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ABSTRACT 

Trabectedin is an anticancer drug mainly used in the treatments of patients with advanced or 

metastatic soft tissue sarcomas (STSs). Despite its recognized activity, a great variability in the 

pharmacological response is still observed among patients. So far, no effective and specific 

biomarkers have been identified, making challenging the assessment of the clinical outcome of 

trabectedin treatment. This metabolomics study aimed to find pre-dose serum metabolic signatures 

able to predict the individual variations in trabectedin pharmacokinetics (PK) as well as the overall 

clinical response to the treatment of STSs patients.  

The study enrolled 40 metastatic STSs patients receiving trabectedin intravenously as single agent. 

For all patients pre-dose serum targeted metabolomics profiles, encompassing 51 amino acids and 

16 bile acids, were determined by LC-MS/MS together with the plasma trabectedin PK profile up to 

48 hours, measured by a novel validated HILIC-MS/MS method. Multivariate partial least square 

regression (PLS) and univariate statistical analyses were used to find correlations between pre-dose 

metabolites and PK as well as with the clinical response to trabectedin treatment. A risk prediction 

model for the overall survival of the patients was built by Cox multivariate regression analysis 

integrating metabolomics and clinical data.  

Individual trabectedin exposure, expressed as area under the curve (AUC), showed a great coefficient 

of variation of 34% among patients. Multiple regression model, encompassing citrulline, 

cystathionine, phenylalanine/tyrosine ratio, taurocholic acid and haemoglobin, exhibited good 

predictive ability for AUC (bias of 5.16%; precision 16.85%) explaining up to 70% of the AUC 

variability. The PLS-discriminant analysis of the pre-dose metabolomic profile distinguished patients 

in stable (n=16) and progressive disease (n=20) and identified cystathionine and haemoglobin as 

specific metabolic signatures of trabectedin response. Moreover, the Cox risk prediction model, 

based on performance status, haemoglobin and citrulline, allowed to distinguish patients in high risk 

with low overall survival (OS <2.1 months) from those with long-medium survival (OS >19.1 

months).  

This translation study supports the use of metabolomics as potential tool to explain and manage the 

PK variability of trabectedin in STSs patients. The pre-dose metabolomics profile was found also 

useful to predict the clinical response to the trabectedin treatment as well as the overall survival of 

patients. The predictive and prognostic metabolomics signatures raised from this investigation may 

contribute to improve trabectedin therapy by the early identification of the patients who may receive 

the best benefit from the treatment. 
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ABBREVIATIONS 
ESI Electrospray ionization  
GC-MS Gas chromatography-mass spectrometry  
HILIC Hydrophilic interaction chromatography  
IS Internal standard 
LC-MS  Liquid chromatography-mass spectrometry  
LC-MS/MS Liquid chromatography-tandem mass spectrometry  
LIT Linear ion trap  
NMR  Nuclear magnetic resonance  
OS Overall survival 
PCA Principal components analysis 
PD Progressive disease 
PFS Progression-free survival 
PK Pharmacokinetics 
PLS Partial least squares-regression analysis 
OPLS-DA Orthogonal-Partial least squares-discriminant analysis 
QQQ  Triple quadrupole  
QTOF  Quadrupole Time-of-Flight  
RP  Reversed phase  
RT Retention time 
SD Stable disease 
STSs Soft tissue sarcomas 
VIP Variable importance for the projection 

 

 



 

 
 

1. INTRODUCTION 

1.1 Metabolomics 

Metabolomics refers to the comprehensive study of small molecules (<1 kDa) in biological cells, 

tissues, organs or organisms [1,2]. The term came from the analogy with the other omics sciences, 

indeed just as genomics studies the DNA, transcriptomics the RNA gene expressions and proteomics 

the proteins, metabolomics analyses the end products of cellular metabolism, which is influenced by 

both genetic and environmental factors. Being the downstream product of cellular regulatory 

processes, the metabolomic profile incorporates the complex interactions among gene transcription, 

protein expression and environmental factors such as age, sex, lifestyle and physio-pathological 

conditions (Figure 1). Moreover, unlike genome and proteome, the metabolome instantaneously 

reacts to the external stimuli allowing to immediately catch such temporal dynamic changes in 

biological fluids. For these characteristics, the metabolome can provide a reliable snapshot of the 

current individual phenotype [3], which is useful to reveal host metabolic alterations induced by the 

disease or by treatments as well as to discover novel biomarkers for diagnosis and prognosis [3–8]. 

