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Abstract

Epidemiological models played a crucial role during SARS-CoV-2 pandemic to assist

policy-maker authorities in the roll-out of non-pharmaceutical interventions such

as lockdowns, limitations to individuals mobility, mask wearing and vaccination

campaigns.

This thesis explores the possibility of using BioPEPA to simulate real epidemics

which are subject to complex dynamics (due, for example, to a heterogeneous age

structure of the population, vaccination campaigns, temporal changes in the inter-

actions among agents). The formal language BioPEPA describes the interactions

among the agents that constitute the population. From this formalism it derives

the compartmental models (stochastic or deterministic) associated to the mean-

field solution. In order to achieve this objective, this thesis developed new scripts

to produce the input files for the BioPEPA workbench when considering complex

epidemiological models and to analyse the BioPEPA outputs. To prove the potential

of the developed software to analyse real epidemics, the thesis presents an applica-

tion to the Italian COVID-19 epidemic. In particular, the simulations will focus on

estimating the impact of the Italian vaccination campaign that started in December

2020, where priority was given to healthcare workers and elderly individuals, having

a higher risk of serious symptoms and death. This study aims to show how objective

model simulations can support risk evaluation.
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Chapter 1

Introduction

The globalisation phenomenon that in the last decades contributed to trigger the

ongoing climate change and the consequent natural disasters that poses many chal-

lenges to the human civilisation. Many of these natural disasters are generated by

the unbalancing of local and then global ecosystems, from physical, like wind cur-

rents, to biological, like mass migration of animals. A very sneaky problem that

humanity is facing is the emerging of new pathogens and diseases caused by hu-

mans interference in animal habitats and vice versa, for example for the increase

of events in which people come in contact with different, rare or unusual species

that before were isolated in wilderness[1, 2, 3, 4]. Biomedical scientists have warned

against this underrated threat since the early 2000s[5] but the threat was not widely

acknowledged both by authorities and by the general population[6].

In this context the global population was caught unprepared when the new

SARS-CoV-2 virus emerged in China in late 2019 and quickly spread all over the

globe in few weeks, posing incredible challenges to safeguard human lives and the

economic stability. The WHO declared the pandemic status on the 11th of March

2020 [7], urging the scientific community and governments to increase the efforts to

contain the transmission and develop a vaccine for the virus.

The first few batches of Covid-19 vaccines had begun to arrive in Italy in Decem-

ber 2020 and they had been reserved to healthcare workers. In the following month

the delivering pace increased at industrial scale and the vaccination campaign could

actually begin. The administration of doses at the nation scale is a difficult task

which involves both logistical and health policy problems. In particular, decision

makers chose to prioritise the vaccination of elderly people and selected individu-

als with immune-compromised situations[8]. This policy is based on the assumption

that if the prioritised recipients of the doses contract the disease without the vaccine

protection they would be the most likely to suffer serious consequences and possibly
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die. This policy is correct and pragmatic under the logic of minimizing health and

life threatening at population level. Moreover, in the first months of 2021 the elderly

and the scholar-aged population were under movement restrictions, only working-age

people were moving, thus it seemed possible that the vaccine-induced immunization

could also prevent the spreading of the virus. However, under the general target

of halting the spreading of the Covid-19 epidemic the adopted vaccination policy

might be just one of the possible ways of actions[9, 10].

How would the pandemic change if the vaccination policy would have prioritised

mobile people instead of the most fragile? Is there a vaccination strategy that would

have stop the epidemic earlier? What other scenarios could have happen? Answering

to these questions is a problem belonging in the epidemiology field.

Many studies have been made with different approaches and objectives, each

expanded the knowledge on the disease object of study and/or techniques to increase

the details an epidemiological model is able to handle and give insight on. One of the

first epidemiological studies modelled and analysed the spatial spreading of Cholera

among a population, investigating the possible mean of infections [11, 12]. This

work lead to more advanced medical researches and then to some of the most well

know sanitization actions and infrastructures for personal and public health that

are given for granted nowadays i.e. sewers.

Give these many year of experience in epidemiological studies, when the SARS-

CoV-2 pandemic hit in almost every country in the World, the scientific community

started to analyze many aspects of the ongoing disease spreading. Few weeks after

the beginning of the Italian epidemic, Cereda et al (2021), published an analysis

of the transmission dynamics and the geographical diffusion of Covid in Italy[13].

As weeks and months passed more accurate and deeper studies were made on the

effectiveness of restrictive measures (like quarantine) and implications of the policies

removal[14, 15, 16]. Finally, when vaccines were approved the logistical problem of

their distribution made the case for interesting investigations on how their distribu-

tion could affect the epidemiological situation[17, 9].

The purpose of the work presented in the next chapters is to provide a step

forward in the construction of epidemiological models for the simulation of an epi-

demic.

The formalism chosen in this thesis to describe the virus transmission in a pop-

ulation is the one provided by the BioPEPA language[18]. BioPEPA is a Perfor-

mance Evaluation Process Algebra developed to represent biochemical reactions and

systems. BioPEPA model definitions start from the basic interactions among the

agents to then simulate the large-scale epidemiological dynamics through different
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types of stochastic or deterministic solvers. BioPEPA offers two tools, the BioPEPA

Eclipse Plugin and the BioPEPA Workbench, that allow to simulate the models and

perform other operations. The simulation algorithms available in the Workbench

are Gillespie’s SSA algorithm implemented in the StochKit library and the additive

Runge-Kutta method with Sundials library[19]. The Eclipse Plugin provide Gille-

spie’s stochastic simulation algorithm, Gillespie’s Tau-Leap stochastic simulation

algorithm, Gibson-Bruck stochastic simulation algorithm and Runge-Kutta meth-

ods algorithms[20].

This project focuses on the stochastic (StochKit library which implements Gille-

spie Stochastic Simulation Algorithm (SSA) Direct Method)[21] and deterministic

(Ordinary Differential Equations) solvers (Sundials suite [22]) of the BioPEPA tool

suite, giving the opportunity to have both kinds of solvers applied automatically

to the same model. Furthermore the formalization in BioPEPA allows for further

work for formal model checking. The implementation work of this project target the

improvement of the construction of the epidemiological model files, the introduction

of parameters changing in time in the simulation for the reproduction of realistic

epidemics and the analysis of the outputs of simple models for comparison with

the available epidemiological data. The models proposed are variations of the well

known SIR (Susceptible, Infected, Recovered) model. The epidemiological descrip-

tion of the population is considered both in classless and classed models scenarios,

i.e. the population is considered uniform or is considered subdivided in subsets. The

classes can be introduced in the models to account for the different characteristics

of the population and to study their relevance on the epidemic evolution. Lastly the

models are upgraded with the vaccination campaign.

The final aim of this work is that the tools, models and results proposed may

help gaining knowledge on epidemics behaviour and inspire future research. The

development of a more comprehensive software, possibly exploiting OOP (Objective

Oriented Programming) techniques, that would greatly expand the simulation ca-

pabilities through BioPEPA and hoping that this could help decision makers during

an health emergency and other similar cases.

6



Chapter 2

Epidemiological models and

BioPEPA

The first part of this chapter presents a brief introduction to epidemiological mod-

elling, with particular focus to the mathematical definition of the models adopted in

this thesis. The second part of the chapter presents the BioPEPA formal language

alongside with the reasons why to adopt this tool in modelling an epidemic.

2.1 Epidemiological models

Epidemiological models are mathematical models used to reconstruct and project

the evolution of an epidemic and its likely outcome. They are crucial for medical

research as well as for various authorities in their policy making decisions. The most

used and well know kind of models are Compartmental Models, which can be applied

with various techniques. Their name derive from their structure: compartmental

models divide the population in compartments, and each compartment describes the

infectious status of an individual and possibly other information. The total sum of

individuals in each compartments gives the complete population, it can be assumed

constant in time, under the assumption of an equilibrium among birth and mortality

rates, and no immigration/emigration processes. Each individual in the population

might become infected and then move between compartments, often this passage

is unidirectional. Generally, the sequence and compartments names are resumed in

the model name. For example the most common model is SIR model, composed of

three compartments:

• S: number of susceptible individuals. When a susceptible and an infectious

individual come into contact, the susceptible individual contracts the disease

and transits to the infectious compartment;
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• I: number of infectious individuals. These are individuals who have been in-

fected and are capable of infecting susceptible individuals;

• R: number of recovered and now immune or deceased individuals.

The passage of individuals among compartments, or better the variation of the

number of individuals in each compartment, can be easily described by a system

of ordinary differential equations, ODEs, under the assumption that the population

can be approximation with continuous (and not discrete) numbers. The solution

of these equations through a numerical integrator (e.g. based on a Runge-Kutta

scheme) provides a deterministic solution to the problem.

This approach is largely applied in epidemic studies because ODEs are intrin-

sically descriptive of the dependency relation of every compartment to the evolu-

tion[23]. This behaviour is straightforward modelled with time dependant rates that

resume the processes between compartments, see for example the 2.2 section.

Another possible mean of simulating epidemiological models is with a stochas-

tic process[24]. Stochastic processes are a mathematical object, formally defined,

that uses probability distributions of random variables to model action times in-

side systems that appear to have a random behaviour. Among the most popular

processes there are the Markov chains and Gillespie algorithm. Markov chains[25]

are a popular simulation tool because they support both discrete and continuous

time sequences and are applied to many different fields. The main property of the

Markov chains is that the next status of the system is dependant only on the current

status and events probabilities. This process is independent from previous process

values. Gillespie algorithm[26] instead is a simulation tool which is very popular

in the biochemical field and it is based on a progression logic. At each time t all

system variables are evaluated with explicit simulation, then the next time t + ∆t

(with time step ∆t) status is set from the t status and the loop is repeated till the

termination condition.

