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Abstract 
 

 

Industrial processes always require more the exact and precise knowledge of the 

material being processed, in order to refine, automate and optimize the production flow, 

to maximize the final product's value and quality, and to maximize the resource 

utilization in a sustainable way.  

  

Several vendors produce and sell optical scanners made of a combination of cameras 

and light sources, and there is a push to enhance their performances by using more 

advanced technologies like faster cameras, higher resolution sensors or by sensing other 

informative wavelengths (infrared, UV, x-ray). 

  

This PhD project is focused on the analysis and development of a hyperspectral 

measurement system, working in the visible, near infrared and short wave infrared range 

(VIS-NIR-SWIR, wavelengths spanning from 400nm to 1700nm). Such system has 

been validated in different real industrial cases, in particular for the sorting of wood 

boards (for example the classification of heart- and sap-wood in Eucalyptus hardwood) 

and of fruits (for example the estimation of dry matter in avocados and sugar content in 

oranges). 

  

The work was divided in several phases: selection of main components and 

development of the hardware parts, development of the software pipeline for modelling 

the data and evaluate the results, selection of use cases with thorough testing both in 

laboratory and in-field, and finally the engineering of a final product to use in a real 

industrial environment. The result is the combination of novel hardware and software 

tools that has been adopted to create actual products developed by the company I work 

for. 
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1 Introduction 

 

The original idea of a project on hyperspectral imaging started from colleagues of 

our daughter company in Sweden in 2015, who showed me a complete solution made 

of a hyperspectral system and a closed sources software. The technology was promising, 

but the system was bulky, slow and too expensive to be practically used. Moreover, its 

working principle was a complete black box. 

In addition I attended one trade show where were shown camera sensors based on 

InGaAs technology and sensitive to the SWIR wavelength range, a region where water 

has a high absorption of light, thus making it possible to these sensors to “see the water”, 

which seemed useful to measure properties of organic materials, like wood and food. 

These two facts seemed a good starting point for an internal development project for 

the company I work for, Microtec, and an interesting subject for an industrial PhD 

project. 

 

1.1 Hyperspectral technology 

The basic idea of hyperspectral imaging is to combining spectroscopy, the ability to 

measure the continuous spectrum of the light reflected by an object in order to study 

some of its properties, with imaging, the ability of doing this with a high spatial 

definition. In other words, this technology expands the perception of colours, well 

beyond the common three components of colour images (red, green, blue) to some 

hundreds. In this way, as moving from grayscale to colour images increase the ability 

of understanding a scene, the availability of many more components extends 

dramatically the possibility to measure particular properties of the objects to analyse. 

In addition to this, the extension of the used wavelength ranges from the visible (as 

perceived by the human eye) to the near infrared and short wave infrared wavelength 

ranges, augment the discriminative power of such devices compared to what a person 

can do. 

 

Figure 1.1 top shows a grayscale image, a colour image and a pseudo-colour image 

obtained by means of hyperspectral techniques of rice with some insects; while in the 

first two images the insects are not or just barely visible, in the third image they are 

clearly distinguishable. 

Moreover, Figure 1.1 bottom shows a picture of water and sugar and salt, which 

appear respectively transparent or having the same white colour in the visible 

wavelength range, while are visible or pretty different if observed in the shortwave 

infrared range. 
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  Figure 1.1. Top: Same scene as grayscale image, color image and processed hyperspectral image. Bottom: bottle 

of water and sugar and salt seen in the visible spectrum and in the short-wave infrared spectrum. 

1.2 Application of hyperspectral technology in industrial applications 

Microtec’s mission is to be leader in the production of scanners for the measurement 

of quality in the wood processing and food industry. The performances of these scanners 

are linked with their ability to measure a continuous increasing number of properties, 

from purely aesthetic to structural, which can be visible from the external surface or can 

require the examination of the internal part of the object. Being an industrial process, 

the requirement is to analyse the totality of the production in a non-destructive manner, 

coping with the speed and duration of the industry.  

One important concept in the realization of these scanners has been the fusion of 

data coming from different sensors, in order to have a richer signal to analyse. Figure 

1.2 shows the concept of a multisensor approach, where multiple areas of the 

electromagnetic spectrum are used, starting with the visible range but using also the x-

ray, microwave and radio wave portions; the figure shows this concept more in practice, 

where different images obtained from sensor sensitive to different wavelengths (visible, 

x-ray) and using different principles of measurement (measure of reflectivity, 

triangulation, fiber deviation) are superimposed to create a multi-dimensional image that 

is clearly much richer of information.    
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Figure 1.2. Microtec's multisensor approach. 

In these terms, hyperspectral technology is an extension to this concept, since it 

considers: 

 the use of a continuous spectrum compared to a few bands (like the three color 

components of color sensors); 

 the use of a different range in the wavelength spectrum, comprehending the 

near-infrared and in particular the shortwave-infrared, namely the range from 

700nm to 1700nm, which is novel for our company. 

The utilization in industry processes imposes, in addition to the validation of the 

increased performances, other practical constraints related to speed and cost. 

 

These sensors need to be fast, since the measuring speeds can reach the 15 

meters/second in some wood board scanning application, with the requirement of a 

measurement every few millimetres.  

 

These sensors cannot have a too high cost, since this would not allow the use in 

commercial application in some sectors, like the food industry, which are very price 

sensitive.   

1.3 Structure of the thesis 

The content of this thesis reflects my work on the internal developments at Microtec 

of the hyperspectral technology. 

The project is built around four main activities: 

 Acquisition device (hardware) 

 Workflow from data to model (software and process) 

 Applications 

 Ecosystem around this project 

 

The acquisition device is an important aspect, since the final goal of this project is 

to design new functional and robust measuring devices that must work in the harsh 

conditions of industrial processes. Since the existing devices were not fully satisfactory 

(in terms of acquisition speed, dimensions, cost, stability), a lot of work was put to 

evaluate the available technologies, select the best components and design and produce 
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prototypes. In particular I worked on the camera and on the illumination, covering 

different aspects concerning flexibility of use, acquisition speed, stability over long 

temporal period, possibility of combination with other existing sensors, and finally cost. 

This part was a continuous effort during the whole project, and it was propaedeutic to 

the final installations. Chapter 3 in the thesis covers these activities. 

 

The workflow process is the combination of the methods used to extract useful 

information from the raw data, i.e. the software to calibrate and use the acquisition 

devices, to store, manage and label the acquired data, the algorithms to create and 

evaluate models and finally to deploy them in the final environment. The development 

of the workflow was a continuous effort during the project, like the work on hardware, 

receiving feedbacks and the push for improvement from the application use cases. 

Chapter 4 covers this part. 

 

The applications are the concrete use cases where the developed technology and 

algorithms can be applied in a useful manner. The general applications were in the 

automatic sorting of wood, fruit and vegetable products, but in order to discover which 

use cases were effectively solvable by means of hyperspectral imaging and were 

commercially interesting application as well, it was necessary to combine the 

suggestions from the sales department in Microtec, with the needs of customers and with 

the advices of research partners. Many tests were done in order to quickly assess the 

feasibility of the applications or discard the dead ends, and the most promising ones 

were then further analysed, studied, and a few brought to concrete in field applications. 

These concrete cases were also the pulling force for improvements concerning the 

acquisition devices and the workflow software. The results of this part are presented in 

chapter 5. 

 

Finally, I tried to expand this work outside the company Microtec as well, thus a 

substantial effort was put in the creation of additional projects and activities, in 

cooperation with universities and research centres as well, beyond the contacts within 

the University of Ca’ Foscari. This component was useful to increase the exchange in 

ideas and knowhow, in terms of algorithms (for example with the University of Bolzano) 

and of knowledge on biological aspects (for example with the Fondazione Edmund 

Mach in Trento, the University of Bolzano and the Laimburg Research Centre in 

Bolzano). In addition we exchanged raw material (pieces of wood, fruits) and acquired 

data, in order to share the results and the facility for destructive and non-destructive 

measurements. A list of these additional projects is described in chapter 6, together with 

the concrete outcome of my work. 
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To summarize, the structure of this thesis is as follows: 

Chapter 2 will present an overview of spectroscopy and hyperspectral techniques, in 

terms of technologies, algorithms and literature regarding its application. 

Chapter 3 will show the work that has been done from the hardware point of view. 

In particular two key aspects will be described, the work that has been done on the 

development of two camera systems and of a lighting setup to overcome the limits of 

classic halogen bulbs. 

In chapter 4 the workflow of the chosen hyperspectral techniques, consisting in the 

data collection, processing, model creation, and deployment will be examined.  

Chapter 5 will show some of the most promising applications, in the wood and food 

(fruit) sector. I will present results for the classification of some wood properties and 

for the estimation of internal properties of avocado and citrus fruits. Two of these 

applications were first tested in laboratory conditions and then applied in real field 

production. Finally a few additional applications will be shortly presented. 

Chapter 6 shows the different outcomes of this thesis, in terms of publications and 

patent (because of the industrial nature of the PhD, the amount of scientific publication 

is limited due to secrecy reasons; in addition some patents have been obtained or are in 

the process of evaluation), and in terms of other projects and cooperations that I started 

in connection with this subject. 

Finally in chapter 7 some possible next steps and conclusions will be presented. 

 

The work of this project has spawned over a period of about four years. I was in 

charge of the scientific direction of the entire project, the experiments, the methodology 

and hardware selection; I also worked on the development of the acquisition software, 

camera firmware and mechanic, modelling software and data evaluation. However, the 

results would have not been possible without the contribution of many colleagues who 

worked with me, thus the content of this thesis is based also on the work, internal 

technical reports and activities made in cooperation with Simone Faccini (sections 3.3, 

5.1, 5.2, 5.3), Matteo Caffini (sections 3.3, 5.1, 5.2, 5.3), Ilario Chini (section 5.3), 

Andrea Gottardo (section 3.2), Andrea Azzalin (section 3.2), Alberto Celin (section 3.2), 

Johann Thaler (section 3.2), Andrea Ciresa (sections 6.1.2, 6.1.4).  
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2 State of the art 

 

Hyperspectral imaging (HSI) is a recent technology that combines image processing 

and spectroscopy techniques to obtain both spatial and spectral information from an 

object. 

 

In general terms the goal of hyperspectral imaging is to obtain the "spectrum" for 

"each pixel" in the image of a scene and to “study” it. The term hyperspectral means 

that we are dealing with narrow spectral bands over a continuous spectral range, in 

respect to multispectral, where only a few discrete bands are considered. Moreover, the 

term imaging means that we are considering spatial resolution in addition to spectral 

resolution, in respect to a spectrometer that measures the spectrum from an incoming 

fibre optic from a single spot. Finally, these data are analysed by means of spectroscopy 

techniques, which is the study of the interaction between matter and electromagnetic 

radiation, in particular the visible and near infrared range. 

2.1 Imaging methods 

Hyperspectral imaging is a type of spectral imaging technology that integrates 

imaging and spectroscopy to obtain 3D data cubes, called hypercubes, that contains 2-

D spatial and 1-D spectral information from objects. It is related to another technology 

called multispectral imaging, the main difference being the number of wavelengths and 

spectral resolution of the acquired data: the boundary between these two techniques is 

generally set so that below 10-20 discrete wavelengths or wavebands is termed 

multispectral, while above this is termed hyperspectral [1]. 

 

In order to obtain the 3D hypercube there are four main configurations: point or 

whiskbroom scanning, line or push broom scanning, area or staring scanning and single 

shot, as depicted in Figure 2.1. 

 

 
Figure 2.1. The four approaches to acquire a three-dimensional hyperspectral image cube: (a) point scanning, (b) 

line scanning, (c) area scanning and (d) single shot. X and Y represent the spatial dimensions, Lambda is the 

wavelength. 
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Figure 2.2. Left: basic principle of Whiskbroom scanning. Right: Pushbroom scanning. 

2.1.1 Point scanning (Whiskbroom) imaging 

 

With this method (Figure 2.2 left) a single pixel detector captures the full spectrum 

of a spot, and the scene or sample is scanned over the two spatial directions. This method 

was used in many orbital satellites, where the measuring spot sweeps in a direction 

perpendicular to the flight path, collecting one pixel at a time. For example, all the 

Landsat 1 to 7 satellites (launched between 1972 and 1999) used this kind of design. 

The sensor used in this design can be a standard spectrometer, which can be therefore 

easily be used as hyperspectral device with the addition of a two-axis mechanical stage. 

The main benefit of this technique is the ability to obtain high spectral resolution, 

but the spatial resolution can be low or the acquisition time can be very long.  

 

2.1.2 Line scanning (Pushbroom) imaging 

With this method (Figure 2.2 right) a line of spatial information with a full spectrum 

for each pixel is captured, and the scene or sample is scanned over one spatial direction. 

This technique is widely used in remote satellite sensing [2]; as an example, the OLI 

(Operational Land Imager) instrument on Landsat 8 launched in 2013 uses a push broom 

design.  

 

This approach is well suited for conveyor belt systems in the production line for 

online inspection because of its good compromise between spatial and spectral 

resolution. This design is the most used configuration in the literature and for practical 

applications in industrial environment as well. 
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Figure 2.3. Structure of a spectrograph, an optical element commonly used in push broom imaging. 

2.1.3 Area scanning (Staring) imaging 

With this method, a frame of spatial “monochromatic” information is taken for every 

exposure, and the scan is performed over the spectral range. The spectral scan is 

performed either by exchanging a set of filters or by using a tuneable filter like LCTD 

(liquid crystal tuneable passband filter) as depicted in Figure 2.4 left. 

This design can be used when the sample or scene is stationary during the 

measurement; when this is not possible, as in the case of aerial remote sensing, the 

different scans at different wavelengths can be realigned by using spatial features in 

each image. 

A particular case of this design, that uses a combination of a standard industrial 

camera with a linear variable filter, has been implemented by the company Glana [3]. 

With this design, every column in a frame contains a different wavelength (from blue to 

NIR), and in order to get a full hypercube it is required to sweep the scene and to realign 

different images, as depicted in Figure 2.4 right. 

 

 

 

Figure 2.4. Right: configuration with tunable bandpass filter (Thorlabs). Right: configuration with linear variable 

filter (Glana). 
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2.1.4 Single shot (snapshot) imaging 

This method uses a spatial detector able to capture with a single exposure the 

complete 3D image cube, without scanning in either spectral or spatial domain. Different 

techniques have been proposed to build such a device. 

Compressive sensing exploits the paradigm that sparse signals can be under sampled 

without losing relevant information. A coded aperture is placed in front of or behind a 

prism (or a diffraction grating) via collimation in the optical path of the imaging system; 

the coded aperture is used to encode spectral signatures, which are later used to 

reconstruct the compressive input into a complete hyperspectral image. Traditionally 

these systems are large and expensive due to additional elements such as collimating 

optics and coded masks, making them bulky and hard to handle in practice. Takatani [4]  

proposes to use faced reflectors on which colour filters are attached; the key idea is 

based on the principle that each of multiple reflections on the filters has a different 

spectrum, which allows to observe multiple intensities through different spectra; the 

technique can be implemented either by a coupled mirror or a kaleidoscope geometry. 

Computed tomography imaging spectrometry (CTIS) [5] uses a diffraction grating to 

split incident light rays into a number of spectral projections on an image plane; since 

multiple sub-images need to be captured with a single sensor, the effective spatial 

resolution of the reconstructed images is drastically reduced. Bodkin [6]  proposed a 

particular Hyperpixel Array (HPA) optical processor, a special grating whose design 

allows the entire data cube to be mapped onto the focal plane and to be read as a normal 

two dimensional image. 

However, none of these instruments have seen yet widely adoption in commercial 

and industrial application, due to high computational effort and manufacturing cost.  

 

2.2 Spectral discrimination 

2.2.1 Spectrograph 

 
Figure 2.5. Wavelength dispersive imaging spectrographs; left: prism-grating-prism (PGP) transmission 

spectrograph; right: Offner reflection spectrograph. 
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The imaging spectrograph is the core component of line-scan hyperspectral imaging 

systems. It is an optical wavelength-dispersive device that spatially separates broadband 

light into different wavelengths. It acquires a line of spatial information from a sample 

via an entrance slit and projects a two-dimensional image where one dimension 

represents the spatial and the other the spectral axis. The two major types of diffraction 

gratings used in imaging spectrographs for wavelength dispersion are transmission and 

reflection gratings.  

A transmission-grating-based imaging spectrograph is shown in Figure 2.5 left. 

Incoming light is first collimated by a front lens and then dispersed at a prism-grating-

prism (PGP) component, where light propagation direction is dependent on wavelength. 

The dispersed light is projected onto a detector through a back lens, creating a special 

2-D image [7]. 