The study of metabolome is however very complex. Metabolomics profiling analysis involves 

countless molecules deriving from disparate endogenous molecular pathways besides those from 

diet, xenobiotics and the gut microbiome activity. All these metabolites belong to several classes, such 

as amino acids, lipids, carbohydrates, and present completely different chemical structures. This 

makes the analysis of the whole metabolome very challenging, and currently, there is not a unique 

analytical method able to detect with large coverage the metabolites present in biological matrices 

[9].  

 

Figure 1. Overview of the omics flow from genes to phenotype. Metabolomics represents the downstream result of the 

genome, transcriptome and proteome but also the upstream input from the environment and therefore it is the most 

representative of the individuals’ phenotype.  
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1.1.1 Metabolomics workflow  

Two main approaches are generally used in metabolomics studies, untargeted and targeted. The 

first refers to the comprehensive analysis of all known and unknown metabolites in a sample, and it 

is usually applied in hypothesis-generating studies, such as novel biomarkers discovery or for 

elucidating metabolic pathways [10]. In an untargeted metabolomics profiles analysis, both the 

sample extraction and chromatographic separation methods are set to minimize the selectively and 

instead ensure the widest metabolites coverage. The analytical platform usually includes proton 

nuclear magnetic resonance (1H-NMR) or mass spectrometry (MS) coupled with separation systems 

such as liquid (LC) and gas chromatography (GC). The 1H-NMR is a non-destructive technique able to 

detect a great span of metabolites, being the detection based on the C-H proton resonance signals. 

This analytical platform has the advantage to be intrinsically quantitative and not to require samples’ 

processing steps, thus ensuring a very high reproducibility in the analysis. However, the main 

drawback of 1H-NMR is the low sensitivity with a detection limit in the mM - µM range, which narrows 

its application to specimens with high abundant metabolites [11,12]. Conversely, MS allows the 

quantification of metabolites with higher sensitivity, although, compared to NMR it shows lower 

reproducibility, being pre-analytical sample preparation and chromatographic separation steps 

required. The MS instruments of choice for untargeted investigations are the high-mass resolution 

mass spectrometer (HRMS), such as Orbitrap, which has a very high resolution (70,000-280,000) and 

mass accuracy (1-5 ppm), and quadrupole time-of-flight (QTOF) with a bit lower resolution (30,000-

40,000) but faster scan speed [10]. HRMS usually couples the full scan spectra with tandem mass 

spectra measurements (MS/MS) to facilitate compound identification. Two main tandem data 

acquisition approaches are generally used:  a) data-dependent acquisition (DDA) consists of a full MS 

scan followed by selection and fragmentation of the most intense ions to obtain their MS/MS spectra 

[13]; b) data-independent acquisition (DIA) integrates the full scan MS with tandem MS/MS 

fragmentation for all precursor ions detected within a narrow masses’ window either simultaneously 

(all-ion fragmentation, AIF) or in sequential mass ranges (sequential window acquisition of all 

theoretical fragment-ion spectra, SWATH) [14,15]. 

Targeted metabolomics requires a priori knowledge of the metabolites of interest and it finds 

application in the investigation of specific metabolic pathways or to validate biomarkers resulted 

from untargeted experiments [16]. The advantage of the targeted approach is the absolute 

quantification of the compounds, obtained thanks to the use of pure standards and labelled internal 

standard (IS) (e.g. 13C, 2H, 15N). Moreover, unlike the untargeted approach, the chromatographic 

separation and the MS parameters are optimized in order to isolate specific molecules and exclude 

signals from the background matrix, thus yielding high sensitivity and selectivity. Triple quadrupole 

(QQQ) or the hybrid QQQ-linear ion trap (QTrap) are the MS instruments mainly used due to their 

high sensitivity and selectivity, especially when used in multiple reaction monitoring (MRM) mode. 

The main drawback of this targeted approach is the reduced metabolite coverage, however research 
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efforts have led to the creation of targeted large-scale metabolic profiles allowing the simultaneous 

detection of hundreds of compounds [17–19]. Finally, it is worthy to mention that data obtained from 

targeted investigations can be immediately used and do not need of complex and time-consuming 

processing steps, required instead by untargeted analyses [20]. 

 

1.1.2 Targeted metabolomics  

For the above-mentioned advantages, the present research project adopted the targeted 

approach. The typical metabolomics workflow is depicted in the schematic figure (Figure 2). The 

main steps consisting of sample preparation, chromatographic separation, detention, quantification, 

and data analysis, will be discussed with main focus on the LC-QQQ system used in this thesis work.  

