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Abstract. In this work, we address the jigsaw puzzle solving task, proposing

an automated pipeline to assess the adjacency relationship among tiles and

order them. In particular, we compare two approaches Relaxation Labeling

(ReLab) and Puzzle Solving by Quadratic Programming (PSQP). We train

convolutional neural networks (CNNs), trying di↵erent methods to extract

compatibility between tiles of images, first by approaching the task as a super-

vised learning problem and then by using self-supervised learning, a variation

of the unsupervised learning theme. We build a CNN trained for a pretext

task, which can later be repurposed to extract tiles compatibility. Finally, we

test di↵erent combinations of CNNs – as automatic feature extractors – and

puzzle solving methods on publicly available datasets, providing the feasibility

of our proposed method.
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1 Introduction

Jigsaw Puzzles were originally proposed in the 18th century by John Spilsbury

for educational purposes. The problem of puzzle solving consists of combining

small pieces of an image to produce a coherent picture when they are reordered.

The rearrangement of a set of non-overlapping square pieces on a 2D grid in a

way to produce a coherent image can be formally described as, the search for

a particular permutation of such pieces.

Puzzle solving can become notably challenging when we have to manage pic-

ture that represents nature, building, or, more generally repetitive design and

patterns.

If the a�nity between tiles is uncertain, the task of puzzle solving is considered

NP-complete [6], anyway, in the last few years such kind of tasks gained much

attention and their application can be seen in several problems like: recon-

struction of archaeological paintings [17] [2] , shredded documents [34] [13],

or in speech recognition [33], image editing [4], DNA modelling [16] and some

more. Moreover, also several approaches have been employed to solve jigsaw

puzzles. They either use deep neural networks to predict feasible positions for

the tiles or hand-crafted compatibility measures combined with algorithms for

puzzle reordering [10, 20, 22, 31]. Each approach tackles puzzle solving with

di↵erent constraints.

In our work, we address the problem of reassembling pictures from small square

non-overlapping tiles with identical dimensions, to be positioned in a rectan-

gular grid of the same shape and size as the original picture. Also, we assume

that each tile has a specific orientation. In contrast to physical tiles we work

with pieces that have linear boundaries, so they do not retain additional geo-

metric information, which makes the rearrangement even more challenging.

Jigsaw puzzle solving can be viewed as the combination of two smaller tasks,

compatibility extraction, and tiles reordering. Compatibility extraction con-

sists of finding for each tile which other pieces are likely to be its neighbor

relying on their color information. When puzzle pieces bring equivalent color

information, compatibility extraction can become pretty complex. Tiles re-

ordering is the sub-task of finding the best permutation of tiles such that the
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result is as similar as possible to the original image. The main di�culty in

tile reordering is the exponential increase of feasible solutions as the number

of tiles grows.

For compatibility extraction, we propose a self-supervised deep neural network

that should classify neighboring pieces similarly. Then, through a correlation

measure, we find the compatibility of tiles and build a compatibility matrix.

The proposed metric does not use any hand-crafted measure that evaluates

the compatibility of adjacent pieces. Our deep neural network is trained first

on the pretext task of detecting rotation of tiles, and then, on the actual task

of learning compatibility. For puzzle reassembling, we use two di↵erent solvers

that have already been exploited in literature, PSQP from Andalo et al.[1] and

relaxation labeling from Khoroshiltseva et al.[14].

In the end, we test our solution on some publicly available datasets (MIT and

McGill), and we compare it with some methods already present in the liter-

ature. We provide the feasibility of our solution by showing that our CNN,

which works in an unsupervised domain, achieves slightly lower results com-

pared to some of the best hand-crafted compatibility metrics.
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Fig. 1: Classification of some puzzle solving methods (from [1]).

2 Related Work

In Figure 1 we sum up some of the methods that we are mentioning below.

In 1760, John Spilsbury created the first jigsaw puzzle. He attached one of

his world maps to wood and sliced each country out, giving it to children for

geography education [36]. Later, in 1964, Freeman and Garder [7] presented

the first attempt to computationally solve jigsaw puzzles. In the later years,

other methods concerning solving apictorial puzzles were published [3, 9, 27].

In apictorial puzzles, the pieces should be matched only by their shape, in-

stead, in pictorial puzzles, identical rectangular pieces, traditional pieces, and

also irregularly shaped pieces are considered and the matching characteristic is

mainly the chromatic information of the pieces. Figure 2 shows some examples

of di↵erent types of puzzles. The first to propose a method to use both jigsaw

shape and image information was Kosiba et al.[15], they were able to success-

fully solve puzzles of 54 pieces with a greedy strategy. Their tile matching

process was the first to compute adjacent tiles compatibility by taking into

account color samples along the edges. Since there, a few other similar meth-

ods have been proposed [18, 26, 32], then the research focus shifted to merely

color-based square-tiles puzzle solvers.

In 2010, Cho et al.[5] presented a probabilistic pictorial puzzle solver which

obtained an approximate reconstruction of the original image using graphical
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(a) (b) (c)

Fig. 2: Di↵erent design of puzzle problems. (a) irregular shaped pieces, (b)
traditional shaped tiles, (c) linear boundary tiles.

models and a probabilistic function. The method needs prior knowledge about

the layout of the original image, to achieve that they exploited two strategies:

estimation of the image in low resolution from a few tiles, to serve as local evi-

dence in the graphical model; and the correct fixation of some tiles by the user,

called anchors. This method was capable to solve puzzles up to 432 pieces,

but it requires some user intervention.

Furthermore, Pomeranz et al.[22] introduced a fully automated square jigsaw

puzzle solver based on a greedy method able to handle puzzles of up to 3000

pieces. Their strategy consists of, first, a compatibility function to measure

a�nity between every pair of tiles. Then there are three modules, positioning,

segmentation, and translation. The positioning module places all the tiles on

the grid according to predetermined logic and takes into account the seeds

selected at random; the segmentation module uses the best buddies metric to

find regions that are assembled correctly; and the translation module which

relocates both regions and tiles on the board such that a better solution is re-

constructed. A more general solution was proposed by Gallagher et al.[8], the

method employs neither piece orientation nor puzzle dimension but it works

on square pieces and it uses a new compatibility measure for quantifying the

compatibility of possible jigsaw piece matches based on expecting smoothness

in gradient distributions across boundaries and a tree-based greedy approach.

This strategy allows for reassembly puzzles of up to 9600 pieces.

Sholomon et al. [29] introduced a genetic algorithm that with knowledge of
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tile rotation and puzzle dimensions can solve puzzles up to 22834 puzzle pieces.

In literature other strategies of puzzle solving have been studied, some of that

is the methods suggested by Andalo et al.[1] and Khoroshiltseva et al.[14].

Andalo et al.[1] reduced the formulation of the puzzle solving problem to the

maximization of a constrained quadratic function, which can be solved by

the gradient ascent approach [24]. The proposed deterministic method can

solve puzzles of up to 3300 pieces and even with arbitrary identical rectangu-

lar pieces. Khoroshiltseva et al.[14] also provided a novel method that uses

some of the previously cited compatibility measures but abstracts the puzzle

solving task as a consistent labeling problem which amounts to maximizing a

quadratic function over a probability space that can be solved using standard

relaxation labeling algorithms.

Sholomon et al.[30] proposed a di↵erent way of extracting compatibility, in

their paper is presented the first deep neural network capable to predict with

high precision whether two tiles of a puzzle are neighboring or not. But they

stated that they trained their network in a supervised manner. In our work,

we try to find a model capable of extracting compatibility by exploring the

unsupervised learning theme.
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3 Puzzle Solving

3.1 Relaxation Labeling

First of all, we formulate the task of puzzle solving as a consistent labeling

problem that needs to satisfy particular compatibility relations and with a

one-to-one correspondence between the puzzle’s tiles and their position. We

can solve this kind of problem using the relaxation labeling algorithm which

has the advantage of avoiding the choice of a step size [21].

