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Abstract

Bayesian additive regression tree (BART) models are becoming increasingly popular

in literature thank to their flexibility in accounting for many different data features.

Many improvements to the simplest BART model have been proposed, such as sparse

and smooth BARTs and BART with causal effects. Theoretical properties have been

investigated as well. In this thesis I propose an application to economics, through

BART estimation of the five factor asset pricing model by Fama & French. The aim

is to give evidence in favor or against the correct specification of the model.

1 Introduction

Decision trees are a machine learning technique that has widespread

applications in databases, switching theory and many others. Trees

work well in problems that need to be evaluated sequentially (see

Moret [1982]). To understand how they work, let us introduce a re-

sponse vector Y and a collection of predictors X1, . . . , Xk, each of

dimension n. A decision tree provides a partition A = {A1, . . . , Aj} of

the sampling space X such that Y = j if X ∈ Aj. The procedure is

performed sequentially and partitions are of the form: if X < Cj, then

X ∈ Cj. Shifting to trees is straightforward: starting from a node,

we can divide it in two child nodes using the aforementioned splitting

rule. An example is shown in Figure 1. See Loh [2011] for a more de-
Figure 1: Representation of a simple tree (left) and of the induced partition of the space [0, 1]2
(right)
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tailed presentation of classification and regression trees.

Literature has shown that introducing randomness in splitting rules

and tree structure is a good way to greatly improve prediction per-

formances. Another way to reach this goal is to average the results of

many small trees instead of having just one big tree (see for example

Breiman [2001] or Lakshminarayanan et al. [2014]). Interesting for-

mulations have been proposed for analysis of survival data (Ishwaran

et al. [2008]).

Early combinations of Bayesian analysis and decision trees are called

Bayesian CART algorithms and have been separately proposed by

Denison et al. [1998] and Chipman et al. [1998]. These simple mod-

els put uniform priors on splitting value and splitting rules in such a

way that stochastic search guides the model towards more promising

trees and then select them according to various criteria as marginal

likelihood or misclassification rate. These models have proved to out-

perform pre-existing alternatives.

Chipman et al. [2010] first introduced and labeled Bayesian additive

regression trees (BART). This model, as it’s name suggests, works by

averaging many regression trees. Choosing suitable prior distributions,

each tree in the average is just a part of the predictive function and

ensures great flexibility. By randomly assigning parameters to tree

structure and terminal nodes, the model is able to efficiently explore

parameter space and reaches high predictive performance.

The basic BART model has been extended along many directions. An

example are modifications in model specification, aimed at making it

suitable for heteroskedasticity (Pratola et al. [2020]) or for survival
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data analysis (Sparapani et al. [2016], Basak et al. [2021], Linero et al.

[2021]). These models perform BART estimation to compute survival

and hazard functions usually used in medical research studies.

Other research has focused on modification of priors. For example,

choosing a Dirichlet prior on the probability of selecting a predictor

for a new split in the tree, highly improves robustness of the model

when noise is introduced in predictor’s space (Linero and Yang [2018]).

To address the same issue other researchers have proposed to keep

track of the probabilities that a certain predictor is selected to com-

pute Metropolis Importance ratios and perform variable selection (Luo

and Daniels [2021]). Another interesting formulation is that of Linero

[2018] which replaces the deterministic splitting rule X < Cj with

a probabilistic one. This induces smoothness in BART predictions,

but nevertheless it increases the computational burden. Further re-

search along this direction addressed this issue with targeted smooth-

ing (Starling et al. [2020]), with distributed trees (Ran and Bai [2021a])

or longitudinal regression analysis (Ran and Bai [2021b]).

Some efforts have been done in deriving theoretical properties of BART

models, for example explaining how do they adapt to an unknown level

of smoothness or how can they perform model reduction when p > n

(Ročková and van der Pas [2020]). Other studies proposed models that

are better suited for interaction detection among predictors, mainly

used to search for causal inference, see for example Du and Linero

[2019] or Woody et al. [2020].

Readers can have a look to Linero [2017] for a review of binary tree

methods until 2017 and Hill et al. [2020] for the same thing until 2020
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and some software implementations.

Most recent work has focused on analysis of longitudinal data (Josef-

sson et al. [2020]), density regression (Orlandi et al. [2021]), environ-

ment interaction (Sarti et al. [2021]), adaptive conditional distribution

estimation (Li et al. [2022a]), generalization of the basic model (Linero

[2022]).

BART models have had successful applications all over the world and

in a wide range of fields. The algorithm has been used in education

panel datasets to overcome the issue of temporary and permanent

dropout of respondents of the surveys (Zinn and Gnambs [2022]) and

to predict impact of remedial support programs on children’s reading

skills (de Oca et al. [2022])(Syria). Thank to its prediction accuracy,

BART had applications also in genomic prediction (GP) studies, a

field of study concerned with breeding different species of (for exam-

ple) crops, in order to create a plant that is more productive and less

threatened by insects (Li et al. [2022b])(Australia).

Different studies evaluated government policies and climate impact:

Jin et al. [2022] performed a spatio-temporal analysis on noise pollu-

tion and environmental risk in urban areas (China); Henderson and

Follett [2022] evaluated the effectiveness of targeted social safety pro-

grams (Indonesia); Frondel et al. [2022] evaluated government policy

on market premium schemes (MPS)(Germany); Obringer et al. [2022]

projected the increasing demand of air conditioning in the future in

order to quantify associated climate risk (USA); Wong et al. [2022]

conducted a significance analysis of factors included in a green gov-

ernment policy (India).
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BART models are appropriate also for economic and econometric anal-

ysis (Athey and Imbens [2019]). It has been used to perform esti-

mations of efficiency and productivity (Tsionas [2022])(Chile) and to

investigate causal effects of diversification strategies on risk-adjusted

portfolios Faraji [2022].

2 Model specification

This section presents a detailed specification of the BART model given

in Chipman et al. [2010] and the modification called SoftBART by

Linero and Yang [2018]. The two models will be used in following

sections to perform simulations and applications on real dataset.

2.1 Baseline BART

Consider the problem of estimating an unknown function f0 given

output variables Y and using a p dimensional vector of predictors

X = (x1, . . . , xp) when:

Y = f0(x) + ϵ, ϵ ∼ N(0, σ2) (1)

Chipman et al. [2010] express it as:

Y =
m∑

j=1
g(x;Tj,Mj) + ϵ, ϵ ∼ N(0, σ2) (2)

where Tj represents a binary regression tree, Mj is the set of terminal

node parameters associated to the j-th tree and g(x; ·) is the function

that assigns µij ∈ Mj to x, that is:

g(x;Tj,Mj) =
nj∑

i=1
I(x ∈ Aji)µij
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where Aji is the i-th element of the partition Aj induced by the j-th

tree, and nj is the number of elements of the partition.

