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Abstract 
 

This study aims to analyze the relationship between cryptocurrencies and carbon dioxide 

emissions. The research was conducted providing an initial background on the context of 

cryptocurrencies and emissions, then moving on to the theoretical explanation of 

univariate models and later to the part concerning the multivariate model: Vector 

Autoregressive process. Finally, the data, results, and related conclusions are presented. 
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Introduction 
 

It is common to speak of cryptocurrencies as a new generation of digital currencies 

complementary to legal currencies whose development was made possible by information 

systems such as blockchains.   

The idea of creating an independent system of complementary currencies developed long 

before the realization of computer networks in order to meet specific needs of operators 

that could no longer be met by legal tender currencies.  

Essentially, the creation of “something else” is firmly anchored precisely in the intrinsic 

limitations of official currencies. 

Monetary theory defines money through the functions it is capable of performing. 

According to Hicks (1971), money is what money does. More precisely, currency is a 

good that can perform three basic functions: 

- medium of exchange: it can be exchanged for other goods and services; 

- measure of value: it measures the market value of other goods and services 

through the determination of exchange relationships; 

- fund of value: it is a means of preserving wealth over time. 

Because it is able to perform these three functions this “asset” has the transaction motive, 

the precautionary motive and the speculative motive at the basis of its demand. 

Legal tender currency is that to which the law assigns the characteristics of being 

compulsorily accepted in exchanges with power to extinguish obligations, it has the value 

of the amount printed on it, and it is issued exclusively by a central entity to which the 

management of monetary policies is entrusted (European Central Bank, 2015).  

The prerequisites for the creation of a complementary currency occur when the 

characteristics and functions of legal money do not meet, except in part, the particular 

needs that people develop in a particular economic environment and in a particular 

historical period. 

The concept of money complementarity refers to the relationship with legal tender; 

complementarity is constituted and finds its raison d'être in the very existence of legal 

currencies. 

There is no doubt that the advent of Internet technology has profoundly impacted people's 

lives, cultural patterns, social trends, as well as politics and economics. “The Web - these 

are the words of Tim Berners Lee, the young researcher at Cern in Geneva who is 
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considered the inventor of the World Wide Web - is more a social creation than a 

technical one”. 

These changes have generated several needs, including in the area of economic 

transactions, that were not felt during previous centuries and to which new technologies 

have made it possible to respond. The world of complementary currencies could not 

remain immune to this evolution by finding the ideal tools to build an alternative 

economic and monetary system: virtual currencies were born. 

Virtual/digital currency, as defined by EU Directive 2018/843, is «a digital 

representation of value that is not issued or guaranteed by a central bank or a public 

authority, is not necessarily attached to a legally established currency and does not 

possess a legal status of currency or money, but is accepted by natural or legal persons 

as a means of exchange and which can be transferred, stored and traded electronically». 

From this definition, its peculiar characteristics emerge: first, the absence of central 

control and lack of legal recognition, the dematerialization, that is the absence of a 

physical entity to act as the value-bearing instrument, and finally, the voluntary element 

to which its circulation is linked. 

They are thus intended to efficiently perform the function of a medium of exchange 

(lower transaction costs and greater confidentiality) while the ability to act as a unit of 

account and fund of value are affected not only by the lack of legal recognition but also 

by the currency's excessive divisibility and extreme volatility. Precisely because of the 

fact that they only partially fulfill the functions proper to money it would be preferable 

according to some to refer to them as “virtual currencies” (V. Carlini, 2018). 

Following a useful classification made by the European Central Bank, it is possible to 

distinguish virtual complementary currencies according to a scheme that considers their 

degree of convertibility.  

We can thus have a closed virtual currency, for which there is no interaction with legal 

money, a virtual currency in which interaction occurs only partially at the entry of the 

process with the exclusive objective of generating virtual money, and finally to an open 

virtual currency in which interdependence with the monetary world occurs both at the 

moment of creation of the virtual currency and at the moment when the virtual currency 

is reconverted into legal money. In the latter case, the relevance of the amount of virtual 

currency impacts the traditional system and competes with currencies managed by 

monetary authorities.  
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Relegating virtual currencies, therefore, to an exclusively monetary phenomenon would 

be reductive: they are an expression of a different way of understanding economic 

relations that represents a true philosophy, a kind of technological utopia in which 

individuals cooperate outside of imposed and unshared regulation, giving rise to a 

horizontal community having as its fundamental principle trust. 

The cultural atmosphere in which the first virtual currencies developed was the result of 

two causes of “people's revolt” which both shared the common characteristic of being 

antiestablishment. 

The first is the impact that Internet had on communication: if on one hand it allowed 

people to access to any information, communicate with everyone and express their 

opinions to everyone, on the other hand it entailed a colossal digital profiling of people 

thus conceived as a sum of data to be collected. The network is thus no longer seen as a 

means of redistribution of power but as a system of control and registration in the service 

of a new economy based on the collection and exploitation of personal data in which 

everyone's privacy and freedom to decide what to make public and what not are severely 

compromised. 

In the early 1990s, Erich Hoghes1 published the manifesto of the Cypherpunk movement, 

in which he theorized the use of cryptography with the goal of protecting and enhancing 

each individual's privacy. «We the Cypherpunks are dedicated to building anonymous 

systems. We are defending our privacy with cryptography, with anonymous mail 

forwarding systems, with digital signatures, and with electronic money» (Hughes, E. 

1993). 

Setting the technical foundation of the Cypherpunk movement was David Lee Chaum, a 

cryptographer and computer scientist who in 1985 published an article titled « Security 

without identification: transaction systems to make big brother obsolete ». 

Chaum developed a revolutionary idea, based on the concept of an entirely electronic 

currency (DigiCash) that can work through cryptography and it can be spent 

anonymously. It is the prototype of cryptocurrencies. 

This first attempt at a complementary virtual currency was followed by others but failed 

to develop stable systems. 

 
1 He is an American mathematician, computer programmer, and a cypherpunk. More 
importantly, he is credited with being one of the movement's founders. 
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The prerequisites for the emergence of the most widespread cryptocurrency were only 

realized with the 2008 financial crisis, which triggered yet another reason for rebellion 

by shattering a certain covenant between the elites and the people (A. Baricco, 2019). 

The struggles and dramas experienced by millions in the aftermath of the subprime crisis 

are proof not only of the establishment's inability to foresee crises but also that rules and 

market control systems have served little purpose except to secure the elites by bouncing 

sacrifices on people. 

In 2008 Satoshi Nakamoto published a revolutionary paper “Bitcoin: a peer-to-peer 

electronic cash system” in which he described a protocol for the creation of a new digital 

currency with the intention of offering people an alternative to the traditional services 

offered by banks and a solution to the problems that the system regulated by Central 

Banks had proven unable to cope with. In Nakamoto's white paper, the elimination of 

intermediaries and the subtraction of the power of control and regulation from a third-

party authority results first and foremost in the use of peer-to-peer networks, networks 

that are not organized hierarchically into server and client but by equivalent nodes, 

capable of functioning by ensuring the security of transactions through the use of 

blockchain technology. 

Simplifying, the model for creating and using Bitcoin, and cryptocurrencies more 

generally, is based on three basic elements: asymmetric cryptography, the blockchain, 

and the mining process. 

Asymmetric cryptography involves splitting a code into two keys: a public key and a 

private key, mathematically linked to each other. The data (date, amount, traders…) of 

each transaction are transformed, using a cryptographic hash function, into a code that 

contains the public key while the private key is known only to the trader. This allows all 

transactions to be made public in a ledger without sharing personal data that are instead 

accessible only with the use of the private key. The ledger in which all transactions are 

stored, in an unchangeable manner, constitutes a data base distributed among all nodes 

whose updating with new transactions is subject to a validation process that is completed 

once the agreement of the majority of the nodes in the network has been obtained. 

This process uses blockchain technology in which data are collected in blocks that are 

inseparably and indelibly linked together in succession to form a chain so that it is always 

possible to trace back to previous blocks of data. A powerful and growing algorithm 

automatically governs the entire system. In the blockchain model, trust in the manager is 

therefore untied from any subjective aspect but is objectively placed in the system. 
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The mining process relates to both the creation and the exchange of Bitcoin: the 

production system is designed in a way that exactly mirrors the exchange system through 

the establishment of blocks, decryption power and validation speed. Anyone who wants 

to increase the amount of cryptocurrency in circulation must become a miner spending 

resources, or it would be better to say energy, to increase the amount of gold in circulation. 

How? Each time a trader requests a transaction, or a group of transactions, it is destined 

to make up a completed block which initiates a validation process that first engages 

miners. 

For this essential first validation, the miners are asked to solve a problem through a rather 

complex algorithm that requires having computing power obtainable only through the 

simultaneous deployment of a large number of machines to ensure that the problem is 

solved in a short period of time. As soon as the solution is found by the fastest miner, it 

is communicated to the other miners (this is the procedure that goes by the name of proof 

of work) and goes to form a new block in the chain that can then be sent to the network 

confirmation process. The “deminer” receives as a reward for the work done (fee) equal 

to a certain amount of cryptocurrency thus contributing to increasing the amount of 

“currency” in circulation. 

A little more than a decade after the birth of Bitcoin, we can say that cryptocurrencies 

represent one of the most interesting and innovative examples of technology development 

and diffusion, capable of operating a profound change in the economic system.  There is 

no doubt that this is neither a transitory nor an insignificant phenomenon with which the 

Monetary Authorities will have to deal because the absence of regulation (today limited 

to the tax and anti-money laundering sectors) can only lead to the decomposition of the 

world monetary and financial system, opening up scenarios far removed from the utopia 

of an egalitarian technological community. 

The spread of cryptocurrencies, however, has highlighted not only their opportunities and 

innovative aspects but also a number of critical issues that were only partly predictable 

by their creators. 

Firstly, the difficulties in accessing the virtual currency market and the concentration of 

trading platforms have led to the attribution to communities using cryptocurrencies of an 

elitist character far removed from the egalitarian and anti-systemic ideals of the early 

days; secondly, anonymity, the absence of intermediaries and state controls, as well as 

de-localized access have fostered degenerations that lead many to consider 

cryptocurrencies as ideal tools for money laundering and illicit transactions.  
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Furthermore, cryptocurrency transactions have gradually seen the speculative nature of 

cryptocurrencies prevail, thus distorting the monetary function for which they were 

designed. What the technologies available to the creators of cryptocurrencies could not 

take into account was the individual psychological factor in the decision-making 

processes of users who in fact prioritized investment attracted by the volatility of these 

currencies while helping to fuel it.   

Upon closer analysis of the phenomenon, we could say that rather than a “degenerative” 

phenomenon the speculative function is inherent in the very nature of cryptocurrency in 

that «as long as it remains a side and secondary means of payment its transfer for solving 

purposes is never independent of an objective and predominant speculative function. 

Cryptocurrency is and remains, at this stage, nothing more than a form of investment, 

while the monetary component (beyond any hypocritical ideological excuses) is but a kind 

of cover, a legitimation pretext to conceal functionality of a different nature» (Girino, E. 

2018). 