A reflection-grating-based imaging spectrograph, based on an Offner configuration, 

is shown in Figure 2.5 right. This spectrograph includes a pair of spherical mirrors and 

a convex reflection grating. The lower mirror guides light from the entrance slit to the 

reflection grating, where the beam is dispersed into different wavelengths. The upper 

mirror then reflects the dispersed light to the detector, where a continuous spectrum is 

formed for each spatial point along a scanning line on the sample. 

 

2.2.2 CZT detector for X-ray spectroscopy 

A different example of device used for the discrimination of the energy (wavelength) 

of incoming radiation can be found for x-ray imaging.  

In recent years, the semiconductors CdTe and CdZnTe (CZT) have emerged as the 

material of choice for room temperature detection of hard X-rays and soft gamma-rays 

[8](Iniewski2014). Through direct conversion of the energy of the detected photons into 

an electronic signal, the use of CZT detectors improves the energy, spatial and contrast 

resolution of imaging systems, in contrast to the indirect conversion used in 

conventional scintillator based detector instruments. 

CZT detectors are used in two modes of operation: photon counting and 

spectroscopy. In photon counting mode the x-ray photons can be counted like in 

standard digital camera for visible light; this mode of operation can work at very high 

flux rate. Alternatively for each photon the system can detect precisely its energy; this 

mode of operation is called spectroscopy; as extracting energy information takes more 

processing time, the spectroscopic systems are inherently slower than the photon 

counting ones. 

With the advance in the process technology of growing the crystals, CZT detector 

can be built as single pixel detector, as well as one dimension and two dimensions pixel 
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array, thus enabling the realization of hyperspectral imaging devices for a line scanning 

or snapshot imaging. 

 

 

 

 

Figure 2.6. Example of single pixel and 2D array of a CZT detector. 

 

 

2.3 Type of light-matter interaction 

The nature of light-matter interaction is at the basis of optical imaging technologies. 

Figure 2.7 shows the different kinds of such interaction: the light incident on a turbid 

material can be back-reflected after absorption and multiple scattering events or via 

energy transfer from light to particles and back thru fluorescence or Raman scattering; 

light may also be transmitted through the material without being fully absorbed. These 

light-matter interaction processes correspond to different arts to implement imaging 

techniques (among them hyperspectral imaging) or spectroscopy: reflectance, 

transmittance, fluorescence or Raman scattering mode [1]. 

 

 

Figure 2.7. Representation of various types of light-matter interactions in a turbid material. 

The principal method used throughout this project is reflectance, and some 

experiments were done with transmittance as well; on the other hand, fluorescence or 

Raman scattering were not considered. 
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In reflectance imaging, the incident light and sensor are positioned on the same side 

of the sample. The typical method to produce light is to use diffuse or uniformly 

distributed light sources, for example halogen lamps or LED modules mounted in one 

or multiple rows pointing towards the sample or in the opposite direction on a diffusing 

surface; the first method permits to use less light power but sometimes produces 

reflections if the material is lucid or glossy; the second method can be preferable to 

measure horticultural products, which are often pseudo spherical and glossy. An 

alternative method (Figure 2.8 left) is to use point lighting with a very narrow and 

intense light beam; this is achievable for example by using laser light sources or by 

focusing a lamp or LED light source on a small area, to obtain an illumination circle of 

about 1-2 millimetres. This creates a light scattering image at the surface of the sample 

and by acquiring and analysing this image it is possible to determine the light absorption 

and scattering coefficients. This is useful to assess information on fruit samples like 

texture (firmness) or flavour (for example sugar content) or on wooden solid samples 

like the fibre orientation. 

Reflectance imaging probes only the superficial region of the sample, ranging from 

tenths of a millimetre to several millimetres depending on the optical properties of 

samples and on the lighting and sensing hardware. On the other hand, this technique 

works well on a wide range of wavelengths, making it possible to acquire a useful signal 

in the full visible and infrared range that are considered in this work.  

 

In transmittance sensing, the incident light and sensor are positioned on opposite 

sides of the sample to measure. This configuration has the advantage, compared to 

reflectance, in detecting internal characteristics of the samples, like defects or quality 

parameters (for example sugar content) that are not evenly distributed in the sample 

body or just observable from the external surface only. The main difficulty in 

transmittance is the absorption of light in the observed body, requiring very high-power 

light sources and sensitive sensors, making it more difficult to implement. The optical 

arrangement requires special care to avoid that the tiny residual signal attenuated by the 

sample is shadowed by the larger signal that can scatter on the outside of the sample or 

on the measuring environment (see Figure 2.8 right for an example of setup with a light 

shield to avoid that the intense light coming from the top interferes with the small signal 

that is found at the bottom of the fruit). In practical terms, only the NIR range (700-1000 

nm) is used, since biological tissues are relatively transparent in this area, while sorption 

in the visible range (below 700nm) or in the short-wave infrared (above 1000) is high. 
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Figure 2.8. Left: example of point light sources used to estimate fiber deviation on wood. Right: setup for measure 

in transmittance.  

 

2.4 Spectroscopy and spectrometry 

Spectroscopy is the science of studying the interaction between matter and radiated 

energy. It is the study of absorption characteristics of matter, or absorption behaviour of 

matter, when subjected to electromagnetic radiation.  

The study of spectrometry dates back to the 1600s when Isaac Newton first 

discovered that focusing light through glass split it into the different colours of the 

rainbow (known as the spectrum of visible light), and it has expanded to include 

interactions between electrons, protons and ions. Multiple scientific fields including 

chemistry, physics, and astronomy have grown as a result of spectroscopy. 

 

On the other hand, spectrometry studies the practical study and measurement of a 

specific spectrum, i.e. is the method used to acquire a quantitative measurement of the 

spectrum. It is the practical application where results are generated, helping in the 

quantification of, for example, absorbance, optical density or transmittance.  

 

In other words, spectroscopy is the theoretical science, and spectrometry is the 

practical measurement. While spectroscopy does not generate any results, because it is 

the theoretical approach to science, it is the application of spectroscopy that creates the 

results that can be assessed. 

 

Spectrometry involves the splitting of light (or more precisely electromagnetic 

radiation) into its constituent wavelengths (a spectrum), which is done in much the same 

way as a prism splits light into a rainbow of colours. Old style spectroscopy was carried 

out using a prism and photographic plates, while modern spectroscopy uses diffraction 

grating to disperse light, which is then projected onto digital image sensors. 
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2.5 Chemometrics 

Chemometrics [9] [10] is a chemical discipline established at the beginning of the 

1970s by Wold, Kowalsky and Massart that uses mathematics, statistics and formal 

logic to design or select optimal experimental procedures, to provide maximum relevant 

chemical information by analysing chemical data and to obtain knowledge about 

chemical systems.  

 

In contrast with the classical approach, that aims to understand effects, 

chemometrics give up the necessity to understand the relationships and effects and 

identify other aims like prediction or classification. The classical approach separates all 

factors, examining one factor at a time, and produce a theory from which a model is 

derived. On the other hands the chemometrics approach uses multivariate methods, all 

variables are considered at the same time, and try to find models to fit the data. As a 

result, the classical approach determines new causal relationships and discovers new 

natural laws, whereas chemometrics finds formal relationships. The classical approach 

has the advantage of being generally accepted and well based, and the relationships have 

a physical meaning; the disadvantage is that in nature factors are often correlated and 

cannot be always orthogonally separated. The advantage of chemometrics is that 

correlations between variables can be utilized, but the relationships do not have 

necessarily a physical meaning.  

 

2.6 Analysis methods 

The goal of spectroscopy and hyperspectral data analyses is to build a predictive or 

classification model. To exploit the high dimensional nature of the spectral data, the 

model should be multivariate [1]. Depending of the specific detection task, it can be 

quantitative to provide numerical prediction (for example to determine the concentration 

of chemical constituents), or qualitative to perform classification (for example for defect 

detection or surface segmentation). Both kind of models are computed based on learning 

from the given data, based on a chemometric approach. In general, separate datasets are 

required for training, validating and testing the model.  

 

The typical methods for multivariate analysis use principal component analysis 

(PCA), multiple linear regression (MLR), principal component regression (PCR) and 

partial least squares (PLS) regression [11] [12] [13]. 

 

Principal component analysis (PCA) is used as a tool for screening, extracting and 

compressing multivariate data. PCA employs a mathematical procedure that transforms 
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a set of possibly correlated predictor variables (the measured spectra) into a new set of 

non-correlated variables, called principal components. PCA produces linear 

combinations of variables that are useful descriptors or even predictors of some 

particular structure in the data matrix. 

 

Multivariate regression techniques aim to establish a relationship between the 

measured predictor variables X ("X-variables", the spectral matrix) and the observed 

response values ("Y-variables", attributes of interest or target). 

In multiple linear regression (MLR) the response is approximated by a linear 

combination of the predictor values at every single wavelength. The regression 

coefficients are estimated by minimising the error between predicted and observed 

response values based on least squares. MLR models typically do not perform well 

because of the often high co-linearity of the spectra and easily lead to overfitting and 

loss of robustness of the calibration models. 

 

Principal component regression (PCR) is a two-step procedure, which first 

decomposes the predictor X-variables by a principal component analysis (PCA) and 

then fits a MLR model, using a small number of principal components (PCs or latent 

variables) instead of the original variables as predictors. The advantage with respect to 

MLR is that the new predictor variables are uncorrelated, and that the noise is filtered. 

The main drawback of PCR is that the latent variables are ordered according to 

decreasing explained variance of the original predictor variables (the spectral matrix), 

which is not necessarily the most informative with respect to the target variable.  

 

Partial least squares (PLS) regression is a generalisation of multiple linear regression 

(MLR) [14]. Unlike MLR, it can analyse data with strongly collinear (correlated), noisy 

and redundant predictor variables (X-variables) and efficiently model the response 

variables (Y-variables) at the same time. In PLS regression an orthogonal basis of latent 

variables is constructed one by one in such a way that they are oriented along the 

directions of maximal covariance between the predictors (spectral matrix) and the 

responses. In this way it is ensured that the latent variables are ordered according to their 

relevance for predicting the Y-variable. Interpretation of the relationship between X-

data and Y-data (the regression model) is then simplified as it is concentrated on the 

smallest possible number of latent variables. PLS is commonly referred as PLSR (for 

regression, where the target variable Y is a continuous value) or PLS-DA (for 

discriminant analysis, where the target variable Y is a set of classes expressed as one-

hot encoding).  
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PLS will be the main method used to perform the chemometric analysis in the tests 

that will be presented in this work.  

2.7 Applications 

Hyperspectral imaging originated initially from remote sensing and has been 

explored by NASA for various applications. The advantage of acquiring images across 

a wide range of electromagnetic spectrum has been applied to many other different 

areas; a few examples are agriculture, recycling, art and heritage, medicine and 

pharmaceutical, forensics. 

 

2.7.1 Applications for fruit quality control 

One important field where hyperspectral imaging has been applied is the quality and 

safety control for fruit, vegetables and horticultural products in general. 

 

Many studies have been conducted on the use of spectroscopy for this purpose and 

even if this measure is lacking the spatial information, these studies are relevant for the 

data analysis part that can be borrowed in hyperspectral applications as well. 

Spectroscopy [15] is a method capable to analyse internal compounds in fruits and 

vegetables: it is non-destructive, inexpensive, rapid and reliable technique that has been 

used in food chemistry for the quantitative and qualitative determination of different 

compounds in fruits. The most used spectral range has been the near infrared (NIR) 

spectroscopy [16] [17] [18]. This technique has been used for the determination of 

soluble solid contents (SSC), firmness, acidity, dry mater, chemical substance (glucose, 

sucrose, citric acid, malic acid, starch or cellulose) in different fruits [19] [20] [21], for 

the determination of maturity index [22], internal quality index [23] [24]. 

The principal limit of spectroscopy is that it can measure a single point over the fruit 

sample. On the other hand, hyperspectral imaging (or imaging spectroscopy) extends 

spectroscopy with the ability to measure both the spatial and spectral information, thus 

it allows the study of the spatial distribution of properties, which is not possible with 

conventional spectroscopy. 

These reviews [25] [26] [27] [1] very useful, as a thorough overview on a 

multiplicity of applications of hyperspectral imaging to the quality assessment on fruits 

and vegetables and its advancement in recent years. 

 

Below a few examples of applications in recent years. 

 

One of the first use of hyperspectral imaging was described by Martinsen et al. [28], 

where they used this approach for the determination of soluble solids in kiwifruit. 
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Menesatti et al. [29] studied the possibility to use hyperspectral imaging in SWIR 

range (900-1700 nm) to assess the correct harvest time of apples, by automatically 

imaging apples cut in halves, to automatize the traditional method through the starch-

iodine test, where fruits halves are dipped into an iodine solution and patterns are 

visually evaluated and compared with reference charts by experts.  

Mendoza et al. [30] used hyperspectral imaging for the inline prediction of firmness 

and SSC for different apple cultivar. 

Lleo [31] applied hyperspectral imaging in the VisNIR range (400-1000nm) for the 

prediction of the maturity of peaches; they computed different maps of maturity indices 

and showed that the ripening was not uniform throughout the whole fruit. 

Rajkumar [32] used hyperspectral imaging in the VisNIR region (400-1000nm) to 

study quality and maturity stage in banana fruits; quality parameters like moisture 

content, firmness and total soluble solids were determined and correlated with the 

spectral data using partial least squares analysis, while principal component analysis 

was used to select optimal wavelengths; the study was conducted at three different 

storage temperatures (20, 25 and 30°C). 

Schmilovitch [33] studied intact bell peppers using hyperspectral imaging (550-

850nm), obtaining high correlations by means of PLS regression for some internal 

compounds (SSC, chlorophyll, carotenoid and ascorbic acid); they also used the spatial 

resolution of the hyperspectral technique to obtain mappings of these parameters. 

Munera [15] studied astringency of persimmon by using hyperspectral imaging 

(460-1020nm); they used PLS-discriminant analysis (PLS-DA) to classify fruits in a few 

different stages and were able to identify a reduced number of informative wavelengths 

using the Successive Projections Algorithm (SPA). Their hyperspectral imaging system 

was an industrial camera coupled with two liquid crystal tunable filters (LCTF). 

Zhou [34] used both VisNIR and the SWIR spectral ranges (380-1000nm and 875-

1700nm) to investigate the feasibility and potentiality of determining firmness, soluble 

solid content (SSC) and pH in kiwifruit. They used a linescan hyperspectral reflectance 

imaging configuration and a multitude of analysis methods to establish models, in order 

to obtain very accurate prediction models. 

Li [35] used both VisNIR and SWIR wavelengths (600-1000nm and 850-1600nm) 

for the non destructive measurement of firmness, SSC and color components of plums; 

they used two line scanning (Push broom) hyperspectral imaging systems combined 

with a moving translation stage. In order to achieve a more accurate measurement, they 

considered two opposite sides of the fruits. 

 

Concerning the topics analysed in this project, works were done on avocado [36] 

and on citrus [37] [38], studies that applied NIR spectroscopy (not hyperspectral 

imaging) to the estimation of various quality parameters on avocado and citrus fruits. 
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2.7.2 Application in wood sector 

Hyperspectral imaging has been used in different studies for the qualitative and 

quantitative characterization of wood.  

 

Wood is an essential material for many industrial segments, such as the building, 

furniture and paper industries. Wood is considered an important and complex raw 

material. It is formed by three major macromolecular components: cellulose, 

hemicellulose and lignin, with small amount of minor extractive compounds.  

 

Infrared spectroscopy has proven to be a powerful tool for the analysis of the 

properties of wood over the past 20 years [39]. In the range of 800-2500 nm there are 

numerous overtone and combination bands of vibrational frequencies due to functional 

groups, such as C-H, O-H and N-H. It is possible to detect these differences on objects 

at wavelengths that are not visible to the naked eye. The overlapping appear non-specific 

and poorly resolved, but they can be evaluated well by multivariate calibration 

algorithms and statistical methods by means of chemometrics (as for example principal 

component regression (PCR) or partial least squares (PLS) analysis). 

 

Below a few examples of applications in recent years. 

 

Kelley et al. [40] used spectrometry in the range 500nm to 2400 nm to measure 

chemical and mechanical properties of solid wood of specie loblolly pine wood. They 

were able to estimate with a good correlation the chemical composition of wood (lignin, 

extractives, glucose, xylose, mannose, and galactose), its mechanical properties 

(stiffness or modulus of elasticity MOE, and modulus of rupture MOR) and the 

microfibril angle as well. They used a spectrometer (not images), and collected about 

30 scans per sample that were averaged into a single spectrum.  