A consistent labeling problem can be defined as follow, suppose to have: a set

of n objects B = {1, . . . , n}; a set of m labels ⇤ = {1, ...,m}. The goal of these

kinds of problems is to assign a label of ⇤ to each object of B.

In the beginning , for each object i 2 B, the algorithm starts with an initial

m-dimensional probability vector:

p
(0)
i� = (p(0)i1 , ..., p

(0)
im)

T

with p
(0)
i� � 0 and

P
� p

(0)
i� = 1.

Each p
(0)
i� represents the probability distribution that the object bi at time 0

is labeled with �. There is one probability distribution associated with each

object in B and if we concatenate all of these probabilities vectors p(0)1 , ..., p
(0)
n ,

we get the initial weighted labeling assignments p
(0)
2 Rnm. Otherwise, the

labeling assignments can be handled as a matrix p that belongs to the space

IK defined as:

IK = �m = �⇥ · · ·⇥� (3.1.1)

where � is the standard simplex of Rn.

�m =

(
p 2 Rm

| pi� � 0,� 2 ⇤ ^

mX

�=1

pi� = 1, i = 1, ..n

)
(3.1.2)

each vertex of IK is called unambiguous labeling assignment [21].

An initial labeling assignment may be based on local measures that capture the

relevant features of individual isolated objects. Another kind of information is
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3.1 Relaxation Labeling

used, contextual information helps to enhance the weak labeling assignments

given by the local measurements. Contextual information is expressed in terms

of n2
⇥m

2 matrix of compatibility coe�cients:

R = rij�,µ, (3.1.3)

where rij�,µ reflects the compatibility between the hypothesis bi has label �

and bi has label µ.

We can measure the support given by the context to the hypothesis bi has

label � at time t as [12]:

qi�(t) =
X

j

X

µ

rij�µpjµ(t) (3.1.4)

By properly weighting and combining the support of all labels at all objects,

we can also quantify the average support of the assignment, or the so-called

average local consistency [12][14]

A(p) =
X

i,j

X

�,µ

rij�µpi�pjµ (3.1.5)

A labeling assignment p is consistent if for all v 2 �n⇥m

mX

�

pi�qi� �

mX

�

vi�qi� 8i = 1, ...n (3.1.6)

and if the matrix R is symmetric, then any local maximizer p 2 �n⇥m of A(p)

is consistent [12].

At each iteration step, the algorithm updates the probability vectors using the

following heuristic formula, provided by Rosenfeld, Hummel, and Zucker in
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3.1 Relaxation Labeling

1976 [25, 21]:1

pi�(t+ 1) =
pi�(t)qi�(t)P
µ piµ(t)qiµ(t)

8i,� (3.1.7)

Advantages of this update rule are that it does not require the choice of step

size, and, that the non-negativity and symmetry conditions on the matrix R,

guarantee convergence to a consistent labeling [25].

To formulate the task of puzzle solving as a consistent labeling problem, we

define the set of objects B as the puzzle tiles, the labels ⇤ as all the possible

positions in the grid, and the goal is for each tile from B to find a di↵erent

position from ⇤ such that the average local consistency is maximized. Unless

we are under the case of ”ideal” compatibility, the algorithm might converge

to an incorrect permutation matrix. Even if the update rule guarantees that p

is a stochastic matrix, rows sum to 1, and we do not have the same constraints

for its columns. Thereby, the process can converge to a solution where several

tiles are assigned to the same position and other positions have no tiles at all

assigned to them. Hence, to help the relaxation algorithm to converge into a

permutation matrix, we performed the Alternating projection [14]. This pro-

cedure starts after t steps, we choose t = 10, so first, it uses the update rule

(3.1.7) for t steps, then it switches alternatively between the update rule in

equation (3.1.7) and the following:

pi�(t+ 1) =
pi�(t)qi�(t)P
j pj�(t)qj�(t)

8i,� (3.1.8)

Use of this procedure is possible since objects and labels in the puzzle solving

abstraction are interchangeable.

To sum up, we initialize the initial label assignment p(0) to the barycenter

of the multidimensional simplex, pi�(0) =
1
m for all i and all � and we update

1Rosenfeld, Hummel, and Zucker in their original paper [25] used 1 + qi�(t) instead of
qi�(t), because their qs were correlation measures. Overall, their formulation is interchange-
able with what is stated here [21]
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3.1 Relaxation Labeling

permutation matrix according to the alternating projection method until con-

vergence. We reach convergence when the euclidean di↵erence between p(t)

and p(t + 1) is lower than a given threshold or when we reach the maximum

number of iterations that we set at 200.
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3.2 PSQP

3.2 PSQP

In this section, we explain the functioning of Puzzle Solving by Quadratic Pro-

gramming (PSQP). Also this method, as the ReLab, is based on the maximiza-

tion of a global compatibility function, but it requires additional constraints

and uses the gradient projection method proposed by Rosen to solve the max-

imization problem. [24]. Maximizing the global compatibility function should

bring us to a solution where we find the best permutation among tiles, and a

local compatibility measure of tiles being placed in neighboring locations.

PSQP does not need any hyperparameter, we give it only the compatibility

matrix and the number of tiles.

To explain the PSQP, first, we will illustrate the compatibility function and

show its reformulation as a quadratic homogeneous function. Then, we are

going to describe the method used to solve the optimization problem.

3.2.1 Global compatibility function

As done for the Relaxation Labeling, we have a 2D grid with N locations

labeled 1, ...N and N tiles, t1, ..., tN . And we have to find a rearrangement

for each tile in a di↵erent location. The biunivocal correspondence between

locations and tiles can be described by a permutation ⇡ of N tiles.

We arrange this formulation in a directed graphG = {V,E = EH

S
EV }, where

the vertices represent the locations, V = {1, . . . , N}, and the edge set E include

all pairs of neighboring locations. Sets EH and EV represent horizontal and

vertical neighboring locations, respectively. Graph G is directed because a

switch of two tiles results in a global compatibility value change.

For each pair of tiles (ti, tj), for 1  i, j  N and i 6= j, we define two

local compatibility measures, CHi,j
� 0 and CV i,j � 0, which correspond to

the compatibility of the two tiles being associated with locations connected

by any horizontal edge e 2 EH or vertical edge e 2 EV . Finally, the global
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3.2 PSQP

compatibility function of a permutation ⇡ is

"(⇡) =
X

(i,j)2EH

CH⇡(i)⇡(j)
+

X

(i,j)2EV

CV⇡(i)⇡(j)
(3.2.1)

where (i, j) is the edge that connects the adjacent locations i and j, and ⇡(i)

is the tile permuted to location i [1].

Taking in account all permutations ⇡ of N elements, the goal is to maximize

this function (eq 3.2.1).

3.2.2 Reformulation of global compatibility function

Next, we reformulate the global compatibility function (eq. 3.2.1) as a homo-

geneous quadratic function of a square matrix.

A permutation matrix can be used to represent each permutation ⇡ of N ele-

ments:

Pik =

8
<

:
1, if k = ⇡(i)

0, if k 6= ⇡(i)
(3.2.2)

Permutation matrices are a special case of doubly stochastic matrices [28],

non-negative matrices in which each row and each column sum up to 1.

With this notation, we can rewrite the equation 3.2.1 as:

"(⇡) =
X

(i,j)2EH

(P T
CHP )ij +

X

(i,j)2EV

(P T
CV P )ij (3.2.3)

where (P T
CP )ij, corresponding to edge e = (i, j), is the element i, j of the

square matrix (P T
CP ). Note that, for each edge e = (i, j), the term (P T

CP )

is a homogeneous non-negative quadratic function of elements of matrix P [1].

