

Master's Degree programme

 In Computer Science

Final Thesis

 Using SAT solvers and
brute force approach to
recover AES key from
partial key schedule

images

Supervisor

Riccardo Focardi

Graduand

Nicolas Pietro Martignon

870034

Academic Year

2021 / 2022

Abstract

Recovering an AES key exploiting the redundancy of key material inherent in the
AES key schedule is a topic widely discussed in the scientific literature. Specifically,
there are many papers that analyze the aforementioned problem starting from a
corrupt key schedule, this scenario is very frequent if a cold boot attack is carried
out in which a corrupt dump of the ram memory is performed. In these articles,
different techniques are used to derive the AES key including the use of SAT solver
and MAX SAT solver, tools that aim to solve the problem of Boolean satisfiability.
In this thesis, on the other hand, we want to analyze a more general case, i.e., start-
ing from a partial key schedule and obtaining its AES key. Different techniques will
be analyzed and combined including the use of SAT solver tools, and brute force
algorithm, with the aim of minimizing the time for key recovery.

Keywords: Key schedule · AES · SAT solver · Brute force · Partial information

1

Contents

1 Introduction 6

2 AES and SAT 7
2.1 AES . 7
2.2 SAT . 13

3 Previous work 16

4 Preliminaries 18
4.1 Creation of input file . 18
4.2 Hardware and software used . 21

5 Key recovery on partial key schedule 22
5.1 Banning solution approach . 23
5.2 Brute force approach . 26
5.3 Mixed approach (brute force and banning solution) 34
5.4 Random bit instancing . 37

6 Comparison of different technique 40
6.1 Comparison of all techniques in scenarios with multiple solutions . . . 40
6.2 Comparing single SAT solver instance VS brute force approach in

scenarios with max one solution . 41
6.3 Comparing our best approach VS Incremental SAT solver 43

7 Conclusion 45

A Source code 49
A.1 Python scripts to generate CNF files 49
A.2 Python scripts to conduct test on all approaches 55

2

List of Figures

2.1 AES Encryption Process . 9
2.2 Cipher Key . 10
2.3 RotWord transformation . 10
2.4 S-BOX . 11
2.5 SubByte transformation . 11
2.6 SubByte transformation + Wi-4 + Rcon = Wi 11
2.7 First round key’s word . 12
2.8 Wi-1 + Wi-4 = Wi . 12
2.9 Cipher key and round key 1 . 12
2.10 Key schedule image . 13

4.1 Partial information know . 19

5.1 Sub-problem generated . 26
5.2 Random sub-problem generated . 37

3

List of Tables

5.1 Run-time statistic for banning solution 24
5.2 Run-time statistic for brute force on 2 bit I 29
5.3 Run-time statistic for brute force on 2 bit II 29
5.4 Run-time statistic for brute force on 4 bit I 29
5.5 Run-time statistic for brute force on 4 bit II 29
5.6 Run-time statistic for brute force on 6 bit I 30
5.7 Run-time statistic for brute force on 6 bit II 30
5.8 Run-time statistic for bruteforce on 8 bit I 30
5.9 Run-time statistic for bruteforce on 8 bit II 30
5.10 Run-time statistic for Mixed approach on 2 bit 35
5.11 Run-time statistic for Mixed approach on 4 bit 35
5.12 Run-time statistic for Mixed approach on 6 bit 35
5.13 Run-time statistic for Mixed approach on 8 bit 35
5.14 Run-time statistic for Random bit instancing 38

6.1 Run-time statistic for single SAT solver instance (Kissat) 42
6.2 Run-time statistic for single SAT solver instance (Cryptominisat) . . 43

4

List of Algorithms

1 Banning solution pseudocode . 23
2 Brute force pseudocode . 28
3 Brute force and banning solution pseudocode 34
4 Random bit instancing pseudocode 38

5

Chapter 1

Introduction

The remanence of data in the RAM memory after the computer is turned off is now
a well-known phenomenon and very studied in the scientific literature.
The rapid corruption of data in RAM with the passage of time from turning off or
restarting the device, has given rise to many new studies on error correction, espe-
cially in the cryptographic field.
Many articles exploiting the redundancy of cipher key information present in the
AES key schedule have formulated various techniques and increasingly effective error
correction algorithms. Frequently there has been the use of SAT solvers, powerful
programs that solve the problem of Boolean satisfiability.
This paper on the other hand wants to analyze a more general case, that is the case
of knowing partial information and arriving to a total information.
More precisely, the partial information concerns the AES key schedule, where some
bits are known and other bits are not, knowing in full all the bits of the key sched-
ule will consequently also allow to obtain the cryptographic key used to generate
it. Different techniques will be analyzed and combined, including the use of SAT
solvers and brute force algorithms, with the aim of minimizing the time required to
obtain the cryptographic key.
The thesis is organized as follows: first of all, basic notions on AES and SAT are
introduced, these are necessary for the correct understanding of the following paper.
This introduction also allows us to understand how these 2 elements AES and SAT
can be used together.
Subsequently, in the following chapter the previous works are retraced, concerning
the permanence of data in RAM and on the correction of errors in a corrupt AES
key schedule. Chapter 4 introduces preliminary information to the next chapter,
which introduces the work done in this paper.
In chapter 5, therefore, the various techniques and approaches developed are dis-
cussed, also many tests are conducted to have run time statistic for each technique.
Chapter 6 compares all the techniques developed with the aim of decreeing the best
technique for each circumstance.

6

Chapter 2

AES and SAT

In this chapter we will briefly introduce useful concepts for the correct understanding
of the following thesis. This chapter can therefore be excluded from reading by those
who have extensive knowledge of how AES and SAT solving works.

2.1 AES
Concepts introduced in this section are taken from [1, 2, 3].
Particularly, the images in this section are inspired by the following video on AES [4].

AES (Advanced Encryption Standard), better known as Rijndael is a block sym-
metric cryptographic algorithm (sender and receiver use the same encryption key),
was developed in 1998 to address the limitations and vulnerabilities of the algorithm
used up to now, namely DES (Data Encryption Standard). AES was adopted by
the US federal government, and encryption using AES has become the industry
standard for data security. AES is available in 128-bit, 192-bit, and 256-bit key
implementations.
AES uses substitution and permutation techniques, with a variable number of rounds
(cryptographic processing) depending on the length of the encryption key chosen.
According to the length of the key we will therefore have:

• 10 rounds for 128-bit key;

• 12 rounds for 192-bit key;

• 14 rounds for 256-bit key.

One round or processing cycle, consists in carrying out the following four steps in
order, aimed to modifying an input data reaching an encrypted/modified output
data.

1 - SubBytes: Nonlinear substitution of all bytes which are substituted according to
a specific table.
2 - ShiftRows: Shift of the bytes of a certain number of positions depending on the
row they belong to.

7

Recover AES key using SAT and brute force approach

3 - MixColumns: Combining bytes with a linear operation, bytes are treated one
column at a time.
4 - AddRoundKey: Each byte is combined with the session key, the session key is
calculated by the key scheduler.

In each round therefore the input will be the output of the previous round, up to the
last round where the output represents the actual encrypted message. In the same
way it happens through the four steps introduced earlier, for example examining 2
contiguous steps, the second step will take as input the output of the first step, until
it reaches the end of the round.
As previously stated, these four steps are performed in each round except the last
round and an initial round which is not counted in the total number of rounds In
the last round, therefore, all the steps are carried out except for the 3-MixColumns
step, while in the initial round only the 4-AddRoundKey step is performed using
the starting cryptographic key as the session key.
By session key we mean a different key for each round, these keys also called round
keys are obtained from the primary key thanks to the Key Scheduler algorithm.

Chapter 2 Nicolas Pietro Martignon 8

Recover AES key using SAT and brute force approach

The following image summarizes what has just been said by showing the encryption
process with the use of a 128-bit key, which therefore imposes the number of rounds
to be performed at 10.

Figure 2.1: AES Encryption Process

In the next paragraph the process of creating round keys will be addressed using the
key scheduler algorithm, on the contrary the 4 encryption steps will not be discussed
since the understanding of the latter is not relevant for the following paper.

Chapter 2 Nicolas Pietro Martignon 9

Recover AES key using SAT and brute force approach

2.1.1 Key schedule process

In this paragraph an example of how the key scheduler algorithm works will be con-
ducted, the aim of which is to generate session keys.
In the following example we will show its execution using a 128-bit long crypto-
graphic key. This key can be represented by a 4X4 matrix where each cell has a size
of 8 bit and each of it can be represented by 2 hexadecimal characters.

Figure 2.2: Cipher Key

For the calculation of all the round keys we must imagine that all the keys are
adjacent and therefore form a sort of matrix with 4 rows and 44 columns. Now,
therefore, to generate the first column (word) of the first round key, the last word
of the starting cryptographic key is taken into consideration, which is the word
preceding the column we want to calculate. A copy of this previous column is
therefore made and the RotWord transformation is carried out which consists in
moving each cell to the upper row, the cell that was initially in row 0 is placed in
row 4.

Figure 2.3: RotWord transformation

The SubBytes transformation will be performed on the resulting word, where each
cell will be replaced with the content of a matrix called S-BOX. The procedure is
as follows: the value of a cell of the resulting word is replaced with the value of a
cell of the S-BOX matrix. The cell that will replace the value is represented by the
row having the value of the first hexadecimal digit of the cell to be replaced, and
column having the value of the second hexadecimal digit of the cell to be replaced.

Chapter 2 Nicolas Pietro Martignon 10

Recover AES key using SAT and brute force approach

Figure 2.4: S-BOX

So, in the case of the first cell of the word in question (CF) the new value it will
replace will be found in row C and column F of the S-BOX matrix, this value is
therefore 8A. This step is performed for each cell of the word.

Figure 2.5: SubByte transformation

Now to this new resulting word will be added (XOR) the word found 4 columns
before. Let us remember that we are calculating the first word of the first round
key, so the column that is 4 words before turns out to be the first word of the starting
key. In addition, a constant Rcon (Round constant) will also be added (XOR) which
is different for each round, where in the first round it assumes a value of 1 in the
first row and at each subsequent round it doubles its value.

Figure 2.6: SubByte transformation + Wi-4 + Rcon = Wi

We will then get the first word of the first round key.
This step SubByte + Wi-4 + Rcon - Wi has to be done for the calculation of each
word that appears to be in a multiple position of 4. In our case, having chosen 128

Chapter 2 Nicolas Pietro Martignon 11

Recover AES key using SAT and brute force approach

bit as the key size, the words that appear to be in multiple positions of 4 are always
the first word of each round key.

Figure 2.7: First round key’s word

Now to calculate the remaining words of the same round key, the word in position
-1 of the column we are calculating will be taken and the column in position -4 of
the word we are calculating will be added (XOR) to it.

Figure 2.8: Wi-1 + Wi-4 = Wi

We then repeat this step until we have calculated all the words of the Round Key
in question.

Figure 2.9: Cipher key and round key 1

By iterating all the steps just made out for each round key, we then obtain all the
session keys, fundamental for encryption. This highlights how all subsequent keys
depend on the starting key, there is indeed a redundancy of information of the main
key throughout the key schedule.

Chapter 2 Nicolas Pietro Martignon 12

Recover AES key using SAT and brute force approach

Figure 2.10: Key schedule image

2.2 SAT
Boolean satisfiability, or propositional satisfiability or SAT, is the problem of deter-
mining whether a Boolean formula is satisfiable or unsatisfiable. The formula is said
to be satisfiable (SAT) if the variables can be assigned so that the formula evaluates
to true. On the contrary, it is said to be unsatisfiable (UNSAT) if this assignment
does not exist (therefore, the function expressed by the formula is false).

(x ∨ y ∨ ¬z) ∧ (¬y ∨ z)

In complexity theory the problem of boolean satisfiability (SAT) is a decision prob-
lem, whose instance is a boolean expression formed by operators AND, OR, NOT,
"(", ")" applied to variables and sets of variables. The question is this: given an ex-
pression, is there any assignment of TRUE and FALSE values that make the whole
expression true? A formula of propositional logic is said to be satisfiable if such an
assignment exists. Without loss of generality, the problem can be traced back to the
particular case in which the formula is expressed in conjunctive normal form (CNF),
that is, as an AND of clauses each formed by an OR of literals. In fact, by applying
De Morgan’s Theorems, the formula can be lead back to the case in which the NOT
operators are applied only to variables, and not to expressions. The Cook-Levin
theorem shows that the problem of determining if any propositional formula is sat-
isfiable is NP-complete [5], as the size of the problem to be solved increases, there is
an exponential/sub-exponential increase in the time necessary for the computation
of the result (SAT/UNSAT).

2.2.1 SAT Solvers

Given the complexity of the SAT problem and its great use being of central impor-
tance in many areas of computer science, including theoretical computer science, the
study of algorithms, hardware design, there are many programs, called SAT Solvers
which, through the help of different algorithms, they aim to solve Boolean satisfia-
bility problems in the shortest possible time. There is also an annual international
competition in which many different Solvers are tested with the aim of decreeing
the best solver of the year [6]. In this competition there are different categories
in which solvers can participate, these categories differ from each other based on
the hardware resources available in the machine where the solver is tested, and the
number of machines used.

Chapter 2 Nicolas Pietro Martignon 13

Recover AES key using SAT and brute force approach

The categories present in the SAT competition 2021 were:

• Main Track: Intel Xeon E5-2609 4 core and 128 GB RAM;

• Incremental Library Track: 2 x Intel Xeon E5430 4-Core, 24 GB RAM, only
incremental SAT solvers can participate in this category*;

• Parallel Track: AWS m4.16xlarge, 64 virtual cores and 256 GB RAM;

• Cloud Track: 100 x AWS m4.4xlarge, for a total of 1600 virtual cores and 6.4
TB RAM.

*Incremental SAT solvers are particular solvers that can find more than one solution
for an instance efficiently. After having found a solution, they use the acquired
knowledge, such as the clauses learned, with the goal of finding other solutions.
Traditional solvers, on the other hand, stop at the first solution found.

2.2.2 DIMACS Format

Concepts introduced on DIMACS format are taken from [7].

The DIMACS format is a standard interface for SAT solvers, it represents a common
format to represent the Boolean formula in CNF format as input to the SAT solver.
DIMACS is a text format, starting with a header line of the following form: "p cnf
<variables> <clauses>". Where <variables> and <clauses> are replaced with the
number of variables of the Boolean formula and the number of clauses of the for-
mula respectively. Any line starting with the "c" character is treated as a comment.
Each line of the DIMACS format that does not start with the character "c" or "p"
therefore represents a clause formed by an OR of variables, each of these clauses
(lines) is therefore in AND with the other clauses (lines) of the file. To represent a
variable, the following notation is used: a unique integer number is assigned to each
variable of the formula, a positive number such as 2 therefore represents a positive
occurrence of variable 2. A negative number such as -3 represents a negative occur-
rence of variable 3. The number 0 is treated in a special way, it does not represent
a variable, but is used to indicate the end of the clause.