However, one of the most controversial aspects in the spread of cryptocurrencies, toward 

which analysts’ attention has been focused, is their environmental impact. This is the most 

interesting aspect for the purposes of the analyses conducted in this study.  

The growing social awareness of the value of sustainable development has led 

governments, public agencies, and businesses to place ecology at the center of their 

strategies and has paved the way for serious reflection on the sustainability of 

technological development more generally and, in the specific case, on the processes of 

cryptocurrency production and use. That a digital currency pollutes it is not immediately 

intuitive, but the illusion that the dematerialized is also environmentally friendly, almost 

by definition, has long since fallen. 

We have seen that the revolutionary aspect of cryptocurrencies, starting with Bitcoin, is 

the use of blockchain technology, which allows transactions to be secured (avoiding 

double spending) through a validation system that disregards a third-party guarantor 

authority. 

In order to generate and validate a Bitcoin transaction, it is necessary to solve a complex 

mathematical “problem”: the computational power required for this process far exceeds 

the capabilities of a single computer or a single operator and therefore requires the 

simultaneous use of a large number of machines (concentrated in mining farms) also 

coordinated among several operators (mining pools) that synergically and continuously 
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work in order to ensure the solution in the shortest possible time of the computational 

puzzles and then share the reward in cryptocurrency.  All this requires a lot of energy. 

What the “alternative currency” system wants to test is not so much the solving ability of 

the miners, but to measure their computing power because this makes the whole system 

increasingly efficient, attractive and secure. 

In 2019, a study2 by the Technical University of Munich in collaboration with the 

Massachusetts Institute of Technology (MIT) coordinated by Christian Stoll verified that 

while in January 2011 a miner with a 2GH/s GPU could expect to de-mining two chain 

blocks per day, in 2018, due to the increasing difficulty of the operations to be solved, the 

same miner, with the same power, had an expectation of solving one block every 472.339 

years.   

The exponential growth in demand for computing power, accompanied by the explosion 

in cryptocurrency transactions recorded after the first few years of trial, simultaneously 

became exponential growth in energy consumption. Stoll’s study, starting from the 

observation that most mining farms are concentrated in countries that rely on coal-

generated energy, developed a technical economic model for determining the energy 

consumption required by the Bitcoin network, arriving at quantifying its carbon footprint 

as more than 22 million tons of CO2 (the reference is to 2019) released into the 

atmosphere each year, and the number was expected to grow rapidly. 

In May 2021, a study published in the Rivista Banca d’Italia3 compared the carbon 

footprint of the instant payments platform TIPS with the cryptocurrency system: it turned 

out that in 2019 TIPS carbon footprint had been almost 40.000 times smaller than that of 

Bitcoin. According to this study, the energy expenditure and the high environmental cost 

of the cryptocurrency system was nothing more than the price of trust: «The huge 

discrepancy in the carbon footprints of TIPS and Bitcoin stems from the fact that the latter 

uses a large amount of energy to generate trust and consensus among participants in the 

Bitcoin network, while in the case of TIPS this trust is provided by the Eurosystem» 

(Rivista Banca d’Italia, 2021). 

If we have to consider, on one hand, that much of this criticism against the cryptocurrency 

system comes precisely from the banking world and the financial establishment with 

respect to which they clearly compete, on the other hand, it is undeniable that the goal of 

 
2 The Carbon Footprint of Bitcoin, Joule n.3, 17th July 2019. 
3 The carbon footprint of the Target Instant Payment Settlement (TIPS) system: a comparative 
analysis with Bitcoin and other infrastructures, Rivista Banca d’Italia n. 5/21, 20 May 2021 
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reducing CO2 emissions to which all states have committed themselves to varying 

degrees, has focused the attention on a sector that, while only responsible for a small part 

of global emissions, has energy-intensive characteristics that are worth focusing on for 

the adoption of containment and regulatory measures. 

 

 

CO2 emissions  
 

When we talk about climate change, we relate to the fact that the climate in the last years 

has changed a lot. Global warming, indeed, has always been present, in our and in the 

history of the Planet, but the one that we are all witnessing is anomalous due to man and 

his activities. 

The main cause of climate change is the burning of fossil fuels (oil, coal, natural gas, etc.) 

which release greenhouse gases into the atmosphere. There are also other human 

activities, such as agriculture and deforestation, which contribute to their spread. The 

problem is that these gases retain heat in the atmosphere: the one that is known as 

greenhouse effect.   

The greenhouse effect is necessary to retain some of the solar irradiation that otherwise 

would be lost to space. Without this natural effect the average temperature of our planet, 

which is currently +15 °C, would be -18 °C which would make the planet hostile to most 

forms of life.  What human activities are causing is an excessive rise in the concentration 

levels of these gases with the effect of accelerating global warming and causing 

uncontrollable climate change.  

Despite the numerous agreements establishing rules to steam the risk, the level of carbon 

dioxide (CO2) in the atmosphere continues to grow and reached another record in 2022. 4 

 

 
4As measured by the National Oceanic and Atmospheric Administration (NOAA), in May 2022, 
CO2 emissions reached 420,99 ppm (parts per million), last year it was around 419,13 ppm. The 
observatory, where were made the observations, is located on Mauna Loa, in Hawaii, a privileged 
place that allows you to measure concentrations in the upper atmosphere, away from local 
pollution sources (source: Global Monitoring Laboratory). 
We can see how this data are so concerning because before the Industrial Revolution, CO2 levels 
were around 280 ppm, and these concentrations remained almost constant over the previous 6,000 
years (Iconaclima, 2022) 
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The University of Colorado5 analyzed the CO2 emissions of more than 29.000 fossil fuels 

power plants of 221 countries, ending up with the conclusion that only 5% of the global 

power plants represents almost three-fourths of the global emission of CO2, coming from 

power production. 

«The maps below reveal, as one might suspect, that the plants that did the most absolute 

damage to the atmosphere were fired by coal (indicated in blue). Most of these plants 

were clustered in the United States, Europe, India, and East Asia» (Don Grant et al 2021). 

 
Figure 1: Maps of fossil-fueled power plants’ CO2 emissions. Taller spikes indicate that plants 
emit CO2 at higher levels. Colors signify plants’ primary fuels (blue = coal, yellow = natural 

gas, black = oil). Plants with red spikes are the world’s ten biggest polluters (all of which rely 
primarily on coal). 

2018 
Source: Don Grant et al 2021 Environ. Res. Lett. 16 094022 

 
5The study was carried out by the CU Boulder (Professor Don Grant and his team). 
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The investigation highlighted some countries, as reported above, that the team of Don 

Grant referred to as “super polluters”.  

 

 

The carbon footprint of cryptocurrencies 
 
The electricity that is consumed in the mining process of Bitcoin (by far the most 

important cryptocurrency) has become a topic of heated debate in recent years. 

Investigating the environmental impact of cryptocurrencies and their contribution to 

accelerating global warming, first requires distinguishing between energy consumption 

required by the process and the carbon footprint generated. It is abundantly clear that the 

consumption of energy generated by renewable sources such as solar or wind power has 

a very different environmental impact than that generated by sources such as coal, oil and 

gas. 

As we saw, at the base of this connection there is the concept of cryptocurrency mining: 

«mining is the process that Bitcoin and several other cryptocurrencies use to generate 

new coins and verify new transactions»6. 

As a way to perform these functions, computers, which are connected to the network, 

have to solve complex mathematical calculus, and for this reason are necessary very 

powerful computers that require large amounts of energy. But this is not the only point, 

because it has to be taken into account that all these machines require, obviously, to be 

always turned on and, more importantly, it is necessary the presence of internal fans and 

air conditioning to cool the hardware of computers.  

Since for this validation work only the fastest miner is rewarded with commissions and 

allocation of new Bitcoins, the business logic dictates that a natural competition is 

triggered among them, which results first and foremost in investments in increasingly 

high-performance technologies. Thus, there has been a shift from the use of the CPU to 

the GPU, to more powerful graphics cards for gaming use and finally to dedicated ASIC 

hardware that can calculate billions of Hash per second. 

Competition among miners then became competition among microchip manufacturers 

between those who produce not only the fastest but also the one that consumes the least 

power.  The rapid physical and technological obsolescence of machines (the life cycle of 

 
6 Coinbase, What is mining?  
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an ASIC machine is estimated at about two years) exposes miners to an economic chase 

in order to increase efficiency and contain energy costs often with negative outcomes: the 

Swedish miner KNC Miner went out of business in 2016. 

The estimation of the direct energy consumption of Bitcoins (or other cryptocurrencies 

using blockchain technology) is by no means simple. For this reason, several theoretical 

mathematical models have been developed which lead to estimate electricity consumption 

(or it would be better to say a range of consumption) from the limited data available and 

often with very different results. 

For Bitcoin, the value of the Hashing power (the working power of all the miners within 

the network) is available in real time: by dividing this data by the Hashing power of a 

single typical machine (considering a typical machine or a mix of machines), it is possible 

to estimate how many machines are working and to trace back through the data sheets to 

the power globally consumed by all the miners.   

Other models such as, for example, the CBECI (Cambridge Bitcoin Electricity 

Consumption Index) developed by M. Bevand of the University of Cambridge in 2017 

and the BECI (Bitcoin Energy Consumption Index) developed by A. De Vries for 

Digiconomist in 2019 propose the determination of energy consumption of the Bitcoin 

network by moving from an economic perspective. 

Given that miners’ revenues and costs are interrelated and that energy costs account for 

the largest share of the latter, the two models, although using different techno-economic 

approaches, arrive at determining through a series of approximations, the total electricity 

consumption, starting from miners’ profitability. The higher the total value of miners’ 

rewards, the more energy-consuming machines that can be used. 

The transition from estimating energy consumption to quantifying its carbon footprint, 

on the contrary, requires knowing where this energy comes from; the location of miners, 

in this sense, is the key ingredient in understanding whether this energy is “dirty or clean”. 

The mining sector is now becoming more centralized, with more than 80% of all the 

cryptocurrencies extracted in specific countries: China, Russia, United States and Canada.  

An analysis by Rystad Energy7 shows that until 2021 China’s Bitcoin production was 

65% of the global total. By 2020, China was producing 63% of its energy from coal which 

 
7 Rystad Energy, Bit late for bitcoin: How China’s crackdown is reducing more emissions than 
whole countries emit. (2021, July 14)  
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led to the conclusion that 40% of Bitcoins mined globally were fueled exclusively by 

burning coal.  

The estimated carbon emissions from total energy production in China were about 

5.200Mt8 for a total energy production of 7.815 terawatt hours (TWh). Considering that 

Bitcoin mining in China required 86 TWh leads to determine that the carbon emission for 

this activity in 2020 was 56Mt equal to the emissions of countries such as Portugal or 

Peru (Rystad Energy, 2021).  

Despite cryptocurrency supporters claiming that mining is increasingly relying on 

renewable energy, there are many nations that have blocked the way for digital currencies 

and cryptocurrency mining by passing legislation against this industry. 