 

Thumm et al. [41] used a hyperspectral imaging system in the SWIR range (900-

1700 nm) from Specim to scan discs of wood to visualize the distribution and variation 

of lignin, galactose and glucose in the samples, which are related to the chemical 

composition of wood. The same author later extended the study [42]. 

They also used the same setup [43] to scan 30 shooks of radiate pines in order to 

detect resinous defects; their model was able to further well discriminate resin from 

other visually similar defects like sapstain, pith or kiln brown stain. Both studies used 

PLS as mathematical tool to compute their models. 
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Meder at al. [44] used a hyperspectral system to predict the severity of compression 

wood in samples and compared with a reference given by a subjective microscopic 

assessment, but without achieving good correlations. 

Haddadi et al. [45] used a SWIR hyperspectral system (900-1700 nm) on small 

samples of wood (subalpine fir) cut out from boards to predict their moisture content 

and density (wood density and basic specific gravity). They used partial least squares 

(PLS) regression models, obtaining good results for moisture.  

Ma et al. [46] used hyperspectral imaging in the SWIR range (1000-2100 nm) to 

identify the wood species. The measure setup was arranged in order to evaluate the light 

scattering patterns of an intense halogen light spot (1mm diameter) on the wood surface; 

this arrangement is able to separate between light scattering and absorption, thus 

achieving better results than simpler NIR spectroscopy. 

In a later study, Kanayama et al. [47], applied data reduction with PCA and 

convolutional neural networks to the same kind of images, being able to accurately 

distinguish between 38 species of hardwood. 

 Mishra et al. [48] used hyperspectral imaging for digital phenotyping of whole 

plants in a non destructive manner; plant phenotyping is the measurement of the 

interaction of a plant with its surrounding environment, which is important in the science 

domain and in breeding programs to study the performances of plants exposed to 

different conditions and identify the best performing genotypes. 

Kobori [49] used a hyperspectral push broom system in the Vis-NIR range to 

monitor the moisture content on small slices of wooden boards, during their natural 

drying process; they considered two wood species, European beech and Scots pine, 

obtaining very good correlations. 

Colares et al. [50] applied SWIR (1200nm to 2500nm) hyperspectral imaging for the 

determination of the distribution of holocellulose (cellulose + hemicellulose), lignin and 

extractives on samples of Mahogany of very small size (approximately 1 cm per side). 

 

2.8 Off-the-shelf components for hyperspectral systems 

Although the hyperspectral imaging is a relative recent technology, there are already 

different vendors that offer off-the-shelf components, in terms of hardware equipment 

and software. In this section I present a non-complete list of those that were considered 

throughout the duration of this project.  

 

Hardware products: 

 Specim (Finland) is a supplier of hyperspectral imaging systems, offering 

complete camera solutions covering a board spectrum range (from 400nm to 
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12.4um, i.e. visible, near infrared, short-, mid- and long-wavelength 

infrared), spectrograph only and software. 

 Innospec (Germany) is another supplier of complete hyperspectral imaging 

systems and components for industrial applications. 

 IMEC (Finland) is a large research & development organization that, 

leveraging its background in semiconductor fab, equipment and process 

technology, offers the technology to deposit a number of interference-based 

optical filters on top of image sensors, with a single pixel granularity. This 

permits to realize snapshot multispectral sensors with 16 or 25 bands, as well 

as linescan sensors with some tens of bands.  

 Eoptis (Italy) has developed a small multispectral device, made of 9 discrete 

image sensors coupled with different bandpass filters, suited for portable or 

aerial applications in precise farming or environmental monitoring 

applications.  

 Glana (Sweden) is a startup that has developed a high spatial resolution 

hyperspectral sensors, by coupling an image sensor with a linear variable 

filter (LVF). 

 

Software products 

 Perception Park (Austria) offers a generic data processing solution enabling 

the industrial use of industrial cameras for high-speed tasks like sorting in 

different industries (food processing, recycling, mining, pharmaceuticals). 

They have developed the concept of Chemical Colour Imaging to simplify 

the management of the complex spectral information into simpler colour 

images. 
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Figure 2.9. Example of off the shelf products. From top left: Specim, Innospec, IMEC, Eoptis, Glana. 

X-ray hyperspectral 

A special mention is for some recent developments of the technology capable of 

measuring the spectrum of the absorbed x-ray radiation with the possibility to pixelize 

these sensors. 

 DeeTee (Finland) develops x-ray detector solution for medical, security and 

industrial applications; one of their division is focused in the realization of 

multi-energy x-ray detector, optimized for security and industrial 

applications that require state-of-the-art material discrimination capability 

even when they have similar atomic compositions. 
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 Due2lab (Italy) develops x-ray spectrometers based on innovative materials, 

with knowhow in the CZT detector arrays fabrication and in the relative 

signal read out and elaboration electronic.  

 X-Next (Italy) develops multi-energy x-ray detector and realizes inspection 

systems for food safety, security controls, material recycling and pharma 

safety applications. 
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3 Hardware 

 

This chapter explains the laboratory setup for the data acquisition and the 

developments that have been done to industrialize a working prototype, in particular 

from the hardware point of view1. 

3.1 Initial setup  

The first attempts I made to apply the hyperspectral techniques were based on a few 

measures done using a closed system that permitted to acquire and model data to obtain 

pseudo-colour maps like depicted in Figure 1.1.  

 

After these first positive attempts on few data, a hyperspectral imaging camera sold 

by the German company Innospec was acquired to extend the measures. The system 

used a SWIR sensor with a resolution of 320x256 pixels and spectral range between 950 

and 1700 nm. The illumination used a set of halogen lamps, in order to provide a high 

light flux and relatively white spectrum, but with the disadvantages of producing a lot 

of heat, and the need of a certain time to reach a stable light emission. 

 

This setup was used to collect diverse kind of data, both on wood materials and on 

different fruits, to test and asses the validity of the technology and of the processing. 

 

The most promising tests were: 

 wood boards (hardwood, like eucalyptus or oak), detection of heart and 

sapwood 

 wood boards (resinous wood, like pine or spruce), detection of stain, rotten, 

different fungi 

 wood boards (resinous wood, like pine or spruce), detection of juvenile 

wood 

 fruit (avocado), determination of dry matter 

 fruit (citrus), determination of sugar content 

 fruit (dates), measure of humidity 

                                                        
1 This part of work was done in cooperation with other people. For section 3.2, I did the overall 

design, component selection and evaluation, development of part of firmware and the acquisition 

software. Andrea Gottardo and Andrea Azzalin made the design of the electronic boards and the 

development of firmware; Alberto Celin worked on firmware development; Johann Thaler helped for the 

design of the mechanical aspects. For section 3.3, I searched and selected the LEDs models, and designed 

the arrangements to build and test; Simone Faccini made the design of the LED electronic boards; Simone 

Faccini and Matteo Caffini did together with me the evaluation of the different developed solutions. 
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 fruit (raspberry), determination of firmness 

 

In parallel to these feasibility studies, it was analysed the cost of such a system and 

the limitations of its integration in the existing scanners produced by Microtec. 

 

Cost was an important point. The existing cameras are very expensive, the cost is 

easily some tens of thousands of euros, a price which is difficult to amortize in our 

systems. Counting on the promising results, and with the experience in designing 

custom electronic, the design of a proprietary camera based on existing sensors to be 

used as two dimensional sensor in the push broom setup was promising. 

 

The integration in existing system was another important topic. Microtec produces 

scanners to measure the quality of wooden boards, which are based on a combination of 

different sensors working in the visible, infrared and x-ray spectral range, and on the 

data fusion of the images coming from them; see Figure 3.1 for an example of inline 

scanner and the different images that are acquired. Due to space limitation, these sensor 

works in the same area, thus it is necessary to time-multiplex them, by pulsing the 

illumination over time, or using band-pass filters, to avoid crosstalk between sensors. 

Because of this, the use of halogen light poses problem since it is difficult to pulse them 

at the required frequency of some kHz or to superimpose due to its broad spectral 

emission, which would disturb the existing optical sensors. Therefore the use of LEDs 

as light source was preferred to halogen lamps. 

 

  

Figure 3.1. Left: two Microtec Goldeneye scanners installed in a sawmill. Right: multiple images taken from 

different imaging systems working in the same space. 

The flexibility of the sensor was another limiting factor. As previously introduced, 

a push broom system uses a two-dimensional sensor array and a prism to imagine one 

spatial dimension and to split the wavelength axis on the other sensor’s axis. In some 

application it is not necessary to use the whole wavelength range to solve the task, and 

it would be possible to use only a subset of it with the benefit of reaching a higher speed. 
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Unfortunately, the existing commercial solutions do not offer this flexibility, but have 

only the possibility to read out a single region of interest. 

 

The above-mentioned reasons convinced me that the design of a proprietary 

hardware solution, was needed to solve these limitations and to reduce costs. Figure 3.2 

shows the main components of a push broom hyperspectral system, that is spectrograph 

or prism, sensor and illumination, and my work considered in particular the camera and 

the illumination unit. These components to design need to cover the wavelength range 

in visible, infrared and SWIR, thus both the sensor and the illumination components 

need to be selected accordingly. 

 

 
Figure 3.2. Elements of a hyperspectral push broom system, with the main components: camera, spectrograph, 

illumination. 

 

3.2 Development of the camera  

 

The first step for the development of a custom hyperspectral system consisted in a 

survey of existing camera. To cover the visible and near infrared range (400-1000 nm) 

was easy, both because there exist an immense number of available cameras and sensors. 

In addition Microtec had already developed some cameras based both on commercial 

but also on a proprietary developed CMOS sensor. The selection was driver by the need 

of having a low noise and high sensitive sensor; therefore the proprietary custom sensor, 

designed to reach a very high frame rate but with some compromise on noise was 

discarded and one sensor from manufacturer Sony, was preferred. 
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 The selection of a sensor in the SWIR range (950-1700 nm) was harder. I did an 

extensive research on existing camera, but at the time of this survey in 2018, the number 

of available models was low and cost were still quite high, far beyond the 10K€. In 

addition to the camera survey I did also a survey of different sensor manufacturers. The 

list of manufacturers of these sensors is also limited, since the process of producing 

hybrid InGaAs sensor array is not as widespread as for silicon based sensor. The survey 

on InGaAs sensors was based on extensive internet research, contact with suppliers and 

visit of some trade shows. The most promising manufacturer were Chunghwa (Taiwan, 

with a distributor in Germany), Hamamatsu (Japan, with a distributor in Italy) and 

Sofradir/Linred (France).  

 

The initial list of possible sensors was: 

Name Resolution 

(pixel) 

Frame rate 

(fps) 

Note 

Chunghwa 320x256 330 Cooled and uncooled 

Hamamatsu 128x128 280 Low resolution but lower 

cost 

Hamamatsu 320x256 225  

Sofradir/Lynred 640x512 320 Uncooled 

 

The chosen sensor was from Sofradir (the company rebranded itself as Lynred in 

2020), since it was a good compromise between resolution, frame rate, low noise and 

the possibility to use it without cooling. Together with the hardware team at Microtec, 

we designed the electronic board, we wrote the firmware to control the sensor and the 

software drivers to communicate from a computer with Windows operating system. 

Figure 3.3 shows two pictures of the electronic boards.  

 

  
Figure 3.3. Picture of the electronic board, first and second prototype. 
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A particular care was put in the design of the firmware. A very important feature 

was the possibility to freely select a lower number of rows. This is especially useful 

since in a push broom system, the camera acquires frames where the spatial dimension 

is mapped on the camera horizontal axis and the spectral dimension is mapped on the 

vertical axis. For some application it is not necessary to use the full spectral range, but 

the relevant information could be represented in only a subset of important wavelengths. 

In addition, the sensor frame rate depends on the number of acquired rows, by reading 

a subset of the pixel it is in general possible to increase the frame rate. Therefore, a very 

useful feature is the possibility of reading a subset of not consecutive rows, with a 

corresponding increase in the framerate. Figure 3.4 depicts this concept; the red box 

shows the pixels that are read from the sensor matrix; on the left side the region of 

interest is a compact area, a feature which is common to many sensors; on the right the 

region of interest is made of different non-contiguous rows, and this feature is not 

generally available.  

This possibility, while present in the Vis-NIR sensor (one can program a certain 

number of rectangular regions to access), is not present in the SWIR sensor (one can 

only access a single compact region). To overcome this, a special firmware to control 

the sensor was developed by my colleagues, which uses the trick of aborting the readout 

of the rows to skip, thus allowing to save the time to access the unnecessary pixels. 

 

 
Figure 3.4. Partial sensor readout. Left: compact region of interest. Right: noncontiguous region of interest. 

 

The SWIR camera uses an uncooled sensor, but needs a relative stabilized 

temperature in order to work well. To obtain this it, an enclosure with a Peltier element 

was designed. The Peltier element has the function to keep the sensor and electronic 

temperature of the sensor and the electronic stable, achieving a stability of +/-0.05°C 

independently from the outside temperature (Figure 3.5). The downside of this is that 

the final camera body is relative large and the long time required to reach a stable 

working point. 
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Figure 3.5. Plot showing the temperature stability obtained with the Peltier element. 

Finally the lens for the SWIR hyperspectral system is optimized for working in the 

SWIR range, thus it is different from conventional lenses for the optical materials and 

coatings.  

 

In parallel with the design of the two camera modules, I started the selection of the 

spectrograph, which is the optical component that acts as prism to split the wavelengths 

in order to build a push broom system. The first selection ended with a short list of 

possible suppliers, namely Specim (Finland) and Innospec (Germany). The two 

companies supply optics for different wavelengths ranges. I decided to use the prism in 

the Vis-Nir range from Specim and for the SWIR range from Innospec. 

 

Figure 3.6 shows the CAD drawing of the final housing; from left to right: opening 

for the lens, spectrograph (in yellow), the controller for the Peltier unit (in front of the 

spectrograph), the sensor housing (orange), electronic housing (gray) and Peltier unit 

(below the orange housing).  

 
Figure 3.6. Technical drawing of the SWIR hyperspectral system, comprehensive of prism and Peltier cooling part. 

 

The outcome of this development were two cameras, depicted in Figure 3.7, with all 

the characteristics needed for an industrial use. Table 3.1 summarizes the main technical 

specifications. 
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 Vis-NIR SWIR 

Wavelength range (nm) 400-1000  950-1700 

Resolution (pixel) 2048x1536 640x512 

Subsampling yes 

Binning yes 

Power supply 24V 

Size (mm)   

Interface 1 Gbit Ethernet 

Synchronization over Ethernet, jitter ~10 usec 

Table 3.1. Technical specification of the two hyperspectral sensors. 

 

 

Figure 3.7. The two hyperspectral system, both comprehensive of camera, prism and lens: Vis-NIR (left) and SWIR 

(right). 

 

3.3 Development of the illumination  

The illumination unit in the initial prototype used halogen lamps, in order to be 

cheap, easy to build, have a relative white and flat spectrum and a very high flux. 

However, they also pose many constraints: the amount of produced heat is very high 

and in some environments (for example in sawmills where dry wood is processed and 

inflammable fine sawdust is present) there is the concrete risk of starting a fire; their 

average life time is not very long, in the range of 2000-4000 hours, therefore their use 

in industrial 24/7 environment is not ideal; their illumination spectrum is very wide, also 

beyond the useful used spectral range, and this makes more difficult to overlap multiple 

measurements in the same area; in addition it is difficult to use band-pass optical filter 
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to reduce the spectrum width (due to heat) or to pulse the illumination in order to use 

time-multiplexing (halogen lamps cannot be pulsed at high frequencies). 

Because of these points I started to look for alternatives and LEDs were considered. 

LEDs (light emitting diodes) are evolving at a very fast pace in terms of emitted light 

flux and emitted spectrum (colour), and are replacing other light sources (halogen, 

fluorescent bulbs) in many fields. 

In order to be used in a push broom hyperspectral configuration, the lamp should 

illuminate a long and narrow stripe, corresponding to the line scanned by the camera, 

and not a circular spot or a diffuse illumination.  

I did an extensive research on producers of complete lamps, of LEDs and also chips 

to understand the current state of the art. 

Since in Microtec we already use custom designed LED lamps in the visible and 

NIR range, I specifically searched for complete lamp solution in the SWIR range. The 

best solution we found was the solution from Metaphase, a company based in the US, 

which offered a solution in the SWIR range.  

Regarding the single LEDs (not a complete assembled lamp), the following table 

shows the result of the survey, where the best options of discrete LEDs for the three 

wavelength ranges (visible, NIR and SWIR) are listed. 