If we stack up the columns p1, ..., pN of matrix P of dimensions N ⇥ N in a
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3.2 PSQP

column-vector p of dimension N
2, we get

"(⇡) =
X

(i,j)2EH

(pTi CHpj) +
X

(i,j)2EV

(pTi CV pj)ij (3.2.4)

Last, equation (3.2.4) can be rewritten in the canonical quadratic form p
T
Ap,

where A is a symmetric non-negative block matrix of dimension N
2
⇥N

2 that

corresponds to the Hessian of "(P )

"(P ) = p
T
Ap (3.2.5)

For example, if we have a 3x3 puzzle, the block matrix A have dimensions

81x81 and each block is a 9x9 null matrix, CH , CV , or their transposes.

Fig. 3: An example of the symmetric block matrix A of dimensions 81x81,
where each block is a 9x9 matrix.

3.2.3 Constrained Gradient Ascent

An important point is that each doubly stochastic matrix satisfies N2 inequal-

ity constraints, which specify that the elements of p are non-negative, and 2N

equality constraints, which specify that the sum of elements of each row and

each column of P is equal to 1. Now, we have all the ingredients to introduce

the formulation of the problem as a quadratic optimization problem and the

algorithm to solve it.

If we extend the domain of "(P ) for all doubly stochastic matrices, we can re-

duce the problem to finding a solution for the quadratic optimization problem:
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3.2 PSQP

max f(p) = p
T
Ap,

s.t. P1 = 1,

P
T1 = 1,

pk � 0, 8k = 1, ..., N2

(3.2.6)

where 1 is an N-column vector of ones.

Since all diagonal values of A are zeros, we have that the matrix is not positive

definite nor positive semi-definite. This means that even if f(p), the objective

function, is positive on the feasible set, it is not necessarily concave. So, there is

no guarantee to reach the global maximum, but working with the constraints,

we can search for a local maximum of Equation (3.2.6) that represent a close

solution to the global maximum.

The chosen algorithm is a constrained gradient ascent method with gradient

projection [24].

The algorithm has a set of active variables, that are used to log the ones that

are still in the feasible set. To avoid further updates on the variables, this ac-

tive set is used to deactivate the variables that reach the boundary of the set.

In this way, every time a variable is deactivated, we reduce the dimensionality

of the problem by one. In the begin all the variables are initialized as pkl =
1
N ,

for 1  k, l  N and the whole set to active, activekl tell if pkl is active or not.

The ascent direction is computed as d = rf(p) = 2 ⇤A ⇤ p at current p. But,

it may be that the ascent direction does not remain in the space defined by

the linear equality constraints. Hence, there is the need to project the ascent

direction d into the space defined by the linear equality constraints. To derive

the constrained ascent direction s we first need to find the projection matrix

as done in equation (3.2.29) in section 3.2.4 [24].

Then we normalize the ascent direction s as in equation (3.2.30). Thus, p is

computed as pkl  pkl + step ⇤ s, for 1  k, l  N and activekl = true, to

estimate the best value for step such that 0  pkl  1, we used the line search

function provided by scipy [35].

Whenever a variable reaches the boundary of the feasible region, to keep it

there and not update it anymore, the constraints should be modified and
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3.2 PSQP

p must be re-initialized. For the purpose of reinitialize p, first the vari-

ables equal to 0 or 1 are deactivated, then we initialize pkl  
1

N�Na

, for

1  k, l  N and activekl = true, where Na is the number of variables that

have already reached the upper limit. A variable reaches the upper limit when

it is equal to 1, which means that the variable has been assigned to a location.

The algorithm ends when all locations have a variable assigned.

The following pseudo-code gives a rough idea of the used algorithm [1].

Algorithm 1: Constrained Gradient Ascent
Data: block matrix A, number of tiles N.

Result: permutation ⇡ of tiles.

Na  0

activekl  true, for 1  k, l  N

while Na  N do

pkl  
1

N�Na

, for 1  k, l  N and activekl = true

d rf(p) 2 ⇤ A ⇤ p

s Kd, where K is the projection matrix

pkl  pkl + step ⇤ s, for 1  k, l  N and activekl = true

for 1  k, l  N and activekl = true do

if pkl = 0 then

activekl  false

end

if pkl = 1 then

activekl  true

⇡(l) k

Na  Na + 1
end

end

end
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3.2 PSQP

3.2.4 Rosen Gradient Projection Method

In the previous subsection, we have seen that there is the need to project the

ascent direction into the space defined by the linear equality constraints, the

computation of the search direction is then defined in the following lines.

A problem with m variables, xi, i = 1, ...,m is considered. Any set of values

for the xi can be represented by an m-dimensional column vector,

x = {x1, x2, ..., xm} (3.2.7)

where xi represents a point in a Euclidean m-dimensional space Em.

By assumption, these variables are constrained by a set of k linear inequalities,

which form a convex region R in Em. A point in the convex region R is called

a feasible point. The constraints are in the form

mX

j=1

nijxj � bi � 0 (i = 1, 2, ..., k) (3.2.8)

where the nij have been normalized, so that

mX

j=1

n
2
ij = 1 (i = 1, 2, ..., k) (3.2.9)

To each of the k constraints, there is a corresponding vector ni defined as

ni = {ni1, ni2, ..., nim} (3.2.10)

These are unit vectors, since |ni|
2 = n

T
i ni =

Pm
j=1(nij)2 = 1, by equation

(3.2.9). Thus, the inequalities in equation (3.2.8) can be written as

x
T
ni � bi = gi(x) � 0 (i = 1, 2, ..., k) (3.2.11)

18



3.2 PSQP

The (m� 1)-dimensional manifold defined by gi(x) = 0 is a hyperplane which

will be denoted by Hi

Hi : gi(x) = 0 (i = 1, 2, ..., k) (3.2.12)

All the points for which gi(x) � 0 i = 1, 2, ..., k form the closed convex region

R and all the points for which gi(x) = 0 for at least one i form the boundary

B of R. The unit vector ni is orthogonal to Hi and is directed so that if it

originates at a point x in Hi it points ”into” the region R.

Now, consider a problem with linear constraints

Maximize f(x)

subject to

gi(x) = x
T
ni � bi =

mX

j=1

nijxj � bi � 0 (i = 1, 2, ..., k) (3.2.13)

Define the m⇥ k matrix:

N = [n1 n2 . . . nk] (3.2.14)

and the k-dimensional vector

b = [b1, b2, . . . bk] (3.2.15)

Then the system of inequalities 3.2.13 can be written conveniently as

N
T
x� b � 0 (3.2.16)

The direction-finding problem for obtaining a usable feasible direction S can

be formulated as

Find S which maximize S
T
rf(x)

subject to

N
T
S = 0 (3.2.17)
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3.2 PSQP

S
T
S � 1 = 0 (3.2.18)

where the equation (3.2.18) denotes the normalization of the vector S. To solve

this equality constrained problem, we construct the Lagrangian function as

L(S,�, �) = S
T
rf(x) + �

T
N

T
S + �(ST

S � 1) (3.2.19)

where

� =

8
>>>><

>>>>:

�1

�2

. . .

�k

9
>>>>=

>>>>;

(3.2.20)

is the vector of Lagrange multipliers associated with equation (3.2.17) and �

is the Lagrange multiplier associated with equation (3.2.18). The necessary

conditions for the maximum are given by

@L

@S
= rf(x) +N�� 2�S = 0 (3.2.21)

@L

@�
= N

T
S = 0 (3.2.22)

@L

@�
= S

T
S � 1 = 0 (3.2.23)

Equation (3.2.21) gives

S =
1

2�
(rf +N�) (3.2.24)

Then, substitution of equation (3.2.24) into equation (3.2.22) gives

N
T
S =

1

2�
(NT
rf +N

T
N�) = 0 (3.2.25)

20



3.2 PSQP

If S is normalized according to (3.2.23), � will not be zero, thus equation

(3.2.25) gives

N
T
rf +N

T
N� = 0 (3.2.26)

from which we can extract � as

� = (NT
N)�1

N
T
rf (3.2.27)

from this last equation, if we substitute �, equation (3.2.24) gives

S =
1

2�
(I �N(NT

N)�1
N

T )rf =
1

2�
Prf (3.2.28)

where P is the so called projection matrix

P = I �N(NT
N)�1

N
T (3.2.29)

Forgetting about the scaling constant 2�, we have that the matrix P projects

the vector rf(x) into a convex region bounded by the constraints.