Although the impact of cryptocurrencies was extremely small compared to the total 

emissions produced (1.1%), China in July 2021 decided for a heavy reduction in Bitcoin 

mining. Other countries to which cryptocurrency miners have moved after China’s ban 

(Iran and Kazakhstan) have imposed restrictions and bans on digital currency production 

activities. In Europe in early 2022, Kosovo, under pressure from the energy crisis, banned 

cryptocurrency mining within its borders while Sweden and Norway have asked the 

European Union to take a position on this issue.  

Justified alarmism or a biased attitude? 

This study aims to provide insight into the relationship between cryptocurrency 

transaction volume and CO2 emissions. 

The investigation will be conducted through the protracted observation and comparison 

of several variables over time, namely: 

a. the prices of major cryptocurrencies; 

b. CO2 emissions recorded in China's Liaoning region where one of the world's 

largest mining farms resides, in Dalian. Liaoning is one of the country's major 

industrial provinces and it is a major producer of electricity, much of which is 

generated by large coal-fired thermal power plants and an increasing share 

consists of hydropower; 

c. CO2 emissions recorded in the Qinghai region.  This is a mountainous province 

bordering Tibet characterized by limited industrial development. Abundant water 

resources have been exploited for hydropower generation in large power plants. 

 
8 Source: ourworldindata.org 
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All of this will be put in place with an initial univariate analysis of the data we have, 

mainly following the method described by the twentieth-century statisticians Box and 

Jenkins, so that we will have a general view of what we are going to approach. Next step 

will be the analysis related to the multivariate world, specifically the vector autoregressive 

model, which is going to provide us with a range of information, including the impulse 

response function, useful to allow us to draw conclusions regarding the relationship 

linking cryptocurrencies and carbon dioxide emissions. 
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Univariate stochastic processes  
 
A time series is simply the chronological record of observations of a variable: in the time 

series the order of the data has a fundamental importance, given by time and the direction 

of it.  

In time series the natural tendency of many phenomena to evolve more or less regularly 

leads to the idea that the data collected at a given time instant & are more similar to those 

collected at instant & − 1 with respect to those collected at distant periods. It can be said, 

therefore, that the time series has “self-memory” known as persistence.  

Mathematical models that go by the name of stochastic processes are used to describe the 

probabilistic law by which a certain phenomenon may evolve over time. From a practical 

point of view, stochastic process is a form of representation of a quantity that varies over 

time randomly and with certain characteristics.  

The complete determination of a stochastic process is referred to as a trajectory. We can 

therefore define the time series as the partial realization of a trajectory of the stochastic 

process. 

In mathematics, a stochastic process, denoted by {*!}"#$# with & ∈ ℤ, is defined as a family 

of random variables, belonging to the real number set (*! ∈ ℝ% 	/0&ℎ	2 ≥ 1), ordered by 

4-integer parameter &, such that for all 4 ∈ ℕ and all 4-ples &&, … , &' in ℤ , the joint 

probability distribution of all random variables (from time && up to time &') is well 

defined. 

The methodology that will be followed for identifying stochastic models follows the 

pattern of the Box-Jenkins method9, which involves preliminary analysis, model 

identification, parameter estimation and verification of the model.  

We said that the stochastic process is nothing more than a form of representation of a 

quantity that varies over time randomly and with certain characteristics. 

To conduct this “representation”, various models of analysis are used, which can be 

grouped into two macro categories: univariate models and multivariate models of 

analysis.  

 
9 Box, G. and Jenkins, G. (1970) Time Series Analysis: Forecasting and Control. Holden-Day, 
San Francisco 
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The former consider only one variable, and thus the analysis of data from a single time 

series, in our case for example the time series of CO2 emissions from the Liaoning region. 

Multivariate analysis models, on the other hand, involve the joint study of two or more 

variables, and thus in our investigation, for instance, the time series on cryptocurrency 

values and the time series in CO2 emissions of Chinese regions are considered 

simultaneously.  

The latter are the statistical models that are certainly of most interest; however, this does 

not preclude the fact that univariate analysis has its own importance for the study of the 

intrinsic characteristics of the single variable under analysis and is therefore functional 

for the subsequent multivariate analysis. 

 

 

Stochastic processes’ characteristics  
 
In the stochastic process, it is first necessary to check certain characteristics of the 

behavior of the variable under observation that go by the names of stationarity and 

ergodicity. 

The first essentially refers to the characteristics of the underlying stochastic process that 

generated the time series; therefore, when the characteristics of the stochastic process 

change over time we have a nonstationary process. Basically, dealing with nonstationary 

processes implies dealing with a variable trend, which depends on many unknown 

parameters. Hence, non-stationarity involves the difficulty of having to estimate too large 

number of parameters with a limited quantity of observations. 

Thus, we can say that if a series is stationary, it is possible to use its past history (by 

means of an equation with fixed coefficients) to predict its future behavior (this is in the 

case of the AR models that are soon to be introduced).  

In the case, on the other hand, in which the series under consideration is not a stationary 

series then a transformation must then be made to induce this stationarity.  

Thus, stationarity is a fundamental property for time series as it allows parameters to be 

estimated with high accuracy, given that the process can be modeled with relatively few 

parameters. 

Stationarity should be distinguished into two subsets: strong stationarity and weak, or 

second-order, stationarity. 
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Strong stationarity is a condition for which all aspects of the behavior of a stochastic 

process are unchanged by changes over time. Consider a stochastic process {*!}  and two 

vectors of random variables defined as follows: 

 

7*!! , *!" , … , *!#8
(
~	: 

 

7*!!$% , *!"$% , … , *!#$%8
(
~	: 

 

with ℎ representing the shift in time (ℎ > 0). 

Thus, the two vectors of random variables are identically distributed, although this does 

not mean that they take the same values, but it simply means that the joint probability 

distribution of the first random vector is the same as that of the second random vector, 

with the only difference being a shift in time (ℎ).  For this reason, strong stationarity is a 

very difficult hypothesis to observe, because it requires all aspects of the behavior to be 

constant over time. 

On the other hand, weak stationarity, or second-order stationarity, requires the mean, 

variance and covariance of the process to remain unchanged with respect to temporal 

changes. While as for the correlation between two observations, the latter depends only 

on the lag, that is, the temporal distance between the two observations. In other terms:  

Expectation = = ?(*!) 

Autocovariance function B) = CDE7*) , *!")8 

Variance F* = CDE(*! , *!) = EGH(*!) = B+ 

Autocorrelation 
I) =

CDE7*! , *!")8

JEGH(*!)EGH(*!"))

=
B)

JB+B+
=
B)
B+

 

 
Table 1: Functions which characterize the stochastic process 
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A strongly stationary stochastic process is also (always) stationary of second order; the 

reverse is not true. 

An ergodic stochastic process is defined as one in which the sample mean, autocovariance 

and autocorrelation are all consistent estimators. Thus, as the time series becomes longer 

the estimates produced by these estimators become increasingly precise with respect to 

the parameter of interest. This is the property whereby, while collecting more and more 

observations, we continue to learn something new about the process. 

With some technicalities, it is possible to state that a weak stationarity process is ergodic 

for the mean if  

KL =
∑ K!(
!,&
N

 

 

converges in probability to ?(*!) as N → ∞. A process will be ergodic for the mean 

provided that the autocovariance B) goes to zero sufficiently quickly as Q increases. 

Similarly, a second order stationary process is said to be ergodic for second moments if  

 

∑ (*! − =)(*!") − =)
(
!,)$&

N − Q

-
→	B) 

 

for all Q (James D. Hamilton, 1994).  

On the other hand, a nonergodic process is one that has such emphasized persistence 

characteristics that one segment of the process, however long, is not sufficient to say 

anything meaningful about its distributional characteristics. In other words, if the process 

is non-ergodic, it does not matter how many observations we collect, as there is no 

additional information we are collecting, since everything is known from the beginning 

(from the initial value taken by our process). 

Therefore, what we must try to have it is a process that is characterized by weak 

stationarity and ergodicity, to possess a wide range of information that can be exploited.  

Some methods for detecting the presence of stationarity will be presented later. 
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Introduction to ARMA processes  
 
One of the models belonging to the univariate class is the Autoregressive Moving 

Average (ARMA) model, also referred to as the Box-Jenkins model. 

The ARMA is nothing more than a model that allows us to define our historical series as 

consisting of its values at previous times and random variations (unpredictable shocks). 

It is thus a tool that permits to analyze and predict future values and consists essentially 

of two parts, an autoregressive part of order R and a moving average part of order S. 

 

 

Moving Average stochastic processes of order !  

 
The first univariate model we introduce is the moving average process. A moving average 

process asserts that the relationship between the present value and the present and past 

error terms is linear. Once more, it is assumed that the error terms are normally distributed 

and mutually independent, exactly like white noise. 

This model has the same form as Wold’s representation theorem10, so it needs no 

restriction on the characteristic of stationarity, given the fact that this is always given.  

A moving average process of order S has indeed the equivalent form of the Wold, but this 

time the summation does not run up to infinity, it stops at lag S.  

Said so, it is a sequence of random variables which is written as 

 

*! = = +UV.W!".

.

),+
+ W! 

 
10 Wold theorem states that any zero-mean covariance stationary process {"!} can be represented 
in the form  

"! = % +'(")!#"

$

"%&
 

where )! is a white noise10, (" are constant numbers and 	(& = 1, and ∑ -("-
'
< ∞$

"%& . 
The result is very powerful since holds for any covariance stationary process.  
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where W!	is a white noise with zero mean and constant variance (F*). 

The following tables summarizes the properties of the model.  
 

Expectation = = ?(*!) 

Autocovariance 

B) = CDE(*! , *!"))

=

⎩
⎪⎪
⎨

⎪⎪
⎧
F*U\)

*
.

/,+
																											Q = 0

F*U\0

.")

0,+
\0$) 											1 ≤ Q	 ≤ S

0																																			Q > S

 

Autocorrelation I) = CDHH(*! , *!")) =
B)
B+

 

 

Table 2: Functions of 01(3) process 

	
The expectation and the variance are constant in time, and the autocovariance function 

depends on the temporal lag.  

By the autocovariance function we can easily find out the autocorrelation function. If the 

autocovariance function is identically equal to zero, for Q > S, the autocorrelation 

function will share the same properties. 

An important property of the process is the invertibility, which represents the constraint 

for the moving average process, and it is not determined by stationarity reasons. The 

purpose is to have a one-one relationship between the autocorrelation function (or the 

autocovariance function) and the parametrization of this stochastic process. In other 

words, for any value of the moving average coefficient there is one and only one 

autocorrelation function corresponding to those values, and vice versa. The condition, 

called invertibility, is guaranteed only when the roots of the moving average polynomial 

are not less than one in absolute value: 
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|_| > 1	G42	_ =
1

V
→ |V| < 1 

 

where the moving average polynomial is: 

 

V(_) = 1 + V&_ + V*_* +⋯+ V._. 

 
V(_) = 0 

 

Hence, conditions for stationarity and invertibility contemplate the roots of the 

characteristic equation to lie strictly outside the unit circle in the complex plane.  

 

Autoregressive stochastic processes of order " 
Another important class of processes are the Autoregressive processes. These are 

models that provide an easier representation of a persistent series as compared to 

moving average ones.  