 

Company Wavelength 

Cree Vis (400-650) 

Luxeon Vis (400-650) 

Nichia Vis (400-650) 

Osram NIR (700-1000) 

Ledengin NIR (700-1000) 

Ushio SWIR (950-1700) 

Dowa/Epigap SWIR (950-1700) 

Table 3.2. List of LED suppliers, sorted by the emitted wavelengths. 

Each LED has normally a band emission not very large, normally in the range of 50-

100 nm. Therefore, in order to cover a large spectral band, it is necessary to combine 

multiple different LEDs, to sum each different spectrum to obtain a relatively flat wide 

spectrum. This is different in the visible wavelength range (400-700 nm), where a lot of 

work has been done in order to have a single illumination source able to cover the 

relatively large spectrum. Unfortunately, a similar solution is not yet available in the 

NIR and SWIR range; to my knowledge only a solution currently exists, from company 

Osram, of a broadband NIR LED, but the efficiency is still too low. 
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Figure 3.8 shows the typical spectrum in the visible range obtained by a single LED, 

the most common spectral emission wavelengths in the NIR and SWIR ranges. 

 
  

Figure 3.8. Typical emission spectrum of LED in the VIS, NIR and SWIR ranges. 

In addition, in order to illuminate a long and narrow stripe, it is necessary to mount 

many equal LEDs in a row, or to use a particular optical element with an elliptical beam 

output. In some case it possible to have the optic already assembled in the LED package; 

with this, instead of having the normal radiation pattern with a large angle (typically of 

about 120°), it is possible to concentrate the emitted light in an angle of 10-20°. Figure 

3.9 shows an example of package LED without optic and with optic, and the 

corresponding radiant emission plot. 

 

 
Figure 3.9. Picture of a led without and with primary lens (top), and the corresponding emission pattern. 

We designed a set of small PCB (printed circuit boards), in order to assemble 

multiple LEDs in a small area, and to replicate this on a long stripe. Figure 3.10 shows 

one example of this design; on the left an initial prototype is shown, the board can mount 

six different packaged LEDs, and the special design of the lateral connectors allows to 

assemble on a line multiple boards; on the right the final lamp is visible; note that there 

are two rows of these boards in order to increase the total light flux, and that these are 

alternated, in order to reduce the intervals between bright spots. 
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Figure 3.10. Picture of an early LED board and the finalized version mounted in a double stripes configuration. 

This solution, while simple and effective, has the drawback that every emitting 

source with different colour is slightly shifted in space, thus the total emitting area is not 

punctual but has a surface of a few square centimetres (for example the above shown 

board has an emitting area of 20x13 mm). The drawback of this arrangement is that 

different points in space are illuminated by light with different colour coming from 

slightly different directions, and given that the illuminated material (in our case wood 

and fruit samples) are not perfect diffusive materials, it is more difficult to perform the 

calibration of the light source. 

There are two solutions to this issue. The first one is to use a diffuser in front of each 

LEDs and a secondary lens to concentrate the light on a narrow stripe; this solution is 

used for example in lamps produced by the company Metaphase. The principle (Figure 

3.11) is to have a row of emitting LEDs with a primary lens molded on them, followed 

by a first cylindrical lens to obtain parallel rays on one axis, by a diffuser used to spread 

and mix all the rays, and finally by a second cylindrical lens to exit again with parallel 

rays on one axis; the cylindrical lenses are needed in order to concentrate light on an 

elongated stripe. 

 

 
Figure 3.11. Basic principle of mixing light. 

The second solution is to assembly multiple single chip in a single package; in this 

way the emitting area goes from a few centimetres to 1 or 2 square millimetres. For 

example Figure 3.12 shows a solution offered by the company Epigap that permits to 

combine 5 or 7 chips in a single package; the total package size is 3x3 millimetre, while 

the internal emitting area is about 1 square millimetre.  
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Figure 3.12. Multi wavelength chips assembled in a single package. 

 

I’ve been in contact with the company Dowa Electronics Materials based in Japan, 

that develop and produce the wafers and the chip, in order to follow their developments, 

in particular concerning the number of different supported wavelengths and the emitted 

light flux, and with the linked company Epigap based in Germany that uses these chips 

and perform the assembly in a package, with the options of mounting a primary lens to 

concentrate the light and to assembly multiple chips in the same package. 

Contacts are still ongoing in order to prepare a prototype of a lamp consisting of a 

continuous row of multi-chip led. 
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4 Software and Algorithms 

 

This chapter explains the complete workflow of the hyperspectral application that 

have been developed, in particular from the software point of view2. 

 

In general terms, the workflow is divided in the steps shown in Table 4.1. The 

workflow is shown for the creation of a model and for its deployment at runtime.  

 

Off-line (modelling) 

 

 Data acquisition 

 Pre-processing  

(dead pixel, smile, binning) 

 Normalization 

 

 Dataset creation  

(hdf5, hs cube, wavelength map, 

metadata) 

 Labeling (definition of roi)  

 Sampling of spectrum  

 Modeling 

 

On-line (runtime) 

 

 Data acquisition 

 Pre-processing  

(dead pixel, smile, binning) 

 Normalization 

 

 Aggregation of spectrum  

(in case of value) 

 Model inference 

(spectrum -> class/value) 

 Post processing  

(spatial filtering) 

 

Table 4.1. Workflow for modelling and runtime. 

 

4.1.1 Data acquisition 

This is the first step of the pipeline, that is to receive data from the sensor itself. 

Since we are using a push broom configuration, one sample corresponds to a two-

dimensional image.  

The two hyperspectral systems developed at Microtec use 1Gigabit Ethernet as 

interface. They implement a proprietary communication protocol, common to all 

sensors used in the company, that permits the integration of multiple sensors, the exact 

synchronization among multiple cameras and with digital input information (used to 

know the exact position of the objects under measurement), which is based on a high-

                                                        
2 This part of work was done in cooperation with other people. I did the overall design of the workflow 

process and wrote the code for the data acquisition and analysis; Simone Faccini and Matteo Caffini 

developed the software pipeline as well. 
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performance driver to avoid the overhead given by the operating system in case of high 

bandwidth.  

A minimum set of configuration is necessary, the relevant parameters for these 

applications are integration time, analogue/digital gain, frequency at which frames are 

acquired, the selection of a region of interest or a pattern of subsampling/binning.  

A unique software was written, to control and receive data from both type of sensors 

that was used during the project to setup the sensors, collect the stream of images to 

build the hypercube, apply the developed model and eventually to save the data to disk. 

4.1.2 Pre-processing 

 

The typical operations of preprocessing are dead pixel correction, smile correction 

and binning. 

 

While nowadays the quality of processes used to produce standard sensors permit to 

practically completely avoid defects at pixel level in the case of silicon-based sensor, 

dead pixel are a common problem for InGaAs sensors used for the SWIR application.  

 
Figure 4.1. Block diagram of a hybrid CMOS- InGaAs assembly. 

The production of these sensors requires a so called hybrid process, where quality 

and quantity of processed wafers are lower compared to standard processes. This causes 

that a few imperfections are tolerated, having as result that some pixels can be defective. 

For example in the chosen sensor, up to 0.1% of pixels (up to 300 pixels in the whole 

matrix) can have a responsivity that deviates more than 30% from the average. This high 

probability of bad pixels requires a treatment. The first step is to characterize each sensor 

and build a map of bad pixels; this is done by analysing the dark and white images (the 

same used later for the image normalization). The procedure of correcting these bad 

pixels is simple. At runtime, the value of these pixels is computed by the non-bad pixels 

in a neighbourhood of 3x3 or 5x5 pixels.  
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In a push broom setup, each image present one spatial axis and the spectral axis 

projected on the x-y plane. Ideally the two axes are perfectly orthogonal and linear, for 

example the spatial axis is projected on the x axis and the spectral axis on the y axis. 

When this is the case, the mapping from image to wavelength is a simple linear function 

on the pixel y coordinate. Smile is a particular kind of image distortion, where the peak 

position of a known wavelength is not a horizontal line but a curved one. 

 

 
 

Figure 4.2. Wavelength calibration with a neon light source.  

 

Smile correction is taken in account during the wavelength calibration, where a 

fluorescent light emitting a peculiar pattern of emission peaks is used, and a second 

order function is used.  

 

Binning is used to reduce the resolution of the image sensor matrix and to reduce the 

pixel temporal noise (increasing the SNR). Taking as example the VisNIR system, the 

selected sensor has a resolution of 2048x1536 pixels, meaning that the spectrum 

contains 1536 samples; often this spectral resolution is not needed, since infrared 

spectroscopy deals with low-bandwidth spectra due the overtone smoothing effect.  

4.1.3 Normalization 

 

This step uses the two reference images of dark and white, to normalize the image 

values between 0 and 1. We have checked that the used sensors have a linear response, 

thus the used formula is shown in Equation 1, where Iraw is the raw image coming from 

the camera, Idark is the image acquired in dark conditions and Isource is the image of a 

standard flat white diffusive target.  

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝜆) =  −
𝐼𝑑𝑎𝑟𝑘𝑟𝑎𝑤(𝑥, 𝜆) − 𝐼𝑑𝑎𝑟𝑘(𝑥, 𝜆)

𝐼𝑠𝑜𝑢𝑟𝑐𝑒(𝑥, 𝜆) − 𝐼𝑑𝑎𝑟𝑘(𝑥, 𝜆
 

( 1 ) 
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The two references images Idark and Isource are obtained by averaging more images, 

to reduce effects due to the sensor temporal noise; we typically use 100 images. It is a 

good practice to allow some time for the sensor electronic and illumination source to 

reach a stable temperature. In laboratory conditions, or during the acquisition of data 

used in our experiments, dark and source references were taken at the beginning and 

end of the data collection. During operational industrial conditions, references are taken 

at the start of a shift and stored in files.  

4.1.4 Dataset creation 

 

We have chosen HDF5 as file format to store the hypercube data and additional 

metadata. This structured file format has many advantages: it handles in an efficient way 

very large files; it supports the main data types (integer with 8, 16, 32 bits, floating point 

numbers) as multidimensional array, which fits well with two-dimensional images and 

three-dimensional hypercubes; it has a simple and efficient C API, and it is well 

supported by environment like Python or Matlab; it implements a transparent lossless 

compression. 

In our workflow, each file corresponds to a single sample, and it contains: 

 thumbnail grayscale or color image of the sample; 

 header file with information on the sensor (type of camera, resolution, 

parameters used during the acquisition, …); 

 header file with information on the sample; 

 wavelength calibration; 

 hypercube data after normalization; 

 [optional] hypercube as sensor raw signal 

 [optional] dark and white image as averaged sensor raw signal 

Figure 4.3 shows an example of meta-information stored for each sample, encoded 

as JSON string. 
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{ 

   "Device":{ 

      "Manufacturer":[ 

         "Microtec-Sony", 

         "Specim" 

      ], 

      "Type":"VISNIR 400-1000", 

      "SensorRows":1536, 

      "SensorColumns":2048, 

      "Bits":8, 

      [...] 

   }, 

   "Lens":{ 

      "Manufacturer":"Fujinon", 

      "FocalLength":8, 

      "Aperture":1.6 

   }, 

   "Target":{ 

      "Distance":550, 

      "Angle":0 

   }, 

   "Light":{ 

      "Type":[ 

         "Goldene white", 

         "Ushio 980" 

      ], 

      "Specs":[ 

         "2 x 2 x 8 Stripe Flickering", 

         "2 x 2 x 8 (2 led) Stripe" 

      ], 

      "Distance":750, 

      "Angle":30 

   }, 

   "Algo":{ 

      "DeadPixelCorrection":true, 

      "DarkSubtraction":true, 

      "WhiteCorrection":true, 

      "SmileCorrection":false, 

      "XMirroring":false, 

      "Thumbnail":"rgb" 

   } 

} 

{ 

   "Notes":[ 

      "Microtec-Sony Specim", 

      "halo" 

   ], 

   "Sample":{ 

      "Type":"Wood", 

      "Variety":"Eucalyptus", 

      "Origin":[ 

         "Urufor", 

         "Uruguay" 

      ], 

      "Supplier":"Oliver Kier", 

      "Pretreatment":"None", 

      "Condition":[ 

         "Dry", 

         "Raw" 

      ], 

      "Description":[ 

         "Heartwood", 

         "Sapwood" 

      ] 

   }, 

   "System":{ 

      "Machine":"GLD600", 

      "Location":"Brixen" 

   }, 

   "FileVersion":"0.3", 

   "Software":{ 

      "Name":"Python", 

      "Version":[ 

         "3.7.6 (tags/v3.7.6:43364a7ae0", 

         "Dec 19 2019", 

      ] 

   }, 

   "DateCreated":"2020-03-16T11:47:03.515516", 

   "DateModified":"2020-03-17T10:37:21.375699", 

   "UUID":"2020-03-17T10:37:21.375699@GLD600" 

} 

Figure 4.3. Example of header containing meta-information. 

 

For every data file, it is possible to have one or more file containing labeling 

information. The type of information is related to the result of the model, that is to make 

a pixel-wise classification in classes or values (like the segmentation of wood boards in 

heartwood or sapwood, or the segmentation of fruits in different ranges of humidity), or 

to make an estimation of some global parameter (like the estimation of the dry matter 

or maturity level in fruits). 

In the first case, the required information is contained in JSON files that contain 

regions in the spatial coordinate of the hypercube with the corresponding class or value.  

In the second case, each sample corresponds to one of few numerical values, and is 

stored in tables as couple { filename, value(s) }. 
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Figure 4.4. Screenshot of labeling software. 

 

4.1.5 Sampling of spectrum 

Working with hyperspectral data has the advantage of having many spectra, due to 

the fact that every pixel is in fact a spectrum. In facts, millions of spectra are available 

for every sample. 

For practical reasons, since the spectral information is abundant, it is possible to 

subsample the spectra without performance degradation in the models with the 

advantage to reduce the computation time of the PLS algorithm. The following 

strategies were normally used: 

 Fix % of spectra from the whole dataset; 

 Fix number or % of spectra from every single labelled region;  

 Fix number or % of spectra from every single sample, possibly containing 

more labelled regions; 

The second strategy was normally used, since it permits to keep a more balanced 

distribution of the different classes. 

4.1.6 Modelling 
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This step involves the creation of a model that convert one (or possibly more) input 

spectrum into a value (regression) or a class (classification). The chosen method is 

partial least squares (PLS). Wold et al. [14] gives a very useful review of this technique. 

As mentioned in section 2.6, PLS modelling works by attempting to maximize the 

covariance in orthogonal space between x variables and y values, building a latent space 

with a lower dimensionality. From a practical point of view, having the set of measured 

spectra X, a (N*K) matrix of N observations of K variables (the predictor variables), 

and the set of target values Y, a (N*M) matrix of N observations of M target values (the 

response variables), the PLS method finds a new set of A (A<K) variables, the latent 

variables, to obtain the best approximation of Y; in the above notation, the N 

observations correspond to the two spatial axes in the hypercube, while the K variable 

corresponds to the spectral axis in the hypercube, that is the number of wavelengths. 

The important output of the method is the PLS regression coefficients B, a (K+1*M) 

matrix which is actually the trained model, that is used to compute an estimation of the 

target variables from the observations during the inference.  

 

𝑌′ = [1 | 𝑋] ∗ 𝐵 + 𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ( 2 ) 

 

An important assumption in model development is the number of PLS components 

selected to build the model; by increasing this number, at some point, the model will 

stop from describing the main features in the data and will start to try to describe the 

noise, causing over-fitting in the model. 

This can be achieved using cross-validation when building the model. Common 

methods for internal cross validation are the leave one out (LOO) method and the k-fold 

cross validation (CV).  

In k-fold cross validation the data are divided into k equally sized segments, 

commonly referred to as folds. Subsequently k iterations of training and validation are 

performed so that for each iteration, one fold of data is removed for validation while the 

remaining k-1 folds are used for training the model. The numbers of components that 

give the lowest error in the validation are considered optimal for the model. 

 

After a model has been optimized, its performances are typically evaluated 

considering three parameters: coefficient of determination for cross validation (R2cv), 

root mean square error of cross validation (RMSECV) and residual predictive deviation 

(RPD). 
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𝑅2
𝑐𝑣 = 1 −
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( 3 ) 
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( 4 ) 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸𝐶𝑉
 

( 5 ) 

 

Better models have higher R2, because it explains the accuracy of model predictive 

capacity in cross validation, and lower RMSECV, because the values estimated by the 

model are on average very close to the measured values. RPD value indicates very good 

models (RPD>2), fair models (1.4 < RPD < 2) and non reliable models (RPD < 1.4). 

4.1.7 Model inference 

This step involves the inference of the model, in our case using the PLS method it 

simply consists in a simple matrix multiplication, see Equation ( 2 ). 