Each element in the summation represents just a small part of the

whole function f0 and the influence of single trees is ensured to be

small thank to opportune regularization prior specification.

To complete the model we need to set priors for all the parameters

in the sum-of-trees model, namely, (T1,M1), . . . , (Tm,Mm) and σ. For

Tj three priors are needed: (i) probability that a node is terminal/is

a leaf (meaning that it does not split into other child nodes); (ii)

a distribution for the splitting variable; (iii) a distribution for the

splitting rule to adopt given the splitting value. Chipman et al. [2010]

choose uniform priors on (ii) and (iii). For (i) they use

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞), (3)

where d is the depth of a node. In order to keep the individual tree

components small they set α = 0.95 and β = 2. The probability of a

node to be non-terminal, given its depth is given in Table 1.

Table 1: Probability of a node to be non terminal given Equation 3, α = 0.95 and β = 2

d 1 2 3 4 ≥ 5
p 0.05 0.55 0.28 0.09 0.03

For terminal node parameters, p(µij|Tj), they use a conjugate normal

distribution N(µµ, σ
2
µ). Further, for convenience they shift and rescale

Y s.t. the observed transformed values y range between ymin = −0.5

and ymax = 0.5 and then set

µij ∼ N(0, σ2
µ) where σµ = 0.5/k

√
m
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where m is the total number of trees in the ensemble and k has to be

tuned.

Last, they assume an inverse chi-square distribution for σ2 ∼ νλ/χ2
ν

and m is generally set to 200. See Appendix A for details on prior

independence and symmetry.

2.2 SoftBART specification

Linero [2018] proposed a modification of the baseline BART to make it

more suitable for variable selection. Linero and Yang [2018] integrated

this with a formulation that allows BART to smooth predictions. This

model is called SoftBART and it will be used it for simulations and

real data analysis through this thesis.

To make BART adapting to sparsity the authors change the distribu-

tion of s = (s1, . . . , sP ), where sj is the probability that predictor j

is chosen for a given split. In the basic BART sj = P−1, instead s is

given a sparsity-inducing Dirichlet distribution:

(s1, . . . , sP ) ∼ D
(
α

P
, . . . ,

α

P

)
with α

α + ρ
∼ Beta(a, b).

The prior on α is given to have a fully Bayesian variable selection

within the model and ρ is a parameter that controls for a priori beliefs

on f0 (usually set equal to P ). Results show that DART (BART with

Dirichlet prior) performs much better than BART when noise predic-

tors are included (see Appendix A for some simulation results).

To induce smoothness instead, the step-wise function I(X ≤ Cb) is
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substituted by a smooth function

ψ(x; T , b) = ψ

(
xj − Cb

τb

)

which allows for a probabilistic interpretation, where b denotes a branch

of the tree and τb a bandwidth parameter associated with branch b.

This approach makes the path that observation x follows down the tree

no more deterministic, rather probabilistic. The result is that trees in-

clude information also from different covariate regions and smoothing

is determined by local bandwidth parameters tuned from the data.

The resulting probability of x ending up in leaf l is

ϕ(x; T , l) =
∏

b∈A(l)
ψ(x; T , b)1−Rb{1 − ψ(x; T , b)}Rb,

where A(l) is the set of ancestor nodes of leaf l and Rb = 1 if the

path to l goes right at b. Authors then propose the use of a logistic

gating function ψ(x) = {1 + exp (−x)}−1 to complete the model (see

Appendix A for simulations on model smoothness).

2.3 Posterior computation

Given observed data y = (y1, . . . , yn), BART induces a posterior of

the form

p((T1,M, 1), . . . , (Tm,Mm), σ|y) (4)

on the set of parameters of the sum-of-trees model (Equation 2). The

algorithm used for computation of Equation 4 is a modification of the

basic Gibbs sampler (see Casella and George [1992] and Ritter and

Tanner [1992] for more details on the Gibbs sampler).
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The sampler used to fit BART is called Bayesian backfitting algorithm

and was first introduced by Hastie and Tibshirani [2000]. For notation

convenience, define T(j) as the set of all trees in the sum except Tj,

and the same for M(j). Thus, T(j) will be a set of m−1 trees, and M(j)

the associated terminal node parameters. The algorithm iterates the

following steps:

i) sample (Tj,Mj) conditionally on (T(j),M(j), σ):

(Tj,Mj)|T(j),M(j), σ, y for j = 1, . . . ,m, (5)

ii) draw of σ from its full conditional distribution:

σ|T1, . . . , Tm,M1, . . . ,Mm, y.

Sampling σ is straightforward since it corresponds to a draw from an

inverse gamma distribution. To sample (Tj,Mj) instead we observe

that the full conditional (Equation 5) depends on (T(j),M(j), y) only

through

Rj ≡ y −
∑
k ̸=j

g(x;Tk,Mk),

the n-vector of partial residuals of a simulation that excludes the j-th

tree. Thus Equation 5 can be rewritten as

(Tj,Mj)|Rj, σ, for j = 1, . . . ,m. (6)

Each draw of Equation 6 can be obtained sequentially in two steps

Tj|Rj, σ and Mj|Tj, Rj, σ.
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For the former, since the model includes a conjugate prior for Mj,

p(Tj|Rj, σ) ∝ p(Tj)
∫
p(Rj|Mj, Tj, σ)p(Mj|Tj, σ)dMj

can be obtained in close form by using the Metropolis-Hastings (MH)

algorithm of Chipman et al. [1998](see Appendix A for details on that).

See Metropolis et al. [1953] and Hastings [1970] for a more general in-

troduction to MH algorithm. Finally the draw of Mj corresponds to

independent draws for each of the µij leaf node parameters.

This backfitting MCMC algorithm mixes dramatically better com-

pared to single tree models which tend to stabilize to a local mode

and its neighborhood. To overcome this issue these models need to be

restarted many times and then to average partial results. The Bayesian

backfitting instead allows for running a single long chain.

2.4 Priors

To conclude the model specification, I propose in Table 2 an overview

of all priors used in the SBART model.

2.5 Simulation results

This section proposes a simulation test of SBART with comparison to

other machine learning algorithms. For the comparison I use: SBART†,

BART‡, Random Forests §, Lasso ¶ and Gradient-Boosted decision

trees‖.
†available at https://github.com/theodds/SoftBART
‡available at https://cran.r-project.org/web/packages/BART/index.html
§available at https://cran.r-project.org/web/packages/randomForest/index.html
¶available at https://cran.r-project.org/web/packages/glmnet/index.html
‖available at https://cran.r-project.org/web/packages/xgboost/index.html

https://github.com/theodds/SoftBART
https://cran.r-project.org/web/packages/BART/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/xgboost/index.html
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Table 2: Overview of priors used for analysis

Prior Values Explanation

Node Depth
∼ α(1 + d)−β

α = 0.95, β = 2 Distribution of Node Depth. Values
of α and β are chosen to generate a
distribution with high probability of
small trees

µij ∼ N(0, σ2
µ) σµ ∼ Cauchy+(0, 0.25) Distribution of leaves of the trees.

