
Master Degree

in Computer Science

Final thesis

Staresc - automatic and extendable
vulnerability assessment over SSH

Supervisor

Prof. Stefano Calzavara

Co-supervisor

Dr. Riccardo Spampinato

Graduand

Davide Cecchini

862701

Academic Year

2021-2022

Abstract

Regardless of the technical level and the type of target, time is one of
the major constraints during both defensive and offensive activities.
To address this constraint, the cybersecurity community implemented
many tools to automate repetitive tasks. Cybersecurity experts ex-
ploit these tools in order to have more time to spend on more tricky
(and fun) activities.
In this work we present Staresc: a tool that automates command-line
PoCs execution on multiple targets, relying on SSH or Telnet con-
nections. Staresc is an easily extendable tool that performs tests on
target machines, the tests are defined in YAML files (called plugins)
that the tool can import at execution time.
Together with Staresc, we describe how to properly write its plugins
and we outline a practical way to test, and validate, them.
Moreover, Staresc has been compared with the major competitors al-
ready available. We show which ideas introduced by other tools we
adapt to our use case, which new features we introduced and which
motivations led our technical choices.
Lastly, we discuss about possible improvements, covering the possible
implementation challenges and their benefits.

Contents

1 Introduction 1

2 Background 4
2.1 Similar solutions . 4

2.1.1 Nessus and OpenVAS 4
2.1.2 Nuclei . 7
2.1.3 PEASS-ng . 8

2.2 Interactive shell protocols 9
2.2.1 Telnet . 10
2.2.2 SSH . 10

2.3 Sudoedit vulnerability CVE-2021-3156 10
2.3.1 Technical details 11

3 Staresc Development 14
3.1 Core . 14
3.2 Connection . 15

3.2.1 SSHConnection 15
3.2.2 TNTConnection 16
3.2.3 SSHSSConnection 18
3.2.4 Connection string 18

3.3 Exporter . 19
3.3.1 Output . 19
3.3.2 StarescExporter 19
3.3.3 StarescHandler and its subclasses 20

3.4 Plugin parser . 21

4 Plugin production 24
4.1 Plugin development . 24

4.1.1 Parsers . 26
4.1.2 Example plugin 28

4.2 Plugin testing . 31

CONTENTS

5 Comparison with other tools 35
5.1 Staresc Evolution . 35

5.1.1 Plugin parsing evolution 36
5.2 Comparison with Nuclei 38

5.2.1 Comparison between Nuclei templates and Staresc
plugins . 39

5.3 Comparison with Nessus and OpenVAS 42
5.3.1 NASL language 43
5.3.2 Comparison between NASL plugins and Staresc

plugins . 46

6 Future work 52
6.0.1 Tags . 52
6.0.2 Support Windows connections 53
6.0.3 Workflows . 53
6.0.4 Plugin scripting 54
6.0.5 Porting in Go 55
6.0.6 Web interface and integration with Nuclei . . . 56

7 Conclusion 57

List of Figures

2.1 Security scan reports of Nessus (upper image) and Open-
VAS (lower image). 6

2.2 Linpeas report of SUID files. 9

3.1 Plugin parsing phases. 22

List of Tables

2.1 Pros and Cons of the main competitors of Staresc. . . . 13

5.1 Comparison between an old Staresc Python plugin (left)
and a new Staresc YAMl plugin (right). 37

5.2 Comparison between Nuclei matchers (left) and Staresc
matchers (right). 39

Listings

2.1 Simple Nuclei’s template. 7
2.2 Sudo code that contains the buffer overflow vulnerability. 11
4.1 The data structure that passes through the pipeline of

parsers. 27
4.2 Sudo binary crashing using the PoC command. 28
4.3 Staresc’s plugin for the CVE-2021-3156 vulnerability. . 30
4.4 Portion of the CVE-2021-3156 plugin with plugin test-

ing fields. 33
5.1 A Nuclei’s DSL matcher that performs dynamic checks

on a response. 41
5.2 Nuclei variables used to give a dynamic behaviour to

the template. 41
5.3 An example of a workflow in a Nuclei’s template. . . . 42
5.4 OpenVAS’s CVE-2021-3156 plugin that checks the sudo

version. 48
5.5 OpenVAS’s CVE-2021-3156 plugin that checks if sudo

crashes with the PoC command. 49

Chapter 1

Introduction

IT systems are becoming more and more complex, they are made up
by many software and hardware components. These components are
usually very different: they are written in different languages, have
different tasks and are developed by different organizations.
This complexity increases the probability of these systems to be af-
fected by vulnerabilities. In order to discover and fix these vulnerabili-
ties, many IT systems are tested through a process called vulnerability
assessment.
A vulnerability assessment is a systematic review of security weak-
nesses in an information system. It evaluates if the target system is
affected by known vulnerability and, if needed, provides suggestions
regarding the severity, the risk level and the possible mitigation. [30]
This process has changed a lot in the last decades, because the com-
plexity of the IT systems and the number of newly discovered vulner-
abilities increased a lot.
In 1999 the MITRE Corporation [11] launched the Common Vulnera-
bility and Exposures (CVE) system [6], in order to track all the newly
discovered vulnerabilities. In 2000 there were around 100 new regis-
tered CVEs every month.
In this context, the process for detection and remediation of vulner-
abilities affecting IT systems was largely performed manually, due
to the limited number of new vulnerabilities. The early vulnerabil-
ity scanners were released in the late 90s (Nessus [13] first release in
1998), they were used to generate a report that, after a manual process
of accuracy review and approval, would be passed to the system and
network administrators, that would apply the necessary fixes. [7] [46]
With the increasing of the vulnerability discovery rate (more than
20000 new CVEs in 2021 [2]), a change of approach became necessary.
It arose the concept of Vulnerability Management: the cyclical prac-

1

2 CHAPTER 1. INTRODUCTION

tice of identifying, classifying, prioritizing, remediating and mitigating
software vulnerabilities. [43]
It became indispensable to automate as much as possible the Vul-
nerability Management process, in order to identify and fix as many
vulnerabilities as possible. Thus, automatic vulnerability scanners be-
came more and more important. It is not enough that they produce a
report with the detected vulnerabilities. They must be able to assign
a severity grade to the vulnerabilities, and suggest possible mitigation,
keeping the configuration process as simple as possible.
Giving the huge amount of newly discovered vulnerabilities, it is es-
sential for a vulnerability scanner to be extendable, in order to be
easily enhanced with checks for new vulnerabilities.
Moreover, it is important that vulnerability scanners do not perform
potentially destructive actions on the target systems. They should
also provide reports, in a format that is easy to parse, especially for
other automatic tools that are used in the Vulnerability Management
process.
Cybersecurity community has developed many automatic vulnerabil-
ity assessment tools. They usually perform a series of checks to identify
common misconfigurations and vulnerable software versions.
Unfortunately, some of these tools are not free, some just support a
restricted set of protocols and some others do not provide a simple
way to develop new tests. To the best of our knowledge, there is no
free and easily extendable tool that performs vulnerability assessments
using interactive shell protocols.
This work presents Staresc [28], an easily extendable open-source tool
that performs vulnerability assessment using interactive shells. This
tool is written in Python [24], it supports SSH and Telnet connections
and uses them to run parallel tests on target machines. It reads the
tests to execute from YAML [35] files called “plugins”, and provides
reports in various formats (CSV, XLSX, JSON), that show the re-
sults of each test, including technical details to manually reproduce
the tests.
Staresc’s plugins are written in YAML language, their format is de-
signed to make the plugins easy and fast to write. The goal of the
project is to let people quickly design and publish new plugins, cover-
ing newly discovered vulnerabilities.
Given that it can run tests on parallel connections, and that it can be
easily enhanced with additional YAML plugins, Staresc can be suc-
cessfully applied to vulnerability assessment activities. It can be used
to perform the most common checks in a faster way, especially when

2

3 CHAPTER 1. INTRODUCTION

multiple target machines are involved.
We present an effective methodology to build and test new plugins,
showing an example of a plugin that has been used in real-world vul-
nerability assessment activities.
Moreover, we compare Staresc with its first version, with Nuclei [15]
and with Nessus and OpenVAS [19]. In particular, we focus on how
Staresc’s plugin language evolved, from Python-based to YAML-based
plugins. We show which concepts we have taken from the Nuclei’s tem-
plating language, and why we consider our plugins easier to develop
respect to those of Nessus and OpenVAS.
This work is structured as follow: Chapter 2 provides some techni-
cal background. Chapter 3 presents the structure of Staresc’s code.
Chapter 4 describes how to write and test new plugins. Chapter 5
contains the comparison between Staresc and the major competitors.
Chapter 6 contains a discussion on possible improvements for the tool.
And lastly, Chapter 7 wraps up the content of this work.

3

Chapter 2

Background

In this chapter, we give some background notions that will be useful
in the rest of the work. In particular, we introduce the major com-
petitors of Staresc, these are tools that either implement the same
functionality in a different way, or applies some interesting concepts
to different functionalities.
Moreover, we briefly describe the protocols that Staresc uses to per-
form its scans and the vulnerability that we use to write our example
plugin in the next chapters.

2.1 Similar solutions

Staresc is not the first tool that performs automatic vulnerability as-
sessment. There are other scanners that offer valuable features, but
each of them has some characteristics that do not fit well our purposes.
We wanted to have a light and open-source scanner, tailored for inter-
active shell protocols. Its plugins must be simple static files, easy to
write and understand. Following, we present some of the vulnerability
scanners from which we took inspiration, explaining which features fit
well for our needs and which not.

2.1.1 Nessus and OpenVAS

Nessus [13] was created by Renaud Daraison in 1998, it was an open-
source security scanner. After seven years, in 2005, Tenable Network
Security made it a closed-source software and started to distribute it
under license. OpenVAS [19] is an open-source [20] spinoff of Nessus,
it was originally named GNessUs. OpenVAS and Nessus are similar
tools, they share a part of the core engine and both run scans based
on the content of their plugins. [49]

4

5 CHAPTER 2. BACKGROUND

Moreover, plugins for both Nessus and OpenVAS are mostly written
with the Nessus Attack Scripting Language (NASL), a scripting lan-
guage, similar to the C and Perl languages. [41]
Nessus is considered better than OpenVAS since it provides a better
user interface, supports more plugins (around 170000 Nessus’ plugins
vs. around 80000 OpenVAS’ plugins), and performs scans with less
false positives and false negatives.
Nessus and OpenVAS perform a wide variety of scans:

• They can check service versions in order to find Common Vul-
nerability Exposures (CVEs) that affect the target system.

• They can check for default and common credentials used in the
exposed services, Nessus can also employ Hydra, an external
login cracker that supports a wide variety of protocols.

• They can find common misconfiguration, for example not patched
software or not trusted certificates.

• They can perform web application tests in order to find most
common types of vulnerabilities, like path traversal and SQL
injection.

• They can perform authenticated vulnerability scans, a type of
scan that exploits known credentials to run checks on the target
system (e.g. SSH credentials to run shell commands).

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: Security scan reports of Nessus (upper image) and
OpenVAS (lower image).

Despite their useful features and the intuitiveness of their web inter-
faces (Figure 2.1), these tools do not fit well for our purposes. Nessus
works well, but it is not open source and the NASL plugins are not
static files. Even if NASL language makes plugins more flexible, it can
make the development of them slower, since a person has to learn how
the language works and know how to use the Nessus and OpenVAS’
libraries.

6

7 CHAPTER 2. BACKGROUND

2.1.2 Nuclei

Nuclei [15] is an open-source vulnerability scanner written in Go lan-
guage [29] by ProjectDiscovery [23]. It supports a wide variety of
protocols, including TCP, DNS, HTTP, etc.. This tool is based on the
concept of templates: YAML files specifying how the tool should scan
a system, in order to check for the existence of a given vulnerability.
Nuclei’s templates do not simply describe which requests the scanner
must send to the target system, but they also contain parsing rules to
apply to the results of these requests (e.g. responses).
In their most basic form, templates are simple YAML files, easy to
understand. However, Nuclei offers the possibility to define and use
variables and functions in its templates. It is possible to use them
through a Domain-Specific Language (DSL), an expression language
that allows to build more flexible templates. [17]
For example, it is possible to specify to the scanner that a vulnerabil-
ity is found if the base64 encoding of a given portion of the response
is equal to a given variable, or it is possible to specify to the scanner
that a given field must have a random value. These behaviours are
hard to specify with strictly static templates.
From the Listing 2.1 it is possible to see a simple template that checks
if an HTTP page contains a given regex.

1 id : amazon−mws−s e c r e t−token−value

3 i n f o :
4 author: puzz l epeaches
5 name: Amazon MWS Sec r e t Token
6 s e v e r i t y : medium

8 r eque s t s :
9 - method: GET
10 path:
11 - "{{BaseURL}}"

13 e x t r a c t o r s :
14 - type: regex
15 part : body
16 regex :
17 - "amzn\\.mws\\.[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f

]{4}-[0-9a-f]{4}-[0-9a-f]{12}"

Listing 2.1: Simple Nuclei’s template.

There is an ”info” section that contains information about the tem-
plate and the vulnerability that is checked. Then, there is a part that
defines the web request that must be sent to the target URL, notice

7

8 CHAPTER 2. BACKGROUND

the usage of the variable ”BaseUrl” to build the path of the target.
For the given request, the template developer defines one extractor
that uses a regex to extract a portion of text from the body of the
HTTP response.
Despite its open-source nature, its flexibility and its easy-to-develop
YAML templates, Nuclei does not support interactive shell protocols,
and so, it can not be used in authenticated SSH/Telnet based vulner-
ability assessments.

2.1.3 PEASS-ng

PEASS-ng (Privilege Escalation Awesome Scripts SUITE new gener-
ation) [21] is a suite of tools mainly maintained by Carlos Polop [3].
As the name suggests, the tools of PEASS-ng are enumeration tools
used to perform privileged escalation. The ideal scenario in which they
are applied is the one in which an attacker has access to a shell on the
target machine. The attacker’s goal is to gain horizontal or vertical
privileged escalation. To achieve it, he executes the enumeration tool
on the target machine and check its output. In this output, the tool
shows a bunch of information that can be useful to identify privileged
escalation vectors. [44]
The three main tools of this suite are WinPEAS, LinPEAS and Mac-
PEAS, one for each main Desktop OS (Windows, Linux and MacOS).
WinPEAS is an .exe or a .bat file, while LiPEAS and MacPEAS are
the same .sh file that identifies automatically if it is run on a MacOS
or a Linux machine, and performs the proper checks.
It seems that the tools of PEASS-ng are perfect for our needs: given
an interactive shell on a target machine, we just need to upload the
right tool, execute it and see which vulnerability it reports. So, why
did not we just write a script that uploads WinPEAS or LinPEAS on
the target machine and executes it?
The main problem is that WinPEAS and LinPEAS are not vulnera-
bility assessment tools, they are enumeration tools. This means that
they do not simply report the vulnerability found on the target ma-
chine, but also a bunch of information that is not directly connected
to a specific vulnerability. For example Linpeas reports the executable
files that have the SUID permission set. This is not directly a vul-
nerability, but it can become one, if one of the files is owned by a
privileged user and can be exploited to run privileged commands. [40]
From the Figure 2.2 it is possible to notice that a lot of not-vulnerable
files are reported as potentially vulnerable.