The computation requires (N*K+1*M) multiplications. Taking the experiment 

reported in chapter 5.1 on heartwood/sapwood classification as a concrete example, the 

VIsNIR hyperspectral system uses a sensor configured to a resolution of 512x320 pixel 

and can run at 500 Hz. In a push broom hyperspectral configuration, this corresponds to 

N = 512*500 = 256.000 spectra per second, each spectrum containing M=320 samples, 

thus the amount of required multiplications for a PLS model to classify the two target 

classes is approximately 165 million of multiplications per second, a computational load 

that can be easily achieved by a modern CPU. Table 3.1 summarizes the computation 

for the VisNIR and SWIR hyperspectral system, in the typical configuration. 

Note that the number of operations per second remains approximately constant when 

the camera framerate is increased by using the partial readout described in section 3.2 

using a compact or a noncontiguous region of interest. 
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Description Unit VisNIR SWIR 

Resolution X (spatial axis 1) Pixel 512 640 

Resolution Y (spectral axis) Pixel 320 512 

Frame rate (spatial axis 2) Hz 500 350 

N (predictors) #/s 256.000 224.000 

K (Wavelengths) # 320 512 

M (target variables) # 2 2 

Multiplications *1e6 / s 164 230 

Table 4.2. Number of multiplications per second for PLS inference. 

4.1.8 Aggregation of spectrum and post-processing 

 

This step concerns some optional processing that can be applied to the single spectra 

before they are used for the inference of the model, or to the result of the inference. 

Aggregation of spectra is relevant in the case of the estimation of a global variable, 

where a pixel-wise classification is not required; examples of this case will be presented 

in sections 5.2 and 5.3, where global quantities like dry matter or sugar content will be 

estimated in fruits. Instead of computing the simple average of multiple spectra (like a 

spectrometer would do), a method to exclude bad-spectra has been developed; bad-

spectra are for example spectra too dark or saturated, due to the fact that the fruit surface 

is not smooth but can be wrinkled and can present local shadows or point of reflections. 

By eliminating these spectra before averaging, it is possible to obtain a better model 

correlation.  

 

Post-processing is relevant in the case of pixel-wise classification, where the 

spectrum of each spatial pixel is used to compute a class or value. In some case, a 

standard 2D filter as the average or median is used to regularize the results and remove 

isolated outliers. It is also possible to get this result by applying the same filtering before 

the inference step, and to regularize by averaging the spectra. 
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5 Applications 

 

This chapter reports different applications of the developed hyperspectral imaging 

technology3. The first application is an application of segmentation of different regions 

on wood boards. Then, other two applications on fruits for the estimation of internal 

quality parameters will be presented. Finally, other uses cases that were explored, using 

the hyperspectral technology but also other techniques, will be briefly presented. 

 

5.1 Detection of heartwood / sapwood on Eucalyptus boards 

5.1.1 Introduction 

Wood is a heterogeneous material formed by a set of cells with specific properties 

to perform the main functions of water conduction, storage of biochemicals and 

mechanical support of the plant body.  

 

Wood of most trees can be divided into two distinct regions in terms of their 

physiological activity: sapwood and heartwood. Sapwood, also called alburnum, is the 

outer, living layer of trees, necessary for the transport of water and minerals between 

the roots and the leaves. Heartwood, also called duramen, is the dead, central wood of 

trees, mechanically strong and resistant to decay. These regions are identified in many 

species, although their occurrence, properties and color can vary [51]. 

 

                                                        
3 This part of work was done in cooperation with other people. I was in charge for the design of all 

the tests, the evaluation methods and procedures. Simone Faccini and Matteo Caffini worked on the data 

acquisitions, labelling and evaluations of the data. Section 5.3 was part of a master thesis of Ilario Chini 

where I was coadvisor. 
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Figure 5.1. A section of a tree, showing the heartwood and sapwood. 

 

There are many differences between the heartwood and sapwood, which may be 

relevant depending on the use of wood. Heartwood contains more extractives than the 

sapwood [52] (Miranda2006), higher lignin content [53] (Lachenbruch2011), and 

generally, less cellulose and holocellulose [54] [55]. The heartwood has a lower 

moisture content due to reduced physiological activity; the heartwood is less permeable 

and has more compact tissue than the sapwood [56](Burger and Richter 1991). 

Wood density is affected due to the extractive contents of heartwood [57] [58] [59] 

[60], however even its strength is correlated with the density, sapwood does not differ 

structurally from heartwood [61]. The heartwood usually has a higher natural durability 

due to the absence of nutritious materials (carbohydrates, mainly in the form of starch), 

and especially to the presence of extractives [62] [63] [64]. 

 

These anatomical and functional differences involve different behaviour of 

heartwood and sapwood from both physical and chemical point of view. Wilkes [65] 

reports that while the sapwood is used for the production of pulp for paper (low content 

of extractives), heartwood is preferred in the furniture industry, where high requirements 

in finishing are necessary, due to its characteristics of greater natural resistance. 

 

The differentiation of these regions is possible in some species by direct visual 

analysis of the wood due to pronounced differences in color between sapwood and 

heartwood caused by the accumulation of extractives. However, in certain species there 

are little or almost no visually detected differences between heartwood and sapwood 

colors. In such cases, identification requires the analysis of differences in the chemical 

level (different pH between the sapwood and heartwood [51] [66] [67] [68] [69] or the 

observation of anatomical features [70]. 
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5.1.2 Material and methods 

This study explores the classification of heartwood and sapwood on hardwood rough 

boards, cut from Eucalyptus trees grown in Uruguay. 

 

A first explorative test considered a set of 13 small samples, with size of 40 cm in 

length, 3.5 cm in thickness and 10 cm in width. The main faces were analysed and 

divided in the two classes, heartwood and sapwood, using markers to facilitate the 

labelling phase in the acquired images. Figure 5.2 left shows a few examples of these 

boards, with the visible white markers. Looking at the picture, it is visible that in this 

specie of hardwood the colour information is not enough to provide a clear hint of the 

boundaries between the central heartwood from the lateral sapwood, since the wood 

colour does not have an evident difference and because of the presence of strongly 

coloured stains. 

The measure was performed at the Microtec laboratory, using the two hyperspectral 

imaging systems in the SWIR (900-1700 nm) and in the VisNIR (400-1000 nm) 

wavelength range, in reflectance mode. The illumination used in this test consisted in 

two rows of halogen lamps, in order to have a relative white spectrum, perpendicular to 

the conveyor system. 

The measured data were corrected with a dark and white reference and transformed 

in an absorbance spectrum; the images were then labelled, using polygons to describe 

the two classes of heartwood and sapwood; the spectra of the two classes were used to 

train a PLS classification modelling. The model was then applied on the full hypercube, 

giving the very satisfactory qualitative results reported in Figure 5.2 right.  

 

  

Figure 5.2. Example from the set. Left: picture of the rough boards, with the visible markers to guide the labeling. 

Right: qualitative results of the heartwood/sapwood classification using the SWIR wavelength range. 
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After the initial positive pre-study, a more consistent test was repeated. In this second 

test, a set of 27 Eucalyptus boards from Uruguay was considered. These boards were of 

bigger size, with an average length of 4 meters, thickness of 3.5 cm and width of about 

30 cm. The wood surface was not planed (rough) and often coloured stained stripes was 

present. 

 

Since the first study gave similar results for the two hyperspectral systems in the 

VisNIR and SWIR wavelength range, we decided to limit the second test to the 400-700 

nm wavelength range only and to use a LED illumination because it was the easiest and 

simplest configuration to be added into the existing scanner for wood boards from 

Microtec. The measure was performed in the Microtec laboratory, where each board 

was measured on both sides with the hyperspectral imaging system in the VisNIR range 

using LED illumination in the visible range only.  

 

  
Figure 5.3. Picture of the acquisition setup. 

 

With the help of an expert, 47 sides were labelled as densely as possible with 

polygons describing the two classes of interest, sapwood and heartwood. Where the 

transition between the two regions was not clear, a gap between the areas was left 

unmarked. Moreover, some regions like large knots were left unmarked. 
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Figure 5.4. Example of a labeled board. 

Figure 5.4 shows an example of a labelled board, where red is used for heartwood 

and green for sapwood. One can note the unmarked region around a big know, and the 

presence of vertical stains and dirt in general on the surface. 

 

To store the labels, we used a simple JSON file, containing the list of different 

classes (in this case: heartwood, sapwood and background), and the list of the labels, 

each containing the belonging class, the coordinates of points, the type of connectivity 

(sparse dots or closed polygon), and the name of the expert. Figure 5.5 shows a portion 

of the description corresponding to the same board in Figure 5.4. 
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{ 

  "tag": [ 

    { "name": "heartwood", 

      "description": "" 

    }, 

    { "name": "sapwood", 

      "description": "" 

    }, 

    {"name": "background", 

      "description": "" 

    } 

  ], 

  "roi": [ 

    { 

      "tag": "sapwood", 

      "x": [ 405, 356, 348, 350, 356, ... ], 

      "y": [ 238, 246, 523, 923, 1285, ... ], 

      ], 

      "connection": "poly", 

      "user": "mario rossi" 

    }, 

    { 

      "tag": "heartwood", 

      "x": [ ... ], 

      "y": [ ... ], 

      "connection": "poly", 

      "user": " mario rossi " 

    } 

  ] 

} 

Figure 5.5. Example of JSON label file. 

 

The total number of labelled spectra is approximately 20.4 million of spectra. The 

distribution of sapwood and heartwood is not equal, in particular there is a majority of 

heartwood (83%) compared to sapwood (17%). The majority of boards, about 60%, 

consists of heartwood only, a few (10%) are mainly sapwood, and the rest have a mix 

of both regions.  
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Figure 5.6. Example of heart/sapwood distribution on boards. 

 

Table 5.1 summarizes the statistics of the dataset. 

 

Number of wood faces 47 

Hypercube size 512x2500x320 

Size of dataset 20.6 GByte 

Spatial resolution 512x2500 pixel 

Spectral resolution 320 wavelengths 

Number or labels 170 

Number of labelled spectra 20.400.000  

(17% sapwood, 83% heartwood) 

Table 5.1. Statistics of data. 

 

5.1.3 Data analysis 

The spectra stored by the data acquisition software were converted in reflectance 

spectra by correcting them with a dark and white reference, which were taken at the 

beginning and end of the acquisition process. 

Figure 5.7 shows the average and standard deviation for the two classes to 

distinguish, sapwood and heartwood. The two ends of the spectrum, where the signal is 

very low, are put to zero, to avoid the injection of noise. 
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Figure 5.7. Spectra of all boards. 

The spectra were then extracted from the hypercubes using the labels, but only a 

fraction of the spectra were used for the model calibration. Even if some millions of 

spectra are available, it has been observed that a few thousands are enough to compute 

a model.  

A few different techniques were used to sample the spectra: uniform sampling of all 

spectra, sampling of a fix number of spectra for each board, sampling of a fix number 

of spectra for each labeled area, and sampling of a number of spectra for each label 

proportional to its area.  

Each technique results in very similar results, thus it was decided to extract 1000 

spectra randomly sampled from each labeled polygon, for a total of about of 120.000 

spectra. Each spectrum is associated with the class of the original label. 

 

The model was computed using the partial least squares discriminant analysis (PLS-

DA), commonly used for the task of classification. The number of latent variables in the 

PLS was optimized between 1 and 20 using k-fold cross validation with k=10 and 

accuracy as performance indicator.  
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Figure 5.8. Accuracy vs Number of PLS latent variables. 

At about LV=8 a plateau is reached, thus it was decided to use 10 latent variables. 

In addition it was observed that there is no overfitting, because the accuracy does not 

drop by increasing the number of variables in the PLS. This is probably due to the 

already very high number of spectra that are used for the model estimation. 

 

5.1.4 Results and discussion 

Table 5.2 shows the confusion matrix for the classification of heartwood/sapwood; 

the F1 score was F1=0.916. 

  predicted 

ac
tu

al
  Sapwood Heartwood 

Sapwood 91.97% 8.03% 

Heartwood 12.00% 88.00% 

Table 5.2. Confusion matrix of the classification of heartwood/sapwood. 

The model was applied to the entire set of spectra contained in the labeled regions 

(for training it was used only a subset of all spectra, as explained previously), obtaining 

the same performances. I tested a morphological filter to attenuate the local noise in the 

classification, both on the input spectra (a pre-processing step, where the spectra are 

averaged on a 3x3 or 5x5 pixels window before applying the PLS model), and on the 

output classes (a post-processing step, again on a 3x3 or 5x5 window), obtaining a 

marginal improvement.  

The model was finally qualitatively evaluated on the full hypercube, taking in 

account the whole boards, in order to evaluate the discriminative power of the sapwood 

and heartwood regions outside the labeled areas. 
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Figure 5.9 shows the results of three boards. Each example shows the pseudo colour 

image obtained from the full spectrum, the labelled regions, and the result of the pixel-

wise PLS classification. Here non pre/post processing was applied.  

 

 

 

 

 
Figure 5.9. Classification of the whole board. Pseudo color image (top), ground truth labels (middle), result of 

pixel-wise PLS-DA classification (bottom). 
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A direct comparison with the literature is hard because of the lack of studies on the 

same subject. The most similar studies have been made by Thumm and Colares. 

Thumm et al. [41] [42] [43] used a hyperspectral imaging system in the SWIR range 

(900-1700 nm) from Specim to scan discs of wood to visualize the distribution and 

variation of lignin, galactose and glucose in the samples, which are related to the 

chemical composition of wood. They also investigated shooks of radiate pines in order 

to detect resinous defects; their model was able to further well discriminate resin from 

other visually similar defects like sapstain, pith or kiln brown stain. All these studies 

used PLS as a mathematical tool to compute their models. 

Colares et al. [50] applied SWIR (1200nm to 2500nm) hyperspectral imaging for the 

determination of the distribution of holocellulose (cellulose + hemicellulose), lignin and 

extractives on samples of Mahogany of very small size (approximately 1 cm per side). 

However these reports do not report enough numerical values on the performances 

of the classification or segmentation tasks, thus a direct and precise comparison is not 

possible. 

 

5.1.5 Installation in an industrial sawmill  

Given the promising results, it was decided to install the hyperspectral equipment in 

a real industrial scenario. In particular Microtec installed a first scanner in Uruguay and 

six scanners in Germany, where two hyperspectral cameras and the illumination lamps 

based on LEDs were added to the existing sensor equipment, for the detection on the 

top and bottom surfaces of wood boards. All systems were used for the detection of 

sapwood and heartwood, on Eucalyptus wood (Uruguay) and Oak (Germany). Figure 

5.10 and Figure 5.11 show pictures of the two installations. 

 

  
Figure 5.10. Microtec scanner in Uruguay. 
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Figure 5.11. Two of Microtec scanners in Germany. 
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5.2 Estimation of Dry Matter in avocado fruits 

 

5.2.1 Introduction 

Avocado is a plant originally from southcentral Mexico; its fruit is botanically a 

large berry containing a single large seed [71]. 

 
Figure 5.12. Avocado 

Avocado is often called a superfood due to its nutritional density and health benefits. 

Avocados contain vitamins A, B, C, E, and K, plus 25 essential nutrients. The fruit 

unsaturated fats help the stability of heart and reduce cholesterol. The versatility of the 

good goes beyond the nutritious advantages, avocado is a great source of vitamin E 

which is ideal for skincare, for example. Hence, apart from the food industry, avocado 

is reaching the pharmaceutical and the cosmetic industry. 

 

During the last years, the consumption of avocados in the world has been 

continuously growing. The global avocado production is about 7 million tons (which is 

worth of approximately 9 billion US dollars). Latin American countries are at the top in 

the production and exportation of avocado; Mexico is the top world producer of avocado 

(approximately 2.3 million of tons in 2019), followed by Peru, Dominican Republic and 

Colombia). The main importers are the US and Europe with 45% and 39%, respectively. 

In the Mediterranean region, Israel is the biggest producer with its 100.000 tons in the 

2019, while Italy has a small production mainly in Sicily, Apulia and Calabria. 

 

Avocado is a climacteric fruit (like apples, bananas, tomatoes, and others), that is it 

matures on the tree but ripens after being harvested. In order to ripen properly, avocados 

must be mature. Commercial growers aim to harvest fruit at "harvest maturity", which 

allows the fruit to ripen off the tree. The best tasting fruit would be ripened on the tree, 
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as they would have the longest time to accumulate sugars and starch, but would have no 

allowance for transport and shelf life. Because of this, growers try to optimise the 

balance between on-tree ripening and transport/shelf-life, which means achieving 

physiological maturity, picking fruits when they are hard and keeping in coolers until 

they reach the final destination for commercialization. At room temperature avocados 

ripen in one or two weeks (depending on the cultivar and on the maturity level), or faster 

if they are stored in the presence of ethylene gas (artificially or close to other fruits like 

apples or bananas). Therefore, [72] [19] maturity is an important quality index for 

avocado, since it is important to harvest mature fruits, to ensure that they will ripen 

properly and have acceptable eating quality. 