The subdivision of the population into classes is one of the main information that

is possible to add to the compartments in more complex models. This subdivision

represents specific information about the population and it provides extra insights

in the epidemic evolution. Examples of possible classes are sex, age, work category

or preexisting health conditions[27, 28, 29]. Adding these classes in the model

implies the description of more complex transmission processes and the use of more
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advanced mathematical tools. The basic reproduction number, denoted by R0, is the

expected number of secondary cases directly generated by one infected individual

in a population where all individuals are susceptible. This factor is not a constant

value, since it depends on different aspects like environmental temperature, specific

number of contacts, transmissivity and susceptibility of individuals in the different

population classes and more. However, it’s possible to compute an average for each

disease and thus give a common reference for each considered strain. For example,

the R0 of the first strain of Covid-19 is equal to 2.87[30].

Differently, the effective reproduction number is the number of secondary cases

directly generated by one infected individual among the susceptible individuals at

time t population. Hence, it varies during an epidemic and it is noted with Rt.

Expecting that a disease could spread constantly with the R0 factor in an evolving

scenario is not plausible. The unavoidable variation is that, during the disease

transmission, the population itself is no more consisting of susceptible individuals

only because of the following factors: a certain level of disease-induced or vaccine-

induced immunity, behavioural changes due to awareness of possible transmission,

measures taken by the health authorities against spreading of the disease.

The value of Rt tells if the number of cases will increase (if Rt > 1), decrease

(if Rt < 1), or remain stable (if Rt = 1), indicating that the disease is becoming

endemic. The effective reproduction number is a key element in epidemiology: many

epidemiological models can estimate its value from the computation of the strength

of the infection, which tells how many individuals are infected in a certain moment.

In ODE-based models, the effective reproduction number is directly linked to

the stability of the disease free equilibrium. It is defined as the state of an epi-

demic in which the number of infected individuals is zero, implying the end of the

transmission (in a closed system). In simpler words, this equilibrium is stable if

a small perturbation (e.g., the presence of an infected individuals) is rapidly re-

absorbed (i.e., the new infections decrease in time), thus avoiding a new outbreak.

The condition Rt < 1 implies the stability of the disease-free equilibrium.

The estimation of Rt in complex epidemiological models entails the computation

of the so-called Next Generation Matrix (NGM, see [31]). A multi-class model

typically describes the evolution of different compartments for each class subject

to different rates. This is often represented with matrices, which also simplify the

mathematical computations. Seeing the infections process over time as a sequence

of generations of infected individuals, it is possible to describe the transmission at a

time instance through the evaluation of the Next Generation Matrix which is here

denoted with K(t). The NGM is defined as the matrix which relates the numbers of
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newly infected individuals in the various categories in consecutive generations. The

K(t) matrix is computed through of two other matrices: K = T + Σ where T is a

matrix representing the transmission part and Σ the transition part, NGM is

the matrix −T ∗ Σ−1, and Rt is its spectral radius (largest positive eigenvalue).

2.1.1 From compartmental models to agent based models

The process algebra that is selected in this project for the formalisation of the

models has a different perspective as compared to the compartmental-based model

definitions. BioPEPA [18] describes the population as a set of agents that interact

among each other through a sequence of actions and possibly change status in time,

meanwhile the classic compartmental-based models count the number of individuals

in each compartment and make them change status with a global perspective.

Thus, to define an epidemiological model with BioPEPA equivalent to a classic

ODE, it is necessary to compute rates such that they represent state transitions of a

single agent instead of a whole compartment population per unit of time. Depending

on the data available, the actions and rates might be easier or harder to describe

from the agent or the global perspective.

Using Rt to reproduce the epidemic

A major problem in epidemiological models is to reproduce the trend and temporal

changes of the force of the infection. This is particularly important for an epidemic

such as Covid19, where government-imposed restrictions in human mobility, the use

of masks and vaccination policies drastically changed the transmission dynamics in

few months. These changes in transmission might correspond to temporal changes

in the model parameters that are difficult to track and estimate from the data.

In this thesis a different approach is adopted to obtain model results that are

qualitatively comparable with the data. As already stated, the key element rep-

resenting the trend of the epidemic is the Rt factor, which is typically estimated

during the course of the epidemic by health authorities. and this proves to be useful

because of the following property of the NGM matrix. The R0 factor is the domi-

nant eigenvalue of K, this allows computation to obtain the R0 value from a model

or vice versa to obtain the K matrix, thus the force of infection, from R0 or Rt.

The replication of infection trend will be performed through the Rt factor, allowing

a stronger control over the scenario evolution. This integration grants better reli-

ability for the base scenario in which the vaccination action can be included with

varying rates to study possible outcomes.

10



2.2 SIRDV model

The SIRDV model is the most simple compartmental model to simulate an epidemic

having a relevant number of deceased individuals. For this reason, it is the first model

proposed in this thesis to simulate the SARS-CoV-2 virus epidemic. The SIRDV

model is based on the well-known SIR model and it substantially adds the Death

compartment to track the severe consequences of the infection and the Vaccinated

compartment to track the immunization campaign and its effects on the epidemic.

This model simplifies the real life transmission of the epidemic imposing the following

assumptions:

• the population is stable, i.e. birth and deaths processes are neglected the

number of newborns are approximately the same of natural occurring deaths

(except for the deaths directly linked to the disease);

• the population is considered a well-mixed and closed system without import-

ed/exported cases;

• individuals are infectious as soon as they contact the virus and they do not

isolate due to quarantine measures;

• no individual-specific behaviours are represented, like the difference of ineffec-

tiveness between symptomatic and asymptomatic individuals;

• recovered individuals (individuals that survived after the infection) have a per-

manent natural immunity to the infection, and thus no reinfection is possible

by the same virus or by a variant of the disease. This assumption is partic-

ularly weak when simulating an epidemic for a long period, since immunity

might wane and reinfections are possible (especially under new variants, for

example what happened with variant Omega);

• vaccines are distributed to S and R compartments;

• like recovered individuals, who have received the vaccine is permanently im-

mune and cannot become infected;

• only one dose of vaccine is sufficient for fully immunization of the individual.

These assumptions simplify the complex transmission dynamics of the disease in

the population, however the model is still useful to provide overall insights on the

trend of the epidemic and estimate the impact of control measurements, such as the

vaccination campaign.

In particular, it is possible to estimate the temporal changes in the model pa-

rameters in order to follow the infection waves and the total number of recovered
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and dead people in the system.

2.2.1 SIRDV model equations

The SIRDV model subdivides the population of a system (N) into four different

compartments, schematised in figure2.1, characterised by different stages of the in-

fection:

• S: compartment of the susceptible individuals, indicates the individuals that

do not have any immunity and can become infected. When a new disease hits

a community, all the individuals are susceptible except for the first infected

individual (starting condition of the model);

• I: Infected compartment, this compartments counts the number of individuals

that are infected at a given time, both symptomatic and asymptomatic. These

individuals contribute to pass the pathogen to the susceptible agents;

• R: Recovered compartment, in this state arrive all individuals that have sur-

vived the disease or that may have been immunized. In the model considered

in this study, individuals in R cannot be reinfected do not lose the immuniza-

tion;

• D: Dead state, all agents that unfortunately died during the disease arrive in

this compartment;

• V : Vaccinated state, in this state arrive all agents that have been immunized

against the disease.

Figure 2.1: Transition scheme of SIRDV model

Assuming that the total population at any time t is N , N = S(t)+I(t)+R(t)+

D(t)+V (t), the ordinary differential equations (ODEs) that describe the transition
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of the individuals in the model are

Ṡ = −β I
S+I+R+V

S − δSS = −(λ+ δS)S

İ = β I
S+I+R+V

S − (α + γ)I

Ṙ = αI − δRR

Ḋ = γI

V̇ = δSS + δRR

(2.1)

where the parameters represent mean permanence time in the compartments. The

term λ is called the instantaneous force of the infection and represents the percentage

of new cases among the susceptible population in a certain instant:

λ =
βI

S + I +R
(2.2)

The α, γ and δ are the recovery, death and vaccination rate respectively. The vacci-

nation rate is subdivided between the susceptible and recovered states, represented

by δS and δR in such a way that δS ∗ S + δR ∗ R corresponds to the total vaccines

deployed per temporal unit.

This system of ODEs is typically initialized using the following initial state:

S(0) = N − I(0) ; I(0) = 1 while all the other states are set to 0 at the beginning.

2.2.2 Basic reproduction number

We recall here how to compute the basic and effective reproduction numbers for the

SIRDV model as leading eigenvalues of the Next Generation Matrix (the complete

computations are in [31])

To compute the R0 factor related to the SIRDV model it is necessary to linearize

the non-linear ODEs related to the infectious compartments around the disease free

equilibrium.

In this case we consider only the equation for the variation of I, İ = f(I) where

f(I) = β
SI

S + I +R + V
− (α + γ)I

Clearly I(t) = 0 is a constant solution of this equation, and to evaluate if this

solution is stable we need to linearize the system:
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df

dI
(I) = β

S

S + I +R + V
− βI

S

(S + I +R + V )2
− (α + γ)

Then, evaluating at the disease free equilibrium, I = 0 we obtain;

df

dI
(0) = β

S

S +R + V
− (α + γ) =

= T + Σ

where T = β S
S+R+V

is the transmission matrix (in this model T is a number and

it indicates the linearized number of new infections generated by one infectious

individual) and Σ = −α− γ) is the transition matrix (in this model Σ is a number

and it indicates the mean time spent by an individual in the I compartment).

The next generation matrix then is defined as NGM = −TΣ−1 and Rt (or R0)

is its largest positive eigenvalue (spectral radius). In the SIRDV model, the NGM

matrix is a number and Rt is

Rt = ρ(−TΣ−1) =
β

α + γ

S

S +R + V

At the beginning of the epidemic, when the population is completely susceptible, we

have R = V = 0, and the basic reproduction number is:

R0 = ρ(−TΣ−1) =
β

α + γ

S

S +R + V

2.2.3 Multi class model equations

The SIRDV model can be easily extended to a more complex case in which the

population is subdivided into classes, e.g., age classes. Each class might be identified

by suitable model parameters (susceptibility, transmissivity, mortality) and the virus

might be transmitted among classes through an estimate of the contact matrix.