The main idea in this set of models lies in the fact that the variable of interest, at time 

&, is a function of its past values, plus an error, a white noise. Moreover, it is called 

autoregressive because, it is a regression of the variable against itself. In other words, 

each variable is modeled as a function of the past values, that is the predictors are 

nothing but the lags (time delayed value) of the series. 

The process has the following representation: 

 

*! − = = b&(*!"& − =) + b*(*!"* − =) +⋯+ b-7*!"- − =8 + W! 

 

with W!	~	cd(0;	F*), but it can also be represented, exploiting the Wold representation, 

as an fg(∞) stochastic process: 

 

*! = = +Ub)W!")

#

/,+
 

where: 

- h+ = b+ = 1 

- ∑ |b|*) < 	∞#
/,+  this condition is guaranteed if and only if |b| < 1. 

So, this condition guarantees that the AR process is second order stationary and ergodic.  
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The stationarity and ergodicity are properties which characterizes AR processes and they 

are satisfied, in the case of this specific model, if the autoregressive polynomial has roots 

that in absolute value are higher than one, that is 

 

|_| > 1	G42	_ =
1

i
→	 ji-j < 1	 

 

where the autoregressive polynomial is: 

 

i(_) = 1 − i&_ − i*_* −⋯− i-_- 

 

i(_) = 0 

 

Then, with the assumption that the expectation is equal to zero, the properties of the 

model are the one reported below.  

 

Expectation ?(*!) = 0 

Autocovariance B) = k
	

F*

1 −	b*	
								Q = 0

b)B+							Q > 0

 

Autocorrelation I)	 = k

				1																																		Q = 0

			
B)
B+
=	
b)B+
B+

=	b) 								Q > 0	
 

 

Table 3: Functions of 15(6) 
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Autoregressive Moving Average stochastic process of order ", !  
 

We can thus arrive at the definition of the ARMA model, as a combination of the two 

stochastic processes just described.  

The autoregressive moving-average model glfg(R, S) is thus a generalization of the 

stochastic processes AR and MA, and is defined as below: 

 

g(m)(*! − =) = n(m)W! 

 

where 

g(m) 	= 1 − i&m −⋯− i-m- 

n(m) = 1 + V&m +⋯+ V.m. 

 

and R is the order of the polynomial g(m) and S is the order of the polynomial n(m). 

For this reason, the gl and fg processes are special cases (S = 0 e R = 0, respectively). 

An additional and more extensive notation of the model is: 

 

*! − = = i&(*!"& − =) +⋯+ i-7*!"- − =8 + W! + V&W!"& +⋯+ V.W!".	 

 

The Moving Average Autoregressive model is, as previously mentioned, a combination 

of two polynomials, and this union determines some important characteristics, already 

discussed, of the process: stationarity, ergodicity and invertibility. 

If the AR and the MA polynomial share some common roots then there will always exists 

a stationary and invertible ARMA process with order R2 and S2, with R2 < R and S2 < S. 

Moreover, since it is desirable to have a parsimonious model, the choice will always fall 

in the model with smaller autoregressive and moving average order. This is due to the 

fact that the autocorrelation function these models gives rise is the same that generates 

the two processes with lower order.  
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Estimate of ARMA models’ parameters 
 

Another key aspect for our subsequent practical analysis is that of model parameter 

estimation.  

If the stochastic process parameters are not known, and they never are, we need to use 

estimates. The most basic technique is that of Maximum Likelihood.  

First things first the Likelihood is the sample’s density function, computed in the 

correspondent point of the observed sample. This function depends on a vector o of 

unknown parameters, which will determine the shape of it; we call this new function as 

follows 

 

m(o) 

 

Maximizing this function, we are going to obtain the estimate of the maximum likelihood.  

When we observe a realization of a stochastic process, the likelihood function is nothing 

more than the joint density function of the observed part of the process, namely the 

marginal density function of the random vector, calculated in the observed values.  

In the case of an ARMA process it will depend on the vector of parameters 

 

o = (=; i&, … , i-; V&, … V.; F*) 

 

If we assume that the process is Gaussian, the likelihood function is nothing but the 

density function of a normal multivariate: 

 

m(o) = p(q; o) =
1

J(2s)(Σ
u"

(4"0)&(4"0)
*6  

 

where q is the vector of the N observations; v and Σ are its first and second moment, 

whose depends on o. 

To be more specific, let’s assume that we observe w!, where & ranges from 1 to 4. The w! 

generating the data are independent random variables that are all identically distributed, 

and they all have a common probability density function, which we will refer to as p. 
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For each observation (q!), we can compute the value of the probability density function 

of the corresponding variable, which will depend on some parameter values o, that we 

want to estimate. At this point we define the joint Probability Density Function of the 4 

random variables, giving rise to the 4 observations in the sample. The joint PDF of these 

4 random variables is equal to the product of the individual PDF, exploiting the total 

probability Law, as reported below 

 

m(o) = p(q; o) = p(q&, … , q'; o) =xp(q!; o)

'

!,&
 

 

Therefore, the joint PDF computed on the values of the 4 observations and for any fix 

value of the parameter vector, it is equal to the product of the 4 probability density 

functions of each one of the w!, computed in the corresponding values of the observations 

and for a fix value of the parameter, which we assume known.  

Next, by oy we actually denote a function that we simply represent as follows 

 

oy = &(q&, q*, … , q') 

 

It can be considered as such if at each extracted sample, it assigns a value to the vector o 

that maximizes the likelihood function (MLE). In notation 

 

max m(q, o) =m7q, oy8 			→ 				oy = argmax m(q, o) 

 

However, in order to calculate this estimator (MLE) we use the log-likelihood function, 

which is obtained through the application of the natural logarithm, so we have: 

 

ℓ(q, o) = ln m(q, o) =Ulnp(q/ , o)

'

/,&
 

 

The function  

m(o) =xp(q!; o)

'

!,&
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is a sort of link between what we have observed on the data and what is the probabilistic 

model that we assume for the random variables generating those observations (q!). 

Therefore, the Likelihood function is a very useful tool that allows us to compare 

parameters values in relative terms, meaning that it is coherent with both the model we 

have assumed and the data, or not.  

Consequently, if our purpose is to find an estimate of o we might maximize the 

Likelihood, or the Log-Likelihood, which produces the same results. The logarithm is a 

monotonically increasing function, therefore, taking the logarithm of the likelihood 

function and maximizing it, or maximizing directly the likelihood function, gives us the 

same optimizer, the value of o that maximizes the likelihood is the same value that 

maximizes the log-likelihood. But working with the log-likelihood simplifies things a lot 

and has important inferential applications.  

To continue, in order to maximize the log-likelihood function we have the following: 

 

Ç(q, o) =
É ln p(q/ , o)

Éo
 

 

where Ç(q, o)  is the Score function, which in the case of a sample with 4 units it is 

written as follows 

 

Ç(q, o) =UÇ(q/ , o)
'

/,&
=U

É ln p(q/ , o)
Éo

'

/,&
 

 

 

Thus, the MLE estimate is that value of the vector o at which the score is equal to zero, 

and the likelihood and log-likelihood functions reach the maximum. 

That said, when we estimate the unknown parameter o, we need to specify some kind of 

models for the process, for the variables generating the observations.  

The estimate we get by maximizing the log-likelihood equation depends on the values 

that we have observed, of all time series. Clearly, if the time series is generated by a 

stochastic process the estimate that we get is a transformation of something which is 

determined by chance. Therefore, the value of the estimates that we get of the unknown 
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parameter is the determination of something that is random, which is called the estimator 

of the unknown parameter vector o.  

 

 

How to choose the order of processes 
 

Obtained the parameter estimates, we want now to select the order of the process, 

consequently it is essential to have a method that can be used to select the optimal one.  

There are different criteria in order to select the optimal order for a stochastic process, 

but the one that we are going to consider is the Ljung-Box Test11. This test might allow 

us to assess whether an observed time series is generated by a white noise or not. it is 

done by checking if there exists autocorrelation in the time series.  

The Ljung-Box test is computed according to the following relationship: 

 

Ñ78 = 4(4 + 2)U
IÖ)

*

4 − Q

9

),&
	~	Ü9

*				á42uH	à+ 

 

where 4 represents the length of the time series, and where we have the sum of the squares 

of the estimate of all the first Q autocorrelation coefficient.  

We want to assess whether the first ℎ autocorrelation coefficient is only identically equal 

to zero. 

In general, this test is defined as: 

- null hypothesis (à+): model does not exhibit lack of fit; 

- alternative hypothesis (à&): model exhibit lack of fit. 

It can be shown that asymptotically for sufficiently long time series (provided the 

stochastic process stationary) this test statistic is distributed as a chi-square (Ü9*) with 

ℎ	degrees of freedom. Accordingly, we will be induced to reject the null hypothesis 

whenever this test statistic takes sufficiently high values. The decision of rejecting or not 

the null hypothesis is based firstly on the significance level (â)12, and secondly by a tool, 

called P-Value (âÖ), which is a statistic that works as follows: 

 
11 This test belongs to a set of asymptotic tests. 
12 The significance level alpha is the probability that our tets has rejected 7&, when 7& is true 
(Type I Error). 
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- âÖ < â we reject à: 

- âÖ > â we do not reject à+. 

On the basis of these considerations, we will then go on to draw a number of conclusions 

about the results we are going to obtain in the next part of the analysis.  

 

 

Identification of the model through the Autocorrelation and the Partial 

Autocorrelation Function 
 

Simultaneous with the step of choosing the process order, another type of investigation 

will be carried out; this one concerns the identification of the model through the 

autocorrelation and partial autocorrelation functions.  

In the most common sense, correlation in general represents any relationship, not 

necessarily linear, between two variables. In statistics, in more detail however, it 

describes the extent to which two signals have common properties, hence resemble each 

other, as a function of their mutual lag in time. Rather, when we speak of an 

autocorrelation function (ACF), we mean the measure of when a signal resembles, thus 

correlates, with itself lagged by a given time frame. On the other hand, the Partial 

Autocorrelation Function (PACF) is a measure of the strength of a linear relationship 

between observations in a time series, say between K! and K!"0	,  after eliminating the 

effects of intermediate linear relationships, or lags in between (1, 2, … , v − 1). 

That said, previously treated processes can be recognized, according to their 

characteristics, by means of the autocorrelation function and the partial autocorrelation 

function. The time series that are nothing more than the realization of these processes, 

should reflect, in their variations, the properties of these models (taking into account the 

limitation of the range considered). Box and Jenkins, starting from these assumptions, 

have developed an approach that, using statistical tools, allows to model the time series 

by identifying the ARMA model that best manages to adapt to the phenomenon in 

question. 

Through the ACF and PACF it is possible, sometimes, to recognize the process we are 

interested in. Therefore, looking at the ACF and at the PACF, there are a series of rules 

through which we can identify the three types of Univariate models previously described.  
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The gl(R) process is characterized by an ACF that gradually decays and a PACF which 

is truncated at lag R. The fg(S) model is, instead, defined by an ACF that is truncated 

at lag S and a PACF which gradually decays (geometric decay). To conclude, the 

glfg(R, S) stochastic process has both the ACF and PACF described by a geometric 

decay (they decay exponentially fast).  