 

Figure 2 Targeted metabolomics workflow. Metabolites are extracted from the sample biological matrix followed by 

chromatographic separation and MS detection. Raw data are then converted into quantitative data and subjected to 

bioinformatic analyses using univariate and multivariate statistical approaches. 

 

Pre-analytical sample preparation 

Specimens mostly analysed in metabolomics clinical studies include whole blood, serum, 

plasma, urine, saliva and cerebrospinal fluid. Many samples processing techniques can be performed 

to ensure efficient extraction of the metabolites of interest, and the protocols can be tailored 

according to the physicochemical properties of the analytes, their abundance, and the available 

sample volume. Besides metabolites extraction, sample preparation is also extremely important to 

improve chromatographic performance. The removal of proteins and other constituents of the matrix 

can avoid the clog of the chromatography column, moreover, the organic solvent and the pH of the 
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injected extract can have a profound effect on peak shapes, peak separation and retention times (RT), 

consequently affecting the selectivity and sensitivity of the assay. Among the sample processing 

techniques, the protein precipitation with organic solvents is the most simple and fast method, 

though it does not allow to have totally purified extract and to concentrate analytes. Conversely, 

liquid-liquid (LLE) or solid-phase extraction (SPE) ensure a clearer and concentrated extract solution 

but are more labour intensive. Indeed, the LLE consists of multiple steps including analytes 

partitioning between the aqueous and organic phases, evaporation, and reconstitution of the extract 

in a solvent miscible with the LC mobile phase. The SPE has a similar procedure, but the analytes are 

captured in a selective stationary phase and after several washing steps, are eluted with an 

opportune solvent mixture. Instead of classic solid phase with cartridges or plates, the online SPE 

uses a “trap” column before the LC system, thus minimizing the hands-on time of the protocol. 

 

Chromatographic techniques  

A separation step is usually performed prior to MS detection mainly using chromatography 

either GC or LC. The GC technique is popular for the analysis of volatile compounds. Analytes are 

separated on the basis of their intrinsic evaporation properties using temperature gradients 

generated by an inert gas flowing on the stationary phase [21]. However, GC presents some pitfalls 

generally linked to the possible degradation of thermolabile compounds and to the cumbersome and 

time-consuming sample preparation, that requires the derivatization of the non-volatile analytes 

[22]. 

In respect to GC, LC enables the analysis of thermolabile and not-derivatizable molecules. Several 

LC stationary and mobile phases can be chosen according to the chemical-physical properties of the 

analytes to measure. Reversed-phase (RP) chromatography is the commonly used technique for 

nonpolar or weakly polar compounds since the separation is based on the hydrophobic interactions 

between the analytes and the hydrophobic stationary phase such as C18. One of the main advantages 

of RP is represented by its high reproducibility and resolution, that have contributed to its wide 

application in many metabolomics and lipidomics studies [23–27]. However, over the last decades, 

numerous metabolomics investigations have exploited the hydrophilic interaction liquid 

chromatography (HILIC) [28–33]. This technique allows to better retain polar and hydrophilic 

metabolites thanks to the use of a highly hydrophilic stationary phase on which the aqueous-organic 

mobile phase forms a water layer. The retention mechanism in HILIC is the result of the analytes 

partitioning between such water layer and the mobile phase mainly occurring by hydrogen bonds 

and electrostatic interactions. This technique shows the advantage to provide enhanced MS signals 

due to the use of high percentage of organic phase that favours the ions desolvation. Moreover, the 

possibility to directly inject organic extract significantly simplify the sample preparation, making 

HILIC an interesting technique for metabolomics high-throughput analyses [29,34].  
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Mass-spectrometry detention  

Chromatography separation is followed then by MS detection, which is considered the gold 

standard technique for metabolomics investigations requiring high sensitivity. The latter is 

significantly affected by the ionization step since the analyte MS signal is directly proportional to the 

number of ionized molecules. Among the ionization MS sources, electrospray ionization (ESI) is 

commonly used in LC-MS metabolomics studies since it produces efficient molecules ionization  

directly in the liquid phase. However, the main drawback is the ion suppression occurring when, 

analysing complex matrix, co-eluting compounds can compete for charge in the ionization process 

quenching the MS signal of the analyte of interest [35]. Atmospheric pressure chemical ionization 

(APCI) less suffers from ion suppression and it is very helpful to analyse non-polar compounds poorly 

ionized by ESI; indeed ionization occurs in a mixture of liquid and gas that, at atmospheric pressure, 

has high collision frequency [36]. For the ions’ separation, the most commonly used mass analysers 

in targeted metabolomics, are those arranged in tandem (MS/MS). Among them, the QQQ and the 