Assuming that there are M classes, the total population at any time t is

N =
M∑
i=1

Si(t) + Ii(t) +Ri(t) +Di(t) + Vi(t);

The ODEs for a multi class approach and for each class i are similar to the ones of
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eq. (2.1): 

Ṡi = −(λi + δSi
)Si

İi = λiSi − (αi + γi)Ii

Ṙi = αiIi − δRi
R

Ḋi = γiIi

V̇i = δSi
Si + δRi

Ri

(2.3)

Where now the force of infection is class-specific and takes into account the

possible contacts among individuals in different classes:

λi = β
ηi
∑M

j=1 τjcijIj∑M
j=1 cijSj + Ij +Rj + Vj

(2.4)

where cij represents the daily contacts of an agent of class i with agents in class j;

ηi is the susceptibility of class i; and τj is the transmissibility of infected in class j.

Also in this case Rt can be evaluated through the spectral radius (ρ) of the NGM

matrix,

R0 = ρ(−TΣ−1)

where the transmissivity matrix T is

T = β


η1c11τ1, ..., η1c1nτn

η2c21τ1, ..., η2c2nτn

... ... ...

ηncn1τ1, ..., ηncnnτn

 = βT̃

and the transition matrix Σ is:

Σ =


−α1 − γ1, 0, ..., 0

0, −α2 − γ2, ..., 0

0, ..., ..., 0

0, ..., ..., −αn − γn



−Σ−1 =


1

α1+γ1
, 0, ..., 0

0, 1
α2+γ2

, ..., 0

0, ..., ..., 0

0, ..., ..., 1
αn+γn


Thanks to this computation, it is possible to link the temporal changes on Rt
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(e.g., obtained from the data) to changes in the parameter β (assuming that the

other parameters do no change in time). Thus

ρ(−TΣ−1) = Rt

βρ(−T̃Σ−1) = Rt

β =
Rt

ρ(−T̃Σ−1)

2.3 SEIRDV model

The SEIRDV model is the second model proposed in this thesis to simulate an

epidemic. It is based on the previusly presented SIRDV model, with the addition

of a compartment for the exposed individuals (E). All the assumptions of the

SIRDV model are still valid in the SEIRDV. The additional compartment of exposed

individuals is used to represent the time period needed to incubate the disease and

begin to show symptoms. The individuals in the exposed compartment are not

infective, so the infection action is still performed by susceptible agents getting in

contact with an infected agent.

2.3.1 SEIRDV model equations

The SEIRDV model consists of five different states, which are schematised in fig-

ure2.2:

• S : Susceptible state, starting state for all agents population except for the

first infected individual;

• E : Exposed state, in this state there are all agents that have been exposed

to the disease; it models the incubation time agents are not infectious in this

state;

• I : Infected state, in this state there are all agents that have developed the

symptoms or are infective but asymptomatic and all are capable of infecting

susceptible agents;

• R : Recovered state, in this state arrive all agents that have survived the

disease or that may have been immunized. From this state it is not possible

to be reinfected or loose the immunization;

• D : Dead state, in this state arrive all agents that unfortunately have not

survived the disease;

• V : Vaccinated state, in this state arrive all agents that have been immunized
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against the disease.

Figure 2.2: Transition scheme of the SEIRDV model

The total population at any time t is N = S(t)+E(t)+I(t)+R(t)+D(t)+V (t)

and the ODEs governing the system are:

Ṡ = −β I
S+E+I+R+V

S − δSS = −(λ+ δS)S

Ė = β I
S+E+I+R+V

S − µE

İ = µE − (α + γ)I

Ṙ = αI − δRR

Ḋ = γI

V̇ = δSS + δRR

(2.5)

where the model parameters are the same of those described in (2.1). Parameter

µ is the transition rate from E to I. The force of infection in this case is:

λ =
βI

S + E + I +R + V
(2.6)

2.3.2 Basic reproduction number

The computation of the effective reproduction number Rt associated to SEIRDV

model follows a similar approach of the one described for the SIRDV model, with

the main difference that now the infective compartments are E and I.

The equations for these compartments are: Defining:
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Ė = f1(E, I) = βI
S

S + E + I +R + V
− µE

İ = f2(E, I) = µE − (α + γ)I

The linearization of the equations is

δ

δE
f1(E, I) = −βIS

1

(S + E + I +R + V )2
− µ

δ

δI
f1(E, I) = −β

S

S + E + I +R + V
− βIS

1

(S + E + I +R + V )2

δ

δE
f2(E, I) = µ

δ

δI
f2(E, I) = −(α + γ)

The resulting Jacobian matrix evaluated in the disease free equilibrium (E = I = 0)

is: (
δ
δE
f1(0, 0)

δ
δI
f1(0, 0)

δ
δE
f2(0, 0)

δ
δI
f2(0, 0)

)
=

(
−µ β S

S+R+V

µ −α− γ

)
= T + Σ

where

T =

(
0 β S

S+R+V

0 0

)
Σ =

(
−µ 0

µ −α− γ

)

The linearized ODEs at the DFE are:(
Ė

İ

)
= (T + Σ)

(
E

I

)

The NGM matrix is defined K = −TΣ−1. Thus, first we compute Σ−1:
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Σ−1 =

(
− 1

µ
0

− 1
α+γ

− 1
α+γ

)

In fact:

ΣΣ−1 =

(
−µ−1

µ
+ 0 −µ0 + 0

µ−1
µ
+ (−α− γ) 1

α+γ
µ0 + (−α− γ) −1

α+γ

)

=

(
1 0

−1 + α+γ
α+γ

0 + 1

)
=

(
1 0

0 1

)

Finally K is:

K = −

(
0 β S

S+R+V

0 0

)(
− 1

µ
0

− 1
α+γ

− 1
α+γ

)

= −

(
− β

α+γ
S

S+R+V
− β

α+γ
S

S+R+V

0 0

)
=

(
β

α+γ
S

S+R+V
β

α+γ
S

S+R+V

0 0

)

Thus it is possible to conclude with:

Rt = ρ(K) =
β

α + γ

S

S +R + V

2.4 BioPEPA formal language

BioPEPA is a formal language, extension of the PEPA language[32], for modelling

biochemical networks. PEPA, acronym of Performance Evaluation Process Algebra,

is a process algebra defined for modelling computer systems and obtain their perfor-

mance analysis. BioPEPA extends it in order to handle some features of biochemical

networks, such as stoichiometry and different kinds of kinetic laws. A key advantage

of BioPEPA as compared to its predecessor PEPA is the higher level of abstraction

that allows an easier writing of the models. Another feature of BioPEPA is the pos-

sibility to support different kinds of solvers, including stochastic simulation, analysis

based on ordinary differential equations (ODEs) and model checking in PRISM[33].

The following section resumes the key concepts necessary to define within BioPEPA

the epidemiological models used in this project.

For the full description and discussion of BioPEPA formalism please refer to its

original paper[18].
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2.4.1 BioPEPA syntax and capabilities

A BioPEPA model is composed of:

• model components (or compartments);

• functional rates;

• system equation.

The model compartments represent different states/sets in which an agent belongs,

and each includes the list of actions that can be undertaken by the agents. The

compartment definitions describe how an agent undertaking an action affects the

compartment itself. The functional rates identify a possible action made by an

agent inside a compartment. The rate value represents the speed at which an ac-

tivity is performed or equivalently the mean fraction of time agents reside in the

component. The system equations describe how each compartment is related to the

others, namely in synchronisation or parallelization, thus the complete behaviour of

the system.

BioPEPA syntax is defined as a combination of symbols to represent the bio-

chemical species (the agents are single molecules) and their actions inside the sys-

tem. The model can be defined following these rules, which are resumed in general

concepts from their original biochemical meaning.

The definition of the three main components of BioPEPA are:

1. Functional rates: A functional rate, frate ∈ R, is defined in BioPEPA as a

constant number or derived by a function of possible parameters sk, and of

the number of agents in a compartment C. The following scheme resumes

the possible combinations on sk and C to define a rate (the symbol ’—’ is a

separator of the possible definitions).

frate ::= f(sk, C) | f(sk) | sk
sk ::= int | float | name | sk + sk | sk − sk | sk ∗ sk | sk/sk | sk sk |

exp(sk) | log(sk) | sin(sk) | cos(sk)

where: C is the compartment value i.e. the cardinality of the set, f is a func-

tion returning a value belonging in the definition of sk.

2. Components: A component of the system is identified with an unique name

and its definition which is assigned with the ‘ =’ operator. The definition

is composed of actions undertaken by agents with the assigned rate (α) or a

composition of other components. The following scheme resumes the possi-
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ble definitions of a generic component S (‘—’ is a separator of the possible

definitions).

S ::= (α, k)opS | S + S | C

where: α is a functional rate, k is the number of agents involved (default is

1), + is the choice operator between two activities, op is one of the following

operations

• ↓ (reactant) reduce the agents in the component;

• ↑ (product) increase the agents in the component;

• ⊕ (activator) necessary element in the activity.

3. System equation: The system equation can be expressed as:

P ::= P ▷◁
L
P | S (x )

where: ▷◁ is the cooperation symbol which synchronise the components, L is

the set of activities of cooperation (symbol * means every shared activity), x

is the initial state of the compartment S.

2.4.2 BioPEPA as epidemiological tool

BioPEPA can be adapted to perform epidemiological simulations as described in

the paper [34] published by Federica Ciocchetta, one of the authors of BioPEPA.

The advantages of using PEPA or BioPEPA to describe an epidemic can be found

in the cross competency of the scientific fields of epidemiological studies: epidemi-

ology requires both medical and biomedical expertise, as well as mathematical and

statistical knowledge. In BioPEPA the syntax rules are simple and so that it can

be exploited by biomedical scientists or other professionals who are not confident

with the mathematics of modelling and simulations like computer scientists and

mathematicians.

To describe a BioPEPA model no coding skills are required, and all the complex

mathematical equations and matrices needed for the simulations are generated au-

tomatically by the BioPEPA tools. The main advantage of BioPEPA as compared

to PEPA is the straightforward description of the population classes among different

sets/compartments and their links. Each compartment represents both the status

and the type of agent which resides inside. The compartment definition describes

the activities and the mean time required to be performed by the agents, such as

entering in contact between each other, developing symptoms or healing from the

disease.
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Basic SIR model in BioPEPA

The following BioPEPA model defines three compartments representing a classless

SIR epidemiological model.

