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Introduction 

It is an ancient aim to transport the wealth from the past to the future. 

During the centuries a lot of systems was developed in the attempt of reach this 

goal.  

One of the most classic examples is the use of gold: it is well-know that gold was 

used both as a currency and as a safe haven1; this means that, theoretically, an 

ounce of gold today will be worth the same next year so, its price next year will be 

the same as today plus the (eventual) inflation. The invention of money could 

have solved the problem of the wealth’s transposition but, money is subject to 

inflation which reduces its value through the time. 

Nowadays, there are better methods to solve this problem than keep the money in 

form of cash or buy ounces of gold, some examples are the investment in art, 

commodities, buildings and of course securities. since the purpose of this thesis is 

to compare different measures of financial risk, securities will be the instrument 

that will be examined; this is because the amount of data available is certainly 

greater than that of other tools (such as art or real estate) and the data are more 

easily comparable with each other. The principal way in which a person can invest 

his/her money into the securities are through the various capital markets around 

the world.  

Thanks to the evolution of technology, people can purchase stocks and bonds 

directly from their computers of smartphones assuming very low transaction costs. 

Even if this simplification would seem to solve the issue it is not so: there are a lot 

of choices into the exchanges and the decision among the different kind of 

 
1 A safe haven is an investment that is expected to retain its value, or even increase in value, during times 

of market turbulence. 
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securities may be a hard task and, different people have different ideas about what 

it is better to do in order to save (and possibly increase) their own wealth. 

The modern quantitative finance is the subject that studies this kind of problems. It 

has its cornerstone in the Harry Markowitz’s Modern Portfolio Theory. 

Starting from some assumptions on the rational investor and on the efficient 

Market, Markowitz developed a theory that permit to choose the “best” stocks 

among a predetermined sample of them given a certain desired return. 

As “best” stocks we mean the combination of that which minimize the risk given a 

certain return. According to MPT, it is sufficient to solve a minimization problem 

which grants that the portfolio thus constructed is the most efficient in terms of 

risk-return. 

 

In the following paragraphs, we will synthetically see where Markowitz started his 

theory i.e. Consumption theory and the Utility function as a method to understand 

the different preferences of the investors. 

Then we will discuss some of its issues and their possible solutions: they are, 

basically, divided into two main categories: 

1. MPT is based on rather simplistic assumptions such as the efficient market 

hypothesis, the rational investor behaviours, the possibility of short sell and the 

existence of frictionless markets. 

In his first formulation, Markowitz imposed only two constrains in the 

minimization problem: “budget constrain” and “returns constraints”2. This is, 

obviously, not enough to take into consideration any limitations an investor 

might encounter. Solutions of this problem have been proposed in the literature, 

for example, by adding a larger number of constrains it is possible to relax the 

majority of the assumptions. This, clearly, implies a greater mathematical 

 
2 Budget constrain and Return Constrain are mathematical tools to express respectively the possible 

combinations of purchasable stocks and the minimum desired return. 
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effort. Indeed, a minimization problem with a large number of constraints 

cannot be easily solved with “basic” mathematic tools, moreover, it is not 

granted that an exact solution exists. Instrument such as the meta-heuristics for 

optimization have been implemented in the attempt of solving this kind of 

issues3. 

2. The risk measure: Markowitz used variance as proxy of risk. Unfortunately, 

variance cannot be a proper risk measure for a series of reason. 

Indeed, Variance considers the downside risk as well as the upside potential, 

this means that it considers risk what it is not. Moreover, it is a dispersion 

measure based on the Normal distribution but, nowadays, it is well-Know that 

the returns distributions are, generally, asymmetric and they often present a 

kurtosis larger than three. Finally, it cannot be considered coherent with respect 

to what happen in the real markets. As we will see in the next chapters, this is 

demonstrated by the fact that, variance doesn’t respect all the four axioms of 

coherence (translational invariance, positive homogeneity, monotonicity and 

subadditivity) which are fundamental to grant that a risk measure makes sense 

in the real world. 

In the end, the aim of this paper will be to demonstrate that starting from the same 

possible combinations of stocks and through the use of “better” risk measures it is 

possible to build a better portfolio both in term of returns and in term of risk. In order to 

reach our goal, we will propose four risk measure that will substitute the Variance in the 

minimization problem and other four risk measure to, correctly, evaluate their results.  

 
3 A meta-heuristic is an algorithm that, given a specific optimization problem, try to find the “Best 

solution” inside the more “promising zone”.  
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CHAPTER 1 

MODERN PORTFOLIO THEORY AND 

UTILITY FUNCTION 
 

 

1.1 Utility Function  

How can we measure the satisfaction into pleasure of gain a positive return or the 

dissatisfaction of bear a risk? 

A possible way is through a utility function: in the consumer theory a utility function is 

a mathematical tool which connects two factors, the satisfaction and the monetary value. 

It, somehow, connect the “goodness” of increasing satisfaction with the “badness” of 

increasing cost. 

As in the consumption theory happened with the consumer, also in the portfolio theory 

the rational investor tries to maximize his/her utility function. But, differently from the 

consumption theory, in the portfolio theory the factors that modify the utility function 

are represented by the future returns (satisfaction) and the risks (“cost”). 

The shape of the utility function depends on the type of investor, specifically there are 

three types of investors: 

1. Risk-neutral investors: They are indifferent with respect to the risk (their 

utility is based only on the returns so is linear). 
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2. Risk-lover investors: They appreciate the risk (their utility function is 

convex). 

3. Risk-averse investors: they prefer to avoid the risk; in order to be 

meaningful for a risk-averse investor, the utility function must be concave. 

The reason behind its form is the following: the value of the function shall increase 

when the returns increase but, at the same time, it must be offset by the increasing risk. 

What is the most common kind of investor? 

Without loss of generality, we can assume that ordinary people tend to be “rational 

investors”. 

Financial theory states that an investor is rational when: 

• The investor respects the so-called non-satiation principle: he or she prefers “to 

gain more than less”. 

• He or she is risk-averse: Ceteris paribus, the investor prefers to bear less 

risk. 

By taking this assumption on the utility function we can go ahead and see the core of 

the MPT. 

 

 

1.2 Modern Portfolio Theory 

He developed the first method to measure the risk of a portfolio via the multivariate 

distribution of returns of all asset- Szego G., Measure of Risk, European Journal of 

Operational Research, 2005 

Modern portfolio theory was developed by Harry Markowitz in the 1952, he created 

what today is considered the cornerstone of the portfolio theories. Clearly, the world is 

really complex and the choices that a subject is requested to made are many.  

So, in the attempt to create a simplified but significative theory, Markowitz had to make 

many assumptions: 
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• The consumer has saved part of his wealth and wants to transpose it into the 

future; in the attempt to reach his goal, he decides to invest his wealth in n≥2 

stocks. 

• The investor is rational, for the reason we saw earlier this means that his/her 

utility function is increasing and concave. 

• The investment decision is done in a single period horizon, there is an 

evaluation in the time T in order to take a decision about the portfolio 

composition at the same time T. The portfolio is meant to transpose the 

wealth from time T to time T+1. 

• The market is frictionless, this means that there is no cost of transaction nor 

cost to obtain information about the stocks. 

• All the investment are infinitely divisible. 

• The investor is price-taker, this means that he/she cannot affect the prices of 

the stocks. 

Starting from these assumptions he decided to use the most important and well-Known 

statistical measures of the Gaussian distribution as a proxy of Risk and Reward: 

Expected value and Variance. 

 

1.2.1 Expected value 

It is intuitive to understand the choice about expected value ,or better, of its estimator: it 

is nothing but the weighted sum of the past returns4. This means, simply, the higher the 

expected returns the better for the investor. 

In order to compute the expected returns of the portfolio, it is necessary to first compute 

the expected return for each stock: 

𝐸(𝑅𝑖) =
1

𝑡
∑ 𝑥𝑖

𝑡

𝑖=1

 

 
4 Since it’s not possible to know what will happen in the future the past is used as a proxy. 
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where: 

• Ri represents the return of the stock I, it’s a random variable. 

• t is the number observation during the selected period of time. 

• Xt is the value of the return at the time t. 

In order to compute the expected return of the whole portfolio we shall do a weighted 

average of all the expected returns. 

𝐸(𝑅𝑝) =
1

𝑛
∑ 𝑤𝑖𝑟𝑖

𝑛

𝑖=1

 

 

where: 

• Rp is the return of the portfolio, it’s a random variable. 

• N represent the number of stocks in the portfolio. 

• wi  is the weight5 of the i-th stock inside the portfolio. 

• ri is the expected return of the stock i. 

 

1.2.2 Variance 

Less intuitive can be understand the Markowitz’s decision about the Variance6. He 

chose it as a proxy of Risk. Indeed, Variance can, somehow, represent a risk measure 

because the higher its value, the more average quadratic distance from the realisations to 

their mean. 

To be more precise, Markowitz decided to use the Variance as a proxy of risk. 

Moreover, he considered also the Covariance that each stock has had with the others in 

the same length of time. 

To clarify this point, we have to see which are the formulas behind his reasoning: 

 
5 As weight of a stock inside the portfolio we consider the percentage of starting capital invested in the 

specific.Clearly the weight of a stock inside a portfolio is a number which is comprised between 0 and 1.  
6 The Variance of a random variable is calculated as the weighted sum of squared distance between the 

realisations of the variable and its mean. 
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1. compute the Variance of a single stock during the chosen time period 

𝑉𝑎𝑟(𝑅𝑖) =
1

𝑡
∑(𝑟𝑖 − µ)2

𝑡

𝑖=1

 

Where: 

• t is the number of observations during the selected period of time. 

• Var(Ri) is the Variance of the stock i. 

• Ri  is the return of the i-th stock at time t. 

• µ is the Expected return of the i-th stock. 

2. Compute the Variance of the whole portfolio 

The Variance of the portfolio is the weighted sum of all the single variances times 

their squared weight plus two times the Covariances between each pair of stocks time 

their weights.7 

𝑉𝑎𝑟(𝑅𝑝) = ∑ 𝑤𝑖2 ∗ 𝑉𝑎𝑟(𝑅𝑖) + 2 ∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑗)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

𝑛

𝑖=1

 

    Where: 

• Var(Rp) is the variance of the portfolio. 

• wi and wj are the weight of the i-th and j-th stock inside the portfolio. 

• Cov(Ri,Rj) is the covariance between the i-th and j-th return. 

It is worth to know that the use of the Variance as a proxy of risk for the time in which 

Markowitz wrote his theory was a disruptive innovation. 

Variance isn’t the best risk measure, but it allows to implement the concept of 

diversification8: indeed, using the variance’s formulas it’s clear that if we increase the 

number of the stocks inside a portfolio its risk generally decrease. 

 
7 This is a basic property of the sum of variances: for example, the Sum of the variance of two random 

variable 

 
8 The proverb: “don’t put all your eggs in one basket” is older than Markowitz as well. 
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Moreover, another great innovation in the portfolio theories introduced by Modern 

portfolio theory was the use of covariances: The investors should no longer evaluate if 

purchase or not a stock only basing their assumption on the single stock’s features, but 

they should consider the relation that a stock has with the others. 

 

1.3 Mean-variance Criteria and Modern Portfolio Theory 

As we have seen so far, the two criteria that Harry Markowitz decided to use as proxy of 

reward and risk were expected return and variance. 

How can this be useful for an investor? 

A general starting point is the so-called mean-variance criteria. Following the Modern 

portfolio theory, we know that a positive (and possibly high) expected return represents 

a point in favour for our investment choice, while it’s the opposite for the Variance. 

We can formalize this discussion in the following way: Given two different stocks or 

portfolio (X and Y) we want to know if one of the two is better than the other under the 

Mean-Variance Criteria. 

We can state that, for example, X dominates Y in the M-V criteria if X has a higher 

expected value than Y and a variance equal or lower than Y or if X has a variance lower 

than Y and an expected value equal or higher than y. 

Mathematically we can express this idea in the following way: 

            

   At least one of the two its true in the narrow sense. 

Clearly, when we want to construct a portfolio, starting from a bunch of stocks, it there 

is a huge number of possible expected return-variance combinations, each one 

represented by different participation percentage in each stock or , in other words, 

different portfolio’s combinations. This arose an ulterior issue: Given that we want to 
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obtain a certain return, it is likely that more than one portfolio’s combination can satisfy 

our request, so which one have we to choose?   Markowitz solved this problem 

introducing the so-called efficient frontier. Given a certain desired expected return, on 

the efficient frontier can lay only the portfolio with the lower Variance. 

Starting from the multivariate distribution of returns of all assets, the efficient frontier 

represents all the best solutions (in terms of mean-Variance) that can exist. 

Portfolios that lay under the efficient frontier are called “inferior portfolio” and they are 

inefficient in terms of mean-Variance. 

 

Figure 1 Efficient frontier graph 

In order to compute the efficient frontier, the Markowitz’s theory purpose to solve a 

constrained minimization problem. Hence, it is sufficient to minimize the Variance 

given all the possible expected returns. 

  

where: 

• The objective function is nothing but the minimization of the portfolio 

variance  𝜎𝑝 = 𝑋′𝑉𝑋    
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Intended as the matrix multiplication of the vectors of weight times the 

Variance-Covariance matrix. If the variance-covariance matrix 𝑉 is positive 

definite and non-singular – hence invertible – and if there is at least one pair of 

different mean returns, then the optimization problem admits a unique solution. 

• The system represents the 2 constrains: the returns constrain µ𝑝 = 𝑋′𝑟      

that indicates that the multiplication between the weights and the expected 

value of the returns9must be equal to a certain value; the second constrain, 

instead, is the so-called budget constrain. It imposes that the sum of all the 

stocks weight will be equal to one. In other terms, this means that all the 

starting capital is invested in the portfolio. 

 

1.4 Problems of the Modern Portfolio Theory 

 

It is incontrovertible that Markowitz’s Modern Portfolio theory gave a great 

contribution to the world of portfolio construction and to the financial world in general. 

The concept of risk diversification is probably the more significative example of this 

contribution: through the use of variance as a proxy of risk, he mathematically showed 

that a diversified portfolio is less risky than a non-diversified one contributing to share 

the idea (well accepted nowadays) that is dangerous to keep all our saving in” few and 

concentred” activities10. Notwithstanding such a great innovation, the MPT carries on 

too much assumption and simplifications which strongly affect its usefulness. 

 
9 The expected value of the returns, computed as the mean of the past return, is used as a proxy of the 

future returns. 
10 Diversification is not only a matter of numbers, diversified activities means that our investment should 

be divided into different industries. It is not sufficient to invest in different stocks but they shall be 

representative of different economic sectors otherwise the correlation among their would eliminate the 

effect of diversification. 
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Even if some of these assumptions are plausible (such as the price-taker assumption and 

the risk-averse assumption11) other are, simply, unrealistic. First, the assumption on the 

investor’s rationality: Rational investors are something really closed to the so-called 

“homo economicus”12, they just try to maximize their expected utility functions given 

that they, exactly, know what happen in the past perfectly and they rationally take every 

decision. This is, clearly, a strong simplification of the reality; furthermore, it has been 

well demonstrated by the Nobel prices Kahneman e Tversky13 that the individual 

behaviors are profoundly biased. 

Although this argument goes behind the scope of this paper, we want, for the sake of 

completeness, illustrate what we consider two of the principal behaviors that represent 

the investor’s not full rationality. 

• Framing effect: how the decision problem is proposed influences the 

decision process itself. This means that different investors can choose 

different solutions in front of the same problem even if only one solution 

can be “rational” in terms of utility theory. 

• Loss aversion: The satisfaction (or, as it is measured in Markowitz’s theory, 

the utility) is generally affected more by the loss than by the gain. This 

statement seems to be coherent with the Modern Portfolio Theory, but 

prospect theory14 showed that people could change their risk-aversion when 

shifting from the domain of gains to the domain of losses. This means that 

 
11 See the previous section. 
12 A theoretical human being who rationally calculates the costs and benefits of every action before 

making a decision, used as the basis for a number of economic theories and models- Collins dictionary 
13 Kahneman e Tversky were two important behavioural finance scholars; with their “prospect theory” 

they demonstrated that the “rational investor” doesn’t exist and that the use of use of utility theories to 

solve problem about uncertain situations may lead to bad solutions. 
14 Prospect theory is a theory proposed by two psychologists  (Daniel Kahneman and Amos Tversky) in 

1979. This theory tries to explain how individuals take decision in uncertainty conditions. 
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treating every investor with the same concave-risk-averse utility function 

may lead to suboptimal portfolio15. 

 

Secondly, the assumption on the market and on the transactions: Here there is not so 

much to discuss about, a frictionless market implies that each transaction can be done 

without pay the cost of the transaction itself. Furthermore, MPT assumes that it is 

possible to buy/sell each stock in the proportion we prefer but in the real-world stocks 

are not infinitely divisible and it is not uncommon that they are sold in minimum lots. 

The theory assumes also that short selling16 is always possible, but it may happen that 

the market’s authorities ban this possibility for a certain period17, moreover, this 

practice could be allowed only to some kind of investors. 

   And lastly, the decision on the risk measure. 

We want to introduce the problem of the variance as a proxy of risk starting from the 

“easiest” one: the variance as it is constructed is not a risk measure, but it is, a statistical 

measure of dispersion. It, indeed, represent the quadratic distance between the 

realisations and their mean; this means that it considers not only the realisation below 

the but also the realisation above the mean. Financially this is a contradiction since a 

rational investor should be happy when the realisations are above the mean. 

It is clear that a distinction between positive and negative deviation should be 

considered. To be honest, the first person who noticed this contradiction was Markowitz 

himself and he suggested to solve this problem through the use of the Semi-Var. The 

 
15 Here suboptimal portfolio isn’t intended as a portfolio that does not satisfy the requirement of 

minimum variance given a certain value of the expected return. It is intended as non-optimal portfolio for 

a certain investor. 
16 Short selling is a common practice in the stock market: it consists in the sale of a stock that we do not 

own in the moment of the transaction. 
17 As it happened during the first period of the Covid-19 pandemic: market’s authorities ban the practice 

of short sell in order to avoid further deterioration of the stock market. 
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Semi-Var is a statistical measure of dispersion which is constructed as the variance but 

considers only the realisation below the mean, the so-called downside risk18: 

  

Unfortunately, as we will see, the semi-variance too isn’t a coherent risk measure. 

 

Another important risk measure was introduced by the investment Bank J.P. Morgan. It 

is the so-called Value at Risk (VaR).  

Definition. Given a confidence level of α [0;1] and fixed a specific holding period, 

Value at risk indicates the maximum potential loss associated to a portfolio in α%  

cases during the holding period. 

It had a large diffusion in the academic and financial fields since it is a simple and 

understandable tool: The VaR of a certain portfolio is nothing but a “threshold” : the 

probability that the returns will be lower or equal to the VaR are equal to (1-α). 

Moreover, it is represented in the same unit of the investment (euro, dollar, yen, etc.) 

which makes it even easier to interpret. 

 

Figure 2 Probability density function of a normal distribution 

In mathematical therms, this mean that P(R>VaR)=1- α19. Unfortunately, as in the case 

of Variance, the VaR of a portfolio is a meaningful measure if and only if the 

 
18 The downside risk is the risk of realisations below the mean, its opposite the upside potential 

represents, instead, the realization above the mean. 
19 Practically, the VaR is the α-quantile of the returns distribution. 
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underlying probability distribution is Normal: if the distribution is not Gaussian this risk 

measure can possibly underestimate the potential losses. The VaR is just a threshold and 

without correct assumptions on the tail’s behaviours it is meaningless. It is not capable 

to distinguish among two different investments that have the same α-percentile but 

different property in the left tails of their distributions. In plan words, the VaR cannot 

measure “how bad is bad”. 