We assume that the constraints gi(x) are independent so that the columns of

the matrixN will be linearly independent, and henceNT
N will be non-singular

and invertible. The vector S can be normalized as

s =
Prf

||Prf ||
(3.2.30)

If xi is the starting point for the i-th iteration, from equation (3.2.30) we

compute Si as

si =
Pirf(xi)

||Pirf(xi)||
(3.2.31)

where Pi represent the projection matrix P evaluated at the point xi [23].
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3.2 PSQP

3.2.5 Linearly dependent constraints

There might be the case where in the Euclidean space Em there are linearly

dependent hyperplanes, which requires an additional procedure. The steps

can be summarized as follow, assume that a point x0, which can be an initial

point or obtained during the optimization, lies in a total of q + p hyperplanes

of which only q are into the projection matrix Pq. The vector S is computed

according to (3.2.30), and the quantities

✓i = s
T
ni (i = q + 1, . . . , q + p) (3.2.32)

obtained. For any Hi linearly dependent on the original set of q hyperplanes,

the corresponding ✓i = 0. Let ✓ = min ✓i, i = q + 1, . . . , q + p.

Suppose ✓  0 and ✓ = ✓i for i = q + 1. Then add Hq+1 to the projection

matrix Pq giving Pq+1. With Pq+1 replacing Pq in equation (3.2.30) a new

vector s is computed. Replicating this process will retrieve a vector s such

that Np+qs � 0 and s
T
rf(x0) > 0 allowing to take a step with an increase

in f(x), or a projection matrix Pq+l, 1  l  p, will be obtained for which

Pq+lrf(x0) = 0. In the second case, the discussion at the end of the previous

section applies and x0 is either a global maximum or a suitable ascent direc-

tion s can be found. In the case where x0 is an initial point that lies on the

boundary of the closed convex region R, the just discussed procedure applies

with q = 0 and p representing the number of hyperplanes containing x0 [24].

3.2.6 Reformulation of the quadratic optimization problem

In order to apply Constraint gradient projection method formulated by Rosen

[24], we need to transform the equality constraints in equation (3.2.6) into

inequality constraints as in equation (3.2.13).

Let i and k be two tiles of the puzzle, with i, k 2 {1, . . . , N}, then define an
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3.2 PSQP

one-hot encoding column vector oi of dimension N, as follow:

oi(k) =

8
<

:
0, if i 6= k

1, if i = k, 8k = 1, . . . , N

Further, let:

1
(n)
i = o

t
i ⌦ 1

T

with ⌦ being the Kronecker product and 1 being the N-dimensional column

vector of one, in other words

1
(n)
i = (0, . . . , 0,

n⇤i,...,n⇤(i+1)z }| {
1, . . . , 1 , 0, . . . , 0)T

where the j-th element is equal to 1 if it is in the i-th row of P.

By inverting the one-hot vector and the vector of ones in the Kronecker product

we get the same kind of row-vector but row related.

10(n)
i = 1

T
⌦ o

T
i

Last, we flatten the matrix P in the column-vector p

max f(p) = p
T
Ap,

s.t. pi·1� 1 � 0,

� pi·1 + 1 � 0,

p·j1� 1 � 0,

� p·j1 + 1 � 0,

pk � 0, 8i = 1, ..., N

8j = 1, ..., N

8k = 1, ..., N2

(3.2.33)
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3.2 PSQP

By plugging the previous formulas of the one-hot encoding vector oi, 1
(n)
i and

10(n)
i into the problem (3.2.33), we finally obtain

max f(p) = p
T
Ap,

s.t. 1
(N)
i p� 1 � 0,

� 1
(N)
i p+ 1 � 0,

10(N)
i p� 1 � 0,

� 10(N)
i p+ 1 � 0, 8i = 1, ..., N

o
(N2)
(i) p � 0, 8i = 1, ..., N2

(3.2.34)
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3.2 PSQP

3.2.7 PSQP tricks

Two new issues arise, how to rearrange constant tiles and how to handle the

non-concave property of the global compatibility function. First, the constant

tiles are tiles whose borders have identical color information. These types of

tiles cause problems because they have total compatibility among them and

the same compatibility with all other non-constant tiles. To solve this issue,

we simply ignore constant tiles. If the total compatibility is replaced by zero

compatibility, the method will not analyze these tiles, and they will be as-

signed to an empty location by the end of the optimization method [1]. As all

the borders of the constant tile are equal, the permutation used to place them

does not matter. Note that, we do not distinguish distinct constant tiles, for

example, all green tiles and all blue tiles are considered equally and handled

in the same way.

The other issue is associated with the non-concavity of the global compatibility

function, which means, there is no guarantee that the Gradient Ascent method

reaches the global optimum. Andalo et al. [1] stated that in some images with

quite a few constant tiles, the final permutation may be a displacement of the

correct permutation. To adjust the displacement they proposed the following

post-processing step: for all the final permutations ⇡ changed by every possible

cyclical shift, considering each row and each column, compute the compatibil-

ity function "(⇡). Then, pick the shift that generates the bigger increase in

global compatibility.

The post-processing step can be summarized in the Algorithm 2.

Algorithm 2: Post-Processing
Data: the final permutation ⇡

Result: permutation ⇡ of tiles.

⇡  ConstrainedGradientAscent(A,N)

stHmax
, stVmax

 argmax GlobalCompatibility(⇡, stH , stV )

⇡final  Shift(⇡, stHmax
, stVmax

)
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3.2 PSQP

In Algorithm 2, function ConstrainedGradientAscent returns the permu-

tation of tiles ⇡, function GlobalCompatibility computes the global compati-

bility "(⇡) after applying to ⇡ all the possible cyclical shifts horizontally stH

and vertically stV . stHmax
stVmax

are respectively the horizontal shift and ver-

tical shift that generate the highest "(⇡). Last, function Shift applies to the

permutation ⇡ the shifts stHmax
and stVmax
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4 Learning Compatibility

As of now, most of the puzzle solving works rely on a highly precise hand-craft

compatibility measure to predict whether two tiles are neighboring or not.

We aim to learn compatibility by exploiting the power of feature extraction

through deep neural networks. The neural network should be capable to find

similar embedding for adjacent pieces. These embedding will be given to a

similarity function that will tell if the tiles have been classified similarly.

Our methods will be composed of three steps. First, a deep neural network

classifies each tile in the image. The embedding of each tile will be given in

pair to a correlation similarity function which will return the actual compati-

bility of the tiles. In the end, one of the previously mentioned solvers will be

used to find the best permutation of tiles.

Assuming that given a good compatibility matrix, we can solve any puzzle up

to about 400 tiles. From now, we focus on finding a neural network that given

all the tiles of the puzzle can extract such compatibility.

For both of our approaches, we use the ResNet50 as the base network and we

do transfer learning on it. In each dataset, there are 20 di↵erent images, and

all tiles have sizes of 28x28 pixels.

4.1 Architecture (ResNet50)

(a)
(b)

Fig. 4: (a) Residual building block. (b) Left: 2-layer building block for ResNet-
34. (b) Right: ”bottleneck” building block for ResNet-50.
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4.2 Baseline approach

With the aim of implementing image classification algorithms for the ImageNet

Large Scale Visual Recognition Challenge, a lot of deep networks have been ex-

ploited. Deeper neural networks can learn more complex functions and extract

more features, but with the increase of depth, the problem of degradation has

been exposed, accuracy gets saturated and then degrades quickly. In residual

neural networks, the degradation problem is addressed by introducing a deep

residual learning framework.