A Gaussian distribution is chosen to
simplify posterior computation. σµ

is given a default truncated Cauchy
distribution with mean = 0 and
variance = 0.25

σ ∼ Cauchy+(0, σ2
lasso) σ2

lasso Distribution of σ of the model. The
distribution is a truncated Cauchy
with mean 0 and volatility tuned
from the data using a lasso estima-
tion

s ∼ D(a/P, . . . , a/P ) a, P Distribution of the probability of a
predictor to be chosen to perform a
split on a tree. It is a sparsity in-
ducing Dirichlet distribution, with
all parameters = a/P . a is given a
distribution, P is the total number
of predictors

a/(a + ρ) ∼ Be(c, d) ρ =P, c = 0.5, d = 1 Distribution of parameter a of the
Dirichlet distribution above. ρ is a
hyperparameter that controls for a
priori beliefs on f0: ρ <P if there is a
strong prior belief that f0 is sparse;
ρ =P otherwise.

τb
iid∼ Exp(ν) ν = 0.1 Distribution of the bandwidth pa-

rameter. τb controls for smoothness
of decision, approximating constant
models as τb → ∞ and hard decision
trees as τb → 0
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To compare algorithms I use Friedman [1991] formula and run simula-

tions at increasing number of noise predictors. I use thirteen different

levels of total predictors for each model, for a total of 65 simulations.

To compare performances RMSE is used as a goodness of fit measure.

It is computed as:

RMSE =
{∫

{f(x) − f̂(x)}2dx
}1/2

,

and is approximated by Monte Carlo integration. All models are used

with default settings. Results are shown in Figure 2.

Figure 2: RMSE comparison of BART, SBART, RF, Lasso and Boosting (different lines), at in-
creasing P (horizontal axis)

P

R
M

S
E

5 7 10 15 20 25 50 75 100 200 300 500 1000

0
1

2
3

4

RF Lasso Boosting BART SBART

As we can see from Figure 2, most of considered algorithms lose pre-

diction accuracy at increasing values of P . BART seems to outperform

other methods, for each P . SBART results can be compared to those
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of BART when P is near to the real number of predictors, but is much

better when noise predictors are included. Overall, SBART performs

much better than any other model considered for each level of P .

3 Asset pricing theory

Asset pricing is one of the main branches of study in economic theory.

Investment theory, which is a synonym, entails the knowledge used to

support the decision-making process of choosing investments. Models

developed so far, can be divided in two main groups: general equilib-

rium asset pricing and rational pricing. Under the latter, derivatives

are priced in a way that they are arbitrage-free with respect to funda-

mental security prices determined by equilibrium.

Under general equilibrium asset pricing instead prices are determined

through the usual market dynamics of supply and demand. The most

famous result of market equilibrium is probably the Proposition I of

Modigliani and Miller [1958] which states that in an environment of ef-

ficient markets (i.e. markets in which demand always meets offer) and

in absence of taxes, bankruptcy costs and asymmetric information,

firm value doesn’t depend on how the firm gets financed. The theo-

rem holds thank to some basic assumptions on people’s investment

behavior on choosing “mean-variance-efficient” portfolio returns: 1)

maximize returns, given variance and 2) minimize variance, given re-

turns. This concept was developed by Markowitz [1959]. In his model,

the investor chooses a portfolio of investments in t−1 and then collects

stochastic returns at t and using the criteria stated above for portfolio

composition. A branch of literature has studied most efficient ways to
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construct such portfolios (see for example Clarke et al. [2011]).

One of the main issues was to implement risk in such investment de-

cisions. First, we need to define risk as the impossibility of predicting

future market movements, which leads directly to uncertainty in port-

folio returns. Agents are assumed to be risk averse, meaning that, if

two assets have the same expected return, the one with lower volatility

will be included in the portfolio. As a consequence, if the two assets

were to be sold at the same price, no one would buy the one with

higher volatility, resulting in an impossibility to reach a market equi-

librium (markets won’t clear since all the demand will be towards the

first asset and none for the second). Many authors found a possible

solution to this with the concept of risk premium and developing a

model named capital asset pricing model (CAPM)(see Treynor [1962],

Sharpe [1964], Lintner [1965], Mossin [1966]).

This model solves the issue of defining risk premium by computing

it as the excess return of an asset compared to a risk-free asset. The

formula is the following:

E(Rt) = Rft + β(E(Rmt) −Rft) (7)

where E(Rt) is the expected return of a certain asset at time t, Rft

is the return of a risk-free asset in period t, E(Rmt) is the expected

return of the market at time t. The analysis is carried out through a

regression of the form

Rt = Rft + a+ β(Rmt −Rft) + ϵt with ϵt ∼ N(0, σ2).
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The model states that the return of an asset is equal to the return of

a risk-free asset raised by a β factor that multiplies the market risk

premium (Rm − Rf). The resulting β is nowadays a commonly used

tool of financial analysts for interpreting firm profitability, in fact a

higher β denotes that a certain firm is performing better than others

with a lower value.

Since the model was first formulated, many critiques have been raised

from literature. A first example is that a risk free rate is controversial

to determine. To overcome this issue, Black [1972] propose a formula-

tion of the CAPM that does not include the risk-free asset.

However the problems do not stop here, finding a proxy for market

returns is also difficult and results of CAPM contrast with empirical

evidence (intercept too high and β too small). Estimations in general

resulted to be imprecise and residuals presented serial autocorrelation

(Fama and French [2004]). All these issues come from a more funda-

mental critique on the basic assumptions of CAMP. Assumptions in

question state that agents share the same expectations and that ex-

ists a risk-free rate at which people can lend/borrow money. There

is empirical evidence that actually agents to not have homogeneous

expectations, which results in a violation of the rationality assump-

tion (Elbannan [2015]). Another big limitation of CAPM is that the

agents are not allowed to sell short on assets. Readers can have a look

to Campbell [2000] and Barillas and Shanken [2018] for more detailed

surveys on CAPM status.

To overcome this issues Ross [2013] proposed a model called Arbitrage
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Pricing Theory (APT) which is a factor model of the form

Rt = a+ b1R1,t + · · · + bK , RK,t + ϵt

where R1, . . . , RK are expected returns of some risk factors usually

linked to macroeconomic variables (e.g. the oil price). See also Roll

and Ross [1980] for an introduction to APT.