In this way every stochastic process is going to have its own peculiarities. 

 

 

Unit roots test: Augmented Dickey-Fuller Test and KPSS Test 
 

As was already anticipated in the explanation regarding stationarity, there are methods 

that allow us to verify the stationary condition of a series.  

There are a set of tests to control for the presence or absence of unit roots that are more 

rigorous than the simple graphic analysis of the series.  

The first we are going to consider is the Augmented Dickey-Fuller test (ADF) which was 

created by Dickey and Fuller in 1981.  

In theory, if we have an glfg	(R, S) model this process is second order stationary if 

only if:  

 

1 − i&m −⋯− i-m- = 0		/0&ℎ	|_| > 1 

 

or it is different from zero for any _, which in absolute value is not greater than one, that 

is the roots of the equation must be greater than one in absolute value. 

Therefore, the aim of this test is to check weather this condition holds or not.  

More in detail, suppose that exists: 

 

*! = i*!"& + á! 

 

where i represents any parameter and á! is not necessarily a white noise but it is assumed 

to be a stationary process. If we take the first differences, both from the right and from 

the left, we get the following:  

 

*! − *!"& = i*!"& − *!"& + á! 
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*! − *!"& = (i − 1)*!"& + á! 

 

Then, we call s = i − 1.  

 

∇*! = s*!"& + á! 

 

 

If there exists a unit root, i = 1, it means that the new parameter s is equal to zero, so 

that we are in a non-stationary case. If, instead, there are no unit roots, we get that |i| <

1, meaning that s is less than zero, we have a second order stationarity. Therefore, this is 

exactly the hypothesis system that we want to assess, in which the null hypothesis is 

equivalent to the non-stationarity of *! and the alternative one defines the second order 

stationarity of the same process.  

 

ã
à+: s = 0			i = 1

à&: s < 0				|i| < 1
 

 

The KPSS test, named after the authors Kwiatkowski, Phillips, Schmidt and Shin, is 

another test to verify the stationarity of a time series. The null and alternative assumptions 

for the KPSS test are opposite to those for the ADF test, therefore: 

- à+: The process is stationary  

- à&: The series has a unit root, implying the non-stationarity. 

 

Generally, in most practical cases, it is always better to apply both tests, so that we can 

ensure that the series is truly stationary.  

 

 

Analysis of residuals  
 

Something that was included in the previously mentioned Box-Jenkins method is the 

analysis of residuals. This gives us information about the validity of the model, and it is 

carried out by analyzing the behavior, indeed, of residuals, through the observation of the 

presence of some peculiarities. Residuals need to be: 
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- independent to each other (i.i.d.); 

- normally distributed with zero mean and constant variance 

It is possible to perform this analysis by way of some tests (for instance the 

autocorrelation test) that we are going to see in the applied part.  

 

 

Autoregressive integrated moving average stochastic process of 

order	", $, % 
 

Since now what we have talked about was stationary processes, nevertheless in the reality 

things are sometimes different. For the purpose of our future analysis is required to 

introduce also the following aspects.  

Most of the time dealing with nonstationary time series we can talk about ARIMA 

models, that is autoregressive integrated moving average models. We are thus referring 

to a particular, but common, category of models always suitable for investigating time 

series which, however, have special characteristics. The part that differentiates them from 

the stationary ARMA models, as can be seen, is the integrated process part. 

The definition of integrated process states that w! is an integrated process of order 2 if it 

has a stationary and invertible glfg representation after 2 differences have been 

performed on  w! and it is denoted w!		~	ç(2).  

For example, if w! is an integrated process of order 1, then the process: 

 

∇w! = w! − w!"& = W! 

 

is stationary.  

So, as we have already said, it can be represented through the Autoregressive Integrated 

Moving Average model (ARIMA) of order R, 2, S.  

Knowing that an ARMA model is defined as abovementioned, the notation that describes 

this non-stationary model is the following: 

 

w!	~	glçfg(R, 2, S)	      →										 *! = ∇%w! = (1 − m)%w! 

 

where *! is an ARMA model of order R, S.  
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Seasonal ARIMA (SARMA) 
 

Finally, the presence of any seasonality in the data it must also be taken into account.  

Seasonality consists of periodic movements that are repeated more or less regularly 

throughout the year and from one year to the next.  

In order for there to be periodicity, the same trend must be repeated year by year, or rather, 

the fastest periodicity must be repeated more or less regularly in the slower one.  

Seasonality can arise, as it will be in the case of some historical series that we are going 

to analyze, for example from the succession of the seasons, to the climatic variations due 

to the Earth's rotation around the sun, etc. 

The extension of the Box-Jenkins methodology to seasonal time series can be done by 

applying an glçfg	(é, è, Ñ);  model to periodic subsets, that is, a linear stochastic 

process specific to each “season” which therefore, at least potentially, is different for 

different periods. The notation has been slightly modified using capital letters to 

emphasize the fact that the field of application is now seasonal, but the rule of indicating 

with the P the Autoregressive part, the D for the order of differentiation and Q for the 

moving average part has remained unchanged.  

The seasonal ARIMA model (SARIMA) is written in the following way: 

 

glçfg	(R, 2, S)(é, è, Ñ); 

 

Therefore, the non-seasonal terms are simply multiplied by the seasonal ones.  
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Multivariate stochastic processes 
 

Unlike univariate stochastic processes that consider only one time series, a multivariate 

stochastic process is a vector whose elements are univariate stochastic processes. This 

means that the elements of a multivariate model are multiple random variables. 

In the multivariate universe the stationarity and ergodicity conditions stay the same, 

while first and second moment we have what reported below: 

 

⎩
⎪
⎨

⎪
⎧

?(K!) = = = ê

?(K&!)
?(K*!)
⋮

?(K'!)

í 							pDH	Gìì	&

?[(K! − ?(K!))(K!"0 − ?(K!"0)2] = Γ0 									pDH	Gìì	&	G42	v

 

 

where if the process K! has 4 elements, = is a 4 × 1	vector and Γ0 is a matrix 4 × 4 in 

which: 

- For v = 0 Γ0 is the variance-covariance matrix of vector K! 

- For v ≠ 0 the 0Q elements of Γ0 represents the covariance between the 0-th 

element of K! and the Q-th elements of K!"0.  

The autocovariance matrix is defined in such a way that Γ0 = Γ"0
2 .  

In other words, the ôgl is considered weakly stationary if the mean of all endogenous 

variables in the system are the same across time, and if the covariance matrix if K! and 

K!"0 depends on the time lapsed v. 
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Vector Autoregressive models  
 

The vector autoregressive model is a model that falls into the category of multivariate 

stochastic processes, and it is the one we are going to use next to carry out our analysis. 

The VAR model was introduced in 1980 by Christopher Sims and its goal is to develop a 

model that can be economically evaluated, enabling the identification of a long-term 

relationship involving all the variables taken into consideration. 

Sims criticized the use of SEM (Structural Equation modelling)13 since he thought, 

conversely to what this approach considers, that variables were all endogenous, in such a 

way as to give a precise statistical description of the variables under analysis. 

From an econometric point of view the VAR estimation is a procedure which can be 

interpreted as the estimation in the reduced form of a simultaneous equation model.  

In the past, VAR models were marked as anti-theoretical models. This is because the 

VAR model does not include identification restrictions, given that the goal of those who 

want to estimate the multivariate model is not explain the casual relationships, but only 

to find a statistically accurate description of the characteristics of persistence of a set of 

series.   

The Vector Autoregression model is a forecasting and structural analysis tool that can be 

used whenever two or more time series influence each other.  

With respect to the univariate models in which it is imposed a unidirectional relationship, 

here the relation between time series is bidirectional, because the variables influence each 

other.  

A VAR is a linear model in which each given economic variable included in a vector of 

4 indicators is explained by its own past values and the past values of all other 4 − 1 

variables belonging to that vector. This simple structure provides a systematic way of 

capturing rich dynamics of data series linked to different time moments. 

 
13 Structural Equation Modeling is a multivariate statistical analysis technique that allows to verify 
hypotheses about the influence of a set of variables on others. with expected a-priori conditions. 
SMEs correspond to a family of related procedures aimed at examining the linear relationships 
between one or more independent variables and one or more dependent variables, which can be 
measured, that is directly observable, or latent (not directly observable and thus indirectly 
measured by two or more detectable indicators). 
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The Vector Autoregressive model of order R 14 , which is a generalization of the univariate 

Autoregressive model of order R, belongs to multivariate stochastic processes (or 

multivariate linear time series models), more specifically to the VARMA15 family 

(extension of the ARMA model presented in the previous chapter).   

The VAR models are largely used to investigate aspects of the association among the 

variables of interest, since they represent the correlation between a set of variables. 

The model is defined by two elements: the order of the process, indicated by R, and the 

number of equations, indicated by v.  

Therefore, a vector autoregressive model of order R, and v dimension, can be represented 

by the following structures: 

- using the backshift operator 

 

																	K! = g: + 7g&m +⋯+ g-m-8K! + W! 					→      g(m)K! = g: + W! 

 

- instead, without the lag operator notation, we have: 

 

K! = g+ + g&K!"& +⋯+ g-K!"- + W! 

 

where: 

- *! is a random vector (4 × 1) 

- g+ is an intercept vector (4 × 1) 

- g- are fixed coefficient matrices (4 × 4), tells us which is the magnitude of each 

effect. 

- W! is a white noise vector (4 × 1), white noises processes that may be 

simultaneously correlated 

 

ê

K!
K!"&
⋮

K!"-$&

í = ê

g+
0
⋮
0

í +

⎣
⎢
⎢
⎢
⎡
g& g* ⋯ g-"& g-
ç' 0 ⋯ 0 0
0 ç' ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ ç' 0 ⎦

⎥
⎥
⎥
⎤

*!"& + °

W!
0
⋮
0

¢ 

 
14 Where p denotes number of lags of the model, as it was for the univariate AR model.   
15 VARMA processes are complicated to estimate when the polynomial has order higher than 
zero. Indeed, it is more common to use in empirical applications the VAR model.  
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The VAR can be also written in a compact form, which is called the companion form. It 

is a way to write a VAR of any order R comparable to a ôgl(1): 

 

*! = g+ + £*!"& + W! 

 

If up to now we have spoken in general terms, we are now looking at the simplest case of 

VAR, the ôgl(1) with two variables (v = 2), that is written as follows: 

 

ã
K&,! = â&+ + §&&K&,!"& + §&*K*,!"& + W&,!
K*,! = â*+ + §*&K&,!"& + §**K*,!"& + W*,!

 

 

In matrix notation: 

•
K&,!
K*,!

¶ = •
â&+
â*+

¶ + ß
§&& §&*
§*& §**

® •
K&,!"&
K*,!"&

¶ + •
W&,!
W*,!

¶ 

 

which is equivalent to the following companion form: 

*! = g + ©*!"& + W! 

where  

- *! = •
K&,!
K*,!

¶ 

- g = •
â&+
â*+

¶ 

- © = ß
§&& §&*
§*& §**

® 

- *!"& = •
K&,!"&
K*,!"&

¶ 

- W! = •
W&,!
W*,!