The first introduced residual network was the ResNet-34 [11], where every few

stacked layers, instead of fitting a desired underlying mapping, are required to

fit a residual mapping. If we define the underlying mapping of a few stacked

layers as H(x) where x is the inputs of the first of these layers, rather than

expect stacked layers to approximate H(x), we explicitly let these layers ap-

proximate residual function F(x) := H(x) � x. Thus, the original function

can be reformulated as F(x) + x. It should be easier to optimize the residual

mapping that to optimize the original, non-referenced mapping.

The reformulation of F(x)+x can be achieved by implementing shortcut con-

nections into a feedforward neural network. Shortcut connections allow to skip

some layer and add their output to the outputs of the stacked layers, this lets

the model learn an identity function that guarantees that higher layers perform

at least as good as lower layers, see figure 4 (a) to see an example.

ResNet-34 can be seen as a 34-layer plain network inspired by the VGG-19

where shortcut connections have been added. ResNet-50 is a residual neural

network like the ResNet34 but deep 50 layers total, and where the 2-layer build-

ing block is replaced with a 3-layer bottleneck block. Shortcuts in ResNet-50

are either identity shortcuts or projection shortcuts used for increasing dimen-

sion. In figure 4 (b) we can see the residual learning block for ResNet-34 (left)

and ResNet-50 (right). This model should solve the degradation problem and

also may mitigate the vanishing gradients problem.

4.2 Baseline approach

In the first attempt, we feed the neural network with a piece of the puzzle and

it returns an embedding. We expect to have similar embedding for neighboring
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4.2 Baseline approach

Fig. 5: Architecture of ResNet-50.

pieces. For this approach, the last fully connected layer of the ResNet-50 has

been substituted with one that receives in input the features from the last

convolutional layer and a position value that represents the position of a tile.

Position value can either be 1, or -1, respectively for the left and right position

of a horizontal pair, 2 and -2 represent respectively the top and the bottom

positions of a vertical pair. The goal is to feed the network with the whole set

of tiles of an image without any particular order with each of these position

values, such that as output we have an embedding for every combination of

tile and position value.

Then, to compute the horizontal and vertical compatibility we measure the

similarity of these embedding through the correlation. To do so, we take a pair

of embedding where one is from the set forwarded with position value 1 if we

are computing horizontal compatibility, 2 otherwise and the other is from the

set forwarded with position -1 if we are computing horizontal compatibility,

-2 otherwise. Finally, we can compute the compatibility matrix. We want to

have high compatibility for adjacent tiles.

To achieve this, in the training phase we use the triplet margin loss,

L(a, p, n) = max {d(ai, pi)� d(ai, ni) +margin, 0}

where

d(xi, yi) = kxi � yikp
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4.2 Baseline approach

Fig. 6: Example of the whole pipeline for horizontal compatibility.

and a, p, n are respectively the anchor, positive and negative examples. The

choice of these three examples is critical, so once we have picked an image,

our method consists of selecting at random a tile and using it as an anchor

example. According if we are looking for horizontal or vertical compatibility,

take the tile immediately on the right or at the bottom of the anchor and

use it for both positive and negative examples. For the positive and negative

examples, we use respectively -1 and -2 for horizontal compatibility or -2 and

-1 for vertical compatibility. Each of these examples with a position value run

through the network and the resulting embeddings are used to compute the

triplet loss.

Therefore, we assume that from the training set we have knowledge of the

placement of pairs of tiles.

We choose to use the MIT dataset to train the network and to do validation

on the McGill.

To sum up the whole pipeline, the input of the neural network is a tile and a

position value, the CNN extracts some features from the image, which com-

bined with the position value are given as input to the fully connected layer.
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4.2 Baseline approach

The output is an embedding that will be used to compute the compatibility.

Two tiles next to each other should have similar embedding.

As we can see from table 1, the accuracy on the training set is more than

double the accuracy on the validation set. Hence, as expected, the model is

adapting too much to the distribution of the training set, and is not able to

fit the validation set, which comes from a di↵erent distribution. In synthesis,

this methodology is used as a baseline for comparison with the next approaches.

(a) anchor & 1 (b) positive & -1 (c) negative & -2

(d) anchor & 2 (e) positive & -2 (f) negative & -1

Fig. 7: Example of anchor, positive and negative samples as full tiles with
position values for horizontal compatibility (top row) and vertical compatibility
(bottom row).

In figure 7, we can see an example of anchor, positive and negative samples.

For horizontal compatibility, we refer to the row on the top, in fig.7(a) we have

the tile for the anchor example and it will be forwarded with position value 1.

As positive and negative examples we use the same tile, that is the one on the
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4.3 Self-supervised learning

right of the anchor, but with di↵erent position values, as we noted in fig.7(b)

and fig.7(c). For vertical compatibility, we do it similarly but using the tile on

the bottom of the anchor.

4.3 Self-supervised learning

In order to increase the performances on both datasets, we tried a similar ap-

proach to the one used by Noroozi and Favaro [19].

They proposed to build a convolutional neural network to be trained to solve

a pretext task, Jigsaw puzzle solving, and then use the same model to solve

their main task, object detection. In this way, they aim to have a network

that is able to learn as representative and discriminative features as possible.

After training the network on the pretext task, they use the just computed

weights to initialize a standard AlexNet network, then they re-train the non-

convolution layers of the AlexNet for object detection.

As our main task is Jigsaw Puzzle solving, more specifically being able to

extract embeddings that are similar for tiles that are next to each other hori-

zontally or vertically, we needed to find a pretext task that is at a lower level.

Our choice is to use detecting rotation of tiles as a pretext task.

So, we still start from the ResNet-50 pre-trained on the ImageNet, but we re-

place the last fully connected layer, which is specialized in classification, with

a new one that has four output neurons. Each output neuron corresponds to

a di↵erent degree of rotation, we limited the cases to 0°, 90°, 180°, and 270°.
Since the model achieved pretty accurate results on this task, we decided to

move on to the actual task, learning compatibility.

Therefore we initialized a new ResNet with the weights of the one trained on

detecting rotation but we changed the fully connected layer with four output

neurons with a new one, which takes into account also the position as done for

the baseline approach. To select examples, we use the same method proposed

for the baseline approach, so we pick at random a tile to use as an anchor

example. Next, we pick the tile on its right for horizontal compatibility or on

its bottom for vertical compatibility, we call this match. The match tile is used

as both positive and negative examples but with di↵erent position values (see
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4.3 Self-supervised learning

Fig. 8: Example of the pipeline to estimate rotation of tiles. In this case the
output indicates that the tile is rotated of 180°.

an example in fig.7). Then, we freeze the convolutional layers and re-train the

network to find similar embedding for neighboring tiles.

Even if with this first attempt we reached a bit higher accuracy, it does not

seem to perform on McGill as well as on MIT. Therefore, we changed the

method to select anchor, positive and negative examples. We tried to use half

tiles instead of full tiles, which means, for horizontal compatibility, we ran-

domly choose a full tile, and we split it into two halves, the left one is used as

an anchor example and the right one as a positive example. For the negative,

we pick a tile that is enough di↵erent from the first one, and we keep the

half that is not too similar to the anchor. To learn vertical compatibility the

steps are similar but all the tiles are rotated 90° counterclockwise. In figure

9 we have an example of how we split tiles for both horizontal and vertical

compatibility and also the position values we forwarded together with the half

tiles. With this method of selecting examples and frozen convolutional layers,

we see an improvement in accuracy on both datasets (see table 4).

Noroozi and Favaro [19], in their paper used an AlexNet which does not have

any batch normalization layer, so, one more time, we re-trained our network

but freezing both convolutional and batch normalization layers. This brings

some slight increase in the accuracy of compatibility, mainly on the test set

(see table 5).