8

9 CHAPTER 2. BACKGROUND

Figure 2.2: Linpeas report of SUID files.

This behaviour makes the output of WinPEAS and LinPEAS too
verbose for our purpose, leaving to the user the repetitive task of
cleaning the reports from the useless parts.

Table 2.1 contains a recap of pros and cons of the principal competi-
tors of Staresc. We omitted PEASS-ng, since we do not consider it one
of the principal competitors. Indeed, even if its tools have interesting
features, they are not vulnerability assessment tools.

2.2 Interactive shell protocols

Our vulnerability scanner executes commands from a Command-Line
Interface (CLI) on remote targets. To gain access to these CLIs,
Staresc uses some client libraries that implement interactive shell pro-
tocols.
In this section we describe the two protocols that are supported by
Staresc: Telnet [36] and SSH [50]. Even if they are the most popular
interactive shell protocols in Unix-like environment, and cover a great
number of use-cases, we will show that Staresc can be easily enhanced,
adding support for other protocols.

9

10 CHAPTER 2. BACKGROUND

2.2.1 Telnet

Telnet is an application level protocol developed on top of the TCP
protocol in 1969. It can be used to provide a two-way, collaborative
and text-based communication channel between two machines: a client
and a server. This communication channel can be used by the client to
perform a variety of activities on the server, like editing files, running
programs, check emails and play simple games. [42]
Very often Telnet is used by the client to access to the server shell.
Despite this is its major usage, it was not designed to be secure on
public accessible networks; indeed, its communication channel is not
encrypted and an attacker can perform a Man In The Middle (MITM)
attack [10], sniffing password and other sensitive information. We
have chosen to support it because it is still used in some internal
networks, and many possible target machines do not support more
secure protocols.

2.2.2 SSH

The Secure Shell Protocol (SSH) is a cryptographic network protocol
designed in 1995 by Tatu Ylönen. Despite it is mainly used to provide
a secure connection, that a client can use to open a shell on a server
machine, SSH can be used to transfer or copy files to and from the
remote machine, make tunneling and port forwarding, and establish
X11 connections. SSH standard authentication requires username and
password, but, for a more secure connection, it is possible to define a
public-private key pair to use instead. [27]
SSH and its implementations (e.g. OpenSSH) have proven to be suffi-
ciently reliable and versatile, and this made them a de facto standard
in managing remote shell sessions.

2.3 Sudoedit vulnerability CVE-2021-3156

In the following chapters, we will often use an example plugin to show
how Staresc works. This plugin has been designed to check if the tar-
get systems contain a version of the sudo binary [31] vulnerable to the
CVE-2021-3156 [5] vulnerability.
This vulnerability has been discovered by the Qualys Research Team
[26], that publicly disclosed it on 26/01/2021. [48]
It is a heap-based buffer overflow that can be exploited to achieve
privileged code execution on the target machine.

10

11 CHAPTER 2. BACKGROUND

Sudo is a utility for Unix-like computer Operating Systems that allows
to execute programs with the privileges of another user, by default the
root user.
On the majority of the systems, sudo is a binary with the SUID per-
mission that is owned by the root user, this makes it a possible target
for a privileged escalation attack.

2.3.1 Technical details

The vulnerability raises due to a wrong implementation of an array
copy. Inside the set_cmnd() function, there is a loop that copies the
command-line arguments into a buffer, that is placed in the heap mem-
ory (see Listing 2.2).

852 f o r (s i z e = 0 , av = NewArgv + 1 ; ∗av ; av++)
853 s i z e += s t r l e n (∗ av) + 1 ;
854 i f (s i z e == 0 | | (u s e r a r g s = mal loc (s i z e)) == NULL) {

. . .
857 }
858 i f (ISSET(sudo mode , MODE SHELL |MODE LOGIN SHELL)) {

. . .
864 f o r (to = use r a rg s , av = NewArgv + 1 ; (from = ∗av) ; av++) {
865 whi l e (∗ from) {
866 i f (from [0] == ' \\ ' && ! i s s p a c e ((unsigned char) from [1]))
867 from++;
868 ∗ to++ = ∗ from++;
869 }
870 ∗ to++ = ' ' ;
871 }

. . .
884 }
885 . . .

Listing 2.2: Sudo code that contains the buffer overflow vulnerability.

This heap buffer is user_args, its size is calculated summing up
the sizes of the command-line arguments (included the string termi-
nator ’\0’) in the for loop at lines 852-853.
Then, if the binary is executed in the proper mode, the loop at the
lines 864-871 copies the command-line arguments, char by char, into
user_args. The variable to keeps a pointer to the destination buffer.
In particular, it points to the position that will contain the next copied
character.
For each argument, the variable from is initialized with the pointer to
the first character. The single argument is copied with the while loop
at the lines 865-869. At each iteration of the while loop, the character
pointed by from is copied in the position pointed by to, and then,
both to and from are incremented. At the end of the while loop, a

11

12 CHAPTER 2. BACKGROUND

blank space is copied at the end of the copied argument.
The vulnerability is introduced with the if statement on the lines 866-
867. If an escape character is found (a backslash), then from is incre-
mented by one.
This behavior has been introduced because, at the start of the pro-
gram, all the meta-characters are escaped with backslashes. With
this if statement, sudo unescapes these meta-characters, skipping the
backslashes.
The problem arises when an argument ends with a backslash charac-
ter and the escaping phase is skipped. Indeed, in this scenario, we
will be in the situation in which the from[0] content at line 866 is the
’\’ character, and the from[1] content is the null character (the string
terminator).
The if condition is taken and from is incremented by one, making it
pointing to the null character. Then the null character is copied into
the variable pointed by the to variable. Eventually, from and to are
incremented.
Since from will not point to the null character when it is checked in
the while condition, the while loop does not stop at the string termi-
nator of the argument, causing a buffer overflow that overwrites the
memory that resides after the user_args buffer.
The researchers of Qualys found that, to set the right mode and reach
the vulnerable loop, skipping the escaping phase, it is sufficient to ex-
ecute sudo with the command ”sudoedit -s”.
So, to trigger this vulnerability it is sufficient to run the command:

sudoedit -s somestring\

Notice that, depending on the shell you are using, the trailing back-
slash may have to be escaped.
Even if the sudo developers have patched the binary rapidly, many
vulnerable versions are present in many systems. The legacy versions
from 1.8.2 to 1.8.31p2 and the stable versions from 1.9.0 to 1.9.5p1
are vulnerable in their default configuration.

12

13 CHAPTER 2. BACKGROUND

Pros Cons

Nessus

• Intuitive GUI
• Big pool of plugins
• Supports authenticated

scans over shell protocols

• Closed source
• Complex plugin development

OpenVAS

• Intuitive GUI
• Big pool of plugins
• Supports authenticated

scans over shell protocols

• Smaller pool of plugins
• Complex plugin development

Nuclei
• Open Source
• Big pool of plugins
• Simpler plugin development

• Does not support shell protocols

Table 2.1: Pros and Cons of the main competitors of Staresc.

13

Chapter 3

Staresc Development

In this chapter, we will describe the structure of the code of Staresc,
explaining the technical problems and the motivations behind our so-
lutions. To make the code look neater, and easier to maintain, we
divided Staresc into four parts:

• Core, containing the core engine; the part that implements the
central logic and that uses all the other parts.

• Connection, that handles the connections to the target machines.

• Exporter, that contains the components used to export the re-
sults of the scan in different formats.

• Plugin parser, that contains all the logic used to parse the YAML
plugin files.

All these parts are contained in the directory ”staresc” of the reposi-
tory. It contains all the Python source code of the tool, except for the
file ”staresc.py”, that is contained in the main directory. In this file we
can find the ”main” function of the program, it parses the command-
line arguments and sets up the execution environment based on them.
Eventually, it passes the execution to the core part of the tool.

3.1 Core

The core part of Staresc is contained in the directory ”staresc/core”. It
consists of two main classes: Staresc (defined in ”staresc/core/staresc.py”)
and StarescRunner (defined in ”staresc/core/runner.py”).
A StarescRunner object is created in the main() function. First of
all, it parses every YAML plugin, using the plugin parser part. Then

14

15 CHAPTER 3. STARESC DEVELOPMENT

it creates a thread for each target connection and launches a scan on
the target machine using all the parsed plugins.
For each scan, a Staresc object is created, it represents the opened
shell session on the target machine. For each plugin, the thread calls
the do_check() method of the Staresc object, giving as parameter the
relative Plugin object. The Staresc object uses the Plugin object
to perform the scan on the target machine, and then it returns the
results of the scan using an Output object (see Subsection 3.3.1).
Moreover, the Staresc object parses the output of the tests, according
to the plugin specification, in order to establish if the target machine
is vulnerable or not.

3.2 Connection

The connection part is responsible to offer to the core part an inter-
face to handle and use the connections to the target machines. It
consists of a class hierarchy, with the class Connection at the top.
The Connection class defines the scaffold of a Connection object and
requires that subclasses implement methods like connect(), run() or
__init__(). In this way, to add a new type of connection, it is enough
to create a subclass of Connection that implements these three meth-
ods.
Currently, three types of connection are defined:

• SSHConnection

• TNTConnection

• SSHSSConnection

3.2.1 SSHConnection

SSHConnection handles SSH connections, using the library Paramiko.
It creates a Paramiko SSHClient in the constructor, then, in the
connect() method, it creates an SSH connection to the target host,
performing the required authentication. Eventually, with the run()
method, it executes the given command on the target machine; each
command is executed in a dedicated SSH session.

15

16 CHAPTER 3. STARESC DEVELOPMENT

3.2.2 TNTConnection

TNTConnection is the class that implements the connection interface
for the Telnet connections, using the Telnetlib library. It uses, in the
method Connect(), the given credentials to establish a Telnet connec-
tion with the target machine, then, in the run() method, it executes
the given command in the opened Telnet session.
Given the interactive nature of the Telnet protocol, it is not easy to
understand when the output of a command finishes. Telnetlib offers
two types of functions to read command output from the communica-
tion channel: blocking and non-blocking ones. Since there is no way
to know when the output of the given command is over, blocking reads
lead to a deadlock. Indeed, when the command output is over, we do
not know if it is over. So, we would perform a blocking read, that
waits for some data that will never come.
Non-blocking ones usually do not return any output from the launched
commands. They immediately read from the channel without waiting
any output from the target machine, even if the channel is empty.
We identified and explored three different solutions, and eventually we
choose to implement one of them:

• Blocking read interrupted by a timeout: it consists on the in-
troduction of a timeout that terminates the blocking reads. In
this way we should exit by the deadlock on the last read (of
each command output). Unfortunately, this approach does not
fit well for commands requiring more time to produce their out-
put. For example, let’s consider a situation in which we have
a timeout of ten seconds, after which we kill the blocking read.
If we execute on the target machine a typically fast command
like ”ls”, this solution would work fine, since the output would
be produced in less than ten seconds. We would call a series
of blocking reads (each one consumes a portion of the output)
and the last one, called after the output is over, would wait for
ten seconds, until the timeout expires. But, for commands (or
command series) that require more than ten seconds to produce
their output (e.g. ”sleep 15; ls”), our blocking read would be
interrupted by the timeout, before the command can produce
any output. In this way, we would miss the results of the com-
mand we run on the target machine. It becomes very complex
to choose the right timeout. A too short one leads to the missing
of the results of longer commands, while a too long one requires
too much time to finish the read process of the output.

16

17 CHAPTER 3. STARESC DEVELOPMENT

Moreover, with a fixed timeout of ten seconds, we would spend
a lot of time waiting for the end of the last read, even for the
commands that require less time to produce the output (e.g.
”ls”).

• Non-blocking read launched after a timeout: with this solution,
we wait for a time and then we perform a non-blocking read.
In this way we should avoid the problem of reading an empty
channel, giving to the target machine enough time to produce
the output. This solution does not work well in practice. In
fact, it is difficult to find a right timeout that fits with both long
and short commands. For example, a timeout of ten seconds
would fit well with commands that require less than ten seconds
to produce the output. On the other hand, it would not give
enough time to the target machine to produce the output of the
commands that require more than ten seconds (see the example
before).
Moreover, as the previous solution, with a fixed timeout we have
a fixed overhead for each command.

• Blocking read with a canary: this is the solution we adopted.
It consists on a blocking read that waits until we find a given
string on the command output.
We send the given command followed by a ”echo <canary>”,
where<canary> is a random string. Calling the Telnetlib method
readuntil(<canary>), we perform a blocking read that reads
until it matches the <canary>.
In this way, we get all the output of the given command followed
by the <canary>. Removing the <canary> from it, we obtain
the output of the command without wasting time using time-
outs.
There is a similar solution, used by softwares like Pexpect [22],
that consists on the re-definition of the PS1 environment variable
(the one that defines the prompt), with a canary-like value. In
this way, when the command output is over, the canary-prompt
is printed and the client knows that no further read is needed.
We choose to not implement this solution, since there are many
custom shells that do not offer the possibility to customize the
prompt string, while the echo command is almost a standard
and it is available in many types of shell.

17

18 CHAPTER 3. STARESC DEVELOPMENT

3.2.3 SSHSSConnection

SSHSSConnection stands for SSH Single Session Connection, it is the
class used to handle SSH connections that can not spawn more than
one session. During our tests on a real-world environment, we found
some server machines that had, on the SSH configuration file, the fol-
lowing setting: ”MaxSessions 1”.
This setting forced us to implement an SSH client class, that executes
all the commands on the same session. SSHSSConnection is very sim-
ilar to SSHConnection, both use the library Paramiko. The difference
is that SSHSSConnection directly uses the lower lever channels that
are internally used by Paramiko.
The usage of these channels forced us to implement the same mecha-
nism that we used in TNTConnection, the blocking read with a canary.