Others have attempted to modify CAPM to make it suitable for analy-

sis in continuous time (Intertemporal-CAPM, Merton [1973]), or link-

ing it to consumption. The latter embodies in the model the fact that

agents usually prefer to smooth consumption over time and thus to

hedge against that risk. The model in question is called consumption-

based CAPM (CCAPM) and was developed by Breeden [2005].

More recent studies proposed a relaxation of the linearity assumptions

behind the basic model. For example Tauchen and Hussey [1991] pro-

posed a quadrature-based model that is used to approximate different

asset pricing models. Dittmar [2002] use non-linear pricing kernels

to create a model that works like non-parametric ones. Chen et al.

[2011] use a Bayesian-GARCH algorithm to model residuals of the ba-

sic CAPM model.

Another branch of literature developed models which adjust predic-

tions of CAPM adding some factors. In order, we have a two-factor

model by Black et al. [1972], a three-factor model by Fama and French

[1992], a four-factor model by Carhart [1997] and a five-factor model

by Fama and French [2015]. The model that I use for my analysis is

the last one. In next section I discuss more in detail the factors added

by the authors to the basic CAPM.
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3.1 Fama & French five-factor model

In Fama and French [1992] authors test CAPM on US stock returns

data in the period 1963-1990. Their tests move against the central pre-

diction of CAPM that market β is positively related to average stock

returns. Following empirical evidence of a positive link between aver-

age returns and size and book-to-market (B/M) equity, they propose

adding two other factors to the basic model:

· SMB “Small Minus Big [market capitalisation]” which is a measure of

the historical difference between returns of small caps and big

caps;

· HML “High Minus Low [book-to-market ratio]”, difference between re-

turns of firms with high and low book-to-market ratios.

The model performs better than the basic CAPM, but still presents

some criticisms. Titman et al. [2004] and Novy-Marx [2013] pointed

out that the three-factor model is incomplete because it doesn’t con-

sider the relation between average returns and operating profitability

and investment. To overcome this issue Fama and French [2015] pro-

pose the addition of two further variables to the three-factor model:

· RMW “Robust Minus Weak [operating profitability]” which is a mea-

sure of the historical difference between returns of high vs. low

operating profitability stocks;

· CMA “Conservative Minus Aggressive [investment]”, difference between

returns of conservative (low investment) vs. aggressive (high in-

vestment) stocks.
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The five-factor model then can be represented as:

Rt −Rft = a+ b(Rmt −Rft) + c(SMBt) + d(HMLt)+ (8)

+e(RMWt) + f(CMAt) + ϵt ϵt ∼ N(0, σ2)

The authors propose different ways of combining portfolios to con-

struct factors above, details can be found in their paper. Their main

results show that the GRS test rejects the five-factor model, but they

estimate that it can explain between 71% and 94% of the cross-section

they examine. They also find that the way in which factors are con-

structed, doesn’t affect much the outcome of the regressions. Last, ac-

cording to their analysis, HML is a redundant factor and consequently

a four-factor model which drops it, is effective as the five-factor one

(see following section for regressions using CAPM, the three and the

five-factor model).

3.2 Regressions

To get a better insight of CAPM and Fama&French factor models,

I propose a regression analysis of the data listed in Appendix B. I

present results for regressions using CAPM, F&F three and five factor,

F&F five factor + Momentum factor, and a series of regressions in

which SMB is always included and one of the other factors not, as in

Fama and French [2015]. Here is a list of models used in the analysis:

Model 1 (CAPM)

Rt −Rft = a+ β(Rmt −Rft) + ϵt (9)
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Model 2 (F&F three factors)

Rt −Rft = a+ β(Rmt −Rft) + c(SMBt) + d(HMLt) + ϵt (10)

Model 3

Rt−Rft = a+β(Rmt−Rft)+c(SMBt)+d(HMLt)+e(RMWt)+ϵt
(11)

Model 4

Rt−Rft = a+β(Rmt−Rft)+c(SMBt)+d(HMLt)+e(CMAt)+ϵt
(12)

Model 5

Rt−Rft = a+β(Rmt−Rft)+c(SMB)+d(RMWt)+e(CMAt)+ϵt
(13)

Model 6 (F&F five factors)

Rt −Rft = a+β(Rmt −Rft)+c(SMBt)+d(HMLt)+e(RMWt)+

(14)

+f(CMAt) + ϵt

Model 7 (F&F five factors + Momentum factor)

Rt −Rft = a+ β(Rmt −Rft) + c(SMBt) + d(HMLt)+ (15)

+e(RMWt) + f(CMAt) + g(Momt) + ϵt

I apply each model to each of the five industry portfolios listed in
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Data source section, for a total of 35 regressions. Results are shown in

following tables. For each factor is reported the coefficient and signif-

icance, with sign. codes: (***) 0, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1. For

each model, also R2, adj-R2 and F-statistic values are included.

Table 3: Regressions for Cnsmr returns data. For each factor is reported the coefficient and signif-
icance, with sign. codes: (***) 0, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1. R2, adj-R2 and F-statistic

Factor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Interc. 0.02 0.02 0.01 0.01 0.01 0.01 0.01

*** *** *** *** *** *** ***
Rm − Rf 0.83 0.85 0.87 0.87 0.89 0.89 0.89

*** *** *** *** *** *** ***
SMB - 0.33 0.38 0.34 0.39 0.39 0.39

- *** *** *** *** *** ***
HML - 0.08 0.07 0.02 - 0.02 -0.01

- *** *** *** - *** *
RMW - - 0.25 - 0.25 0.25 0.25

- - *** - *** *** ***
CMA - - - 0.17 0.18 0.16 0.18

- - - *** *** *** ***
Mom - - - - - - -0.05

- - - - - - ***
R2 0.779 0.818 0.827 0.820 0.829 0.829 0.830

adj-R2 0.779 0.818 0.827 0.820 0.829 0.829 0.830

F-stat. 1.0e+05 4.4e+04 3.5e+04 3.4e+04 3.6e+04 2.9e+04 2.4e+04
*** *** *** *** *** *** ***

Tables 3 - 7 show that for each dataset and for each model, all factors

are significant at a level <0.001 with just three exceptions: HML of

model 7 in Cnsmr data, the intercept of models 3 to 7 in Manuf data

and Mom of model 7 in Other data.