For example, the following formula (x ∨ y ∨ ¬z) ∧ (¬y ∨ z) can be written
in DIMACS format as follows:

p cnf 3 2
1 2 -3 0
-2 3 0

In addition, the DIMACS format also specifies a common format for the output
returned by the SAT solver, the line starting with the "s" character contains the
result of the calculation performed by the SAT solver.
This result can be of 2 types "SAT", therefore there is an assignment of the boolean
variables that allows the formula evaluates to true, or "UNSAT" if there is NO as-
signment of the boolean variables that allows the formula evaluates to true.

Chapter 2 Nicolas Pietro Martignon 14

Recover AES key using SAT and brute force approach

The line that begins with the "v" character contains the assignment of the variables
that allow the formula given in input to evaluates true.

For example, the output for the formula seen above is:

s SATISFIABLE
v -1 -2 -3 0

In addition, there are many variations and extensions of the DIMACS format, one
in particular which is very useful in cryptography, makes use of XOR clauses. How-
ever, not all SAT solvers accept this variant and therefore it will be necessary to
convert the DIMACS with the XOR clauses into a CNF DIMACS. This procedure
is quite simple and will be deepened in the next chapters as it is necessary for the
use of certain SAT solvers that do not support XOR clauses.
An XOR clause is represented by a line that begins with the character x and sub-
sequently presents the variables that are XOR together, obviously as happens with
the other clauses, the XOR clauses are also placed in AND with the other clauses
(rows) of the file.
The following example depicts an XOR clause between 3 boolean variables.

x1 -2 3 0

Chapter 2 Nicolas Pietro Martignon 15

Chapter 3

Previous work

In this chapter we will retrace previous work related to remanence of data in the
RAM memory and recovering an AES key from a corrupt key schedule. This chapter
appears to be necessary to fully understand the following paper, and to understand
what the following thesis adds to the literature.

It has been known since 1970s that the contents of DRAM memory cells can sur-
vive for a certain time at room temperature (memory remanence). This time can
increase, decreasing the temperature of the ram cells. In 1978 an experiment [8]
showed that a power-disconnected DRAM bank did not lose any data for a week
when cooled with liquid nitrogen.
Chow, Pfaff, Garfinkel and Rosenblum [9] suggested that modern DRAM content
can survive a Cold Boot, that is the activity of booting a computer through the
power button. Petterson [10] suggested that remanence of data in cold boot could
be exploited to conduct forensic analysis in the memory image and thus obtain en-
cryption keys.
Alderman [11] show that at room temperature generally, there is a low percentage of
corrupted bits for a few seconds without powering the DRAM memory, followed by
a period of rapid decay where the percentage of errors grows exponentially. Alder-
man also observed that the majority of the corrupted bits decay into the "ground
states" that correspond to binary value 0, while only a very small part make the
binary transition from 0 to 1 (reverse flipping error). Alderman also introduces the
following notation "δ0" to indicate the percentage of corrupted bits that make the
binary transition from 1 to 0, while he uses the following notation "δ1" to indicate
the percentage of corrupted bits that perform the inverse binary transition, that is
from 0 to 1. This notation will be used extensively in subsequent papers. Alderman
simply using a compressed air spray upside down was able to bring the temperature
of the RAM bank to -50° degrees and obtained on average less than 1% corrupted
bits after 10 minutes without powering the RAM. Alderman repeated the experi-
ment by submerging the same bank of ram in liquid nitrogen and noticed a decay
of only 0.17% bit after an hour without power.
Alderman presents 3 attack variants to get the RAM memory image. The sim-
plest is to reboot the machine and boot a modified Kernel that dumps the RAM
memory. Another more advanced method is to shut down the computer forcibly,
directly removing the power supply, then proceed to restore the power supply and

16

Recover AES key using SAT and brute force approach

boot a modified kernel that dumps the RAM memory as before. The latter variant
is more effective as it does not allow the operating system to clear the memory
before shutting down. The third type appears to be the best, it consists in discon-
necting the power supply, then removing and installing the DRAM modules on a
second computer prepared by the attacker, and from this computer dump the RAM
memory image as previously done. Unlike the first 2 variants, this attack deprives
the victim’s PC’s BIOS and hardware of any possibility of wiping memory during
boot. Alderman explains that if the attacker were forced to wait a long time from
shutdown to dump, the data in the ram will most likely start to corrupt, so it will
be necessary to cool the RAM to decrease this process or implement error correc-
tion algorithms. Gutmann [12, 13] suggested that encryption keys should not be
stored in RAM for more than a few minutes. Alderman explains however that for
performance reasons this does not happen because many applications pre-calculate
the round keys and save them in RAM for future use.
Alderman then presents an automatic and complete algorithm for identifying en-
cryption keys in the RAM image.
Alderman develops an unpublished algorithm that can reconstruct cryptographic
keys even in the presence of many errors, taking for example AES or DES the devel-
oped algorithm does not work directly on the starting key but operates on the data
deriving from it such as round keys, the latter provide a high degree of redundancy
and therefore, allow to obtain the main key. By applying this algorithm Alderman
states to be able to reconstruct within a few seconds, almost all AES 128-bit keys
starting from a key schedule image with a corruption of 10% δ0 and 0.1% δ1, while
starting from a corrupt key schedule image with 30% δ0 and 0.1% δ1, the time re-
quired is less than 20 minutes in half of the cases.
Tsow [14] continued in alderman’s error correction study, and developed a heuristic
algorithm, capable of solving all cases that presented a corruption of 50% δ0 in the
key schedule in less than half a second, while with a corruption of 60% δ0 in the
key schedule the worst case time was 35 seconds, with an average test time of 0.17
seconds.
Kamal [15] said that Tsow’s algorithm is complex and difficult to develop and refine,
so, he decided to use another approach. Kamal noted that the relations that must
be satisfied by different round keys in the AES key schedule, can be easily formu-
lated as Boolean satisfiability problems (SAT), and therefore solvable through the
use of SAT solvers. Kamal through the use of the SAT solver Cryptominisat, solved
with an average time of 1.2 seconds, key schedule with a corruption of 70% δ0 while
Tsow’s algorithm for the same percentage of corruption took an average time of 300
seconds.
Until now the only algorithm that respected the realistic assumptions, that is, that
also considered the reverse flipping error (δ1), was the Alderman algorithm which
turned out to be very underperforming. On the other hand, Tsow’s algorithm and
kamal’s SAT approach turned out to be very fast but only took into account a cor-
ruption from binary value 1 to 0 (δ0).
Xiaojuan Liao [16] took a step forward, adopting a MAX-SAT approach that also
took reverse flipping error into consideration. He then got an excellent result solving
with an average time of 300 seconds, starting from a corrupt key schedule with 70%
δ0 and 0.1% δ1.

Chapter 3 Nicolas Pietro Martignon 17

Chapter 4

Preliminaries

From the previous chapter, we note that there are many studies that have con-
tributed to the development of new error correction techniques starting from a cor-
rupted AES key schedule image (corrupted information). On the other hand, this
thesis wants to deepen a more general case, that is the case of partial information,
where some bits are known and others are not. The known bits can take value 1
or 0, a scenario that could not happen in the articles mentioned in chapter 2 where
only the bits with value 1 are known since corruption occurs with a higher proba-
bility, from 1 to 0 and not vice versa. This scenario with partial information can
occur by making an incomplete dump, or by having only a ram module available in
which there is only a part of the key schedule image to be analyzed. In this thesis,
therefore, starting from this partial information, we want to analyze and test some
techniques with the aim of finding the fastest and most effective. We will therefore
make use of well-known SAT solvers combined with brute force techniques.

4.1 Creation of input file
For simplicity, it was decided to generate the input files, which represent the partial
key schedule necessary for the tests that will be conducted, starting from 128-bit
AES keys, this choice is not binding in any way, with few changes therefore, all the
steps that will be shown from now on can be adapted to longer keys.
The tests were conducted on CNF files in DIMACS format, this allows to extend
the various tests on many other solvers. Each of these CNFs appropriately created,
is formatted in the following way: line zero presents the file header, from line 1
to line 87081 there are the necessary clauses to respect the relationships between
different round keys of the AES key schedule and finally from line 87042 up to the
end of the file there are the binary assignments of the known bits, in other words
the information we know. If we notice well, in fact, from line 87042 onwards there is
only one variable for each line, which represents the known information of that bit.

18

Recover AES key using SAT and brute force approach

The example below shows the formatting of the CNF file just described.

p cnf 1728 83200 //riga 0
1568 1696 -1728 0 //riga 1

...
-1537 -1538 -1539 -1540 -1541 -1542 -1543 -1544 -1600 0 //riga 87041
-161 0 //riga 87042
-162 0

These CNFs were generated by a python script interpreted by Jupiter Notebook (a
web-based interactive computing platform) inside a DOCKER image. The DOCKER
image contains the SAGE 9.5 mathematical library, necessary for the creation of the
boolean clauses inherent to the AES key schedule, the explanation of how these
clauses are constructed can be found in [15]. As for the assignment of the known
bits, there is the use of an external library [17] which, starting from the initial key
(generated randomly), calculates all the round keys, it will then be up to us to decide
the quantity and location of each single bit to be inserted. as partial information
within the CNF.
It is therefore obvious that in each CNF of an AES-128 bit key the first 87041 are
the same since the clauses inherent to the relationships between different round keys
will be the same, what changes from file to file are therefore the known bits of the
round keys.
The script inside has a parameter that allows you to set the number of CNF files we
want to generate and the number of known bits we want to insert inside the CNF.
In this thesis it was decided to assign the known partial information, in the most
disadvantageous way possible, so as to implement a very bad case. To do this, the
known information is assigned at the beginning of the first round key and at the end
of the tenth round key, the initial cipher key is therefore excluded from the known
information since it is precisely what we want to calculate. The figure represents
the known information assigned in the CNF, 64 bit in the left part of the round key
1 and 64 bit in the right part of the round key 10, the asterisks indicate the bits
whose value is not known.

Figure 4.1: Partial information know

Also, in this case the choice of which known information to assign is not binding in
any way, in all the tests conducted in this thesis different computation techniques

Chapter 4 Nicolas Pietro Martignon 19

Recover AES key using SAT and brute force approach

are always compared on the same known information, in order to have an honest
comparison between the different techniques.
Originally this script generated a DIMACS CNF with xor clauses, it was therefore
necessary to convert these clauses to test the CNF file on solvers that do not support
this DIMACS variant with XOR clauses. To do this, it was sufficient to convert each
occurrence of an XOR clause with a series of CNF clauses. In the file appeared 2
types of XOR clauses, the first type presents the third variable negated, while the
second type presents all 3 variables in their positive form.
For the first type of XOR clause: "x1 2 -3 0" the following CNF clauses correspond:

-1 -2 3 0
-1 2 3 0
1 -2 3 0
1 2 3 0

For the second type of XOR clause: "x1 2 3 0" the following CNF clauses corre-
spond:

-1 -2 3 0
-1 2 -3 0
1 -2 -3 0

1 2 3 0

The python script will then generate both files, a CNF file with the XOR clauses
and a CNF file without the XOR clauses.

Chapter 4 Nicolas Pietro Martignon 20

Recover AES key using SAT and brute force approach

4.2 Hardware and software used
An ACER Aspire V Nitro laptop with Intel Core i7 4720HQ 3.6 Ghz 4 core 8 thread
processor, with 16 GB of DDR3 memory, was used to conduct the tests.
The following SAT solver was used to perform the tests:

• Kissat 2.0.1 [18]: "Kissat is a Keep It Simple and clean bare metal SAT
Solver written in C. It is a port of CaDiCaL back to C with improved data
structures, better scheduling of inprocessing and optimized algorithms and
implementation". Single-thread SAT solver, winner of Main Track 2021.

The following SAT solver was used as a comparative in some of our results:

• CryptoMiniSat 5.8.0 [19]: "An advanced incremental SAT solver", winner of
the Incremental Track 2020.

The solvers have been executed in the various approaches developed through the
use of python scripts, this language very easily allows you to read and write from
standard output and on files. Furthermore, always with great simplicity, python has
made it possible to create a thread pool using the "multiprocessing.dummy" library,
necessary for conducting some tests.
The Kissat SAT solver, for convenience, was performed in a virtual environment
with 7 virtual cores available. Cryptominisat, on the other hand, runs in a native
windows 10 environment with 8 available cores, that correspond to all the logical
cores of the machine.

Chapter 4 Nicolas Pietro Martignon 21

Chapter 5

Key recovery on partial key schedule

In this chapter the techniques and approaches developed will be shown, they will
also be tested with the aim of acquiring statistics on processing times. In the arti-
cles mentioned in chapter 2, the fastest approach was the one that found the only
solution in the shortest time, in this case instead in many instances we will have
the possibility of having more correct solutions that satisfy the constraints, the best
approach will therefore be the one that will allow us to find all the solutions in the
shortest possible time. This difference arises because the computational power in
the periods in which the papers in chapter 2 were written was relatively much lower
than today, and therefore only allowed to analyze instances in which corruption
was relatively low to enable obtaining a single solution. In 1 out of 7 experiments
conducted by Kamal [15] with a corruption of 80% δ0 the key returned by the SAT
solver was different from the original key, the correct key was therefore found by
re-running the sat solver and banning the previously found key. In addition to the
increase in computational power, many steps forward have also been made in the
development of SAT solvers, which are able to solve very complex instances with
less and less time. In our case, therefore, we have an increasingly optimized com-
putational power and SAT solvers that allow us to analyze instances in which the
known information is relatively low so that we can have more solutions.
Having many candidate solutions and finding the correct one turns out to be a very
simple and efficient problem, just test the keys found on intercepted clear/encrypted
texts. Given its simplicity, this problem will not be dealt with in the following paper.
The techniques developed in this thesis will be presented in the next sections. For
each approach it is present a detailed high level explanation, a pseudocode and the
statistics of the various tests conducted, necessary for chapter 6 in which several
comparisons will be made.
There will be the use of graphs with logarithmic scale in the Y axis to have a clearer
report.
For a more truthful comparison, the same CNF files are used in all ap-
proaches tested and also between the different solvers tested.