¶ 

 

To signify that we are treating with endogenous variables, variables which influence each 

other equally, we have changed the notation: K&,! denotes the &-th observation of variable 

K&, and K*,!	the &-th observation of variable K*.  

 

 

 

 



 38 

VAR stability and stationarity  
 

Establishing the existence of stationarity in this multivariate stochastic process is 

fundamental, as it was in the case of univariate.  

Even before discussing about stationarity, an important characteristic that it must be taken 

into account is the stability condition for the eigenvalues of the matrix £. Indicating with 

g(_) = ç0 − g&_ − ⋯− g-_- the characteristic polynomial of the VAR(p) model, then 

the process Y= is stable if the determinant of the g(_) matrix is different from zero for all 

the z less or equal than one in absolute value.  

 

det(ç' − £_) ≠ 0				pDH	|_| ≤ 1 

 

 or written as: 

	

det7ç' − g&_ − ⋯− g-_-8 ≠ 0				pDH	|_| ≤ 1	

 

Therefore, if the stability condition is verified, the model is also stationary. 

Instead, if the model is stationary (first and second moments are time invariant), does not 

necessarily signify that the model is also stable. An unstable process is not necessarily 

non-stationary.  

As we did for the univariate case, also the ôgl can be represented with the Wold 

Representation. A prerequisite to be written in the way we said, considering the ôgl with 

the lag operator, is that the g(m) polynomial must be invertible, that is if all the 4R	roots 

of the characteristic equation lie outside the unit circle. If this is the case, we have that it 

is possible to represent *! as the sum of all the past white noise shocks W! through a 

ôfg(∞) representation.  

*! = g+ +U≠)
#

/,+
W!") 

 

where o is an 4 × 4 coefficients’ matrix of lagged values of the error term.  
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Optimal VAR length  
 

As we did for the univariate case, the choice of the number of p of delays to be included 

is one of the crucial aspects in specifying a VAR. Many delays results in a very large 

number of coefficients to be estimated and can cause a sharp decrease in the accuracy of 

the estimates and a substantial increase in the prediction error. 

In other words, we have:  

 

4 + (4 × 4 × R) = 471 + (4 × R)8 

 

where 4 is the number of endogenous variable and R is the model order.  

Therefore, what reported above represents the total number of parameters to be estimated. 

Since the VAR of order p has p matrices with dimension (4 × 4), each for g&, g*, …, g-, 

and everyone represents the coefficients vector linked with the lag on anyone endogenous 

variable.  

 

A way to determine the lag length of the model is to use the model selection criteria, 

meaning fitting different model to the same data set. These criteria consist in fitting 

ôgl(R) models with order from 0 to R>?4 and choosing the value R	that minimizes some 

model selection criteria.  

A general representation for these model selection criteria is described below: 

 

çn(R) = lnjΣÆ(R)j + C( ∙ i(4, R) 

 

where ΣÆ(R) = ∑ AB'AB'&(')!
(  is the residual covariance matrix without a degrees of freedom 

correction from a VAR(p) model, C( is a sequence indexed by the sample size N, and 

i(4, R) is a penalization term, penalization because the general rule is to penalize too 

complicated models, that is with too many parameters. 

More specifically we can distinguish three main information criteria, the Multivariate 

Akaike Information Criterion, the Multivariate Schwarts (or Bayes) Information 

Criterion, and the Multivariate Hannan-Quinn information criterion, respectively: 
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fgçn(R) = lnjΣÆ(R)j +
2

N
∙ R4* 

f©çn(R) = lnjΣÆ(R)j +
ln N

N
∙ R4* 

fàÑ(R) = lnjΣÆ(R)j +
2 ln(ln N)

N
∙ R4* 

 

The first model selection overestimates the order, which means that the criterion might 

push to accept or fit models with too many parameters, whereas the other two estimate 

the order consistently under fairly general conditions if the true order R	is less than or 

equal to R>?4, that is avoid the risk contemplated in the AIC case.  

 
 
Estimate of VAR parameters 
 

The vector autoregressive model is a system of equations that represents the entire 

structure of dynamic correlations between relevant variables. All the variables are 

assumed to be endogenous, and their simultaneous linkages are “hidden” in the 

variance/covariance matrix of the error terms, which is typically a non-diagonal matrix. 

The two methods to estimate the model’s parameters consist in the use, mainly, of the 

Ordinary Least Square (OLS) and Maximum Likelihood Estimation (MLE) methods, but 

the one that we are going to apply in our practical analysis is the OLS. However, the 

maximum likelihood estimator of the VAR parameters asymptotically coincides with the 

OLS estimator.  

The Ordinary Least Square method is a common criterion to estimate models., and it 

consists in minimizing the sum of squares of the differences between the observed 

dependent variable in the given dataset and those predicted by the model and does not 

require any distribution assumption.  

Moreover, when the number of variables is considerable, and consequently the number 

of parameters to be estimated increases significantly, to say the least, we are in the 

presence of overfitting problems, consequently there is the possibility of resorting to 

penalty methods such as Lasso, which, for example, performs simultaneously the 

selection of variables (Shrinkage method) and the estimation of parameters. 
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Impulse response functions (IRF) 

 

There are several methods for interpreting the estimated model, and one of them is, for 

example, the impulse response function (IRF).  

It can be of relevance to know the response of one variable as a result of an impulse 

generated by another variable. 

Impulse response functions are a graphical representation of an impact of an exogenous 

shock on VAR variables. Therefore, an IRF is a function that analyzes the output of that 

system, caused by the input, called an impulse. In general, an impulse response refers to 

the reaction over time of a dynamic system to some external change. In the economic 

field, particularly in macroeconomic modeling, impulse response functions describe how 

the economy reacts over time to exogenous impulses, called “shocks”. 

Thus, these particular functions summarize the behavior of a variable over time in 

response to a unit shock occurred in all other variables of the system. This is made 

possible by the fact that often the shock in one variable directly affects the variable itself 

but is also transmitted to the other endogenous components of the model according to the 

"dynamic" mechanism of VAR. If one variable reacts to the change of another, the first 

cannot be called exogenous for the system (only if one variable is exogenous in the strict 

sense the responses of this to shock occurred in the other variables will be null). 

The assumption that shocks occur on one variable at a time, which is plausible only if the 

errors are uncorrelated, is one issue with the study of the impulse response functions. 

However, it is feasible to discover that they are strongly correlated (i.e., they share a 

component that cannot be assigned to a particular variable) in reality, which makes it so 

that a shock in one variable is accompanied by other shocks in the system.  

One solution to this issue is to assign any shared component's whole effect to the variable 

that appears first in the VAR system.  

When it comes to outside influences, they could also be connected to missing variables, 

whose impact is reflected in the errors that weren't caught. 

If the system contains v variables, then we should assume that a total of v* impulse 

responses will be generated. The shocks might also be either temporary or permanent. 

Therefore, there is a chance that we would experience a prolonged shock if the path 

indicated by the IRF is constantly growing or decreasing as & increases or the horizon 
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travels farther. However, most of the time, we frequently observe brief shocks or 

departures from the stable state trend values. 
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Univariate Analysis  
 

The study area, which this research is looking at, regards the timeframe going from 

January 2019 to December 2021, with daily observations.  

The data we are looking at regarding the Bitcoin cryptocurrency was found through the 

R package crypto2, while the ones concerning CO2 emissions of the power sector of 

Liaoning and Qinghai regions, are part of a project, called “Carbon Monitor”16, led by 

Tsinghua University, Laboratoire des Sciences du Climat & de l’Environnement, 

University of California (Irvine), and Chinese Academy of Sciences.  

 

Figure 3: Time series plots: BTC, Liaoning CO2 emissions and Qinghai CO2 emissions. 

 

For example, a first graphic analysis of the data set can give an idea of the stationary or 

non-stationary of the observed series. The time series reported in Figure 3 shows different 

characteristics. Starting from plot 3a, we can notice two mainly fact, first that there are 

some trends, secondly the presence of an upward trend. It is possible to say the same for 

3b graph. Therefore, it is clear a non-stationary nature of the data, which in the case of 

cryptocurrencies series is quite normal lately. Lastly, looking at Figure 3c and 3d it is 

possible to notice a sort of seasonality.   

«[…]Bitcoin accounts for 2/3 of the total energy consumption, and under-studied 

cryptocurrencies represent the remaining 1/3» (Gallersdorfer, U., Klaaßen, L., Stoll, C. 

 
16 Carbon Monitor is a frequently updated daily CO2 emission dataset, to monitor the variations 
of CO2 emissions from fossil fuel combustion and cement production since January 1st 2019 at 
national level with near-global coverage. 
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2020), so that we can take into account only the Bitcoin, given its representativeness for 

our analysis.  

Having introduced so, the following plot helps us to have a clearer representation of the 

time series we consider.  

 

 
Figure 4: R Autoplot of Bitcoin values ($) of the period  

1/01/2019 – 31/12/2021 

Source of data R package “crypto2” 

 

From this first graph we can notice the upward trend abovementioned with an obvious 

increase between the end of 2020 and the beginning of 2021.  

Starting from Figure 4, but then more in detail from Table 4, we can observe the way in 

which the cryptocurrency under analysis went from a value of $3.399, at the beginning 

of 2019, until reaching its maximum value of $67.567, at the end of 2021. 
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Statistical measures  Values ($) 

Min 3.399 

1st Quartile  8.206 

Median 10.580 

Mean 21.973 

3rd Quartile  38.202 

Max 67.567 

 

Table 4: R summary function which provides a couple of basic statistical measures on the 

Bitcoin time series 

 

This delta is due to the so-called tokenization that is the phenomenon though which 

cryptocurrencies are trying to offer to the economic system some added value in terms of 

decentralization of finance, payment systems, and digitization of real assets.  

The field of application is extremely wide (from the banking, financial, recreational, real 

estate, artistic, etc.) and this explains the growing interest of long-term investors. 

Subsequently, looking at the unit root tests (Table 5), since the p-value of the ADF test is 

greater than 0.05 we fail to reject the null hypothesis. This means that the time series is 

non-stationary, in other words, there is evidence of a time dependent structure. Indeed, 

considering also the p-value of the KPSS test, as a confirmation, is less than 0.05 meaning 

that the null hypothesis of stationarity is rejected.  

 

 

Table 5: R adf.test and kpss.test command of BTC 

 

Confirming the non-stationarity of the process, we funded the model which best fits the 

data, that is an glçfg(2,1,3) with drift, as we can see from Table 6 reported below. 

 

 

 
17 The p-value is smaller than the printed p-value. 

 Test statistic P-value 

ADF −2,1536 0,5133 

KPSS 4,457 0,01 × 1017 
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 Ar1 Ar2 Ma1 Ma2 Ma3 drift 

coefficients 0,8357 −0,9650   −0,8668   0,9791   −0,0023   11,2880 

s.e. 0,0252 0,0252 0,0308 0,0377 0,0199 12,4398 

 

Table 6: R Auto.arima function results of BTC 

 

Dealing with integrated series, which for definition is a non-stationary one, we have to 

transform it, by differentiating the series. The following results are obtained: 

 

 Model 
ACF test KPSS test 

Ljung-Box 

test 

P-value 

Bitcoin 
15B01(3,0,2) 

CDEℎ	GHIJ	KHLM 
0,01 0,1 1,11 × 10() 

 
Table 7: results of the model and the tests after having differentiated 

 

A lack of fit is shown by the results from table 7, however by looking at the plot, which 

is the p-values for the Ljung-Box, given by figure 5, uncorrelation for the first 8 lags are 

pictured. However, after that the behavior starts to present some dependence. 