 

Differently from the Variance, the VaR doesn’t represent the diversification-effect 

correctly. This means that, following the VaR summation rules, it may happen that the 

risk of two aggregated portfolios could be higher than the sum of the two taken alone. 

 

Through the use of variance as a risk measure (or more specifically the Var-covariance 

matrix of the N-stocks), Harry Markowitz assumed that the returns were normally 

distributed, hence their behaviour could be well explained by the first and the second 

moment of the distribution Itself. Such an assumption implies that the returns are 

symmetrically distributed around their mean and that the probability of the realisation 

rapidly decrease when we move away to the mean itself. 

Mathematically a distribution is symmetric when         20 

In order to see if (and how much) a distribution is or is not symmetric we can calculate 

the empirical skewness: 

 

Skewness is the third moment of the distribution, if it is equal to zero the distribution is  

symmetrical with respect to its mean, while if it is greater or lower than zero the 

distribution is, respectively, skew to the right or skew to the left. 

 
20 Where F represent the cumulative density function. 
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It has been shown by Peirò (1999) that the returns of the stocks tend to have a skewness 

greater than zero, hence they are skewed to the right. This means that, generally, most 

of the returns are greater than their mean. This result not only invalidates the use of 

variance as a proxy of risk but it does affect Markowitz’s model because investors could 

prefer less diversified portfolio (inefficient in mean-Variance terms) rather than 

optimal-well-diversified portfolio only because the latter could give them higher 

probability of positive returns. These results suggest that we should consider higher odd 

moments than the first (mean) in order to “capture” the empirical skewness of the 

distribution as well.  

 

For what concern the tails of the distribution21., we mean that large deviations from the 

mean are almost impossible under the Gaussian assumption22. As in the case of 

asymmetry also here there is a statistical measure to compute “how fat are the tails” 

This measure is the so-called empirical Kurtosis 

 

A higher value of the kurtosis indicates a higher probability of “extreme events”. In the 

case of normal distribution this statistical indicator must be exactly equal to 3. The 

empirical analysis on the stocks return showed how much the normality assumption was 

always unsatisfied. The probability of extreme event (either “good” or “bad”) in the 

market is much higher than under the Gaussian assumption. A lot of interesting material 

about this topic has been written by the trader and statistician Nicola Nassim Taleb23; 

Even if it is not possible to summarize all his contributions to the financial world in just 

a few sentences, anyway we can say that tails events happen more frequently than 

 
21 The tails represent, in the probability density function, the events far away from the mean. Fat tails are 

an indicator that the realisation distant from the mean are likely while for the thin tail is true the 

viceversa. 
22 In statistical terms we can say that realizations above 4 sigmas are practically impossible. 
23 In his books he speaks about the decisions under uncertainty, probably the most famous one is “Black 

Swan”. 
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expected, under Normality assumptions, and when they do occur their impact can affect 

us in an unexpected serious way. 

In the end, Markowitz in his modern portfolio theory through the use of the variance 

covariance matrix as a proxy of risk implied that the returns were elliptically 

distributed24. Hence, he supposed that they can be statistically treated with a normal (or 

a Student t) distribution, but nowadays we know that this assumption can no longer be 

considered true. The returns in the stock market behave, generally, as a leptokurtic 

normal skewed to the right, showing more results above their mean and tails which are 

larger than the gaussian’s one. 

Concluding, since we are aware of, general, market behaviours we ca no longer consider 

Variance as a proxy of risk. We should, instead, search risk measures which take into 

account the asymmetry and the Kurtosis of the return’s distributions. 

 

1.5 Risk measures and coherence  

There exist two methods to “improve” the Modern Portfolio theory: one concerns the 

relaxation of the assumption underlying the model. This can be possible through the use 

of a larger number of constrains. 

As we have seen in the previous chapter, the original Markowitz’s theory considered 

only two constrains for the minimization problem; However, it is possible, to increase 

the number of constrains in order to reduce the number of assumptions 

Since it is not the objective of this paper, we will show just an ideal bunch of constrains 

that can be used to reach this goal.25 

 
24 An Elittical distribution is any distribution of the broad family of probability distributions that 

generalize the multivariate normal distribution. The most famous ones are the gaussian, student-t, laplace, 

Cauchy.. They share some useful characteristics for example, the sum of elliptical distribution is elliptical 

itself. All the elliptical distributions have a finite variance. 
25 This formula has been taken by “I vincoli a variabili miste intere” Corazza (2002) 
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In this formulation we can see a constrain on: 

• Minimum lots that can be purchased: P and L are two matrixes that contain 

respectively the price and the minimum number of shares that can be bought. 

• Maximum cost of transactions and tax’s cost: f1 and f2 are two functions that 

indicates that costs. They are expressed as a percentage (alpha and beta) of 

the total capital: the investor is not disposed to spend more than α*C for the 

transaction cost and β*C for the Capital gain’s taxes. 

• Short sell: the second-last constrain indicates that the weight of each stock 

must be at minimum equal to zero, hence there isn’t the possibility to short-

sell. 

Although by adding constrains the model become more and more realistic, this doesn’t 

happen with any cost. For example, introducing this “mixed integer constrains” 

increases the mathematical complexity of the problem. 

 

The other methods to “improve” Markowitz’s modern Portfolio Theory, instead, acts on 

the risk measure. As we have seen so far, the minimization problem that use the 

Variance (or the semi-var) as risk’s proxy is no longer acceptable. Thus, we want to use 

and compare different types of risk measures. In order to reach our goal, we have, 

firstly, to understand what a risk measure is, and which are its desirable features. 
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It is a hard task to summarize all the features that a risk measure shall consider in just 

“one formula” in order to translate it into a comparable number26. First of all, we need 

to give a definition of risk: Even if in the common languages we use the word risk and 

uncertainty as they were synonymous, there is a substantial difference between the two. 

Indeed, taking the financial field as example, with the word uncertainty we mean that 

given a certain prediction about the future return we are uncertain about its realisation 

either if it will be better or worse than what we predicted. Instead, with the word risk, 

taking as example the financial field again, we intend that given a certain prediction 

about future return we risk that the result will be worse than predicted. 

Thus, as a first sight, it seems that risk can be described as a combination of exposure 

and uncertainty, or in plan words, we risk only when we can bear a loss. 

Although risk is for sure a combination of exposure and uncertainty, the concept is 

broader because it is also a relative (to a given bench-mark), personal, asymmetric and 

multidimensional concept27.  

So, an ideal risk measure shall also take into account the correlation and the 

diversification among the sources of risk, the downside risk, the risk’s propension of the 

investor and the computation complexity, all this risk’s features (and probably the list is 

not complete) are necessary in order to create a meaningful risk measure. 

 

In the paper “desirable proprieties of an ideal risk measure in portfolio theory” the work 

of Artzer et Al28. of developing the theories on the risk measures is continued. 

The paper affirmed that a risk measure is a function 𝜌 that assigns a non-negative 

numeric value to a random variable 𝑋. It described also which are the features that the 

risk measures shall share in order to be meaningful: 

 
26 DESIRABLE PROPERTIES OF AN IDEAL RISK MEASURE IN PORTFOLIO THEORY-SVETLOZAR RACHEV, 
SERGIO ORTOBELLI, STOYAN STOYANOV, FRANK J. FABOZZI and ALMIRA BIGLOVA;International Journal 
of Theoretical and Applied Finance. 
27 Asymmetric since loss and gain are perceived in a different way. Multidimensional because the 
investor can have multiple objectives. 
28 Coherent risk Measures; Philippe Artzner,Freddy Delbaen,Jean-Marc Eber,David Heath 
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1. Positivity: A risk measure must be positive or at least non-negative, since it is 

obvious that a “position” can only be risky 𝜌(X)>0 or not 𝜌(X)=029 

2. Convexity: It is the property that explain the meaning of the diversification. As 

we have seen with the variance the risk of two combined portfolio must be 

lower or at least equal than the weighted sum of the two. Given a random 

variable X. 

𝜌(αX+(1-α)X)≤ α𝜌(X)+ (1-α) 𝜌(X)   

Actually, convexity is itself composed by two sub-characteristics: 

• Subadditivity: Given two random variables X1 and X2 

𝜌(X1+X2)≤ 𝜌(X1)+ 𝜌(X2) 

risk measures shall indicate that the risk of two activities together must be                        

less than the sum of the two activities alone30. 

• Positive Homogeneity: given a random Variable X and an ∂≥0   

 𝜌(∂X) = ∂𝜌(X) 

This means than no-matter the size of the investment, the risk shall be                                         

measured as the risk time its size. 

3. Translation invariance: A measure of risk should consider that investing a part 

(beta) of the available capital into the reference instrument31 reduces the overall 

risk exactly by the amount beta. 

𝜌(X+β) = 𝜌(X)- β    

Where X is a random variable and beta is the part of capital invested in the 

reference instrument. 

Moreover, this means that adding a risk-free quantity equal to 𝜌(𝑋) to the risky 

position, we obtain a risk-free entity. 

 
29 𝜌(X)=0 means that X is non-stochastic, hence X is known a priori. 
30 It is the demonstration of the phrase “merges don’t create extra risk”. 
31 As reference instrument we intend the risk-free instruments such as cash or goverment’s bond ecc..) 
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4. Monotonicity: A risk measure shall underline the preferability of an asset that 

systematically overperform another. 

𝜌(X) ≤𝜌 (Y) for all    r.v. X,Y with X≥Y 

 

In his paper, Ortobelli explained also the differences among the so-called uncertainty 

measure and the proper risk measure (that will be called coherent risk measure for the 

reason we will see later). The uncertainty measures only partially respect the 

characteristics of the ideal risk measures that we have just seen, indeed they respect 

positive homogeneity, Translation invariance and Positivity. 

 A particular class of the uncertainty measure is the dispersion measure class. in 

addition to respect the proprieties listed above, the dispersion measures respect also the 

subadditivity propriety. In this class we can find statistical measures that we are used to 

see as a correct proxy of risk such measures are, for example, the standard deviation, the 

MAD32 and the semi-standard deviation. They are called dispersion measures because 

they share one characteristic: they depend on the center of the random variable, in other 

word, even if in different way, they all measure the distance (dispersion) between the 

realizations and the mean of the random variable itself. 

 

Unfortunately, the use of the measure of dispersion as a proxy of risk may lead to the 

wrong conclusions because they don’t respect all the coherence axioms. Indeed, the 

monotonicity one is not satisfied under this class of measures33 . 

Following the path traced by Artzer et al(1999), we can state that it cannot exist a 

unique risk measure capable of solve all the uncertainty problem, but, instead it is 

possible to define a bunch of roles that a right measure of risk (for a risk-averse 

individual) should have. These characteristics are summarized in what we called the 

 
32 Median absolute deviation.    𝑀𝐴𝐷 =

1

𝑛
∑ |𝑋𝑖 − 𝑋𝑛̅̅ ̅̅ |𝑛

𝑖=   
33 For the mathematical explanation see Appendix 
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axioms of coherence. If and only if a risk measure respect all this axiom can be a 

coherent risk measure.  

 

 



 
 
 

 
 
 

 

CHAPTER 2 

COHERENT RISK MEASURE 
 

2.1 Tail conditional expectation  

The firsts coherent risk measures were proposed by Artzer et al in their paper on this 

subject. They were the Tail Conditional Expectation (TCE) and the Worst-Conditional 

Expectation (WCE). 

It is worth to note that these two measures (together with all the other coherent risk 

ones) focus their attention on the “extreme-left” side of the return distribution, in this 

way they try to keep under control what can, truly, damage the investor: extreme 

negative events. 

In this sense, we can note a fundamental difference towards the VaR: Coherent risk 

measures are not a “threshold”, they are, rather, a sort of indicator in the case the “worst 

situation” happens. Thus, they give an indication about the nature of loss in the case the 

VaR’s limit is overcome. 

The TCEα
34

 is expressed as:   

𝑇𝐶𝐸𝛼(𝑋) = 𝐸[𝑋| ≤ 𝑉𝑎𝑅𝛼(𝑋)]  35 

this means that the Tail conditional expectation is the expected value of the random 

variable X given that it is lower than then Value at risk of X 

While the WCEα : 

𝑊𝐶𝐸𝛼(𝑋) = 𝑖𝑛𝑓{𝐸[𝑋|𝐴]|𝑃[𝐴] ≤ 𝛼} 

 
34 Both TCE and WCE are function of alpha: as in the case of the VaR alpha represents a small 

probability (usually 0.05 or 0.01); in a certain sense this means that we are considering what may happen 

in the alpha-percentage of the worst scenarios. 
35 All the formulas that will follow can be find in literatures in different forms, their forms depend on the 

underlying distributions: they can be either returns or losses distributions. In order to be coherent, we 

chose to use only the return distribution. 
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 meaning that the Worst-Conditional expectation of the random variable X is the 

infimum of the expected value of X given A and knowing that the probability that A 

happens is lower than alpha. 

Although both represent a sort of mean of the distribution’s left side and look similar, 

these two formulas behave differently: the TCE is easier to implement for practical 

purpose, but it may not respect the subadditivity axiom when it is applied to non-

continues (discrete)36 probability distribution; in this sense the WCE is more robust 

because it doesn’t need a continuous distribution function to be coherent. Unfortunately, 

in order to implement the WCE it is fundamental to know the underlying probability 

distribution and, as we know, it is not always feasible. 

 In the attempt to obtain a simple but coherent risk measure Acerbi and Tasche (2002) 

developed the so-called Expected shortfall (ES). The ES share, with the TCE, the 

characteristic of simplicity: they both are the mean of the alpha-percentage realisation. 

This common feature is remarked by the fact that in the continuous case they are 

represented by the same formula: 

 𝐸𝑆𝛼(𝑋) = 𝑇𝐶𝐸𝛼(𝑋) 

 this is true if and only if the underlying distribution function is continuous. 

If the underlying probability is known, it is possible to implement this tool through 

formulas. These formulas exist for the majority of the continuous probability density 

functions such as Student-t, Laplace, exponential and, of course, the Gaussian one. 

Since this is not the aim of this paper, we will present only the Gaussian formula and its 

representation in order to better understand this risk measure. The expected shortfall of 

a gaussian random variable is: 

  

 
36 A discrete probability distribution is a probability distribution that doesn’t have a finite value in all its 

points; in the financial field an example can be the return distribution of some kind of exotic options. 
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where µ and σ represent respectively the mean and the standard deviation while ϕ and φ 

represent the probability density function and the cumulative density function (small 

and capital letter respectively). Hence, knowing the two main parameters of the Normal 

distribution it is possible to compute “the risk in the left tail” or, in other word, the mean 

of the realisation if the VaR is overcome. 

 

Figure 3 Probability density function of a Gaussian distribution 

 

Nevertheless, it is not always meaningful to fit a probability distribution to the real data, 

since the true underlying probability density function may be not known with certainty; 

it is, instead, better start from the true realisations and try to understand which 

probability density function can better adapt to the reality. 

As we have mentioned earlier, another great point in favour of the ES is its simplicity: 

from an empirical point of view, it can be calculated in the following way: given that we 

have n realizations of the random variable X, it is sufficient to sort them in ascending 

order and take the mean of the α-percent ones37. 

It can be mathematically express as: 

  

 
37 As smaller ones we mean the realization from the first to the (n*α)-th, considering that the result of 
n*α must be an integer. 
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where K represents the integer number of realisations that have a value lower or equal 

to the Value at Risk of level α. 

Expected shortfall was one of the firsts coherent risk measures proposed, its simplicity 

and its adaptability to the “risk-averse” individual’s behaviours helped its widespread 

into the financial world. As we have seen, differently from the Var, the ES respects all 

the coherent axioms including, perhaps, the more important: sub-additivity. This means 

that, differently from VaR, ES does represent the diversification effect and it ensure a 

proper protection against the tail risk. Another important feature of this risk measure can 

be seen in its non-parametric approach which permits to obtain, meaningful, measures 

even when the underlying probability distribution isn’t know. 

  

    

2.2 Shortfall deviation risk 

This coherent risk measure was introduced by Righi and Ceretta in their paper 

“Shortfall Deviation Risk: an alternative for risk measurement” Journal of Risk, 

September 1998,. 

This measure owns all the desirable features of the ES, and it takes in consideration also 

the tail’s dispersion of the data. The consideration behind this risk measure is the 

following: does it make sense to compute the mean value of the losses that exceed the 

Value at Risk (at a certain α-level) if they aren't concentrated around the mean itself? 

Apparently, the answer is no because if the losses which exceed the VaR are not 

concentrated around their mean (that is nothing but the Expected shortfall), the expected 

shortfall becomes just a number without any sense, hence a more robust risk measure is 

needed. In other terms, if two position have the same tail expectation but different tail’s 

behaviour the Es is no longer useful. 
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As a first definition, we can state risk measure that represents the expected loss that 

occurs with certain probability penalized by the dispersion of results that are worse than 

such an expectation38 

 

Mathematically it can be expressed in this way: 

 𝑆𝐷𝑅𝛼(𝑋) = −𝐸𝑆𝛼(𝑋) + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝑋)       with β≥0 

It is the combination of two risk measures: the expected shortfall and semi-deviation of 

the latter. 

Indeed, it simultaneously, encompass two risk pillars: possibility of extreme events and 

their dispersion. 

This measure is capable to take in consideration higher moment than the first because, it 

not only considers the mean of the “worst realization” but also their dispersion hence, it 

is more robust than the Es taken alone. 

As the expected shortfall, it is based on the Value at Risk, hence an α-percentile must be 

expressed in order to compute the SDR. 

The first part of the formula is nothing but the negative of expected shortfall39 (for more 

info about see the previous chapter). The second part of the formula, instead, is divided 

into other two sub-parts: in the first one we can see a (1-α) elevated to the power of β: 

this part serves as a proxy for the degree of risk aversion of the investor. 

Alpha represents the percentile of data that are considered the “worst cases” and, as in 

the case of VaR, is generally really small (0.01;0.05) while Beta is serves as “penalty-

chooser”; The higher the value of Beta the lower the penalty that the semi-deviation 

applies to the Shortfall deviation-risk. So, for example, an investor with a low degree of 

risk aversion should have a high Beta. 

 
38 SHORTFALL DEVIATION RISK: AN ALTERNATIVE FOR RISK 
MEASUREMENT- Marcelo Brutti Righi-Paulo Sergio Ceretta 
39 In its original formulation there was a positive expected shortfall but for coherency reasons we are 
reasoning in the domain of return, hence a negative sing must be put in front of the Es. 
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The second and last part of the formula is represented by the semi-deviation of the 

“worst realizations”.  It represents a distance between the realizations of X and the 

Expected shortfall, if and only if these realisations are smaller than the expected 

shortfall it-self.  

 

Mathematically it can be expressed as: 

 𝑆𝐷𝛼(𝑋) = (𝐸[|(𝑋 − 𝐸𝑠𝛼(𝑋))−|𝑝])
1

𝑝 

where: 

(𝑋)− = 𝑚𝑎𝑥(−𝑋; 0)  

In other words, it is the p-norm of the difference between the expected shortfall of alpha 

and the realization below the Es itself. 

The semi-deviation doesn’t respect all the coherency axiom, in particular it doesn’t 

respect the monotonicity axiom, hence it cannot be considered a coherent risk measure.  

 

Semi-deviation belongs to another class of measures, the so-called generalized measure 

of dispersion (as defined by Rockafellar et al. (2006)). This class of measures shares 

with the coherent risk measures some important axioms; indeed, they are both positive 

homogeneous and sub additive. They also own other useful features: 

• Relevance: if a position always generates losses, it must be risky.  