 

Currently, commercial avocado maturity estimation is based on destructive 

assessment of the percentage dry matter (% dry matter or DM%) and sometimes percent 

oil, both of which are highly correlated with maturity [36] [73].  

Different guidelines for the determination of export quality (OECD) recommend a 

minimum maturity standard for its growers of 23% dry matter (greater than 10% oil 

content) for ‘Hass’ avocados, although consumer studies indicate a preference for at 

least 25% dry matter [74].  

 

A rapid and non-destructive system that can accurately and rapidly monitor internal 

quality attributes (in this case % dry matter) would allow the avocado industry to provide 

better, more consistent eating quality fruit to the consumer, and thus improve industry 

competitiveness and profitability. 

 

NIRS has been demonstrated to be an accurate, precise, rapid and non-invasive 

alternative to wet chemistry procedures for providing information about relative 

proportions of C-H, O-H and N-H bonds. Analysis of NIRS absorption spectra aids in 

the qualitative and quantitative determination of many constituents and properties of 

horticultural produce, including oil, water, protein, pH, acidity, firmness, and 

particularly soluble solids content or total soluble solids of fresh fruits [75] [76] [77]. 

Moreover, NIRS has been used to estimate % dry matter in various horticultural 

products [78] [79] [80] [81] including avocados [36] [19] [82]. 

 

It is known [83] that in avocado fruits, the dry matter content is not evenly distributed 

but presents relevant differences. The fruit, while having a general symmetric shape and 

an elongated main axis (peroid), is not symmetric in terms of stem position, which is 
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not on top of the fruit but shifted laterally. In parallel with this asymmetry, we have 

observed that the dry matter content on the stem face is in average higher than the 

opposite face. 

 
Figure 5.13.  Definition of faces. 

 

5.2.2 Material and methods 

In this study, two sets of 25 Hass avocado fruits (50 fruits in total) provided by a 

fruit importer are considered. Between the two sets approximately 4 weeks passed 

(26/10/18 and 22/11/18). Each fruit was marked with an identification number, and the 

four sides were labelled according to the convention depicted in Figure 5.13: side 1 is 

where the stem leans more towards the lower part of the fruit, with the other sides 2,3,4 

are east-to-west having the stem at the north pole. 

 

The non-destructive measure was performed at the Microtec laboratory, using the 

hyperspectral SWIR (950-1750 nm) imaging system in reflectance mode. The 

illumination used in this test consisted in several halogen lamps, in order to have a 

relative white spectrum (compared to a LED system) and high flux; however in order to 

evaluate the possible utilization of LEDs, the spectra of a LED illumination lamp were 

simulated by cropping the full halogen lamp spectrum. Each fruit was passed 4 times in 

the measure system, having each side on top.  Moreover 5 fruits were measured 5 more 

times on the same side, in order to have a measure of repeatability. 

 

Table 5.3 summarizes the statistics of the dataset. 

 



 68 

Number of fruit faces 200 

Hypercube size 320x256x350 

Size of dataset 11.6 GByte 

Spatial resolution 320x350 pixel 

Spectral resolution 256 wavelengths 

Table 5.3. Statistics of data. 

The destructive analysis was performed with the flesh peeling method, taken from 

the four sides on the equatorial region, with area of about 10 cm2, approximately 90° 

apart, and processed with the oven method at 103°.  

 

 
Figure 5.14. Picture of destructive analysis. 

 

The four different points of measurement around the equator were consistently 

labelled, and the corresponding dry matter DM% was individually evaluated. Figure 

5.15 depicts the relative distribution. The internal variability in each fruit is likely up to 

+/-2%. This is again an indication that by measuring only one side of the fruit and by 

not taking in account the internal variability, the final measure will have a big deviation 

from the average value. 
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Figure 5.15. Dry matter distribution. 

5.2.3 Data analysis 

The analysis of the measured data consists of a first step where each spectrum is 

corrected with dark and white references and transformed to a reflectance spectrum. The 

fruit where then located in the obtained reflectance image, and a rectangular or circular 

region corresponding to a surface of approximately 10 cm2 was selected (Figure 5.16). 

After the removal of saturated or very dark spectra (corresponding to specular 

reflections or under-illuminated areas), a single spectrum was obtained by averaging all 

valid spectra of the four sides of each fruit. These spectra were then used for the PLS 

regression modelling. 
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Figure 5.16. Segmentation of the fruit (green) and the region used for the evaluation (red). 

 

 
Figure 5.17. Distribution of spectra of one avocado fruit. 

 

The PLS models went under a randomization test in order to evaluate the prediction 

capabilities. The test requires the dataset to be repeatedly and randomly split in training 

and test sets. At each iteration the model is calibrated on the training set and the 

prediction performances are evaluated against the test set. The metrics used are the 

coefficient of determination R2 and the root mean square error of prediction RMSEP. 

Figure 5.18 depicts the output of the test, with the predictions from the different 

iterations collected and displayed together. 
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Figure 5.18. Top: results of the dry matter model, divided per batch. Bottom: same result with a unique model. 

 

5.2.4 Repeatability 

In order to assess the robustness and repeatability of the hyperspectral measure, 5 

fruits were randomly sampled out of the second set and measured an additional 5 times 

on the same side, adding small variations in the position to introduce a small degree of 

variability in the measurement process. These additional measurements were pre-

processed and computed using the PLS model on the second batch. The variability of 

the estimated dry matter values is reported in Table 5.4; the average deviation of 0.6 

DM% is low enough and allows the use of this technique for a stable measure.  

 

Fruit # 1 2 3 4 5 

Stdev (DM%) 0.7 0.6 0.7 0.2 0.7 

Table 5.4. Results of repeatability test. 
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5.2.5 Results and discussion 

The results obtained in this project performs in a similar way as other studies in the 

literature. Table 5.5 reports an overview of the comparison. 

It is interesting that the majority of the applications are based on spectroscopy, which 

cannot account for the inhomogeneity of dry matter on the fruit sides. Only recently ( 

[84], [85]) there have been publications using the hyperspectral technology; however, 

these study were limited to laboratory conditions, while this study covers the 

implementation in industrial conditions. For example [84] analysed 21 avocado fruits 

on 4 cardinal points around the equatorial zone, in a similar way of this study; they used 

the average of all spectra obtained by each scan, thus obtaining a single spectrum from 

each measure, while in this study only the valid spectra (i.e. eliminating the too dark or 

ill-illuminated points) from the hyperspectral images are used for the average, thus 

giving some advantage compared to a pure spectroscopy method. In addition this study 

proposes a novel approach to measure the fruits on a 360° equatorial band, in order to 

strongly reduce the errors due to the uneven DM% distribution. 

 

Method Wavelength (nm) R2 RMSECV Source 

Hyperspectral 950-1700 0.82 1.53 This study 

     

Spectroscopy 300-1140 0.88 1.80 [36] 

Spectroscopy 300-1100 0.79 1.14 [82] 

FT Spectroscopy 830-2500 0.76 

0.93 

1.53 

1.48 

[72] 

Spectroscopy 400-2500 0.84 2.38 [86] 

Hyperspectral 400-1000 0.96 1.35 [84] 

Hyperspectral 400-1000 0.90 2.60 [85] 

Table 5.5. Overview of the applications of hyperspectral imaging and spectroscopy to measure the dry matter 

content in avocado and comparison with the literature. 

 

5.2.6 SWIR LED simulation 

The present study uses halogen light as light source, because of its low cost, high 

flux and relatively white spectrum. However, halogen light has some drawbacks, like 

reduced lifetime, heat production, necessity of some time to reach stability. Therefore a 

simulation of LED light source was conducted. The complete spectra obtained with 

halogen light was weighted to functions having a shape similar to the spectra of real 
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commercial SWIR LEDs at different wavelengths, from 940 to 1650 nm. Various 

combinations of one, two or three wavelengths were used with a grid search, in order to 

find the best combination.  

 

The best combination was to use wavelengths at 1050, 1200 and 1300 nm, which 

resulted in the regression shown in Figure 5.19. The general performances and the error 

prediction are very similar to the halogen light, which means that a LED light source 

could be used instead of LEDs.  

 

  

Figure 5.19. Left: results of the dry matter model on batch 2 with halogen light. Right: with simulation of LED 

illumination. 

 

5.2.7 Real scenario implementation 

In order to implement a hyperspectral imaging system for the determination of the 

dry matter content in a real case scenario, it is necessary to take in account the uneven 

distribution of dry matter that requires to scan the fruits on the whole surface with the 

constraints given by the mechanization of the sorting lines. 

 

  

Figure 5.20. Picture of the transport line. 
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In sorting lines, the avocado fruits are moving in cups that move forward and have 

a mechanism that put the fruit in rotation; this is done by having a series of rolls pulled 

by a chain to obtain the forward motion and sliding over a second chain to obtain their 

rotation; by controlling the speed of the two chains it is possible to obtain the desired 

forward and rotation speeds. In practice these cups advance at about 1 meter per second 

or about 10 cups per second. In addition, the fruits make a complete rotation in about 

0.5 meters (depending of their diameter). 

In order to scan the whole surface, since the fruits are rotating, one could use a single 

shot hyperspectral system, or use multiple line scanning (push broom) systems, placed 

at a distance corresponding to a rotation of 90°; unfortunately, both methods are 

complex and very expensive. 

To overcome these limitations, we have devised a configuration that uses a single 

line scanning system and is able to cover an equatorial stripe over the entire avocado 

diameter. This approach is described in patent [87]. 

 

 

 

Figure 5.21. Left: lateral and top view of the patented arrangement. Right: the surface on a fruit covered with this 

arrangement. 

The arrangement is shown in Figure 5.21 left: the line observed by the push broom 

system is aligned almost parallel to the fruit’s movement; there is a small angle of about 

5-10°, so that the combination of the forward motion and rotation scan an envelope that 

corresponds to Figure 5.21 right. 

The coverage is not the whole surface, but still permits to cover the full 360° 

equatorial band, thus permitting to obtain an average measure, thus obtaining results 

that are comparable to the average of the four faces as in the laboratory setup. 
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5.2.8 Installation in an industrial sorting line 

Considering the results obtained in laboratory, the good comparison with results 

reported in the literature, and the advancement for an industrial implementation given 

by the acquisition speed and the coverage of the complete surface of the fruit, this 

configuration has been built and a prototype was mounted at a packing house in the 

northern part of Israel. Testing was started in order to evaluate the long-term stability of 

the model for the determination of dry matter. 

 

 
Figure 5.22. Picture of the prototype installed in Israel. 
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5.3 Estimation of soluble solids content (sugar) in Citrus 

 

5.3.1 Introduction 

Citruses are hesperidia produced by trees and shrubs belonging to the family 

Rutaceae. These fruits share a common structure composed of an exocarp called flavedo, 

a mesocarp called albedo made of a white spongy layer, and an endocarp divided into 

locules filled with juice vesicles [88]. 

Citruses are non-climacteric fruits; indeed, their ripening process stops after harvest, 

therefore they can only be picked and marketed when an adequate maturity has been 

reached [89]. In addition, their sugars and acids content is quite stable after harvest. The 

most important citruses for commercial relevance are oranges, mandarins, clementines, 

satsumas, tangerines, lemons and limes. 

Citrus fruits have a recognised role in providing nutritive and therapeutic value, well 

known for their content of vitamin C and other nutraceutical phytochemicals such as 

carotenoids, flavanones, limonoids, and vitamin-B, responsible for antiallergenic, 

anticarcinogenic and anti-viral properties. The consumption of citruses also provides 

pectin and fiber, known to decrease the risk of heart attack when consumed regularly 

[90]. 

Citruses are nowadays the most produced group of fruits in the world. The global 

production was about 150 million tons in 2018, harvested in more than 80 countries. 

Asia is the most important citrus producing continent, its production, coming mainly 

from China and India covers 50% of world production and have faced a strong increase 

in the recent decades. America follows, producing 29% of world oranges, while Africa 

produces the 13% and Europe the 7%. In Europe the most important producing country 

is Spain, in which about 7 million tons are harvested every year, while Italy is the second 

most important producing region [91]. Concerning Italy, 62000 farms cultivate more 

than 100 varieties of citrus fruits on more than 129000 hectares, producing yearly about 

2,5 million tons. Most of the Italian production comes from the south of the country, 

where citruses represent some of the most important agricultural products. As an 

example, Sicilian citrus fruit production in year 2018 was accounting for 630 million 

euro, corresponding to 13% of the whole regional agricultural production value [92]. 

 

The concept of quality is defined by ISO regulation 9000:2015 as the set of 

properties and traits of a product or a service linked to its capability to fulfil explicit or 

implicit needs. The quality concept is not univocal among entrepreneurs and final 
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consumers, but it assumes different meanings for different players of the supply chain, 

which apply different acceptability criteria for the same relevant parameters. For this 

reason, a correct quality definition must refer to a target group. Quality control process 

is based on the setting of quality standards, which are observed by quality inspectors to 

determine grading and marketability, which are essential parameters to set fruit price. 

In order to fulfil consumer quality requirements, food industry needs precise, effective 

and sustainable tools to define and evaluate customer-oriented product quality features 

[93]. The currently used quality parameters are many and distinguished according to 

different ways of classification. Quality evaluation methods involve the assessment of 

physical, chemical and physiological parameters. Physical parameters apply physic 

principles on fruits to measure responses. Measurements belonging to this group are for 

instance total soluble solids content (SSC), fruit firmness and fruit weight. Chemical 

parameters are quality attributes measured using chemical reactions involving fruit 

chemical compounds. Examples of chemical quality attributes are total titratable acidity 

(TA), ascorbic acid level and pH. In the end, physiological parameters like rate of 

respiration and ethylene evolution indicate physiological processes occurring inside the 

fruit. The assessment of quality attributes follows both subjective and objective 

methods. Subjective methods involve the response of human senses, while objective 

methods use instruments. A further classification distinguishes between destructive and 

non-destructive quality evaluation ways, depending on the fact that the fruit is damaged 

or remains intact during the analysis [88]. 

From the final consumer point of view, the quality of fruit can be assessed during 

purchase only considering external aspects, like size, colour, shape and absence of 

defects. Human minds link by means of experience, the appearance of a fruit to its 

flavour, which is a combination of taste and aroma and depends mainly upon internal 

chemical parameters. Citruses contain a set of biochemical compounds divided into 

primary and secondary metabolites, the most important are proteins, polyamines, 

amines, organic acids, carbohydrates, lipids, phenols, terpenoids, flavonoids, aromatic 

compounds, mineral elements, vitamins and hormones. All of them play a relevant role 

in the metabolism and physiology of citrus fruits, moreover many of these compounds 

are highly nutritive for human beings and are also responsible for fruit sensory 

properties. Respiration and photosynthesis are primary metabolic processes that produce 

and allocate into the fruit basic chemical compounds, which are partially stored and 

partially transformed into secondary metabolites. For example, carbohydrates, acids and 

amino acids are utilized to synthetize sugar derivatives, proteins, and volatiles [88]. 
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According to the literature, the most important parameters used to assess citrus 

quality are SSC, TA, soluble solids to acids ratio (SSC/TA), brix minus acids (BrimA) 

and texture [94] [95]. Important correlations can be found in the literature between SSC 

level of citrus fruits and maturity stage, as well as consumer acceptance of the product 

[96]. For this reason, SSC is considered the most important parameter to assess overall 

quality of oranges and marketing standards [97] [98]. The total soluble solids content is 

not only related to soluble sugars, but also to all the other molecules soluble in fruit 

juice. The contribution of soluble sugars account in oranges for the 75-85% of SSC 

value, this predominant fraction is a mixture composed primarily of the 

monosaccharides D-glucose, D-fructose and the disaccharide sucrose, and secondly of 

xylose, mannose and various heptuloses. The remaining 15-25% of the value is affected 

by acids, proteins, fructans, minerals, dissolved vitamins, pigments and phenolic 

compounds [94]. The most common and practice way to determine SSC is with 

refractometry. TA is a quality parameter corresponding to the content of organic acids 

into the fruit. In oranges, organic acids are dissolved in cell sap, either free or combined 

with glycosides, esters and salts. Citruses contain also high amounts of cations like 

magnesium, potassium and calcium, which combine with acids and form other salts. In 

oranges, the most important and abundant acid is citric acid, and accounts for the 80-

95% of overall acid content. The remaining 5-20% is mainly composed of Malic and 

Succinic acids. Titratable acidity of oranges and other citruses is expressed as 

percentage of anhydrous citric acid by weight or by volume. Its assessment is carried 

out by titration with NaOH 0,1 N till the equilibrium point is reached. Organic acids are 

weak acids, therefore, when a titration with a strong base is carried out, the equivalent 

point results slightly basic, due to the presence of salts [88]. SSC/TA ratio, the so-called 

maturity index, is another key parameter for citruses acceptability. It describes the 

blending of sugar and acids into the pulp, which is linked to fruit juiciness and ripeness 

degree, and is widely used as a maturity criterion for non-climacteric fruits [99] [100]. 