The agents in the S (susceptible) compartment can be infected and pass to the

I (infected) compartment, from there it is possible to recover and pass to the R

(recovered) compartment. The rates at which each agent performs an action are

defined with the action itself. In this example there are two rates, α and β, that are

constant during the simulation.

The system equations put all compartments in collaboration over the common

actions. The initial state is omitted in this setup of the model.

Functional rates:

infect = α, recover = β

Compartments definitions:

S
def
= (infect) ↓ S

I
def
= (infect) ↑ I + (recover) ↓ I

R
def
= (recover) ↑ R

System equation:

S ▷◁
∗ I ▷◁

∗ R

Basic classed SIR model in BioPEPA

As in the previous example, in the following model the agents have three possible

states (S,I,R). In addition this model divides the population in two classes, namely

A and B, governed by different rates (for example to describe different risk classes).

To represent a classed SIR epidemiological model six compartments are needed,

i.e. the Cartesian product of states and classes. Since now there can be two types

of interactions leading to infection, in the model definition it is now necessary to

represent the interaction between a susceptible agent in one class and an infected

agent belonging to the other class. This can be done via the addition of the first

class infecting activity in the infected compartment of the second class as activator

(functional rate called infectAB), and vice versa (functional rate infectBA). In

fact, this is equal to the chemical catalyst concept represented in BioPEPA with the

⊕ symbol.

The functional rates in this case are:
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infectAA = α, infectAB = α1, recoverA = β

infectBB = γ, infectBA = γ1, recoverB = δ

Compartments and their actions are then defined as:

SA
def
= (infectAA) ↓ SA + (infectAB) ↓ SA

SB
def
= (infectBB) ↓ SB + (infectBA) ↓ SB

IA
def
= (infectAA) ↑ IA + (infectAB) ↑ IA + (infectBA)⊕+(recoverA) ↓ IA

IB
def
= (infectBB) ↑ IB + (infectBA) ↑ IB + (infectAB)⊕+(recoverB) ↓ IB

RA
def
= (recoverA) ↑ RA

RB
def
= (recoverB) ↑ RB

Finally, the system equation is:

SA ▷◁
∗ SB ▷◁

∗ IA ▷◁
∗ IB ▷◁

∗ RA ▷◁
∗ RB

BioPEPA models files

The two SIR models just described are represented in .biopepa files as follows.

SIRmodel.biopepa

1 infect = [alpha];

2 recover = [beta];

3

4 S = infect <<S;

5 I = infect >>I + recover <<I;

6 R = recover >>R;

7

8 S <> I <> R

Listing 2.1: Basic SIR model in BioPEPA

ClassedSIRmodel.biopepa

1 infectAA = [alpha ];

2 infectAB = [alpha_1 ];

3 recoverA = [beta];

4 infectBB = [gamma ];

5 infectBA = [gamma_1 ];

6 recoverB = [delta ];

7

8 S_A = infectAA <<S_A + infectAB <<S_A;

9 S_B = infectBB <<S_B + infectBA <<S_B;

10 I_A = infectAA >>I_A + infectAB >>I_A + infectBA (+) + recoverA <<I_A;

11 I_B = infectBB >>I_B + infectBA >>I_B + infectAB (+) + recoverB <<I_B;
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12 R_A = recoverA >>R_A;

13 R_B = recoverB >>R_B;

14

15 S_A <> S_B <> I_A <> I_B <> R_A <> R_B

Listing 2.2: Basic classed SIR model in BioPEPA
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Chapter 3

Workbench and extensions

The BioPEPA project provides two different tools to simulate a BioPEPA model

with different algorithms and techniques. They are the BioPEPA Workbench and

the BioPEPA Eclipse Plugin.

The Workbench is a command line tool without graphical interface which pro-

vides many features, but, unfortunately, it is scarcely documented and its latest

release is from 2008. The Eclipse Plugin, instead, is an extension to the well known

Eclipse IDE[35], thus providing a graphical interface together with the IDE editor

and its latest release is from 2014. In the beginning of the project, the Eclipse Plu-

gin seemed to be the best and most updated option, and thus it has been chosen to

run the simulations for the models of this project. However soon two fundamentals

problems made its use impossible. A realistic simulation of an epidemic requires the

possibility of updating the model variables or providing progressive data with the

simulation time progression (e.g., to take into account changes in transmission).

The Eclipse Plugin has the possibility to introduce a time variable, but only

in simple mathematical expressions for the definition of the activity rates. The

Eclipse Plugin has not the possibility of defining code functions to encapsulate any

complex set of operations. Furthermore, the Eclipse Plugin does not allow automatic

iterations and simulation launches. These limitations of the Eclipse Plugin can be

overcome by using the BioPEPA Workbench. The Workbench is a more flexible

tool and open to integrations, since there is a direct access to the source files of the

simulation which are compiled for every run. Since it is a command line tool, scripts

can automate the iteration of solvers over different models and/or parameters. Thus,

the Workbench is a much more suitable tool for programmers and researchers. Also

the workbench had its disadvantages as they will be discussed in this chapter.

The BioPEPAWorkbench, available at the official website[36], features and orga-

25



nization is presented in the next section along with modifications and integrations

proposed. The BioPEPA Workbench utilises many programs and libraries which

have their own requirements to work properly (for details see the requirements spec-

ification at the online repository [37]). The additional tool designed in this thesis

to generate a large BioPEPA model automatically is described in the second part

of the chapter.

3.1 BioPEPA Workbench integrations

3.1.1 Workbench structure

The BioPEPA Workbench, in the following indicated with BPWB, has different

subroutines which are managed by a global shell script. This tool is made of different

components, library (main simulator solver is StochKit) and takes advantage of other

programs, all elements which are not fully described in the Workbench manual. The

following tree resumes the folders structure 1:

bpwb

bin: the workbench executables

cpp: model translations in cpp code for stochkit

css: css file for the html report page

dat: output results of the simulations

dizzy: model translations in dizzy format

doc: documentation and manual of the workbench

dot: files for dot representation of the states

eps: files for producing the pdf report

gnu: gnuplot command files to plot the results

highslide: javascript files for the html report page

js: javascript files for the html report page

log: logs of executions

matlab: model translations in matlab

pdf: pdf reports

png: graphs produced by gnuplot

prism: model translation in prism format

src: ml source files of the workbench

stochkit: simulator files for stochkit

sundials: simulator files for sundials

tex: latex report files

thumbnails: graphs of gnuplot for the html page

vfgen: vf files for model translation in sundials source code

stochkit

test

1Files and StochKit library folders omitted
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BIOPEPA: model files are moved here to run the simulations with

stochkit

The BPWB global script is called bp and it launches the workbench on every

.biopepa files along with the pairing .csv files that are found inside the bpwb

folder. The program produces the simulator files of stochkit, as well for matlab

and the model representations in .vf format for the library converter VFgen and

the model translation in dizzy and prism. The workbench also prepares reporting

files like the model description in Latex documents. All these files are moved in the

belonging folders by the bp script. The script proceeds to compile and run the simu-

lator processes. Eventually, it moves the result files in the appropriate dat folder and

calls some post-processing programs like gnuplot to generate the simulation graphs.

The bp script instructions control flow is based on the configuration parameters

defined in the biopepa.cfg file. It contains also input configurations for all the pro-

grams called by the global script, the most important is the simulation.stoptime

which is a final time for the duration of the time inside the simulation. The simula-

tion actual final time then can only be lower or equal to the configuration stoptime.

In case a simulation stops before the limit, it means that no activities could be per-

formed by any agent in any compartment, e.g., when in a SIRD model no agent is

infected and thus there cannot be new infected or recover or deaths, and all agents

are in S, R and D compartments.

3.1.2 Workbench and StochKit integrations

In order to elaborate the epidemiological models, it is required to make available the

data required for each rate at different time values. This is a requirement to include

the Rt coefficient. This necessity is resolved with the creation of custom functions

which in turn require the value of the variable time. The custom functions are

called by the rate definitions inside the model thus to these definition it must be

made available the variable time.

Time variable recognition

A simple test of the workbench to determine the correct usage of the time variable

highlighted that code parsing section required some modifications to recognise the

time variable and to include the desired features.

The parser in the workbench analysed already all the tokens necessary to de-

scribe rates. In fact inside the data structures of specific recognised tokens, the

variable time was already present inside the VFgen module but not inside the
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StochKit one. This problem is here overcome by adding the variable time in the

special token list for the workbench StochKit simulator module. Thanks to this

modification the libraries StochKit and Sundials are suitable as the stochastic

simulator and the as ODEs simulator respectively.

StochKit updates

The original StochKit module as available together with the Workbench[19], does

not recognise the time variable. This is due to the data structures and the function

containing the model description do not have access to the time variable in the

simulator code. The time variable is a local variable in the loop of the main function

of the simulator. In order to use it inside the rates of the model description created

by the workbench, it is necessary to add it to the definitions and declarations of the

functions in the StochKit library.

For what concern the loading of model parameters that change in time, such

as the Rt coefficient, and including them inside the definition of the rates, this

can be easily done in the workbench thanks to the possibility of calling external

functions in C++ language. In order to define the temporal-changing coefficient in

the rates it was required to define a custom function that provides the value inside

the KineticFunctions.cpp file, as described in the BPWB manual.

Additional function for reading indexed values n ∈ R from a CSV file can be found

in the appendix A.

Sundials updates

The Sundials simulator computes the numerical solution to the ODEs associated

to the BioPEPA epidemiological model. The code for the Sundials simulator is

generated by the BPWB through the VFgen tool. As already mentioned, the time

token is correctly recognised for the generation of the input file for VFgen, thus the

original version of Sundials already handles the time value in the model definitions.

Unfortunately, while testing the parsing and call of a loading function for the Rt

value inside the Sundials simulator, generates an additional problem. As a matter of

fact, the code for simulating the model with Sundials is generated by VFgen, which

is based on GiNaC library, which in turn uses the CLN library. VFgen supports

the definition of custom functions, but only if they are mathematical expressions.