22

Recover AES key using SAT and brute force approach

5.1 Banning solution approach
This technique turns out to be the simplest and most intuitive approach to im-
plement. The developed python program starts by launching the solver with the
generated instance (file CNF), later, after the solver has found the solution, the
written script will proceed by relaunching the solver excluding the previously found
solution. To do this, it is sufficient to add a constraint (clause) that negates the
solution just found, so that the solver looks for other solutions. In this case we
would therefore have many successive invocations of the solver in which a constraint
(clause) is added each time to exclude the key just found. The python script stops
relaunching the solver when it says there are no more solutions (UNSAT). To carry
out the banning operation of the solution just found, we must insert a new clause in
the CNF file, this clause will be composed of the solution just found by the solver
with the variables with the inverted binary value.
An example will be shown below on a dummy instance.
Solver output:

s SATISFIABLE
v 1 2 -3 0

Clause to be inserted in the CNF file to ban the solution just found:

-1 -2 3 0

The pseudocode of the algorithm just described is shown below.

Algorithm 1 Banning solution pseudocode
while TRUE do

Launch solver with CNF
if Solver return SAT then

Save solution
Modifying the CNF banning the solution just found

else
Display all solution, and elapsed time
break

end if
end while

5.1.1 Tests result

The tests are conducted with CNFs with different known number of bits.
Since this technique is designed to find all the solutions of a given CNF, its use on
instances that have only 1 solution turns out to be very unfavourable in terms of
time. This is because the solver is re-executed after it has found the only solution,
in order to find others. So, in instances with many known bits where it is probabilis-
tically known that the solution will be only one, it is therefore advisable to perform

Chapter 5 Nicolas Pietro Martignon 23

Recover AES key using SAT and brute force approach

the SAT solver directly with the CNF, without the aid of this approach.
In sight of this, it was decided to start from instances that produced an average of
1 solution up to instances that produced several candidate solutions.
By known bits we mean the total of known information, which as previously men-
tioned is divided between the part allocated in the first round key and the part
allocated in the tithe round key.

The statistics on the execution times of the various tests are shown below.

Bit known 132 130 128 126 124 122 120
Avg Solutions 1.3 2 4.3 6.5 19 70.6 266

K
is

sa
t

Min 47.4 36.4 65.1 889.0 6807 14811 22030
Max 92.8 150.5 240.5 6494 6886 16984 43721
Avg 69.3 94.4 143.3 2525 6218 16142 32684

St.Dev 12.0 31.5 50.8 1546 889.4 952.8 8859
Med. 70.9 97.25 147.5 1965 6807 16633 32303

Tests 10 10 10 10 3 3 3

Table 5.1: Run-time statistic for banning solution

The graph below shows the trend of the average times as a function of the known
bits.

132 130 128 126 124 122 120

100

1,000

10,000

Bit known

Av
g

ti
m

e

Avg time of Banning solution approach

Chapter 5 Nicolas Pietro Martignon 24

Recover AES key using SAT and brute force approach

The graph below shows the trend of the candidate solutions as a function of the
known bits.

132 130 128 126 124 122 120

1

10

100

1,000

Bit known

So
lu

ti
on

Avg solution

As we can see from both graphs we have a sub-exponential increase in average times
and candidate solutions. Through these results we can verify what has been said
previously, that is, as the known information decreases, we will have an increasing
number of candidate solutions. In the graph that portrays the feasible solutions we
note how the increase is very predictable and smooth, as regards the graph that
portrays the average times, on the other hand, we have a less predictable trend.
The most notable increase is from 128 to 126 bit known where there is a growth of
1665%.
In all the other contiguous columns we have at most an increase which is less than
200%. These graphs are very important, because they show us how this problem is
computationally difficult given that the complexity turns out to be sub-exponential.

Chapter 5 Nicolas Pietro Martignon 25

Recover AES key using SAT and brute force approach

5.2 Brute force approach
This technique adopts the Divide et impera approach, since the initial instance that
is given as input is divided into subproblems that will be addressed individually by
the SAT solvers. More precisely, this technique consists in doing a brute force of a
few bits before running the SAT solver on the instance.
Once you have chosen the cardinality of the bits you want to brute force, this
approach proceeds to generate all the combinations of these bits and then to create
the sub-problems with the different combinations. It was decided to instantiate
these bits close to the known bits, so for example if we decide to brute force on 2
bits, 1 bit will be instantiated close to the known bits of round key 1 and the other
bit will be instantiated in the same way close to the known bits of the round key
10. In chapter 5.4 further tests will be carried out, changing the location of the
instantiated bits.
So, suppose to do the brute force on 2 bits, since with 2 bits we have 4 combinations,
we will then have 4 subproblems of the main instance to be solved individually
through an execution of the SAT solver. The following image depicts the following
scenario, the asterisks indicate the bits of which the value is not known while the
red bits are the instantiated bits (in which we do brute force), the number of known
and unknown bits represented in the image is not significant.

Figure 5.1: Sub-problem generated

Therefore, for each subproblem a clone of the starting CNF will be made with the
addition of the instantiated bits, in this case we will therefore have further 4 CNF
files.
From a coding point of view, a solution was initially implemented which consisted
in asynchronously launching each call to the SAT solver with the CNFs generated,
but doing so, however, in many cases the CPU was overloaded with many threads
to manage. Suppose the case of having instantiated 5 bits we will then have 32
instances of execution of the SAT solver, each of this instance will compete with
the others to obtain the use of the CPU, since we have only 7 logical cores avail-
able. In addition, the CPU itself will waste a lot of time by making the context
switch between one process and another. It was therefore decided to use a python
thread pool through the "multiprocessing.dummy" library, it will have the aim of

Chapter 5 Nicolas Pietro Martignon 26

Recover AES key using SAT and brute force approach

scheduling the various instances in such a way as not to overload the CPU. A task
is created for each SAT solver execution instance that will be executed at the ap-
propriate time from the thread pool. In this way we will potentially always have 7
instances running on the 7 logical cores, when an instance terminates another one
is instantly started until all the calls to the SAT solver are terminated.
In some cases we may not use all 7 logical cores, this is because being Kissat a single
thread solver, 7 instances are performed simultaneously only where the number of
combinations is greater than or equal to 7. For example, if we decide to brute force
on 2 bits we would have 4 CNF files that each contain a different combination. By
doing so we would therefore have 4 instances of the solver running at the same time,
thus using 4 logical cores out of 7 available. We will note, however, that this is not
as limiting as it seems since Kissat is a solver developed to be performing with only
1 core available.
From a practical point of view, this approach has the big limitation that not in
all cases it is able to find all the solutions. This is because starting from the ini-
tial problem, N subproblems are created, but each of these subproblems is solved
through a simple call to the SAT solver, which returns at most one solution. To
overcome this problem, we can think of increasing the cardinality of N in such a
way as to have more known information in each subproblem, which is equivalent to
having a smaller number of solutions. However, we will notice from the test results
that many times this solution is not sufficient to obtain all the solutions and in some
cases it turns out to be very inefficient.
Maximum number of solutions obtainable in function of the number of instantiated
bits:

• 2 bit: 4 solutions

• 4 bit: 16 solutions

• 6 bit: 64 solutions

• 8 bit: 256 solutions

In the next section another approach will be shown that brings together the 2 tech-
niques seen so far and allows to obtain all the solutions of the starting CNF.

The pseudocode of the brute force technique just described is shown on the next
page.

Chapter 5 Nicolas Pietro Martignon 27

Recover AES key using SAT and brute force approach

Algorithm 2 Brute force pseudocode
TaskList = []
C = Calculate and Store all combination with N bit instanced
while C is not empty do

Create Task = {
1) Pick one combination from C
2) Create CNF accordingly to the combination taken
3) Launch SAT solver with the generated CNF

}
Add Task to TaskList

end while
for each Task in TaskList do

Print solution of Task
end for

5.2.1 Tests result

As in the Banning solution approach, the tests are conducted with CNFs with dif-
ferent known number of bits, with the addition that for each CNF different tests are
conducted with a different number of instantiated bits.

The tests carried out were divided into 2 groups:

I) Tests carried out from 490 to 140 known bits, in these tests given the high
number of known bits, we will have only one solution in output from the solver.
The results of these tests will be compared in the next chapter with the average
times of a single call to the SAT solver;

II) Tests performed from 132 to 120 known bits, in these tests more than one
solution is returned. The results of these tests will be compared in the next
chapter with the average times of the other techniques developed.

In each table belonging to group II of the tests, there is an avg. solution row, this
row contains the average solutions found with these known bits through the Banning
Solution technique previously explained.

The times collected in the tests carried out also include the time needed
to create the CNF files containing the subproblems, this could lead to a
lot of overhead especially if many bits are instantiated and if the time to
solve each subproblem is relatively low as happens in the test group 1.
To overcome this complication, one could think of generating all the files
first (offline) and launching the solvers on them, however this solution
will not be explored in this paper;

The statistics on the execution times of the various tests as a function of the number
of instantiated bits are shown in the next page, while the results obtained will be
compared and discussed in the next subsection.

Chapter 5 Nicolas Pietro Martignon 28

Recover AES key using SAT and brute force approach

2 bit instanced

Bit known 490 420 350 280 210 140

K
is

sa
t

Min .29 .24 .25 .28 .33 28.2
Max .35 .37 .39 .64 .44 208.6
Avg. .31 .32 .32 .35 .37 84.9

St.Dev .023 .034 .036 .10 .033 53.7
Med. .31 .32 .32 .32 .36 70.9

Tests 10 10 10 10 10 10

Table 5.2: Run-time statistic for brute force on 2 bit I

Bit known 132 130 128 126 124 122 120
Avg sol. 1.3 2 4.3 6.5 19 70.6 266

Avg sol. founds 1.1 1.6 1.9 2.5 3.4 4 4

K
is

sa
t

Min 38.2 41.1 39.9 15.9 343.3 511.7 194
Max 58.7 64.1 284.6 133.4 1489 832.5 431
Avg. 45.6 50.4 70.2 47.6 692.0 676.6 334

St.Dev 6.8 7.1 75.4 43.7 401.0 131.0 100
Med. 43.9 52.3 47.2 30.7 516.3 681.1 356

Tests 10 10 10 10 10 4 4

Table 5.3: Run-time statistic for brute force on 2 bit II

4 bit instanced

Bit known 490 420 350 280 210 140

K
is

sa
t

Min .88 .89 .90 .94 1.15 26.6
Max 1.03 .93 1.04 1.31 1.73 107.0
Avg. .94 .91 .94 1.05 1.26 49.9

St.Dev .054 .011 .042 .10 .17 22.5
Med. .92 .90 .92 1.03 1.21 46.6

Tests 10 10 10 10 10 10

Table 5.4: Run-time statistic for brute force on 4 bit I

Bit known 132 130 128 126 124 122 120
Avg sol. 1.3 2 4.3 6.5 19 70.6 266

Avg sol. founds 1.2 1.8 3.3 4.1 8.0 12.75 16

K
is

sa
t

Min 104.9 91.5 110.7 129.2 83.4 1723 1616
Max 165.8 162.5 210.1 267.5 355.2 2461 2310
Avg. 130.2 129.3 150.0 166.8 153.6 2093 2042

St.Dev 22.4 27.0 27.3 41.6 85.4 327.6 260.3
Med. 123.7 130.2 145.6 154.4 110.2 2094 2122

Tests 10 10 10 10 10 4 4

Table 5.5: Run-time statistic for brute force on 4 bit II

Chapter 5 Nicolas Pietro Martignon 29

Recover AES key using SAT and brute force approach

6 bit instanced

Bit known 490 420 350 280 210 140

K
is

sa
t

Min 3.52 3.55 3.54 3.60 4.54 97.1
Max 7.05 3.89 3.99 3.77 5.33 172.3
Avg. 4.72 3.64 3.64 3.68 5.01 128.7

St.Dev 1.50 .097 .138 .05 .27 20.0
Med. 3.62 3.61 3.59 3.69 4.98 122.5

Tests 10 10 10 10 10 10

Table 5.6: Run-time statistic for brute force on 6 bit I

Bit known 132 130 128 126 124 122 120
Avg sol. 1.3 2 4.3 6.5 19 70.6 266

Avg sol. founds 1.3 1.9 4.1 5.3 15.4 24.5 56.5

K
is

sa
t

Min 365.4 366.1 376.3 453.2 498.8 363.2 7387
Max 516.9 539.6 568.7 608.2 667.8 449.1 10701
Avg. 431.9 437.8 472.7 543.7 570.3 412.8 9044

St.Dev 57.5 68.3 59.1 55.9 52.2 36.5 1657
Med. 415.1 407.6 470.6 555.6 558.6 418.1 9044

Tests 10 10 10 10 10 4 2

Table 5.7: Run-time statistic for brute force on 6 bit II

8 bit instanced

Bit known 490 420 350 280 210 140

K
is

sa
t

Min 24.0 13.9 13.8 14.4 16.3 411.9
Max 27.0 18.9 15.2 15.4 18.6 603.3
Avg. 25.7 14.7 14.2 15.0 17.3 478.6

St.Dev 1.07 1.51 .39 .29 .69 53.3
Med. 26.0 14.1 14.0 15.0 17.3 477.0

Tests 10 10 10 10 10 10

Table 5.8: Run-time statistic for bruteforce on 8 bit I

Bit known 132 130 128 126 124 122 120
Avg sol. 1.3 2 4.3 6.5 19 70.6 266

Avg sol. founds 1a 1.75a 4.3 6.2 19 37 115

K
is

sa
t

Min 2397 1330 1565 1634 1783 2187 1368
Max 2860 1805 1771 2105 2197 2459 1616
Avg. 2629 1506 1656 1797 2009 2279 1521

St.Dev 193.5 209.3 81.2 193.5 128.9 123.4 93.9
Med. 2630.0 1445 1644 1727 2022 2235 1551

Tests 4 4 5 5 7 4 4

Table 5.9: Run-time statistic for bruteforce on 8 bit II

Chapter 5 Nicolas Pietro Martignon 30

Recover AES key using SAT and brute force approach

a. I am highly confident that by carrying out 10 tests, the solutions found are equal
to the expected solutions.

5.2.2 Comparing tests result

In this subsection the results obtained will be compared and discussed.

From 490 to 140 known bits

The graph below shows the trend of the average times as a function of the known
bits.

490 420 350 280 210 140

1

10

100

1,000

Bit known

Av
g

ti
m

e

Avg. time in function of different number of bit instanced

2 BIT
4 BIT
6 BIT
8 BIT

The superiority in instantiating only 2 bits can be noticed very easily, this config-
uration is inferior only in the case of 140 known bits, in which it is faster to brute
force on 4 bits.
These results are most likely due to the fact that the times for the calculation of the
solutions are very low, (<1 sec with known bits> 140), and therefore by instantiat-
ing many bits, the time necessary for the creation of the copy file prevails.
In these cases therefore, having a relatively high cardinality of the known bits, if we
decide to use the brute force approach we can conclude that it is better to brute
force with as few bits as possible.

From 132 to 120 known bits

The graph in the next page shows the trend of the average times as a function of
the known bits.