3.2.4 Connection string

All the information that Staresc uses to connect to a target, are spec-
ified using the connection string. It is possible to specify a single
connection string as a command-line argument, or multiple connec-
tion strings specifying a file with the flag ”-f/--file” (one connection
string for each line). A connection string has the following format:

scheme : //user : secret@host : port/

Where:

• scheme is a string that identifies the connection class to use.
ssh for SSHConnections, tnt for TNTConnection and sshss for
SSHSSConnection.

• user is the username used to establish the connection.

• secret is the password of the given user.

• host is the hostname or the IP of the target machine.

• port is the port, on the hostname, listening for the connection.

18

19 CHAPTER 3. STARESC DEVELOPMENT

3.3 Exporter

The exporter part of Staresc defines how the tool generates all the
output regarding the scans, except for debugging messages and errors.
This part is defined in the ”staresc/exporter” directory. It consists on
three main components:

• the Output class, defined in the file ”staresc/exporter/output.py”.

• the StarescExporter class, defined in the file
”staresc/exporter/exporter.py”.

• the StarescHandlers class and its subclasses, defined in the file
”staresc/exporter/handlers”.

3.3.1 Output

The objects of the class Output are used to keep the state of a single
scan to a target machine. Each object contains: a reference to a
target connection, a reference to a plugin defining the tests to do, and
some fields that keep the state of the scan (e.g. if the vulnerability is
found).
In the method do_check(), the Staresc object creates an Output

object, to keep track of the state of the scan. When the method
finishes, it returns the Output object to the thread that is executing
the scan.
The last thing that a thread does before passing to the next plugin
is to append the Output object (of the current plugin scan) to the
StarescExporter’s queue.

3.3.2 StarescExporter

StarescExporter is a class that is never instantiated, it keeps: a
queue of Output objects, a list of StareschHandler objects, and the
relative methods that can be used to append objects to these lists.
During the startup, Staresc:

1. Parses the command-line parameters (that specify which han-
dlers should be instantiated).

2. Instantiates the necessary StarescHandler objects.

3. Registers the handlers to the StarescExporter, appending them
to the list of handlers.

19

20 CHAPTER 3. STARESC DEVELOPMENT

Every time a scan of a plugin finishes on a target machine, an Output

object is appended to the queue in the StarescExporter, using the
method import_output(). From here, the StarescExporter calls the
import_handler() methods of all the handlers. It passes the Output

object as argument, in order to notify them the result of the scan.
StarescExporter implements also an export() method, it cycles through
the registered handlers, and uses them (calling their export_handler()
methods) to generate the reports passing the list of Output objects.
The export() method is called when all the scans on the target ma-
chines are over.

3.3.3 StarescHandler and its subclasses

StarescHandler is the parent class of all the handler classes, it defines
three methods: the constructor, import_handler() and export_handler().
For each type of report, an handler must be implemented. It must ex-
tend the StarescHandler class, implementing at least the methods
import_handler() and export_handler().
import_handler() is used to ”notify” to a handler that a new Output

object has been created, it is called by the method import_output()
of the Exporter class. export_handler() is called by the export()
method of the class StarescExporter. It is called at the end of the
whole scan, in order to generate the relative report.
Actually, we implemented four types of handlers: StarescCSVHandler,
StarescXLSXHandler, StarescJSONHandler and StarescStdoutHandler.
The first three handlers are pretty similar, they implement only the
export_handler() method and generate, respectively, reports in the
CVS, XLSX an JSON format. StarescStdoutHandler is a bit dif-
ferent, its export_handler() method generates a brief recap of the
vulnerability assessment that is printed on the standard output. More-
over, it overrides the method import_handler(): every time an Output
object is generated and passed to this method, this handler checks if
the scan, relative to the Output, has found the vulnerability and, if
so, logs it to the standard output.
A user can specify with the flags ”-ocsv <filename>”, ”-oxlsx <filename>”,
”-ojson <filename>”, which handler to use, and which name to use
for the report file. With the flag ”-oall <filename>”, all the handlers
are used, and one report for each format is created.
The StarescStdoutHandler can not be specified with a command-
line flag, since it is used by default.

20

21 CHAPTER 3. STARESC DEVELOPMENT

3.4 Plugin parser

The plugin parser part is used to parse and transform the data of the
YAML plugin files into Plugin objects, one for each plugin file. This
part is organized in a series of classes, whose objects are disposed in
a pyramidal hierarchy.
In the upper position of the hierarchy, there is the Plugin class, its
objects represent a single plugin that has been parsed from a YAML
file. See the Chapter 4 to know the structure of the plugin files, how
they work and how to write them. By now, it is enough to know that
each file contains some metadata, like the name of the author or the
description of the vulnerability found by the plugin, and a list of tests.
The Plugin objects is constructed using a dict object build from the
YAML file. It saves all the metadata using its fields, then it creates a
list of Test objects, one for each test specified in the file.
The Test objects are constructed using the relative dict field, they
contain three fields: the command to execute on the target machine,
a list of Parser objects to use to parse the command output and a list
called plugin_tests. The plugin_tests field is covered in Section
4.2.
The Parser class is never directly instantiated, it is the root of a class
hierarchy comprising all the possible types of parser. The class Parser
defines the scaffold that each Parser object should have, leaving the
implementation to the classes that extend it. Each Parser contains
some fields that specify its configuration, for example the field parts

specifies on which parts of the command output (stdout or stderr)
apply the parser, while the field condition specifies how to merge the
results of parser’s rules. An extensive explanation of the fields that
can be used to configure a parser is given in the Section 4.1.
Currently, there are two types of parser: Matcher and Extractor.
A Matcher is a Parser that checks if the given rules match with the
command output, while an Extractor uses the rules to extract part of
the command output and to pass it to the next parser in the pipeline
(pipeline is covered in Subsection 4.1.1).
The central part of a Parser are the rules. They are applied on the
output of the command to establish the presence of the vulnerability.
There are two types of rules: ”regex” or ”word”. The ”regex” rules are
used by the Matcher to match a given regex, and by the Extractor to
extract the portion of text that matches the given regex. The ”word”
rules are simple strings, a Matcher checks if the string of the ”word”
rules are contained in the command output, while an Extractor ex-

21

22 CHAPTER 3. STARESC DEVELOPMENT

tracts those strings from the command output. The Figure 3.1 gives
a summary of the plugin parsing phases.

Figure 3.1: Plugin parsing phases.

22

23 CHAPTER 3. STARESC DEVELOPMENT

During the scan of a plugin on a target machine (method do_check()
of the Staresc object), the Tests are extracted from the Plugin.
Then, the relative command is executed on the target shell, and the
parsers of the given Test are applied to the output of the command.
In the end, the Output relative to the current scan is updated.

23

Chapter 4

Plugin production

In this chapter, we explain in details how the plugins work and how
to develop them. To make the process clearer, we will show an exam-
ple plugin taken from the ones that have already used in real-world
environments.
Moreover, we will explain how it is possible to debug a new plugin,
showing an example with the plugin we introduced in the plugin de-
velopment section.

4.1 Plugin development

The plugin files of Staresc are written in the YAML format. We choose
this format following the example of the Nuclei scanner.
YAML is a simple human-readable format. It is easily understandable
and it allows to quickly create new plugins, starting from a command-
line PoC.
Plugin files can be divided into three sections:

• Metadata fields

• Plugin directives

• tests field

The metadata fields contain information about the plugin, the vulner-
ability that is checked, and the author.
id is the only mandatory metadata field, it is a string that acts as the
unique identifier of the plugin.

24

25 CHAPTER 4. PLUGIN PRODUCTION

The other metadata fields are:

• author: a string that identifies the author of the plugin.

• name: a string that identifies the name of the plugin or the name
of the vulnerability.

• description: a string describing the plugin or the vulnerability.

• remediation: a string containing a brief explanation of how to
patch the checked vulnerability.

• cve: a string containing the CVE code (if exists) of the checked
vulnerability.

• reference: a string containing references (can be a URL or
other) relative to the plugin or the vulnerability.

• cvss: a float number that identifies the CVSS V3 score of the
checked vulnerability.

• severity: a string containing the severity rating (based on the
cvss score) of the checked vulnerability.

• cvss_vector: a string containing the value of the CVSS V3
vector of the checked vulnerability.

Currently, the only supported plugin directive is matching_condition.
It defines how the results of the tests must be merged. With an ”and”
value, the target machine is considered vulnerable if all the tests re-
port that it is vulnerable. With an ”or” value, it is sufficient that at
least one of the tests reports the vulnerability to declare the target
machine vulnerable. The default value of this field is ”and”.
To avoid useless tests, if the value of this field is set to ”and”, and
one of the tests fails, the remaining tests are skipped. Similarly, if the
value is set to ”or” and one of the tests successes (confirms that the
vulnerability is present), the remaining tests are skipped.
The field tests is a list containing the specification of the various
tests. Each test contains a command, that is executed on the target
machine, and a list of parsers, that are applied to the command
output. The tests are executed according to the order in the YAML
file.

25

26 CHAPTER 4. PLUGIN PRODUCTION

4.1.1 Parsers

For each test we have a list of one or more parsers. The parsers are
the components that parse the output of the command executed on
the target machine. This parsing process is used to establish if the
machine is affected by the given vulnerability.
Currently, Staresc supports two types of parser:

• matcher: given one or more rules, it checks if they match or not.
The ”ideal” result is a boolean value.

• extractor: given one or more rules, it extracts from the result of
the command the portion of text that matches them.

The rules are the core part of a parser, defining what to match in/ex-
tract from the command output. They are defined as a list of strings
in the rules field, inside each parser.
Currently, two types of rule are supported:

• word: a simple string, the matcher/extractor checks if it is con-
tained in the text to parse.

• regex: a string that defines a regex, the matcher/extractor looks
for text portions that match the regex.

The other fields of the parsers define how the engine should apply the
rules, and how it should merge their results, they are:

• parser_type: a string defining the type of the parser, can be
set to ”matcher” or ”extractor”.

• rule_type: a string that defines the type of rules, can be ”regex”
or ”word”.

• part: a string that specifies which part of the command’s output
to parse, can be ”stdout” or ”stderr”. By default the parsers
examine both stdout and stderr.

• condition: a string that specifies how rules’ results should be
merged. An ”or” implies that one matching rule is sufficient
to report a positive test, while an ”and” value requires that all
rules should return a positive result, in order to have a positive
test.

26

27 CHAPTER 4. PLUGIN PRODUCTION

• invert_match: a boolean field supported only by the match-
ers. If set to ”True”, it reverses the behavior of the parser. If
the matcher normally checks for the presence of some strings
(”word” rule type), with a ”True” invert_match field, it checks
for the non-presence of the given strings.

To make Staresc’s plugins more flexible, we introduced the possibility
to apply more than one parser on the same command output.
The list of parsers is applied to the output in a pipeline-like process.
In this pipeline, each parser receives the result of the parser before
it. Then, it parses it, and eventually, it passes its result to the next
parser.
The output (and input) of each parser has the shape showed in Listing
4.1.

{
<matched or extracted>,
{

” stdout ” : <ex t rac t ed s tdout>,
” s t d e r r ” : <ex t r a c t ed s td e r r>

}
}

Listing 4.1: The data structure that passes through the pipeline of
parsers.

• <matched_or_extracted> is a boolean field that is true if all the
matchers (or extractors), before the current one. have matched
(or extracted) something, otherwise it is false. The initial value
(at the start of the pipeline) of this field is ”true”. If a parser
receives as input an object with this value set to false, it skips
the parsing process.

• <extracted_stdout> and <extracted_stderr> are strings that
represent the portions of text extracted by the extractors before,
respectively from the stdout and stderr. The initial values (at the
start of the pipeline) of these fields are the result (stdout/stderr)
of the command executed in the target machine. The matchers
affect only the boolean value (<matched_or_extracted>), they
do not modify the value of
<extracted_stdout>/<extracted_stderr>.
The extractors, on the other hand, set the boolean to ”true” if
they extract something, or ”false” if they do not. Moreover, they
substitute <extracted_stdout>/<extracted_stderr> with the

27

28 CHAPTER 4. PLUGIN PRODUCTION

portion of text they extract. If they can not extract anything,
<extracted_stdout> and <extracted_stderr> are set to empty
string.

4.1.2 Example plugin

To show how the various properties of the YAML file should be used,
we show an example plugin.
This plugin has been implemented to detect the CVE-2021-3156 vul-
nerability. It is a heap-based buffer overflow that, if exploited, allows
an attacker to obtain root privileges from a regular user.
We choose this vulnerability since it perfectly represents the type of
vulnerability that we search with Staresc. It is a local vulnerability, so
it can be found only by an authenticated user, that can open a shell
session inside the machine.
Moreover, it is a privileged escalation vector that is exploitable by
regular users. Indeed, it is sufficient to have the permission to run the
sudoedit command in order to exploit it.
As we have seen in the Section 2.3, to trigger the vulnerability it is
sufficient to run the command:

sudoedit -s "somestring \\"

The double backslash is interpreted by the bash shell as a single back-
slash (the first backslash is used as an escape character).
The ending backslash of the string triggers a one-byte out-of-bound
write in a heap chunk. This write corrupts some heap control struc-
ture with a null byte (the ending byte of the parameter string), and
eventually results in a crashing malloc() allocation (Listing 4.2).

cekout_test@test-vuln:~$ sudoed i t −s ” somestr ing \\”
mal loc () : i n v a l i d next s i z e (unsorted)
Aborted (core dumped)
cekout_test@test-vuln:~$ sudo −−ve r s i on
Sudo ve r s i on 1 . 8 . 3 1 p2
Sudoers po l i c y p lug in ve r s i on 1 . 8 . 3 1 p2
Sudoers f i l e grammar ve r s i on 46
Sudoers I /O plug in ve r s i on 1 . 8 . 3 1 p2

Listing 4.2: Sudo binary crashing using the PoC command.