Using a C call directly like in the case of StochKit is not possible. Modifying

VFgen to support a direct function call as described would necessarily mean the

modification of GiNaC too. The use of an ODE solver that could read an external

parameter is then possible only undertaking one of the following actions:
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• Modyfing VFgen and GiNaC;

• Try to use the Matlab solver for ODEs, which files are already generated by

VFgen; however this suite is not free and open source;

• Try to use the Dizzy[38] simulator, which provides both stochastic and ODE

solvers. Dizzy is based on another kind of formalism and translating a BioPEPA

model into a Dizzy model before running simulations seems like a waste of time.

Furthermore, the Dizzy formalism and modelling tool are poorly documented,

even less than BPWB;

Considering the available options, none of them are worth the time needed to imple-

ment the many changes necessary. So the decision is to work around the Sundials

problem: we propose to use a placeholder variable in the BioPEPA model. After the

workbench has generated the simulators code, the placeholder variable is substituted

with a clever “find and replace” script inside the C++ and C code of StochKit

and Sundials respectively before the simulation run. Since BPWB do not provide

a dedicated file for custom functions for Sundials, the file CustomFunctions.c was

created inside the sundials folder.

“Find and replace” script

The find and replace script is written in Python, which is a language particularly

suitable to handle word processing. The script enhances the simple “find and re-

place” logic by exploiting the pattern that BPWB uses to declare variables inside

the StochKit and VFgen generated files. Using a configuration file in input, the

script finds the simulators code inside the corresponding folders and performs the

substitution of all placeholder variables.

This modification of the code is not a clean solution, but it was safer, than

other options, since modifying huge libraries like GiNaC and CLN would probably

introduce bugs or an unexpected behaviour, as well as requiring a huge amount of

time just to include a function call. Furthermore, it is quite easy to implement

the substitutions of placeholders, and this considerably expands the flexibility and

capabilities of the simulators for BioPEPA models.

3.1.3 Workbench usage

Some condition must be satisfied in order to launch the Workbench on a BioPEPA

model file:

• set global simulation configurations in the biopepa.cfg file;

• the modelname.biopepa file containing the BioPEPA model definition must
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be in the bpwb folder;

• the modelname.csv file containing the model starting state values for the

rate constants and compartments population;

• if the model contains calls to custom functions, the functions specification

for each placeholder rate must be in the JSON format with the name cus-

tom functions configMODELNAME.json;

• any file that is read or called by custom functions must have a copy present in

the bpwb and sundials folders (unless the custom functions handle the file

path or any other loading process).

When all conditions are met, it is possible to call the ./bp script in a terminal from

the bpwb folder. The script will present text output to inform on the execution

status. The data files containing results of the simulators computations are placed

in the bpwb/dat folder. The graphical representation of the simulation results

generated by gnuplot can be found in the bpwb/png folder. Other intermediate

computation files plus the model conversion for PRISM and Dizzy formalism are

organized in appropriate subfolders of bpwb.

The files to generate the simulation of section 4.1.1 as file format examples are

reported in the appendix A.

3.2 Epidemiological model script

The definition in BioPEPA of the epidemiological model with classes, as described

in chapter 2.4.2, requires the setup of a large number of interactions, activities and

rates, which scale quadratically with the number of states. This process cannot be

performed manually when there are several classes, mainly for the risk of introducing

errors. Thus, there is the need for an automatic tool that construct the definitions of

the model starting from a table of the model rates among states. In addition to the

BioPEPA Workbench integrations, this thesis work provides in the new repository

of the code[37] a model writer program. The program takes two files as input: the

model description and details, class contacts matrix and the name of the model as

described in section3.2.2. The program computes the BioPEPA file containing the

model and the CSV file with the initial status and the values of the other variables

which then are written in output.

This program is combined with the “find and replace” script. It has an additional

file in output, which is the configuration file for the placeholders put in the model

and it can be directly used with the script.
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The model writer is a OOP2 program written in Python, as it is a language well

suitable for text elaborations, as already mentioned. The application is conceived

to be flexible, but most importantly expandable for anyone that desires to upgrade

or define new models.

3.2.1 Model writer structure

This section describes the structure and main duties of each class.The following tree
represents the structure of the source directory:

src

modelImplementation.py

models

SIRDModel.py

SIRDvModel.py

model-writer.py

substituionsInfo.py

transition.py

The model writer program logic consists of two parts: general model code and

specific model code. These are implemented in two corresponding files, the model-

writer.py contains the main function of the program and handles the general logic.

In particular, it carries out input checks and handles the output logic.

The second file is variable, its name is given in input and the model-writer.py

loads the module to execute the specified model logic. This file must contain an

object definition that respects the model implementation logic and may hold custom

data for this purpose. This class must have public the methods defined in the

modelImplementation.py abstract class, which functions also as an interface.

These methods are called by the general algorithm and they have the following

responsibilities:

1. computeTransmissionRates: this method is the first to be called bymodel-

writer.py and it has the responsibility of computing and defining all activities

of the model;

2. computeModelDefinitions: this method is the second called by the general

logic and it has to return all the model components definitions;

3. computeSystemEquation: this is the last method called for the model com-

putation and it computes the system equation of the model.

4. getSubstitutions: this method is called at the end of the computation and

returns the placeholder substitutions, which will be used to generate the con-

2Object Oriented Programming
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figuration file for the substitution script;

3.2.2 Model writer usage

The model-writer program is a command line tool that has to be launched with the

following arguments:

• flag -m: path to the Python file containing the implementation of the model

to be constructed;

• flag -c: name of the class implementing the methods described in 3.2.1;

• flag -p: path to the JSON file containing the configuration for the model to

be constructed;

• flag -i: path to th CSV file containing the contact matrix between the model

classes;

• flag -o: name for the biopepa file in output.

The files to generate the simulation of section 4.4 as file format examples are reported

in the appendix A.
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Chapter 4

Simulation results

This chapter presents the application of the epidemiological models described in

chapter 2 to simulate and analyse a realistic epidemic. As a first example of appli-

cation, we consider the simulation of the Italian Covid-19 epidemic using both the

SIRDV and SEIRDV models. As a second example, we present the results of classed

model which is easily extendable with more classes and real data. The formula to

include the Rt factor in the models is derived from Gatto et al.[14].

4.1 Simulation of the Italian COVID-19 pandemic

4.1.1 Results of the SIRDV model

The SIRDV model simulation of the Italian Covid-19 epidemic takes into account

the epidemiological data available at [39]. In particular, the model results are based

on the Rt values estimated by the ISS [40]. In fact, the functional rates governing

the transmission are changed in time in order to match the modelled Rt with the

real estimation from the data (as described in Section 2.2), the Rt trend is depicted

in figure 4.2.

The simulation spans a time frame of 604 days, from 06/02/2020 to 30/09/2021.

This period covers the first three waves in Italy caused by the first strain of SARS-

CoV-2 to similar variants (widely known as Alpha, Beta, Gamma and Delta variants)

and the first 10 months of the vaccination campaign. The Omicron variant, that

had strong differences in the virus transmission, became relevant in Italy after the

end the simulation period consider in this thesis.

The results are compared against the recorded active cases, the total recovered

and the total dead cases. From the simulation results, thanks to the additional

CUMI compartment and the D compartment, the daily infections and deaths are
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inferred and compared with the recorded national data.

The model starts on the 06/02/2020 with two infected individuals. This initial

date, together with the imposition of the Rt, allows the model to well reproduce the

main features of the epidemic curve. No calibration efforts on the initial conditions

are made to obtain perfect matching with the historical data of the healthcare

authorities. The calibration of the model parameter is a sub-problem that is out of

the scope of this project.

The model SIRDV simplifies the vaccination process by removing the vaccinated

individuals from the transmission dynamics (as if the vaccine would provide full im-

munisation). The simulation then ignores the distribution of the first doses, and

imposes that the number of vaccinated individuals among S and R compartments

matches the daily number of second doses distributed in Italy. Booster doses are

excluded in this model because their distribution started after the time frame con-

sidered. The BioPEPA formalization of the model can be found in the appendix

A.

Figure 4.1 shows the schematic representation of the as prepared by the file out-

put SIRDV.png of the workbench. The same model is then automatically simulated

Figure 4.1: Transition scheme of SIRDV BioPEPA model

with ODE and stochastic Gillespie solvers.
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Figure 4.2: Rt coefficient trend in the simulations time frame, loaded by fRt(t)

Model parameters

The table 4.1 reports the values of the parameters and initial state of the simulation.

In particular γ and α are the healing rate and death rate respectively. Their sum

(0.2 days−1) corresponds to the inverse of mean time spent by an individual in the

I compartment, here imposed equal to 5 days. The death rate α = 0.004 days−1

implies that the expected number of deaths in a long-term simulation is 2% of the

infections. The placeholder and vaccinerate key labels are the placeholders used

to substitute the appropriate function calls for the time dependant values of Rt and

vaccine doses distributed in a day. In the simulation each time unit represents a

day, thus all rate values are expressed accordingly. The functions fRt(t) and fv(t)

retrieve the values of the day depending on t rounded to the nearest integer.

Simulation results

Figure 4.3 presents a comparison among the epidemiological data and the simulation

results in the different compartments, for the two considered solver. It is clear that

the model results have a similar dynamic to the data, reproducing the timing and the

order of magnitude of the epidemic waves in the active cases (I). This (not obvious)

result is a direct consequence of the strategy adopted to perform the simulation, i.e.
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Figure 4.3: SIRDV simulation results: number of individuals in each compartment of
the model as computed by the stochastic Gillespie solver (blue line) and by the ODE
solver (orange line). The dashed red line show the corresponding epidemiological
data.
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Parameter Value
placeholder fRt(t)
vaccinerate fv(t)
γ 0.196 days−1

α 0.004 days−1

Compartment Initial state
S 59641488
I 2
R 0
D 0
V 0

CUMI 2

Table 4.1: SIRDV Parameters values and initial state definition

the imposed equality between the modelled Rt and the one estimated from the data.