QTrap are widely employed [37], since they allow the concomitant identification and quantification 

of the metabolites.  A high degree of specificity is obtained when used in MRM mode [38]. In MRM 

the first quadrupole (Q1) operates as first filter of the precursor ion, which is then fragmented in the 

second quadrupole (Q2) by collision-induced dissociation (CID) and finally, the resulting product 

ions are accelerated into the third quadrupole (Q3) that further filters a particular selected m/z 

fragment [16]. The specificity of the assay derives from fact that generated fragment ions are strictly 

dependent on the chemical structure of the precursor molecule and not on its mass, thus allowing to 

distinguish also isobaric compounds on the base of their fragmentation pattern. The QTrap combines 

the QQQ and linear ion trap (LIT) technologies that enables the absolute identification of unknown 

compounds. Indeed, the Q3 can work either as a quadrupole or ion trap, and by scanning secondary 

product ion (MS3), it can provide additional qualitative structural information on the analyte [39].  

 

Quantification  

The quantification in targeted MS metabolomics investigations strictly requires the use of pure 

standards to build calibration curves and corresponding labelled IS, necessary to control analytical 

variability. The chromatographic and MS performance may decrease over time, matrix ion 

suppression and RT drifts can occur, creating differences among batches of analyses or even in the 

same analysis. The normalization of the peak area of the analyte for that of its IS can control such 

analytical bias and ensure reliable and robust measurements. Moreover, in order to verify whether 

the reproducibility and accuracy of measurements among batches is within the accepted range of 

tolerance, multiple injection of quality controls (QCs) with known nominal concentration, are usually 

run along the analytical batch. 
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Data analysis 

The outcome of a targeted metabolomics analysis is generally a complex data matrix with 

hundreds of variables, that require pre-treatment steps and multivariate statistical analyses before 

extracting information. Data pre-processing consists of normalization, transformation and scaling of 

the raw data [40]. Normalization prevents that systemic biases can affect data reliability. Beyond IS 

normalization, other methods can be applied according to sample type or the analytical method. For 

instance, creatinine concentration normalization is commonly used to correct the variability among 

individuals’ urine volumes [41], while the total ion current (TIC) area normalization is the approach 

used mainly in semiquantitative methods. Data transformation is generally performed to correct for 

heteroscedasticity and allow parametric test, whereas scaling permits to adjust the fold differences 

among variables and fit them within the same range [40]. 

Data pre-treatment is followed by statistical analysis. Univariate methods alone cannot meet the 

requirements of a complex metabolomics dataset, hence, multivariate statistical approaches, able to 

reduce the dimensionality of the dataset, are necessary to make the understanding of the data 

simpler and faster. Principal component analysis (PCA), partial least square-discrimination analysis 

(PLS-DA) and orthogonal PLS-DA (OPLS-DA) are some of the most commonly used multivariate 

analyses to identify differences between groups. PCA is an unsupervised technique where input data 

are unlabelled (no classes are given, e.g., case-control). PCA separation occurs only if the intragroup 

variability is smaller than the intergroup variability, a very rare situation in real clinical samples [42]. 

On the other hand, supervised PLS-DA and OPLS-DA can better highlight differences among groups, 

however, they tend to overfit the data, especially when the high dimensionality data correspond to 

small sample size. This over-fitting issue can be verified by model validation tests, ideally splitting 

the dataset into a training set, used to build the model, and a testing set used to estimate the 

predictability [43]. When the number of samples is too small, an alternative approach can be the 

cross-validation method or leave-n-out, where the dataset is divided into n subsets, and each one is 

in turn removed from the model and used as a testing set [42]. Results of the cross-validation tests 

are the quality parameters R2 and Q2 values that indicate the goodness of fit and predictability of the 

model respectively, with R2 = 1 indicating perfect description of the data by the model, and Q2 = 1 

perfect predictability. A model with Q2 >0.5 is admitted for good predictability, however, it is difficult 

to assign a general threshold in the biological context, and many models have been published with a 

Q2 below 0.4 or even below 0.3 [44,45]. In these cases to better assess the quality of the model, 

permutation test is performed, where samples are randomly permutated to generate and compare 

new (O)PLS-DA models [43].  