Until now, for the choice of the tiles to input into the network during the train-

ing phase, we choose randomly the first tile which is split into two halves, one
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4.3 Self-supervised learning

(a) anchor &
1

(b) positive
& -1

(c) negative
& -1

(d) anchor & 2

(e) positive & -2

(f) negative & -2

Fig. 9: Example of anchor, positive and negative samples as half tiles with
position values for horizontal compatibility (a, b, c) and vertical compatibility
(d, e, f).

for the anchor and the other to be used as a positive example. The tile from

which we derive the negative example is chosen randomly between the set of

tiles with a color di↵erence higher than a threshold according to the Euclidean

distance. We observed that the method used to select anchor, positive and

negative examples is crucial for our training. If we always select negative sam-

ples that are quite di↵erent from the anchor we may let the network be ”lazy”

and learn only the easy mismatching pairs and may not be able to recognize

some that are harder to spot.

Thus, we change completely the way we choose anchor, positive and negative

samples. As before, we still pick randomly a tile, but now we split it into

3 parts. Then, each part is forwarded two times through the network. The

first time we forward them as anchor, positive and negative, respectively, for

horizontal compatibility from left to right (see figure 10(b)) and for vertical

compatibility from top to bottom (see figure 10(c)). The second time we for-

ward them as negative, anchor, positive for horizontal compatibility from left
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4.3 Self-supervised learning

(a) (b) (c)

Fig. 10: Example of partitioning in 3 parts of a random tile. (a) the origi-
nal tile, (b) partitioning for horizontal compatibility, and (c) partitioning for
vertical compatibility.

to right and for vertical compatibility from top to bottom. With this tech-

nique, we push the network to learn to spot also small di↵erences between

di↵erent pieces. Moreover, we also try to force the CNN to mainly focus on

the right-hand side of the image for horizontal compatibility and on the bot-

tom side of the image for vertical compatibility.

To avoid confusion from learning both horizontal and vertical compatibility at

the same time, we preferred to have two di↵erent neural networks each one

trained only for horizontal compatibility or vertical compatibility.

We define as constant tile a piece whose borders have identical color informa-

tion, which means monochromatic pieces or pieces with regular patterns (see

fig.11). Furthermore, we noticed that more than 50% of each image in the

datasets is composed of constant tiles (see fig.12). Hence, we decided to not

take into account errors caused by constant tiles. In fact, if we switch two

or more constant tiles, visually we do not notice any di↵erence in the image

reassembling. In table 6 we can see that without the errors caused by constant

tiles we have a large increase in the accuracy.

In addition, if we compare results of the model that use triplets (table 6) with

previous models (tables 3, 4, 5) we can immediately notice a huge improvement

in the accuracy. With this last implementation, we were able to solve a lot of

problems stated before, except how to handle constant tiles.
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Fig. 11: Some examples of constant tiles, monochromatic or with repetitive
patterns.

5 Local compatibility measures

To compare our model, we decided to implement a few hand-crafted compati-

bility metrics. All of the following methods are based on dissimilarity. In the

proposed method by Cho et al [5], the horizontal dissimilarity between two

tiles ti and tj is calculated as

DHij
=

 
TX

k=1

3X

l=1

(|ti(k, T, l)� tj(k, 1, l)|)
p

! q

p

(5.0.1)

where T is the pixel dimension of a tile, 3 is the number of color channels (red,

blue, and green), ti and tj are T ⇥ T ⇥ 3 matrices representing square tiles,

and the color di↵erence is computed in the normalized L
⇤
a
⇤
b
⇤ color space.

The local horizontal compatibility between two tiles ti and tj is computed from

the dissimilarity measure as

CHij
/ exp

✓
�
DHij

2�2
c

◆
(5.0.2)

where �c is defined as the di↵erence between the lowest and the second lowest

DHij
, for 1  j  N .

The vertical dissimilarity DVij
and the local vertical compatibility CVij

are es-

timated similarly.

While Cho et al. [5] found their best result with p = 2 and q = 2, Pomeranz
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et al. [22] noticed that the equation 5.0.1 with values p = 2 and q = 2 is

related to the L2 norm of the vector of di↵erences across tiles borders and that

di↵erent values of norm (Lp)q could provide better results. Pomeranz et al.

[22] proposed p = 3
10 and q = 1

16 which bring to an improved compatibility.

Gallagher [8], proposed a slightly di↵erent measure called Mahalanobis Gra-

dient Compatibility which penalizes changes in intensity gradients, learns the

covariance between the color channels, and uses the Mahalanobis distance. In

other words, it aims to have the boundary of two neighboring tiles with similar

gradient distribution to the gradient on both sides of the boundary.

First, define an array of gradients GiL with T rows (T is the pixel dimension of

the tile) and with 3 columns (one for each color channel). GiL represents the

intensity changes along the right side of the tile ti, which is on the left-hand

side of the pair.

GiL(k, c) = ti(k, T, c)� ti(k, T � 1, c) (5.0.3)

Compute the mean distribution of those gradients on the right side of the tile

ti as

µiL(c) =
1

T

TX

k=1

GiL(k, c) (5.0.4)

For each color channel, we have that µiR is the mean di↵erence between the

final two columns of ti. The 3 ⇥ 3 covariance matrix SiL is estimated from

GiL and it captures the relationship of the gradients near the edge of the tile

between the color channels. Then, the horizontal dissimilarity between tiles ti

and tj is estimated as

DLR(ti, tj) =
TX

k=1

(GijLR(k)� µiL)S
�1
iL (GijLR(k)� µiL)

T (5.0.5)

where GijLR(p, c) is the gradient from the right side of the piece ti to the left

side of piece tj, at row position k, and is defined as

GijLR(k, c) = tj(k, 1, c)� ti(k, T, c) (5.0.6)
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Since the junction between pieces ti and tj is evaluated based on the distribu-

tions estimated from the ti side of the boundary, the dissimilarity DLR(ti, tj)

is not symmetric. Thus, similarly, modifying equations from (5.0.3) to (5.0.6),

we define DRL(tj, ti). In this way, we can compute the horizontal symmetric

dissimilarity as

DHij
= DLR(xi, xj) +DRL(xj, xi) (5.0.7)

Finally, we convert the just obtained dissimilarities into the horizontal com-

patibility between tiles ti and tj as follows

CHij
/ exp

✓
�

DHij

KminH
(i)

◆
(5.0.8)

where KminH
(i) is the K-min value of the dissimilarity between all other pieces

to piece i. As suggested by Gallegher [8] we set K = 2.

The equations from (5.0.3) to (5.0.8) are properly adapted to compute the

vertical dissimilarity and the local vertical compatibility.

Whatever methods we use, once for each tile we have the horizontal and verti-

cal compatibility, we set to zero the compatibility values of all non-best-buddy

matches and to 1 the compatibility of any two best buddies. This strategy is

called best buddies concept and was proposed by Pomeranz et al. [22].
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(a) (b)

Fig. 12: Example of images from MIT (a) and McGill (b).

6 Experimental results

For our experiments, we used two publicly available datasets, MIT and McGill.

Both of them have 20 images, in MIT all the images have sizes 672x504, while

McGill’s images have sizes 756x560. In figure 12 are shown two images, one

from MIT and one from Mcgill dataset. Both of them have some parts that

are monochromatic or show some repetitive pattern. Tiles picked from such

areas are considered constant tiles. As we can see, about 50% of these images

are constituted by constant tiles. Most of the images in these two datasets

are formed similarly to these two. The final goal of the whole model is, given

an image split into several square pieces and shu✏ed with known orientation,

being able to reassemble the image to its original structure.