Since a proper calibration is missing, the data are represented in the figure just

to give an idea of the real dynamics, and it was foreseen that the result would not

exactly match the records. Nevertheless, the epidemic behaviour is well represented

and consistent with the data.

There are several reasons why, the model results do not match this data. First

of all, to obtain a number of deaths similar to the one recorded during the first

wave, the model needs a much larger number of infected. This could be an indicator

of the lack of a proper testing capacity during the first months of the pandemic.

Furthermore, it must be taken into account that the active cases in the simulations

depend only on the healing rate (about 5 days, meanwhile in the bulletins reports

of healthcare authorities an active case is considered recovered only after a negative

test. This implies that in some periods the number of infected individuals could have

been overestimated. However in the first wave the contrary happens: the testing

capabilities in the first months of the pandemic were unable to match the demand

with orders of magnitude of difference.

Compartments R and D also show a good trend in comparison with the data.

The decreasing of recovered cases, in the last 100 days of the simulation, is due to

the fact that also recovered individuals have been vaccinated, thus in the SIRDV

model they are moved from R to V .

The vaccinated compartment show a complete matching between the ODE and

stochastic solvers results and a very close match with the historical data, which are

here used as an input to the model.

As stated in the previous paragraph, the results are not completely comparable

between compartments values, in particular for I (active cases). Comparing the

daily cases of infections and deaths provides a better idea of the differences among

the simulation results and the data, as reported in figure 4.4. Both daily trends

are reproduced with high reliability by the solvers, but there are some important

differences among Gillespie and the ODE solver. Even if the model parameters are
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Figure 4.4: SIRDV daily infected and deaths: comparison among the reported daily
infected and deaths (dashed red line) and those computed in the two solvers, Gille-
spie (blue line) and ODE (orange line).

the same, the stochastic solver provides a lower peak in all the waves
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4.2 SIRDV model with vaccination impact

An interesting analysis that is typically performed with this kind on epidemiological

models is the evaluation of the impact of the vaccination campaign. This section

presents two simulation scenarios that replicate the same transmission rates evalu-

ated under the assumption of the full vaccination (computed from the described run

of the SIRDV model), but deploying lower numbers of daily vaccination doses.

The two scenarios are performed on a SIRDV model with only a fraction of the

total doses administered (50% and 66%, respectively named SIRDV vimpact05 and

SIRDV vimpact066).

Besides the different vaccination, this simulations are a replica of the one de-

scribed in the previous section. The simulations span a time frame of 604 days, from

06/02/2020 to 30/09/2021. The model is again the SIRDV, thus a single vaccination

is considered able to fully immunize an individual. The model results are compared

in figure 4.9 against the recorded daily active cases, the total recovered and the

total dead cases and against the results of the SIRDV simulation with the full vac-

cination doses. The outputs include the daily infections and deaths, wchich are

compared with recorded data and SIRDV simulation. The BioPEPA formalization

of the model can be found in the appendix A.

Simulation parameters

Table 4.2,4.3reports the values for the parameters and initial state of the simulations.

The difference between the two simulations is only on the parameter in charge of

influencing the vaccination rate: percentage is a coefficient representing the fraction

of doses actually administered. As in the previous simulation γ and α are the healing

rate and death rate respectively. The placeholder and vaccinerate key labels are

the placeholders used to substitute the appropriate function calls.

Differently from the first SIRDV simulation, the label placeholder is substi-

tuted with the function fβ(t) which is responsible to load the corresponding value

of β at time t. The coefficient β is the same of the equations 2.1 and it is loaded

from a file compiled from the output of the SIRDV simulation. The file contains

the values of β computed daily in the previous simulation (under the assumption

of full vaccination regime). The inclusion of the β coefficient, instead of Rt, allows

to reproduce the same amount of daily contacts of the previous simulation. Since

now a lower rate of vaccination is imposed, there are more susceptible individuals

and thus the risk of infection increases. The placeholder vaccinerate is substituted

with fv(t), the same function of the previous simulation in section 4.1.1.
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Parameter Value
placeholder fβ(t)
vaccinerate fv(t)
percentage 0.50
γ 0.196
α 0.004

Compartment Initial state
S 59641488
I 2
R 0
D 0
V 0

CUMI 2

Table 4.2: SIRDV vimpact05 Parameters values and initial state definition

Parameter Value
placeholder fβ(t)
vaccinerate fv(t)
percentage 0.66
γ 0.196
α 0.004

Compartment Initial state
S 59641488
I 2
R 0
D 0
V 0

CUMI 2

Table 4.3: SIRDV vimpact066 Parameters values and initial state definition

Results on the vaccination impact

From figures 4.5,4.6,4.7,4.8,4.9 it is possible to note that the reduced number of

doses administered would have impacted severely the epidemic. In Summer 2021

the new infections would have a rampant increase and active cases would probably

have an magnitude order to overwhelm hospitals. It is clear that vaccinations in

this model have a determinant impact as for the assumption of complete efficacy in

preventing the disease infection. However have to be underlined that this scenario

is definitely unlikely as the government would certainly impose new restrictions or

even a new lockdown to limit contagions.

Nonetheless the results of these simulations are useful to have a quantitative

estimation of avoided infections thanks to the vaccination campaign. In partic-

ular in the model SIRDV vimpact05 Gillespie results: 21.659.347 total avoided

cases; meanwhile in the ODE results: 29.833.476 total avoided cases. In the model

SIRDV vimpact066 Gillespie results: 8.275.347 total avoided cases; meanwhile in

the ODE results: 21.374.721 total avoided cases.
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Figure 4.5: Same representation of figure 4.3 but for a 50% of the vaccination rate
(scenario SIRDV vimpact050)
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Figure 4.6: Same representation of figure 4.4 but for the 50% of the vaccination rate
(scenario SIRDV vimpact050)
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Figure 4.7: Same representation of figure 4.3 but for a 66% of the vaccination rate
(scenario SIRDV vimpact066)

43



Figure 4.8: Same representation of figure 4.4 but for the 66% of the vaccination rate
(scenario SIRDV vimpact066)
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Figure 4.9: Vaccination impact comparison on daily cases and deaths of all SIRDV
simulations
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4.3 SEIRDV model

This section presents the results of the same analysis of the COVID-19 Italian epi-

demic performed with the SEIRDV model. The SEIRDV model is a more suitable

model to simulate the COVID-19 transmission since it takes into account the in-

cubation period of the disease (here assumed to be 2 days). Simulation results are

compared with the recorded daily active, the total recovered and the total dead

cases; also daily infections and deaths are inferred and compared as in simulation

4.1.1 but on a different period.

This simulations starts on the 7/01/2020 with 5 exposed individuals, proceeds

for 604 days period, ending on 02/09/2021. The SEIRDV model requires an earlier

date for the beginning of the epidemic than the SIRDV model, to give the exposed

compartment E time to generate a congruent initial condition at 06/02/2020 for the

I compartment. Besides for the E compartment, he same vaccinations assumptions

and rates of the SEIRD model. As previous simulations, no calibration efforts on

the initial conditions are made to obtain perfect matching with the historical data of

the healthcare authorities. The BioPEPA formalization of the model can be found

in the appendix A.

Figure 4.10 shows the schematic representation of the as prepared by the file

output SEIRDV.png of the workbench.

Simulation parameters

Table 4.4 reports the values for the parameters and initial states of the simulation.

In particular: γ and α are the healing rate and death rate respectively, placeholder

and vaccinerate key labels are the placeholders used to substitute the appropriate

function calls for the time dependant values of Rt and vaccine doses. The addi-

tional parameter δ represents the incubation period of 2 days. The functions fRt(t)

and fv(t) retrieve the values of Rt and the vaccination distributed doses in a day

accordingly to the time variable t.

Parameter Value
placeholder fRt(t)
vaccinerate fv(t)
δ 0.5
γ 0.196
α 0.004

Compartment Initial state
S 59641488
E 5
I 0
R 0
D 0
V 0

CUMI 0

Table 4.4: SEIRDV Parameters values and initial state definition
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Figure 4.10: Transition scheme of SEIRDV BioPEPA model

Simulation results

The simulations results of the SERIDV model are interesting because as it is possible

to see in figures 4.11,4.12, the active cases trend is quite different from the SIRDV

simulations 4.1.1. In particular there is a better agreement between the simulators

results, as the closer lines make evident, in respect to the SIRDV model results.

This is probably due to the E compartment that act as a buffer since the exposed

individuals are not capable of infecting other susceptibles. Furthermore in the second

picture 4.12 the stochastic simulation results, as for the 4.4 figure, are much more

coherent with the recorded data suggesting that the Gillespie algorithm could give

better predictions if the model is calibrated.

4.4 Three class SIRD model example

The last example of application of the BioPEPA formal language consists in a classed

SIRD model created with the Epidemiological model writer program described in
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Figure 4.11: SEIRDV simulation results

section 3.2. The model subdivides the population in three classes, namely Young (y),

Middle-age (m) and Old (o), that have different related to different transmission and

epidemiological parameters. The epidemiological states S, I, R, are all subdivided

into the three classes for a total of nine compartments; compartment D is designed

only as cumulative compartment to count all the deaths, but it is possible to expand

the model to have specific death counts for each class. The simulation spans 604

days and starts with the initial conditions reported in table 4.5. The formula for the

force of the infection simply describes the probability of encountering an infected

individual from each class. The contact rate names are constructed to represent

the class contacts combinations: contact+ susceptible class+ infected class. Healing

and death rate names are also constructed to represent the class combinations:

recovery + class, death+ class.

Extending the SIRDV and SEIRDV models with classes and real data, starting

from the incorporation of Rt in the infection force formula, can be achieved by ad-

justing the transmission rates as described in Section 2.2.3 and inserting them in the

configuration file for the model writer program. The BioPEPA formalization of the

model can be found in the appendix A. Figure 4.13 shows the schematic represen-

tation of the as prepared by the file output ClassExample.png of the workbench.
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Figure 4.12: SEIRDV simulation inferred daily infections and deaths

Simulation parameters

The parameters are made with mock up data which are derived with a simple ed-

ucated guess and have no connection with real data of any kind. The rates are

created to give the Young and Middleage classes a higher rate of contacts respect to

the Old class. The Young class population is the less vulnerable to the disease, the

Old class population is the most vulnerable to the disease, meanwhile the Middleage

class have a less resilience to the infection but also minor probability of dying. No

custom function are used in this model definition.