Another indicator for this vulnerability, is the check on the version
of the sudo binary: the legacy versions from 1.8.2 to 1.8.31p2 and the
stable versions from 1.9.0 to 1.9.5p1 in their default configuration are
vulnerable.
Our plugin contains both the checks: the crashing command and the

28

29 CHAPTER 4. PLUGIN PRODUCTION

version verification. For the latter, we use a regex used by the Lin-
peas software. In Listing 4.3 you can see the content of the plugin.
The fields name, description, remediation, cve, reference, cvss,
severity and cvss_vector contain various information about the
vulnerability.
The field tests contains a list of two tests, the first is the crashing
command, while the second is the check on the version of the sudo
binary.
The first test is made up two fields: the command field contains the
command that triggers the crash, while the parsers field contains the
specification for the matcher that parses the command output.
This matcher (parser_type set to ”matcher”) checks if at least one
(condition set to ”or”) of the strings (rule_type set to ”word”)
specified in the field rules is present in the output of the command
(stdout or stderr, since the field part is not specified).
The second test runs the command ”sudo --version”, and pass its out-
put to an extractor that extracts the portion of text that matches the
regex ”Sudo version .*\n”. This is the line that contains the version
of the sudo binary.
The extracted portion is then passed to a second extractor, that ap-
plies the version regex in order to see if the sudo binary has a vulnera-
ble version. If the first extractor can not extract anything, the second
extractor will not be applied.
Given that the field match_condition is not specified, both the tests
must return a positive result (vulnerability found) in order to consider
the target machine vulnerable. This behaviour is used to minimize the
false positives.
Summarizing, the following are the actions that Staresc does when
it performs a scan using the sudoedit plugin. Given an established
connection to the target machine, Staresc runs the command of the
first test (the crashing one), then it collects the output and passes it
to the parser of the first test.
This parser checks if at least one of the given strings is present in the
command output. If so, this test is considered positive, and Staresc
proceeds with the second one. If the matcher can not find any string,
the result of the test is considered negative, and Staresc does not
proceed with the second test, considering the target machine not vul-
nerable.
For the second test, Staresc collects the output of the command and
sends it to the first extractor. If it can extract a portion of text,
Staresc sends the extracted part to the second extractor, otherwise it

29

30 CHAPTER 4. PLUGIN PRODUCTION

considers the test negative. If also the second extractor can extract a
portion of the test with its regex rule, the test is considered positive
and the target machine is marked as vulnerable.
The final reports contain, for each target connection, both the in-
formation about the plugin/vulnerability and the results of the scan,
reporting if the machine is vulnerable or if the scan requires too much
time (triggers a timeout).

1 id : 'CVE-2021-3156-sudoedit'
2 author: 'cekout'
3 name: 'Component with known vulnerabilities: sudo before

1.9.5p2'
4 d e s c r i p t i o n : |
5 Sudo be f o r e 1 . 9 . 5 p2 conta in s an o f f−by−one e r r o r that can

r e s u l t in a
6 heap−based bu f f e r over f low , which a l l ows p r i v i l e g e

e s c a l a t i o n to root v ia
7 "sudoedit -s" and a command−l i n e argument that ends with a

s i n g l e backs la sh
8 cha rac t e r .
9 remediat ion : |
10 Update the so f tware to a more r e c en t ve r s i on
11 cve: 'CVE-2021-3156'
12 r e f e r e n c e : 'https://nvd.nist.gov/vuln/detail/CVE-2021-3156'

14 cvs s : 7 . 8
15 s e v e r i t y : 'High'
16 c v s s v e c t o r : 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H'

18 t e s t s :
19 - command: "sudoedit -s '0123456789\\'"
20 pa r s e r s :
21 - pa r s e r type : 'matcher'
22 r u l e t yp e : 'word'
23 cond i t i on : 'or'
24 r u l e s :
25 - 'memory'
26 - 'Error'
27 - 'Backtrace'
28 - 'malloc'
29 - 'invalid pointer'
30 - command: 'sudo --version'
31 pa r s e r s :
32 - pa r s e r type : 'extractor'
33 r u l e t yp e : 'regex'
34 r u l e s :
35 - 'Sudo version .*\n'
36 - pa r s e r type : 'extractor'
37 r u l e t yp e : 'regex'

30

31 CHAPTER 4. PLUGIN PRODUCTION

38 r u l e s :
39 - '([01].[012345678].[0-9]+) | (1.9.[01234]) | (1.9.5

p1)'

Listing 4.3: Staresc’s plugin for the CVE-2021-3156 vulnerability.

4.2 Plugin testing

To make plugin development easier, we implemented a ”test plugins”
execution mode for Staresc. When a plugin is parsed, many errors
can occur, especially with strings that represent regexes. These prob-
lems arise because the YAML language, even if it is a simple human-
readable format, offers different ways to specify the same type of data.
For example, string values can be expressed in five ways:

• plain scalar: the string does not need any quotes, but spaces at
the start and at the end of the string are trimmed. Moreover,
it can not contain escaped characters like ’\n’ and it can raise
problems when this type of string contains special characters
(like ’&’ or ’:’), especially at the start of the string.

• single quoted: similar to plain scalar, the string can contain
special characters, but it is not possible to specify escaped char-
acters. To specify a quote character (’′’) in the string, it must
be escaped with another quote character (e.g. ’′′’).

• double quoted: these strings can contain escaped characters like
’\n’, double quote and backslash characters must be escaped
(e.g. ’\”’ and ’\\’).

• literal block scalar: similar to plain scalar, but the string can
extend on more than one line. The newline characters are kept
in the resulting string.

• folded block scalar: similar to a literal block scalar, but the
newline characters are not kept in the resulting string.

To test how a plugin is parsed by Staresc, it is sufficient to run Staresc
specifying the plugin directory, and the flag ”--test-plugins” instead of
the connection string. In this mode, Staresc activates the debugging
mode by default, and it prints all the information it parses from every
plugin contained in the plugin directory.
This mode is also useful to test how the parsers (matcher or extractor)

31

32 CHAPTER 4. PLUGIN PRODUCTION

of a plugin work. Indeed, the mechanism of the pipelined parsers can
confuse the plugin developers. With this mode they can check if, given
some testing results, these parsers work as expected.
To use this feature it is sufficient to add a field called plugin_tests

to the elements of the list tests in the YAML file. This field is a list
of ”plugin test” elements, each of which contains three fields: stdout,
stderr and expected.
The idea behind these tests is the following, the command (field command
in the test element) is executed on a hypothetical target machine, the
results of the command are contained in the fields stdout, stderr.
Naturally, we do not really execute the command on the target ma-
chine but stdout and stderr are used to create the ”result object”
that is passed to the list of parsers.
The field expected contains a boolean value. If it is true, Staresc
assumes that the list of parsers must declare the test as positive, oth-
erwise, it assumes that the parsers must declare the test as negative.
A plugin developer can check if the parsers work as expected or not,
given some testing snippets that could have been generated by a com-
mand on the target machines.
The following example shows some possible tests that can be applied
to the sudoedit plugin. The Listing 4.4 contains the content of the
field tests in the sudoedit plugin. This is similar to what we had
in the plugin we showed before, but here, we specified some plugin
tests. The first element of the tests list is the one that runs the
command ”sudoedit -s ’0123456789\\’”. From the resources about
this vulnerability, we know that this command crashes the vulnerable
sudo binaries, meanwhile it generates a ”usage” message on patched
sudo binaries.
Given these reasons, we added two tests for this Test object: the
first contains the usage message in the stderr and it is expected to
be marked as not-vulnerable (expected: false) by the relative parser.
The second one contains the malloc crashing error message on the
stderr, and it is expected to be marked as vulnerable by the parser.
Similarly, we designed the two tests for the second Test object. The
first Test contains, in the stdout field, the message printed by the
command ”sudo --version”, with a patched version (the version 1.9.9).
It is expected to not be marked as vulnerable by the parsers. The
second one contains the stdout given by a patched sudo binary.

32

33 CHAPTER 4. PLUGIN PRODUCTION

1 t e s t s :
2 - command: "sudoedit -s '0123456789\\'"
3 pa r s e r s :
4 - pa r s e r type : 'matcher'
5 r u l e t yp e : 'word'
6 cond i t i on : 'or'
7 r u l e s :
8 - 'memory'
9 - 'Error'
10 - 'Backtrace'
11 - 'malloc'
12 - 'invalid pointer'
13 p l u g i n t e s t s :
14 - s t d e r r : |
15 sudoed i t : i n v a l i d opt ion −− 's'
16 usage: sudoed i t −h | −V
17 usage: sudoed i t [−ABknS] [− r r o l e] [− t type] [−C

num] [−D d i r e c t o r y] [−g group] [−h host] [−p prompt] [−R
d i r e c t o r y] [−T timeout] [−u user] f i l e . . .

19 expected: False
20 - s t d e r r : "malloc(): invalid next size (unsorted)\n"

21 expected: True
22 - command: 'sudo --version'
23 pa r s e r s :
24 - pa r s e r type : 'extractor'
25 r u l e t yp e : 'regex'
26 r u l e s :
27 - 'Sudo version .*\n'
28 - pa r s e r type : 'extractor'
29 r u l e t yp e : 'regex'
30 r u l e s :
31 - '([01].[012345678].[0-9]+) | (1.9.[01234]) | (1.9.5

p1)'
32 p l u g i n t e s t s :
33 - s tdout : |
34 Sudo ve r s i on 1 . 9 . 9
35 Sudoers po l i c y p lug in ve r s i on 1 . 9 . 9
36 Sudoers f i l e grammar ve r s i on 48
37 Sudoers I /O plug in ve r s i on 1 . 9 . 9
38 Sudoers audi t p lug in ve r s i on 1 . 9 . 9

40 expected: False
41 - s tdout : |
42 Sudo ve r s i on 1 . 8 . 3 1 p2
43 Sudoers po l i c y p lug in ve r s i on 1 . 8 . 3 1 p2
44 Sudoers f i l e grammar ve r s i on 46
45 Sudoers I /O plug in ve r s i on 1 . 8 . 3 1 p2

33

34 CHAPTER 4. PLUGIN PRODUCTION

47 expected: True

Listing 4.4: Portion of the CVE-2021-3156 plugin with plugin testing
fields.

34

Chapter 5

Comparison with other
tools

We decided to develop Staresc because the tools that are available
do not have the features that we want. Nessus and OpenVAS can
perform authenticated vulnerability assessments, but their plugin lan-
guage (NASL) is too complex. Nuclei has a flexible and intuitive
YAML based language for its templates, but it can not perform vul-
nerability assessments over interactive shell protocols.
In this chapter, we analyse the differences and the common features
between the actual Staresc implementation and four tools from which
we took inspiration.The first is the old implementation of Staresc, that
has a completely different mechanism to handle the plugins. The sec-
ond is Nuclei, from which we took a lot of ideas for our YAML based
plugin language. The third and the fourth are Nessus and OpenVAS,
we focus a lot on the NASL scripting language analyzing its strengths
and weaknesses.

5.1 Staresc Evolution

Staresc was originally ideated and developed by Bruno Colella. Then
Valerio Casalino [1] improved the tool, and built the scaffold of the tool
that we have now. In the last months, we changed a lot the features
and the structure of the tool, but the core structure and the ideas
under it are the same. It must take some plugins and some targets,
run the tests specified by the plugins on the targets and then, it must
print a report showing the vulnerable targets.
Two big parts of this process have been totally rewritten: the report
production part and the plugin parsing part. We are going to discuss

35

36 CHAPTER 5. COMPARISON WITH OTHER TOOLS

the plugin parsing part below.
Regarding the first part, the older version of Staresc takes, as input,
the name of a JSON file, and prints in this file a JSON object that
contains all the information about the scan. Even if it is simpler than
the actual one, this reporting implementation is less flexible, and can
not be easily extended with additional reporting formats (like XLSX,
CSV, etc.).

5.1.1 Plugin parsing evolution

The most important part that changed radically, is the plugin parsing
one. Even if Staresc was developed taking example from Nuclei, its
plugins were not written as YAML files. Indeed, originally they were
implemented as Python modules, that were imported during the scan.
There are four main reasons that lead us to change the format for our
plugins and to adopt the YAML language:

• Python plugins are less readable than newer YAML plugins.
With its easily readable structure, YAML language helps on
keeping information cleaner. Due to its intuitive syntax, it is
easy to understand the structure of the plugin.

• Python plugins require the developer to know Python. For a
person that does not know Python or YAML, it is faster and
easier to learn our plugin format based on YAML, rather than
learn a whole new programming language.

• Python plugins can require to be updated if their version of
Python reaches End Of Life.

• YAML plugins are easier to debug since they do not require to
write control flow constructs and other complex statements that
can lead to the introduction of bugs.

We developed Staresc with the goal to have a vulnerability assessment
tool that takes advantage of a big pool of plugins. We believe that
the best way to achieve this goal is to make the plugin development
a fast and easy process, in order to encourage other people to write
their own plugins and share them with the community.
In Table 5.1, we show a comparison between an old Python plugin
and a newer YAML plugin. Both are developed to detect the sudo
vulnerability of the CVE-2021-3156. The new plugin is taken from
the example plugin shown in the Subsection 4.1.2. We stripped some

36

37 CHAPTER 5. COMPARISON WITH OTHER TOOLS

field from it, since this information was not contained in the Python
plugin.

Commands to be executed on the ta rg e t
COMMANDS = [

' sudoed i t −s ”1234567890123456789012\\” 2>&1
' ,

” sudo −−ve r s i on 2>&1”
]
Matcher s t r i n g f o r d i s t r i b u t i o n /∗ nix
https :// docs . python . org /3 .4/ l i b r a r y / re . html
MATCHER = ” .∗ ”

def get commands () −> l i s t :
return COMMANDS

def get matcher () −> str :
return MATCHER

def parse (output : l i s t) −> str :
i f ”memory” in output [0] or ”Error ” in
output [0] or ”Backtrace ” in output [0] :

re tVal = ”sudo −V\n”
retVal += f ”{output [1]}\ n”
retVal += ” I s vu lne rab l e to CVE

−2021−3156”

return retVal
return ”Not vu lne rab l e ”

id : ' CVE -2021 -3156 - s u d o e d i t '
author: ' c e k o u t '
name: ' C o m p o n e n t w i t h k n o w n v u l n e r a b i l i t i e s : s u d o

b e f o r e 1 . 9 . 5 p2 '

de s c r i p t i o n : |
Sudo be fo r e 1 . 9 . 5 p2 conta ins an o f f−by−one

e r r o r that can r e s u l t in a

heap−based bu f f e r over f low , which a l l ows
p r i v i l e g e e s c a l a t i o n to root v ia

" s u d o e d i t - s " and a command−l i n e argument that
ends with a s i n g l e backs lash

charac t e r .
remediat ion : |

Update the so f tware to a more r ecent ve r s i on
cve: ' CVE - 2 0 2 1 - 3 1 5 6 '
r e f e r e n c e : ' h t t p s :// nvd . n i s t . gov / v u l n / d e t a i l / CVE

- 2 0 2 1 - 3 1 5 6 '

cvss : 7 .8
s e v e r i t y : ' H i g h '
c v s s v e c t o r : ' C V S S : 3 . 1 / AV : L / AC : L / PR : L / UI : N / S : U / C :

H / I : H / A : H '

t e s t s :
- command: " s u d o e d i t - s ' 0 1 2 3 4 5 6 7 8 9 \ \ ' "

pa r s e r s :
- pa r s e r type : ' m a t c h e r '

r u l e t yp e : ' w o r d '
cond i t i on : ' or '
r u l e s :

- ' m e m o r y '
- ' E r r o r '
- ' B a c k t r a c e '
- ' m a l l o c '
- ' i n v a l i d p o i n t e r '

- command: ' s u d o - - v e r s i o n '
pa r s e r s :

- pa r s e r type : ' e x t r a c t o r '
r u l e t yp e : ' r e g e x '
r u l e s :

- ' S u d o v e r s i o n .*\ n '
- pa r s e r type : ' e x t r a c t o r '

r u l e t yp e : ' r e g e x '
r u l e s :

- ' ([0 1] . [0 1 2 3 4 5 6 7 8] . [0 - 9] +) |
(1 . 9 . [0 1 2 3 4]) | (1 . 9 . 5 p1) '

Table 5.1: Comparison between an old Staresc Python plugin (left)
and a new Staresc YAMl plugin (right).