Fama&French three factors (Model 2) performs much better than
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Table 4: Regressions for Manuf returns data. For each factor is reported the coefficient and signif-
icance, with sign. codes: (***) 0, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1. R2, adj-R2 and F-statistic

Factor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Interc. 0.02 0.01 0.005 0.006 0.002 0.002 0.004

*** *** . *
Rm − Rf 0.89 0.93 0.95 0.95 0.97 0.97 0.96

*** *** *** *** *** *** ***
SMB - 0.32 0.38 0.33 0.41 0.38 0.38

- *** *** *** *** *** ***
HML - 0.31 0.30 0.23 - 0.23 0.19

- *** *** *** - *** ***
RMW - - 0.24 - 0.25 0.24 0.24

- - *** - *** *** ***
CMA - - - 0.23 0.42 0.22 0.25

- - - *** *** *** ***
Mom - - - - - - -0.06

- - - - - - ***
R2 0.762 0.826 0.833 0.830 0.826 0.837 0.839

adj-R2 0.762 0.826 0.833 0.830 0.826 0.837 0.839

F-stat. 9.5e+04 4.7e+04 3.7e+04 3.6e+04 3.5e+04 3.1e+04 2.6e+04
*** *** *** *** *** *** ***

Table 5: Regressions for HiTec returns data. For each factor is reported the coefficient and signifi-
cance, with sign. codes: (***) 0, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1. R2, adj-R2 and F-statistic

Factor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Interc. 0.02 0.02 0.03 0.03 0.03 0.03 0.04

*** *** *** *** *** *** ***
Rm − Rf 1.06 1.05 1.02 1.02 0.98 0.99 0.99

*** *** *** *** *** *** ***
SMB - 0.43 0.35 0.42 0.31 0.34 0.34

- *** *** *** *** *** ***
HML - -0.33 -0.32 -0.24 - -0.23 -0.26

- *** *** *** - *** ***
RMW - - -0.41 - -0.41 -0.40 -0.40

- - *** - *** *** ***
CMA - - - -0.27 -0.46 -0.26 -0.24

- - - *** *** *** ***
Mom - - - - - - -0.05

- - - - - - ***
R2 0.772 0.824 0.839 0.829 0.835 0.843 0.844

adj-R2 0.772 0.824 0.839 0.829 0.835 0.843 0.844

F-stat. 1.0e+05 4.6e+04 3.9e+04 3.6e+04 3.7e+04 3.2e+04 2.7e+04
*** *** *** *** *** *** ***
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Table 6: Regressions for Hlth returns data. For each factor is reported the coefficient and signifi-
cance, with sign. codes: (***) 0, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1. R2, adj-R2 and F-statistic

Factor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Interc. 0.03 0.03 0.03 0.03 0.03 0.03 0.03

*** *** *** *** *** *** ***
Rm − Rf 0.87 0.86 0.86 0.88 0.87 0.88 0.88

*** *** *** *** *** *** ***
SMB - 0.37 0.36 0.38 0.32 0.37 0.37

- *** *** *** *** *** ***
HML - -0.29 -0.29 -0.36 - -0.36 -0.36

- *** *** *** - *** ***
RMW - - -0.03 - -0.05 -0.04 -0.04

- - *** - *** *** ***
CMA - - - 0.23 -0.08 0.23 0.23

- - - *** *** *** ***
Mom - - - - - - 0.004

- - - - - -
R2 0.634 0.680 0.680 0.684 0.660 0.684 0.684

adj-R2 0.634 0.680 0.680 0.684 0.660 0.684 0.684

F-stat. 5.1+04 2.1e+04 1.6e+04 1.6e+04 1.4e+04 1.3e+04 1.1e+04
*** *** *** *** *** *** ***

Table 7: Regressions for Other returns data. For each factor is reported the coefficient and signifi-
cance, with sign. codes: (***) 0, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1. R2, adj-R2 and F-statistic

Factor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Interc. 0.02 0.01 0.008 0.01 0.01 0.01 0.01

*** *** *** *** *** *** ***
Rm − Rf 0.91 0.96 0.96 0.94 0.96 0.94 0.94

*** *** *** *** *** *** ***
SMB - 0.40 0.41 0.39 0.46 0.41 0.41

- *** *** *** *** *** ***
HML - 0.39 0.39 0.46 - 0.46 0.41

- *** *** *** - *** ***
RMW - - 0.07 - 0.09 0.07 0.08

- - *** - *** *** ***
CMA - - - -0.20 0.20 -0.20 -0.17

- - - *** *** *** ***
Mom - - - - - - -0.07

- - - - - - ***
R2 0.772 0.869 0.870 0.872 0.830 0.873 0.875

adj-R2 0.772 0.869 0.870 0.872 0.830 0.873 0.875

F-stat. 1.0e+05 6.6e+04 5.0e+04 5.1e+04 3.6e+04 4.1e+04 3.5e+04
*** *** *** *** *** *** ***
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CAPM (Model 1) for every dataset in terms of R2, increasing it’s

value by roughly 0.05, meaning that SMB and HML add explanatory

power to the basic model. Adding other factors instead, seem to have

a really poor effect on the goodness of fit indicator, leaving it’s value

almost unchanged.

The adj-R2 indicator values are the same as R2 since the weighting

effect of adding new variables to the model is overtaken by the large

number of observations (29662).

The F-statistic shows that all models are statistically significant. How-

ever the value of the statistic decreases when adding factors to the

model, indicating that the significance of the models is decreasing. To

test this, I performed F tests using the usual formula

Ftest = (RRSr −RRSu)/r
RRSu/(n− k) = ((1 −R2

r) − (1 −R2
u))/r

(1 −R2
u)/(n− k) ∼ Fr,n−k

(16)

where RRSr and RRSu are the residual sum of squares of the restricted

and unrestricted model respectively, r is the number of restrictions,

n is the number of observations and k is the number of predictors of

the unrestricted model. I performed the tests keeping Model 7 as the

unrestricted one and then alternating Models 1 to 6 as the restricted

ones. I omit reporting results since all tests reject the null hypothe-

sis of non-significance of the unrestricted model at a significance level

<0.001.

However, given the behaviour of the F-statistic and Fama and French

[2015] arguing that, according to their analysis, a four-factor model

which drops HML is as effective as the five-factor model, a more de-
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tailed test on significance of the factors is needed and I do that in this

thesis using SBART model.

4 Model application and results

The analysis conducted in previous section raises the necessity to test

the significance of Fama&French factors in a context different from ba-

sic linear regression. To do so, I propose an analysis of posterior prob-

abilities on inclusion in the SBART model of factors, with inclusion

of noise variables (in a fashion similar to the analysis of Appendix A,

Figure 11).