• Strictness:  ro of x greater or equal than minus expected of x   Generalized 

risk measures are sufficiently conservative, indeed they exceed the common 

loss expectation. 

• Law invariance: if the underlying random variable probability distributions 

are equal, so are their risks. 

Unfortunately, they lack monotonicity and translational invariance. For what concern 

the monotonicity, this means that it may happen that a generalized risk measures 
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indicates as less risky a portfolio which constantly underperforms another one. While 

the lack of translational invariance implies that adding a risk-free entity to the portfolio 

does not reduce the overall risk. To be more precise, generalized risk measures respect 

another axiom in the field of “translation”, indeed they present the so-called translation 

insensitivity. This implies that adding a risk-free entity “C” to the risky portfolio 

doesn’t change the value of that this kind of measures give to the risk. Taking as 

example the semi-deviation, this means that:  

𝑆𝐷𝛼(𝑋 + 𝐶) = 𝑆𝐷𝛼(𝑋) 

As we mention, this feature implies the impossibility for the semi-deviation to be a 

coherent risk measure, but it is fundamental in the construction of the shortfall deviation 

risk as we will see in a moment. 

A question that may arise spontaneously is: is it possible that the sum of a coherent and 

a non-coherent risk measure would be coherent? Summarizing the characteristics of the 

expected shortfall and the semi-deviation we will demonstrate that the shortfall-

deviation risk is a coherent risk measure. 

As we already know, a measure of risk is stated to be coherent if it respects all the four 

axioms of coherence: translational invariance, sub-additivity, monotonicity, positive 

homogeneity, hence we are going to show that SDR follows these rules: 

1. Translational invariance: 

𝑆𝐷𝑅𝛼(𝑋 + 𝐶) = 𝐸𝑆𝛼(𝑋 + 𝐶) + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝑋 + 𝐶) 

 Since the expected shortfall does respect the translational invariance while the 

semi-deviation respects the translational insensitivity, the formula can be 

rewritten as: 

    −𝐸𝑠𝛼(𝑋) − 𝐶 + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝑋) = 𝑆𝐷𝑅𝛼(𝑋) − 𝐶 

2. Subadditivity: 

       𝑆𝐷𝑅𝛼(𝑋 + 𝑌) = −𝐸𝑠𝛼(𝑋 + 𝑌) + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝑋 + 𝑌) 
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Since both the measures are sub-additive, we can state that:   

 

Hence, 𝑆𝐷𝑅𝛼(𝑋 + 𝑌) ≤ 𝑆𝐷𝑅𝛼(𝑋) + 𝑆𝐷𝑅𝛼(𝑌)  

3. Monotonicity:  

Let X,Y,Z be three random variables which respect the following assumptions: 

• X is always lower than Y, 

• Z is a random variable, 

• X plus Z is equal to Y  

𝑆𝐷𝑅𝛼(𝑌) = 𝑆𝐷𝑅𝛼(𝑋 + 𝑍) ≤ 𝑆𝐷𝑅𝛼(𝑋) + 𝑆𝐷𝑅𝛼(𝑍) ≤ 𝑆𝐷𝑅𝛼(𝑋) 

Due to lower range dominance (1 − 𝛼)𝛽𝑆𝐷𝛼 ≤ 𝐸𝑠𝛼(𝑋) hence, SDR(Z)<0 

This propriety grants that a position which always has worst results is indicated as 

riskier. 

4. Positive homogeneity  

𝑆𝐷𝑅𝛼(𝜆𝑌) = −𝐸𝑠𝛼(𝜆𝑋) + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝜆𝑋) 

Since both the measures are positive homogenous, we can state that: 

−𝐸𝑆𝛼(𝜆𝑋) + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝜆𝑋) = 𝜆[𝐸𝑠𝛼(𝑋) + (1 − 𝛼)𝛽𝑆𝐷𝛼(𝑋)]

= 𝜆𝑆𝐷𝑅𝛼(𝑋) 

As we have seen, the shortfall deviation risk does respect all the axioms of coherence, 

hence It can be fully considered a coherent risk measure. 

In addition to being a consistent risk measure, shortfall deviation risk shares with the 

two risk measures from which it is formed also the relevance, strictness, and Law 

invariance axioms. All these features make it a better instrument than the expected 

shortfall when working with data coming from the real world. 

While recognizing the usefulness of the ES as “tail-measure of risk”, there is no doubt 

that the SDR is a superior instrument when dealing with the left tail of the returns; this 
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happen because it is not only a coherent risk measure (as the ES) but it is able to take in 

consideration the negative deviations from the ES as well. This is done by giving a 

“weight” to the extremely negative realizations; Even if this may seem a technicism it is 

not so, these extreme- realizations must be taken into account because if they will 

happen again in the future they may “hit” so hard the returns to vanish all the efforts 

done until that moment to build a profitable portfolio. 

 

2.3 Entropic Var 

 

The last measure we want to introduced is the entropic Value at risk. Entropic VaR is a 

recently introduced risk measure indeed, it was presented in 2011 by Ahmadi-Javid in 

his paper “Entropic VaR: a new coherent risk measure”. At a first sight entropic Var 

can be explained as “a sort of evolution” of the Expected shortfall. Ahmadi 

demonstrated that as the ES, the EVaR is coherent and it takes in consideration the 

results “larger than the Value at risk” but, differently from the former, it hasn’t got 

computability issues. Moreover, the Entropic Var is strongly monotone implying that 

ρ(X)< ρ(Y) if : 

• X≥Y  all the observations of X are greater than the ones of Y; 

• Pr{X>Y}>0 it grants that X is greater than Y; 

• Ess sup X> ess sup Y; 

Definition: Entropic Value at risk is the tightest possible upper bound obtained from 

the Cherenoff inequality40 for the VaR. 

In order to find this new measures Ahmadi utilized two important statistical theorems: 

Markow inequality and Chernoff inequality. 

The former states that  𝑃(𝑋 ≥ 𝑎) ≤
𝐸(𝑋)

𝑎
    

 
40 In probability theory, the Chernoff bound or inequality gives exponentially decreasing bounds on tail 

distributions of sums of independent random variables-Wikipedia 
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this result is demonstrated by a series of intuitive mathematical passages: 

𝐸(𝑋) = 𝑝(𝑋 < 𝑎) ∗ 𝐸(𝑋|𝑋 < 𝑎) + 𝑃(𝑋 ≥ 𝑎) ∗ 𝐸(𝑋|𝑋 ≥ 𝑎), this means that 

𝐸(𝑋) ≥ 𝑃(𝑋 ≥ 𝑎) ∗ 𝐸(𝑋|𝑋 ≥ 𝑎) ≥ 𝑎 ∗ 𝑃(𝑋 ≥ 𝑎) , and so 𝑃(𝑋 ≥ 𝑎) ≤
𝐸(𝑋)

𝑎
  

thanks to the probabilities proprieties and by adding the exponential we arrive to the last 

part of the demonstration. The latter states:  𝑃(𝑋 ≥ 𝑎) = 𝑃(𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎) ≤
𝐸𝑡𝑥

𝑒𝑡𝑎
 

this directly leads to the starting point of the Chernoff inequality for the Value at risk, 

since we know that EtX is nothing but the moment generating function of X; it is 

sufficient to compare the two extremes of the formula in order to obtain: 

 𝑃(𝑋 ≥ 𝑎) ≤ 𝑒−𝑡𝑎 ∗  𝑀𝑥(𝑡) 

In which a is the Entropic VaR; this formula represents the tightest possible upper 

bound for the Chernoff inequality for the VaR. 

From this formula is possible to derive the E_VAR’s formula as well: the probability 

that X is greater than a is, for definition, equal to α hence: 

 𝛼 = 𝑀𝑥(𝑡) ∗ 𝑒−𝑡𝑎   

from this point we want to compute the value of a, which is nothing but the Entropic 

value at risk, by applying both sides to a logarithm we obtain  

𝑙𝑜𝑔(𝛼) = 𝑙𝑜𝑔(𝑒−𝑡𝑎) + 𝑙𝑜𝑔(𝑀𝑥(𝑡))  

 then after some arrangements we obtain:  

𝑙𝑜𝑔(𝑒−𝑡𝑎) + 𝑙𝑜𝑔(𝑀𝑥(𝑡)) − 𝑙𝑜𝑔(𝛼) = 0  

 From which, using the proprieties of the logarithms, 

 −𝑡𝑎 + 𝑙𝑜𝑔(
𝑀𝑥(𝑡)

𝑎
) = 0, 

And finally, we got  

𝑎 = 𝑡−1 𝑙𝑜𝑔(𝑀𝑥(𝑡))

𝛼
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 This is the formula to compute the Entropic VaR of a general random variable, given a 

certain value of αϵ [0,1] and t>0  

 

The entropic Var is a more conservative risk measure than VaR or the expected 

shortfall, ,as from its nature, it is the upper bound of both the previous measures: 

𝐶𝑉𝑎𝑅1−𝛼(𝑋) ≤ 𝐸𝑉𝑎𝑅1−𝛼(𝑋) Hence, given a certain confidence level α, the 

entropic-var is more risk-averse than the other two measures we have seen so far, this 

implies that, in portfolio optimization, it may lead to portfolios with lower returns. 
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CHAPTER 3 

A GENTLE INTRODUCTION TO THE 

PSO 

   

The minimization problems described so far are not solvable with “normal” 

mathematical tools when considering the coherent risk measures presented in the 

previous chapter. Indeed, all the risk measures we have seen haven’t got a close. This 

is one of the reasons for which Variance as risk measure has been used for a such long 

time: the other risk measures lack an instrument to compute the joint variability of 

two or more random Variable. For example, when using the Variance as a proxy of 

risk, the variance of the sum of two (or more) random variable is nothing but the sum 

of the Variance plus two times the Covariances while for the other measures it is not 

possible to compute their “jointly movements”. From this it descends that, it’s not 

possible find the solution of the portfolio minimisation problem as developed by 

Markowitz. Moreover, if in the minimization problem a bunch of restriction is taken 

into consideration it becomes even harder to solve.  

Approximations procedures have been developed throughout time in order to solve 

this kind of problems. Probably the most famous and effective are heuristics and 

metaheuristics. 

Definition: A metaheuristic is a high-level problem-independent algorithmic 

framework that provides a set of guidelines or strategies to develop heuristic 

optimization algorithms (Sörensen and Glover, 2013) 

Metaheuristics are therefore developed specifically to find a solution that is “good 

enough” in a computing time that is “small enough”; in plan words a metaheuristic can 

be seen as an algorithm that search for optimal solutions that cannot be find through 

“close formulas”. They, generally, don’t provide the true optimal solution but 
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something which is close to it. In the following part we want to introduce the Particle 

Swarm Optimization metaheuristic. 

 

3.1 Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) is a bio-inspired metaheuristic born from an idea of 

Kennedy and Eberhart in 1995; They tried to create an intelligence method in order to 

study, and understand, the behaviours of groups of birds (swarm). In their original 

formulation, they were able to transpose the form and the behaviours of a swarm into a 

more rigorous “mathematical concept”: Each bird can be seen as a particle so, the 

swarm is a bunch of particles which moves into a 3-dimensional space in the attempt to 

find the best possible position41. 

Kennedy and Eberhart42 noticed that, inside a bird’s swarm, the key to find food (hence 

survive) was the cooperation among the birds and their ability to “communicate” one 

with the others. Indeed, a single particle has almost no chance to find the optimal 

solution, that’s why it arose the need to introduce some kind of communication among 

the neighbour particles. In the 95’s  PSO formulation each particle was meant to iterate 

with the two closest particle, in order to calculate which one had the higher personal 

best. The higher personal best43 was considered the global best (gbest) for those 

particles. 

To be more specific, each particle is represented by 3 vectors (Xi,Vi,Pi), that are, 

respectively, its position, velocity and personal best.  

 
41 Since the algorithm was born in order to study the behaviours of swarms, their  movements are based 
on food research: the best possible solution is the place that has the highest quantity of food and that is 
reachable by the swarm. 
42 Kennedy is a social psychologist and Eberhart is an electrical engineer. 
43 As Personal Best we mean the best position that the single particle has visited so far; there can be 
different parameters in order to compute a function (generally called fictness fuction) which by giving a 
score to each point visited by the particle permits to compare one point to the other to decide which is 
the personal best. 
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Position is a pretty straightforward concept, for what concern velocity, the concept will 

be clear in the next pages when we will introduce the entire iteration process while the 

personal best is strictly related to the concept of fitness. 

The Fitness function can be seen as the core of the PSO procedure, it clearly depends on 

the problem we are trying to solve but, in a general fashion, we can state that each 

particle has a fitness value and, in case of minimization, the lower it is the better is the 

position, hence, throughout the iterations, in the local best (or in the global best) vector 

are recorded only the particles that are able to decrease this number. 

Before presenting the algorithm in its original formula, it is better to introduce the 

communication topology which is nothing but the ways in which the particles can 

communicate each other. 

 

3.2 Communication topology 

 

For what concern the communication topology, it was the authors themselves who 

presented 2 typologies of interaction among particles: the global best and the local best 

topology. 

In the local best topology, the trajectory of one particle is influenced only by the closest 

particles, hence the communication is based only on proximity in the search space. This 

method allows parallel search avoiding to “fail” in local optima. This happen because 

the interactions between the particles are slow and this consents to stabilize 2 or more 

bunch of particles around more than one local optima. If one local optima is truly better 

than the others this information will slowly pass from a particles to another and they 

will start to converge following the best-particle direction. With respect to the global 

best topology where, each particle is meant to communicate with all the others, there is 

more particle dispersion in the search space, this clearly increase the quantity of 

observed space but, the downside is that this comes with a cost:  more time is needed 
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for the particles to converge towards the optimum point44. Two classic examples of 

local best topologies are: 

• The ring: Each particle knows only its personal best and the one of the two 

particles that are closest to itself. The local best is computed comparing these 

values. Graphically it can be seen as a ring where each particle interacts with the 

ones that are over and under itself. 

• Von Neumann: each particle knows its personal best and the one of four other 

particles that are in predetermined positions. The local best is computed 

comparing these values. Graphically it can be seen as a polygon where each 

vertex is connected with 4 others: each particle interacts with the ones that are 

over, under, to the right and to the left. 

In the global best topology, instead, each particle is meant to communicate with all the 

others. This means that every single particle known its personal best and it’s aware of 

the pbest of all the others. This model allows the particles to, rapidly, converge towards 

the optima, unfortunately this comes with a cost: it may happen that some part of the 

space won’t be explored. This kind of topology could be not useful to explain swarms’ 

behaviours, but it is, certainly, meaningful when applied to optimization problem like 

the portfolio selection one: If the fitness’s value of each particle is known there is no 

reason the other particles shouldn’t be aware of it, so, given that each particle knows 

where the optimal place is, it seems correct to assume that they should converge there. 

Graphically, it can be seen as a bunch of point that are fully connected one with others. 

 
44 The local best topology is, probably, the best representations of swarms’ behaviors since the birds 
when flying are usually able to see and understand only what their neighbors are doing. 
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A) Fully-connected topology  B)  Ring topology   C) Von Neumann topology 

 

In the Original PSO formulation the algorithm was set as follow: 

1. Randomly initialize the vectors of positions and velocities. 

2. Start the loop. 

3. Compute the fitness value for each particle. 

4. Compare each particle’s fitness with its own personal best. If the particle ‘s current 

fitness value is better than its personal best, then the personal best must be updated with 

the value of the current position45. 

𝑝𝑖
𝑘+1 = 𝑝𝑖

𝑘
             if      𝑓(𝑥𝑖

𝑘+1) ≥ 𝑓(𝑝𝑖
𝑘)   

 

𝑝𝑖
𝑘+1 = 𝑥𝑖

𝑘+1
      if    𝑓(𝑥𝑖

𝑘+1) < 𝑓(𝑝𝑖
𝑘)     

5. Identify the particle that, in its neighbourhood46, has the better personal best, if this 

value its better than the local best, the variable local best must be updated with the value 

of the current local best position.  

𝑙𝑏𝑗
𝑘+1 = 𝑙𝑏𝑗

𝑘          if    𝑓(𝑐𝑙𝑏𝑗
𝑘+1) ≥ 𝑓(𝑙𝑏𝑗

𝑘)     

 

 
45 In this procedure we are assuming that we want to minimize the fitness function. 
46 The neighbourhood of a particle is formed by the particles with which it can communicate and share 
information; the form of the neighbourhood depends on the communication topology.  
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𝑙𝑏𝑗
𝑘+1 = 𝑐𝑙𝑏𝑗

𝑘+1            if  𝑓𝑐𝑙𝑏𝑗
𝑘+1 < 𝑓(𝑙𝑏𝑗

𝑘)    

6. Change velocities and positions according to the following formulas: 

𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ⊗ (𝑝𝑖 − 𝑥𝑖
𝑘) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ⊗ (𝑙𝑏𝑖 − 𝑥𝑖

𝑘) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1

       

Where c1 and c2 are two constants for a motivation that we will see later in this chapter, 

rand1 and rand2 represent two vectors of randomly generated numbers between zero and 

one and ⊗ represents the tensor product 

7. Control if criteria/criterions is/are satisfied. Stopping criteria may depends, for example, 

on number of iterations or fitness function’s best value. If they are satisfied go to step 

number eight otherwise return to step number two. 

8. Exit loop. 

This original formulation has been modified by subsequent revisions in order to 

improve the utility of the PSO. These revisions have taken in consideration all the part 

of the PSO that influence the particles behavior: communication topology, velocity 

and fitness function. 

3.3 Velocity 

As we can see in the 5th and 6th step of the PSO’s algorithm, velocity and, consequently, 

position in the step k+1, depends on several factors. For the sake of simplicity but 

without loss of generality, we will discuss about velocity in the PSO fully connected 

topology. Hence, each particle will know only its personal best and the global best. This 

“simplification” is particularly useful because it permits to avoid using different local 

bests and it focus only on the global best in the velocity computation. 

Decomposing the velocity’s formula, we note that in the step k+1 it depends on: 

• Previous velocity: In the first step it is a randomly generated number while 

in the following it just the results of its formula. 
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• C1 and C2: they are two parameters that influences, respectively, the 

importance we give to the local best and the global best. The higher the 

value the more one or the other best is represented in the velocity 

computation. 

• Rand1 and Rand2: they represent two vectors of randomly generated 

numbers between zero and one 

• Pi-Xi: this component serves as an indicator for the distance between the 

actual particle’s position and its best. If the particle is moving away from its 

best this difference will be different from zero, hence it will try to 

“accelerate or decelerate” the particle in the attempt to get it closer from its 

local best position. 

• Gi-Xi: This component represents the distance between the actual particle’s 

position and the global best. As in the previous component, it will be zero if 

the actual particle is the global best otherwise it will try to attract the 

particle towards the global best. 

It is worth to notice that in the first interaction each particle cannot compare its fitness 

value with a previous one (because it doesn’t exist), for this it descends that every 

particle lay on its on personal best. For the way in which the algorithm is constructed, 

without an initial randomly generated velocity the particles would stop after the first 

interaction. Unfortunately, a velocity function constructed in this way may create a 

rapidly degenerating velocity, this, in turns, implies that the particles will move “too 

fast” failing in correctly observe the search space. 

Practically, an uncontrolled velocity function may lead to miss the local and the global 

optima. The authors themselves noticed this issue and they proposed to impose an 

exogenous factor (Vmax) to fix the problem. If one hand the introduction of a maximum 

velocity may solve the degeneration problem, on the other hand it is restrictive for the 

exploration activity of the particles.  