Chapter 5 Nicolas Pietro Martignon 31

Recover AES key using SAT and brute force approach

132 130 128 126 124 122 120

100

1,000

10,000

Bit known

Av
g.

ti
m

e

Avg. time in function of different number of bit instanced

2 BIT
4 BIT
6 BIT
8 BIT

From the overlay graph we can see that the average times are very overlapping, in
contrast to what was found in the previous test group. In the Find Ban technique
we noticed how there was a large increase in the average times necessary for the
computation from 128 to 126 known bits, we can verify this increase in the average
times also in this graph. To be precise, this increase occurs when the sum between
instantiated and known bits is equal to 126.

• 2 BIT -> 124+2

• 4 BIT -> 122+4

• 6 BIT -> 120+6

The average times alone, however, are not a valid metric in deciding which is the
best number of bits to instantiate. This is because, as shown in the graph below,
the solutions found vary considerably as the number of instantiated bits varies.

132 130 128 126 124 122 120

1

10

100

1,000

Bit known

So
lu

ti
on

Avg. solution found vs Avg solution

2 BIT
4 BIT
6 BIT
8 BIT

Actual Solution

Chapter 5 Nicolas Pietro Martignon 32

Recover AES key using SAT and brute force approach

It is therefore advisable to use a metric that takes into consideration the solutions
found and the average time required for the computation. Despite this, it must be
borne in mind that in some configurations of instantiated bits, we can get very few
solutions compared to the real number of possible solutions e.g. (2 instantiated bits,
120 known bits, 4 solutions found, 266 avg. total solutions)
The graph below shows the ratio between solutions found and average time to find
such solutions for each configuration of instantiated bits.

132 130 128 126 124 122 120

0.001

0.01

0.1

Bit known

So
lu

ti
on

Avg. solution found / avg. time (higher is better)

2 BIT
4 BIT
6 BIT
8 BIT

Through this graph we can therefore conclude that there is no optimal instantiated
bit configuration in any known bit situation. Based on the objective to be achieved:
calculate all the solutions; find as many solutions as possible; find few solutions; it
may therefore be advisable to instantiate a certain number of bits instead of another.

Chapter 5 Nicolas Pietro Martignon 33

Recover AES key using SAT and brute force approach

5.3 Mixed approach (brute force and banning solu-
tion)

As already anticipated in the previous section, this technique consists in putting
together the 2 previous approaches seen.
The python script then starts generating all the combinations of the instantiated
bits (brute force) as in the previous approach, the difference is that the generated
CNFs are not executed through an execution of the SAT solver, but rather they
are executed by an execution of the Banning solution script seen in section 5.1. By
doing so, this technique is therefore able to find all the solutions of the starting CNF.

The pseudocode of the Hybrid technique just described is shown below.

Algorithm 3 Brute force and banning solution pseudocode
TaskList = []
C = Calculate and Store all combination with N bit instanced
while C is not empty do

Create Task = {
1) Pick one combination from C
2) Create CNF accordingly to the combination taken
3) Launch Banning solution script with the generated CNF

}
Add Task to TaskList

end while
for each Task in TaskList do

Print solution of Task
end for

5.3.1 Tests result

As in the previous approach, the tests are conducted with CNFs with different known
number of bits and with a different number of instantiated bits.
In the table the avg. sol and avg. sol. founds columns have been omitted, as this
approach always finds all possible solutions.

The following page shows the statistics on the execution times of the various tests
as a function of the number of instantiated bits.

Chapter 5 Nicolas Pietro Martignon 34

Recover AES key using SAT and brute force approach

2 bit instanced

Bit known 132 130 128 126 124 122 120

K
is

sa
t

Min 57.0 55.1 129.4 98.5 2500 8159 21825
Max 83.9 110.1 175.8 186.0 6119 12455 26006
Avg. 71.4 78.6 149.7 133.3 3782 9950 23915

St.Dev 7.3 17.5 19.6 37.2 1651 2235 2090
Med. 70.4 77.5 146.8 124.3 3255 9235 23915

Tests 10 7 4 4 4 3 2

Table 5.10: Run-time statistic for Mixed approach on 2 bit

4 bit instanced

Bit known 132 130 128 126 124 122 120

K
is

sa
t

Min 116.2 122.8 175.5 182.2 194.5 8605 29151
Max 176.0 180.8 210.4 254.4 548.6 12317 37162
Avg. 138.1 147.8 194.6 217.4 339.1 10796 33156

St.Dev 22.6 20.8 15.9 30.8 149.6 1944 4005
Med. 131.5 142.5 196.3 216.5 306.7 11465 33156

Tests 10 7 4 4 4 3 2

Table 5.11: Run-time statistic for Mixed approach on 4 bit

6 bit instanced

Bit known 132 130 128 126 124 122 120

K
is

sa
t

Min 348.4 362.2 500.3 486.6 711.1 1003 32676
Max 474.1 532.2 579.0 709.2 1021 16740 36822
Avg. 410.3 410.6 543.4 563.0 807.2 5169 34749

St.Dev 45.0 55.5 34.0 103.2 143.7 6097 2073
Med. 403.1 399.9 547.1 528.0 748.2 1086 34749

Tests 10 7 4 4 4 5 2

Table 5.12: Run-time statistic for Mixed approach on 6 bit

8 bit instanced

Bit known 132 130 128 126 124 122 120

K
is

sa
t

Min 2021 1288 1600 1643 2168 2510 3064
Max 2732 1799 1750 1886 8508 3272 27342
Avg. 2315 1475 1668 1719 3861 2862 6189

St.Dev 228.1 181.8 66.9 113.0 3100 247.92 6950
Med. 2370 1429 1661 1673 2384 2796 3992

Tests 10 7 4 4 4 5 10

Table 5.13: Run-time statistic for Mixed approach on 8 bit

Chapter 5 Nicolas Pietro Martignon 35

Recover AES key using SAT and brute force approach

5.3.2 Comparing avg run-time

The graph below shows the trend of the average times as a function of the known
bits.

132 130 128 126 124 122 120

100

1,000

10,000

Bit known

Av
g.

ti
m

e
Avg. time in function of different number of bit instanced

2 BIT
4 BIT
6 BIT
8 BIT

Analyzing the above graph, from 132 bits to 126 bits it is advisable to brute force
only on 2 bits, this suggests that in this range further subdividing the problem into
more than 4 subproblems does not bring any advantage, indeed it does not bring
any advantage, indeed it only increases the time needed.
Continuing with the analysis, from 124 known bits onwards, as can be seen from
the graph, it is advisable to increase the cardinality of the bits on which brute force
is performed, for example with 124 known bits it is faster to brute force on 4 bits
while with 122 known bits it is faster to instantiate 8 bits for brute force.
In the last known bits circumstance, namely 120, by instantiating 8 bits we obtain an
average time of 6189 seconds with a decrease of 74% (higher is better) with respect
to the analogous case by instantiating 2 bits. This improvement allows us to believe
that even in cases more extremes in which less than 120 bits are known, it will be
better to brute force by increasing the cardinality of the instantiated bits more and
more.
In the previous approaches we noticed an increase in terms of time when the sum
between instantiated bits and known bits is equal to 126, also in this technique this
increase can be found in the same circumstances.

Chapter 5 Nicolas Pietro Martignon 36

Recover AES key using SAT and brute force approach

5.4 Random bit instancing
This technique consists in carrying out the brute force on N bit as in the previously
seen approaches, the difference is that the bits are not instantiated close to the
known information as it happened in the previous approaches, but rather happens
randomly. When the combinations are generated, N bits are then randomly chosen
over the entire Key schedule (obviously excluding the bits already known and the bits
that are part of the starting key), and the CNF files are generated by populating
these bits with the generated combinations. Therefore, for each CNF generated,
proceed as in the previous approach by launching an execution of the Banning
solution script discuss in section 5.1.
This technique through randomism aims to flatten the complexity/computation time
of each generated subproblem, however the effectiveness of this approach is not taken
for granted and will be determined in the testing phase.
The following image depicts the following scenario, the asterisks indicate the bits
whose value is unknown while the red bits are the randomly instantiated bits (which
are brute-force), the number of known and unknown bits, represented in the image
is not significant.

Figure 5.2: Random sub-problem generated

The next page shows the pseudocode of the Random technique just described.

Chapter 5 Nicolas Pietro Martignon 37

Recover AES key using SAT and brute force approach

Algorithm 4 Random bit instancing pseudocode
TaskList = []
C = Calculate and Store all combination with N bit instanced
D = Choose at random the location of N bit to be instantiated
while C is not empty do

Create Task = {
1) Pick one combination from C
2) Create CNF accordingly to the combination taken and to D
3) Launch Banning solution script with the generated CNF

}
Add Task to TaskList

end while
for each Task in TaskList do

Print solution of Task
end for

5.4.1 Tests result

In the tests conducted in the mixed approach we were able to observe which is the
best number of bits to instantiate in each circumstance of known bits. In conducting
these tests, therefore, we will limit ourselves to using this technique only by instan-
tiating the number of bits that was faster in the tests carried out on the mixed
approach, i.e., the following configurations will be used:
132 2 bit, 130 2 bit, 128 2 bit , 126 2-bit, 124 4-bit, 122 8-bit, 120 8-bit.
This has the aim of verifying in the next chapter if through this technique there is
a further improvement in the time taken by the solver.

Bit known 132 130 128 126 124 122 120
Bit instanced 2 2 2 2 4 8 8

K
is

sa
t

Min 42.2 64.48 62.2 351.0 1704 3637 54728
Max 141.7 146.7 169.59 2802 6045 55097 56352
Avg 79.66 96.81 128.3 1626 3946 22698 55540

St.Dev 28.71 28.54 42.2 1055 1601 20301 812
Med. 78.50 84.6 130.3 1998 4326 17519 55540

Tests 10 7 5 5 5 5 2

Table 5.14: Run-time statistic for Random bit instancing

The next page shows the trend of the average times as a function of the known bits.

Chapter 5 Nicolas Pietro Martignon 38

Recover AES key using SAT and brute force approach

132 130 128 126 124 122 120

100

1,000

10,000

Bit known

Av
g.

ti
m

e

Avg. time of Random bit instancing approach

The graph is very similar to the one drawn for the banning solution approach. In
fact, in the same way the largest increase is from 128 to 126 known bit where there
is an increase of 1167 %, the second increase in order of magnitude is from 124 to
122 known bits in which there is an increase in average times of 475%.

In the next chapter the average times of this approach will be compared with the
statistics of the other developed techniques, this has the aim of understanding if the
following approach is more or less effective than the other developed approaches.

Chapter 5 Nicolas Pietro Martignon 39

Chapter 6

Comparison of different technique

6.1 Comparison of all techniques in scenarios with
multiple solutions

In this section a comparison is made between all the approaches seen previously, in
this comparison the tests carried out from 132 to 120 known bits will be taken into
consideration, range in which many solutions are admissible. This comparison aims
to highlight which is the fastest method to obtain all candidate solutions.
The graph in the next page shows the comparison of the average times between all
the various approaches introduced in the previous chapter, the following approaches:
brute force and mixed approach, are represented in the graph in their best config-
uration. By best configuration we mean, use the number of instantiated bits/brute
force that allow to obtain the lowest time in the case of the mixed approach, while
for the brute force approach we mean use the number of instantiated bits/brute
force that allows us to obtain the highest value in the avg solution found/avg time
metric introduced in the following paragraph 5.2.2
Noting the graph Avg. solution found/avg. time the best configuration for the brute
force approach is therefore:
132 2 bit, 130 2 bit, 128 2 bit, 126 2 bit, 124 4 bit, 122 6 bit, 120 8 bit.
Noting the graph Avg. time in function of different number of bit instanced the best
configuration for the mixed approach is therefore:
132 2 bit, 130 2 bit, 128 2 bit, 126 2 bit, 124 4 bit, 122 8 bit, 120 8 bit.

40

Recover AES key using SAT and brute force approach

132 130 128 126 124 122 120

100

1,000

10,000

Bit known

Av
g.

ti
m

e

Comparison of avg. time of all approaches

Find ban
Brute force

Mixed
Random

From the above graph as expected, the fastest technique in all cases of known bits
turns out to be the brute force technique. However, remember that it does not find
all possible solutions, but a subset of them, which is strictly related to the number
of bits instantiated in the brute force.
Moving on to the comparison between the mixed approach and the random approach,
we can see how the expected improvement in using the random technique did not
occur. It therefore seems that the randomism component introduced did not produce
the hoped improvements, moreover, compared to the mixed approach, the standard
deviation has increased on average, making the average times of the tests very
different from each other. We can therefore conclude that the best approach that
allows to find all the feasible solutions with the shortest time is therefore the mixed
approach, where from 126 to 120 known bits demonstrates its best effectiveness
compared to the Banning solution approach.
More precisely, using the mixed approach we get a decrease in avg time of 94%,
94%, 82%, 81% (higher is better), in scenarios with 126, 124, 122, 120 known bits
with respect to the analogous scenario using banning solution approach.

6.2 Comparing single SAT solver instance VS brute
force approach in scenarios with max one solu-
tion

This section compares the brute force approach introduced in chapter 5.2 with a
simple call to the Kissat SAT solver with the generated CNF.
This comparison has the aim of highlighting which is the fastest method to obtain
the expected solution.
As already anticipated by the title of the section in this comparison the tests will
be carried out from 490 to 140 known bits, range in which only one solution is
admissible.

Chapter 6 Nicolas Pietro Martignon 41

Recover AES key using SAT and brute force approach

In the table below there are therefore the statistics of the tests conducted through
a simple call to the solver, 10 tests were performed for each known bit scenario.

Bit known 490 420 350 280 210 140

K
is

sa
t

Min .076 .077 .064 .079 .088 16.8
Max .194 .159 .140 .169 .151 83.9
Avg .102 .108 .099 .109 .122 45.8

St.Dev .035 .024 .022 .027 .022 23.9
Med. .091 .103 .097 .102 .129 43.2

Tests 10 10 10 10 10 10

Table 6.1: Run-time statistic for single SAT solver instance (Kissat)

The graph below depicts the comparison of the average times between the brute force
approach (in its best configuration) and a single call to the solver. For best con-
figuration we mean, as in the previous cases, to use the number of instanced/brute
force bits that allow to obtain the shortest time.
Noting the graph Avg. time in function of diferrent number of bit instanced the best
configuration is therefore:
490 2 bit, 420 2 bit, 350 2 bit, 280 2 bit, 210 2 bit, 140 4 bit.

490 420 350 280 210 140

0.1

1

10

100

Bit known

Av
g.

ti
m

e

Comparison between brute force approach and single sat solver call

Single sat solver call
Brute force

Through this comparison we can therefore conclude that in the range from 490 to
140 known bits a single call to the sat solver is faster than using the brute force
approach.
We have to keep in mind the clarification made earlier on the possible
overhead due to the creation of the copy files.