 

1.1.3 Clinical metabolomics: potentiality and challenges 

Despite metabolomics clinical studies have been emerged relatively recently, the detection of 

metabolites as source of information about disease precedes the introduction of metabolomics itself. 
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Ancient Chinese doctors used ants as “biosensors” to evaluate the “sweetness” of urines and 

recognize what is now known as diabetes, as well as Egyptians observed changes of urine taste and 

smell during certain medical conditions [46]. However, the introduction of the modern concept of 

“individual metabolic profile” can be tracked back of 80 years, when Roger Williams using more than 

200,000 paper chromatograms fingerprinted the profiles of patients affected by different diseases, 

showing that each one has a characteristic metabolic pattern [47]. The term “metabolic profile” was 

officially coined some decades later by Horning, Pauling and Robinson, that developed the first GC-

MS-based method to measure hundreds of metabolites in human breath and urine [48,49], launching 

the basis for the application of metabolomics in clinical chemistry [50–52].  

Nowadays, metabolomics is finding large application in clinical research with the great 

perspective to work as a translation tool and a bridge between pre-clinical and clinical results [3,53–

55]. The analysis of metabolome has been shown to provide remarkable insights about the disease 

mechanism, the pathological conditions and also to improve the diagnosis and prognosis of patients 

[4,56,57]. Its application in cancer research has been significantly growing; as cancer cells have a 

characteristic metabolic phenotype, metabolomics may help to disclose mechanisms underlying the 

uncontrolled cellular proliferation and identify novel potential targets for drugs as well as to improve 

the assessment of therapeutic interventions [54,58,59]. However, the exponential number of 

metabolomics investigations in clinical studies has been rising in parallel with the methodological 

challenges, since paradoxically the more sophisticated and advanced technologies, have led to the 

accumulation of big data difficult to manage. Moreover, many analytical pitfalls may be occurred in 

the entire workflow and potentially affect the biological interpretation, likely contributing to the 

quite common trouble to translate metabolomics findings into clinical application [60,61]. One of the 

problems is the difficulty to compare the results of independent research studies because of the lack 

of standardized metabolomics methods and protocols. For instance, the different sample collection 

and storage rules as well as sample analytical processing, have a significant impact on the metabolites 

detection mainly because of compounds’ stability issues or not efficient or non-selective extraction 

procedures [62,63]. Another source of variability is the choice of the analytical instrumentation and 

chromatography technique, which determine the span of the covered metabolome and the degree of 

reliability of the data. This is particularly true for untargeted analyses where semiquantitative data 

of unknown molecules are obtained [60]; conversely, the absolute quantification allows to have more 

meaningful and inter-labs comparable results and it is an unavoidable requirement for clinical 

metabolomics translation and application. Last but not least, the post-analytical processes play a 

crucial role in determining the results’ accuracy. First of all, analytical errors such as instrumental 

drift, ion suppression or batch effects, that can jeopardize the quality of the data, has to be assured 

before data analyses and opportunely solved [64,65]. Afterwards, the different pre-treatment 

methods (data normalization and scaling) can greatly affect the final statistical metabolomics model 

[66] thus scientists should ensure that the observed results are not an artifact of the statistical data 



                                                                                                                                                 
  

12 
 

processing but truly reflects a biological phenomenon. Finally, the compound identification is the 

bottleneck of untargeted metabolomics, and despite the big number of tools and available databases, 

only 2% of human metabolites have been currently annotated with the remaining 98% falling into 

the “dark metabolome” [67]. The future of metabolomics can be revolutionized by artificial 

intelligence (AI) and machine learning (ML). AI is referred to the technology able to simulate human 

thinking capability and behaviour, whereas ML is a subfield of AI which enables a computer system 

to automatically learn from historical data and make decisions without being previously 

programmed [68]. The use of computational approaches rather than human intervention would 

allow to analyse metabolomics complex data faster and more accurately accelerating the translations 

of the metabolomic results from the bench to the clinics [69–71].  

Although metabolomics still suffers from some issues, the scientific community is working to 

overcome them and enhance the effectiveness of metabolomics studies. So far, metabolomics 

represents the most powerful tool for clinical research with the great potentiality of improving the 

clinical management of severe diseases such as cancer, not only by providing predictive and 

prognostic biomarkers but also allowing to assess the response to drug treatments. In this context, a 

specific application of metabolomics in clinical pharmacology, called pharmacometabolomics, has 

been revealing interesting in precision medicine. Indeed, pharmacometabolomics could predict drug 

effectiveness and/or toxicity based on the individual phenotype, thus guiding physicians in the 

achievement of personalized therapy [72].  