Particle Swarm Optimization 
 
 

 
 

45 
 

 

Only three years after the introduction of the PSO, two researchers (Shi and Eberhart on 

their paper-“Comparing inertia weights and constriction factors in particle swarm 

optimization” ) proposed an ingenious solution for this problem based on the inertia 

weights.  

In order to understand their idea, we need to have in mind the basic concept of the PSO: 

The PSO process is, fundamentally, articulated in two “sub-processes”: 

1. Exploration: In this phase the individual’s results are important, each 

particle moves rapidly into the search space. 

2. Exploitation: In this phase the comparisons between the personal results are 

important: the global best is searched, and the particles should move slowly. 

Clearly, the aim of the researchers is to find a balance between these two sub-processes; 

to be more precise, a perfectly function PSO should “explore” in its first’s iterations and 

“exploit” in its lasts. In this manner during the first phase a good part of the search 

space will be known and in the second phase all the available information will be share 

in order to find the effective optimum position. 

As suggested by Shi and Eberhart, it possible to achieve this result by acting on the 

velocity of the process. Practically they added a factor ω(weight) to the velocity formula 

and they imposed that this factor would be interactions dependent. 

𝑣𝑘+1 = 𝜔𝑣𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟𝑎𝑛𝑑2(𝐺𝑏 − 𝑥𝑖)  

When this factor is greater than one, it will tend to increase the velocity favouring the 

exploration hence the research of the various personal best. When this factor is lower 

than one, it will tend to decrease the velocity favouring the exploitation hence the 

research of the global best. 

The first suggestion to link the value of the inertia-weight to the interactions was the 

following: 
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𝜔𝑘 = 𝜔𝑚𝑎𝑥 +
𝜔𝑚𝑖𝑛−𝜔𝑚𝑎𝑥

𝐾
∗ 𝑘  

where wmax and wmin are arbitrarily set47, while K is the total number of interactions and 

k is the interaction’s number.  

Another example of inertia-weight strategy is the Butterworth inertia weight strategy 

proposed by Xianming Zhua, Hongbo Wang in their paper “A new inertia weight 

control strategy for Particle Swarm” 

Optimization.  

𝜔𝑘 = 𝜔𝑚𝑎𝑥 +
1

1 + (
𝑡

𝑝1
)𝑝2

+ 𝜔𝑚𝑖𝑛 

where p1 and p2 are 2 numbers that are needed to increase or decrease the decrement 

speed of the inertia weight48, t is the number of interactions and Wmax and Wmin are, 

respectively, the maximum and the minimum desired velocity. As in the other inertia 

Weight approach, the weight rapidly decreases after the first interactions. 

Y-axis=weight 

X-axis=interaction’s number 

 

 

 

 

 

 

 
47 Empirical results suggest to use as maximum velocity 0.9 and minimum velocity 0.4. 
48 Empirical results suggest to set p1 equal to a third of the total number of iteration and p2 equal to 10. 

Figure 4  Weight function under the Butterworth approach, Wmax=0.5, 
Wmin=0.4, T=1000, p1=330, p2=10 
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Using the inertia-weight approach is possible to slowly reduce the influences of the 

previous velocity, and interaction by interaction, achieve the desired features of an 

optimal PSO.    

In the end, the inertia-weight approach has the advantages to avoid the degeneration of 

velocity without using a statical maximum velocity Vmax and to facilitate the two phasis 

of the PSO (exploration and exploitation). Although the inertia-weight approaches are 

useful in order to prevent velocity degeneration, they need, in their computation, the 

assumption of a maximum weight parameter. As we have seen, this may reduce the 

maximum possible velocity and lead the particles to avoid some parts of the search 

space. 

Clerk and Kennedy (2002) presented a model able to eliminate the Weight parameters 

without losing is precious features of convergence and velocity containment: the 

constriction coefficient χ. 

The idea behind the model is to manipulate the velocity’s addenda rather than impose a 

weight on the first element of the sum (previous velocity). 

Practically, the coefficient chi is multiplied by the whole velocity formula obtaining: 

𝑣𝑘+1 = 𝜒(𝑣𝑘 + 𝑟𝑎𝑛𝑑1(0, 𝜑1) ∗ (𝑝𝑖 − 𝑥𝑖) + 𝑟𝑎𝑛𝑑2(0, 𝜑2) ∗ (𝐺𝑏𝑖 − 𝑥𝑖)) 

where 𝜑1 + 𝜑2 = 𝜑 > 4       And   𝜒 =
2

𝜑−2+√𝜑2−4𝜑
 

 

The authors themselves presented the optimal value for φ imposing it equal to 4.1, 

hence the result for χ would be 0.7296. 

In this way is possible to create a well-functioning PSO without the implementation of 

any restrictive parameters. Furthermore, this method can be traced back to the easiest 

formulation of the inertia weight approach because: if φ=4.1 and φ1= φ2=2.05 the 

maximum value that χ*rand(0, φ1) = χ*rand(0, φ2)=1.4961*rand(0,1) 

Which is equivalent to write 1.49618*rand(0,1), so the model can be rewritten as: 
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𝑣𝑘+1 = 𝜔𝑣𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟𝑎𝑛𝑑2(𝐺𝑏 − 𝑥𝑖)  

Assuming ω=χ     and     c1=c2=1.49618 

This final solution for the calculation of the velocity is the one majorly adopted 

nowadays for particle swarm optimization algorithm. In addition to the above presented 

advantages, constriction parameter is static: it doesn’t need to be change through the 

iterations simplifying the implementation of the whole model. 

 

 

3.4 Fitness function, constrains and penalty 

The fitness function can be seen as the core of the PSO, it gives a “valuation” to each 

particle in the optimization. In this manner is possible to compare the particles with 

each other and find out which one owns the best characteristics. Since the fitness 

function is, generally, represented by the argument of the portfolio minimization 

problem, to find and compare the different fitness functions of the particles a 

constrained nonlinear optimization problem (CNOP) is addressed. Mathematically the 

CNOP can be explained as follow: 

Find x⃗ that optimize f(x⃗ ) bounded to: 

 gi(x⃗ )≤0, i=1,…,m 

hj(x⃗ )≤0, j=1,…,p  

where:  

• x⃗ =[x1,x2,…,xN]′ represents the vector of solutions;  

• m is the number of bounds expressed as inequality  

• p is the number of bounds expressed as equality  

 

When constrains are added to a problem the region of possible Solution (S) is divided 

into two sub-regions: feasible and unfeasible. When the results fall into the unfeasible 
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region it means that one or more constrains have been violated thus the solution must be 

discarded. 

Unfortunately, PSO was not designed to deal with constrains because, in its first 

formulation, is a technic to solve unconstrained optimization problems, hence it is not 

able to understand when the results fall in the admissible region or in the other. In order 

to use the PSO to solve constrained optimization problems it is necessary to add, into 

the procedure, a “a constraint management mechanism”. Many of this mechanism have 

been presented so far, they are for example: 

• admissibility function and reinitialization of the particles when they are not in 

the feasible region: in this case the PSO cycle is re-initialized as many times as 

is necessary for all particles to be in the admissible region. 

•  random or bounded displacement of particles within the feasible region: in this 

case if the solution of the PSO optimization lays outside the admissible region 

is moved inside it through the intervention on the velocity of the particle. In the 

bounded mode the particle which lays in the unfeasible region is moved only 

until it reach the feasible one while in the random mode the intervention on the 

particle’s velocity is, as the name suggest, random. 

Both methods have their drawback, for what concern the former the main problem is the 

computational one: re-initialize the particle as many times as it is necessary for all the 

swarm to be in the admissible region can be a great computational effort, especially if 

the swarm is composed by a lot of particles. For the latter, instead, if the intervention on 

the PSO results becomes too frequent, there is a risk of invalidating the very mechanism 

on which the algorithm is based, i.e. the self-organization of the swarm of particles. 

In this work we will present the mechanism to add the constrains that has been used for 

the computation of our optimal portfolio: the exact penalty function49. 

 
49 The exact penalty function is a method to avoid that the PSO results fall into the unfeasible region, its 

functioning is pretty simple: each time a solution falls outside the admissible region (and so a constrain is 

violated) a worsening factor (penalty) is added to the fitness function. 
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This choice has been undertaken for two main reasons: First, the exact penalty function 

is simple to implement and understand because it acts directly on the PSO’s fitness 

function. Second, some other methods need to implement another metaheuristic in order 

to compute the penalty50 to apply to the PSO’s fitness, this, clearly, generate 

computational difficulty and circumscription in the solvable problems. 

In penalty function each constraint’s violation has a “cost”. This cost directly increase 

the value of the fitness function: the more a particle violated one or more constrains the 

more its fitness function will be high. This directly implies that particles which violate 

constrains become “less attractive” then the ones that remain in the feasible region. 

Mathematically the implementation of the exact penalty function to the fitness function 

can be seen as:  

Min f(X)+ϵP(X)      where: 

• ϵ is a positive constant that multiplies the constraint’s violations. The higher 

the value of epsilon the more the violations become significative in the 

fitness computation. 

• P(X) is the function that represents the sum of the violations of the 

constrains, it must be continuous. 

• P(X)≥0 for each X 

It seems that increasing the value of ϵ may be a good idea to avoid that the PSO’s 

results fall into the unfeasible region since if ϵ is large also small constrain violations 

impact on the fitness function; unfortunately, it may happen that as epsilon increase the 

solution of the unconstrained problem will be different to the solution of the constrained 

one. 

Fortunately, this problem can be avoided trought the use of the Exact penalty function 

as demonstrated by Luenberger and Ye(2008). 

 
50 The difference between exact penalty and penalty is that the former the solutions of the original 

constrained problem are equal to the solution of the unconstrained one (the one that use the penalty); 

while in the latter there is approximation and results may differ. 
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Theorem. Exact Penalty: Let 𝑥∗ be a point that satisfies all the sufficient conditions of 

the second order to be a local minimum point of a constrained problem and let 𝜆 and 𝜇 

be two vectors containing the associated Lagrange multipliers with respect to 𝑚 

constraints in ℎ(𝑥)=0 and to 𝑝 constraints in 𝑔(𝑥)≤0. Then, for 𝜖>max {𝜆𝑖|𝜇𝑗∶𝑖=1,…,𝑚 

𝑗=1,…,𝑝}, 𝑥∗ is also a local minimum for the unconstrained penalty objective 

function.51  

Hence, when exact penalty function is implemented, there is a theorem proving 

coincidence between unconstrained problem’s solutions and original constrained 

problem’s solutions. 

 

3.5 Fitness function of a real portfolio 

One of the most interesting things of the PSO’s algorithm is that it’s sufficient to 

modify the fitness function in order to adapt it to different problems, hence it is 

applicable to a wide set of optimization problems. 

When dealing with the specific problem of the portfolio optimization, as conceived by 

Markowitz, the fitness function shall consider the risk of the portfolio and a series of 

other constrains. For the discussion we have done in the previous chapter the constrains 

have to be transformed into penalty hence the fitness function, which, practically, 

correspond to the function we are trying to minimize becomes: 

Min (risk measure) + ϵ (sum of constrains’ violations) 

The scope of the first addendum of the formula is clear: reduce the value of the 

considered risk measure. Since the risk measures we have presented in this work are 

part of the coherent risk measures class they respect the positivity axiom hence, the 

smaller they are the safer is the portfolio. 

While for the second addendum another discussion shall be done: if this part  is 

neglected the algorithm will search for the portfolio that minimize the risk without take 

 
51 “Linear and NonlinearProgramming”- Luenberger (1984) 
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in consideration any other factors. By adding more and more constrains into the 

portfolio optimization problem it become more realistic and closer to the rational 

investor’s interest. Obviously, every added restriction implements the mathematically 

difficulty of the problem. Since the scope of this work is valuing the results (in an out of 

the sample period) of different portfolios which were constructed utilizing different risk 

measures, we will focus on few constrains: the ones that the authors consider the 

“minimum” in order to build a rational portfolio. 

In the following part we will show some constrains and their relative transformation for 

the PSO’s algorithm. 

1.Budget constrain 

The budget constrain refers to the bunch of securities (stocks in our case) that the 

investor owns in his/her portfolio. It ensures that the sum of all the participation will be 

equal to one, hence the total available wealth is invested. To be more precise, the 

percentage of participation is expressed as a vector of numbers between 0 and 1 

computed as: capital invested in the i-th stock/ total available wealth. 

Mathematically it can be expressed as: 

 

 

Where xi is the quote of investment gave to the i-th stocks, the equality can be expressed 

in a more compact way in its matrix form as x’e=1  

Its conversion into a violation to use as an exact penalty function is straightforward: 
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 There is a characteristic that is worth to note:  the difference is inside an absolute value, 

this is due to the fact that when the difference is different from zero it must negatively 

impact on the fitness function no matter if its negative or positive52  

2.Return constrain 

The other  constrain that must be considered in the portfolio optimization problem is the 

return constrain, indeed, as we have seen in the previous chapter, if the return 

constrain miss the PSO’s algorithm (as well as the other portfolio optimization 

methods) will suggest buying the less risky53 portfolio without consider the reward. 

The return constrain overcomes this problem consenting to choose, on the efficient 

frontier, the portfolio that has a given return. It can be expressed as54: 

    

  where: 

• Xi is the percentage of capital invested vector. 

• ri is the average returns, computed as sum of the returns of the i-th portfolio 

divided by N.55 

• Π is the desired return. 

Practically, this constrain implies that the return of the portfolio (in the sample period) 

must be equal to a certain value π. This limitation can be relaxed in order to enlarge the 

feasible region and the constrained transformed into: 

 

This enlargement on the feasible region is due to the fact that each rational investor 

looking for an investment with a certain return π would accept another investment that, 

 
52 The equation can be expressed in its matrix form as x’e -1=0 
53 Here less risky is intended as the portfolio with the lower value of the relative risk measure. 
54 It can also be expressed in matrix form as x’r=π 
55 N is nothing but the number of assets in the portfolio.. 
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ceteris paribus, would give him/her a higher return. The conversion into an exact 

penalty function can be expressed as: 

 

Utilizing this function, the objective of obtain a return equal or higher than π is 

achieved. Indeed, the function is different from zero, hence negatively accounted into 

the fitness function, if and only if the portfolio’s return is lower than the desired return 

pi. 

It is notable that, conceptually and mathematically, minimize the risk given a certain 

return or maximize the return given a certain risk is the same thing. However, it is a 

common practice to follow the former method, hence minimize the risk given a certain 

return, reflecting and highlighting the fact that the rational investor is risk averse (hence 

it prefers to avoid risk). The practice is so rooted into the financial sectors that, in all the 

developed countries, financial institutions are required by law to interview their clients 

to try to understand their degree of risk aversion.56 

 

The two constrains we have illustrated so far, together with any risk measure, are 

sufficient to create a meaningful portfolio solving a portfolio optimization problem even 

if they don’t take into account a part of the issues of the real stock markets.  

The last two constraints that I decided to include in the PSO optimization concern the 

lower and the upper bounds for the percentage of participation. This choice had to be 

done to avoid too big or too small percentage in the single stocks. Indeed, without any 

restriction on the participation bounds the algorithm will suggest acquiring the portfolio 

that minimises the risk given a certain return without any consideration about its 

composition. This, in turn, may lead to 2 different situations: 

 
56 The European example is the MIFID interview: financial institutions are not only required to 

understand the risk aversion of their clients but if their clients are experienced on the financial 

instruments they are buying as well. 
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1. too much concentration: a portfolio with few securities they have a high 

level of participation, this situation must be avoided since it doesn't take the 

advantage from benefit of diversification; 

2. too small positions: a portfolio where some securities have small 

percentage, this situation must be avoided because too small positions are 

simply meaningless: the transaction costs would not be justified for tiny 

positions. 

Constraints on minimum and maximum participation are: 

  and  for all i with  

where: 

• Lb  represents the lower bound. 

• Ub represents the upper bound. 

Both lb and ub are represented by a number comprised between zero and one, moreover 

it is considered the absolute values of u and l since the aim of restrictions is not avoid 

the short selling but it is rather avoid large or small positions either positive or negative. 

Furthermore, without the absolute value a constraint on the maximum number of stocks 

in the portfolio should be included. this happen because the maximum number of stocks 

is limited by the lower bound 𝑚𝑎𝑥. 𝑛 =
1

𝑙𝑏
  and by the upper bound  𝑚𝑖𝑛. 𝑛 =

1

𝑢𝑏
. 

However, this constrain will not be presented since it is not used in this paper. 

The lower an upper bound constraints can be transformed into a violation applicable to 

exact penalties in the following way: 

 𝑚𝑎𝑥(0, (|𝑥𝑖| − 𝑢𝑏))                                           𝑚𝑎𝑥(0, 𝑙𝑏 − |𝑥𝑖|))                                       

Where the results negatively impact on the fitness function if and only if X is greater 

than the upper bound or smaller than the lower bound. 
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At the end of this discussion about the set of constrains that we have applied to the PSO 

algorithm we can summarize in a formula what will be the fitness function of our 

model:  

𝑓(𝑥) = 𝑚𝑖𝑛 {𝑟𝑖𝑠𝑘 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

+ 𝜀[| ∑ 𝑥𝑖 − 1|

𝑛

𝑖=1

+ 𝑚𝑎𝑥(0, ∑ 𝑥𝑖 ∗ 𝑟̅ − 𝜋)

𝑛

𝑖=1

+ ∑ 𝑚𝑎𝑥(0, |𝑥𝑖| − 𝑢𝑏) + ∑ 𝑚𝑎𝑥(0, 𝑙𝑏 − |𝑥𝑖|)

𝑛

𝑖=1

𝑛

𝑖=1

} 

 

remembering that its aim is reduce the risk while obtaining a return which is equal or 

greater than a certain value without take position larger than ub and smaller than lb.
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CHAPTER 4 
CASE STUDY AND METHODOLOGY 

 
The aim of this paper is to compare the results of different portfolios obtained by the 

PSO of different risk measures in order to understand if one of these can be considered 

better than the others. 

In the attempt to reach this goal, the selected portfolios shall be evaluated in the same 

periods and starting from the same assumptions, Moreover, a set of considerations need 

to be done: 

1. multiperiod observations are mandatory: indeed, it may happen that in a 

relatively quiet or growing period a risk measure Performs better than the others 

while in a recession period another (being more conservative) obtains better 

results. 

2. the results cannot be evaluated only on a performance\return basis, but other 

indicators are needed to understand the true risk reward trade off. Clearly, it 

doesn't make any sense compare the different risk measures we used to compute 

the optimal portfolios Since they start from different assumptions, hence other 

indexes will be introduced. 

3. The PSO’s parameters, that we decided to use in the computation of the optimal 

portfolios, influence the final results. 

4. the results are only indicative: even if large samples and statistical methods are 

implemented, what happened in the past may not be indicative for what will 

happen in the future. 

 

 

 

 



Chapter III 
 
 

 
 

58 
 

4.1. Methodology on the samples 

The method we will use for the risk measures evaluations is the classical "event studies" 

for economic evaluations. Practically, it consists into divide the data in two samples: "in 

the sample data" and "out of the sample data" divided by the event. In the first sample 

the “Normal Returns” are computed while in the second one this Normal Returns are 

confronted with the actual returns to get if there is stationarity or, in other words, if 

there is presence of abnormal returns.