6.1 Relaxation Labeling vs PSQP

As for now, we compare two di↵erent methods only on puzzle solving. To do

this we test them on ideal compatibility which works as an oracle that always

gives the right compatibility between two tiles, and is defined as follows:

C
(Oracle)
R (i, j) =

8
<

:
1, if i,j are the correct neighbors in relation R

0, otherwise

where i and j are two di↵erent tiles from the same image placed adjacent to

each other. R is the spatial relationship, R 2 {left, up, right, down}. For
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Fig. 13: Accuracy of Relaxation labeling and PSQP according to the number
of tiles of the jigsaw puzzle.

example, if j is on the right of i, C(Oracle)
R (i, j) will return 1.

Both algorithms receive as input a compatibility matrix derived from the or-

acle compatibility and they return a permutation of tiles. We compare such

permutations with the correct rearrangement of the tiles to compute the ac-

curacy. We start with a 2x2 puzzle and we increment by 1, one of the two

dimensions of the puzzle.

In figure 13, we can see a comparison between the accuracy of the two al-

gorithms on puzzles with a di↵erent number of tiles. The relaxation labeling-

based solver being a probabilistic method may require more execution before

returning its best result. On the other hand, PSQP based solver is a determin-

istic method and so given an input its result is always the same. However, both

algorithms have very high accuracy, but it seems that PSQP always performs

pretty well returning almost always a perfect reconstruction. While, with the

increase of the size of the puzzles, Relaxation labeling has some oscillations in

its performance.
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So, we think that with the right measure of compatibility, we can expect that

those two algorithms will give us quite good rearrangement results.

6.2 Performance assessment on compatibility learning

The accuracy of all the following models is measured through direct compar-

ison, the horizontal and vertical compatibility are compared to their relative

oracle compatibility. This metric computes the ratio between the number of

tiles for which the most compatible piece is actually its immediately adjacent

neighbor and the total of tiles. For each tile in the images in the dataset we

compute the top 1,2,3,4 sets of highest values of compatibility, we checked

if in these sets there are the tiles given in the oracle compatibility, then we

compute the average among all images in the dataset. Accuracy values stated

in all the tables in this section represent the average between horizontal and

vertical compatibility.

6.2.1 Baseline approach

In the first attempt, we used the MIT dataset as the training set and the McGill

dataset as the validation set. The method to select the tiles in the training

phase is what we described in section 4.2, and training took 850 iterations.

Hyper-parameters for this model are: learning rate 1e�4, weight decay 5e�4

and batch size 256. As we assumed that we already have an algorithm that can

solve the puzzles with a good compatibility matrix, in the validation phase we

only measure the accuracy of the extracted compatibility and we obtained the

results listed in the table 1. Looking at figure 14, as the loss did not flatten,

we find out that the model can learn even better the training set. Taking into

account that we stopped the training earlier and so, the training loss isn’t too

close to zero, if we look at the table 1, we can see that the accuracy on the two

datasets is pretty di↵erent. As expected, the accuracy on the MIT (training

set) is more the twice the accuracy on the McGill (test set), hence, the model

is not independent of the data of the training set.
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6.2 Performance assessment on compatibility learning

ACCURACY MIT MCGILL

TOP 1 37.75% 18.75%
TOP 2 48.38% 21.62%
TOP 3 56.25% 25.94%
TOP 4 62.37% 28.70%

Table 1: Top K accuracy of compatibility on MIT (training set) and on McGill
(validation set).

Fig. 14: Training loss over iteration for baseline approach.

6.2.2 Self-supervised learning

From here, we explore models trained with the self-supervised approach. For

all the following neural networks, training has been done on the MIT dataset

and validation on the McGill dataset and full tiles have sizes 28x28.

Estimating rotation. First of all, we have the CNN dedicated to estab-

lishing the rotation of tiles. We trained it for 900 iterations, with batch size

256, learning rate 1.4047 ⇤ 10�4, weight decay 5.9747 ⇤ 10�4 and momentum

0.95. For each tile in a batch, we randomly apply a rotation that can be of

0°, 90°, 180°, and 270° and train the model to detect which of these rotations
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6.2 Performance assessment on compatibility learning

Fig. 15: Comparison of accuracy between MIT and McGill datasets on detect-
ing rotation of tiles.

has been applied. We compare accuracy between the training set (MIT) and

the validation set (McGill), for each image we compute the rotation of 20 tiles

and we can see the results in figure 15. It is easy to see that MIT’s accuracy

is a bit higher than McGill’s. Moreover, we noticed that on both datasets,

the network has some drop in accuracy when trying to predict rotation for

constant tiles. Since the di↵erence in accuracy is not too pronounced and the

behavior is quite similar on both sets, we believe that model can perform quite

well on both datasets even in the task of puzzle solving.

Hence, we did a first trial of extracting compatibility. To do so, we removed

the last fully connected layer of the CNN, which is specialized in detecting

rotation. In this way, we take the output of the last convolutional layer and

for each possible pair of tiles, we measure the correlation of these outputs.

Again, we check if the top 1,2,3,4 of horizontal compatibility and vertical com-

patibility of each tile are present in the actual tiles.

Training has been done on the detection of rotation, so for both datasets, we

do not have any knowledge about their compatibility. Thus, we can consider

extracting compatibility as an unsupervised task.
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6.2 Performance assessment on compatibility learning

ACCURACY MIT MCGILL

TOP 1 27.50% 23.33%
TOP 2 36.00% 32.92%
TOP 3 43.87% 40.52%
TOP 4 50.25% 46.73%

Table 2: Top K compatibility accuracy of model trained on detecting rotation
of tiles.

(a) (b)

Fig. 16: Training losses for self-supervised model trained on full tiles (a) and
on half tiles (b).

From the results shown in table 2, we can observe that the accuracy on MIT

and on McGill are pretty close to each other, however, with pretty low accu-

racy values. This means that with the help of the pretext task we can achieve

similar results for both datasets also on the main task of jigsaw puzzle solving.

Extracting compatibility with full tiles. From previous results, we see

that we achieved some good performance on the pretext task, so now we move

on to the actual task, learning compatibility. The first attempt at extracting

compatibility is trained on the pre-trained net on detecting rotation with frozen

convolution layers and on full tiles. Hyper-parameters are batch size 512,

learning rate 0.0034271, momentum 0.85, weight decay 2.4587e-08. The new

training is done on the MIT and it took 1400 iterations, so we expect a bit

44



6.2 Performance assessment on compatibility learning

ACCURACY MIT MCGILL

TOP 1 38.88 % 25.92 %
TOP 2 48.62 % 37.40 %
TOP 3 56.62 % 45.69 %
TOP 4 62.13 % 51.35 %

Table 3: Top K compatibility accuracy of re-trained model with frozen convo-
lutional layers and on full tiles.

better performance on that dataset. Accuracy values shown in table 3 are a

bit higher for the MIT dataset than what table 2 shows, but the accuracy

on McGill of the two models is not too di↵erent. This could mean that the

network is finally learning, however, it is not able to generalize on the McGill.

Extracting compatibility with half tiles. As we want our model to have

good results on any datasets, we change a bit the training phase of extracting

embedding. Instead of using two close full tiles, one for anchor and positive

examples and the other for negative example, and giving di↵erent position

values to the positive and negative, now we pick two tiles that are no more

strictly close to each other, and we split the first one into two halves and

one half becomes the anchor and the other the positive example. While the

negative example is a random half of the other tile. We used the same hyper-

parameters as for the model trained on full tiles. In figure 16 we see that

both models trained on full tiles and half tiles, during training have the same

behavior. However, if we compare table 3 and table 4 we can see that using half

tiles for training to extract compatibility, accuracy on McGill is considerably

increased and the model achieved similar accuracy on both datasets, meaning

that the model is finally learning features agnostic from the training set.
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6.2 Performance assessment on compatibility learning

ACCURACY MIT MCGILL

TOP 1 37.38 % 32.40 %
TOP 2 45.88 % 39.48 %
TOP 3 54.00 % 47.19 %
TOP 4 59.87 % 53.33 %

Table 4: Top K compatibility accuracy of re-trained model with frozen convo-
lutional layers and on half tiles.