 

1.1.4 Pharmacometabolomics 

Personalized medicine has the ambitious goal to tailor the drug treatment for the single 

individual maximizing the therapeutic effect with the least adverse effects. Many factors including 

genotypes, gut microbiota, lifestyles, pathophysiological status, gender, age, etc. [73] determine the 

drug PK and pharmacodynamics variations thus leading to different drug response and making 

challenging the prediction of the patients' clinical outcome. Pharmacometabolomics profile can 

assess the sum of all these factors and help to predict such inter-individual drug variability 

overcoming the “trials and error” medical approach, currently used to establish the therapeutic plan 

of patients. This is remarkably important for cancer treatments where the used chemotherapy agents 

have a narrow therapeutic index, and the variability in the drug exposure can translate into over-

dosing and side effects, or into under-dosing and therapeutic failure. Hence, the identification of 

markers predictive of the drug response would avoid wasting precious time and ensure therapeutic 

continuity. Many pharmacometabolomics studies aimed to identify biomarkers predictive of PK 

parameters useful to optimize drug dosing regimens [74–77]. One of the first investigations regards 

the immunosuppressant tacrolimus, characterized by a narrow therapeutic index and a high degree 

of individual variation in blood drug concentration. In the study, the pre-treatment urine 

metabolomics profile was correlated with the area under the curve (AUC) of tacrolimus and four 
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endogenous metabolites were found able to predict patient’s drug exposure allowing to select the 

individual dose before administration [76]. Pharmacometabolomics can be also applied to study the 

metabolism of drugs, whose high variability among patients can lead to big differences in drug 

clearance [73,78–81]. Such variability is mainly associated with alterations in the activity of 

metabolizing enzymes, that can significantly be affected by other drugs, such as in the case of co-

therapies, or by endogenous metabolites. An example is the investigation of Rahmioglu et al. that 

identified urine metabolic markers associated with the induction or inhibition of cytochrome 

CYP3A4, allowing the prediction of midazolam clearance [79]; another is the study on paracetamol 

whose sulphation metabolism was found to be competitively decreased by p-cresol produced by gut 

microbiome [73]. Besides PK prediction, pharmacometabolomics has been employed to monitor the 

pharmacodynamic response to treatment, providing biomarkers of drug efficacy or even elucidating 

mechanism of action [4,82]. These studies collectively, demonstrate that pharmacometabolomics has 

the potential to improve treatment strategies, guiding physicians in the selection of the optimal drug 

dose as well as in the establishment of the best therapeutic program by a priori prediction of the 

clinical outcome. In this context, the present research work focused on the anticancer drug 

trabectedin to search for metabolomics signatures associated with its high PK and 

pharmacodynamics variability among STSs patients. To date, this disease lacks both predictive and 

prognostic biomarkers, making challenging the assessment of the clinical outcome and highlighting 

the need to improve the knowledge about the factors implicated in such high inter-patient variability 

to treatments. 

 

1.2 Trabectedin in STSs treatment 

STSs are rare group of tumours of mesenchymal origin accounting for about ≈ 70-80% of 

sarcomas and 1% of all malignancies [83]. The World Health Organization (WHO) reported an 

incidence rate of 5 cases per 100,000 people [84] with a higher incidence in men in elderly age 

[84,85]. About 100 different STSs histotypes were recognized with origin from disparate anatomical 

sites, such as smooth muscle (leiomyosarcoma), adipocyte (liposarcoma), fibroblast 

(dermatofibrosarcoma), striated muscle (rhabdomyosarcoma), peripheral nerve tissues (malignant 

peripheral nerve sheath tumour), endothelium (angiosarcoma) and the other unknown origins 

(undifferentiated pleomorphic sarcoma) [84]. Leiomyosarcoma and liposarcoma (L-sarcoma) are 

the most frequent subtypes accounting for about 26.2% and 16.1% respectively [86].  

Conventionally, surgery is the standard treatment for localized STSs tumours, in some cases 

preceded by radiotherapy [87], while chemotherapy is reserved for patients with locally advanced 

or metastatic STSs. The first-line treatment usually includes the anthracycline doxorubicin as single 

agent or in combination with the alkylating agent ifosfamide [88]. Trabectedin is used as second-line 

treatment for metastatic STS patients unsuited for anthracycline chemotherapy. It is a tetrahydro-
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isoquinoline initially isolated from the marine tunicate Ecteinascidia turbinata and currently semi-

synthesised from the secondary metabolite cyanosafracin-B, derived from fermentation media of 

bacteria Pseudomonas fluorescens [89]. Trabectedin has been shown to have higher efficacy in L-

sarcoma [90] and translocation related-STSs [91–93], although, a great response variability still 

exists and prognosis for metastatic patients remains poor [94]. 