 

When studying the performance of optimal portfolios, the approach is a little bit 

different: Data inside the sample are used to compute the optimal portfolio following 

the rules of the different risk measures’ fitness function while, data “out of the sample” 

are used to evaluate the performance of the optimal portfolios. The reasonings behind 

this method are based on the theoretical repetitiveness in the behaviours of the stock 

market: if the periods "in the sample" and "out of the sample "are not too long and they 

are closed one with the other, the optimal portfolios should keep their "optimal features" 

in both periods. Clearly, it is only a theoretical point of view, since it doesn't take into 

consideration that events such as crisis, external information, institutional breaks, 

government interventions, etcetera... may affect the market. Anyway, "out of the 

sample" period can be seen as virtual future where we can test if the optimal portfolios 

behave in the same way they did in the sample period. The data on which we rely are 

the closing prices of the 30 stocks that compose the Italian index FTSE MIB57. So, we 

rely on data on a daily basis, the reasons for this decision are simple: having to deal 

with long periods data with high frequencies are useless because a rational investor, 

differently from a trader, is interested into hold his\her portfolio for at least the medium 

 
57 It is an Italian weighted index: Each stock inside the index has a specific weight which depends on its 
capitalization. It is composed by the 30 biggest (more capitalized) firms of the Italian stock market. 
Before 2009 its name was MIB30. 
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term58. Moreover, stocks prices on a daily basis are easy to find. Data were gathered in 

the period 01/01/2006-01/01/2021, and they concern the closing price of the 30’s stocks 

of the FTSE MIB. Since the FTSE MIB composition depends on the capitalizations of 

the Italian stock market’ firms, which are clearly variable, it has changed during time. 

Hence, the data we gathered pertains to 2 different FTSE MIB as shown in the table 

behind: 

 

Table 1 Composition of the FTSE MIB during different years 

 

 
58 Medium term is a generic definition, usually it can be interpreted as one year or more. 

FTSE MIB 2006-2009 FTSE MIB 2014-2021

A2A S.p.A. Amplifon S.p.A.

Amplifon S.p.A. Assicurazioni Generali

Assicurazioni Generali Atlantia SpA

Atlantia SpA Azimut Holding S.p.A.

Autogrill S.p.A. Banca Mediolanum S.p.A.

Azimut Holding S.p.A. Banco BPM S.p.A.

Banca Mediolanum S.p.A. BPER Banca SpA

Banca Monte dei Paschi di Siena S.p.A.CNH Industrial N.V.

Banco BPM S.p.A. Davide Campari-Milano N.V.

BPER Banca SpA DiaSorin S.p.A.

Buzzi Unicem Spa Eni S.p.A.

Campari - Milano S.p.A. Ferrari N.V.

Enel S.p.A. FinecoBank Banca Fineco S.p.A.

Eni S.p.A. Interpump Group SpA

Exos N.V. Italgas S.p.A.

Geox S.p.A. Leonardo S.p.a.

Interpump Group SpA Mediobanca Banca S.p.A.

Intesa Sanpaolo S.p.A. Moncler S.p.A.

Leonardo S.p.a. Pirelli & C. S.p.A.

Mediobanca Banca S.p.A. Poste Italiane S.p.A.

Recordati Industria Chimica S.p.A. Prysmian S.p.A.

Saipem S.P.A. Recordati Industria Chimica S.p.A.

Snam S.p.A. Saipem S.P.A.

Stellantis N.V. Snam S.p.A.

STMicroelectronics N.V. STMicroelectronics N.V.

Telecom Italia SpA Telecom Italia SpA

Tenaris S.A. Tenaris S.A.

Terna S.P.A. Terna S.P.A.

UniCredit S.p.A. UniCredit S.p.A.

Unipol Gruppo S.p.A. Unipol Gruppo S.p.A.
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The firms highlighted in yellow were comprised in the 2006’ FTSE MIB but not in the 

2014’s one; while for the firms highlighted in green is true the vice versa.  

To be coherent with what we said at the beginning of this chapter about the necessary 

evaluation in times that are substantially different, 3 diverse periods will be evaluated. 

the first period starts the 1st of January 2006 and it ends the 17st of December 2008, the 

second starts 1st of January 2014 and it ends the 1st of January 2017 while the last one 

start the 1st of January 2018 and it ends the first of January 202159. 

The period's choice has been undertaken considering that the former and the latter were 

trouble periods since in the first case there where the Lehman Brothers default and the 

sequent financial crisis while in the second one, due to the pandemic outbreak, the 

world economic suffered a huge shock. The period in the middle instead can, somehow, 

represents a relatively quiet period. The sample periods' length was set equal for the 

three cases, and it will last the two third of the total observation days (two years), 

consequently the evaluation period (Virtual future) was set Equal to 1/3(one year). 

 

 

 

 

 

 

 

 

 

This decision, made in the light of the fact that the two subsamples shall be sufficiently 

long and consecutive, consents to satisfy the intentions of the general rational investors. 

 
59 Clearly the composition of the FTSE MIB is changed during the years. 

Period 

n. 

SAMPLE PERIODS  

(Start-end) 

OUT OF THE SAMPLE 

PERIODS (Start-end) 

1 1st January 2006-20th December 

2008 

 20thDecember2008-19th 

December 2008 

2 1st January 2014-1st January 2016 1st January 2016–1st January 

2017 

3 1st January 2018-1st January 2020 1st January 2020-1st January 

2021 
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Clearly, the closing prices need to be transformed into daily returns for simple 

comparative reasons.60 In the attempt to be as consistent as possible we choose to use 

the logarithmic returns rather than then normal return since, the observations over the 

prices are continuous. This means that the principles which rules over their computation 

are the ones of the continuous compounding61. 

 

Mathematically, the logarithmic returns can be expressed as: 𝑅𝑖,𝑡 = 𝑙𝑛(
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
) 

Where Pi,t and Pi,t-1 represent, respectively ,the price of the i-th stock at the time T and T 

minus 1 

. 

4.2 Index as performance measures 

 

Since various risk measures have been implemented in the particle swarm optimization 

algorithm in order to compute the optimal portfolios, the results they gave in the out of 

the sample periods are not completely and directly compatible. This depends on how the 

risk measures are constructed: for example, given a certain alpha the expected shortfall 

will be always bigger (in absolute value) than the value at risk; the same would happen 

if we took in consideration the shortfall deviation risk or the entropic var. 

Clearly, we could decide that one of the risk measures we used to create the optimal 

portfolios is our risk index; unfortunately, following this way the optimal portfolios 

constructed with the decided risk measure would certainly perform (in terms of risk) 

better than the others. Hence, we cannot compare the risk measures one with the others 

nor we can pick just one of them. That's the reason why we decided to implement a set 

of new measures as indexes for the risk of the optimal portfolios in the out of the sample 

 
60 returns are expressed in percentage while prices are not comparable. 
61 in the continuous compounding Pt=Pt-1*ert 
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periods. For the reasons will see in the next chapter these measures are Sharpe ratio, 

Sortino ratio, Farinelli Tibletti ratio and Traynor ratio. 

 

4.3 Sharpe ratio and Sortino ratio 

The Sharpe ratio is one of the most famous and widespread performance index for 

portfolio evaluations. It was named after the 1990 Nobel Price William Sharpe. 

The idea that Sharpe developed in 1966 is based one the “reward-to-volatility” concept: 

It can be summarized in the question “how many units of risk should I take in order to 

obtain a unit of reward?”. 

Since we are going to use this index for portfolio evaluation we will present only the ex-

post formulation, remembering that all the following indexes can be used for portfolios 

constructions as well62. 

 𝑆ℎ𝑎𝑟𝑝𝑒 =
𝑟𝑝−𝑟𝑓

𝜎𝑝
 

where: 

• Rp is the portfolio return in the observed period, computed as the mean of the 

daily returns. 

• Rf is the risk-free return, it is nothing but the return of an asset that has no risk.63 

• Sigma is the standard deviation of the portfolio. 

The Sharpe ratio strength is its simplicity, it is computable without any assumption on 

the source of profitability only knowing the returns’ time series of the portfolio. 

Moreover, it is easy to understand: Ceteris paribus, a portfolio with a higher Sharpe 

ratio is preferable to another with a lower one. Unfortunately, such a simplicity comes 

with some important drawbacks: 

 
62 It is sufficient to substitute the returns with their expectation in order to compute the ex-ante sharpe 
ratio. 
63 It is generally assumed to be a bond issued by Governments, such as the American treasury bond or 
the Italian BTP. 
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1. If the Sharpe ratio is negative when the variance increases its value decrease 

conducting to the wrong conclusion that a higher variability can be safer. 

2. The results of the Sharpe ratio are clearly scalars, they are not easily 

comparable. For example, how much better is a Sharpe ratio of 0.5 then one of 

0.1? 

3. It is hard to find the true rich risk-free rate although it is generally assumed to be 

interest rate of the treasury bonds. 

4. It can be easily manipulated: for illiquid assets their prices, and consequently 

their returns, can rapidly increase without the true possibility of cash out. This 

would lead Sharpe ratio to increase as well indicating a safer position even if it 

is not the case. the most famous example is the Ponzi scheme.64 

5. The denominator of the formula is the standard deviation and, as we know, it 

considers both downside risk and upside potential, hence the eventual presence 

of positive skewness will decrease the Sharpe ratio. 

For what concern the drawbacks 3 and 5 a possible solution has been developed by 

Frank Sortino: the Sortino ratio.  At the first sight it can be seen as a direct evolution 

and improvement of the Sharpe ratio. 

Mathematically, it can be expressed as: 

 𝑆𝑜𝑟𝑡𝑖𝑛𝑜 =  
𝑅𝑝−𝑇𝑟

𝑇𝐷𝐷
 

where: 

• Rp is the portfolio return. 

 
64 A Ponzi scheme is a form of fraud that lures investors and pays profits to earlier investors with funds 
from more recent investors 
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• Tr is the target return: it substitutes the hardly definable risk-free rate. it is 

nothing but the required rate of return for the investment strategy under 

consideration65. 

• TDD is the target deviation return: it solves the problem of considering the 

positive skewness as negative for a portfolio. Practically, it computes the 

standard deviation only for returns that are smaller than the target return. 

𝑇𝐷𝐷 = √
1

𝑛
∑(𝑀𝑖𝑛(0, 𝑥𝑖 − 𝑇))2

𝑛

𝑖=1

 

 

for what concern drawback number 4 it can be ignored since the portfolio we are 

looking for would be composed by the 30th biggest firms of the Italian stock market 

hence illiquidity is unlikely. Unfortunately, drawbacks number one and #2 aren't easily 

surmountable. 

 4.4 Jensen’s alpha and Treynor ratio 

 

Jensen’s alpha, Treynor ratio and Sharpe ratio derive from the well know capital asset 

pricing model (CAPM). CAPM is a theory developed to price assets, it states that 

expected value of an asset or a portfolio should depend on the risk-free rate and, 

partially, on the benchmark66. So, if the market was efficient the expected returns of 

stock or a portfolio could be expressed as:  

𝐸[𝑅𝑖] = 𝑅𝑓 + 𝛽[𝑅𝑚 − 𝑅𝑓] 

 
65 It can be set by the investor depending on his willingness, only in the particular case in which Tr=rf the 
numerator of the equation becomes equal to the numerator of the Sharpe Ratio. in its earlier 
formulation the target return’s name was minimum acceptable return. 
66 risk free rate and benchmark are generally assumed to be the rate of treasury bonds and the return of 
a large stock index respectively. this is due to the fact that a large stock index such as the standard and 
poor 500 can be seen representative of the stock market. 
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where Rm represents the return of the market over the period, Rf is the return of the 

risk-free asset over the period, E[Ri] Is the expected return of the considered asset or 

portfolio and beta represents the correlation between Ri and the market. This model, by 

assuming the existence of efficient markets, tells us that there is no room for arbitrages 

since every stock’s returns is based only on the risk free rate and on the correlation 

between the market and the asset. Making some simple modifications, it is possible 

from this model derive the so-called equilibrium relation: 𝑟𝑖 = 𝛼𝑖 + 𝛽𝑟𝑚 + 𝜀𝑖 

where: 

• α represents the influence that the stock has on its own returns, as we have 

already seen it should not be statistically different from zero since the market are 

assumed to be efficient. Actually, it is always different from zero. 

• βrm This part of the formula explains the dependence the returns of the stock 

have with respect to the benchmark. Mathematically, it is the covariance 

between the stock’s returns and the benchmark’s returns everything divided by 

the variance of the benchmark’s returns. 

• ϵ Represent the eventual error terms. 

It is precisely from this formula that two of the more used performance indexes have 

been derived: the former, Jensen’s alpha, is nothing but the capital asset pricing model’s 

alpha; practically, it represents the percentage excess return earned in addition to the 

required average return over the period. The latter is the Traynor’s ratio which 

represents the percentage of abnormal return earned the unit of systematic risk. 

𝑇𝑅𝑖 =
𝛼𝑖

𝛽𝑖
 

It is worth to note that the CAPM and the Treynor’s ratio (not the Jensen’s alpha) take 

into consideration both TDs idiosyncratic risk and systematic risk67. This is a huge 

 
67 Risks of price changes due to the unique circumstances of a specific security, as opposed to the overall 
market risk (systematic risk), are called idiosyncratic risks. This specific risk, also called unsystematic, can 
be nullified out of a portfolio through diversification 
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difference with respect to the Sharpe and  Sortino ratio which are based on a “more 

simple” total risk. 

The four indexes presented so far share a common characteristic, they are based on 

gaussian assumptions. Sharpe Ratio has, in its denominator, the standard deviation 

which is the square root of the variance: a measure that is meaningful only if the 

underlying distribution is elliptical. 

For the Sortino ratio the discourse is similar, its denominator’s component (target 

deviation risk) is pretty similar to the standard deviation. 

And, for what concern Jensen’s alpha and Treynor ratio we can state that they are based 

on Normality assumptions since the theory from which they derive is based on the 

Gaussian assumptions as well.  Hence, these indexes may be in disagreement with what 

we said in the previous chapters about the non-normality of the returns’ distributions: if 

these probability distributions are different from the elliptical all the performance 

indexes presented so far are useless. The last performance index that will be presented is 

Farinelli and Tibletti Ratio and it is untied from probability’s assumptions, however for 

the sake of completeness and correctness some simple normality tests have been 

performed in order to understand if all the other indexes can be properly used to 

compare the results of the optimal portfolios. The results are presented in the appendix. 

 

4.5 Farinelli Tibletti Ratio 

 

As demonstrated in the appendix, normality assumptions should be left behind: 

behaviours such as Skewness and Kurtosis are always present in our sets of data. 

Hence, performance indexes such as Sharpe or Sortino Ratio become meaningless 

because the underling probability functions don’t behave like a normal (nor as an 

elliptical). The reason for their uselessness depends on the fact that they are based on a 

two-side risk measure (standard deviation) which captures, both, upside risk and 
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downside potential at the same moment. As is widely demonstrated in the appendix the 

2 major concerns when dealing whit return’s distributions that don’t have a gaussian 

behaviour are: 

1. Asymmetry with respect to the mean returns (Skewness) 

2. Presence of large deviations (extreme events) in the tails, especially in the left 

one (Kurtosis). 

The impact of these 2 concerns can be evaluated throughout the use of the so-called 

one-side risk moments: they are nothing but coherent risk measures that are 

representative of the random variable’s excess returns68.  

The left-side moment can be expressed as: 𝜌−,𝑏
𝑝

(𝑋) = 𝐸
1

𝑞{[(𝑋 − 𝑏)−]𝑞} 

The right-side moment can be expressed as:  𝜌+,𝑏
𝑝

(𝑋) = 𝐸
1

𝑝{[(𝑋 − 𝑏)+]𝑝} 

 

Starting from these assumptions Farinelli and Tibletti were able to build a new coherent 

risk measure for portfolio evaluations, this risk measure is able to give different weights 

to “good” and “bad” volatility without any assumptions on the return’s distribution. 

This risk measure can be mathematically written as: 

𝜙𝑏
𝑝,𝑞

(𝑋) =
𝐸

1
𝑝{[(𝑋 − 𝑏)+]𝑝}

𝐸
1
𝑞{[(𝑋 − 𝑏)−]𝑞}

 

It is nothing but the weighted ratio between positive and negative deviation from the 

benchmark69; p and q serve as weights for the investor’s preferences: 

The more the investor is risk averse the more q should be elevated since extreme events 

should affect him/her more. The more the investor is interested in a positive skewness 

(“higher probability of positive returns”) the more p should be high. 

It is worth to remember a particular case of the Farinelli-Tibletti ratio, the omega ratio. 

 
68 The returns above or below a certain benchmark. 
69 Without any loss of generality, we can assume the benchmark equal to the mean of the distribution.  
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In the Omega ratio p=q=1 and it represents nothing but the ratio between expected gains 

and expected loss. 

𝛺𝑏(𝑋) =
𝐸[(𝑋 − 𝑏)+]

𝐸[(𝑋 − 𝑏)−]
 

 

 

4.6 PSO parameters 

 

As mentioned earlier the decisions about the parameters influence the results and they 

need to be taken carefully. 

In order to make a fair comparison between the different risk measures the common 

parameters must be equal; in particular I’m speaking about the PSO’s parameters: 

• Number of interactions:250 

• Number of particles: 50 

• Epsilon: 0.0001 

• Inertia Weight ω: 0.7298  

• Individual acceleration coefficient c1:1.49618  

• Social acceleration coefficient c2:1.49618 

Moreover, the constrains parameters shall be equal as well. They are: 

• Desired return π:0.0002 per days, which means an annual return of 5% (circa).70 

• Minimum and maximum participation in a single share:  0.02 and 0.2 

respectively. 

• α:  the level of significance is common to all the three risk measures, and it has 

been set to 0.95. 

 
70 The computation has been done using compound interest and assuming 252 opening days a year. 
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Finally, the problem specific parameters have been decided as well. In particular, for 

what concern the Shortfall deviation risk, β and p have been set equal to 0.2 and 2 

respectively.71While for the entropic Var, the t-Var is equal to 1.72

 
71 The decision derives to the fact that I have assumed that the general investor is risk averse, hence its 
β is small.  
72 As advised by the author Ahmadi-Javid (2017) in its paper on portfolio optimization. 
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CHAPTER 5 

RESULTS 
As mentioned in the previous chapter, three different periods have been chosen for the 

comparison. In each period and for each risk measure the PSO algorithm is run 5 times; 

this means that, for each risk measures, five optimal portfolios will be constructed. 

Then, for each risk measures, only one portfolio has been selected using as criteria the 

portfolio’s fitness value. 

In this way for each period only three portfolios have been chosen each one 

representative of a different risk measure (entropic VaR, Expected Shortfall, Shortfall 

Deviation Risk). Finally, using the indexes we presented in the previous chapter, the 

optimal portfolios have been compared. 

5.1 First period 

 

The first period starting from the first of January 2006 and lasting until the 20th of 

December 2008 is divided into a 12-month long sample period and a 6-month long out-

of-the-sample period. 

PSO has been applied in order to solve portfolio selection problems as presented by 

Harry Markowitz; Mean-Expected shortfall, Mean-Shortfall deviation Risk and Mean-

Entropic VaR have been used instead of Mean-Variance as criteria for the selections.  

In the following tables are shown the results of the PSO and the comparison between 

the optimal portfolios, In the tables are reported the value of the particles (portfolios) 

which reach the best fitness value and the violations of the constrains as well:  

Table 2. PSO results on Mean-Expected shortfall optimization problem, 2006-2009 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 110,49896 4,58636 0,01283 4,73367 17,164155 

Return constrains 0 0 0 0 0 

Budget constrains 5,98E-09 6,37E-12 0 2,5E-13 2E-14 

Min. investment 

constrains 0,01105 0,00046 0 0,00047 0,00171 

Max. investment 

constrains 0 0 0 0 0 
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Since we are in front of a minimization problem, the lower the value of the fitness 

function the better is the optimal portfolio in terms of constrain violations73: only if the 

constrain is not violated they are equal to zero and the fitness function can reach its 

minimum only if all the constrains are not violated.74 It is straightforward to note that 

the first run has a high value of the fitness function with respect to the others, hence, it 

cannot be the best solution, this high value is due to the fact that it strongly violates the 

minimum investment constrain. Run 2, 4 and 5 are good approximations of what the 

algorithm was searching since the fitness function is small and the constrains are equal 

to zero or really close to zero. However, run 4 is, for sure, the best solution of the 

optimization problem since it hasn’t violation on any of the constrains; this is 

highlighted by the fact that the fitness function is equal to the Expected Shortfall of the 

optimal portfolio. 