From the Table 5.1, you can see that the Python plugin must
implement three functions. These functions are called by the engine
in order to perform the scans and to parse the results.
These functions are:

• get_commands(): this function must return a list of strings, each
string is a command that will be executed on the target machine.

• get_matcher(): this function is called at the start of a scan, it
returns a string that is used as a regex to check if the plugin is
compatible with the target machine’s OS distribution.

• parse(): this function takes a list of strings that are the results
(stdout and stderr) of the relative commands executed on the

37

38 CHAPTER 5. COMPARISON WITH OTHER TOOLS

target machine. As you can see, this function is used to parse
these results and to decide if the target machine is vulnerable.
It returns a string that marks the machine as vulnerable or not.

As you can see from the Table 5.1, get_commands() and get_matcher()
simply return static strings. Thus, they can be easily replaced by static
fields.
Moreover, the functionality that checks if the plugin is compatible
with the OS of the target machine is temporarily removed, so, the
field distr_matcher of the YAML plugin can be ignored for now.
On the other hand, we notice by our experience that most of the times,
the parse() function just needs to check if a given regex or text ap-
pears in the result of the commands. So, we found a way to replace it
with entities that accept static fields: the matchers and the extractors.

5.2 Comparison with Nuclei

Nuclei is a recent but solid tool, it owes his success to a very active
community of developers that adds commits to the core engine almost
every day.
Currently, more than 300 security researchers and engineers wrote
more than 3000 plugins [16].
Its structure and its solidity are exactly what we are searching for our
tool. Unfortunately, Nuclei supports a wide variety of network proto-
cols, but not the interactive shell ones.
Given that, we tried to develop a tool that has a structure similar to
Nuclei, but that is tailored to perform vulnerability assessment using
the interactive shell protocols.
Nuclei’s templates are rich of features: they can be used to send HTTP
or DNS requests, to handle raw TCP connections, to check the con-
tent of local files and also to automate the behaviour of an internal
headless browser used by the tool.
Many of these features are useless for our purposes and we do not need
to implement them in Staresc. We decided to focus on the concept of
parsing operators. Nuclei supports two types of operators: matcher
and extractor.
Matchers are used to check if the response fulfills some conditions.
There are six types of matcher, the common ones are: status, word
and regex.
status is used to check if the response matches some given status
codes, for example, if an HTTP response has the status code 200.

38

39 CHAPTER 5. COMPARISON WITH OTHER TOOLS

word matchers are used to check if the response contains a given por-
tion of text. It can also be hex-encoded. regex matchers are similar
to the word ones, they check if the response content matches a given
regex.
Extractors are similar to matchers, with the difference that they ex-
tract portions of text from the response.

5.2.1 Comparison between Nuclei templates and

Staresc plugins

From the Table 5.2 it is possible to see a comparison between Nuclei’s
matchers and Staresc’s matchers.

matchers−cond i t i on : and
matchers:

- type: word
words:

- " X - Powered - By : PHP "

- " P H P S E S S I D "

cond i t i on : or
part : header

- type: word
words:

- " PHP "

part : body

pa r s e r s :
- pa r s e r type : ' m a t c h e r '

r u l e t yp e : ' w o r d '
invert match: true
r u l e s :

- ' X B I z D R v n d Z W M T A q C b Q V Q X g '
- pa r s e r type : ' m a t c h e r '

r u l e t yp e : ' r e g e x '
invert match: true
cond i t i on : ' or '
r u l e s :

- ' \ n s s l _ t l s v 1 =[Yy][Ee][Ss] '
- ' ^ s s l _ t l s v 1 =[Yy][Ee][Ss] '
- ' \ n s s l _ s s l v 2 =[Yy][Ee][Ss] '
- ' ^ s s l _ s s l v 2 =[Yy][Ee][Ss] '
- ' \ n s s l _ s s l v 3 =[Yy][Ee][Ss] '
- ' ^ s s l _ s s l v 3 =[Yy][Ee][Ss] '

Table 5.2: Comparison between Nuclei matchers (left) and Staresc
matchers (right).

As you can see, the two types of matcher are very similar except for
some slight differences. Nuclei supports the field matcher-condition

that specifies how the results of the matchers must be merged. With
an ”and” value, all the matchers must get a match. Staresc does not
support this field since it merges the results of the parsers in a differ-
ent way. As we have shown in the Subsection 4.1.1, Staresc’s parsers
are placed in a pipeline-like structure, the result of the first parser is
sent as input to the second parser and so on.
By default, this structure leads to a configuration in which the results
of multiple matcher are merged, as if we had the field matcher-condition
set to ”and”.
We discussed about the possibility to add a field similar to
matcher-condition that lets the plugin developer modify how the
results of the matchers must be merged. Eventually, we agreed that
currently it is not a useful feature, since we noticed that we never
needed it.
Another difference that is caused by our pipeline parsers structure is

39

40 CHAPTER 5. COMPARISON WITH OTHER TOOLS

the name of the field that contains the list of parsers. Nuclei’s plug-
ins contain the matchers’ specification in a list, assigned to the field
matchers (extractors for the extractors).
Staresc’s parsers are listed in the more generic field parsers, with the
parser type specified in the field parser_type, inside each parser.
This is due to the fact that we can mix matchers and extractors in
the pipeline. So, by our point of view, matcher and extractors are
different variants of parsers, and, as parsers, they must be placed in
the same list.
Some of the more powerful and useful features that characterize Nu-
clei’s templates, are the possibility to insert scripting-like statements
that are executed in the template context, and the possibility to define
workflows of templates.
Nuclei’s template scriptings consists mostly on three features: DSL
operators, helper functions and variables.

• DSL operators are a special type of matcher/extractor whose
behaviour is specified by statements wrote in a scripting-like
language. An example of DSL matcher can be found in the
Listing 5.1.

• Helper functions are predefined functions that can be used by
the plugin to apply transformation or to perform various checks.
Plugin developers can use these functions to transform data be-
fore sending a request (e.g. base64() to encode part of the re-
quest), to decode part of the response (e.g. base64_decode()),
to perform checks on the response (e.g. len() on the response
body), etc.

• Variables can be introduced to define values that can be reused
later in the plugin. They can be assigned static values or DSL
expressions; in the latter case the expression must be enclosed
in double-curly brackets. Moreover, there are some standard
variables that are defined by the engine according to the context
of the scan. For example, the variable BaseURL contains a string
with the base URL of the target.
In the Listing 5.2 is shown a Nuclei’s template that sets two
variables and sends the string ”PING” on a TCP connection
with the specified hostname. Then it reads 8 characters from
the connection and checks (with a matcher) if they are equal to
the string ”hello”, encoded with base64.

40

41 CHAPTER 5. COMPARISON WITH OTHER TOOLS

1 matchers:
2 - type: d s l
3 d s l :
4 - "len(body)<1024 && status_code==200" # Body length

less than 1024 and 200 status code

5 - "contains(toupper(body), md5(cookie))" # Check if

the MD5 sum of cookies is contained in the uppercase body

Listing 5.1: A Nuclei’s DSL matcher that performs dynamic checks
on a response.

1 # Variable example for network requests

2 id : va r i ab l e s−example

4 i n f o :
5 name: Var i ab l e s Example
6 author: pdteam
7 s e v e r i t y : i n f o

9 va r i a b l e s :
10 a1: "PING"

11 a2: "{{base64('hello')}}"

13 network:
14 - host :
15 - "{{Hostname}}"

16 inputs :
17 - data: "{{a1}}"

18 read−s i z e : 8
19 matchers:
20 - type: word
21 part : data
22 words:
23 - "{{a2}}"

Listing 5.2: Nuclei variables used to give a dynamic behaviour to the
template.

Workflows allow to define groups of templates that can be executed
in series. This is particularly useful when we are targeting a specific
technology, and want to execute all the template related to that tech-
nology. For example, if we are testing a web app that runs Wordpress
[33], we can specify a workflow that contains a list of all the templates
that target Worpress applications.
Another interesting feature of the workflow is the possibility to specify
dependencies between the templates. It is very useful when we want
to execute a template only under some conditions given by another
template. For example, we could execute a template for a specific

41

42 CHAPTER 5. COMPARISON WITH OTHER TOOLS

technology only when we are sure that the given technology is used
by the target system. In Listing 5.3 you can see an example workflow
that executes a template to detect the technology used by the tar-
get system. Then, if the matcher named ”vbulletin” matches (in the
run template), two vbulletin exploit templates are executed. On the
other hand, if the matcher named ”jboss” matches, other two exploit
templates, specific for jboss technology, are executed.

1 workf lows:
2 - template : t e chno l o g i e s / tech−det ec t . yaml
3 matchers:
4 - name: v bu l l e t i n
5 subtemplates :
6 - template : e x p l o i t s / vbu l l e t i n−exp1 . yaml
7 - template : e x p l o i t s / vbu l l e t i n−exp2 . yaml
8 - name: j bo s s
9 subtemplates :
10 - template : e x p l o i t s / jboss−exp1 . yaml
11 - template : e x p l o i t s / jboss−exp2 . yaml

Listing 5.3: An example of a workflow in a Nuclei’s template.

5.3 Comparison with Nessus and Open-
VAS

As we explained in the Subsection 2.1.1, Nessus and OpenVAS are
two tools that share the core engine and a lot of features.
For our purposes, the most interesting features, that these two tools
offer, are: the authenticated scans and the possibility to define new
scans with the NASL language.
Nessus supports many authentication mechanisms, from classic HTTP
login pages, to FTP and POP3.
These authentication mechanisms can be used to target both Unix-like
and Windows systems. On the other hand, Staresc currently supports
only SSH and Telnet protocols, that are usually used by Unix-like sys-
tems.
However, the structure of Staresc keeps separated the core engine and
the connection part. This implies that, if the right connection is im-
plemented, Staresc can be used to target Windows machines.
This is the idea that led us to the current implementation of the con-
nection part: making the tool easily extendable with new connection
types.

42

43 CHAPTER 5. COMPARISON WITH OTHER TOOLS

5.3.1 NASL language

The other important feature of Nessus and OpenVAS is the NASL
language. It is a scripting language similar to C and Perl languages.
We will explore how it works and how to write NASL plugins using
two example plugins, the ones that OpenVAS uses to check the pres-
ence of the CVE-2021-3156 vulnerability.
Even if our first competitor is Nessus, we must use OpenVAS’ plu-
gins because Nessus’ ones are not open source. We couldn’t get the
permission from Tenable to show the content of one of their CVE-
2021-3156 plugins. However, the plugins used by Nessus are easily
readable when the tool is installed (even in the free version). For
example, in the Linux systems they are placed in the directory ”/op-
t/nessus/lib/nessus/plugins” [37].
OpenVAS has two plugins that check the presence of the sudoedit vul-
nerability: one checks the version of the sudo binary, and the second
checks if sudo crashes with a specific command, similar to the one that
we use in Staresc’s plugin. The content of the two plugins is shown
in Listing 5.4 and Listing 5.5. To explain the NASL syntax, we use,
as example, the plugin in Listing 5.4, then we focus on the differences
between the first and the second plugin.
NASL plugins are generally divided into three parts [34]:

• Configuration

• Post configuration

• Security check

Configuration is the part of the plugins specifying all the metadata
about the plugin and the checked vulnerability. It contains a lot of
function calls that set static fields, like the plugin ID or the vulnera-
bility severity.
In the example plugin, the configuration part goes from line 1 to line
41. On the first line, the CPE value is set. CPE stands for Common
Platform Enumeration, it is a naming scheme used to identify infor-
mation technology systems, software, and packages [18], Nessus and
OpenVAS use this naming scheme to identify the products that they
check in their plugins [39]. Here, the CPE identifies the sudo binary.
Lines 5-21 are easily understandable, they simply set some fields that
are used by the core engine to give information about the plugin to
the user.