Chapter 6 Nicolas Pietro Martignon 42

Recover AES key using SAT and brute force approach

6.3 Comparing our best approach VS Incremental
SAT solver

In this section, the average times of the Mixed approach, which turns out to be the
most effective, will be compared with an incremental SAT solver: Cryptominisat.
As previously mentioned, an incremental SAT solver is a particular type of SAT
solver that is able to find more than one solution for an instance, efficiently.
So, to carry out the tests with Cryptominisat just specify the CNF file as a param-
eter and indicate to Cryptominisat that we want to find all the possible solutions.
The goal of this comparison is therefore to understand if it is more effective in a
scenario where part of an AES key schedule is known, to use an incremental SAT
solver or the mixed approach developed in this paper.
Since Cryptominisat supports XOR clauses, the corresponding CNFs used in the
tests of the previous approaches are used for the current tests with the XOR clauses.

The table below shows the statistics of the tests conducted through a simple call to
the Cryptominisat solver.

Bit known 132 130 128 126 124 122 120

K
is

sa
t

Min 221.1 306.1 997.0 1036 1245 6058 11516
Max 1115 865.9 1802.8 3883 5787 7601 19312
Avg 385.8 486.4 1367 2427 4001 6910 15413

St.Dev 274.3 181.9 352.5 1248 1777 783.7 5512
Med. 270.6 422.6 1307 2974 4382 7070 15413

Tests 10 7 5 5 5 3 2

Table 6.2: Run-time statistic for single SAT solver instance (Cryptominisat)

The graph below shows the comparison of the average times between the Mixed
approach (in its best configuration) and a single call to the Cryptominisat solver.

132 130 128 126 124 122 120

100

1,000

10,000

Bit known

Av
g

ti
m

e

Comparison of avg time of all approaches

Cryptominisat
Mixed

Chapter 6 Nicolas Pietro Martignon 43

Recover AES key using SAT and brute force approach

From the above graph we can see that in this range of known bits the mixed ap-
proach developed in this paper turns out to be more effective in terms of time than
Cryptominisat, the best incremental SAT solver, winner of the Incremental track
2020.
More precisely, the gap is greater in the range from 132 to 124 known bits, and
decreases in the tests where the known bits are 122 and 120 bits. The percentage
decrease in avg. times for Mixed approach with respect to Cryptominisat time is:
81% with 132 bit, 83% with 130 bit, 89% with 128 bit, 94% with 126 bit, 91% with
124 bit, 58% with 122 bit, 59% with 120 bit (higher is better).
This trend of the percentages would suggest that with a number of known bits less
than 120, the gap of the average times of the 2 techniques can be reduced more
and more until they are equivalent in time, but this cannot be stated with certainty
because the number of instantiated bits could also be increased to 10 or 12 and thus
be able to maintain the relatively large gap. To remove any doubt, further tests
would be required on scenarios in which the known bits are less than 120.

Chapter 6 Nicolas Pietro Martignon 44

Chapter 7

Conclusion

This chapter illustrates the conclusions concerning the topics addressed in the vari-
ous chapters of this thesis.
In the first chapter after the introduction, a brief presentation is made on the func-
tioning of the AES key schedule and on the SAT problem, this introduction is
necessary to understand how these 2 elements can be used together.
In the next chapter the previous works are retraced, concerning data remanence of
RAM and on the correction of errors in a corrupt AES key schedule. This chapter
is useful to understand what the following thesis wants to deepen and add to the
literature.
Chapter 4 introduces preliminary information on the creation of CNF files and on
the hardware and software used for conducting the Tests.
In the next chapter, the techniques developed in this thesis work are presented.
For each approach there is a detailed high-level explanation, a pseudocode and the
run-time statistic of the various tests conducted. These statistics are necessary to
make the various comparisons that will take place in chapter 6, moreover in some
approaches the tests have been necessary to understand the best configuration in
each known and instantiated bit scenario. In the tests carried out in each approach
it was noted that the execution time increases in a sub-exponential way as a function
of the known bits. Furthermore, in the Banning solution approach, a large increase
in the average times from 126 to 124 known bits was noted, this increase is also
visible in the other techniques that make use of brute forcing, with the difference
that this increase can be noticed in the configurations in which the sum between
instantiated bits and known bits is equal to 126. From the tests carried out we can
conclude that the subdivision of a problem into several subproblems is effective.
Continuing to the next chapter, in chapter 6 first of all a comparison is made between
all the techniques developed, this is to understand which is the most performing ap-
proach among those introduced. From this comparison it emerges that the best
performing approach that allows to obtain all the admissible keys is the Mixed ap-
proach, which in the more complex scenario (120 known bits) decreases the time
required for computation by 81% compared to the Banning Solution technique.
Secondly, again in the same chapter, a comparison is made between a single call to
the SAT solver Kissat and the brute force approach in scenarios where there is a
maximum of one solution, from the graph it is quickly understood that the single
call to the SAT solver is more efficient. We can therefore conclude by saying that in

45

Recover AES key using SAT and brute force approach

scenarios with many known bits, in which only one solution is admissible, it is not
convenient to divide the starting problem into several subproblems. Recall again
that the processing times collected also include the creation of the copy files, this
could create a lot of overhead, in scenarios where the processing time is very low
(<1 sec). In view of this, a future job could be to repeat the tests from 490 to 140
bits known without considering the time needed to create the files, which could take
place offline that is before making the calls to the SAT solver.
Thirdly, the comparison is made between a single call to the incremental SAT solver
Cryptominisat and the mixed approach, from the comparison it is evident that the
Mixed approach is more performing than Cryptominisat. This comparison estab-
lishes how the Mixed approach developed in this paper is more effective than the
best incremental SAT solver, in a scenario where a part of an AES key schedule is
know and want to get the complete information. More precisely in the more complex
scenario (120 known bits), there is a 59% decrease in the average times necessary
for the computation of the solutions, using the Mixed approach instead of the SAT
solver Cryptominisat.
In conclusion, this thesis therefore presents new techniques that can however be
developed and combined in many other different ways: position of instantiated bits,
combined approaches, etc, giving light to many different types and scenarios. Also
given the nature of CNF files in DIMACS format, they could be tested on many
other different SAT solvers and on different machines.

Bibliography Nicolas Pietro Martignon 46

Bibliography

[1] J. Daemen and V. Rijmen, “The block cipher rijndael,” vol. 1820, pp. 277–284,
01 1998.

[2] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced En-
cryption Standard (Information Security and Cryptography). Springer, 1 ed.,
2002.

[3] N. I. of Standards and Technology, “Advanced encryption standard,” NIST
FIPS PUB 197, 2001.

[4] AES Rijndael Cipher explained as a Flash animation. https://www.youtube.
com/watch?v=gP4PqVGudtg&t=48s&ab_channel=AppliedGo.

[5] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, (New
York, NY, USA), p. 151–158, Association for Computing Machinery, 1971.

[6] The international SAT Competitions web page. Available at. http://www.
satcompetition.org/.

[7] Dimacs format. http://beyondnp.org/static/media/uploads/docs/
satformat.pdf.

[8] W. LINK and H. MAY, “Eigenschaften von mos-eintransistorspeicherzellen bei
tiefen temperaturen,” Archiv fur Elektronik und Ubertragungstechnik 33, pp.
229-235, June 1979.

[9] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum, “Shredding your garbage:
Reducing data lifetime through secure deallocation,” in 14th USENIX Security
Symposium (USENIX Security 05), (Baltimore, MD), USENIX Association,
July 2005.

[10] PETTERSON, “T. cryptographic key recovery from linux memory dumps,” in
Presentation, Chaos Communication Cam, August 2007.

[11] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember:
Cold-boot attacks on encryption keys,” Commun. ACM, vol. 52, p. 91–98, may
2009.

47

https://www.youtube.com/watch?v=gP4PqVGudtg&t=48s&ab_channel=AppliedGo
https://www.youtube.com/watch?v=gP4PqVGudtg&t=48s&ab_channel=AppliedGo
http://www.satcompetition.org/
http://www.satcompetition.org/
http://beyondnp.org/static/media/uploads/docs/satformat.pdf
http://beyondnp.org/static/media/uploads/docs/satformat.pdf

Recover AES key using SAT and brute force approach

[12] P. Gutmann, “Secure deletion of data from magnetic and Solid-State memory,”
in 6th USENIX Security Symposium (USENIX Security 96), (San Jose, CA),
USENIX Association, July 1996.

[13] P. Gutmann, “Data remanence in semiconductor devices,” in 10th USENIX
Security Symposium (USENIX Security 01), (Washington, D.C.), USENIX As-
sociation, Aug. 2001.

[14] A. Tsow, “An improved recovery algorithm for decayed aes key schedule im-
ages,” in Selected Areas in Cryptography (M. J. Jacobson, V. Rijmen, and
R. Safavi-Naini, eds.), (Berlin, Heidelberg), pp. 215–230, Springer Berlin Hei-
delberg, 2009.

[15] A. A. Kamal and A. M. Youssef, “Applications of sat solvers to aes key recovery
from decayed key schedule images,” in 2010 Fourth International Conference on
Emerging Security Information, Systems and Technologies, pp. 216–220, 2010.

[16] X. Liao, H. Zhang, M. Koshimura, H. Fujita, and R. Hasegawa, “Using maxsat
to correct errors in aes key schedule images,” in 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, pp. 284–291, 2013.

[17] External script used to generate round key. https://github.com/fanosta/
aeskeyschedule.

[18] Kissat web page. Available at. http://fmv.jku.at/kissat/.

[19] Cryptominisat5 web page. Available at. https://www.msoos.org/
cryptominisat5/.

[20] The Sage Developers, SageMath, the Sage Mathematics Software System (Ver-
sion 9.5), 2022. https://www.sagemath.org.

[21] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to cryptographic
problems,” in Theory and Applications of Satisfiability Testing - SAT 2009,
12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3,
2009. Proceedings (O. Kullmann, ed.), vol. 5584 of Lecture Notes in Computer
Science, pp. 244–257, Springer, 2009.

[22] S. P. Skorobogatov, “Low temperature data remanence in static ram,” 2002.

[23] T. Eibach, E. Pilz, and G. Völkel, “Attacking bivium using sat solvers,” in
Theory and Applications of Satisfiability Testing – SAT 2008 (H. Kleine Büning
and X. Zhao, eds.), (Berlin, Heidelberg), pp. 63–76, Springer Berlin Heidelberg,
2008.

[24] T. Vidas, “The acquisition and analysis of random access memory,” Journal of
Digital Forensic Practice, vol. 1, no. 4, pp. 315–323, 2007.

Bibliography Nicolas Pietro Martignon 48

https://github.com/fanosta/aeskeyschedule
https://github.com/fanosta/aeskeyschedule
http://fmv.jku.at/kissat/
https://www.msoos.org/cryptominisat5/
https://www.msoos.org/cryptominisat5/

Appendix A

Source code

A.1 Python scripts to generate CNF files
Below is the source code of the python scripts used to generate the CNF files.

GenerateRandomCNF.py
1 from sage.crypto.sboxes import AES
2 import random
3 import io
4 from aeskeyschedule2 import getSchedule
5 import os
6 import binascii
7 from random import randbytes
8 from platform import release
9

10 varcounter =1
11 outfile="outputXor.cnf"
12 kwowbit = 60
13

14 def newvars ():
15 global varcounter
16 n = [j for j in range(varcounter ,varcounter +32)]
17 varcounter += 32
18 return n
19

20 def AssignRoundKey(Words ,KeyValue ,KeyRound ,Start ,End):
21

22 baseKey = Words[KeyRound*N][0]
23 KeyWords = []
24 for w in Words[KeyRound*N:(KeyRound +1)*N]:
25 KeyWords += w
26

27 for i in range(Start ,End):
28 assert(baseKey+i == KeyWords[i])
29

30 if KeyValue[i] == ’1’:
31 Model2.append(f’{baseKey+i} 0’)
32 else:
33 Model2.append(f’-{baseKey+i} 0’)
34

35

36 Words = []
37 Model = []
38 Model2 = []
39 N = 4
40 R = 10
41

42 Bcon = [0x01 ,0x02 ,0x04 ,0x08 ,0x10 ,0x20 ,0x40 ,0x80 ,0x1B ,0x36]
43 Rcon = [’’]+[f’{x:08b}’+’0’*24 for x in Bcon]
44

49

Recover AES key using SAT and brute force approach

45 for i in range((R+1)*N):
46 if i<N:
47 Words.append(newvars ())
48 elif i%N == 0:
49

50 rot = Words [-1][8:]+ Words [-1][:8]
51 n1 = newvars ()
52 n2 = newvars ()
53 for j in range(N):
54 Model += (AES.cnf(xi=rot[j*8:(j+1)*8],yi=n1[j*8:(j+1)*8], format=’

dimacs_headless ’).split(’\n’)[:-1])
55

56 for b in range (32):
57 if Rcon[i//N][b]==’1’:
58 Model.append(f’x{Words[-N][b]} {n1[b]} {n2[b]} 0’)
59 else:
60 Model.append(f’x{Words[-N][b]} {n1[b]} -{n2[b]} 0’)
61 Words.append(n2)
62 else:
63 n2=newvars ()
64 for b in range (32):
65 Model.append(f’x{Words[-N][b]} {Words [-1][b]} -{n2[b]} 0’)
66 Words.append(n2)
67

68

69 for i in range (10):
70 print("File " + str(i) + " ...")
71 Model2 = []
72

73 Bytekey = randbytes (16)
74 keyschedule = getSchedule (0, Bytekey)
75

76 Bkey = bin(int(keyschedule [0], 16))[2:]
77 Bkey = Bkey.zfill (128)
78

79 Bkey1 = bin(int(keyschedule [1], 16))[2:]
80 Bkey1 = Bkey1.zfill (128)
81

82 Bkey10 = bin(int(keyschedule [10], 16))[2:]
83 Bkey10 = Bkey10.zfill (128)
84

85 AssignRoundKey(Words ,Bkey1 ,1,0,kwowbit)
86 AssignRoundKey(Words ,Bkey10 ,10,128- kwowbit ,128)
87

88 f = open("test/" +str(i) + outfile , ’w’, encoding=’utf -8’)
89 f.write(f’p cnf {varcounter -1} {len(Model)}\n’)
90 for c in Model:
91 f.write(c+’\n’)
92 for c in Model2:
93 f.write(c+’\n’)
94

95 f.close()
96

97 f = io.open("test/" + str(i) + "outputXor.cnf", "r", newline=’\n’)
98 allOfIt = f.readlines ()
99 f.close()

100

101 cnfClause = []
102 xorClause = []
103

104 for line in allOfIt:
105 if line.find("x") != -1:
106 xorClause.append(line)
107 else:
108 cnfClause.append(line)
109

110

111 for line in xorClause:
112 line = line.replace("x", "")[:-2]
113

114 if line.find("-") != -1:

Bibliography Nicolas Pietro Martignon 50

Recover AES key using SAT and brute force approach

115 appo = line.split(" ")
116 clause= "-" + appo [0] + " -" + appo [1] + " " + appo [2] + " 0\n"
117 cnfClause.insert(1,clause)
118 clause= "-" + appo [0] + " " + appo [1] + " " + appo [2][1:] + " 0\n"
119 cnfClause.insert(1,clause)
120 clause= "" + appo [0] + " -" + appo [1] + " " + appo [2][1:] + " 0\n"
121 cnfClause.insert(1,clause)
122 clause= "" + appo [0] + " " + appo [1] + " " + appo [2] + " 0\n"
123 cnfClause.insert(1,clause)
124

125 else:
126 appo = line.split(" ")
127 clause= "-" + appo [0] + " -" + appo [1] + " " + appo [2] + " 0\n"
128 cnfClause.insert(1,clause)
129 clause= "-" + appo [0] + " " + appo [1] + " -" + appo [2] + " 0\n"
130 cnfClause.insert(1,clause)
131 clause= "" + appo [0] + " -" + appo [1] + " -" + appo [2] + " 0\n"
132 cnfClause.insert(1,clause)
133 clause= "" + appo [0] + " " + appo [1] + " " + appo [2] + " 0\n"
134 cnfClause.insert(1,clause)
135

136

137 f = open("test/" + str(i)+"output.cnf", ’w’, newline=’\n’)
138 for x in cnfClause:
139 f.write(x)
140 f.close()
141

142 #for print solution of CNF
143 #f = open(str(i)+" solution.txt", ’w’, newline=’\n ’)
144 #f.write(Bkey)
145 #f.close ()
146

147 #in case you don’t need xor cnf de-comment the next line
148 #os.remove(str(i) + "outputXor.cnf")
149

150 print("Done!")

aeskeyschedule.py

File belonging to the external library [17], it is used to generate the keyschedule
starting from a cryptographic key.