The higher is this ratio, the lower is the acid relative content of the fruit. Usually, when 

a fruit has a ratio higher than 19-20, it is not well accepted by consumers due to an 

excessive sweet and flat flavour. This ratio is highly informative only when presented 

together with TSS value, as the same ratio may result from different combinations of 

values [88].  

A precise quality assessment of citruses must consider their specific characteristic, 

in fact citrus fruits are anisotropic fruits, since their physical and chemical properties 

change according to the direction of measurement. For example, SSC is on average 
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higher in the distal apex of fruit and decreases going towards the proximal one, while 

the opposite happens for titratable acidity (TA) [101]. 

Rapid, precise, accurate and cost-effective technologies are needed by fruit industry 

to sort products in order to satisfy the minimum acceptance level of every consumer 

segment [102]. 

 

5.3.2 Material and methods 

In this study 120 oranges of variety Navel were considered. The fruits were bought 

in a local supermarket; their origin was from Italy; all fruits were without visible external 

defects and commercially mature. 

 
Figure 5.23. Picture of the oranges used in the test. 

The aim of the study was to analyse different methods to realize a machine for the 

real-time in-line non-destructive assessment of quality parameters of citrus fruits, in 

particular the soluble solids content (SSC) and total titratable acidity (TA).  

 

The methods evaluated in the study were: 

 Vis-NIR hyperspectral imaging in reflectance  

(wavelength range 400-1000 nm) 

 SWIR hyperspectral imaging in reflectance (950-1700 nm) 

 Vis-NIR spectroscopy in transmittance (400-1100 nm) 

 SWIR spectroscopy in reflectance (950-1700 nm) 

The motivation to use additional methods (spectroscopy in the Vis-NIR and SWIR 

range) was to test simpler methods in addition to hyperspectral. A spectroscopy device 

returns a mono-dimensional vector for each measure (compared to a two-dimensional 

image of a hyperspectral push broom device), thus the data amount is strongly reduced. 

On the other hand, this requires that the measure is optically aligned and collimated, and 
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does not permit more elaborated processing to eliminate not valid measures due to 

specular reflections, shadows or under-illuminated samples. 

 

One important note is that, while the quantities to measure are internal parameters 

(the SSC and TA of the internal pulp of oranges), three of the methods measures only 

the surface of the fruit; the only technique that directly measure the inner fruit pulp is 

the Vis-NIT transmittance spectroscopy.  

 

The non-destructive measurement took place at Microtec, where all fruits were 

measured with the four methods over two days (separated by one week). During the idle 

periods, the oranges were stored in a fridge at 6°C. 

 

  
Figure 5.24. Left: picture of the acquisition setup. Right: details of the cups used to transport the oranges. 

The measurement with the two hyperspectral imaging methods consisted in a 

dynamic acquisition of the light reflected by the fruits while moving on a conveyor. The 

light source was composed of two rows of halogen lamps working at 2950K with 

aluminium reflector, to preserve the infrared component of light; the two rows were 

perpendicular to the conveyor and tilted of approximately 45° toward the camera 

scanline. The two cameras used were developed at Microtec, and used a CMOS image 

sensor for the Vis-NIR system and an InGaAs (indium gallium arsenide) sensor in the 

SWIR system.  

The fruits were measured eight times, always having the equatorial side facing up, 

by manually rotating the fruit of 45° at every measure. No measures were taken at the 

poles region (calix and pedicel) because in real inline condition fruits rotate while 

moving forward and tend to align the axis between the poles on a horizontal direction, 

thus leaving the equatorial region on top, where the acquisition device is located. 
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The measurement with the spectroscopy methods consisted in a static measure, 

where the fruit where manually placed in front of the acquisition device. In the case of 

NIR spectroscopy, the light sources were located above the fruit, while the detector was 

below the fruit, and a set of collimators was used to collect only the transmitted light 

and remove any light diffused from the fruit surface or the environment. In the case of 

SWIR spectroscopy, the light sources and detector were on the same side and contained 

in a single box. For both setups, we acquired equatorial measurements as well as polar 

measure, on the calix and pedicel end. 

 

  

Figure 5.25. Picture of Vis-NIR spectroscopy in transmission (left) and SWIR spectroscopy in reflection (right). 

Table 5.6 summarises the conditions of the various methods. 

 

Measure Method Condition Equatorial Polar 

Hyperspectral Vis-NIR Reflectance Dynamic 8 0 

Hyperspectral SWIR  Reflectance Dynamic 8 0 

Spectroscopy Vis-NIR  Transmittance Static 8 4 

Spectroscopy SWIR  Reflectance Static 4 2 

Table 5.6. Summary of the various non-destructive measures, methods and conditions on oranges.  

The destructive analysis was made the day following the non destructive, at the 

laboratories of the University of Bolzano. Every fruit was cut in half in the equatorial 

region and squeezed with a citrus juicer. The juice was poured in a beaker and 

homogenized with a disposable plastic pipette. A small quantity of juice was analyzed 

with the pocket refractometer pal-3 Atago to assess the SSC. For each juice, two 

measurements were taken separately and averaged, to obtain a more accurate value. 

Then titratable acidity was measured on small samples of homogenized juice, following 
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the same procedure described by Ncama et al. [38], using the automatic titrator Titro 

Line 5000 SI Analytics. This procedure was repeated for each fruit, keeping all the 

instruments carefully cleaned with water and deionized water between each analysis. 

 

Total soluble solids content and acidity values measured with the destructive 

procedures are summarized in Table 5.7. 

 

Parameter Samples Repetitions Min Max Avg Stdev 

SSC (°Bx) 120 2 8.05 12.1 10.01 0.86 

TA 

(%c.a.) 

120 1 0.267 0.713 0.495 0.088 

Table 5.7. Summary of the various destructive analysis on oranges. 

 

5.3.3 Data analysis 

The two sets of hyperspectral acquisitions have as output a three dimensional 

hypercube. Every image was processed with dark signal subtraction and compensation 

with the white source signal normalization, to obtain a reflectance spectrum. Averaging 

over the wavelength axis, a two-dimensional image of the scan was obtained, where the 

fruit position was located and a region of interest was selected around the central part 

of the fruit. After removing all spectra that were saturated or under-illuminated, the 

average was computed, in order to obtain a single spectrum for each side. 

 

In the case of NIR spectroscopy the preprocessing was simply a dark signal 

correction, while no source reference normalization was applied (due to the transmission 

configuration and the lack of a reference transparent white body). 

 

In the case of SWIR spectroscopy, the used instrument outputs a calibrated 

reflectance spectrum, after dark correction and source normalization. 

 

After having obtained the set of spectra, other pre-processing techniques were 

applied: 

 Binning 

 Standard normal variate (SNV) 

 Spectral band reduction (mask) 

 Savitky-Golay filter (SG) 
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By trying the different preprocessing techniques, it was observed that band reduction 

was always beneficial, while binning and SNV were beneficial only in some cases. The 

use of Savitky-Golay filtering did not make any particular difference. 

 

These spectra were then correlated with the target variables of SSC and TA using 

the common partial least squares regression (PLSR) method. PLSR is a very common 

method, successfully used in spectral data treatment, as shown also by the results 

obtained in many similar studies [101] [103] [17] [38] [104]. 

The number of PLS components was selected in a range between 5 and 25 with k-

fold cross validation (k=5). 

The performance of the model was evaluated considering three parameters, the 

coefficient of determination for cross validation (R2cv), root mean square error of cross 

validation (RMSECV) and residual predictive deviation (RPD). 

 

5.3.4 Results and discussion 

The non-destructive prediction of SSC gave satisfactory results. Models built on 

distal measurements performed worse than those built on equatorial ones (confirming 

what is reported in [100]).  

 

Models built on average equatorial measurements performed systematically better, 

but results were coherent with those obtained using the individual measurements for the 

respective technique. This confirms the assumption that multiple measurements around 

the whole fruit are more informative than single spot acquisitions. For reflectance 

analysis, the RMSECV value decreased by 0,1-0,15 °Bx going from single to average 

equatorial measurements. Considering transmittance analysis, the reduction of 

RMSECV value was also observable, but with an average extent of 0,05°Bx, confirming 

a lower relative impact of multiple measurements for transmittance acquisition mode.  

 

The best estimation is given by Vis-NIR transmittance spectroscopy. The models 

developed for Vis-NIR and SWIR hyperspectral data had lower predictive performances 

and were very similar. The least performant analysis was SWIR reflectance 

spectroscopy, however its scores were similar to the hyperspectral models’ scores.  
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Figure 5.26. Results of the four measures. 

 

The results obtained in this project performs in a similar way as other studies in the 

literature, in some cases with better results, for example in the case of spectroscopy in 

transmittance. The following table reports an overview of the comparison. 

An interesting note is that the vast majority of the studies applied spectroscopy in 

reflectance, while only one study was found where the hyperspectral imaging was used. 
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Method Configuration Wavelength 

(nm) 

R2 RMSECV Source 

Spectroscopy Transmittance 400-1000 0.84 0.35 This study 

Hyperspectral Reflectance 400-1000 0.72 0.46 This study 

Hyperspectral Reflectance 950-1700 0.72 0.45 This study 

Spectroscopy Reflectance 950-1700 0.67 0.49 This study 

      

Spectroscopy Reflectance 450-1700 0.87 0.44 [98] 

Spectroscopy Reflectance 350-1800 0.94 0.45 [38] 

Spectroscopy Reflectance 450-2500 0.93 0.28 [17] 

Spectroscopy Reflectance 578-1840 0.91 0.51 [102] 

Spectroscopy Reflectance 350-1050 0.90 0.361 [103] 

Spectroscopy Reflectance 1000-2500 0.93 0.55 [100] 

Spectroscopy Reflectance 350-2500 0.91 0.60 [101] 

Spectroscopy Transmittance 400-980 0.77 0.46 [104] 

Hyperspectral Transmittance 325-1100 0.92 0.38 [105] 

Table 5.8. Overview of the applications of hyperspectral imaging and spectroscopy to measure the SSC in citrus 

and comparison with the literature. 

 

On the other hand, for the total titratable acidity TA, which is the second quality 

parameter analyzed, no satisfactory prediction could be achieved with any technology 

applied. This result is in line with what is reported in other studies [102] [101], that 

confirm the difficulties in the prediction of TA with spectroscopic techniques and 

hyperspectral imaging, the main reason being probably the relatively low level of 

organic acids with respect to total SSC in citruses.  

 

The result of this work shows the good opportunity of the spectroscopy and 

hyperspectral imaging techniques for the assessment of SSC in citrus fruits like oranges. 

Considering only the predictive performance, the best method came from transmittance 

Vis-NIR spectroscopy. However, taking in account the potential implementation in 

sorting lines in an industrial environment, transmittance spectroscopy presents some 

implementation issues, mainly concerning the need of completely sealing the detector 

from the light source and from the environment. On the other hand, the methods based 

on hyperspectral imaging in the Vis-NIR and SWIR wavelength ranges, even with a 

slightly worse performance, are the most easily transferable to an industrial line. 

Moreover, the use of a hyperspectral configuration allows -with the arrangement 
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described in the previous section- to sample the fruit over the complete equatorial area 

in order to average the measurements on multiple sides. 
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5.4 Other applications of the hyperspectral technology to wood and fruit 

 

The hyperspectral imaging technology has been tested on many other use cases. Here 

I shortly report the qualitative results on some of these cases. 

5.4.1 False heartwood on log face of Beech wood 

 

The workflow developed for the classification of wood boards was applied to log 

faces for the classification of false heartwood from clearwood. False heartwood is a 

defect that largely influences the quality of beech wood and is formed by air penetration 

into mature wood. In the process of sawing logs into boards, it is important to know in 

advance the boundary between the false heartwood and clearwood, in order to minimize 

the amount and volume of products containing it [106] [107]. 

In this pre-study, five samples were collected from a sawmill in Central Germany. 

Discs of thickness between 5 and 10 centimeters were cut from logs, having a diameter 

of about 40 centimeters. One side of the discs was roughly sawed and exhibits deep saw 

marks, the other had a flatter surface; both sides were scanned. Wood was still in very 

wet conditions, with large areas containing water in the sapwood region. The exact 

boundary between these two regions was marked with the help of experts. 
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Figure 5.27. Classification of false heartwood on beech wood; from left to right: picture of log face, score map of 

class heartwood, score map of class clearwood, final classification. 

Figure 5.27 left shows the appearance of false heartwood in traditional color RGB 

images; the darker regions are related to sapwood and to its high content of water; on 

the other hand, the lighter color in the middle is not all false heartwood, therefore the 

classification based on pure color images is not trivial. The hyperspectral system permits 

to differentiate well between the two classes of interest, without being affected much by 

water.   

5.4.2 Moisture content of dates 

 

The distribution chain of the dates requires that these fruits reach a precise level of 

water content. To obtain this, dates are put in special ovens to dry them; this process is 

not always accurate, because the initial humidity in dates is not always known, and since 

the process is relatively rough for speed reasons. A method of detecting to wet fruits (to 
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be put again in the drying process) or to dry ones (to be rehydrated again) could be 

useful. 

In this study, dates of variety Medjool at different moisture level were collected from 

two packing houses in the southern deserted part of Israel. 

 

  
Figure 5.28. Picture of the measured dates. 

Figure 5.28 show a subset of these dates from the first packing house with normal, 

dry and wet samples, and from the second house with only normal and wet samples; 

note that while in the first case the wet fruits are optically more turgid and it is possible 

a visual sorting of the wet samples, this is not true in the samples from the second case. 

 

The same workflow used for the classification of wood boards was used. A subset 

of fruits was marked as belonging to one of the three classes (normal, wet, dry), a model 

using the PLS method was computed and applied to the remaining of the samples. 

 

 
Figure 5.29. Result of classification of dates in three classes according to moisture content: blue=normal, 

green=wet; red=dry. 

Figure 5.29 shows the classification results of the hyperspectral method. Colors is 

used to mark normal (blue), wet (green) and dry (red) samples. While in some cases the 

fruits are not classified with the same humidity range, the differences between the 

groups are clearly visible. 

5.4.3 Firmness of blueberries 
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Firmness is an important quality factor in many fruits and vegetables, and is 

commonly used to determine the quality and level of fruit maturity, or as indirect 

measurement of ripeness. 

 

For this test, blueberries were bought from a local store and stored partly in a 

refrigerator at 4°C and partly at ambient temperature for some days, to produce two 

different levels of firmness. After a few days, the blueberries reached a very different 

level of firmness, with the ones stored at ambient temperature that were very soft.  

 

Two groups of fruits were formed, with 28 fruits belonging to the soft class and 26 

to the hard class. A measure with the SWIR hyperspectral system using halogen light as 

illumination was taken, and the complete workflow with the PLS-DA method was 

applied in order to classify each pixel. 

 

  
Figure 5.30. Firmness of blueberries; left: picture of the two groups, soft on top and hard on bottom; right: result 

of the pixel-wise classification. 

Figure 5.30 left shows a picture of the blueberries, with the soft ones on to and the 

hard on the bottom. The result, obtained with LV=10, is reported in Figure 5.30 right, 

where red denotes hard and green the soft class. 
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5.5 Application of other methodologies to wood and fruit 

 

During the project, other technologies in addition to hyperspectral imaging were 

tested. One example was described in the section on the estimation of sugar content and 

acidy in citrus, where a comparison between spectroscopy and hyperspectral in Vis-NIR 

and SWIR range were considered. Here I shortly report the qualitative results for two 

other cases. 

 

5.5.1 Dry matter of avocado with MRI (magnetic resonance imaging)  

The importance of dry matter estimation in avocado was described in a previous 

section. During the study on this application, several methods were tested in addition to 

hyperspectral imaging: 

 Spectroscopy in reflection on the external surface of avocado with and 

without skin; this included the external layers of pulp as well as internal 

layer. Spectroscopy in transmission on thin slices was tried as well.  

 A thermal camera was used to measure the temporal evolution of 

temperature over the surface, with the idea that a different quantity of water 

in the fruit pulp could imply a change in the heat capacity. 