 

1.2.1 Pharmacodynamics and pharmacokinetics of trabectedin 

The antitumor activity of trabectedin is explained through a complex mechanism action that 

affects biological processes both in tumour cells and in the tumour microenvironment (TME). Unlike 

other anticancer drugs, trabectedin covalently binds DNA in the minor groove by alkylation of the N2 

guanidine, inducing the bending of the DNA towards the major groove with consequent double-

strand break [95]. A part of the drug molecule protrudes out of the DNA and probably interacts with 

several proteins and transcription factors, triggering a cascade of events that cease the activated 

transcription and poison DNA nucleotide excision repair (NER) mechanisms [96–98]. In particular, 

trabectedin can inhibit the transcription by direct induction of RNA polymerase II degradation 

[97,99] or indirectly by two different mechanisms [100]. The first one is linked to DNA structural 

modification induced by trabectedin itself that hinders the recognition of transcription factors to 

DNA site [101,102]. A representative example regards the myxoid liposarcoma, where trabectedin 

was found to promote differentiation by displacing from targeted promoters, the abnormal 

transcription factor responsible of the tumour pathogenesis [91,101,102]. The second indirect 

mechanism is associated with the formation of a trabectedin-DNA adduct, stabilized by covalent bond 

with one DNA strand and by van der Waals forces and hydrogen bonds with the opposite strand. Such 

stable structure was found to mimic an interstrand crosslink, a type of DNA lesion, which results 

highly effective in blocking transcription [97,103]. Besides these molecular mechanisms, trabectedin 

displays the antitumor activity by affecting key processes in the TME. The latter is a complex system 

of multiple cells such as inflammatory leukocytes, activated fibroblasts, endothelial cells, that are able 

to promote tumour survival and progression [104]. Trabectedin was found to induce apoptosis of 

mononuclear phagocytes (monocytes and macrophages) through activation of caspase 8 by 

membrane signalling TRAIL receptors expressed in these cells [105–107] and in addition, to cause a 

significant decrease of pro-inflammatory mediators secreted by both monocytes/macrophages and 

tumour cells, with consequent reduction of angiogenesis [105–107].  

For the treatment of STSs, trabectedin is administered at the dose of 1.5 mg/m2 body surface 

area as an intravenous infusion over 24 hours every three weeks. PK studies demonstrated large 

values of volume of distribution, that range from about 1000 to 4000 L, reflecting the extensive tissue 

distribution of the drug and high plasma proteins binding (94% to 98%) [108]. The dose-time 

trabectedin PK profile suggests multiexponential elimination kinetics, since plasma levels drop 
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rapidly at the end of the infusion and then slowly decline in the terminal phase with a long terminal 

half-life of about 180 hours [109]. Elimination of trabectedin mainly occurs in the faeces and less 

than 1% in urines, where only a negligible amount of unchanged drug was measured, indicating an 

extensive liver metabolism [110,111]. Many cytochrome (CYP) enzymes metabolize trabectedin, but 

in vitro studies indicated that CYP3A4 is the main responsible of the oxidative metabolism [112,113] 

as further confirmed in patients treated with trabectedin co-administered with rifampin (CYP3A4 

inducer) or ketoconazole (CYP3A4 inhibitor) [114]. The trabectedin plasma clearance is 

approximately 31.5 L/h with a large inter-and intra-variability of 51% and 28%, respectively, and 

neither age nor gender were found associated with such variability [115]. Considerable inter-

patients variability was reported also for the other PK parameters [109,115–117] hampering the 

total control of total drug exposure. Since the pharmacodynamics effect (efficacy and toxicity) of a 

drug depends also on its bioavailability, the inter-individual variability in PK may contribute to the 

differences in the response to trabectedin treatment among patients. However, so far no effective 

biomarkers to assess trabectedin efficacy and the prognosis of STSs patients are available; further 

investigations are strongly necessary to guide physicians in trabectedin therapy management.  

 

1.2.2 Prognostic biomarkers in STSs 

Patients with metastatic STSs experience a poor prognosis with a median survival of 

approximately one year from the first-line therapy. Currently, very few prognostic factors are used 

for STSs such as tumour size, tumour grade, histologic subtype, and age at diagnosis [118,119]. 