1 from typing import List
2 from functools import reduce
3

4 sbox = [
5 0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 , 0x30 , 0x01 , 0x67 , 0x2b , 0xfe , 0

xd7 , 0xab , 0x76 ,
6 0xca , 0x82 , 0xc9 , 0x7d , 0xfa , 0x59 , 0x47 , 0xf0 , 0xad , 0xd4 , 0xa2 , 0xaf , 0x9c , 0

xa4 , 0x72 , 0xc0 ,
7 0xb7 , 0xfd , 0x93 , 0x26 , 0x36 , 0x3f , 0xf7 , 0xcc , 0x34 , 0xa5 , 0xe5 , 0xf1 , 0x71 , 0

xd8 , 0x31 , 0x15 ,
8 0x04 , 0xc7 , 0x23 , 0xc3 , 0x18 , 0x96 , 0x05 , 0x9a , 0x07 , 0x12 , 0x80 , 0xe2 , 0xeb , 0

x27 , 0xb2 , 0x75 ,
9 0x09 , 0x83 , 0x2c , 0x1a , 0x1b , 0x6e , 0x5a , 0xa0 , 0x52 , 0x3b , 0xd6 , 0xb3 , 0x29 , 0

xe3 , 0x2f , 0x84 ,
10 0x53 , 0xd1 , 0x00 , 0xed , 0x20 , 0xfc , 0xb1 , 0x5b , 0x6a , 0xcb , 0xbe , 0x39 , 0x4a , 0

x4c , 0x58 , 0xcf ,
11 0xd0 , 0xef , 0xaa , 0xfb , 0x43 , 0x4d , 0x33 , 0x85 , 0x45 , 0xf9 , 0x02 , 0x7f , 0x50 , 0

x3c , 0x9f , 0xa8 ,
12 0x51 , 0xa3 , 0x40 , 0x8f , 0x92 , 0x9d , 0x38 , 0xf5 , 0xbc , 0xb6 , 0xda , 0x21 , 0x10 , 0

xff , 0xf3 , 0xd2 ,
13 0xcd , 0x0c , 0x13 , 0xec , 0x5f , 0x97 , 0x44 , 0x17 , 0xc4 , 0xa7 , 0x7e , 0x3d , 0x64 , 0

x5d , 0x19 , 0x73 ,
14 0x60 , 0x81 , 0x4f , 0xdc , 0x22 , 0x2a , 0x90 , 0x88 , 0x46 , 0xee , 0xb8 , 0x14 , 0xde , 0

x5e , 0x0b , 0xdb ,
15 0xe0 , 0x32 , 0x3a , 0x0a , 0x49 , 0x06 , 0x24 , 0x5c , 0xc2 , 0xd3 , 0xac , 0x62 , 0x91 , 0

x95 , 0xe4 , 0x79 ,
16 0xe7 , 0xc8 , 0x37 , 0x6d , 0x8d , 0xd5 , 0x4e , 0xa9 , 0x6c , 0x56 , 0xf4 , 0xea , 0x65 , 0

x7a , 0xae , 0x08 ,

Bibliography Nicolas Pietro Martignon 51

Recover AES key using SAT and brute force approach

17 0xba , 0x78 , 0x25 , 0x2e , 0x1c , 0xa6 , 0xb4 , 0xc6 , 0xe8 , 0xdd , 0x74 , 0x1f , 0x4b , 0
xbd , 0x8b , 0x8a ,

18 0x70 , 0x3e , 0xb5 , 0x66 , 0x48 , 0x03 , 0xf6 , 0x0e , 0x61 , 0x35 , 0x57 , 0xb9 , 0x86 , 0
xc1 , 0x1d , 0x9e ,

19 0xe1 , 0xf8 , 0x98 , 0x11 , 0x69 , 0xd9 , 0x8e , 0x94 , 0x9b , 0x1e , 0x87 , 0xe9 , 0xce , 0
x55 , 0x28 , 0xdf ,

20 0x8c , 0xa1 , 0x89 , 0x0d , 0xbf , 0xe6 , 0x42 , 0x68 , 0x41 , 0x99 , 0x2d , 0x0f , 0xb0 , 0
x54 , 0xbb , 0x16 ,

21]
22

23 inv_sbox = [
24 0x52 , 0x09 , 0x6a , 0xd5 , 0x30 , 0x36 , 0xa5 , 0x38 , 0xbf , 0x40 , 0xa3 , 0x9e , 0x81 , 0

xf3 , 0xd7 , 0xfb ,
25 0x7c , 0xe3 , 0x39 , 0x82 , 0x9b , 0x2f , 0xff , 0x87 , 0x34 , 0x8e , 0x43 , 0x44 , 0xc4 , 0

xde , 0xe9 , 0xcb ,
26 0x54 , 0x7b , 0x94 , 0x32 , 0xa6 , 0xc2 , 0x23 , 0x3d , 0xee , 0x4c , 0x95 , 0x0b , 0x42 , 0

xfa , 0xc3 , 0x4e ,
27 0x08 , 0x2e , 0xa1 , 0x66 , 0x28 , 0xd9 , 0x24 , 0xb2 , 0x76 , 0x5b , 0xa2 , 0x49 , 0x6d , 0

x8b , 0xd1 , 0x25 ,
28 0x72 , 0xf8 , 0xf6 , 0x64 , 0x86 , 0x68 , 0x98 , 0x16 , 0xd4 , 0xa4 , 0x5c , 0xcc , 0x5d , 0

x65 , 0xb6 , 0x92 ,
29 0x6c , 0x70 , 0x48 , 0x50 , 0xfd , 0xed , 0xb9 , 0xda , 0x5e , 0x15 , 0x46 , 0x57 , 0xa7 , 0

x8d , 0x9d , 0x84 ,
30 0x90 , 0xd8 , 0xab , 0x00 , 0x8c , 0xbc , 0xd3 , 0x0a , 0xf7 , 0xe4 , 0x58 , 0x05 , 0xb8 , 0

xb3 , 0x45 , 0x06 ,
31 0xd0 , 0x2c , 0x1e , 0x8f , 0xca , 0x3f , 0x0f , 0x02 , 0xc1 , 0xaf , 0xbd , 0x03 , 0x01 , 0

x13 , 0x8a , 0x6b ,
32 0x3a , 0x91 , 0x11 , 0x41 , 0x4f , 0x67 , 0xdc , 0xea , 0x97 , 0xf2 , 0xcf , 0xce , 0xf0 , 0

xb4 , 0xe6 , 0x73 ,
33 0x96 , 0xac , 0x74 , 0x22 , 0xe7 , 0xad , 0x35 , 0x85 , 0xe2 , 0xf9 , 0x37 , 0xe8 , 0x1c , 0

x75 , 0xdf , 0x6e ,
34 0x47 , 0xf1 , 0x1a , 0x71 , 0x1d , 0x29 , 0xc5 , 0x89 , 0x6f , 0xb7 , 0x62 , 0x0e , 0xaa , 0

x18 , 0xbe , 0x1b ,
35 0xfc , 0x56 , 0x3e , 0x4b , 0xc6 , 0xd2 , 0x79 , 0x20 , 0x9a , 0xdb , 0xc0 , 0xfe , 0x78 , 0

xcd , 0x5a , 0xf4 ,
36 0x1f , 0xdd , 0xa8 , 0x33 , 0x88 , 0x07 , 0xc7 , 0x31 , 0xb1 , 0x12 , 0x10 , 0x59 , 0x27 , 0

x80 , 0xec , 0x5f ,
37 0x60 , 0x51 , 0x7f , 0xa9 , 0x19 , 0xb5 , 0x4a , 0x0d , 0x2d , 0xe5 , 0x7a , 0x9f , 0x93 , 0

xc9 , 0x9c , 0xef ,
38 0xa0 , 0xe0 , 0x3b , 0x4d , 0xae , 0x2a , 0xf5 , 0xb0 , 0xc8 , 0xeb , 0xbb , 0x3c , 0x83 , 0

x53 , 0x99 , 0x61 ,
39 0x17 , 0x2b , 0x04 , 0x7e , 0xba , 0x77 , 0xd6 , 0x26 , 0xe1 , 0x69 , 0x14 , 0x63 , 0x55 , 0

x21 , 0x0c , 0x7d ,
40]
41

42 rcon = [x.to_bytes(4, ’little ’) for x in [0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40
, 0x80 , 0x1B , 0x36 ,]]

43

44 def xor_bytes (*arg: bytes) -> bytes:
45 assert len({len(x) for x in arg}) == 1 # all args must have the same length
46 xor_fun = lambda x, y : x ^ y
47 return bytes(reduce(xor_fun , byt3s) for byt3s in zip(*arg))
48

49 def rot_word(word: bytes) -> bytes:
50 ’’’
51 apply the RotWord transformation to a bytes object of length 4
52 ’’’
53 assert len(word) == 4
54 return bytes ((word[(i + 1) % 4] for i in range (4)))
55

56 def inv_rot_word(word: bytes) -> bytes:
57 ’’’
58 apply the inverse of the RotWord transformation to a bytes object of length 4
59 ’’’
60 assert len(word) == 4
61 return bytes ((word[(i - 1) % 4] for i in range (4)))
62

63 def sub_word(word: bytes) -> bytes:
64 ’’’
65 apply the AES S-Box to each of the bytes of the 4-byte word
66 ’’’

Bibliography Nicolas Pietro Martignon 52

Recover AES key using SAT and brute force approach

67 assert len(word) == 4
68 return bytes ((sbox[w] for w in word))
69

70 def inv_sub_word(word: bytes) -> bytes:
71 ’’’
72 apply the inverse of the AES S-Box to each of the bytes of the 4-byte word
73 ’’’
74 assert len(word) == 4
75 return bytes ((inv_sbox[w] for w in word))
76

77

78 def reverse_key_schedule(round_key: bytes , aes_round: int):
79 ’’’
80 reverse the AES -128 key schedule , using a single round_key.
81 ’’’
82 assert len(round_key) * 8 == 128
83 for i in range(aes_round - 1, -1, -1):
84 a2 = round_key [0:4]
85 b2 = round_key [4:8]
86 c2 = round_key [8:12]
87 d2 = round_key [12:16]
88

89 d1 = xor_bytes(d2 , c2)
90 c1 = xor_bytes(c2 , b2)
91 b1 = xor_bytes(b2 , a2)
92 a1 = xor_bytes(a2 , rot_word(sub_word(d1)), rcon[i])
93

94 round_key = a1 + b1 + c1 + d1
95

96 return round_key
97

98 def key_schedule(base_key: bytes) -> List[bytes]:
99 ’’’

100 calculate the expanded AES key given the base key.
101 Depending on the length of the base key 11, 13 or 15 round keys are returned
102 for AES -128, AES -192 and AES -256 respectively.
103 ’’’
104 assert len(base_key) * 8 in {128, 192, 256}
105

106 # length of the key in 32 bit words
107 N = {128: 4, 192: 6, 256: 8}[len(base_key) * 8]
108

109 # number of round keys needed
110 R = {128: 11, 192: 13, 256: 15}[len(base_key) * 8]
111

112 # the 32 bits words of the expanded key
113 W = [None for _ in range(R * 4)]
114

115 for i in range(N):
116 W[i] = base_key[i * 4 : (i + 1) * 4]
117

118 for i in range(N, 4 * R):
119 if i % N == 0:
120 W[i] = xor_bytes(W[i - N], sub_word(rot_word(W[i - 1])), rcon[i // N -

1])
121 elif N > 6 and i % N == 4:
122 W[i] = xor_bytes(W[i - N], sub_word(W[i - 1]))
123 else:
124 W[i] = xor_bytes(W[i - N], W[i - 1])
125

126 keys = [b’’.join(W[i * 4 + j] for j in range (4)) for i in range(R)]
127 return keys

aeskeyschedule2.py

File belonging to the external library [17], it is used to generate the keyschedule
starting from a cryptographic key.