The data I use are the same described in Appendix B. For the analysis

I use the routine setting of SBART described in Linero [2018], with:

n. of trees = 50, n. of burn-in iterations = 500 and n. of posterior

iterations = 500 (this choice is made to keep acceptable the compu-

tational time required for the model to carry out the analysis). To

run the model I leave the last 1000 observations as a test and use the

others for training. To each model I attach ten noise variables drawn

from a uniform distribution between the min and max value that can

be found in the set of factors belonging to the model.

Tables 8 to 14 report the posterior probability of inclusion of factors

and noise variables for each Model and dataset.

Table 8 shows that in Model 1, the factor (Rm−Rf) has a substantially

higher probability of inclusion compared to noise variables. However

there is a negative trend as other factors are added. Table 14 shows

that the probability of inclusion of factors is slightly higher than the

one of noise variables for most of them, meaning that they lost their
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explanatory power. This can be due to the fact that the model splits

probability of inclusion into more variables, however simulations pre-

sented in Appendix A show that BART with Dirichlet prior, that is in-

cluded also in SBART, adapts very well to sparsity in the data, bring-

ing the conclusion that the more factors are included in the model,

the more it gets overfitted. This result is in line with findings about

F-statistic in previous section.

Results vary a lot between datasets and Models, making it difficult to

identify which factors are the most important. The only one that al-

ways keeps a high probability of inclusion compared to noise variables

and that many times overtakes other factors is the excess market re-

turn (Rm −Rf). Evidence therefore is in favor of the basic CAPM and

against Fama&French models that add factors to the basic setting.

See Appendix C for RMSE computation and plots of results.
Table 8: Asset pricing application. Model 1. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.405 0.321 0.599 0.617 0.347
Noise 1 0.085 0.068 0.003 0.044 0.042
Noise 2 0.063 0.069 0.044 0.098 0.071
Noise 3 0.048 0.048 0.042 0.002 0.086
Noise 4 0.041 0.070 0.020 0.021 0.074
Noise 5 0.057 0.079 0.000 0.006 0.080
Noise 6 0.034 0.095 0.096 0.058 0.041
Noise 7 0.010 0.061 0.022 0.023 0.064
Noise 8 0.068 0.073 0.024 0.060 0.048
Noise 9 0.058 0.057 0.058 0.029 0.075
Noise 10 0.130 0.060 0.090 0.043 0.072
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Table 9: Asset pricing application. Model 2. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.204 0.204 0.160 0.251 0.196
SMB 0.179 0.105 0.144 0.157 0.112
HML 0.152 0.168 0.193 0.187 0.148
Noise 1 0.025 0.032 0.032 0.055 0.069
Noise 2 0.049 0.034 0.074 0.054 0.059
Noise 3 0.042 0.054 0.043 0.026 0.044
Noise 4 0.066 0.056 0.034 0.022 0.054
Noise 5 0.041 0.067 0.044 0.014 0.081
Noise 6 0.070 0.028 0.074 0.023 0.046
Noise 7 0.062 0.083 0.073 0.031 0.076
Noise 8 0.026 0.079 0.057 0.036 0.065
Noise 9 0.028 0.023 0.023 0.052 0.018
Noise 10 0.057 0.059 0.014 0.091 0.033

Table 10: Asset pricing application. Model 3. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.149 0.217 0.174 0.210 0.193
SMB 0.108 0.095 0.133 0.112 0.117
HML 0.115 0.092 0.116 0.148 0.107
RMW 0.116 0.137 0.134 0.174 0.064
Noise 1 0.055 0.049 0.020 0.058 0.052
Noise 2 0.046 0.070 0.041 0.056 0.041
Noise 3 0.058 0.046 0.024 0.024 0.050
Noise 4 0.079 0.045 0.078 0.015 0.056
Noise 5 0.043 0.024 0.034 0.026 0.043
Noise 6 0.037 0.040 0.052 0.039 0.051
Noise 7 0.055 0.049 0.050 0.035 0.059
Noise 8 0.044 0.084 0.061 0.015 0.054
Noise 9 0.061 0.029 0.031 0.047 0.054
Noise 10 0.035 0.021 0.052 0.042 0.058
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Table 11: Asset pricing application. Model 4. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.163 0.178 0.160 0.199 0.180
SMB 0.148 0.144 0.193 0.089 0.085
HML 0.075 0.143 0.119 0.168 0.132
CMA 0.115 0.089 0.133 0.120 0.114
Noise 1 0.054 0.028 0.016 0.043 0.025
Noise 2 0.056 0.039 0.056 0.067 0.029
Noise 3 0.019 0.053 0.035 0.034 0.057
Noise 4 0.050 0.041 0.039 0.050 0.044
Noise 5 0.060 0.061 0.026 0.046 0.063
Noise 6 0.029 0.038 0.043 0.055 0.081
Noise 7 0.060 0.062 0.058 0.044 0.041
Noise 8 0.040 0.045 0.037 0.006 0.055
Noise 9 0.064 0.027 0.030 0.042 0.036
Noise 10 0.067 0.052 0.056 0.037 0.058

Table 12: Asset pricing application. Model 5. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.172 0.199 0.179 0.197 0.153
SMB 0.145 0.164 0.122 0.152 0.145
RMW 0.100 0.133 0.113 0.115 0.140
CMA 0.100 0.100 0.135 0.140 0.072
Noise 1 0.057 0.031 0.044 0.035 0.071
Noise 2 0.045 0.035 0.022 0.020 0.049
Noise 3 0.040 0.041 0.039 0.018 0.063
Noise 4 0.050 0.023 0.060 0.064 0.066
Noise 5 0.056 0.050 0.024 0.050 0.037
Noise 6 0.031 0.040 0.043 0.048 0.044
Noise 7 0.045 0.020 0.067 0.041 0.027
Noise 8 0.076 0.056 0.061 0.031 0.041
Noise 9 0.046 0.060 0.056 0.025 0.044
Noise 10 0.035 0.048 0.035 0.064 0.050
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Table 13: Asset pricing application. Model 6. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.136 0.131 0.146 0.143 0.152
SMB 0.115 0.133 0.143 0.129 0.171
HML 0.099 0.122 0.086 0.070 0.124
RMW 0.072 0.095 0.070 0.165 0.074
CMA 0.081 0.074 0.135 0.118 0.071
Noise 1 0.062 0.054 0.038 0.037 0.024
Noise 2 0.054 0.036 0.040 0.014 0.019
Noise 3 0.054 0.038 0.037 0.037 0.044
Noise 4 0.032 0.040 0.038 0.087 0.033
Noise 5 0.028 0.066 0.071 0.037 0.035
Noise 6 0.058 0.036 0.014 0.038 0.075
Noise 7 0.061 0.025 0.057 0.046 0.038
Noise 8 0.045 0.066 0.018 0.015 0.060
Noise 9 0.057 0.038 0.044 0.026 0.036
Noise 10 0.046 0.048 0.063 0.038 0.045