Fig. 17: Training loss over iteration for self-supervised approach trained with
both convolutional and batch normalization layers frozen .

In table 5, we have the accuracy results of the model trained with both

convolutional and batch normalization layers frozen. and with the number of

iterations increased to 4000 (see figure 17). And so, we have another small

increase in the accuracy of the network on the McGill (test set).
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6.2 Performance assessment on compatibility learning

ACCURACY MIT MCGILL

TOP 1 37.98 % 33.85 %
TOP 2 47.25 % 42.92 %
TOP 3 54.75 % 49.92 %
TOP 4 60.25 % 55.52 %

Table 5: Top K compatibility accuracy of re-trained model on half tiles with
frozen both convolutional and batch normalization layers.

Fig. 18: Training loss of self-supervised model trained on MIT, with triplets
derived from single tiles.

Extracting compatibility with triplets. Next, we have the results of our

final models, which are trained on full tiles split in triplets and forwarded two

times for di↵erent combinations of anchor, positive and negative examples.

Training took 2500 iterations for each model with batch size 256, learning rate

3.4271 ⇤ 10�3, momentum 0.85, weight decay 2.45872e-08. Figure 18 show

both models trained for horizontal and vertical compatibility behaved during

training. In table 6 and 7 are reported only the accuracy on the McGill, we

can easily notice that with this method of selecting examples we bring a huge

improvement on our outcomes. We also noticed that with a strong presence

of constant tiles, a tile may be misplaced but visually this does not bring any
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6.2 Performance assessment on compatibility learning

TOP K With Without

K=1 55.42 % 74.17 %
K=2 67.92 % 80.00 %
K=3 75.83 % 85.42 %

Table 6: Accuracy on compatibility with and without errors caused by constant
tiles using the model trained with triplets from one tile.

Method With Without

ReLab 45.00 % 60.00 %
PSQP 49.17 % 67.92 %

Table 7: Accuracy on puzzle solving with and without errors caused by con-
stant tiles on McGill dataset.

di↵erence in the reassembling of the image. Hence why, in table 6 and 7, we

have two columns, ”With” are computed top 1,2,3 accuracy considering only

the correct placement of the tiles. Instead, in ”Without” column we do not

consider as error if a constant tile is placed in the position of another with the

same color information. Basically, even if a tile is in the wrong position, but

visually looks the same as the corrected one, we actually do not consider it

misplaced.

From table 6 for compatibility and table 7 for puzzle solving, it is easy to ob-

serve that without considering errors caused by constant tiles we have pretty

good performances. The two puzzle solving algorithms perform almost iden-

tically, PSQP has slightly higher outcomes. Looking at figure 19, we can see

an example of image reassembling. Figure 19 (a) shows an example of input

for our neural network, all the tiles of the image have been shu✏ed. Figure

19(b) displays the final output, after CNNs and puzzle solver. While figure

19(c) represents the original image. In this example, we have a correct recon-

struction of about 66%, which reflects the results of the previous tables.
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6.2 Performance assessment on compatibility learning

(a) (b) (c)

Fig. 19: Example of image reassembling with tile of size 168x168, (a) starting
point with all tiles shu✏ed, (b) the result after extracting compatibility and
using Relaxation labeling. (c) original image, the goal.

Method With Without

Ours 55.42 % 74.17 %
Sholomon et al. [29] 80.56 % 82.94 %
Pomeranz et al. [22] 82.50 % 83.26 %

Gallagher [8] 90.21 % 91.38 %

Table 8: Accuracy on compatibility for di↵erent methods, with and without
errors caused by constant tiles.

Table 8 shows a comparison between our proposed method and some of the

best hand-crafted compatibility metrics. We can clearly see that considering

errors derived from constant tiles, our method is quite far from the others. But

in the case where we do not consider such errors, our solution reaches results

pretty close to the other compatibility measures.

Therefore, in table 9, we can observe the comparison of the same meth-

ods, but of accuracy on puzzle solving with PSQP by direct comparison and

the number of visually perfectly reconstructed images without considering er-

rors derived from constant tiles. Our method is comparable to the solution

proposed by Sholomon et al. [29] when talking about the number of visually

perfect reconstructed images.

These last results show how much our residual neural network is a↵ected by

constant tiles.
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6.2 Performance assessment on compatibility learning

Method D (%) # of perfect

Ours 67.92 % 7
Sholomon et al. [29] 86.19 % 7
Pomeranz et al. [22] 88.75 % 12

Gallagher [8] 92.42 % 13

Table 9: Accuracy on puzzle for compatibility metrics with PSQP by direct
comparison (D) and visual perfect reconstruction, without errors caused by
constant tiles.

In figure 20, we have a comparison between results obtained with our tech-

nique (left column) and the hand-crafted compatibility metrics proposed by

Pomeranz et al. [22] (middle column) and by Gallagher [8] (right column). We

note that our approach is still not close to the others but is neither too far.
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6.2 Performance assessment on compatibility learning

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 20: Jigsaw puzzles with 432 tiles of size 28x28 pixels. In each row, there are
our final permutation, the result obtained with Pomeranz et al.[22], the result
obtained with Gallagher[8]. All three compatibility metrics are combined with
PSQP.
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7 Conclusions and Future works

This thesis deals with the problem of reassembling images from non-overlapping

square tiles, to be placed in a rectangular grid of the same shape and size as

the original image. We work with pieces that have linear boundaries and spe-

cific orientations. In literature, there are already several works about puzzle

solving. But almost all of them propose either direct puzzle solving through

the search for the best permutation or hand-crafted compatibility measure to

be paired with some advanced solver. Just a few of them address the problem

of puzzle solving as learning compatibility in a supervised manner. At the

end of our work, we were able to propose a neural network, that working in

a self-supervised environment, is capable of extracting compatibility from an

image with good results though they are still not comparable with the best

hand-crafted compatibility measures.

First, we compared two solvers for image reassembling, relaxation labeling,

and PSQP, finding out that with a good compatibility matrix we can per-

fectly reconstruct any puzzle with 400 pieces and above. In search of a neural

network capable of automatically devising a compatibility metric, we started

implementing a baseline approach which led to poor generalization. Thus, we

needed to search for a method to either extract agnostic features from the train-

ing set and not adapt to its distribution. The method proposed by Noroozi

and Favaro [19] seems to have some good performance but the choice of the

pretext task is probably crucial in the knowledge transfer step. Exploring the

self-supervised domain, we elaborated di↵erent solutions to cope with the issue

of making the neural network understand that some portion of a tile is more

relevant than others, for example, the right part of the tile is more relevant

when dealing with horizontal compatibility, similarly for vertical compatibility.

After all experiments, we devised a model, which is trained with triplets derived

from a single tile, and that emphasizes all the important aspects. Currently,

our solution is not completely at the same level as the best hand-crafted com-

patibility metrics but, anyway, it achieves fairly good results. The biggest

problem is how to deal with constant tiles, we have seen that if we do not

consider errors caused by constant tiles we have pretty high outcomes.
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In the literature, all the already existing solutions based on neural networks

either aim to directly find the best permutation on small puzzles or use super-

vised learning. Furthermore, to the best of our knowledge, the presented model

is the first unsupervised approach to automatically extract the compatibility

of tiles for jigsaw puzzle solving.

Future works. As we have shown, by being able to fully address the han-

dling of constant tile, it will be possible to have an unsupervised neural

network-based compatibility metric for the jigsaw puzzle solving that can over-

come all the hand-crafted metrics already present in literature. Thus, some

improvements can be

• training the deep neural network to be agnostic from constant tiles;

• handle tiles with any rotation;

• upgrade the solvers used for tiles reordering to some that do not require

post-processing.
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