Simulation results

In figure 4.14 it is possible to see that, as expected from the imposed rate, the three

age classes have a different behaviour in each compartments. In particular, the young

population (which is double than ’m’ and ’o’) have the most infected individuals but

also the most recovered, meanwhile middle aged individuals have less recovered but

also less infected individuals. Lastly the older population have suffered the most

causalities as it can be deduced by the higher number of infected individuals than

the middle aged class, but an equivalent number of recovered persons.
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Figure 4.13: Transition scheme of three class BioPEPA model

Parameter Value
contactyyrate 0.00277
contactymrate 0.02771
contactyorate 0.00277
contactmyrate 0.00249
contactmmrate 0.00388
contactmorate 0.00221
contactoyrate 0.00138
contactomrate 0.02771
contactoorate 0.00055
recoveryyrate 0.005
recoverymrate 0.0035
recoveryorate 0.0025
deathyrate 0.0001
deathmrate 0.00055
deathorate 0.001

Compartment Initial state
Sy 990
Sm 490
So 500
Iy 10
Im 10
Io 0
Ry 0
Rm 0
Ro 0
D 0

Table 4.5: Parameters values and initial state definition for the SIRD model with
the three classes of young (y), middle age (m), and old (o).

4.5 Statistics on the computational times

The computing power and memory requirements for these simulations are within

the capabilities of most personal computers. The time taken varies a lot between

the ODE and stochastic solvers, but it is acceptable for all the model explored

and probably it can be reduced with software upgrades. The elapsed time and

the maximum memory occupation are reported in Tables 4.6 and 4.7 for Stochkit

(Gillespie solver) and Sundials (ODEs solver), respectively. It must be noted that

the possibility of performing the simulations in personal computers might be denied

or have unacceptable time performances by some of the tasks discussed in chapter

5, in particular this is highly probable to occur with optimisation algorithms.
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Figure 4.14: Comparison among the simulation results obtained with the Gillespie
solver (left) and ODEs solver (right) for the SIRD model with three age classes.

The computer used to run the simulations has the following characteristics: In-

tel Core i7-6700 CPU @ 3.40GHz, Cores 4, Threads 8, L1 Data Cache

Size 4 x 32 KBytes, L2 Cache Size 4 x 256 KBytes, L3 Cache Size 8192

KBytes, Memory Size 16384 MBytes @ 1066 MHz.

Simulation StochKit time taken StochKit peak memory usage
SIRDV 4 min. 44,58 sec. 12291,8 Mbytes ≈ 75%
SIRDV vimpact 50% 7 min. 4,61 sec. 12290,46 Mbytes ≈ 75%
SIRDV vimpact 66% 4 min. 58,93 sec. 12291,79 Mbytes ≈ 75%
SEIRDV 3 min. 41,66 sec. 6147,59 Mbytes ≈ 37,5%
Class example 0,01 sec. 4,53 Mbytes ≈ 0,028%

Table 4.6: StochKit simulations statistics
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Simulation Sundials time taken Sundials peak memory usage
SIRDV 0,15 sec. 2,11 Mbytes ≈ 0,01%
SIRDV vimpact 50% 0,13 sec. 2,24 Mbytes ≈ 0,01%
SIRDV vimpact 66% 0,17 sec. 2,16 Mbytes ≈ 0,01%
SEIRDV 0,18 sec. 2,29 Mbytes ≈ 0,01%
Class example less than 0.01 sec. 2,29 Mbytes ≈ 0,01%

Table 4.7: Sundials simulations statistics
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Chapter 5

Conclusions

In this thesis is investigated the use of BioPEPA formal language for the simulation

of an epidemic, proposed several extensions to this language which are necessary to

consider complex transmission dynamics, and presented the application of different

models to the SARS-CoV-2 epidemic in Italy. All simulations results are fairly

consistent with reported data without the starting state calibration. Notably, the are

not many difference between the accuracy of SIRDV and SEIRDV models, the only

important distinction is that the E exposed allows for a buffering which dampens

the infection force. This results in a less exponential growth of infection cases, which

is more coherent with real life dynamics. Regarding the solvers performances, it is

clear that stochastic solver require higher execution times and much more memory

capacity than the ODE solver. However the stochastic seems to have a finer grain in

miming the epidemic behaviour, which results in a better agreement with recorded

data.

The quality of the results for both kinds of simulations is very positive thanks

to the inclusion of Rt factor, which confirms that its inclusion in the simulation

executions is a good strategy. Without the simulation calibrations it is not possible

to appoint a better solver, but it is an interesting possibility to investigate further

which simulation technique can perform better with more complex models. The

main contribution of this thesis are certainly the program expansion of the Work-

bench and the creation of the automatic model writer for epidemiological models

with many classes. These extensions give the opportunity of comparing stochastic

and ODE simulation results of an epidemiological model directly from the same

input. Therefore the main objectives of the project can be considered achieved.

Different analysis, elaborations and expansions could not have been performed

in this thesis due to lack of time, and are left as possible future research works.

These include classes addition in the models to gain insights on subsets of popu-
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lation dynamics, which can be easily done taking advantage of the model writer

program, considering age, sex, working sector etc. Models should be also expanded

with additional states, similarly to [41], for example “hospitalised” or “intensive

care” states should be considered in the model to gain more insights for healthcare

structure management. Another possible direction of investigation is expanding the

workbench together with the custom functions to include the geographical dimen-

sion in the models which could be easily done with BioPEPA formalism since it

supports the definition of locations. This would allow to model both population

classes in conjunction with the geographical behaviour of the epidemic[9]. All these

possible developments open up the opportunity of defining an optimization problem,

directly in the BioPEPA formalism, which, however, poses many challenges.

The definition of an optimization problem is to find the best solution in the set

of all possible solutions and this is object of a vast field of research in computer

science and mathematics. In order to introduce optimization directly into BioPEPA

it is needed to both expand the formalism of the process algebra and the tool for

simulating the models. This would require a considerable amount of work. On

the theoretical side it is needed to define and probably proof all the properties to

include the formalization of the optimization problem in BioPEPA. Whereas on the

practical side it is required to develop the translation of the model into a format

describing the mathematical optimization problem and then pass it as input to one

of the efficient algorithms that have been developed by the scientific community.

In case all of this work is fulfilled, it is important to point out that BioPEPA

capabilities would have been greatly expanded but most of these new functionalities

would not be available for personal computers as most optimization problems require

computational facilities to be resolved in an acceptable amount of time.

Considering the potential of optimization solvers, an interesting application to

epidemiological modelling is for example the search for the best vaccination strat-

egy to obtain the minimum number of causalities [10]. Another example could be

the study of the most effective restrictions and their combination to minimize the

transmission of the disease.

Even if ethical and moral aspects do not strictly belong in the computer science

field, it is important to point out that optimized solutions for a problem could pose

some serious dilemmas on the ethical side. For example, the vaccination priority

could leave behind, for considerable amount of time, some population classes which

could introduce some kind of discrimination. Would it be acceptable knowing that it

is the best solution that minimize causalities? It is best to leave these considerations

to political authorities such that they could find balance between scientific advice

for one specific problem with all the other needs and principles of the society.
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On a personal note, I desire to point out that the implementation of both tools

(Workbench and Eclipse Plugin) for the BioPEPA formalism are quite limited and

in need of revision and restructuring in an organic way. Furthermore to the as-

pects already mentioned in section 3, the BioPEPA Eclipse Plugin and Workbench

are missing some important capabilities. For example, in an extension paper of

BioPEPA[42], events have been added to the syntax but neither of the two tools are

currently supporting events in the simulations.

It is arguable that both tools should be convoluted in a new and comprehensive

tool that makes the most of new programming languages and techniques. In par-

ticular, since the Eclipse Plugin is not programmable meanwhile the Workbench is

not user friendly, the usability would increase greatly if the new tool made available

a graphic interface and scripting APIs. The Workbench especially is written in ML,

uses libraries written in C, C++, converts the BioPEPA model in other formats,

use different graphical tools to plot schematics and line charts (with questionable

results) and the execution flow is managed by a terminal script.

Implementing the new tool with OOP patterns in a single library or module,

using only one language (like Java or Python) would be the best development option.

For example the current logic of the two tools could be incorporated in a single

Python module which could take advantage of plenty of libraries for data processing

and graphical representation. This would eliminate the need of converting data and

metadata in different formats and input files for different tools, reducing the code

complexity and taking advantage of higher abstraction when possible.
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Appendix A

Appendix

Function added to the Workbench for the StochKit solver

1 std::vector <std::vector <double > > datatableValues;

2 std::vector <std::string > datatableHeader;

3

4 int getClassIndex(std:: string className)

5 {

6 for (long unsigned int i = 0; i < datatableHeader.size(); ++i)

7 {

8 if (className.compare(datatableHeader.at(i)) == 0)

9 return i;

10 }

11 return 0;

12 }

13

14 double readDatatable(double t, const char *filename , std:: string

className)

15 {

16 /*

17 1 first execution: read the whole file in a vector of Rt values

. The index of the vector is equal to the daytime of the value

18 2 access vector at index t and get the element

19 */

20 if (datatableValues.empty())

21 {

22 std:: string textbuffer;

23 // Read from the text file

24 std:: ifstream filestream(filename);

25 std:: getline(filestream , textbuffer); // get header line

26 std:: stringstream sstream(textbuffer); // create string stream

from the string

27 while (sstream.good())

28 {
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29 std:: string substr;

30 std:: getline(sstream , substr , ’,’); // get first string

delimited by comma

31 substr.erase(std:: remove(substr.begin(),substr.end(),’\"’),

substr.end());

32 datatableHeader.push_back(substr);

33 }

34 double readvalue;

35 // Use a while loop together with the getline () function to

read the file line by line

36 while (std:: getline(filestream , textbuffer))