43

44 CHAPTER 5. COMPARISON WITH OTHER TOOLS

Lines 21-23 are very important, here the developer specifies the de-
pendencies of the plugin, and in which situation the plugin must be
executed.
The function script_dependencies() is used to specify the plugin
that must be executed before the actual one. Here, the plugin
”gb sudo ssh login detect.nasl” checks, using SSH, the presence of the
sudo binary.
To check if the plugin ”gb sudo ssh login detect.nasl” has found the
sudo binary, the sudoedit plugin uses the ”keys”.
These keys are similar to global variables that can be set or not.
With the function script_mandatory_keys() the developer can en-
sure that some keys are set when the plugin runs. The function
script_exclude_keys() does the opposite of the previous one, it
checks if some keys are not set.
In lines 22-23 of the sudoedit plugin, the developer ensures that the
key ”sudo/ssh-login/detected” is set and the key ”ssh/force/pty” is
not set. ”sudo/ssh-login/detected” key is set by the plugin
”gb sudo ssh login detect.nasl”, and it ensures that the sudo binary
has been found. ”ssh/force/pty”, instead, is activated if the tool de-
tects that a pseudoterminal, or a PTY, is used to send the commands.
Lines 25-41 contain the specification of other static fields.
Lines 44-46 contain the post configuration part. In this part the plugin
developer includes the headers of the NASL libraries that the plugin
uses. This mechanism is similar to the ”include” mechanism used in
the C language.
The library ”host details.inc” provides functions that can be used to
retrieve information about the target host. For example, the func-
tion get_app_version_and_location() is provided by this library,
and can be used to retrieve the location and the version of a given
application in the target host.
The library ”revision-lib.inc” provides helper functions for revision
strings.
The library ”version func.inc” provides functions that can be used
to handle version numbers. For example, it contains the function
version_is_less().
The last part of the plugin is the security check one. It contains the
real logic of the plugin: the security checks that the plugin makes, on
the target systems.
On lines 48-52 the plugin retrieves the version and the location of
the sudo binary. If no version is found, the function exits, since the
exit_no_version parameter is set to ”TRUE”. It can be seen that

44

45 CHAPTER 5. COMPARISON WITH OTHER TOOLS

the CPE variable is used to uniquely identify the sudo binary.
In line 54-55 there is a first version check, in which the plugin checks
if the binary version is less than the least vulnerable version. If the
binary version is too low to be vulnerable, sudo is considered not vul-
nerable, and the plugin exits.
Notice that the exit value is 99, looking at the OpenVAS source
code [12], we can affirm that this value corresponds to the constant
”NASL EXIT NOTVULN”, that is used by the OpenVAS engine to
report a not vulnerable target.
On lines 57-60 there is a second check. Here the plugin checks that the
version of the sudo binary is less than the lower patched version. If
so, the binary is considered vulnerable, a security report is generated
(lines 58-59) and the program exits.
On line 63 there is an additional exit call, that is reached if the version
of the sudo binary is one of the patched ones. This call to the exit
function marks the target as not vulnerable (exit code 99).
The active plugin has a similar configuration part. The only differ-
ences are the category of the plugin (line 18), the dependencies (lines
21) and the required keys (line 22).
The category of this plugin is ”ACT ATTACK”, while the category
of the previous plugin is ”ACT GATHER INFO” (line 18).
These categories are used by the core engine to organize the plugins,
this is useful when the user wants to restrict in some way the plugins
to use, in a security scan. For example, assume to be in a situation in
which you want to perform only version checks, because the target of
the scan is a critical infrastructure. You would appreciate the possi-
bility to not perform checks that can compromise the integrity of the
target system.
The different dependencies are due to the PoC command that this
plugin executes. Since it uses the Perl language, the plugin checks
that the Perl binary is detected by the ”gb perl ssh login detect.nasl”
plugin.
From the post configuration part, you can notice that the active plu-
gin includes the ”ssh func.inc” library. It provides functions that can
be used to handle SSH connections to the target system.
The security check part is completely different from the one of the
previous plugin.
On lines 46-47 the plugin checks if the sudo binary is present.
On lines 49-51 it retrieves a socket-like object that can be used to
handle the SSH session on the target system.
On line 56-59 it checks that the SSH session has access to the bi-

45

46 CHAPTER 5. COMPARISON WITH OTHER TOOLS

nary. To do this, the plugin checks that the output of the command
”sudoedit --help” is as expected.
On lines 63-65 the plugin checks that the sudo binary does not throw
a segmentation fault in normal conditions. This check is performed
to avoid false positives. In fact, without it, we could not know if the
segmentation fault is generated by the CVE-2021-3156 PoC or not.
On lines 68-69 the official PoC is executed on the target system. Then,
on line 70, the socket-like object is closed.
On lines 72-75 the result of the PoC command is checked, if it matched
the segmentation fault pattern, the host is considered vulnerable.

5.3.2 Comparison between NASL plugins and Staresc

plugins

The first difference between our example Staresc’s plugin (Listing 4.3)
and the OpenVAS’ plugins (Listings 5.4 and 5.5) is the number of
lines. The length of the Staresc’s plugin is around 40 lines, while
OpenVAS’ version check plugin is around 70 lines long, and the active
one is around 55 lines long (without blank lines and comments).
These numbers cannot be directly used to compare the two types of
plugins, since OpenVAS’ plugins consist mainly on configuration state-
ments, that can be seen as the metadata fields (name, description,
etc.) of Staresc’s plugins.
So, if we compare only the security check parts, we can see that the
active check of the Staresc’s plugin takes around ten lines, while it
takes around 20 lines in the OpenVAS’ plugin.
This is basically the same check. We choose to not use the Perl PoC
because it can not be used in target systems that do not support the
Perl language. On the other hand, OpenVAS’ plugin performs an
additional check (lines 81-83) to establish if the sudo binary crashes
without the PoC. We choose to not implement this check because we
did not consider it necessary for our use cases.
However, this additional check adds only three lines. Thus, Staresc
test takes less space than OpenVAS security check.
Looking at the version check plugin, its security check part is around
10 lines long, as the one of Staresc’s plugin.
Regardless of the plugin length, it is clear that Staresc’s plugin is
easier to read and understand. The fact that it is written in YAML
makes its structure clearer than that of OpenVAS’ plugins. It is easy
to notice how many tests, and which commands, will be executed. On
the other hand, it requires a bit of knowledge to understand what the

46

47 CHAPTER 5. COMPARISON WITH OTHER TOOLS

parsers are and how they handle the command results.
However, it requires less effort to read how the parsers work instead
of studying a new scripting language.
To understand how these two OpenVAS’ plugins work, we had to read
NASL documentation [38] [41] and sometimes the source code [12].
Moreover, things become harder if we want to read Nessus plugins,
since Nessus source code is not readable and there is little or no doc-
umentation for its libraries.
If understanding existing NASL plugins is hard, write new plugins is
even harder. It is a very time consuming activity, because it requires
the developer to know which libraries and which function are avail-
able.
On the other hand, Staresc does not require the knowledge of libraries
and functions to read and write plugins. This makes Staresc’s plugins
less, flexible because we can not handle the security checks directly in
code, but we believe that this flexibility requires too much complexity,
that makes plugins development a too much time consuming process.
The right compromise could be represented by Nuclei’s templates that
support inline template scripting.
Another difference is given by the number of plugins used to check
the same vulnerability. OpenVAS uses two plugins to perform two
different checks, while we implemented a single Staresc’s plugin for
the same purpose.
This difference can be given by the fact that OpenVAS distinguishes
the two plugins by their categories. In this way, it can choose which
test to perform based on the risk level that the tests have.
Unfortunately Staresc does not have this feature, we could implement
it introducing categories or tags in the plugins, but this would imply
that the two tests should be split in two plugins, and this is not ideal.
Another solution could be to introduce a risk_level field inside the
test elements. In this way, Staresc could choose which plugins to run
based on the maximum risk level of the scan.
Nessus plugins for the CVE-2021-3156 are even more complex, there
are 76 plugins relative to this vulnerability [14]. Apparently, Nessus
has one plugin for each OS distribution that it supports. Probably,
this behaviour is given by the fact that its plugins check the version of
the sudo binary using library functions that are specific for the target
distribution. Thus, for each distribution, Nessus plugins have a differ-
ent way to check the sudo binary version.
Furthermore, we found that Nessus plugins do not perform the ac-
tive check, trusting only the version check. This can lead to an higher

47

48 CHAPTER 5. COMPARISON WITH OTHER TOOLS

number of false positives respect to OpenVAS and Staresc, since some-
times the sudo binary is patched, even if it has a vulnerable version.
Given that, we can say that NASL plugins are more flexible and can
lead to more accurate results, but this accuracy brings a not negligible
complexity that plugin developers must face up. Nessus and Open-
VAS are more user-friendly than developer-friendly.
On the other side, Staresc has less flexible and less precise plugins,
that are easier to implement and are devised to be more developer-
friendly than user-friendly.

1 CPE = ”cpe : / a : sudo p ro j e c t : sudo” ;

3 i f (d e s c r i p t i o n)
4 {
5 s c r i p t o i d (” 1 . 3 . 6 . 1 . 4 . 1 . 2 5 6 2 3 . 1 . 0 . 1 1 7 1 8 6 ”) ;
6 s c r i p t v e r s i o n (”2022−08−09T10 :11:17+0000 ”) ;
7 s c r i p t x r e f (name : ”CISA” , va lue : ”Known Explo i ted Vu ln e r ab i l i t y (KEV)

ca ta l og ”) ;
8 s c r i p t x r e f (name : ”URL” , va lue : ” https : //www. c i s a . gov/known−exp lo i t ed−

v u l n e r a b i l i t i e s −ca ta l og ”) ;
9 s c r i p t c v e i d (”CVE−2021−3156”) ;
10 s c r i p t t a g (name : ” cv s s ba s e ” , va lue : ” 7 .2 ”) ;
11 s c r i p t t a g (name : ” c v s s b a s e v e c t o r ” , va lue : ”AV:L/AC:L/Au:N/C:C/ I :C/A:C

”) ;
12 s c r i p t t a g (name : ” l a s t mod i f i c a t i o n ” , va lue : ”2022−08−09 10 : 11 : 17 +0000

(Tue , 09 Aug 2022) ”) ;
13 s c r i p t t a g (name : ” s e v e r i t y v e c t o r ” , va lue : ”CVSS: 3 . 1 /AV:L/AC:L/PR:L/UI :

N/S :U/C:H/ I :H/A:H”) ;
14 s c r i p t t a g (name : ” s e v e r i t y o r i g i n ” , va lue : ”NVD”) ;
15 s c r i p t t a g (name : ” s e v e r i t y d a t e ” , va lue : ”2021−07−20 23 : 15 : 00 +0000 (

Tue , 20 Jul 2021) ”) ;
16 s c r i p t t a g (name : ” c r e a t i on da t e ” , va lue : ”2021−01−27 06 : 47 : 49 +0000 (

Wed, 27 Jan 2021) ”) ;
17 scr ipt name (”Sudo Heap−Based Buf f e r Overflow Vu ln e r ab i l i t y (Baron

Samedit) − Vers ion Check”) ;
18 s c r i p t c a t e g o r y (ACT GATHER INFO) ;
19 s c r i p t c o p y r i g h t (”Copyright (C) 2021 Greenbone Networks GmbH”) ;
20 s c r i p t f am i l y (” Buf f e r over f l ow ”) ;
21 s c r i p t d ep enden c i e s (” gb sudo s s h l o g i n d e t e c t . na s l ”) ;
22 sc r ip t mandatory keys (” sudo/ ssh−l o g i n / detec ted ”) ;
23 s c r i p t e x c l u d e k e y s (” ssh / f o r c e /pty”) ;

25 s c r i p t x r e f (name : ”URL” , va lue : ” https : //www. sudo . ws/ s t ab l e . html#1.9.5
p2”) ;

26 s c r i p t x r e f (name : ”URL” , va lue : ” https : // blog . qua lys . com/
v u l n e r a b i l i t i e s −r e s ea r ch /2021/01/26/ cve−2021−3156−heap−based−bu f f e r
−over f low−in−sudo−baron−samedit ”) ;

28 s c r i p t t a g (name : ”summary” , va lue : ”Sudo i s prone to a heap−based
bu f f e r over f l ow dubbed 'Baron Samedit ' . ”) ;

30 s c r i p t t a g (name : ” vu lde t e c t ” , va lue : ”Checks i f a vu lne rab l e v e r s i on i s
pre sent on the t a r g e t host . ”) ;

48

49 CHAPTER 5. COMPARISON WITH OTHER TOOLS

32 s c r i p t t a g (name : ” i n s i g h t ” , va lue : ”Sudo i s a l l ow ing p r i v i l e g e
e s c a l a t i o n to root v ia ' sudoed i t −s ' and a command−l i n e argument
that ends with a s i n g l e backs la sh charac t e r . ”) ;

34 s c r i p t t a g (name : ” a f f e c t e d ” , va lue : ”Al l l egacy v e r s i on s from 1 . 8 . 2 to
1 . 8 . 3 1 p2 and a l l s t ab l e v e r s i on s from 1 . 9 . 0 to 1 . 9 . 5 p1 in t h e i r
d e f au l t c on f i gu r a t i on . ”) ;

36 s c r i p t t a g (name : ” s o l u t i o n ” , va lue : ”Update to ve r s i on 1 . 9 . 5 p2 or l a t e r
. ”) ;

38 s c r i p t t a g (name : ” qod type ” , va lue : ” e x e c u t a b l e v e r s i o n un r e l i a b l e ”) ;
39 s c r i p t t a g (name : ” s o l u t i o n t yp e ” , va lue : ”VendorFix”) ;

41 e x i t (0) ;
42 }

44 inc lude (” h o s t d e t a i l s . i nc ”) ;
45 inc lude (” r e v i s i o n s − l i b . i nc ”) ;
46 inc lude (” v e r s i on f un c . inc ”) ;

48 i f (! i n f o s = ge t app v e r s i o n and l o c a t i on (cpe :CPE, e x i t n o v e r s i o n :
TRUE))

49 e x i t (0) ;

51 ver s = i n f o s [” v e r s i on ”] ;
52 path = i n f o s [” l o c a t i o n ”] ;

54 i f (v e r s i o n i s l e s s (v e r s i on : vers , t e s t v e r s i o n : ” 1 . 8 . 2 ”))
55 e x i t (99) ; # nb : Not a f f e c t e d

57 i f (v e r s i o n i s l e s s (v e r s i on : vers , t e s t v e r s i o n : ” 1 . 9 . 5 p2”)) {
58 repor t = r e p o r t f i x e d v e r (i n s t a l l e d v e r s i o n : vers , f i x e d v e r s i o n : ”

1 . 9 . 5 p2” , i n s t a l l p a t h : path) ;
59 s e cu r i ty mes sage (port : 0 , data : r epo r t) ;
60 e x i t (0) ;
61 }

63 e x i t (99) ;

Listing 5.4: OpenVAS’s CVE-2021-3156 plugin that checks the sudo
version.