Table 14: Asset pricing application. Model 7. For each factor and for all noise variables is reported
the posterior probability of inclusion in the SBART model

Factor Cnsmr Manuf HiTec Hlth Other
Rm − Rf 0.145 0.160 0.167 0.150 0.154
SMB 0.076 0.094 0.132 0.108 0.0107
HML 0.101 0.082 0.092 0.093 0.091
RMW 0.075 0.074 0.095 0.117 0.068
CMA 0.065 0.095 0.090 0.129 0.069
Mom 0.078 0.093 0.063 0.102 0.078
Noise 1 0.045 0.018 0.053 0.033 0.040
Noise 2 0.037 0.022 0.037 0.030 0.075
Noise 3 0.066 0.028 0.022 0.023 0.056
Noise 4 0.045 0.034 0.021 0.024 0.030
Noise 5 0.034 0.072 0.047 0.009 0.035
Noise 6 0.031 0.037 0.038 0.030 0.041
Noise 7 0.037 0.031 0.029 0.023 0.041
Noise 8 0.081 0.054 0.041 0.060 0.025
Noise 9 0.041 0.046 0.037 0.031 0.052
Noise 10 0.042 0.059 0.037 0.037 0.045
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4.1 Partial dependence analysis

Analysis so far identifies the excess market return (Rm − Rf) as the

most important factor among those considered. To better understand

its influence on the estimated f0, I propose a partial dependence anal-

ysis of it relative to each model considered. The analysis is carried

out using a function already present in the SoftBART package, called

“pdsoftbart”.

I set number of trees, number of burn-in iterations and number of save

iterations as the ones in previous section: 50, 500 and 500 respectively.

For each model I indicate (Rm − Rf) as the factor to consider when

computing partial dependence. The function returns a plot of the par-

tial dependence of estimated f0 (y-axis) against (Rm−Rf)(x-axis) (see

Appendix C for simulations on this using Friedman [1991] formula).

Results are plotted in Figures 3 to 9.

Figure 3: Asset pricing application. For Model 1, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

Cnsmr

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

Manuf

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

HiTec

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

Hlth

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

Other



Ca’ Foscari University of Venice Master Thesis Behluli Rigers - 868244

Figure 4: Asset pricing application. For Model 2, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)
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Figure 5: Asset pricing application. For Model 3, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)
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Figure 6: Asset pricing application. For Model 4, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)
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Figure 7: Asset pricing application. For Model 5, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)
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Figure 8: Asset pricing application. For Model 6, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)
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Figure 9: Asset pricing application. For Model 7, plot of partial dependence of f0 (y-axis) against
(Rm − Rf ) (x-axis), for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technol-
ogy (HiTec), health (Hlth) and others (Other)
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Results show that for all models and for all sectors, the excess market

return (Rm −Rf) has a positive and linear relationship with f0. Eco-

nomically this is equivalent to stating that the expected rate of return

of a certain asset will depend mainly on market performance.

This behavior induces and enforces an already existing investment

strategy called buy-and-hold. According to the strategy, the best in-

vestment decision is to buy assets and then to keep them for the long

run. Market returns, despite local spikes and plunges, in the long run

present a positive trend. Therefore, the prediction of this analysis is

that, since individual asset returns are linked by a linear and positive

relation to market returns, buy-and-hold strategy applied to single

assets will ensure a positive return to the investor in the long run.

5 Conclusions

CAPM is probably the most famous and widely used asset pricing

model. One of its strengths is the simplicity of implementation and

the robustness of its results. During the years it has been criticized for

its simplicity and for its unrealistic assumptions of the world. Some

studies have proposed the addition of other factors in the basic setting

in order to capture a wider range of financial facts already existing in

literature (for example Fama and French [2015]).

In order to give evidence in favor or against the relevance of these new

factors, in this thesis I proposed an application of the Soft Bayesian

Additive Regression Trees model by Linero [2018]. Regression trees

have proven to be very effective statistical models and I chose this one

given its capability to adapt to sparsity in predictor space and for its
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smoothness property.

My results give evidence against factors added to basic CAPM in two

ways. According to this thesis analysis, (Rm −Rf) factor of CAPM re-

mains the most relevant factor among all those considered. In and out

RMSE computations show that the basic model minimizes in average

the misclassification error of predictions. In addition, as the number

of factor increases, their explanatory power (measured as probability

of inclusion in the model) lowers at a level that is slightly higher than

the one of noise variables drawn from a uniform distribution.

In conclusion, according to my work, CAPM remains the best asset

pricing model and the only one comparable in terms of results is the

Fama&French five factor model that drops HML. Furthermore the re-

lationship between returns of a certain asset and excess market return

is simply positive and linear, characteristic that leads to straightfor-

ward and precise predictions about portfolio returns.
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A On BART models

A.1 BART independence and symmetry

In their formulation of BART, Chipman et al. [2010] simplify the

model considering only priors for which:

p((T1,M1), . . . , (Tm,Mm), σ) =
∏

j

p(Tj,Mj)
 p(σ)

=
∏

j

p(Mj|Tj)p(Tj)
 p(σ)

and

p(Mj|Tj) =
∏
j

p(µij|Tj).

This setting involves using identical forms for all Tj and for all p(µij|Tj).

Under such priors, tree components (Tj,Mj) are mutually independent

and every tree parameter µij is independent.

A.2 DART simulation results

In order to better understand implications of introducing noise in pre-

dictors I perform simulations of BART models at increasing levels

of P = number of predictors considered. Simulations are performed

following the method of Friedman [1991], namely estimating

f0(x) = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

and introducing other predictors drawn from a uniform distribution.

Simulations are run using the BART package available at https:

//cran.r-project.org/web/packages/BART/index.html.

https://cran.r-project.org/web/packages/BART/index.html
https://cran.r-project.org/web/packages/BART/index.html
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Figure 10: True vs. estimated µ at increasing P

0

5

10

15

20

25

30

BART, P=10 BART, P=100 BART, P=1000

0 5 10 15 20 25 30

0

5

10

15

20

25

30

DART, P=10

0 5 10 15 20 25 30

DART, P=100

0 5 10 15 20 25 30

DART, P=1000

y-axis: estimated µ̂, x-axis: real µ

Results in Figure 10 show that BART model loses it’s predictive power

when too many irrelevant predictors are considered in the model, in-

stead DART keeps it’s performance independently of P .

We can see another hint of this behavior by looking at Figure 11.