37 {

38 std::vector <std::string > line;

39 std:: stringstream sstream(textbuffer); // create string

stream from the string

40 while (sstream.good())

41 {

42 std:: string substr;

43 std:: getline(sstream , substr , ’,’); // get first string

delimited by comma

44 line.push_back(substr);

45 }

46 std::vector <double > tableRow;

47 for (long unsigned int i = 0; i < line.size(); ++i)

48 {

49 readvalue = atof(line.at(i).c_str ());

50 tableRow.push_back(readvalue);

51 }

52 datatableValues.push_back(tableRow);

53 line.clear ();

54 tableRow.clear ();

55 }

56 // Close the file

57 filestream.close ();

58 }

59 double result;

60 int index = getClassIndex(className);

61 if (t <= datatableValues.size())

62 result = datatableValues.at(round(t)).at(index);

63 else

64 result = 0;

65 return result;

66 }

Listing A.1: Datatable reading function added to the Workbench
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Files to launch the SIRDV model simulations

1 infect = [(I*(S+R+V)*( alpha+gamma1)*placeholder)/(S+I+R+V)];

2 infectcount = [(I*(S+R+V)*(alpha+gamma1)*placeholder)/(S+I+R+V)];

3 recover = [gamma1*I];

4 death = [alpha*I];

5 vaccinateS = [S*vaccinerate /(S+R)];

6 vaccinateR = [R*vaccinerate /(S+R)];

7

8 S = (infect)<<S + (vaccinateS)<<S;

9 I = (infect)>>I + (recover)<<I + (death)<<I;

10 R = (recover)>>R + (vaccinateR)<<R;

11 D = (death)>>D;

12 V = (vaccinateS)>>V + (vaccinateR)>>V;

13

14 CUMI = (infectcount)>>CUMI;

15

16 (S <> CUMI <> I <> R <> D <> V)

Listing A.2: SIRDV.biopepa file

1 "placeholder "," vaccinerate ","gamma1","alpha","S","I","R","D","V","

CUMI"

2 1 ,1 ,0.196 ,0.004 ,59641488 ,2 ,0 ,0 ,0 ,2

Listing A.3: SIRDV.csv file

1 {

2 "biopepa_file_name ": "SIRDV",

3 "substitutions ": [

4 {

5 "custom_function_c_name ": "readRt",

6 "custom_function_cpp_name ": "readRt",

7 "input_parameters ": [

8 "\"Rt.csv\""

9 ],

10 "input_time_variable ": true ,

11 "placeholderVariable ": "placeholder"

12 },

13 {

14 "custom_function_c_name ": "readDatatable",

15 "custom_function_cpp_name ": "readDatatable",

16 "input_parameters ": [

17 "\" vacciniSIRDV.csv\"",

18 "\"n\""

19 ],

20 "input_time -variable ": true ,

21 "placeholderVariable ": "vaccinerate"

22 }
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23 ]

24 }

Listing A.4: custom functions configSIRDV.json file

Files to generate the model for the SIRDV example with three classes

1 {

2 "state_number ": 4,

3 "states ": ["S", "I", "R", "D"],

4 "starting_state ": "S",

5 "states_description ":

6 {

7 "S": [[" contact","I"]],

8 "I": [[" recovery","R"],[" death","D"]]

9 },

10 "transmission_action ": "contact",

11 "transmission_states ": ["S", "I"],

12 "internal_classed_states ": ["R"],

13 "classless_states ":["D"],

14 "model_classes_number ": 3,

15 "model_classes ": ["y", "m", "o"],

16 "disease_rates_by_class ":

17 {

18 "y":{" recovery ":0.005 ," death ":0.0001} ,

19 "m":{" recovery ":0.0035 ," death ":0.00055} ,

20 "o":{" recovery ":0.0025 ," death ":0.001}

21 },

22 "total_population ": 2000,

23 "initial_state ":

24 {

25 "y": [990,10,0,0],

26 "m": [490,10,0,0],

27 "o": [500,0,0,0]

28 }

29 }

Listing A.5: JSON configuration file for the model-writer program

1 y,m,o

2 0.00005 ,0.0005 ,0.00005

3 0.000045 ,0.00007 ,0.00004

4 0.000025 ,0.0005 ,0.00001

Listing A.6: CSV with contact matrix file for the model-writer program
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BioPEPA SIRDV model

For the BioPEPA Workbench the SIRDV model described in Section 2 is inserted

using the following functional rates:

infect = [(I × (S +R + V )× (α + γ)× placeholder)/(S + I +R + V )]

infectcount = [(I × (S +R + V )× (α + γ)× placeholder)/(S + I +R + V )]

recover = [γ × I]

death = [α× I]

vaccinateS = [S × vaccinerate/(S +R)]

vaccinateR = [R× vaccinerate/(S +R)]

Then, the model defines the following compartment definitions:

S = (infect)↓S + (vaccinateS )↓S
I = (infect)↑I + (recover)↓I + (death)↓I
R = (recover)↑R + (vaccinateR)↓R
D = (death)↑D
V = (vaccinateS )↑V + (vaccinateR)↑V

CUMI = (infectcount)↑CUMI

Where the compartment V counts the number of vaccinated individuals and com-

partment CUMI counts the new infections (it is useful to show the daily infections).

Finally the system equations are:

S ▷◁
∗ CUMI ▷◁

∗ I ▷◁
∗ R ▷◁

∗ D ▷◁
∗ V

BioPEPA model of SIRDV vaccination impacts simulations

The functional rate definitions are:

infect = [(I × placeholder)/(S + I +R + V )]

infectcount = [(I × placeholder)/(S + I +R + V )]

recover = [γ × I]

death = [α× I]

vaccinateS = [S × vaccinerate × percentage/(S +R)]

vaccinateR = [R× vaccinerate × percentage/(S +R)]
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SIRDV + CUMI compartments are defined as follows:

S = (infect)↓S + (vaccinateS )↓S
I = (infect)↑I + (recover)↓I + (death)↓I
R = (recover)↑R + (vaccinateR)↓R
D = (death)↑D
V = (vaccinateS )↑V + (vaccinateR)↑V

CUMI = (infectcount)↑CUMI

Thus the system equation is:

S ▷◁
∗ CUMI ▷◁

∗ I ▷◁
∗ R ▷◁

∗ D ▷◁
∗ V

BioPEPA SEIRDV model

The functional rate definitions are:

infect = [(I × (S +R + V )× (α + γ)× placeholder)/(S + E + I +R + V )]

infectcount = [(I × (S +R + V )× (α + γ)× placeholder)/(S + E + I +R + V )]

incubate = [δ × E]

recover = [γ × I]

death = [α× I]

vaccinateS = [S × vaccinerate/(S +R)]

vaccinateR = [R× vaccinerate/(S +R)]

SEIRDV + CUMI compartments are defined as follows:

S = (infect)↓S + (vaccinateS )↓S
E = (infect)↑E + (incubate)↓E
I = (infect)⊕+(incubate)↑I + (recover)↓I + (death)↓I
R = (recover)↑R + (vaccinateR)↓R
D = (death)↑D
V = (vaccinateS )↑V + (vaccinateR)↑V

CUMI = (infectcount)↑CUMI

Lastly the system equation is:

S ▷◁
∗ E ▷◁

∗ CUMI ▷◁
∗ I ▷◁

∗ R ▷◁
∗ D ▷◁

∗ V
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BioPEPA model example with 3 classes

The functional rate definitions are:

contactyy = [(contactyyrate/(Ry + Iy + Sy))× Sy × Iy ]

contactym = [(contactymrate/(Rm + Im + Sm))× Sy × Im]

contactyo = [(contactyorate/(Ro + Io + So))× Sy × Io]

contactmy = [(contactmyrate/(Ry + Iy + Sy))× Sm × Iy ]

contactmm = [(contactmmrate/(Rm + Im + Sm))× Sm × Im]

contactmo = [(contactmorate/(Ro + Io + So))× Sm × Io]

contactoy = [(contactoyrate/(Ry + Iy + Sy))× So × Iy ]

contactom = [(contactomrate/(Rm + Im + Sm))× So × Im]

contactoo = [(contactoorate/(Ro + Io + So))× So × Io]

recoveryy = [recoveryyrate × Iy ]

recoverym = [recoverymrate × Im]

recoveryo = [recoveryorate × Io]

deathy = [deathyrate × Iy ]

deathm = [deathmrate × Im]

deatho = [deathorate × Io]

Then the compartment are defined as:

Sy = (contactyy , 1)↓Sy + (contactym, 1)↓Sy + (contactyo, 1)↓Sy
Sm = (contactmy , 1)↓Sm + (contactmm, 1)↓Sm + (contactmo, 1)↓Sm
So = (contactoy , 1)↓So + (contactom, 1)↓So + (contactoo, 1)↓So
Iy = (contactyy , 1)↑Iy + (contactym, 1)↑Iy + (contactyo, 1)↑Iy + (contactmy , 1)⊕

+(contactoy , 1)⊕+(recoveryy , 1)↓Iy + (deathy , 1)↓Iy
Im = (contactym, 1)⊕+(contactmy , 1)↑Im + (contactmm, 1)↑Im + (contactmo, 1)↑Im

+(contactom, 1)⊕+(recoverym, 1)↓Im + (deathm, 1)↓Im
Io = (contactyo, 1)⊕+(contactmo, 1)⊕+(contactoy , 1)↑Io + (contactom, 1)↑Io

+(contactoo, 1)↑Io + (recoveryo, 1)↓Io + (deatho, 1)↓Io
Ry = (recoveryy , 1)↑Ry
Rm = (recoverym, 1)↑Rm
Ro = (recoveryo, 1)↑Ro
D = (deathy , 1)↑D + (deathm, 1)↑D + (deatho, 1)↑D

Leading to the complete system definition:

Sy ▷◁
∗ Sm ▷◁

∗ So ▷◁
∗ Iy ▷◁

∗ Im ▷◁
∗ Io ▷◁

∗ Ry ▷◁
∗ Rm ▷◁

∗ Ro ▷◁
∗ D
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