1 CPE = ”cpe : / a : sudo p ro j e c t : sudo” ;

3 i f (d e s c r i p t i o n)
4 {
5 s c r i p t o i d (” 1 . 3 . 6 . 1 . 4 . 1 . 2 5 6 2 3 . 1 . 0 . 1 1 7 1 8 7 ”) ;
6 s c r i p t v e r s i o n (”2022−08−09T10 :11:17+0000 ”) ;
7 s c r i p t x r e f (name : ”CISA” , va lue : ”Known Explo i ted Vu ln e r ab i l i t y (KEV)

ca ta l og ”) ;
8 s c r i p t x r e f (name : ”URL” , va lue : ” https : //www. c i s a . gov/known−exp lo i t ed−

v u l n e r a b i l i t i e s −ca ta l og ”) ;
9 s c r i p t c v e i d (”CVE−2021−3156”) ;
10 s c r i p t t a g (name : ” cv s s ba s e ” , va lue : ” 7 .2 ”) ;
11 s c r i p t t a g (name : ” c v s s b a s e v e c t o r ” , va lue : ”AV:L/AC:L/Au:N/C:C/ I :C/A:C

”) ;

49

50 CHAPTER 5. COMPARISON WITH OTHER TOOLS

12 s c r i p t t a g (name : ” l a s t mod i f i c a t i o n ” , va lue : ”2022−08−09 10 : 11 : 17 +0000
(Tue , 09 Aug 2022) ”) ;

13 s c r i p t t a g (name : ” s e v e r i t y v e c t o r ” , va lue : ”CVSS: 3 . 1 /AV:L/AC:L/PR:L/UI :
N/S :U/C:H/ I :H/A:H”) ;

14 s c r i p t t a g (name : ” s e v e r i t y o r i g i n ” , va lue : ”NVD”) ;
15 s c r i p t t a g (name : ” s e v e r i t y d a t e ” , va lue : ”2021−07−20 23 : 15 : 00 +0000 (

Tue , 20 Jul 2021) ”) ;
16 s c r i p t t a g (name : ” c r e a t i on da t e ” , va lue : ”2021−01−27 06 : 47 : 49 +0000 (

Wed, 27 Jan 2021) ”) ;
17 scr ipt name (”Sudo Heap−Based Buf f e r Overflow Vu ln e r ab i l i t y (Baron

Samedit) − Active Check”) ;
18 s c r i p t c a t e g o r y (ACTATTACK) ;
19 s c r i p t c o p y r i g h t (”Copyright (C) 2021 Greenbone Networks GmbH”) ;
20 s c r i p t f am i l y (” Buf f e r over f l ow ”) ;
21 s c r i p t d ep enden c i e s (” gb sudo s s h l o g i n d e t e c t . na s l ” , ”

g b p e r l s s h l o g i n d e t e c t . na s l ”) ;
22 sc r ip t mandatory keys (” sudo/ ssh−l o g i n / detec ted ” , ” p e r l / ssh−l o g i n /

detec ted ”) ; # nb : PoC below r e qu i r e s p e r l to be i n s t a l l e d on the
t a r g e t .

24 s c r i p t x r e f (name : ”URL” , va lue : ” https : //www. sudo . ws/ s t ab l e . html#1.9.5
p2”) ;

25 s c r i p t x r e f (name : ”URL” , va lue : ” https : // blog . qua lys . com/
v u l n e r a b i l i t i e s −r e s ea r ch /2021/01/26/ cve−2021−3156−heap−based−
bu f f e r−over f low−in−sudo−baron−samedit ”) ;

27 s c r i p t t a g (name : ”summary” , va lue : ”Sudo i s prone to a heap−based
bu f f e r over f l ow dubbed 'Baron Samedit ' . ”) ;

29 s c r i p t t a g (name : ” vu lde t e c t ” , va lue : ”Runs a s p e c i f i c SSH command a f t e r
the l o g i n to the t a r g e t which i s known to t r i g g e r an e r r o r message
on a f f e c t e d v e r s i on s o f Sudo . ”) ;

31 s c r i p t t a g (name : ” i n s i g h t ” , va lue : ”Sudo i s a l l ow ing p r i v i l e g e
e s c a l a t i o n to root v ia ' sudoed i t −s ' and a command−l i n e argument
that ends with a s i n g l e backs la sh charac t e r . ”) ;

33 s c r i p t t a g (name : ” a f f e c t e d ” , va lue : ”Al l l egacy v e r s i on s from 1 . 8 . 2 to
1 . 8 . 3 1 p2 and a l l s t ab l e v e r s i on s from 1 . 9 . 0 to 1 . 9 . 5 p1 in t h e i r
d e f au l t c on f i gu r a t i on . ”) ;

35 s c r i p t t a g (name : ” s o l u t i o n ” , va lue : ”Update to ve r s i on 1 . 9 . 5 p2 or l a t e r
. ”) ;

37 s c r i p t t a g (name : ” qod type ” , va lue : ” e xp l o i t ”) ;
38 s c r i p t t a g (name : ” s o l u t i o n t yp e ” , va lue : ”VendorFix”) ;

40 e x i t (0) ;
41 }

43 inc lude (” s sh func . inc ”) ;
44 inc lude (” h o s t d e t a i l s . i nc ”) ;

46 i f (! g e t app l o c a t i on (cpe :CPE, port : 0 , no fork :TRUE))
47 e x i t (0) ;

49 sock = s s h l o g i n o r r e u s e c o nn e c t i o n () ;
50 i f (! sock)

50

51 CHAPTER 5. COMPARISON WITH OTHER TOOLS

51 e x i t (0) ;

53 # nb : We ' re only t e s t i n g the ” sudoed i t ” with in the path as o the r s might
be not a l l ow ing to e . g . get root .

55 # ju s t e x i t i f we don ' t have ac c e s s to the binary . . .
56 cmd = ” sudoed i t −−help ” ;
57 r e s = ssh cmd (socke t : sock , cmd : cmd , nosu :TRUE) ;
58 i f (! r e s | | ”usage : sudoed i t ” >!< r e s)
59 e x i t (0) ;

61 # or avoid any f a l s e p o s i t i v e s i f the binary i t s e l f i s
62 # throwing a segmentat ion f a u l t . .
63 pattern = ” (mal loc \ (\) : corrupted top s i z e | Segmentation f a u l t) ” ;
64 i f (egrep (s t r i n g : res , pattern : pattern , i c a s e :FALSE))
65 e x i t (0) ;

67 # sudoed i t −s ' \ ' ` pe r l −e ' pr in t ”A” x 65536 ' `
68 cmd = ” sudoed i t −s '\ ' ` pe r l −e ' pr in t ” + ' ”A” ' + ” x 65536 ' `” ;
69 r e s = ssh cmd (socke t : sock , cmd : cmd , nosh :TRUE, nosu :TRUE,

r e t u r n e r r o r s :TRUE, r e t u r n l i n u x e r r o r s o n l y :TRUE, pty :TRUE,
c l e a r b u f f e r :TRUE) ;

70 c l o s e (sock) ;

72 i f (egrep (s t r i n g : res , pattern : pattern , i c a s e :FALSE)) {
73 repor t = ”Used command : ” + cmd + ' \n\nResult : ' + re s ;
74 s e cu r i ty mes sage (port : 0 , data : r epo r t) ;
75 e x i t (0) ;
76 }

78 e x i t (99) ;

Listing 5.5: OpenVAS’s CVE-2021-3156 plugin that checks if sudo
crashes with the PoC command.

51

Chapter 6

Future work

Even though it has passed its first release, Staresc is still a young
project and is far from its definitive shape.
From the previous chapters, many possible improvements have emerged.
In this section we discuss about the benefits of these improvements and
how it would be possible to implement them.

6.0.1 Tags

The most simple, and quick, feature to implement is the addition of
the tags to the plugins. The tags could be used to categorize the
plugins.
With this grouping, it would be possible to configure more complex
scans, specifying to use only the plugins that have certain tags and
excluding plugins that have some other tags.
Till now, we never needed to implement this feature, since we run all
the plugins at each scan. But, with the increasing number of plugins,
we will eventually be in the situation in which we do not want to use
all of them. Indeed, with a great number of plugins, it is likely that
many of them may be useless or not suitable to the target systems
that we want to scan.
Tags could be easily implemented, adding a field tags in the YAML
plugins. It could be a list of strings, or a single string that contains
all the tags separated by white spaces.
Moreover, we could implement some command-line flags to let the user
specify how to filter the plugins to use, basing on the tags. The flag
”--mandatory-tags” could be used to specify the tags that the plugins
must contain, while the flag ”--exclude-tags” could be used for the
opposite purpose.

52

53 CHAPTER 6. FUTURE WORK

6.0.2 Support Windows connections

Another useful improvement is the support for more types of connec-
tions. Currently, only SSH and Telnet are supported. This limits our
possible targets to mostly Unix-like systems.
OpenVAS and Nessus support a wide variety of protocols, that cover
many different types of systems. For our purposes, it would be suf-
ficient (at the moment) to support only the most common protocols
used to execute commands on Windows remote hosts.
One of the most used protocols is the Server Message Block protocol
(SMB) [52], that is a client-server message protocol. SMB is used by
many Windows services to implement remote shells, one example is
PsExec [51].
Given the easily extendable structure of the Staresc’s connection part,
and the presence of Python libraries that allow to communicate with
a PsExec service on the target machines [25], it should not be difficult
to implement the support for Windows connections.

6.0.3 Workflows

Looking at Nuclei (Subsection 2.1.2 and Section 5.2), we noticed a
very useful feature, the workflows.
Workflows allow users to define an execution sequence of templates
[32], they can be used to build group of template that must be exe-
cuted sequentially. Moreover, they allow to define subtemplates.
Subtemplates are templates executed dependently on the result of
other templates. In this way, Nuclei users can use workflow to specify
in which cases these templates must be executed. Section 5.2 contains
a more detailed explanation of Nuclei workflows.
Implementing workflows in Staresc could allow us to manage in a bet-
ter way the plugins. We could use the workflows to define groups of
plugins, that would be executed only in certain circumstances.
For example, consider a group of plugins that perform various checks
on Apache (e.g. is it using a vulnerable version of Log4J? Does it
use basic authentication over unencrypted HTTP?). To avoid useless
checks that could lead to false positives, we would execute a prelimi-
nary plugin that checks if the Apache service is running. If this plugin
reports that Apache is running, then we could execute the group of
subplugins targeting it.
To implement workflows on Staresc, we should modify the plugin
parsing part and the core part. The first should check if a field like
workflows is contained in the YAML file that is loaded. Moreover,

53

54 CHAPTER 6. FUTURE WORK

it should parse all the structure contained by the field (included the
dependencies between plugins and subplugins), and build a data struc-
ture that keeps the series of plugins and their relative subplugins.
The core part should run the plugins specified in the workflows and,
if necessary, run the relative subplugins.
One related feature, that we should implement to support the work-
flows, is the named parsers. Indeed, Nuclei subtemplates are executed
if a given matcher of the template returns a positive result. To refer
to the matcher, they use its name (e.g. vbulletin in Listing 5.3). This
feature should be easy to implement, just adding a field to the parsers.

6.0.4 Plugin scripting

Nuclei templates are not simple YAML files. They can contain snip-
pets of a scripting-like language that the engine will execute during
the scan.
This scripting language, together with variables and helper functions,
allows to extends a lot the capabilities of templates, allowing them to
specify a dynamic behavior that changes based on scan conditions.
Scripting-like code can be inserted into Nuclei templates as a string
into the DSL type operators (matchers or extractor), or enclosed by
double brackets.
Staresc’s plugins can benefit a lot from the introduction of this feature,
it could be possible to adjust the commands relying on the results of
previous commands. For example, consider a plugin that checks if the
configuration file of the SSH service contains any misconfiguration.
The default configuration file has the path ”/etc/ssh/sshd config”, but
it can happen that a custom configuration file is used. To see which
configuration file is loaded by SSH service, we could check the com-
mand executed to launch the service (e.g. with the command ”ps
aux”).
So, if we want to be sure to check the right configuration file, we could
execute a command to extract the path of the configuration file and
put it into a variable. Then, we could use the value, kept by the vari-
able, in order to create the command that inspect the configuration
file.
The implementation of this feature in Staresc can be challenging, one
possible solution could be the use of libraries like Jinja [9]. These
libraries are templating engines that take portion of files enclosed
by special characters (e.g. double brackets), and interpret them as
Python-like code.

54

55 CHAPTER 6. FUTURE WORK

Jinja can help us parsing the scripting code contained in the plugins.
Moreover, it allows to define the environment in which the scripting
code is executed, helping us to handle the variables and the helper
functions that can be used by the plugin.

6.0.5 Porting in Go

Go is an open-source programming language developed by Google and
released for the first time in 2009.
Go was designed by taking inspiration for the productivity and relative
simplicity of Python, with the ability of C. [45] It is a compiled lan-
guage and it is statically typed. Moreover, it uses the so-called ”gor-
outines”, lightweight threads managed by the Go runtime. Goroutines
are generally faster than regular threads used by other languages, fur-
thermore, Go’s syntax makes it easier to write parallel code.
Regarding memory corruption vulnerabilities, Go is considered safer
than C and C++. Since it is a compiled language, it does not require
a Virtual Machine or an interpreter, making it faster than languages
like Java or interpreted ones (Javascript, Ruby, etc.).
Another useful feature of Go is its building process. It can support a
wide variety of platforms and architectures, and the building process is
very straightforward. To specify the target platform and architecture,
it is sufficient to set the environment variable ”GOOS” ”GOARCH”
before running the command ”go build -o <output file>”. [47]
Staresc could benefit a lot from a porting in Go.
First of all, it would perform faster scans, since it performs a lot of
parallel work. Indeed, the scans run in parallel using Python futures
[4], but Python does not have any built-in concurrency mechanism,
while Go has been designed to support concurrency.
Furthermore, many times we had to deploy Staresc on machines that
are not connected to the Internet (e.g. for scans on internal networks).
We had a lot of trouble installing Python and all the libraries required
by Staresc. It is possible to compile a Python program into a binary
file and then copy the file to the machine, but it is a rather complex
procedure, since Python is an interpreted language [8]. On the other
hand, the Go building process can easily generate binary files for a lot
of platforms and architectures, making the deployment of Staresc in
these machines very straightforward.
One possible downside from the porting of Staresc in Go, is the library
support. Python is much more widespread than Go, so, it can count
on a larger number of libraries. This can be a problem, especially for

55

56 CHAPTER 6. FUTURE WORK

the libraries that we use to interact with the remote shells. However,
we verified that libraries for SSH and Telnet are implemented, and we
believe that, since Go is widely used for network tools, libraries for
other interactive shell protocols are mostly available.

6.0.6 Web interface and integration with Nuclei

One of the pros of Nessus and OpenVAS is the web interface. It allows
to configure the scans in an intuitive way and it provides a clear view
of the reports of the scans.
Web interface would make the usage of Staresc easier, avoiding the
user the burden of defining manually all the flags. Moreover, it can
provide the saving of scanning configuration, making the usage of the
tool less time-consuming.
The implementation of the web interface requires a lot of effort, it is
a time-consuming task, especially for the frontend part. We plan to
keep the engine separated from the web interface. In this way, users
can choose to use either the original Staresc from command-line or the
most intuitive web interface.
This structure permits to introduce the new interface without giving
up the possibility to deploy Staresc on machines that can not expose
web interfaces (e.g. machines reachable only with SSH).
In our ideal structure, web interface would be used to configure the
scans and to render the templates. The configurations would contain
three main parts: the plugins to use, the connection strings and the
other flags of Staresc (e.g. debug). The web interface should use the
command-line flags to launch the right scan, just executing Staresc
from command-line.
For the report rendering part, the web interface should parse the gen-
erated report and show, on the web page, the various results. We
could also add a new reporting format to the engine, to make this
process easier.
We are also considering the support for Nuclei scans in the web in-
terface. In this way, we could allow users to configure, launch and
monitor scans for a wide variety of protocols from a single place. We
would create a framework that benefits from the capabilities of Nu-
clei and Staresc, and that offers an intuitive web GUI. It could be a
valuable competitor for Nessus and OpenVAS.