Starting from the end of 2020, looking at the plot of the standardized residuals, periods 

of higher volatility keep arising, as reflected in the third plot of the p-values.  
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Figure 5: tsdiag function in R of Bitcoin 

 

Furthermore, a noticeable point in this evaluation is how satisfactory the model moves 

around the mean, despite the non-negligible volatility change in correspondence of the 

beginning of 2021, which can be solved using some alternative models, such as the 

GARCH process, representing an approach which estimate the volatility.  

Moving forward, for our univariate analysis, we have to consider the CO2 emissions of 

the two Chinese regions: Liaoning and Qinghai. 

As we have already mentioned before, we have for both the regions a seasonal pattern.  

The Augmented Dickey–Fuller (ADF) test for the presence of unit roots and the 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test to verify the null hypothesis of 

stationarity were then performed, the results are the one represented in Table 7. 
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Table 8: R adf.test and kpss.test command 

 

From the tables reported, it is observable that in relation to the results about Qinghai the 

time series is clearly non-stationary, actually, we fail to reject the null hypothesis using 

both tests. On the other side, looking at the first one (8a) the two tests are contrasting. 

As a result, the models obtained are respectively an glçfg(2,1,0)(0,1,0)CDE and an 

glçfg(0,1,1)(0,1,0)CDE. 

 

LIAONING Ar1 Ar2 

coefficients −0,1415 −0,1419 

s.e. 0,0366 0,0367 

 

QINGHAI Ma1 

coefficients −0,2151 

s.e. 0,0368 

 

Table 9: R auto.arima function results 

 

Concerning the Liaoning region, we can clearly see the seasonality of the time series 

from the autocorrelation function reported below.  
 

a. LIAONING Test statistic P-value 

ADF −3,6452 0,02833 

KPSS 0,15487 0,0426 

b. QINGHAI Test statistic P-value 

ADF −2,971 0,1673 

KPSS 0,41485 0,01 
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Figure 6: ACF of Liaoning CO2 emissions time series 

 

 

This plot represents the need to differentiate the two time series to make them 

stationary, due to the fact that the seasonal feature characterizing the time series has a 

strong pattern which we have to eliminate it.  

By doing so, the results seasonal pattern released are reported:  
 

Chinese 

region 
Model 

ACF test KPSS test Ljung-Box test 

P-value 

LIAONING 
15B01(1,0,0) 

CDEℎ	GHIJ	KHLM 
0,01 0,1 < 2,2 × 10(* 

QINGHAI 
15B01(2,0,1) 

CDEℎ	GHIJ	KHLM 
0,01 0,1 0,000591 

 

Table 10: results of the model and the tests after having differentiated 

 

Evaluating the Ljung-Box Test results we can safely reject the null hypothesis, 

demonstrating once again, the exhibitions of the model lack of fit.   

To support this strong implication figure 7, still glimpse a sort of seasonal pattern.  
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Figure 7: ACF Liaoning plot 

 

Indeed, as the ACF Liaoning plot demonstrate, we can see high values of the estimated 

autocorrelation coefficient function which fall outside the blue lines, which is a sign of 

either the dependence presence, or temporal autocorrelation, among the random variables.  

This is also partially18 confirmed by the results reported in Figure 8 regarding the Ljung-

Box test.  

 
18 Partially because until lag 6 the behavior of the P-values for Ljung-Box statistic plot works 
well, due to the reason that the residuals are uncorrelated.  
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Figure 8: tsdiag function in R of Liaoning CO2 emissions 

 

 
Figure 9: tsdiag function in R of Qinghai CO2 emission 
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By contrasting the abovementioned dependence theory, on the other hand, by using the 

tsdiag function of the Qinghai CO2 emissions (Figure 9) we found a nicer behavior of the 

residuals. 

Figure 8 and 9 are the conclusive plots of this chapter needed to give a first picture of the 

type of time series we are going to contemplate in the next part which is the multivariate 

analysis.  
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Multivariate Analysis – VAR model 
 

The simultaneous analysis, which is the key aspect of this final investigation, using the 

already mentioned Vector Autoregressive Model, is built among the CO2 emissions of 

the Chinese regions and the value of the principal cryptocurrencies (BTC, ETH, ADA, 

BNB, USDC, USDT, XRP).  

According to what was presented in the theoretical part, models are selected according to 

information criteria. The results obtained are reported below. 

 

AIC(n) HQ(n) SC(n) 

9 2 1 

 

Table 11: Liaoning CO2 emissions and cryptocurrencies 

R LagSelection function (Akaike Information Criterion, Hannan-Quinn Criterion, Schwarz 

Criterion) 

 

AIC(n) HQ(n) SC(n) 

20 2 1 

 

Table 12: Qinghai CO2 emissions and cryptocurrencies 

R LagSelection function (Akaike Information Criterion, Hannan-Quinn Criterion, Schwarz 

Criterion) 

 

In both cases (Table 11 and 12), in relation to the order choice, the Schwartz Information 

Criterion (SC or BIC) was used, as it is more parsimonious in the number of lags to be 

included in the model, thus in the estimation is possible to avoid burning too many 

degrees of freedom.  

In both cases, the model we are going to estimate is going to be a ôgl	(1). 
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 Liaoning.l1 BTC.l1 ETH.l1 ADA.l1 USDT.l1 USDC.l1 XRP.l1 BNB.l1 Const 

Liaoning 0,0025332 −0,0000002 0,0000044 −0,0051476 0,0631706 0,0024607 −0,0102973 0,0000366 0,0000452 

BTC −5121,0356367 0,1201765 −1,8010470 760,2986705 8377,8898634 −5375,8458271 −2763,9983392 −2,7489072 41,8550764 

ETH −367,5335089 0,0115570 −0,1146706 42,2351969 289,6798432 −129,7459855 −195,8713277 −0,5326797 3,4588384 

ADA −0,1259175 0,0000011 −0,0000338 −0,0055442 0,1393318 −0,1514288 −0,0952541 −0,0002265 0,0013887 

USDT 0,0123949 0,0000000 0,0000004 0,0004215 −0,3421565 −0,1143640 −0,0003122 −0,0000039 −0,0000284 

USDC 0,0079109 0,0000001 −0,0000001 0,0004403 −0,0042320 −0,3808432 −0,0014130 −0,0000037 −0,0000226 

XRP −0,1867350 0,0000028 −0,0000682 0,0111004 0,0984504 −0,0069390 −0,0424603 0,0000463 0,0005314 

BNB −38,8007291 0,0011270 −0,0024298 4,0967654 −4,6022762 −31,7536919 −28,51557741 −0,1564558 0,5087513 

 

Table 13: Liaoning coefficients matrix 

 

 

 Qinghai.l1 BTC.l1 ETH.l1 ADA.l1 USDT.l1 USDC.l1 XRP.l1 BNB.l1 Const 

Qinghai −0,0196805 −0,0000001 0,0000028 −0,0006896 0,0189723 0,0192789 −0,0034752 0,0000042 −0,0000123 

BTC −4367,4395704 0,1201995 −1,7592107 760,5463764 8887,3095428 −5804,9817684 −2757,3327980 −2,8175590 41,4694553 

ETH −718,0003206 0,0115181 −0,1118798 42,6914535 315,4173459 −166,6111190 −196,5594505 −0,5335363 3,4473961 

ADA −0,1590818 0,0000011 −0,0000328 −0,0054821 0,1504745 −0,1627557 −0,0952393 −0,0002277 0,0013812 

USDT 0,0020761 0,0000000 0,0000003 0,0004301 −0,3436168 −0,1134527 −0,0003528 −0,0000036 −0,0000271 

USDC −0,0018043 0,0000001 −0,0000001 0,0004492 −0,0052478 −0,3803085 −0,0014480 −0,0000035 −0,0000217 

XRP −0,3501764 0,0000028 −0,0000668 0,0113164 0,1119182 −0,0254501 −0,0427677 0,0000457 0,0005250 

BNB −68,2873924 0,0011237 −0,0021312 4,1367903 −1,6841710 −35,5329173 −28,5667582 −0,1566219 0,5072395 

 

Table 14: Qinghai coefficients matrix 

 

The matrices above represent the estimated coefficients of the model. Of particular 

importance is the structure of these matrices, due to the fact that gives information about 

the temporal dependence between the time series constituting the multivariate model.  

Indeed, the values of most coefficients, in both Table 13 and 14, are basically negligible 

given they are very close to zero. As demonstrated, there are some relevant (negative) 
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dependences, between the data of both regions, concerning the emissions and the firsts 

two major cryptocurrencies (BTC and ETH).  

The size of the coefficient for each independent variable gives the magnitude of the effect 

that the variable is having on the dependent variable, and the sign of the coefficient 

(positive or negative) gives the direction of the effect. This signifies that in this case the 

independent variable of Bitcoin, for example, is expected to decrease 5121 times when 

the dependent one, the Liaoning emissions, increases by one. Despite of what has been 

found, this is clearly contradictory to what we are trying to prove, since cryptocurrency 

transactions would even seem to “reduce” the carbon dioxide emissions of the Chinese 

region. 

To this purpose, the below correlation matrices can also be of greater interest for the 

analysis, because, in general, it allows us to see the degree of relationship existing 

between the different variables. 

 

 

 Liaoning BTC ETH ADA USDT USDC XRP BNB 

Liaoning 1,0000000 −0,037488 −0,0468924 −0,0288041 −0,0184467 0,0006532 −0,03308836 −0,0232434 

BTC −0,037488 1,0000000 0,725753 0,556854 −0,004423 −0,030207 −2757,3327980 −2,8175590 

ETH −0,0468924 0,725753 1,0000000 0,629978 −0,009041 −0,022916 0,597130 0,708966 

ADA −0,0288041 0,556854 0,629978 1,0000000 −0,001224 −0,011055 0,608725 0,574861 

USDT −0,0184467 −0,004423 −0,009041 −0,001224 1,0000000 0,632689 0,003365 −0,006896 

USDC 0,0006532 −0,030207 −0,022916 −0,011055 0,632689 1,0000000 −0,0112916 −0,0095548 

XRP −0,03308836 0,584524 0,597130 0,608725 0,003365 −0,0112916 1,0000000 0,584271 

BNB −0,0232434 0,620920 0,708966 0,574861 −0,006896 −0,0095548 0,584271 1,0000000 

 

Table 15: Liaoning correlation matrix 
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 Qinghai BTC ETH ADA USDT USDC XRP BNB 

Qinghai 1,0000000 −0,013471 −0,006391 −0,004041 −0,018317 −0,028126 −0,032770 −0,014323 

BTC −0,013471 1,0000000 0,723646 0,545296 −0,005611 −0,043030 0,581040 0,598694 

ETH −0,006391 0,723646 1,0000000 0,623723 −0,007947 −0,025754 0,577664 0,693861 

ADA −0,004041 0,545296 0,623723 1,0000000 0,003721 −0,013044 0,595543 0,579548 

USDT −0,018317 −0,005611 −0,007947 0,003721 1,0000000 0,589270 0,006145 −0,002654 

USDC −0,028126 −0,043030 −0,025754 −0,013044 0,589270 1,0000000 −0,019238 −0,007081 

XRP −0,032770 0,581040 0,577664 0,595543 0,006145 −0,019238 1,0000000 0,581337 

BNB −0,014323 0,598694 0,693861 0,579548 −0,002654 −0,007081 0,581337 1,0000000 

 

Table 16: Qinghai correlation matrix 

 

Additionally, observing the correlation matrices in Table 15 and 16, what emerges, is an 

absence of relationship (correlation coefficient very close to zero) between the emissions 

of the two regions and the individual cryptocurrencies. 

