moment (m = 3) is

µ
(3)
X =

1

1− α3

(
µ(3)
ε + 3αµXµ

(2)
ε + 3α2µ

(2)
X µε

)
(4.128)

=
1

1− α3

(
µ(3)
ε + 3αµXµ

(2)
ε + 3α2µ

(2)
X µε

)
(4.129)

=
1

1− α3

(
µ(3)
ε +

3α2µε
1− α2

(
µ(2)
ε +

2αµ2
ε

1− α2

)
+

3αµεµ
(2)
ε

1− α

)
(4.130)

= ϕ(α)
((

2µε − 3µ(2)
ε + µ(3)

ε − 6µεµ
(2)
ε + 6µ2

ε + 6µ3
ε

)
α3 (4.131)

+
(
3µ(2)

ε − 3µε − µ(3)
ε + 3µεµ

(2)
ε − 3µ2

ε

)
α2 (4.132)

+
(
µε − µ(3)

ε + 3µεµ
(2)
ε + 3µ2

ε

)
α + µ(3)

ε

)
(4.133)

(4.134)
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where we set ϕ(α) = ((1−α3)(1−α2)(1−α))−1 and used µ
(2)
ε = −µε +µ

(2)
ε and

µ
(3)
ε = 2µε − 3µ

(2)
ε + µ

(3)
ε from Eq. 4.116. Following similar argument as above

the fourth moment (m = 4) is

µ
(4)
X =

1

1− α4

(
µ(4)
ε + 7αµXµ

(3)
ε + 6α2µ

(2)
X µ(2)

ε + α3µ
(3)
X µε

)
(4.135)

=
1

1− α4

(
µ(4)
ε +

α3µε
1− α2

(
3α2µε(µ

(2)
ε +

2αµ2
ε

1− α
)− µ(3)

ε −
3αµεµ

(2)
ε

1− α

)
(4.136)

1

1− α2

(
6α2µ(2)

ε (µ(2)
ε +

2αµ2
ε

1− α

)
+

1

1− α
(
7αµεµ

(3)
ε

))
(4.137)

= ϕ(α)
((
µεµ

(3)
ε − 3µεµ

(2)
ε − 6µ2

εµ
(2)
ε + 2µ2

ε + 6µ3
ε + 6µ4

ε

)
α6 (4.138)

+
(
3µεµ

(2)
ε − µεµ(3)

ε + 3µ2
εµ

(2)
ε − 2µ2

ε − 3µ3
ε

)
(α5 + α4) (4.139)

+
(
11µ(2)

ε − 6µε − 6µ(3)
ε + µ(4)

ε + 30µεµ
(2)
ε − 6µεµ

(3)
ε + 12µ2

εµ
(2)
ε (4.140)

−18µ2
ε − 12µ3

ε − 6(µ(2)
ε )2

)
α3 (4.141)

+
(
6µ2

ε − 12µεµ
(2)
ε + 6µε + 6(µ(2)

ε )2 − 11µ(2)
ε + 6µ(3)

ε − µ(4)
ε

)
α2 (4.142)

+
(
6µε − 11µ(2)

ε + 6µ(3)
ε − µ(4)

ε − 21µεµ
(2)
ε + 7µεµ

(3)
ε + 14µ2

ε

)
α (4.143)

−6µε + 11µ(2)
ε − 6µ(3)

ε + µ(4)
ε

)
(4.144)

where we used µ
(3)
ε = 2µε − 3µ

(2)
ε + µ

(3)
ε and µ

(4)
ε = −6µε + 11µ

(2)
ε − 6µ

(3)
ε + µ

(4)
ε

from Eq. 4.116.
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4.6.2 Further simulation results
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Figure 4.10: MCMC output for the parameters of the GLK-INAR(1). In all
plots, the MCMC draws (gray solid), the progressive MCMC average (dashed
black) over the iterations (horizontal axis in thousands), and the true value of
the parameter (horizontal red dashed).

4.6.3 Further real data results
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High-persistence setting
α a

b c

β aβ/(c− cβ − βb)

Figure 4.11: MCMC approximation of the posterior distribution (histogram) of
the parameters. In all plots, the estimated value (vertical black solid), the true
value (vertical red dotted) and the prior density (dashed).
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Low-persistence setting
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Figure 4.12: MCMC output for the parameters of the GLK-INAR(1). In all
plots, the MCMC draws (gray solid), the progressive MCMC average (dashed
black) over the iterations (horizontal axis in thousands), and the true value of
the parameter (horizontal red dashed).
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Low-persistence setting
α a

b c

β aβ/(c− cβ − βb)

Figure 4.13: MCMC approximation of the posterior distribution (histogram) of
the parameters. In all plots, the estimated value (vertical black solid), the true
value (vertical red dotted) and the prior density (dashed).
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High-persistence setting
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Figure 4.14: MCMC acceptance rate (left) and adaptive log-scales (right) over
the iterations (horizontal axis in thousands).
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Google search dataset “Climate Change”
α a

b c

β aβ/(c− cβ − βb)

Figure 4.15: MCMC approximation of the posterior distribution (histogram) of
the parameters. In all plots, the estimated value (vertical black solid).

147



Google search dataset “Global Warming”
α a

b c

β aβ/(c− cβ − βb)

Figure 4.16: MCMC approximation of the posterior distribution (histogram) of
the parameters. In all plots, the estimated value (vertical black solid).
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dispersion feature in the data. In Chapter 1 we introduce an application of Generalized Poisson 
models for analysing over-dispersion in cyber-attacks. This chapter is motivational for the 
Generalised Poisson difference INGARCH model introduced in Chapter 2. In Chapter 3, we 
provide a generalisation defining a new Dynamic Conditional Score process with data distributed 
as Generalised Poisson. Finally, in Chapter 4 we introduce a new generalisation regarding the 
innovations. The model introduced is a Generalised Lagrangian Katz INAR process.
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