1 import argparse
2 from binascii import hexlify , unhexlify

Bibliography Nicolas Pietro Martignon 53

Recover AES key using SAT and brute force approach

3 from aeskeyschedule import key_schedule , reverse_key_schedule
4

5 import sys
6

7 try:
8 import colorama
9 colorama.init()

10 __highlight = colorama.Style.BRIGHT
11 __reset = colorama.Style.RESET_ALL
12 except ImportError:
13 __highlight = ’’
14 __reset = ’’
15

16

17 def aes_round(value: str) -> int:
18 aes_round = int(value)
19 if not 0 <= aes_round <= 10:
20 raise argparse.ArgumentError(’the aes round must satisfy 0 <= r <= 10’)
21 return aes_round
22

23 def aes_key(value: str) -> bytes:
24 if value.startswith(’0x’):
25 value = value [2:]
26 try:
27 key = unhexlify(value)
28 except TypeError:
29 raise argparse.ArgumentError(’invalid hex bytes in aes key’)
30 if len(key) * 8 not in {128, 192, 256}:
31 raise argparse.ArgumentError(’’’
32 AES key must be 128, 192 or 256 bits long (is {} bits)
33 ’’’.strip().format(len(key) * 8))
34 return key
35

36

37 def getSchedule(aes_round: int , round_key: bytes) -> None:
38 if len(round_key) * 8 != 128 and aes_round != 0:
39 print("reversing the AES -{} key schedule is not supported".format(len(

base_key) * 8, file=sys.stderr))
40 sys.exit (1)
41

42

43 if aes_round != 0:
44 base_key = reverse_key_schedule(round_key , aes_round)
45 else:
46 base_key = round_key
47 keys = key_schedule(base_key)
48

49 assert keys[aes_round] == round_key or len(base_key) * 8 != 128
50

51 total = []
52

53 for i, key in enumerate(keys):
54 if i == aes_round:
55 print(__highlight , end=’’)
56 total.append(hexlify(key).decode ())
57 if i == aes_round:
58 print(__reset , end=’’)
59 return total
60

61 print(getSchedule (0, b’00000000000000000000000000000000 ’))

Bibliography Nicolas Pietro Martignon 54

Recover AES key using SAT and brute force approach

A.2 Python scripts to conduct test on all approaches
Below is the source code of the python scripts used to run the tests.
Each script contains absolute paths to CNF files and sat solver programs, these
paths must be modified for the script to work correctly on other machines.
The scripts are designed to perform the calculation on multiple CNF files present in
the same folder.
Some scripts only return the time necessary to calculate the solutions, if it is also
necessary to know the value of the solutions, the script must be modified.
Other scripts return also the solution, in some cases the solution may contain non-
printable asci characters. When these solutions are written on the file that contains
the solutions/times necessary for processing, they could corrupt it, it is therefore
recommended to open the solution file using notepad++ which allows you to open
even corrupt text files.
It is also recommended for the correct understanding of the operating logic of the
scripts to run them in debug mode.

BanningSolution.py

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 from os.path import exists
8

9 def toBinaryAux(clause):
10 if ’-’ in clause:
11 return 1
12 else:
13 return 0
14

15 def toBinary(list):
16 tot = ""
17

18 for i in list:
19 tot = tot + str(toBinaryAux(i))
20

21 return tot
22

23

24 totalStart = time.time()
25

26 for cont in range (0 ,1000):
27

28 Nsol =0
29

30 #Timer variable
31 start = time.time()
32

33 #File input variable
34 fileIn = "/mnt/hgfs/Tesi/Test/TestTesiNuovi /120/"+ str(cont) +"output.cnf"
35 if(not exists(fileIn)):
36 break
37 #File in wich clause will be added
38 fileBak = "/mnt/hgfs/Tesi/Test/TestTesiNuovi /120/"+ str(cont) +"output"+"2"+".

cnf"
39

40 print("Create copy of the cnf file ...")
41 shutil.copyfile(fileIn , fileBak)
42 file_object = open(fileBak , ’a’, newline=’\n’)

Appendice A Nicolas Pietro Martignon 55

Recover AES key using SAT and brute force approach

43 #file in which time are printed
44 solutionFile = open(’/mnt/hgfs/Tesi/Test/TestTesiNuovi /120/ ’+ str(cont) +’

solution2.txt’, ’w’, newline=’\n’)
45

46 print("Start working on file "+ str(cont))
47

48 while(True):
49 ## KISSAT
50 result = subprocess.run([’/mnt/hgfs/Tesi/Test/Ubuntu/kissat -master/build/

kissat ’, fileBak , "--relaxed", "-q"], stdout=subprocess.PIPE).stdout.decode(’
utf -8’)

51 ##
52

53 try:
54 index = result.index("v ")
55 except Exception:
56 break
57

58 Nsol = Nsol +1
59 print("Solution N" + str(Nsol) + " found ..." + " {" +str(time.time() -

start)+"}")
60

61 # ADD NEW CLAUSE TO CNF
62 result = result[result.index("v") : result.index("1728")+4]
63 result = result.strip()
64 result = result.replace("v", "")
65 result = result.replace("\n", "")
66 result = result.replace("\r", "")
67 result = result.replace(" -", "+")
68 result = result.replace(" ", " -")
69 result = result.replace("+", " ")
70

71 # WRITING SOLUTION TO FILE
72 file_object.write(result [1:] + " 0\n")
73

74 try:
75 solution = result [: result.index(" -129 ")]
76 except Exception:
77 solution = result [: result.index(" 129 ")]
78

79 solutionFile.write("SOLUTION N"+ str(Nsol) + " [" +str(time.time() - start
)+"]\n")

80 solution = solution.strip ()
81 # BINARY
82 tot = toBinary(solution.split ())
83 solutionFile.write(tot+"\n")
84 print(tot)
85 #HEX
86 decimal_representation = int(tot , 2)
87 hexer = hex(decimal_representation)
88 hexer = hexer [2:]
89 for j in range(len(hexer), 32):
90 hexer = "0" + hexer
91 solutionFile.write(hexer+"\n")
92 print(hexer)
93

94 #ASCI STRING
95 bytes_object = bytes.fromhex(hexer)
96 ascii_string = bytes_object.decode(’utf -8’, ’ignore ’)
97 solutionFile.write(ascii_string+"\n\n")
98 print(ascii_string + "\n")
99

100

101 end = time.time()
102 appo = end - start
103 print("\nTime for computing solution on file "+ str(cont) + " : "+ str(appo) +

" s\n")
104

105 solutionFile.write("Total time: "+ str(appo) + " s \n")
106

107 file_object.close ()

Appendice A Nicolas Pietro Martignon 56

Recover AES key using SAT and brute force approach

108 solutionFile.close()
109

110 os.remove(fileBak)
111

112

113 totalEnd = time.time()
114 final = totalEnd - totalStart
115

116 print("Total time: " + str(final))
117 print("Done!")

Bruteforce.py

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 import math
8 import threading
9 from os.path import exists

10 from multiprocessing.dummy import Pool as ThreadPool
11 from statistics import mean , median , stdev
12 import sys
13

14

15 ###
16 ## BINARY , CONBINATION
17 ###
18

19 def single_task(j):
20 global sol
21

22 shutil.copyfile(fileIn , fileIn [:-4]+ str(j) + ".cnf")
23 file_object = open(fileIn [: -4]+ str(j) + ".cnf", ’a’, newline=’\n’)
24 for k in range(SBkey1 , int(SBkey1+BitToInfer /2)):
25 if(combination[j][k-SBkey1] == ’0’):
26 file_object.write("-" + str(k) + " 0\n")
27 else:
28 file_object.write(str(k) + " 0\n")
29

30 for k in range(SBkey10 , int(SBkey10+BitToInfer /2)):
31 if(combination[j][int(BitToInfer /2) + k - SBkey10] == ’0’):
32 file_object.write("-" + str(k) + " 0\n")
33 else:
34 file_object.write(str(k) + " 0\n")
35 file_object.close ()
36

37 output = subprocess.run([’/mnt/hgfs/Tesi/Test/Ubuntu/kissat -master/build/kissat
’, fileIn [:-4]+ str(j) + ".cnf" , "--relaxed", "-q"], stdout=subprocess.PIPE).
stdout.decode(’utf -8’)

38 os.remove(fileIn [: -4]+ str(j) + ".cnf")
39

40 try:
41 output.index("s SATISFIABLE")
42 except Exception:
43 return
44

45 output = output[output.index("v"):]
46 output = output.replace("v", "")
47 output = output.replace("\n", "")
48 output = output.replace("\r", "")
49

50 try:
51 solution = output [: output.index(" -129 ")]
52 except Exception:
53 solution = output [: output.index(" 129 ")]
54

55 solutionFile.write("SOLUTION N"+ str(sol +1)+ "\n")

Appendice A Nicolas Pietro Martignon 57

Recover AES key using SAT and brute force approach

56 print("SOLUTION N"+ str(sol+1)+ " [" +str(j) + "/" + str(Nfile) +"]\n")
57 solution = solution.strip ()
58 # BINARY
59 tot = toBinary(solution.split ())
60 solutionFile.write(tot+"\n")
61 print(tot)
62 #HEX
63 decimal_representation = int(tot , 2)
64 hexer = hex(decimal_representation)
65 hexer = hexer [2:]
66 for j in range(len(hexer), 32):
67 hexer = "0" + hexer
68 solutionFile.write(hexer+"\n")
69

70 print(hexer)
71

72 #ASCI STRING
73 bytes_object = bytes.fromhex(hexer)
74 ascii_string = bytes_object.decode(’utf -8’, ’ignore ’)
75 solutionFile.write(ascii_string+"\n\n")
76 print(ascii_string + "\n")
77 sol = sol+1
78

79

80 def toBinaryAux(clause):
81 if ’-’ in clause:
82 return 0
83 else:
84 return 1
85

86 def toBinary(list):
87 tot = ""
88

89 for i in list:
90 tot = tot + str(toBinaryAux(i))
91

92 return tot
93

94 def per(n):
95 appo = []
96 for i in range(1<<n):
97 s=bin(i)[2:]
98 s=’0’*(n-len(s))+s
99 appo.append(list(s))

100 return appo
101

102

103 ###
104 ## BRUTEFORCE
105 ###
106

107 #bit_to_infer
108 BitToInfer = int(sys.argv [2])
109 KwowingBit = int(sys.argv [1])
110 folder = KwowingBit *2
111

112 SBkey1= 161 + KwowingBit
113 SBkey10 = 1729 - KwowingBit - int(BitToInfer /2)
114

115 #thread variable
116 Nthread = 7
117 pool = ThreadPool(Nthread)
118 task = []
119

120 Nfile = int(math.pow(2, BitToInfer))
121 print("Total Combination: "+ str(Nfile))
122 print("Start computing solution ... [" + str(Nthread) + "]\n")
123

124 combination = per(BitToInfer)
125 totalsol =0
126 times = []

Appendice A Nicolas Pietro Martignon 58

Recover AES key using SAT and brute force approach

127

128 solutionFile = open("/mnt/hgfs/Tesi/Test/TestTesiNuovi/"+ str(folder) +"/BF"+str(
BitToInfer)+".txt", "w", newline=’\n’)

129

130 for cont in range (1 ,1000):
131 fileIn = "//mnt/hgfs/Tesi/Test/TestTesiNuovi/"+ str(folder) +"/"+ str(cont) +"

output.cnf"
132

133 sol = 0
134

135 if(not exists(fileIn)):
136 break
137

138 start = time.time()
139

140 print("Start working on file "+ str(cont))
141

142 for i in range(0 , Nfile):
143 task.append(pool.apply_async(single_task , args=(i,)))
144

145 for x in task:
146 x.get()
147

148 totalsol += sol
149

150 end = time.time()
151 appo = end - start
152

153 times.append(appo)
154 solutionFile.write("Total time: "+ str(appo) + " s \n")
155

156 print("\nTime for computing solution on file "+ str(cont) + " : "+ str(appo) +
" s\n")

157

158

159 print("Tot sol: " + str(totalsol))
160 print("Mean: " + str(mean(times)))
161 print("Median: " + str(median(times)))
162 print("St.Dev: " + str(stdev(times)))
163 print("Min: " + str(min(times)))
164 print("Max: " + str(max(times)))
165

166 solutionFile.write("\ntot solution: " + str(totalsol));
167 solutionFile.write("\nMean: " + str(mean(times)))
168 solutionFile.write("\nMedian: " + str(median(times)))
169 solutionFile.write("\nSt.Dev: " + str(stdev(times)))
170 solutionFile.write("\nMin: " + str(min(times)))
171 solutionFile.write("\nMax: " + str(max(times)))
172

173 solutionFile.close()
174 print("Done!")

MixedApproach.py

This technique makes a call to a slightly modified Banning Solution script named
"BanningSolution2.py", this script is located after this script.

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 import math
8 import threading
9 from os.path import exists

10 from multiprocessing.dummy import Pool as ThreadPool
11 import sys
12 from statistics import mean , median , stdev
13

Appendice A Nicolas Pietro Martignon 59

Recover AES key using SAT and brute force approach

14

15 ###
16 ## BINARY , CONBINATION
17 ###
18

19 def single_task(j):
20 global sol
21

22 shutil.copyfile(fileIn , fileIn [:-4]+ "[" + str(j)+ "].cnf")
23 file_object = open(fileIn [: -4]+ "[" + str(j)+ "].cnf", ’a’, newline=’\n’)
24 for k in range(SBkey1 , int(SBkey1+BitToInfer /2)):
25 if(combination[j][k-SBkey1] == ’0’):
26 file_object.write("-" + str(k) + " 0\n")
27 else:
28 file_object.write(str(k) + " 0\n")
29

30 for k in range(SBkey10 , int(SBkey10+BitToInfer /2)):
31 if(combination[j][int(BitToInfer /2) + k - SBkey10] == ’0’):
32 file_object.write("-" + str(k) + " 0\n")
33 else:
34 file_object.write(str(k) + " 0\n")
35 file_object.close ()
36

37 output = subprocess.run(["python3", "/mnt/hgfs/Tesi/Test/Ubuntu/Script/
Bruteforce/BanningSolution2.py", fileIn [:-4]+ "[" + str(j)+ "].cnf"], stdout=
subprocess.PIPE).stdout.decode(’utf -8’)

38

39 print("#Combination N " + str(j) + " [" +str(combination[j]) + "]")
40 print(output)
41

42 output = output[output.index("Tot solution found: "):]
43 sol = sol + int(output[output.index("{")+1: output.index("}")])
44

45 os.remove(fileIn [: -4]+ "[" + str(j)+ "].cnf")
46

47

48 def toBinaryAux(clause):
49 if ’-’ in clause:
50 return 0
51 else:
52 return 1
53

54

55 def toBinary(list):
56 tot = ""
57

58 for i in list:
59 tot = tot + str(toBinaryAux(i))
60

61 return tot
62

63

64 def per(n):
65 appo = []
66 for i in range(1<<n):
67 s=bin(i)[2:]
68 s=’0’*(n-len(s))+s
69 appo.append(list(s))
70 return appo
71

72

73 ###
74 ## BRUTEFORCE
75 ###
76

77 #bit_to_infer
78 KwowingBit = int(sys.argv [1])
79 BitToInfer = int(sys.argv [2])
80 folder = KwowingBit *2
81

82 SBkey1= 161 + KwowingBit

Appendice A Nicolas Pietro Martignon 60

Recover AES key using SAT and brute force approach

83 SBkey10 = 1729 - KwowingBit - int(BitToInfer /2)
84

85 #thread variable
86 Nthread = 7
87 pool = ThreadPool(Nthread)
88 task = []
89

90 Nfile = int(math.pow(2, BitToInfer))
91 print("KwowingBit: " + str(KwowingBit))
92 print("Instanced bit: " + str(BitToInfer))
93 print("Total Combination: "+ str(Nfile))
94 print("Start computing solution ... [" + str(Nthread) + "]\n")
95