Table 3 . PSO results on Mean-Shortfall deviation risk optimization problem, 2006-2009 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 110,60244 0,01754 76,06154 13,74675 76,50440 

Return constrains 0 0 0 0 0 

Budget constrains 4,88E-15 2,22E-16 1,44E-15 9,61E-12 2,65E-12 

Min. investment 

constrains 0,01106 0 0,00760 0,00137 0,00765 

Max. investment 

constrains 0 0 0 0 0 
 

In this case (with the shortfall deviation risk as risk measure) is extremely evident 

which run has been selected as the best solution: all the constrains of the second run are, 

practically, equal to zero. 

 
 

 
74 The minimum value that the fitness function can assume vary every run and it is equal to the value of 
the optimal-portfolio risk measure. 
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Table 4. PSO results on Mean-Entropic VaR optimization problem, 2006-2009 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 123,45703 42,09697 86,15766 57,38787 8,30977 

Return constrains 0 0 0 0 0 

Budget constrains 2,51E-08 2,22E-08 3,52E-05 8,59E-06 2,91E-08 

Min. investment 

constrains 0,01230 0,00416 0,00853 0,00568 0,00078 

Max. investment 

constrains 0 0 0 0 0 
 

For what concern the last risk measure, the five run of the algorithm have not found a 

solution able to satisfy all the constrains. However, the fifth run can be taken as best 

solution’s good approximation since the constrains are not violated so much. 

In the end the three optimal portfolios are constructed as follow: 
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Table 5. Optimal portfolios 2006-2009 

 

The 3 portfolios so constructed were projected into the virtual future (out of the sample 

period) in order to study which one would have had the better behaviours. As discuss in 

the first part of this chapter, not only the returns were compared but also some 

performance indexes. 

 

Securities Expected Shorfall Shortfall Deviation Risk Entropic VaR

Atlantia S.p.a. 0,035 0,053 0,026

Recordati industria chimica 0,054 0,036 0,027

Interpump Group S.p.a. 0,024 0,038 0,02

Buzzi Unicem S.p.a. 0,028 0,023 0,024

Telecom Italia 0,028 0,022 0,025

Leonardo S.p.a. 0,029 0,06 0,066

A2A 0,034 0,033 0,023

Autogrill S.p.a. 0,026 0,02 0,045

Medio Banca 0,031 0,034 0,02

Banco monte dei paschi di Siena 0,039 0,02 0,04

Azimut holding S.p.a. 0,02 0,02 0,024

Assicurazioni generali 0,048 0,047 0,019

Stellantis S.p.a. 0,021 0,025 0,033

Campari 0,055 0,048 0,026

STMicroelectronics N.V. 0,033 0,031 0,033

Saipem S.p.a. 0,038 0,024 0,021

ENEL 0,046 0,023 0,039

Geox 0,048 0,027 0,047

Terna S.p.a. 0,034 0,03 0,031

Banca mediolanum S.p.a. 0,027 0,02 0,037

Ampifon S.p.a. 0,02 0,021 0,047

Unipol gruppo SPA 0,033 0,028 0,02

Intesa san Paolo 0,03 0,025 0,027

ENI 0,05 0,048 0,041

Unicredit 0,02 0,052 0,026

BPER Banca 0,02 0,039 0,029

Banco BPM 0,024 0,024 0,021

Tenaris S.p.a. 0,023 0,024 0,052

Snam S.p.a. 0,061 0,029 0,069

Exor N.V. 0,022 0,076 0,039
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Table 6. Comparison between the 3 optimal portfolios, 2006-2009 

  

Expected 

Shortfall  

Shortfall Deviation 

Risk Entropic VaR 

Daily returns -0,002264626 -0,002470505 -0,002454248 

Total return -0,568421193 -0,620096871 -0,61601627 

Standard 

deviation 0,008389573 0,009401976 0,008709013 

Sharpe ratio -0,274658685 -0,266980921 -0,286357448 

Sortino ratio -0,0422719211 -0,0444169021 -0,0473074062 

Farinelli 

Tibletti ratio 0,437828906 0,411554512 0,425278691 

Treynor ratio -0,07583852 -0,080798214 -0,085861735 

 

Finally, a graph showing the returns of each optimal portfolio if 10000 euro were 

invested. In order to have a better sight of the portfolios results in term of returns, the 

out-of the sample period was divided into 2 sub-parts, hence there are 2 graphs.  

 

Figure 1 Portfolios Value from an initial investment of 10000 euro; first half of 2008 
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Figure 2 Portfolios Value from an initial investment of 10000 euro; second half of 2008 

There is no evidence that one portfolio has outperformed the others in a serious way; 

all the portfolios had a strongly negative return in the period; anyway, for the second 

half of the year all the portfolios have outperformed the benchmark. Another 

noticeable think is the superior behaviour, in the end of the period, of the portfolio 

constructed using the expected shortfall as risk measure since it has not only a greater 

return but also better indexes results. For what concern the indexes the 3 portfolios 

behaved in a similar fashion. 

 

 

5.2 Second period  

 

The second period starting from the first of January 2014 and lasting until the 1st of 

January 2017 is divided into a 12-month long sample period and a 6-month long out-of-

the-sample period. 
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In the following tables are shown the results of the PSO and the comparison between 

the optimal portfolios, In the tables are reported the value of the particles (portfolios) 

which reach the best fitness value and the violations of the constrains as well:  

 

 

Table 6. PSO results on Mean-Expected shortfall optimization problem, 2014-2017 

 

In this period the PSO found optimal portfolios (under Mean-Expected Shortfall 

criteria) that, practically, did not violate any constrain. As in the previous cases the 

optimal portfolio has been selected using the fitness value criteria hence, the first 

portfolio has been chosen. 

 

Table 7 . PSO results on Mean-Shortfall deviation risk optimization problem, 2014-2017 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 0,03767 0,03763 0,03703 0,03788 0,03771 

Return constrains 0 0 0 0 0 

Budget constrains 2,98E-14 1,11E-16 6,00E-15 8,88E-16 3,06E-14 

Min. investment 

constrains 0 0 0 0 0 

Max. investment 

constrains 0 0 0 0 0 

 

As for the Mean-Expected Shortfall minimization problem, the PSO easily found five 

good and similar solutions for the optimal portfolios; the third has been selected as the 

best. 

 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 0,02797 0,02833 0,02900 0,02903 0,02908 

Return constrains 0 0   0 0 

Budget constrains 3E-15 9E-15 1,7E-14 1,3E-13 8E-14 

Min. investment 

constrains 0 0 0 0 0 

Max. investment 

constrains 0 0 0 0 0 
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Table 8. PSO results on Mean-Entropic VaR optimization problem, 2014-2017 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 0,40384 0,40925 0,39826 0,40042 0,39598 

Return constrains 0 0 0 0 0 

Budget constrains 2,22E-16 2,22E-16 1,11E-16 0,00E+00 2,22E-16 

Min. investment 

constrains 0 0 0 0 0 

Max. investment 

constrains 0 0 0 0 0 

 

The algorithm has found five good solutions, the third has been chosen as the best since 

its fitness value is the lowest. 

In the end the three optimal portfolios are constructed as follow: 

 

Table 9 Optimal portfolios 2014-2017 

 

Securities Expected Shorfall Shortfall Deviation Risk Entropic VaR

Atlantia S.p.a. 0,028 0,074 0,036

Recordati industria chimica 0,025 0,02 0,041

Interpump Group S.p.a. 0,036 0,042 0,032

Campari 0,055 0,125 0,029

Telecom Italia 0,032 0,028 0,024

Leonardo S.p.a. 0,034 0,02 0,058

Moncler S.p.a. 0,072 0,04 0,033

Medio Banca 0,022 0,04 0,033

Azimut holding S.p.a. 0,037 0,025 0,069

Generali 0,044 0,02 0,037

Snam S.p.a. 0,035 0,042 0,025

CNH industrial S.p.a. 0,029 0,029 0,06

STMicroelectronics N.V. 0,023 0,04 0,025

Saipem S.p.a. 0,045 0,057 0,039

Terna S.p.a. 0,085 0,031 0,043

Banca mediolanum S.p.a. 0,02 0,028 0,021

Diasorin S.p.a. 0,113 0,092 0,07

Amplifon S.p.a. 0,032 0,022 0,027

Prysmian S.p.a. 0,032 0,025 0,039

Unipol gruppo SPA 0,027 0,046 0,042

Eni 0,032 0,02 0,031

Unicredit 0,02 0,029 0,058

BPER Banca 0,02 0,04 0,055

Banco BPM 0,038 0,02 0,032

Tenaris S.p.a. 0,063 0,047 0,04
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The 3 portfolios so constructed75 were projected into the virtual future (out of the 

sample period) in order to study which one would have had the better behaviours. 

Table 10. Comparison between the 3 optimal portfolios, 2014-2017 

As for the first period, two graphs showing the returns of each optimal portfolio if 

10000 euro were invested. In order to have a better sight of the portfolios results in term 

of returns, the out-of the sample period was divided into 2 sub-parts, hence there are 2 

graphs.  

Figure 4 Portfolios Value from an initial investment of 10000 euro; first half of 2016 

 

 
75 The portfolios constructed in this period have less securities than the ones constructed in the others 
period, this is due to the fact that 5 securities listed in the FTSE Mib during the 2021 did not exist yet 
during the 2014. 
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  Expected Shortfall  Shortfall Deviation Risk Entropic VaR 

Daily returns -2,74481E-05 -1,40E-05 -0,000203142 

Total return -0,00697183 -0,003557193 -0,051598162 

Standard 

deviation 0,016738064 0,017323665 0,019615035 

Sharpe ratio -0,00398031 -0,003069745 -0,012353631 

Sortino ratio -3,75102E-05 -2,84E-05 -0,000117085 

Farinelli Tibletti 

ratio 0,372173347 0,345813531 0,356821686 

Treynor ratio 0,03570241 0,268742955 0,144372975 
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Figure 5. Portfolios Value from an initial investment of 10000 euro; second half of 2016 

 

As in the first period, all the portfolios obtained a negative return, although, in this case, 

smaller than the previous one. In terms of return all the portfolios constructed with 

coherent risk measures outperformed the benchmark while, watching to the other 

indexes, no one of the portfolios seems to behave strongly different from the others. 

For sure the worst portfolio is represented by the Entropic VaR since it has a return 

much lower than the other two and a higher standard deviation as well. It is not possible 

to state which one between the Expected Shortfall portfolio or the Shortfall deviation 

risk portfolio behaved better since the former obtained a slightly higher return while the 

latter had better indexes.  
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5.3 Third period   

 

The second period starting from the first of January 2014 and lasting until the 1st of 

January 2017 is divided into a 12-month long sample period and a 6-month long out-of-

the-sample period. 

In the following tables are shown the results of the PSO and the comparison between 

the optimal portfolios, In the tables are reported the value of the particles (portfolios) 

which reach the best fitness value and the violations of the constrains as well:  

Table 11 .PSO results on Mean-Expected Shortfall optimization problem, 2018-2021 

 

In this period the PSO did not find a good solution for the optimization problem, 

especially for what concern the run 2,3 and for 4 the budget constrain and the constrain 

on the minimum investment were violated (in some case strongly with a 2% or more of 

violation). The decision about the optimal portfolio to choose followed, as usual, the 

fitness value criteria, indeed the last portfolio (the one selected) has smaller constrains 

violation.  

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 57,63699 121,47178 219,95557 113,76152 466,38351 

Return constrains 0 0 0 0 0 

Budget constrains 3,89E-15 4,20E-09 3,39E-04 9,93E-09 2,47E-12 

Min. investment 

constrains 

0,0057606

4 

0,0121440

8 

0,0216533

4 

0,0113730

2 

0,0466349

9 

Max. investment 

constrains 0 0 0 0 0 
Table 12 .PSO results on Mean-Shortfall Deviation Risk optimization problem, 2018-2021 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 93,53366 226,66125 202,20399 231,86508 43,45683 

Return constrains 0 0 0 0 0 

Budget constrains 2,4E-09 7,5E-06 2,3E-10 0,000116 3,6E-06 

Min. investment 

constrains 0,009351 0,022656 0,020218 0,023069 0,00434 

Max. investment 

constrains 0 0 0 0 0 
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For what concern the optimal portfolio constructed following the Mean-Shortfall 

deviation Risk minimization problem the situation is analogous to the previous one: 

PSO didn’t find a good solution hence the best in terms of fitness value was selected. 

Table 13 PSO results on Mean-Entropic VaR optimization problem, 2018-2021 

OUTPUTS Run 1 Run 2 Run 3 Run 4 Run 5 

Best fitness value 0,36553 55,76002 41,03038 0,42140 50,97818 

Return constrains 0 0 0 0 0 

Budget constrains 2,22E-16 1,63E-08 1,85E-04 6,89E-07 1,72E-05 

Min. investment 

constrains 0 0,00553 0,00387 0 0,00503 

Max. investment 

constrains 0 0 0 0 0 

Finally, the PSO applied to Mean-Entropic VaR optimization problem obtained 

excellent results indeed, it found two portfolios (run 1 and run 4) with only a tiny 

violation on the budget constrain. The first run has been chosen as the best since its 

violation and fitness are smaller. In the end the three optimal portfolios are constructed 

as follow: 
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Table 14 Optimal portfolios 2018-2021 

The 3 portfolios so constructed76 were projected into the virtual future (out of the 

sample period) in order to study which one would have had the better behaviours. 

  Expected Shortfall  Shortfall Deviation Risk Entropic VaR 

Daily returns -0,000336171 -0,000216455 -1,84799E-06 

Total return -0,085051167 -0,05476324 -0,000467543 

Standard 
deviation 0,02245038 0,021874966 0,02102919 

Sharpe ratio -0,016725774 -0,01169304 -0,001958105 

Sortino ratio -0,000601266 -0,000390284 -0,00067846533825 

Farinelli Tibletti 
ratio 0,640647322 0,611215007 0,761945264 

Treynor ratio 0,029511144 0,021926138 -0,00347343 
Table 15 Comparison between the 3 optimal portfolios, 2018-2021 

 
76 The portfolios constructed in this period have less securities than the ones constructed in the others 
period, this is due to the fact that 5 securities listed in the FTSE Mib during the 2021 did not exist yet 
during the 2014. 

Securities Expected Shorfall Shortfall Deviation Risk Entropic VaR

Atlantia SpA 0,03 0,02 0,046

Recordati Industria Chimica S.p.A. 0,043 0,059 0,068

Interpump Group SpA 0,033 0,051 0,071

Davide Campari-Milano N.V. 0,043 0,019 0,028

Telecom Italia SpA 0,05 0,029 0,041

Leonardo S.p.a. 0,061 0,02 0,033

Moncler S.p.A. 0,033 0,024 0,026

Ferrari N.V. 0,039 0,058 0,028

Mediobanca Banca S.p.A. 0,045 0,039 0,033

Italgas S.p.A. 0,029 0,024 0,043

Azimut Holding S.p.A. 0,033 0,04 0,026

Assicurazioni Generali 0,028 0,034 0,048

Snam S.p.A. 0,046 0,023 0,024

CNH Industrial N.V. 0,049 0,021 -0,059

STMicroelectronics N.V. 0,051 0,057 0,096

Saipem SpA 0,024 0,028 0,021

Poste Italiane S.p.A. 0,02 0,02 0,063

FinecoBank Banca Fineco S.p.A. 0,024 0,036 0,067

Terna 0,031 0,036 0,034

Banca Mediolanum S.p.A. 0,047 0,082 0,068

DiaSorin S.p.A. 0,027 0,035 0,039

Amplifon S.p.A. 0,026 0,021 0,03

Prysmian S.p.A. 0,02 0,022 0,044

Unipol Gruppo S.p.A. 0,022 0,015 0,027

Pirelli & C. S.p.A. 0,029 0,047 0,028

Eni S.p.A. 0,022 0,028 -0,11

UniCredit S.p.A. 0,022 0,022 0,046

BPER Banca SpA 0,031 0,036 0,034

Banco BPM S.p.A. 0,026 0,034 0,028

Tenaris S.A. 0,026 0,02 0,025
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Finally, as for the other periods, two graphs showing the returns of each optimal 

portfolio if 10000 euro were invested. In order to have a better sight of the portfolios 

results in term of returns, the out-of the sample period was divided into 2 sub-parts, 

hence there are 2 graphs.  

 

Figure 6 Portfolios Value from an initial investment of 10000 euro; first half 2020 

 

 

Figure 7 Portfolios Value from an initial investment of 10000 euro; second half 2020 
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Although for the first quarter of the 2020 all the portfolios performed well, at the end of 

the year, they all ended with a loss: this is, probably, due to the fact that in the 2020 

second quarter there was the Covid-19 outbreak. It is interest to note that after the start 

of the pandemic, and especially in the 2020 second half, the portfolio constructed using 

the Mean-Entropic VaR criteria outperformed all the others and the benchmark as well. 

 

5.4 Comparison with Markowitz portfolios 

For the sake of completeness, a comparison with Mean-Variance optimal portfolios will 

be done as well. The approach in computing the Mean-Variance optimal portfolio is 

slightly different from the same computation for the other risk measures; This descends 

from the fact that the Mean-Variance optimization problem has close form77 hence it is 

not necessary to utilize the Particle Swarm Optimization. 

For what concern the comparison, only the worst78 portfolio of each period will be 

confronted with the Mean-Variance one; this choice has been undertaken to 

demonstrated that, even in the worst case, portfolios constructed with Mean-coherent 

risk measure criteria outperformed the ones built with the Mean-Variance criteria. 

The comparison will be done presenting a table similar to the ones presented in the 

previous chapter and using 3 graphs that will show the returns of each optimal portfolio 

if 10000 euro were invested at the begging of each out of the sample period. 

 Shortfall deviation risk Variance  

Daily returns -0,002470505 -0,002475018 

Total return -0,620096871 -0,621229465 

Std. dev. 0,009401976 0,012763839 

Sharpe ratio -0,266980921 -0,193763792 
Table 16 Comparison between the Expected shortfall and Variance Portfolio, 2006-2009 

 
77 For more information see Chapter 2 
78 In terms of return during the out of the sample period 
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Figure 8 .Portfolios Value from an initial investment of 10000 euro; 2008 

In the first out of the sample period (2008), the portfolio computed using the coherent 

risk measure outperformed the one calculated with the mean-variance criteria even if for 

a small amount. This behaviour is coherent with what we saw in the previous chapters: 

Shortfall deviation risk is a more conservative risk measure than the Variance, hence the 

portfolios constructed using this coherent risk measure as a proxy of risk are safer.   

  Entropic VaR  Variance  

Daily returns -0,000203142 3,16992E-05 

Total return -0,051598162 0,00801991 

Std. dev. 0,019615035                0,018152916 

Sharpe ratio -0,012353631 0,001848036 

Table 17 Comparison between the Entropic VaR  and Variance Portfolio, 2014-2017 
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Figure 9 Portfolios Value from an initial investment of 10000 euro; 2017 

 

Even in this period (2014-2017), theory is confirmed by practise: In a relatively calm 

and growing period a portfolio constructed with a riskier risk measure tends to lead to a 

higher return than a portfolio constructed with a conservative one.  