The only significant relationship regards only a few cryptocurrencies, which is not of 

particular relevance for our purposes. 

However, at this point, there is the need to clarify something concerning the market of 

cryptocurrencies.  

As any other financial instrument, the demand-offer intersection determines the value of 

Bitcoin. However, it's vital to remember that the Bitcoin offer is completely rigid given 

that the amount of Bitcoin that will be “mined” over time is predetermined in advance 

and is, therefore, known to all market participants19.  

The number is predetermined means that the number of Bitcoins tends to the 21 million 

limit, and it took little under 13 years to mine 90% of them, therefore it will probably take 

around 119 years to mine the remaining 10%. In reality, it is unknown how long it will 

take as the rate at which blocks are validated is not fixed and the halving that reduces the 

generation of new BTC occurs every 210.000 blocks added to the blockchain of Bitcoin.  

 
19 If there are more owners of Bitcoin who want to sell them than there are buyers, the price 
falls. Conversely, if there are more buyers, the price drops. 
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On average, it takes about 10 minutes to validate a block, but as hash rate increases this 

pace accelerates. For example, during this 2021 it often took less than 10 minutes to 

validate a block. 

Therefore, if the current rate is maintained, it will still take nearly 19 years to mine every 

one of the remaining 2.1 million BTC. 

Nevertheless, unlike a traditional currency where a centralized institution (central banks) 

can shift its supply to try to modify its value, it stands in complete contrast to the fact that 

the supply is rigid. However, because demand determines the value of Bitcoin, it is not 

viable to stabilize its value simply adjusting the supply. 

Due to the fact that this market has almost always been speculative, it is challenging to 

apply the fundamental rules determining the supply-demand intersection. 

At this point, trying to draw a connection between the value of cryptocurrencies and the 

carbon dioxide emissions they generate is all but pointless.  

The so-called hash rate of the aforementioned cryptocurrencies is a more important factor 

for the purposes of our research. 

Unfortunately, however, due to the lack of data regarding the hash rates, the analysis is 

going to continue by only taking into account Bitcoin's hash rate values in relation to the 

emissions in the two Chinese regions.  

Having said so, the multivariate analysis, through the use of the Vector Autoregressive 

model, is carried out by first considering the Bitcoin hash rates together with the CO2 

emissions of the Chinese region of Liaoning and then the hash rates of BTC in relation to 

the Qinghai region emissions. The reason of this choice lies in the fact that, as already 

mentioned in the introduction, the Liaoning region is home to one of the largest mining 

farms in the world; therefore, considering what is the purpose of this thesis, the following 

association would be of extreme significance. Instead, with regard to the second analysis 

we want to examine, the relationship between the Bitcoin and the carbon dioxide 

emissions of a region, that of Qinghai, which has a position that could be assumed 

relatively marginal with regard to the energy sector, as it is considered one of the most 

remote regions of China, with one of the least developed economies in the whole country.  

First of all, below in Figure 10 we have a representation of the two time series compared. 

In order to make the comparison visible, it was necessary to change the scale of the 

Bitcoin hash rate data (dividing by 100.000.000 the actual values) so that the data 

available to us on emissions were also visible.  
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Moreover, as can be noticed from the historical series of Bitcoin's hash rate, the drastic 

drop that is seen in correspondence to the summer months of 2021 refers to the ban 

imposed by China in June 2021, by which all cryptocurrency-related activities were 

prohibited.  Bans imposed by Chinese authorities concerned not only pollution reasons 

but mainly illicit and speculative activities, that would disrupt the normal order of the 

economy and the financial system. 

 
Figure 10: Time series BTC in relation with Liaoning CO2 emissions and Qinghai CO2 

emissions. 

 

Concerning the choice of the model, given three types of information criterion, the 

following results are shown: 

 

AIC(n) HQ(n) SC(n) 

7 7 4 

 

Table 17: Hash Rate BTC and Liaoning CO2 emissions 

R LagSelection function 

 

AIC(n) HQ(n) SC(n) 

7 4 4 

 

Table 18: Hash Rate BTC and Qinghai CO2 emissions 

R LagSelection function  
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Table 17, but also Table 18, suggests that the optimal lag length for our multivariate 

model is a Vector Autoregressive process of order 4. 

 

 

 Hash BTC CO2 Liaoning  

Hash BTC 1,0000 0,01333 

CO2 Liaoning 0,01333 1,0000 

 

 

 Hash BTC CO2 Qinghai 

Hash BTC 1,0000 0,01809 

CO2 Qinghai 0,01809 1,0000 

 
Table 19: Correlation matrices of residuals 

 

From table 19, the two regions under examination, do not present symptoms of correlation 

with the Hash Rate of Bticoin. 

Therefore, from our analysis, once again, the time series considered appear to be almost 

completely uncorrelated to each other.  

It is possible to conclude that even if we have accounted for different kind of data, more 

significant for the purpose, no evidence is found. 

 

 

Impulse response functions 
 

In our concluding analysis, regarding the previously discussed impulse response function, 

before the final results some preconditions are needed. 

Primarily, the extreme importance that resides in the order of the variables must be stated, 

given that the response of one variable to the impulse of another could change if the 

sequence is altered. On the other hand, the structure of the output plots represents of 

course the axis origin, but more importantly an equilibrium situation from which a shock 

will arise.   
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Arriving at the practical part of the IRF, firstly we obtained is the impact of the Bitcoin 

has rate on itself.  

 
Figure 11: Hash rate BTC’s impulse to Hash rate BTC 

 

As noted, the shock produces, immediately at first lags, a drastic decrease. The 

implication arising from an impulse in the rate values are given in the following two 

plots, considering the two Chinese regions.  

 

 
a. 
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b. 

 
Figure 12: a. Hash rate BTC’s impulse to Liaoning CO2 Emissions; b. Hash rate BTC’s impulse 

to Qinghai CO2 emissions 

 

As anticipated in previous chapters, the effect of an impulse on a variable is called 

transitory if the variable returns to its previous equilibrium value (zero) after a few 

periods. On the other hand, if it does not return to zero and settles on a different 

equilibrium value, the effect is then said to be permanent. As a result, from the graphs 

obtained we can state that, in relation to both Figure 12a and 12b, the shock led to effects 

that were definitely temporary, as a result of the shock the series returned to their steady 

state.  

It is evident from the graphs that a shock to Bitcoin's hash rate would appear to have a 

smaller effect on Qinghai's emissions than Liaoning's.   

Hence, in our case, an input on the Bitcoin hash rate is going to have an effect on the CO2 

emissions after about 6 lags in relation to the Chinese regions. This is because, in general, 

what is emitted/produced in terms of CO2 is nothing more than the consequence of the 

actions of previous periods, as they are effects not necessarily visible right away. 
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Conclusions  
 

From our analysis what we can conclude is that each model is a misrepresentation of the 

reality due to the fact that models are based on specific assumptions, which may also be 

questionable. Bitcoins are criticized under different aspects, in general, cryptocurrencies 

and their related pollution is nowadays a hot topic which deserves a deeply analysis. 

Indeed, the new generation expect quick answers about this argument. This is not possible 

yet when data are not fully available or misrepresented, leading to different or in some 

cases wrong conclusions.  

Even the model presented in this study, while robust in the methodology adopted, it 

carries limitations and pitfalls that arise precisely from the approximations related to 

uncertainty and data scarcity.  

From the results obtained what emerges is the substantial lack of relationship between 

cryptocurrencies and CO2 emissions.  

After all, the data previously mentioned with particular reference to China, pointed out 

that the incidence of the cryptocurrencies system in terms of CO2 emissions is relatively 

low compared to emissions from other production and consumption activities, thus 

destinated to be undetected on a large scale.  

Furthermore, to this day the greatest expenditure of energy in the cryptocurrencies 

framework has been recorded for mining activities, which by the very nature of these 

coins, will be exhausted in the near future when the quantitative limit imposed by the 

algorithm of their creation is reached; what will be predominant in the system will be 

transactions with coins already in circulation.  

The complaint about the emissions production of cryptocurrencies has in itself 

instrumental profiles that can do nothing against a phenomenon that shows no signs of 

ending. Indeed, it has been seen that restrictive policies put in place by some countries 

have pushed miners to relocate to so-called “super-polluters” countries with a contrary 

effect to the one aimed. The circumvention of bans in fact has not left untouched even 

China where miners have managed to take back their space with “underground” activities 

that are even more difficult for authorities to detect. 

The path undertaken by several countries leading towards greater regulation of the 

cryptocurrency system is not only related to tax and anti-money laundering aspects but 

also to the containment of the contribution to global pollution. 
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Putting together the way in which the blockchain world has moved very rapidly to 

renewable energy in the past few years and with the fact that today it is estimated that 

nearly 60% of the Bitcoin mining industry is based on clean energy, still seems not to be 

enough for cryptocurrencies detractors. 

Considering the historical time of energy crisis we are living, shifting cryptocurrencies to 

use renewable energy would result in a general opinion of unnecessarily waste of precious 

commodities which could be used to reduce the speculation of the abovementioned crisis.  

What cannot be denied in favor of the crypto activities is represented by the birth of 

efficient and inclusive financial and payments services. Therefore, the need for regulatory 

intervention that can prevent the risks associated with the use of Distributed Ledger 

Technologies (DLT) and protect investors, cannot be resolved by nipping in the bud 

potential beneficial effects in terms of innovation and democratization of finance. 

The ideological conflict between regulated market and decentralized system has no 

reason to be.  

Regulatory incursions in a world that was born precisely in open contrast to centralized 

finance may seem a contradiction under the literally point of view, and it is hard to see 

why investors who voluntarily took capitalist risk should be protected. 

The exploitation of blockchain technology represents a suggested technological solution, 

which allows the relationships between the players involved to be configured in an 

innovative way. In this sense, the governor of the Bank of Italy Visco I., in his final 

considerations about 2021, highlighted the initiatives taken by the central bank to 

encourage a dialogue with market participants in order to promote the development of 

technologies capable of bringing greater benefits to the whole community, «ensuring 

protection of personal data, security and ease of usage, encouraging innovation and 

supporting the digital transformation of the economy» (Visco I., 2022). 
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