96 totalStart = time.time()
97 combination = per(BitToInfer)
98

99 totalsol =0
100 times = []
101

102 solutionFile = open("/mnt/hgfs/Tesi/Test/TestTesiNuovi/"+ str(folder) +"/"+str(
BitToInfer)+".txt", "w", newline=’\n’)

103

104 for cont in range (3 ,1000):
105 fileIn = "/mnt/hgfs/Tesi/Test/TestTesiNuovi/"+str(folder)+"/"+ str(cont) +"

output.cnf"
106

107 sol = 0
108

109 if(not exists(fileIn)):
110 break
111

112 start = time.time()
113

114 print("START WORKING ON FILE: "+ str(cont) + "
*********************************")

115

116 for i in range(0 , Nfile):
117 task.append(pool.apply_async(single_task , args=(i,)))
118

119 for x in task:
120 x.get()
121

122 appo = time.time() - start
123

124 totalsol += sol
125 times.append(appo)
126 solutionFile.write("Total time: "+ str(appo) + " s \n")
127 print("\nTime for computing solution on file "+ str(cont) + " : "+ str(appo) +

" s")
128 print("TOTAL SOLUTION FOR FILE: "+ str(cont) + " IS: " + str(sol)+ "\n")
129

130

131 final = time.time() - totalStart
132

133 print("Total time: " + str(final))
134 print("Tot sol: " + str(totalsol))
135 print("Mean: " + str(mean(times)))
136 print("Median: " + str(median(times)))
137 print("St.Dev: " + str(stdev(times)))
138 print("Min: " + str(min(times)))
139 print("Max: " + str(max(times)))
140

141 solutionFile.write("\ntot solution: " + str(totalsol));
142 solutionFile.write("\nMean: " + str(mean(times)))
143 solutionFile.write("\nMedian: " + str(median(times)))
144 solutionFile.write("\nSt.Dev: " + str(stdev(times)))
145 solutionFile.write("\nMin: " + str(min(times)))
146 solutionFile.write("\nMax: " + str(max(times)))
147

148 solutionFile.close()
149 print("Done!")

Appendice A Nicolas Pietro Martignon 61

Recover AES key using SAT and brute force approach

BanningSolution2.py

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 import sys
8 import math
9

10 def toBinaryAux(clause):
11 if ’-’ in clause:
12 return 1
13 else:
14 return 0
15

16 def toBinary(list):
17 tot = ""
18

19 for i in list:
20 tot = tot + str(toBinaryAux(i))
21

22 return tot
23

24

25 #Number solution found
26 Nsol =0
27

28 #Timer variable
29 start = time.time()
30

31 #File input variable
32 fileIn = sys.argv [1]
33

34 file_object = open(fileIn , ’a’, newline=’\n’)
35

36 while(True):
37 ## KISSAT
38 result = subprocess.run([’/mnt/hgfs/Tesi/Test/Ubuntu/kissat -master/build/

kissat ’, fileIn , "--relaxed", "-q"], stdout=subprocess.PIPE).stdout.decode(’
utf -8’)

39 ##
40

41 try:
42 index = result.index("v ")
43 except Exception:
44 break
45

46 Nsol = Nsol +1
47 print("Solution N" + str(Nsol) + " " +str(math.trunc(time.time() - start)))
48

49 # ADD NEW CLAUSE TO CNF
50 result = result[result.index("v") : result.index("1728")+4]
51 result = result.strip()
52 result = result.replace("v", "")
53 result = result.replace("\n", "")
54 result = result.replace("\r", "")
55 result = result.replace(" -", "+")
56 result = result.replace(" ", " -")
57 result = result.replace("+", " ")
58

59 file_object.write(result [1:] + " 0\n")
60

61 # WRITING SOLUTION TO FILE
62 try:
63 solution = result [: result.index(" -129 ")]
64 except Exception:
65 solution = result [: result.index(" 129 ")]
66

67 solution = solution.strip ()

Appendice A Nicolas Pietro Martignon 62

Recover AES key using SAT and brute force approach

68 # BINARY
69 tot = toBinary(solution.split ())
70

71 print(tot)
72 #HEX
73 decimal_representation = int(tot , 2)
74 hexer = hex(decimal_representation)
75 hexer = hexer [2:]
76 for j in range(len(hexer), 32):
77 hexer = "0" + hexer
78 print(hexer)
79

80 #ASCI STRING
81 bytes_object = bytes.fromhex(hexer)
82 ascii_string = bytes_object.decode(’utf -8’, ’ignore ’)
83 print(ascii_string + "\n")
84

85

86 end = time.time()
87 appo = end - start
88 print("Tot solution found: "+ " {"+str(Nsol)+"}")
89 print("Tot time: " + str(math.trunc(appo)) + " s")
90

91 file_object.close ()

RandomInstancing.py

Like the mixed approach this technique also makes a call to the modified Banning
Solution script "BanningSolution2.py".

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 import math
8 import threading
9 from os.path import exists

10 from multiprocessing.dummy import Pool as ThreadPool
11 import sys
12 import random
13 from statistics import mean , median , stdev
14

15

16 ###
17 ## BINARY , CONBINATION
18 ###
19

20 def single_task(j):
21 global sol
22

23 shutil.copyfile(fileIn , fileIn [:-4]+ "[" + str(j)+ "].cnf")
24 file_object = open(fileIn [: -4]+ "[" + str(j)+ "].cnf", ’a’, newline=’\n’)
25 i=0
26 for k in listBit:
27 if(combination[j][i] == ’0’):
28 file_object.write("-" + str(k) + " 0\n")
29 else:
30 file_object.write(str(k) + " 0\n")
31 i=i+1
32

33 file_object.close ()
34

35 output = subprocess.run(["python3", "/mnt/hgfs/Tesi/Test/Ubuntu/Script/
Bruteforce/BanningSolution2.py", fileIn [:-4]+ "[" + str(j)+ "].cnf"], stdout=
subprocess.PIPE).stdout.decode(’utf -8’)

36

37 print("#Combination N" + str(j) + " [" +str(combination[j]) + "]")
38 print(output)

Appendice A Nicolas Pietro Martignon 63

Recover AES key using SAT and brute force approach

39

40 output = output[output.index("Tot solution found: "):]
41 sol = sol + int(output[output.index("{")+1: output.index("}")])
42

43 os.remove(fileIn [: -4]+ "[" + str(j)+ "].cnf")
44

45

46 def toBinaryAux(clause):
47 if ’-’ in clause:
48 return 0
49 else:
50 return 1
51

52 def toBinary(list):
53 tot = ""
54

55 for i in list:
56 tot = tot + str(toBinaryAux(i))
57

58 return tot
59

60 def per(n):
61 appo = []
62 for i in range(1<<n):
63 s=bin(i)[2:]
64 s=’0’*(n-len(s))+s
65 appo.append(list(s))
66 return appo
67

68

69 ###
70 ## BRUTEFORCE
71 ###
72

73 #bit_to_infer
74 KwowingBit = int(sys.argv [1])
75 BitToInfer = int(sys.argv [2])
76 folder = KwowingBit *2
77

78 SBkey1= 161 + KwowingBit
79 SBkey10 = 1729 - KwowingBit - int(BitToInfer /2)
80

81 #thread variable
82 Nthread = 7
83 pool = ThreadPool(Nthread)
84 task = []
85

86 Nfile = int(math.pow(2, BitToInfer))
87 print("KwowingBit: " + str(KwowingBit))
88 print("Instanced bit: " + str(BitToInfer))
89 print("Total Combination: "+ str(Nfile))
90 print("Start computing solution ... [" + str(Nthread) + "]\n")
91

92 totalStart = time.time()
93 combination = per(BitToInfer)
94

95 totalsol =0
96 times = []
97

98 solutionFile = open("/mnt/hgfs/Tesi/Test/TestTesiNuovi/"+ str(folder) +"/"+str(
BitToInfer)+".txt", "w", newline=’\n’)

99

100 for cont in range (1000):
101 fileIn = "/mnt/hgfs/Tesi/Test/TestTesiNuovi/"+str(folder)+"/"+ str(cont) +"

output.cnf"
102

103 sol = 0
104

105 if(not exists(fileIn)):
106 break
107

Appendice A Nicolas Pietro Martignon 64

Recover AES key using SAT and brute force approach

108 arr = list(range (228 ,289)) + list(range (321, 449)) + list(range (481, 609)) +
list(range (641, 769)) + list(range (801, 929)) + list(range (961, 1089)) + list(
range (1121 , 1249)) + list(range (1281, 1409)) + list(range (1441, 1569)) + list(
range (1601 , 1729))

109 random.shuffle(arr)
110

111 start = time.time()
112

113 listBit = []
114 for i in range(BitToInfer):
115 listBit.append(arr.pop())
116

117 print("Bit choosed to infer: "+ str(listBit))
118

119 print("START WORKING ON FILE: "+ str(cont) + " ********************")
120

121 for i in range(0 , Nfile):
122 task.append(pool.apply_async(single_task , args=(i,)))
123

124 for x in task:
125 x.get()
126

127 appo = time.time() - start
128

129 totalsol += sol
130 times.append(appo)
131 solutionFile.write("Total time: "+ str(appo) + " s \n")
132 print("\nTime for computing solution on file "+ str(cont) + " : "+ str(appo) +

" s")
133 print("TOTAL SOLUTION FOR FILE: "+ str(cont) + " IS: " + str(sol)+ "\n")
134

135 final = time.time() - totalStart
136

137 print("Total time: " + str(final))
138 print("Tot sol: " + str(totalsol))
139 print("Mean: " + str(mean(times)))
140 print("Median: " + str(median(times)))
141 print("St.Dev: " + str(stdev(times)))
142 print("Min: " + str(min(times)))
143 print("Max: " + str(max(times)))
144

145 solutionFile.write("\ntot solution: " + str(totalsol));
146 solutionFile.write("\nMean: " + str(mean(times)))
147 solutionFile.write("\nMedian: " + str(median(times)))
148 solutionFile.write("\nSt.Dev: " + str(stdev(times)))
149 solutionFile.write("\nMin: " + str(min(times)))
150 solutionFile.write("\nMax: " + str(max(times)))
151

152 solutionFile.close()
153 print("Done!")

SingleKissatCall.py

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 from os.path import exists
8 from statistics import mean , median , stdev
9 import sys

10

11 times = []
12

13 folder = sys.argv [1]
14

15 solutionFile = open("/mnt/hgfs/Tesi/Test/TestTesiNuovi/Unasoluzione/"+ str(folder)
+"/OnlyKissat.txt", "w", newline=’\n’)

16

Appendice A Nicolas Pietro Martignon 65

Recover AES key using SAT and brute force approach

17 for cont in range (0 ,10):
18

19 fileIn = "//mnt/hgfs/Tesi/Test/TestTesiNuovi/Unasoluzione/"+ str(folder) +"/"+
str(cont) +"output.cnf"

20

21 start = time.time()
22 subprocess.run([’/mnt/hgfs/Tesi/Test/Ubuntu/kissat -master/build/kissat ’, fileIn

, "--relaxed", "-q"], stdout=subprocess.PIPE).stdout.decode(’utf -8’)
23 end = time.time()
24 appo = end - start
25

26 times.append(appo)
27 print("\nTime for computing solution on file "+ str(cont) + " : "+ str(appo) +

" s\n")
28

29

30 print("Mean: " + str(mean(times)))
31 print("Median: " + str(median(times)))
32 print("St.Dev: " + str(stdev(times)))
33 print("Min: " + str(min(times)))
34 print("Max: " + str(max(times)))
35

36 solutionFile.write("\nMean: " + str(mean(times)))
37 solutionFile.write("\nMedian: " + str(median(times)))
38 solutionFile.write("\nSt.Dev: " + str(stdev(times)))
39 solutionFile.write("\nMin: " + str(min(times)))
40 solutionFile.write("\nMax: " + str(max(times)))
41

42 solutionFile.close()
43

44 print("Done!")

SingleCryptominisatCall.py

1 from ast import While
2 import subprocess
3 from platform import release
4 import shutil
5 import time
6 import os
7 from os.path import exists
8 from statistics import mean , median , stdev
9 import sys

10

11 times = []
12

13 folder = int(sys.argv [1])*2
14

15 solutionFile = open("E:/ Scuola/UNIve/MAGISTRALE/Tesi/Test/TestTesiNuovi/"+ str(
folder) +"/OnlyCryptominisat.txt", "w", newline=’\n’)

16

17 for cont in range (0 ,10):
18

19 fileIn = "E:/ Scuola/UNIve/MAGISTRALE/Tesi/Test/TestTesiNuovi/"+ str(folder) +"/
"+ str(cont) +"outputXor.cnf"

20

21 if(not exists(fileIn)):
22 break
23

24 start = time.time()
25 stri = subprocess.run([’E:/ Scuola/UNIve/MAGISTRALE/Tesi/Solvers/Cryptominisat/

cryptominisat5.exe’, fileIn , "-t8", "--maxsol =1000"], stdout=subprocess.PIPE).
stdout.decode(’utf -8’)

26 end = time.time()
27 appo = end - start
28 print(stri)
29

30 times.append(appo)
31 print("\nTime for computing solutions on file "+ str(cont) + " : "+ str(appo) +

" s\n")

Appendice A Nicolas Pietro Martignon 66

Recover AES key using SAT and brute force approach

32

33 print("Mean: " + str(mean(times)))
34 print("Median: " + str(median(times)))
35 print("St.Dev: " + str(stdev(times)))
36 print("Min: " + str(min(times)))
37 print("Max: " + str(max(times)))
38

39 solutionFile.write("\nMean: " + str(mean(times)))
40 solutionFile.write("\nMedian: " + str(median(times)))
41 solutionFile.write("\nSt.Dev: " + str(stdev(times)))
42 solutionFile.write("\nMin: " + str(min(times)))
43 solutionFile.write("\nMax: " + str(max(times)))
44

45 solutionFile.close()
46

47 print("Done!")

Appendice A Nicolas Pietro Martignon 67

	Introduction
	AES and SAT
	AES
	SAT

	Previous work
	Preliminaries
	Creation of input file
	Hardware and software used

	Key recovery on partial key schedule
	Banning solution approach
	Brute force approach
	Mixed approach (brute force and banning solution)
	Random bit instancing

	Comparison of different technique
	Comparison of all techniques in scenarios with multiple solutions
	Comparing single SAT solver instance VS brute force approach in scenarios with max one solution
	Comparing our best approach VS Incremental SAT solver

	Conclusion
	Source code
	Python scripts to generate CNF files
	Python scripts to conduct test on all approaches