 

  Expected Shortfall  Variance  

Daily returns -0,000336171 -0,000897271 

Total return -0,085051167 -0,227009653 

Std. dev. 0,02245038 0,022234336 

Sharpe ratio -0,016725774 -0,040272098 
Table 18 Comparison between the Expected shortfall and Variance Portfolio, 2018-2021 
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Figure 10 Portfolios Value from an initial investment of 10000 euro; 2020 

In the first part of this period (2020) in which the portfolios results were very close, but, 

after the covid 19 outbreak the Expected shortfall portfolio outperformed the Variance 

one. 
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CONCLUSION 

 

The aim of this thesis was to establish whether, among the three chosen risk measures 

(entropic Var, expected shortfall and shortfall deviation risk), one could be established 

superior to the others for what concern the construction of financial portfolios following 

the Modern Portfolio Theory; In order to have results as general as possible, data of 

three periods were taken into consideration: two periods that includes a major financial 

crisis (2008’s financial crisis, covid-19 outbreak) and a period of relative calm in the 

financial markets. The periods were in turn divided into a period for the computations, 

where Particle Swarm Optimization was used to calculate the optimal composition of 

the portfolios (sample period) and in an evaluation period (out of the sample period), 

where the optimal portfolios were projected into a virtual future. In order to establish if 

one of these risk measure can be considered superior to the others in the construction of 

optimal portfolios, the results obtained by the optimal portfolios in the virtual future 

were compared both in terms of return and in terms of risk using the indices proposed in 

the 4th chapter. 

As for the use of the PSO in the computation of the minimization problems, it can be 

said that the use of the algorithm has been effective, indeed, the only constraint that is 

violated in almost all the particles ( portfolios) is the one on minimum quotas but, it is 

violated to such a small extent that it is never significant, moreover, even the optimal 

portfolio with a high fitness value do not show significant violations of the constraints. 

For what concern the returns int the out-of the sample period, it is possible to state that 

the portfolio generated by the coherent risk measures has always outperformed the 

benchmark although they never had positive results. On the contrary, it is not possible 

to establish if  there is a risk measure better than the other nor in terms of risk nor in 

terms of returns. This happened for two reasons: 
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1. The risk measure which generates the best portfolio among the optimal portfolios is 

different for each period. 

2. Since the risk measures that generates the optimal portfolio similar one with the 

others, the portfolios results tend to be similar as well. 

What, instead, is confirmed it’s the effectiveness of the coherent risk measures with 

regard to unexpected shock conditions: both in the period 2008 and in the period 2020 

the portfolios generated by the coherent risk measures outperformed the benchmark and 

the portfolio generated with the Mean-variance model Proving the theory that this kind 

of risk measure is more conservative. 

A last important observation on the results concerns the original Markowitz Model: 

even if the use of Variance as a proxy of risk is wrong (as demonstrated in the first 

chapter), the results obtained by the Markowitz model are not so bad. In 2 over the 3 

periods, it outperformed the Benchmark and in one of this 2 cases it outperformed all 

the other risk measures as well.  This indicates that the Markowitz model is not that 

outdated especially because it grants a certain level of diversification which generally, 

permits, to safeguard the portfolios result in turbulence periods. 
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Appendix A 

A.1 Demonstration that a measure of dispersion may not 

respect all the coherence axioms 

Assume X and Y are returns from two different Portfolios. Let X = c * B with B being a 

Bernoulli distributed random variable and c > 0 being a constant. In other words, the 

return of portfolio X is +c or -c. The portfolio might for example consist of some kind 

of digital option79. 

 

The Y portfolio shall consist of 2 digital options of the same kind and some fixed 

income position, so that the return is given by Y = 2 * X + 2 * c. This means, if X is +c 

than Y is 4 * c and if X is -c than Y is 0. 

Clearly X < Y for all possible outcomes. We also know that var(Y) = 4 * var(X) > 

var(X) 

In other words,Y dominates X, but the risk of Y measured by the variance would be 

greater than the risk of X. 

this is a contradiction to the monotonicity property.

 
79 A digital option is a form of option that allows traders to manually set a strike price. The digital option 

provides the traders with a fixed payout if the market price of the underlying asset exceeds the strike price 

while if the underlying asset market price goes below the strike price the trader loses the initial 

investment. 

 

https://corporatefinanceinstitute.com/resources/knowledge/trading-investing/strike-price/
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A.2 Normality test 

As we have seen, some of the performance indexes we decided to use in the portfolios’ 

evaluation are based on the gaussian assumptions80. To be more precise the ones based 

on normality or elliptical assumptions are Sharpe Ratio, Sortino Ratio, Jensen’s alpha 

and Treynor Ratio. 

Hence, it is fundamental to know if the underlying distributions behave like a normal or, 

on the other hand, understand if and how it’s possible to use these indexes. 

In the attempt to reach our aim some simple tests need to be performed: Normality Test. 

In these simple cases normality tests are used to “compare” the returns’ distributions 

with the Normal distribution in order to grant, with a certain likelihood, that the returns’ 

distributions would be equal (or very similar) to a normal distribution. 

The tests shall be performed on the returns in the evaluation periods since these periods 

are the ones where the performances are computed so, the ones where the performance 

indexes have been utilized. 

Moreover, it is not sufficient to perform the tests on the optimal portfolios generated by 

a single risk measure hence, they need to be done on a series of portfolios created by all 

the three risk measures (Expected Shortfall, Shorfall deviation risk and Entropic VaR). 

 

Test 

 

The first and “easiest” test that can be done in order to assess if a probability 

distribution behave like a normal is the comparison between the histogram of the 

interested probability distribution and the gaussian. It is a graphical test where the 

probability density function of a normal distribution is superimposed on the p.d.f. of the 

interested distribution. Practically, in order to create a lower and an upper bound for the 

 
80 To be more precise they are based on elliptical distribution assumptions. 
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bins of the histogram the mean and the variance of the return’s distribution are 

computed, and the bounds are calculated as: 

 𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 𝜇 − 𝑋 ∗ 𝜎 

 𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 𝜇 + 𝑋 ∗ 𝜎 

 

Where X depends on the authors’ interest on the tails of the distribution (in this paper it 

is considered equal to four). 

Then a gaussian distribution with the computed mean and standard deviation is 

generated and finally, the range between the two bounds is divided in bins (in this paper 

it is considered equal to eleven) in order to compute the frequencies of the gaussian and 

of the interested probability distributions. 

 

The histogram’s normality tests have been performed for the results of the optimal 

portfolio selected by the Particle Swarm optimization algorithm in the three different 

cases of Expected shortfall, shortfall deviation risk and Entropic Value at risk. 

For each risk measure two histograms have been created. 

The results are showed in the following images: 

 

 

Figure 11 Comparison between the return’s histogram of the portfolio constructed with the  
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expected shortfall and a gaussian obtained starting from the same data, 1st test 

 

Figure 12 Comparison between the return’s histogram of the portfolio constructed with the  
expected shortfall and a gaussian obtained starting from the same data, 2nd test 
 

 

At a first sight we could state that the returns distribution of the portfolio selected using 

the expected shortfall has risk measure would seems pretty close to the normal 

distribution. 

But, in both test data are not normally distributed in the centre of the distribution 

showing the presence of skewness, in the first case concentrated in the domain of losses 

(left tail) while in the second concentrated in the domain of gains (right tail) 

Moreover, in the first test the data on the tails are not gaussian as well.  
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Figure 13 Comparison between the return’s histogram of the portfolio constructed with the  
Shortfall deviation risk and a gaussian obtained starting from the same data, 1st test 
 

 

 

 

Figure 14 Comparison between the return’s histogram of the portfolio constructed with the  
Shortfall deviation risk and a gaussian obtained starting from the same data, 2nd test 

 

In the shortfall deviation risk tests the presence of kurtosis is evident showing a higher 

frequency in the tails with respect to the gaussian case. 



Normality Test 
 
 

 
 

95 
 

For what concern the skewness the first test exhibits a clear “right-side” skewness while 

for the second we can not state the same thing.  

 

Figure 14 Comparison between the return’s histogram of the portfolio constructed with the  
Entropic VaR and a gaussian obtained starting from the same data, 1st test 

 

 

 

 

Figure 15 Figure 14 Comparison between the return’s histogram of the portfolio constructed with the  
Entropic VaR and a gaussian obtained starting from the same data, 2nd test 
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Tests on the entropic Var optimal portfolios manifests the same results: Skewness in the 

right tails and presence of Kurtosis. 

These graphical tests are useful to get an idea of whether the distribution of returns is 

Gaussian or not but they are not sufficient to state that for sure. 

That’s why other more rigorous tests have been implemented. 

 

A.2.1 Skewness, kurtosis and Jarque-Bera test 

If a distribution behaves in a way which is similar to the Gaussian, a possible easy 

system to get if it is properly a normal is to check its empirical Skewness and Kurtosis. 

Or, in other words, control the features of the distribution in the centre and in the tails.  

From what we said in the previous part of this thesis we know that a normal distribution 

has a skewness of zero and a kurtosis of three, every departure from these “basis” point 

are a declaration of a possible non-normality.81 

Clearly, the departure itself is not a sufficient proof to state that the distribution doesn’t 

behave like a gaussian, and more specific test shall be implemented. 

We decided to implement the Jarque-Bera Test for normality for reason of simplicity 

and ease of understanding. 

Tests have been implemented 5 times since the optimal portfolios were different one 

with respect to the other even for the same risk measure. 

In order to be meaningful all the test have been implemented “ceteris paribus” : the 

variables used to create the optimal portfolios were kept stable: epsilon=0.001, desired 

return= 0.0002 (daily), n. particles= 50, n. iterations = 100, alpha =0.05, ω=0.7298, 

C1=C2=1.46915. 

The results are showed in the following tables starting from the Expected shortfall’ s 

tests, then the Shortfall deviation risk and, finally, the entropic VaR. 

 

 
81 Also the entity of the departure shall be considered. 
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Table 19  Expected Shortfall tests results 

 
Value 1 Value 2 Value 3 Value 4 Value 5 

Skew -0,15173 -0,35689 -0,36419 -0,32737 -0,18815 

kurt 0,93474 0,645284 0,947141 0,932663 0,904518 

JB 13,68249 13,11644 20,22472 18,39589 13,59657 

Pval 0,001069 0,001418 4,06E-05 0,000101 0,001116 

 

 

Table 20 Shortfall deviation risk tests results 

 
Value 1 Value 2 Value 3 Value 4 Value 5 

Skew -0,23131 -0,33212 -0,36153 -0,05962 -0,27398 

kurt 0,158266 0,948121 1,369268 1,114765 0,364352 

JB 3,386805 18,9854 33,96774 17,80635 6,134285 

Pval 0,183893 7,54E-05 4,21E-08 0,000136 0,046554 

 

 

Table 21 Entropic VaR tests results 

 

 
Value 1 Value 2 Value 3 Value 4 Value 5 

Skew -0,18161 -0,3193 -0,29384 -0,26997 -0,50354 

kurt 0,730685 0,609589 -0,2094 0,332548 0,893481 

JB 9,432657 11,04148 5,513708 5,696794 25,67751 

Pval 0,008948 0,004003 0,063491 0,057937 2,66E-06 

 

The results are pretty simple to interpret: All the three risk measures in all the 5 tests 

show skewness and Kurtosis different from zero. 

For what concern the skewness, it is always small and negative indicating a relatively 

low data’s distortion in the left tail. 
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What is more impactful, in these tests, is the kurtosis: it strongly affects the distributions 

indicating a non-gaussian behaviour in the tails. Except for the 3rd test on the entropic 

VaR optimal portfolio, it is always large and positive representing larger probabilities 

than the gaussian, in the tails of the distributions (fat tails). 

Finally, a more statistical test has been implemented, Jarque-Bera test is a statistical tool 

to assess if the underling p.d.f. behave like a normal; it is based on Skewness and 

Kurtosis. 

 𝐽𝐵 =
𝑛

6
(𝑆2 +

(𝐾−3)2

4
) 

Clearly, the larger its value the less probable is that the underling probabilities behave 

like a normal. 

As we can see for all the test, Jarque-Bera’s values are high and their p-value as well, 

hence we can conclude that, at this alpha level, we shall reject the normality assumption 

for the returns’ distributions of the optimal portfolio in the evaluation period. 
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APPENDIX B 

In this part I provide the Python codes that I used in order to make the necessary 

calculations for this thesis. 

Code applied to the Expected Shortfall-based  

portfolio selection model: 

#import library 

import pandas as pd 

import numpy as np 

 

#import return's data 

ritorni=pd.read_pickle("ritorni_it 2018") 

 

#it divides into in the sample and out of the sample period 

ndati=len(ritorni) 

n_sample=int(ndati/3)*2 

ret_first=ritorni.iloc[0:n_sample,:] 

ret_second=ritorni.iloc[n_sample:len(ritorni),:]    

ndati_1=len(ret_first) 

ndati_2=len(ret_second) 

nstocks=len(ret_first.columns) 

 

##it sets alpha 

alpha=0.05 

n_alpha=int(ndati_1*alpha) 

 

##Particle Swarm Optimization 

#number of interactions, particles, epsilon and Pi (for the whole 

period) 

iterazioni=250 

particelle=50 

epsilon=0.0001 

rit_giorn=0.0002 #desired daily return 

rit_voluto=np.exp(rit_giorn*ndati_1)-1 #desired return for the whole 

period 

 

#it sets the weight for velocity and constrains 

w=0.7298 

c1=1.49618 

c2=1.49618 

 

#loop's supports 

loc_best=np.zeros((particelle,nstocks)) 

global_best=np.ones((1,nstocks)) 

Best_loc_ftn=np.ones(particelle)*(1000) 

best_glob_ftn=np.ones(1)*(1000) 

velocità=np.zeros([iterazioni,particelle,nstocks]) 

Pos_in=np.zeros([iterazioni+1,particelle,nstocks]) 

fitness=np.zeros([particelle,iterazioni]) 

ret_first=np.array(ret_first) 

ritorni_st=np.zeros([nstocks,n_sample,particelle,iterazioni]).T 

r_port=np.zeros([iterazioni,particelle,n_sample]) 

ritorno_port=np.zeros([iterazioni,particelle]) 

ordine=np.zeros([iterazioni,particelle,n_sample]) 

Es_P=np.zeros([iterazioni,particelle]) 



Appendix B 
 
 

 
 

100 
 

vinc_1=np.zeros([iterazioni,particelle]) 

vinc_2=np.zeros([iterazioni,particelle]) 

vinc_2i=np.zeros([iterazioni,particelle]) 

vinc_3i=np.zeros([iterazioni,particelle,nstocks]) 

vinc_3c=np.zeros([iterazioni,particelle,nstocks]) 

vinc_3=np.zeros([iterazioni,particelle]) 

vinc_4i=np.zeros([iterazioni,particelle,nstocks]) 

vinc_4c=np.zeros([iterazioni,particelle,nstocks]) 

vinc_4=np.zeros([iterazioni,particelle]) 

best_fit=np.zeros(iterazioni) 

index_gb=np.zeros(iterazioni) 

arrotonda=np.zeros(nstocks) 

per_min=np.ones([particelle,nstocks])*0.02 

per_max=np.ones([particelle,nstocks])*0.2 

 

##initialization for velocity and weight 

for i in range (particelle): 

  Pos_in[0,i,:]=np.random.dirichlet(np.ones(nstocks),size=1)#it 

generates initial positions for all stocks, all interactions, for the 

first particle 

  velocità[0,i,:]=np.random.dirichlet(np.ones(nstocks),size=1)#it 

generates initial velocities for all stocks, all interactions, for the 

first particle 

 

#it computes the daily returns for all stocks, for all particles and 

for all interactions     

for it in range(iterazioni): 

 for p in range (particelle): 

  for m in range(nstocks): 

   ritorni_st[it,p,:,m]=Pos_in[it,p,m]*ret_first[:,m] 

   

   #it computes minimum participation constrain 

   vinc_3i[it,:,:]=per_min-abs(Pos_in[it,:,:]) 

   vinc_3c[it,p,m]=max(0,(vinc_3i[it,p,m])) 

   

   #it compute maximum participation constrain 

   vinc_4i[it,:,:]=abs(Pos_in[it,:,:])-per_max 

   vinc_4c[it,p,m]=max(0,(vinc_4i[it,p,m])) 

 

   #it computes the returns of each particle (portfolio) for each 

iteration and the return constrain 

 for part in range(particelle): 

    r_port[it,part,:]=np.sum(ritorni_st[it,part,:,:],axis=1) 

    r_porto=np.sum(ritorni_st[it,part,:,:],axis=1) 

    ritorno_port[it,part]=np.sum(r_port[it,part,:],axis=0) 

    vinc_2i[it,part]=max(0,rit_voluto-ritorno_port[it,part]) 

     

##expected shortfall portfolio and constrains 

ordine[it]=np.sort(r_port[it]) 

vinc_1[it,:]=abs((np.sum(Pos_in[it],axis=1))-

np.ones(particelle))#budget constrian 

vinc_2[it]=vinc_2i[it] #return constrain 

vinc_3[it]=np.sum(vinc_3c[it],axis=1)#minimum partecipation constrain 

vinc_4[it]=np.sum(vinc_4c[it],axis=1)#maximum partecipation constrain 

  

Es_P[it]=np.mean(ordine[it,:,0:n_alpha],axis=1)#expected_shortfall of 

all particles 
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##fitness function 

fitness[:,it]=-

Es_P[it]+((1/epsilon)*vinc_1[it])+((1/epsilon)*vinc_2[it])+((1/epsilon

)*vinc_3[it])+((1/epsilon)*vinc_4[it]) 

 

#local fitness 

for l in range(particelle): 

    if fitness[l,it]<Best_loc_ftn[l]: 

      loc_best[l]=Pos_in[it,l,:] 

    Best_loc_ftn[l]=fitness[l,it] 

 

#global fitness  

best_fit[it]=min(fitness[:,it]) 

index_gb[it]=np.argmin(fitness[:,it]) 

if best_fit[it]<best_glob_ftn: 

    best_glob_ftn=best_fit[it]     

global_best=Pos_in[it,int(index_gb[it])]#best portfolio 

nit_m=np.argmin(best_fit) 

npart=int(index_gb[nit_m]) 

 

#it computes new velocity 

for n in range(particelle): 

      velocità[it,n,:]=w*velocità[(it-

1),n,:]+c1*np.random.uniform()*(loc_best[n,:]-

Pos_in[it,n,:])+c2*np.random.uniform()*(global_best-Pos_in[it,n,:]) 

       

#it computes new initial position 

Pos_in[it+1]=Pos_in[it]+velocità[it]    

     

##it finds ES, constrains 1,2,3,4 of the best particle of all the 

iterations 

v1=vinc_1[nit_m,npart]   

v2=vinc_2[nit_m,npart] 

v3=vinc_3[nit_m,npart] 

v4=vinc_4[nit_m,npart] 

Es_m=Es_P[(nit_m,npart)] 

 

##it generates a data frame with the participation of the best 

particle 

for nstock in range (nstocks): 

 arrotonda[nstock]=round(global_best[nstock],3) 

Pos_fin=pd.DataFrame(arrotonda.T,index=ritorni.columns,columns=["Perce

ntuali"])   

Pos_fin.to_pickle("stock scelti_es_2018_5") 
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Code applied to the Entropic VaR-based portfolio selection model: 

#import library 

import pandas as pd 

import numpy as np 

 