56

Chapter 7

Conclusion

This work presented Staresc, a new tool that performs vulnerability
assessment over interactive shell protocols. It analyzed tools devel-
oped for the same purposes (Nessus and OpenVAS) and another tool
that applies many interesting ideas to a different type of vulnerabil-
ity assessment (Nuclei). Both pros and cons of these tools have been
covered, showing which features and ideas could be applied to our im-
plementation.
Staresc’s software structure has been extensively analyzed, separating
the various parts that compose the tool, and explaining the motivation
under the principal implementation choices. This work showed how
the four main parts of Staresc have been designed in a modular way,
making it possible to edit one part, performing little to no changes on
the other parts. In particular, it demonstrates that the implementa-
tion of new connection protocols, and reporting formats, can be made
in a simple way, without modifying the core and the plugins parsing
parts.
Plugins’ syntax has been analyzed, showing which type of scan can be
implemented, and discussing the technical issues and advantages that
their development could bring. The plugins’ analysis contained also a
practical example of the development of a plugin that has been used
in real vulnerability assessments.
Moreover, the work contains a comparison between Staresc and the
main competitors. Our tool has been compared with its first version,
covering the evolution of the plugin syntax. Then, Staresc’s plugin
syntax has been compared with Nuclei’s templates syntax, showing
which ideas lead our implementation and which factors lead to tech-
nical difference between the two syntaxes. Furthermore, we explained
the basic syntax and structure of NASL plugins, comparing two Open-
VAS plugins with the analogous Staresc’ plugin.

57

58 CHAPTER 7. CONCLUSION

Lastly, we covered the possible improvements that could make Staresc
a faster, more flexible, precise and intuitive tool.
Staresc is an open-source project tailored to be easily extendable, and
developed following many ideas introduced by recent tools. Even if it
does not offer the same solidity of its major competitors, we hope that
it could make vulnerability assessments, over interactive shell proto-
cols, less time-consuming, allowing every security operator to rapidly
develop and share its own plugins.

58

Bibliography

[1] 5amu. https://github.com/5amu. Accessed: 2022-09-05.

[2] Browse Vulnerabilities By Date. https://www.cvedetails.com/

browse-by-date.php. Accessed: 2022-09-08.

[3] carlospolop. https://github.com/carlospolop. Accessed: 2022-08-30.

[4] concurrent.futures — Launching parallel tasks - Python. https://docs.

python.org/3/library/concurrent.futures.html. Accessed: 2022-09-11.

[5] CVE-2021-3156. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-3156. Accessed: 2022-08-31.

[6] CVE system. https://cve.mitre.org/. Accessed: 2022-09-08.

[7] Exploring the Origins and Evolution of Vulnerabil-
ity Management. https://blog.igicybersecurity.com/

origins-and-evolution-of-vulnerability-management. Accessed:
2022-09-08.

[8] Is there a way to compile a python application into static bi-
nary? https://stackoverflow.com/questions/39913847/

is-there-a-way-to-compile-a-python-application-into-static-binary.
Accessed: 2022-09-11.

[9] Jinja - Jinja Documentation (3.1.x). https://jinja.palletsprojects.com/
en/3.1.x/. Accessed: 2022-09-10.

[10] Main in the middle (MITM) attack. https://www.imperva.com/

learn/application-security/man-in-the-middle-attack-mitm/. Ac-
cessed: 2022-08-31.

[11] MITRE. https://www.mitre.org/. Accessed: 2022-09-08.

[12] NASL EXIT NOTVULN definition. https://github.com/greenbone/

openvas-scanner/blob/ca12c694e1fd162ac0386e6ec47b9a5925c8e01a/

nasl/nasl_misc_funcs.c#L53. Accessed: 2022-09-04.

[13] Nessus. https://www.tenable.com/products/nessus. Accessed: 2022-08-30.

[14] Nessus CVE-2021-3156 plugins. https://www.tenable.com/cve/

CVE-2021-3156/plugins. Accessed: 2022-09-04.

[15] Nuclei. https://github.com/projectdiscovery/nuclei. Accessed: 2022-
08-30.

59

https://github.com/5amu
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://github.com/carlospolop
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://cve.mitre.org/
https://blog.igicybersecurity.com/origins-and-evolution-of-vulnerability-management
https://blog.igicybersecurity.com/origins-and-evolution-of-vulnerability-management
https://stackoverflow.com/questions/39913847/is-there-a-way-to-compile-a-python-application-into-static-binary
https://stackoverflow.com/questions/39913847/is-there-a-way-to-compile-a-python-application-into-static-binary
https://jinja.palletsprojects.com/en/3.1.x/
https://jinja.palletsprojects.com/en/3.1.x/
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://www.mitre.org/
https://github.com/greenbone/openvas-scanner/blob/ca12c694e1fd162ac0386e6ec47b9a5925c8e01a/nasl/nasl_misc_funcs.c#L53
https://github.com/greenbone/openvas-scanner/blob/ca12c694e1fd162ac0386e6ec47b9a5925c8e01a/nasl/nasl_misc_funcs.c#L53
https://github.com/greenbone/openvas-scanner/blob/ca12c694e1fd162ac0386e6ec47b9a5925c8e01a/nasl/nasl_misc_funcs.c#L53
https://www.tenable.com/products/nessus
https://www.tenable.com/cve/CVE-2021-3156/plugins
https://www.tenable.com/cve/CVE-2021-3156/plugins
https://github.com/projectdiscovery/nuclei

60 BIBLIOGRAPHY

[16] Nuclei Templates. https://github.com/projectdiscovery/

nuclei-templates. Accessed: 2022-09-05.

[17] Nuclei templating guide. https://nuclei.projectdiscovery.io/

templating-guide/. Accessed: 2022-08-30.

[18] Official Common Platform Enumeration (CPE) Dictionary. https://nvd.

nist.gov/Products/CPE. Accessed: 2022-09-03.

[19] OpenVAS. https://www.openvas.org/. Accessed: 2022-08-30.

[20] OpenVAS github repo. https://github.com/greenbone/openvas-scanner.
Accessed: 2022-09-03.

[21] PEASS-ng. https://github.com/carlospolop/PEASS-ng. Accessed: 2022-
08-30.

[22] Pexpect. https://pexpect.readthedocs.io/en/stable/. Accessed: 2022-
09-05.

[23] ProjectDiscovery. https://github.com/projectdiscovery. Accessed: 2022-
08-30.

[24] Python. https://www.python.org/. Accessed: 2022-09-11.

[25] Python PsExec Library. https://pypi.org/project/pypsexec/. Accessed:
2022-09-10.

[26] Security advisories. software flaws found by qualys. https://www.qualys.

com/research/security-advisories/. Accessed: 2022-08-31.

[27] SSH Protocol – Secure Remote Login and File Transfer. https://www.ssh.

com/academy/ssh/protocol. Accessed: 2022-08-31.

[28] Staresc source code. https://github.com/staresc/staresc. Accessed: 2022-
09-05.

[29] The Go Programming Language. https://go.dev/. Accessed: 2022-09-11.

[30] Vulnerability Assessment. https://www.imperva.com/learn/

application-security/vulnerability-assessment/. Accessed: 2022-
09-08.

[31] What is Sudo? https://www.sudo.ws/. Accessed: 2022-08-31.

[32] Workflows. https://nuclei.projectdiscovery.io/templating-guide/

workflows/. Accessed: 2022-09-10.

[33] Worpress. https://wordpress.com/it/. Accessed: 2022-09-05.

[34] Writing NASL scripts. https://dl.packetstormsecurity.net/papers/

general/Writing_nasl_scripts.pdf. Accessed: 2022-09-03.

[35] YAML: YAML Ain’t Markup Language™. https://yaml.org/. Accessed:
2022-09-05.

[36] Telnet Protocol Specification. RFC 854, May 1983.

60

https://github.com/projectdiscovery/nuclei-templates
https://github.com/projectdiscovery/nuclei-templates
https://nuclei.projectdiscovery.io/templating-guide/
https://nuclei.projectdiscovery.io/templating-guide/
https://nvd.nist.gov/Products/CPE
https://nvd.nist.gov/Products/CPE
https://www.openvas.org/
https://github.com/greenbone/openvas-scanner
https://github.com/carlospolop/PEASS-ng
https://pexpect.readthedocs.io/en/stable/
https://github.com/projectdiscovery
https://www.python.org/
https://pypi.org/project/pypsexec/
https://www.qualys.com/research/security-advisories/
https://www.qualys.com/research/security-advisories/
https://www.ssh.com/academy/ssh/protocol
https://www.ssh.com/academy/ssh/protocol
https://github.com/staresc/staresc
https://go.dev/
https://www.imperva.com/learn/application-security/vulnerability-assessment/
https://www.imperva.com/learn/application-security/vulnerability-assessment/
https://www.sudo.ws/
https://nuclei.projectdiscovery.io/templating-guide/workflows/
https://nuclei.projectdiscovery.io/templating-guide/workflows/
https://wordpress.com/it/
https://dl.packetstormsecurity.net/papers/general/Writing_nasl_scripts.pdf
https://dl.packetstormsecurity.net/papers/general/Writing_nasl_scripts.pdf
https://yaml.org/

61 BIBLIOGRAPHY

[37] Location of Plugin Directory. https://community.tenable.com/s/article/
Location-of-Plugin-Directory, October 2021.

[38] Michel Arboi. The NASL2 reference manual. http://michel.arboi.free.

fr/nasl2ref/nasl2_reference.pdf, April 2005.

[39] Paul Asadoorian. Common Platform Enumeration
(CPE) with Nessus. https://www.tenable.com/blog/

common-platform-enumeration-cpe-with-nessus, May 2010.

[40] Raj Chandel. Linux Privilege Escalation using
SUID Binaries. https://www.hackingarticles.in/

linux-privilege-escalation-using-suid-binaries/, May 2018.

[41] Renaud Deraison. The Nessus Attack Scripting Language Reference Guide (in-
complete). https://student.ing-steen.se/java/javacoding/toys/more_

toys/nessus/txtfilez/nasl.html, September 1999.

[42] Laura Fitzgibbons. Telnet. https://www.techtarget.com/

searchnetworking/definition/Telnet, September 2021.

[43] Park Foreman. Vulnerability Management. Auerbach Publications, USA, 1st
edition, 2009.

[44] Kamil Gierach-Pacanek. Tools analysis: linPEAS obtaining, usage and alter-
natives. https://blog.cyberethical.me/linpeas, May 2021.

[45] Alexander S. Gillis. What is the Go Programming Language.
https://www.techtarget.com/searchitoperations/definition/

Go-programming-language, May 2020.

[46] Rhett Glauser. A History of the Vulnerability Management Lifecycle. https://
vulcan.io/blog/a-history-of-vulnerability-management/, March 2019.

[47] Gaurav Kamathe. https://opensource.com/article/21/1/go-cross-compiling. ,
January 2021.

[48] Himanshu Kathpal. CVE-2021-3156: Heap-Based Buffer
Overflow in Sudo (Baron Samedit). https://blog.

qualys.com/vulnerabilities-threat-research/2021/01/26/

cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit,
January 2021.

[49] Tim Keary. Nessus vs OpenVAS. https://www.comparitech.com/

net-admin/nessus-vs-openvas/, April 2022.

[50] Chris M. Lonvick and Sami Lehtinen. The Secure Shell (SSH) Protocol As-
signed Numbers. RFC 4250, January 2006.

[51] Mark Russinovich. PsExec v2.40. https://docs.microsoft.com/en-us/

sysinternals/downloads/psexec, July 2022.

[52] Robert Sheldon and Jessica Scarpati. Server Message Block protocol (SMB
protocol). https://www.techtarget.com/searchnetworking/definition/

Server-Message-Block-Protocol, August 2021.

61

https://community.tenable.com/s/article/Location-of-Plugin-Directory
https://community.tenable.com/s/article/Location-of-Plugin-Directory
http://michel.arboi.free.fr/nasl2ref/nasl2_reference.pdf
http://michel.arboi.free.fr/nasl2ref/nasl2_reference.pdf
https://www.tenable.com/blog/common-platform-enumeration-cpe-with-nessus
https://www.tenable.com/blog/common-platform-enumeration-cpe-with-nessus
https://www.hackingarticles.in/linux-privilege-escalation-using-suid-binaries/
https://www.hackingarticles.in/linux-privilege-escalation-using-suid-binaries/
https://student.ing-steen.se/java/javacoding/toys/more_toys/nessus/txtfilez/nasl.html
https://student.ing-steen.se/java/javacoding/toys/more_toys/nessus/txtfilez/nasl.html
https://www.techtarget.com/searchnetworking/definition/Telnet
https://www.techtarget.com/searchnetworking/definition/Telnet
https://blog.cyberethical.me/linpeas
https://www.techtarget.com/searchitoperations/definition/Go-programming-language
https://www.techtarget.com/searchitoperations/definition/Go-programming-language
https://vulcan.io/blog/a-history-of-vulnerability-management/
https://vulcan.io/blog/a-history-of-vulnerability-management/
https://blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://www.comparitech.com/net-admin/nessus-vs-openvas/
https://www.comparitech.com/net-admin/nessus-vs-openvas/
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://www.techtarget.com/searchnetworking/definition/Server-Message-Block-Protocol
https://www.techtarget.com/searchnetworking/definition/Server-Message-Block-Protocol

	Introduction
	Background
	Similar solutions
	Nessus and OpenVAS
	Nuclei
	PEASS-ng

	Interactive shell protocols
	Telnet
	SSH

	Sudoedit vulnerability CVE-2021-3156
	Technical details

	Staresc Development
	Core
	Connection
	SSHConnection
	TNTConnection
	SSHSSConnection
	Connection string

	Exporter
	Output
	StarescExporter
	StarescHandler and its subclasses

	Plugin parser

	Plugin production
	Plugin development
	Parsers
	Example plugin

	Plugin testing

	Comparison with other tools
	Staresc Evolution
	Plugin parsing evolution

	Comparison with Nuclei
	Comparison between Nuclei templates and Staresc plugins

	Comparison with Nessus and OpenVAS
	NASL language
	Comparison between NASL plugins and Staresc plugins

	Future work
	Tags
	Support Windows connections
	Workflows
	Plugin scripting
	Porting in Go
	Web interface and integration with Nuclei

	Conclusion