The plot shows the probability that predictor j is selected by the model

and used for inference. Increasing P we can see that DART keeps the

probability of including noise variables in the model lower than BART

does.
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Figure 11: Probability of inclusion of predictors in the model
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A.3 Smoothness simulation results

I conduct a simulation on posterior smoothness to compare BART and

SBART with this setting: priors are kept at default; number of burn

in simulations is 100; number of posterior samples is 1000; number of

trees is 200. Results are shown in Figure 12. Simulations are run using

BART package of previous section and SBART package available at

https://github.com/theodds/SoftBART.

The graph shows the estimates of two different functions, namely

f(x) = 10x is panels (a) and (b) and f(x) = 10sin(2πx) in panels

(c) and (d). Results show that SBART produces a smoother fit.

https://github.com/theodds/SoftBART
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Figure 12: BART vs. SBART smoothness simulation
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A.4 The MH algorithm for drawing Tj

The algorithm of Chipman et al. [1998] for sampling trees, proposes

a new one by applying one of the following modifications at each leaf

node:

1. GROW: randomly pick a leaf node and split it in two child nodes,

assigning to each a parameter µij drawn from the prior;

2. PRUNE: randomly pick a parent of two terminal nodes and make

it a leaf node, collapsing parameters below it;

3. CHANGE: randomly pick an internal node and reassign it’s split-

ting rule according to the prior;
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4. SWAP: randomly pick a parent-child pair and swap their splitting

rule.

In the SBART formulation, authors consider only the first three rules:

GROW, PRUNE and CHANGE. Transitions to new trees are per-

formed computing the usual α probability of acceptance and weighting

it by means of likelihood computations.

B On asset pricing

B.1 Data source

The data I’m using in the analysis section of this thesis is entirely taken

from Fama&French database∗∗. In particular I pick, under “ U.S. Re-

search Returns Data (Downloadable Files)”, the “Fama/French 5 Fac-

tors (2x3) [Daily]” data for RF, Market Returns, SMB, HML, RMW

and CMA. The dataset is composed by daily entries of these seven

variables, ranging from July 1, 1963 to May 31, 2022, for a total of

7 · 14.831 = 103.817 observations. In “Details” there is an explanation

of how the dataset in constructed, formulas used by the authors for

factors computation and reference to stocks analyzed.

For stock returns I pick “5 industry portfolios [Daily]”. This dataset is

composed by daily returns of five portfolios composed by assets cat-

egorized by the authors through the four-digit SIC codes. The five

categories are:

Cnsmr Consumer Durables, Nondurables, Wholesale, Retail, and Some

Services (Laundries, Repair Shops);
∗∗available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Manuf Manufacturing, Energy, and Utilities;

HiTec Business Equipment, Telephone and Television Transmission;

Hlth Healthcare, Medical Equipment, and Drugs;

Other Other — Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Enter-

tainment, Finance.

Data range from July 1, 1926 to July 31, 2022. Further details can be

found in “Details” section near dataset link of the same webpage.

For completeness, I use also “Momentum Factor (Mom) [Daily]”, which

is a factor introduced in Carhart [1997] and can be found in Fama&French

webpage.

Since factor data include a narrower time span of observations com-

pared to the other datasets, I drop all years of observations that are

not complete or that come with missing data.

C SBART application details

I report in Table 15 RMSE of the simulations in section 4. RMSE mea-

sures the variance between prediction and real value and is computed

as

RMSE =
∑ (ŷ − y)

n

2

For every model and dataset, there are two values: the first is RMSE

of training data; the second is the one of test data. Results show that

Model 1 (CAPM) and Model 5 (Fama&French five factors without

HML) generally perform better than the others. We can see that for

Models 3, 4, 6 and 7, test (prediction) RMSE is always higher that the
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one of Models 1 and 5. Model 2 (Fama&French three factors) perform

good just with Cnsmr and Other data.

Table 15: RMSE of models in section 4

Y Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Cnsmr 0.418 0.359 0.344 0.352 0.349 0.342 0.338

0.761 0.764 0.910 0.805 0.774 0.828 0.836
Manuf 0.443 0.413 0.406 0.411 0.399 0.406 0.409

0.777 0.874 0.952 0.936 0.748 0.923 1.064
HiTec 0.511 0.534 0.575 0.557 0.578 0.586 0.589

0.735 0.960 1.057 0.958 1.013 0.983 1.041
Hlth 0.442 0.446 0.454 0.445 0.427 0.460 0.460

0.733 0.914 1.027 0.952 0.842 0.964 0.957
Other 0.459 0.450 0.449 0.455 0.428 0.450 0.450

0.752 0.734 0.940 0.929 0.784 0.977 0.937

These results support the the idea of Fama and French [2015] that

HML is redundant, in fact, models that include it have a substantially

higher prediction error. The best model for prediction seems to be the

simple CAPM, which has the lower prediction RMSE in three out of

five datasets and still performs good in the remaining two.

I report here the graphs of posterior probability of inclusion, one for

each of the 35 regressions in Section 3 and grouped by model (7 figures,

each composed of 5 graphs). The red vertical line present in the graphs

is used to distinguish factors (to the left) and noise variables (to the

right). The factors are ordered as in their formulations in Equations 9

to 15. Results are presented in Figures 13 to 19.

I report also plots of y(x-axis) vs. ŷ(y-axis) of a part of the observa-

tions in Figures 20 to 26. We can see that generally HiTec and Hlth

datasets present more skewed plots.
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Figure 13: Asset pricing application. For Model 1, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 14: Asset pricing application. For Model 2, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 15: Asset pricing application. For Model 3, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 16: Asset pricing application. For Model 4, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 17: Asset pricing application. For Model 5, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 18: Asset pricing application. For Model 6, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 19: Asset pricing application. For Model 7, plot of posterior probability of inclusion of
factors, for the following sectors: consumer (Cnsmr), manufacturing (Manuf), technology (HiTec),
health (Hlth) and others (Other)
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Figure 20: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 1
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Figure 21: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 2
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Figure 22: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 3
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Figure 23: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 4
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Figure 24: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 5
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Figure 25: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 6
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Figure 26: Asset pricing application. True yi (horizontal axis) vs. estimated ŷi (vertical axis),
Model 7
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C.1 Partial dependence simulations using Friedman [1991] formula

Recall Friedman [1991] formula:

f0(x) = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (17)

Given this formula, we expect that the partial dependence of estimated

f0 is: sinusoidal against x1 and x2; concave against x3; linear against

x4 and x5.

To perform this simulation, the default setting of “pdsoftbart” is used:

n. of trees = 20; n. of burn-in iterations = 2500; n. of save iterations

= 2500.

Results presented in Figure 27 confirm our expectations: partial de-

pendence shapes respect the formulation that we have in Equation 17.

Figure 27: Partial dependence of f0 against predictive variables x1, x2, x3, x4 and x5
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