 X-ray tomography was tested to check if the different amount of water 

could be seen as variation in the pulp density. A test was carried out by 

cutting small cylinders of pulp that were scanned with a high resolution CT 

scanner and the measured with the dry oven method. 

 Dual energy x-ray radiography was tested, in order to measure slices of 

pulp with known thickness, by exploiting the capacity of dual-energy to 

resolve the density of composite samples (here we tried to separate the 

effect of the pulp and water in the x-ray absorption). 

 A magnetic resonance imaging scanner was used to scan avocado fruits and 

to make a volumetric reconstruction.  

None of the above-mentioned methods brought to useful results, with the exclusion 

of the last. 

 

In this test, 43 avocado fruits of variety Haas were considered. Each sample was 

scanned with a medical device (built from Paramed) working at 0.32T and the 

volumetric reconstruction was performed. The measure technique was fat and water 

separation (Dixon), in order to compute two images with intensity proportional to the 
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density of water and fat (Figure 5.31); since the measure of dry matter considers the 

percentage of water content in the pulp, and the aim is to measure the oil content, this 

seamed a good method.  

Every scan required approximately 3 minutes. The scan resolution was 

approximately 1x1 mm with slices every 4.5 mm on the fruit longitudinal axis. 

The volumetric reconstructions were averaged, and a simple linear model with two 

variables (mean intensity of water and oil) was constructed.  

 

  
Figure 5.31. Left: the measure setup. Right: one slice from the volumetric reconstruction.  

The model showed a good correlation (Figure 5.32 left), notwithstanding a few 

outliers which presented not representative values. The reasons of these outliers was not 

clear and would need a better understanding, but after removing them the performances 

increased (Figure 5.32 right). Further tests were needed, but due to the cost of such an 

implementation, the complexity to adapt a similar medical device for an industrial use 

and the time required for a single scan, no further actions were performed.  

However initial discussions were started in order to realize a much faster scanning 

pattern, where no volumetric scanning was performed, but a single measure for the 

whole fruit volume was considered.  

  

 
 

Figure 5.32. Left: linear model results, with all samples. Right: linear model after removal of 5 outliers. 
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5.5.2 Internal colour of apples with spectroscopy 

Modern agriculture is always looking for new varieties than can attract interest of 

customers and create new niches. One of these examples in the fruit sector is a recent 

variety of apple, called Red Moon, which has as its main characteristic the red coloring 

both outside and inside the fruit. 

A quality index for this peculiar variety is the percentage of internal colored pulp 

volume and its color intensity; growers would like to ensure that the product sold 

maintains the promise of having almost all the internal pulp colored with a dark red 

intensity. See Figure 5.33 left for an increasing scale of good apples. 

We received a set of these apples from Fondazione Edmund Mach (FEM), grown in 

a local vineyard in Trentino, Italy.   

16 apples were chosen, measured with different non-destructive methods, and finally 

cut in half and sorted into three classes of color. The non-destructive methods were 

transmittance NIR spectroscopy, hyperspectral Vis-NIR and SWIR in reflectance. Four 

spectra were acquired with every method, and the single and averaged spectra were 

correlated with the target class. 

While both hyperspectral methods did not achieved good results, the results of NIR 

spectroscopy are shown in Figure 5.33 right. The spectra were modeled using the PLS 

method, to compute a continuous color index. A perfect division between the three 

classes was not possible, but a clear distinction between class 1 (light coloration) and 

class 3 (intense coloration) is visible. 

 

 
Figure 5.33. Left: examples of different levels of internal red pulp. Right: color index from destructive measure 

versus color index obtained from the model. 
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5.6 Conclusions 

The following table summarizes the experiments explained in the previous sections. 

 

Material Application Method Configuration Wavelength 

range 

Wood 

boards 

Heartwood/sapwood Hyperspectral Reflection Vis-NIR 

Avocado  Dry matter Hyperspectral Reflection SWIR 

Citrus  Brix° (sugar) Hyperspectral Reflection Vis-NIR or 

SWIR 

Wood logs False heartwood Hyperspectral Reflection Vis-NIR 

Dates Moisture content Hyperspectral Reflection SWIR 

Blueberries Firmness Hyperspectral Reflection SWIR 

Avocado Dry matter Magnetic 

resonance 

- - 

Apple Pulp color Spectroscopy Transmission NIR 
Table 5.9. Summary of all reported tests. 

This table shows that the hyperspectral imaging technology has been proven to be 

effective for solving a wide range of tasks in the automatic sorting and grading of 

wooden and organic products. 

 

This technology was tested on wood boards to segment the heartwood from the 

sapwood, and on wood log slices to segment the false heartwood from the sapwood, 

tasks that with other methods based on other technologies, like color or x-ray sensors, 

could not be tackled. In the quality sorting of wooden products, there are many other 

parameters that were only quickly explored, like the presence of fungi, brown or soft rot 

or the juvenile wood, where this technology could be further applied.  

 

Moreover, the same technology was successfully used to estimate the dry matter 

content in avocado, soluble solid content in oranges, moisture in dates and firmness of 

blueberries. These same parameters (dry matter, sugar contents, moisture, firmness) are 

relevant for other fruits as well, therefore it is likely possible that the applicability can 

be further increased. 

 

Although other methods were more effective in solving other tasks, like 

spectroscopy in transmission for the determination of the sugar content or magnetic 

resonance for the dry matter estimation, they pose more issues from a practical point of 

view in terms of integration in industrial environments or extremely high cost, which 

might limit their diffusion. 
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On the other hand, the hyperspectral imaging technology is more friendly in terms 

of the potential implementation on conveyor lines, a common configuration in industrial 

application: it is a contactless and non-destructive measure, it can cope with the typical 

speed of the industry, it does not require special mechanical arrangements since it uses 

a reflection configuration. 
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6 Output 

 

This chapter, in addition to list the published papers and patents during the PhD 

work, shows additional projects and activities that I started and are linked to the thesis. 

These projects are mainly cooperation outside the company Microtec, involving the 

university or other research centers. 

6.1.1 Patents and papers 

 

Marco Boschetti, Giancarlo Zane, Simone Faccini, "Metodo e apparecchiatura per 

eseguire un esame iperspettrale della superficie esterna di prodotti vegetali", Italian 

requested Patent IT102020000022354, 2020 

 

Marco Boschetti, Simone Faccini, Enrico Ursella and Giancarlo Zane, “Method and 

apparatus for non-destructive inspection of fruits having an axis of rotational 

symmetry”. European Patent EP3521812B1, 15 07 2020. 

 

Enrico Ursella, Marco Boschetti, “Tunnel CT Scanner”. European patent request 

EP3690429A1, 05 08 2020. 

 

Marco Boschetti, Simone Faccini, Matteo Caffini, "Imaging iperspettrale su tavole 

di legno", Italian patent request 2021  

 

Phyu Phyu Htun, Marco Boschetti, Attaullah Buriro, Roberto Confalonieri, 

Boyuan Sun, Ah Nge Htwe, and Tammam Tillo, “A lightweight approach for wood 

hyperspectral images classification”, Conference on Intelligent Computation in 

Manufacturing Engineering, Gulf of Naples, Italy, 2021 

 

Nicola Busatto, Lorenzo Vittani, Brian Farneti, Marco Boschetti, Fabrizio Costa, 

Simone Faccini, Matteo Caffini, "Physiological and molecular characterization of the 

late ripening stages in Mangifera indica cv Keitt", Postharvest Biology and Technology, 

2021 (submission) 

 

E. Ursella, F. Giudiceandrea and M. Boschetti, “A Fast and Continuous CT scanner 

for the optimization of logs in a sawmill,” in 8th Conference on Industrial Computed 

Tomography, Wels, Austria, 2018. 
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A. Gasparetto, D. Ressi, F. Bergamasco, M. Pistellato, L. Cosmo, M. Boschetti, E. 

Ursella and A. Albarelli, “Cross-Dataset Data Augmentation for Convolutional Neural 

Networks Training . Int. Conf. on Pattern Recognition,” in Int. Conf. on Pattern 

Recognition, (ICPR2018), 2018. 

 

6.1.2 “H2I”, FESR project 

The goal of this project is the development of an hyperspectral SWIR camera and 

illumination, of methods based of deep learning to analyze the hypercubes, and the 

creation of knowhow and dataset specific of the local region. This project is a 

cooperation between the University of Bolzano and the company Microtec. I made the 

initial concept of this project, that was created together with prof. Tillo Tammam from 

the University and my colleague Andrea Ciresa from Microtec.  

 

The project has been accepted and granted with 352.310€. 

 

 

 
Figure 6.1. H2I project summary. 

Abstract:  

Hyperspectral imaging permits to study the composition of objects in a contactless 

manner, by analyzing the reflected spectrum of every single pixel.  
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Hyperspectral imaging is already widely used in remote sensing applications in 

astronomy, but is gaining attention for archeology, agriculture and food industries as 

well. 

There are two main challenges with this technology: first, the required hardware is 

very expensive and complex; second, the extraction of useful information from the 

hyperspectral images is complicated, because in addition to the spatial two dimensions, 

there exists the spectral dimension. 

In this project we will design a hyperspectral detection platform, based on a 

configurable InGaAs sensor and a dedicated light source with a tunable spectral profile. 

In addition, we will develop a plurality of deep learning based methods to extract 

the spatial and spectral information at the same time and develop training procedures 

which will be particularly effective for hyperspectral data. 

The proposed platform could be used in a multitude of use cases, ranging from the 

inspection of defects on wooden materials, to the estimation of the degree of maturity 

and ripeness or the identification of any internal defects of fruits and vegetables, or to 

check the conditions of archaeological artifacts. 

6.1.3 Master thesis of Ilario Chini with University of Bolzano.  

The goal of this master thesis with title Use of non-destructive technologies to 

evaluate the quality parameters soluble solid content and acidity in oranges”, was to 

make a comparison between different techniques to estimate internal properties of 

citrus; the examined techniques were spectroscopy and hyperspectral imaging both in 

NIR and SWIR range. 

 

Abstract:  

Currently, about 50 million tons of oranges, distinguished in non-blood oranges, 

blood oranges, navel oranges and bitter oranges are harvested every year all over the 

world. Orange processing industry requires reliable and cost-effective systems for 

individual fruit grading, compatible with in line implementation. This research work 

studied the performances of Vis/NIR spectroscopy, SWIR spectroscopy, Vis/NIR 

hyperspectral imaging, SWIR hyperspectral imaging and a simulated Vis/NIR-SWIR 

hyperspectral imaging to assess SSC and TA in Lane Late oranges, reasoning also about 

their possible implementation on devices for industrial in-line quality assessment. This 

study highlighted the effectiveness of all studied non-destructive technologies for the 

assessment of SSC with variable scores, while no satisfactory prediction of TA was 

achieved. Vis/NIR transmittance spectroscopy delivered the best prediction capability 
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for SSC parameter, with achieved model scores of R2cv = 0,84; RMSECV = 0,35°Bx 

and RPD = 2,46. However, despite prediction performances, this technology was 

assessed incompatible for in-line implementation due to technical requirements. Better 

perspectives are seen for SWIR and HSI industrial implementation, even if these 

technologies would require technical improvements to enhance their prediction 

capability for SSC. 

6.1.4 “Fruit 2020” project 

The goal of this project was to study the measure of quality of fruits products and to 

enhance the performance of Microtec scanner in measuring both internal and external 

quality. Special effort was put to analyze novel sensing techniques (NIR spectrometry 

in transmission, microwaves at 3-5 GHz, magnetic resonance, imaging in the SWIR 

range, dual energy x-ray), making pilot tests on samples and collecting know how on 

the sensors aspects. An activity was related to enhance the computation by using edge 

devices or using small clusters of computers. I made the initial concept of this project, 

and prepared it with my colleague Andrea Ciresa. 

This project has been granted by the Province of Bolzano with 133.000€. 

 

Abstract: 

The modern agri-food market is focusing more and more on high quality products, 

aesthetically perfect and with a defined and pleasant taste, in order to meet the needs of 

customers. 

The fruit industry, therefore, in the world as well as in the province of Bolzano, is 

investing in fruit quality measurement systems that take into account two important 

aspects: 

- The measure of the perceived goodness of the fruit 

- Improvement of measures (especially on types of defects that are particularly 

difficult to detect with current technologies) 

The measurement of perceived goodness is closely linked to the way in which the 

fruit is handled before reaching the consumer: in fact, most of the fruit is harvested from 

the unripe tree and is subsequently artificially ripened (either during transport or in 

warehouses, usually located near the places of consumption). 

Fruits that are able to autonomously continue the ripening process even after harvest 

(therefore after being physically detached from the tree) are called "climacteric". 

When these fruits are taken into consideration, we try to analyze two particularly 

important processes: 
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1) The maturity, which is the development process that allows the fruit to achieve 

minimum quality characteristics after harvesting, 

2) The ripening which is the process of reaching the edibility stage. 

For producers of technology serving the agri-food industry such as Microtec, it is 

therefore necessary to know these physical/chemical processes in detail and therefore to 

devise systems capable of measuring, for example quantitatively, the state of ripening. 

This would make it possible to schedule the "time-to-consumer" of the individual 

fruit in an innovative way, correctly managing the thermal and controlled atmosphere 

characteristics to reach at a specific time (precisely the one in which the fruit will be 

displayed on store shelves) the optimum edibility stage. To be able to do this, one of the 

important indicators to take into consideration is the so-called dry matter, i.e. the weight 

of the material that remains after the drying of the pulp (which, as it is easy to imagine, 

in many fruits is closely linked at maturation). 

In addition to maturity, ripening and dry matter (which are currently difficult to 

estimate or evaluate with current technologies or by not carrying out destructive tests of 

the fruit that would compromise its marketing) it is necessary to be able to measure 

indicators related to the taste-olfactory perception of the consumer. 

This approach seeks to shift the determination of quality from mere aesthetic 

indicators (uniform color, regular shape and absence of stains) to indicators more related 

to taste, such as sugar content, softness of the pulp, quantity of juice, acidity. The 

determination of a single parameter of goodness is highly subjective and territorial 

(some territorial areas prefer sweet and juicy apples, other apples more acidic and 

crunchy), but the single objective parameters can be measured and used to differentiate 

the product offered to the consumer. 

Being able to achieve, through an in-line machine, a certain result compatible with 

the timing and needs of the industry would already lead to a great goal since there are 

no machines on the market that are able to extrapolate these indicators. 

6.1.5 Determination of maturity of mango fruit project 

The goal of this activity was the quantitative determination of the maturity level of 

mango fruits and the study of the correlation with non-destructive techniques. This is 

cooperation with Fabrizio Costa and Nicola Busatto from the Edmund Mach Foundation 

FEM). This activity was unfortunately blocked due the Covid pandemic. 
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7 Conclusions 

 

Industrial processes always require more the exact and precise knowledge of the 

material being processed, in order to refine, automate and optimize the production flow, 

to maximize the final product's value and quality, and to maximize the resource 

utilization in a sustainable way. These systems are based commonly on vision cameras 

and light sources, but there is a trend to enhance the capabilities by adding and 

combining a diversity of sensors, working in the infrared, UV or x-ray wavelength 

ranges.  

Hyperspectral imaging systems are a recent technology which has proven to be 

useful to improve the detection capability of industrial scanners for automatic sorting 

according to quality parameters. So far the introduction of such systems is still limited 

due to technical and economic reasons. In this thesis I have outlined the work that I have 

supervised and directly conducted at Microtec to design a suitable system for the 

application in industrial environment, from the hardware and software point of view.  

In addition I have shown many applications that have been tested, validated and in 

some case implemented in real use scenarios. These use cases were in the industry of 

wood and food processing, the field where Microtec is active. The use cases considered 

wooden boards and logs of different species (eucalyptus, oak, beech), and fruits of 

different varieties (avocados, citrus, apples, blueberries); I considered also different type 

of parameters, both external and internal. 

 

The research I carried on has already brought concrete results that have led to 

applications in real industrial installations. In addition it could be regarded as a starting 

point for several future developments. First we need to consolidate the results obtained 

so far by monitoring the installations and possibly increasing the number of in-field 

implementations for the cases that were tested in laboratory only. Then there are 

improvements on the hardware side as well: technology changes at a fast pace, and new 

sensor are now available that are sensitive to the full visible, near infrared and SWIR 

range (400nm to 1700nm) that could permit to fuse the two developed systems into a 

single one; work is already ongoing to realize a longitudinal compact multi-chip LED 

lamp to overcome the limitations of wavelength overlap. Finally, the hyperspectral 

technology could be tested on additional challenging tasks in laboratory setups, in order 

to find other useful applications and increase its additional value in the future. 
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