#it imports return's data 

ritorni=pd.read_pickle("ritorni_it 2014") 

 

#it divids into in the sample and out of the sample period 

ndati=len(ritorni) 

n_sample=int(ndati/3)*2 

ret_first=ritorni.iloc[0:n_sample,:] 

ret_second=ritorni.iloc[n_sample:len(ritorni),:]    

ndati_1=len(ret_first) 

ndati_2=len(ret_second) 

nstocks=len(ret_first.columns) 

 

#it sets alpha 

alpha=0.05 

alpha_ev=0.95 

n_alpha=int(ndati_1*alpha) 

 

##Particle Swarm optimization 

#number of interactions, particles, epsilon and Pi (for the whole 

period) 

iterazioni=250 

particelle=50 

epsilon=0.0001 

rit_giorn=0.0002 #desired daily return 

rit_voluto=np.exp(rit_giorn*ndati_1)-1 #desired return for the whole 

period 

 

#it sets the weight for velocity and constrains 

w=0.7298 

c1=1.49618 

c2=1.49618 

 

#loop's supports 

loc_best=np.zeros((particelle,nstocks)) 

global_best=np.ones((1,nstocks)) 

Best_loc_ftn=np.ones(particelle)*(1000) 

best_glob_ftn=np.ones(1)*(1000) 

velocità=np.zeros([iterazioni,particelle,nstocks]) 

Pos_in=np.zeros([iterazioni+1,particelle,nstocks]) 

fitness=np.zeros([particelle,iterazioni]) 

ret_first=np.array(ret_first) 

ritorni_st=np.zeros([nstocks,n_sample,particelle,iterazioni]).T 

r_port=np.zeros([iterazioni,particelle,n_sample]) 

ritorno_port=np.zeros([iterazioni,particelle]) 

ordine=np.zeros([iterazioni,particelle,n_sample]) 

Ent_P=np.zeros([iterazioni,particelle]) 

vinc_1=np.zeros([iterazioni,particelle]) 

vinc_2=np.zeros([iterazioni,particelle]) 

vinc_2i=np.zeros([iterazioni,particelle]) 

vinc_3i=np.zeros([iterazioni,particelle,nstocks]) 

vinc_3c=np.zeros([iterazioni,particelle,nstocks]) 



Codes 
 
 

 
 

103 
 

vinc_3=np.zeros([iterazioni,particelle]) 

vinc_4i=np.zeros([iterazioni,particelle,nstocks]) 

vinc_4c=np.zeros([iterazioni,particelle,nstocks]) 

vinc_4=np.zeros([iterazioni,particelle]) 

best_fit=np.zeros(iterazioni) 

index_gb=np.zeros(iterazioni) 

arrotonda=np.zeros(nstocks) 

per_min=np.ones([particelle,nstocks])*0.02 

per_max=np.ones([particelle,nstocks])*0.2 

t_evar=1 

rit_med=np.zeros([iterazioni,particelle,nstocks]) 

Mx=np.zeros([iterazioni,particelle]) 

Ent_v=np.zeros([iterazioni,particelle]) 

 

 

##initialization for velocity and weight 

for i in range (particelle): 

  Pos_in[0,i,:]=np.random.dirichlet(np.ones(nstocks),size=1) #it 

generates initial positions for all stocks, all iteractions, for the 

first particle 

  velocità[0,i,:]=np.random.dirichlet(np.ones(nstocks),size=1)#it 

generates initial velocities for all stocks, all iteractions, for the 

first particle 

 

#it computes the daily returns for all stocks, for all particle and 

for all interactions     

for it in range(iterazioni): 

 for p in range (particelle): 

  for m in range(nstocks): 

   ritorni_st[it,p,:,m]=Pos_in[it,p,m]*ret_first[:,m] 

   rit_med[it,p,m]=np.exp(np.mean(ritorni_st[it,p,m,:])*(1/t_evar)) 

   Mx[it,p]=np.log(np.sum(rit_med))  

   Ent_v[it,p]=t_evar*((Mx[it,p]/nstocks)-np.log(alpha_ev)) 

    

   #it compute minimum participation constrain 

   vinc_3i[it,:,:]=per_min-abs(Pos_in[it,:,:]) 

   vinc_3c[it,p,m]=max(0,(vinc_3i[it,p,m])) 

    

   #it compute maximum participation constrain 

   vinc_4i[it,:,:]=abs(Pos_in[it,:,:])-per_max 

   vinc_4c[it,p,m]=max(0,(vinc_4i[it,p,m])) 

 

    #it computes the returns of each particle (portfolio) for each 

interaction and the return constrain 

 for part in range(particelle): 

    r_port[it,part,:]=np.sum(ritorni_st[it,part,:,:],axis=1) 

    r_porto=np.sum(ritorni_st[it,part,:,:],axis=1) 

    ritorno_port[it,part]=np.sum(r_port[it,part,:],axis=0) 

    vinc_2i[it,part]=max(0,rit_voluto-ritorno_port[it,part]) 

     

##expected shortfall portfolio and constrains 

 ordine[it]=np.sort(r_port[it]) 

 vinc_1[it,:]=abs((np.sum(Pos_in[it],axis=1))-

np.ones(particelle))#budget constrain 

 vinc_2[it]=vinc_2i[it] #return constrain 

 vinc_3[it]=np.sum(vinc_3c[it],axis=1)#minimum participation constrain 

 vinc_4[it]=np.sum(vinc_4c[it],axis=1)#maximum participation constrain 
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 ##fitness function 

 

fitness[:,it]=Ent_v[it]+((1/epsilon)*vinc_1[it])+((1/epsilon)*vinc_2[i

t])+((1/epsilon)*vinc_3[it])+((1/epsilon)*vinc_4[it]) 

 

#local fitness 

 for l in range(particelle): 

    if fitness[l,it]<Best_loc_ftn[l]: 

      loc_best[l]=Pos_in[it,l,:] 

    Best_loc_ftn[l]=fitness[l,it] 

 

#global fitness  

 best_fit[it]=min(fitness[:,it]) 

 index_gb[it]=np.argmin(fitness[:,it]) 

 if best_fit[it]<best_glob_ftn: 

    best_glob_ftn=best_fit[it]     

 global_best=Pos_in[it,int(index_gb[it])]#best portfolio 

 nit_m=np.argmin(best_fit) 

 npart=int(index_gb[nit_m]) 

 

#it computes new velocity for each iteration 

 for n in range(particelle): 

      velocità[it,n,:]=w*velocità[(it-

1),n,:]+c1*np.random.uniform()*(loc_best[n,:]-

Pos_in[it,n,:])+c2*np.random.uniform()*(global_best-Pos_in[it,n,:]) 

 

    #it computes new initial position   

Pos_in[it+1]=Pos_in[it]+velocità[it]    

     

##it finds ES, constrains 1,2,3,4 of the best particle of all the 

iteration 

v1=vinc_1[nit_m,npart]   

v2=vinc_2[nit_m,npart] 

v3=vinc_3[nit_m,npart] 

v4=vinc_4[nit_m,npart] 

Ent_m=Ent_v[(nit_m,npart)] 

 

 

##it generates a data frame with the participations of the best 

particle 

for nstock in range (nstocks): 

 arrotonda[nstock]=round(global_best[nstock],3) 

Pos_fin=pd.DataFrame(arrotonda.T,index=ritorni.columns,columns=["Perce

ntuali"])   

Pos_fin.to_pickle("stock scelti_es 2018_1") 
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Code applied to the SDR-based portfolio selection model: 

#import library 

import pandas as pd 

import numpy as np 

 

#it imports return's data 

ritorni=pd.read_pickle("ritorni_it 2014") 

 

#it divides into in the sample and out of the sample period 

ndati=len(ritorni) 

n_sample=int(ndati/3)*2 

ret_first=ritorni.iloc[0:n_sample,:] 

ret_second=ritorni.iloc[n_sample:len(ritorni),:]    

ndati_1=len(ret_first) 

ndati_2=len(ret_second) 

nstocks=len(ret_first.columns) 

 

##it sets alpha 

alpha=0.05 

n_alpha=int(ndati_1*alpha) 

 

##Particle Swarm optimization 

#number of interactions, particles, epsilon and Pi (for the whole 

period) 

iterazioni=250 

particelle=50 

epsilon=0.0001 

rit_giorn=0.0002 #desired daily return 

rit_voluto=np.exp(rit_giorn*ndati_1)-1 #desired return for the whole 

period 

 

#it sets the weight for velocity and constrains 

w=0.7298 

c1=1.49618 

c2=1.49618 

beta_sdr=0.2 #beta for shortfall deviation risk 

p_sdr=2 #p-norm shortfall deviation 

 

#loop's supports 

loc_best=np.zeros((particelle,nstocks)) 

global_best=np.ones((1,nstocks)) 

Best_loc_ftn=np.ones(particelle)*(1000) 

best_glob_ftn=np.ones(1)*(1000) 

velocità=np.zeros([iterazioni,particelle,nstocks]) 

Pos_in=np.zeros([iterazioni+1,particelle,nstocks]) 

fitness=np.zeros([particelle,iterazioni]) 

ret_first=np.array(ret_first) 

ritorni_st=np.zeros([nstocks,n_sample,particelle,iterazioni]).T 

r_port=np.zeros([iterazioni,particelle,n_sample]) 

ritorno_port=np.zeros([iterazioni,particelle]) 

ordine=np.zeros([iterazioni,particelle,n_sample]) 

Es_P=np.zeros([iterazioni,particelle]) 

Sd_s=np.zeros([iterazioni,particelle,n_alpha]) 

Sd=np.zeros([iterazioni,particelle,n_alpha]) 

Sd_f=np.zeros([iterazioni,particelle,n_alpha]) 

Sd_fi=np.zeros([iterazioni,particelle]) 

conta=np.zeros([iterazioni,particelle]) 

vinc_1=np.zeros([iterazioni,particelle]) 



Appendix B 
 
 

 
 

106 
 

vinc_2=np.zeros([iterazioni,particelle]) 

vinc_2i=np.zeros([iterazioni,particelle]) 

vinc_3i=np.zeros([iterazioni,particelle,nstocks]) 

vinc_3c=np.zeros([iterazioni,particelle,nstocks]) 

vinc_3=np.zeros([iterazioni,particelle]) 

vinc_4i=np.zeros([iterazioni,particelle,nstocks]) 

vinc_4c=np.zeros([iterazioni,particelle,nstocks]) 

vinc_4=np.zeros([iterazioni,particelle]) 

best_fit=np.zeros(iterazioni) 

index_gb=np.zeros(iterazioni) 

arrotonda=np.zeros(nstocks) 

per_min=np.ones([particelle,nstocks])*0.02 

per_max=np.ones([particelle,nstocks])*0.2 

 

##initialization for velocity and weight 

for i in range (particelle): 

  Pos_in[0,i,:]=np.random.dirichlet(np.ones(nstocks),size=1) #it 

generates initial positions for all stocks, all iteractions, for the 

first particle 

  velocità[0,i,:]=np.random.dirichlet(np.ones(nstocks),size=1)#it 

generates initial velocities for all stocks, all iteractions, for the 

first particle 

 

#it computes the daily returns for all stocks, for all particle and 

for all interactions         

for it in range(iterazioni): 

 for p in range (particelle): 

  for m in range(nstocks): 

   ritorni_st[it,p,:,m]=Pos_in[it,p,m]*ret_first[:,m] 

   

   ##it computes minimum participation constrain 

   vinc_3i[it,:,:]=per_min-abs(Pos_in[it,:,:]) 

   vinc_3c[it,p,m]=max(0,(vinc_3i[it,p,m])) 

    

   ##it compute maximum participation constrain 

   vinc_4i[it,:,:]=abs(Pos_in[it,:,:])-per_max 

   vinc_4c[it,p,m]=max(0,(vinc_4i[it,p,m])) 

  

    #compute the returns of each particle (portfolio) for each 

interaction and the return constrain 

 for part in range(particelle): 

    r_port[it,part,:]=np.sum(ritorni_st[it,part,:,:],axis=1) 

    r_porto=np.sum(ritorni_st[it,part,:,:],axis=1) 

    ritorno_port[it,part]=np.sum(r_port[it,part,:],axis=0) 

    vinc_2i[it,part]=max(0,rit_voluto-ritorno_port[it,part]) 

     

##expected shortfall portfolio and constrains 

ordine[it]=np.sort(r_port[it]) 

vinc_1[it,:]=abs((np.sum(Pos_in[it],axis=1))-

np.ones(particelle))#budget constrain 

vinc_2[it]=vinc_2i[it] #return constrain 

vinc_3[it]=np.sum(vinc_3c[it],axis=1)#minimum participation constrain 

vinc_4[it]=np.sum(vinc_4c[it],axis=1)#maximum participation constrain 

Es_P[it]=np.mean(ordine[it,:,0:n_alpha],axis=1)#expected_shortfall of 

all particles 

Sd_s[it,:]=ordine[it,:,0:n_alpha]#shortfall deviation of all particles 

for mi in range(particelle): 

 for j in range(len(Sd_s)): 
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  Sd[it,mi] = ((Sd_s[it,mi,:] <= Es_P[it,mi])*Sd_s[it,mi,:])-

Es_P[it,mi] 

  conta[it,mi]=np.sum((Sd_s[it,mi,:] <= Es_P[it,mi])) 

  Sd_f[it,mi]=(Sd[it,mi]*(Sd_s[it,mi,:] <= Es_P[it,mi]))**p_sdr 

  Sd_fi[it,mi]=(np.sum(Sd_f[it,mi])/conta[it,mi])**(1/p_sdr) 

 

#fitness function 

 fitness[:,it]=-

Es_P[it]+Sd_fi[it]+((1/epsilon)*vinc_1[it])+((1/epsilon)*vinc_2[it])+(

(1/epsilon)*vinc_3[it])+((1/epsilon)*vinc_4[it]) 

 

#local fitness 

 for l in range(particelle): 

    if fitness[l,it]<Best_loc_ftn[l]: 

      loc_best[l]=Pos_in[it,l,:] 

    Best_loc_ftn[l]=fitness[l,it] 

 

#global fitness  

 best_fit[it]=min(fitness[:,it]) 

 index_gb[it]=np.argmin(fitness[:,it]) 

 if best_fit[it]<best_glob_ftn: 

    best_glob_ftn=best_fit[it]     

 global_best=Pos_in[it,int(index_gb[it])]#best portfolio 

 

 nit_m=np.argmin(best_fit) 

 npart=int(index_gb[nit_m]) 

 

#it computes new velocity position  

 for n in range(particelle): 

      velocità[it,n,:]=w*velocità[(it-

1),n,:]+c1*np.random.uniform()*(loc_best[n,:]-

Pos_in[it,n,:])+c2*np.random.uniform()*(global_best-Pos_in[it,n,:]) 

 #it computes new initial position  

Pos_in[it+1]=Pos_in[it]+velocità[it]    

    

##it finds ES, constrains 1,2,3,4 of the best particle of all the 

iteration 

v1=vinc_1[nit_m,npart]   

v2=vinc_2[nit_m,npart] 

v3=vinc_3[nit_m,npart] 

v4=vinc_4[nit_m,npart] 

Es_m=Es_P[(nit_m,npart)] 

SDR=-Es_P[(nit_m,npart)]+Sd_fi[(nit_m,npart)] 

 

##it generates a data frame with the participation of the best 

particle 

for nstock in range (nstocks): 

 arrotonda[nstock]=round(global_best[nstock],3) 

Pos_fin=pd.DataFrame(arrotonda.T,index=ritorni.columns,columns=["Perce

ntuali"])   

Pos_fin.to_pickle("stock scelti_sdr 2018_5") 
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And finally, the code applied for the computation of the out-of the sample results and 

the indexes: 

#it imports libraries  

import pandas as pd 

import numpy as np 

import scipy as sc 

from scipy.optimize import linprog 

import statsmodels.api as sm 

#it imports the returns 

Mib=pd.read_pickle("ritorni mib 2014") 

ritorni=pd.read_pickle("ritorni_it 2014") 

portafoglio=pd.read_pickle("stock scelti_ent 2014_1") 

portafoglio=np.array(portafoglio.T) 

Mib=np.array(Mib) 

 

#it divides into in the sample and out of the sample period 

ndati=len(ritorni) 

n_sample=int(2*ndati/3) 

zero=np.ones(ndati) 

Mib_ols = np.array([zero,Mib[:,0]]).T 

ret_first=ritorni.iloc[0:n_sample,:] 

ret_first_mib=Mib[0:n_sample] 

ret_second=np.array(ritorni.iloc[n_sample:len(ritorni),:])    

ret_second_mib_ols=Mib_ols[n_sample:len(ritorni)] 

ndati_1=len(ret_first) 

ndati_2=len(ret_second) 

nstocks=len(ret_first.columns) 

alpha=0.05  

n_alpha=int(alpha*ndati_2) 

risk_free_periodo=0.01 #risk free rate for the whole period  

risk_free=(np.log(risk_free_periodo+1))/ndati_2 #daily risk free rate 

#it computes the returns in the out of the sample period 

ritorni_oos=np.zeros([ndati_2,nstocks]) #matrix for the out of the 

sample returns 

for st in range (nstocks): 

    ritorni_oos[:,st]=portafoglio[:,st]*ret_second[:,st] 

rit_gior=np.sum(ritorni_oos,axis=1) #daily portfolio returns 

rit_medio_oos=np.sum(rit_gior)/ndati_2 #average daily portfolio return 

ritorno_t_oos=np.sum(rit_gior) #total portfolio return 

 

##ratios 

#standard deviation portfolio returns 

sd_port=np.sqrt(np.var(rit_gior))  

 

#sharpe ratio 

sharpe_ratio=(rit_medio_oos-risk_free)/sd_port  

 

#sortino ratio  

Value_at_risk_p=(np.sort(rit_gior))[n_alpha] #value at risk portfolio 

returns 

Dws=np.zeros(nstocks)#vector for downside risk 

Ups=np.zeros(nstocks)#vector for upside risk 

for st in range(nstocks): 

  Dws[st]=-min(0,rit_gior[st]-risk_free) #downside risk 

  Ups[st]=max(0,rit_gior[st]-risk_free) #upside potential 

Tdd=np.sqrt(((np.sum(Dws))**2)/(1/nstocks)) #target downside deviation 

Sortino_ratio=(rit_medio_oos-risk_free)/Tdd 
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##Farinelli tibletti ratio 

p=2 #gain pro 

q=3 #loss aversion 

Upn_ft=Ups[Ups!=0] #delete data=0 

Dwn_ft=Dws[Dws!=0]#delete data=0 

Ups_ft=((np.sum(Upn_ft**p))/nstocks)**(1/p) 

Dws_ft=((np.sum(Dwn_ft**q))/nstocks)**(1/q) 

ft_ratio=Ups_ft/Dws_ft 

 

##treynor ratio 

provaols=sm.OLS(rit_gior,ret_second_mib_ols) 

results = provaols.fit() 

alpha_ols=results.params[0] 

beta_ols=results.params[1] 

Treynor_ratio=alpha_ols/beta_ols 

 

#it generates a data frame with returns and indexes 

Tab_ratios=np.array([rit_medio_oos,ritorno_t_oos,sd_port,sharpe_ratio,

Sortino_ratio,ft_ratio,Treynor_ratio]) 

Tab_ratios=pd.DataFrame(Tab_ratios,columns=["Value"],index=["Daily 

returns","Total return","Standard deviation","Sharpe ratio","Sortino 

ratio","Farinelli Tibletti ratio","Treynor ratio"]) 

Tab_ratios.to_excel("Tabella Ratios_ent_2014.xlsx")
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