However, the prediction of the patients’ outcome remains sub-optimal and only about 50% of people 

survive within 5 years from diagnosis [85,120], underlying the need of more accurate prognostic 

biomarkers. Different research studies have explored blood markers, mapping genome and 

transcriptome to assess genetic and epigenetic variations associated with STSs response to 

treatments [121–125]. For instance, the mutations in tumour suppressor genes PTEN, RB1 and TP53 

were identified in patients in progression disease [126], as well as molecular signatures of microRNA 

were found associated with a more proliferative and invasive tumour [127,128]. A small number of 

studies used metabolomics to search for potential novel prognostic markers for STSs, but they mainly 

involved in vitro investigations [129,130], and only one was a clinical study [131]. The latter 

identified some AAs, γ-aminobutyric acid (GABA) and carnosine, whose serum decrease was found 

correlated with a better response to the chemotherapy treatment [131]. However, none of these 

studies was specifically designed to identify prognostic markers of trabectedin treatment and to date, 

few retrospective studies have been published. Their results highlighted some common clinical data 

such as low performance status (PS), tumour grade and absence of metastasis as predictive of a good 

prognosis, while hyponatremia, anaemia and high blood levels of absolute neutrophil count (ANC) 

have been associated with a worse outcome [132,133]. Another small number of studies have 

focused on the nucleotide excision repair genes to identify predictive factors for trabectedin efficacy 
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[134–136], finding high expression of ERCC/5, and BRCA1 in patients with longer survival. However, 

the prognostic power of these genetic and clinical factors is limited and better markers are needed 

to improve clinical treatment of STSs patients with advanced disease. In order to fill this gap, in this 

study, we attempt to search for predictive markers of trabectedin efficacy as well as of its PK 

variability by metabolomics, aware that the individual metabolome can provide useful insight to 

improve the current knowledge about those factors that contribute to the different clinical outcome 

among STSs patients. 



 

 
 

2. MATERIALS AND METHODS 

2.1 Design of the experiment 

The present monocentric observational study enrolled 40 patients with locally advanced and 

metastatic STSs who were undergoing trabectedin. The first aim of the study was to find a predictive 

model based on pre-dose serum endogenous metabolites able to explain the trabectedin PK 

variability observed in the studied STSs population. For the assessment of PK, a novel analytical LC-

MS/MS method was developed and validated. Blood samples were collected before treatment 

(baseline) for the metabolomics profile measurement, during 24h-continuous intravenous infusion 

and up to 48 h from the starting therapy (0, 2, 4, 8, 24, 25, 28, 32, 48 hours) for PK determination. 

The PK parameters, area Under the Curve (AUC0-48) and maximum concentration (Cmax), were 

considered for the further pharmacometabolomic analysis since AUC represents the total drug 

exposure, while Cmax informs about the dose-adverse effects relationship. The second aim of the 

study was to look for metabolomics signatures associated with trabectedin pharmacodynamics 

evaluated in terms of clinical outcome. Two clinical endpoints were considered as measurement of 

the treatment efficacy: a) clinical benefit, assessed at the third chemotherapy cycle, defined as the 

proportion of subjects with stable disease (SD) or with increase tumour size and progressive disease 

(PD); c) OS calculated from the date of starting trabectedin chemotherapy to death or last follow-up 

(Figure 3). 

 

Figure 3. Schematic representation of the study design. 
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2.3 Patients’ population  

Forty patients with locally advanced and metastatic STSs undergoing trabectedin treatment 

were enrolled between 2016 and 2019 at the Centro di Riferimento Oncologico (CRO) in Aviano. 

Trabectedin was administered by 24h-intravenous infusion at a dose of 1.5 mg/m2 body surface area 

every 21 days for 6 cycles after premedication with dexamethasone 20 mg. to reduce liver and bone 

marrow toxicity. Normal haematological, renal and liver functions, as well as the performance status 

(PS) ≤2, were verified to establish whether patients could receive trabectedin therapy. Participants 

were required to have received previous chemotherapy a minimum of 3 weeks before enrollment in 

the study and had to have measurable disease according to Response Evaluation Criteria in Solid 

Tumours (RECIST). The presence of neuropathy, central nervous system metastases, cardiovascular 

disease or pregnancy were considered as exclusion criteria. At the baseline, clinical data were 

recorded, including age, sex, body mass index (BMI), PS, tumour histotypes and grade, 

haematological parameters as well as toxicity grading classified according to Common Toxicity 

Criteria. 

The investigation was carried out in accordance with the principles of the Declaration of 

Helsinki and approved by the CRO Institutional Ethical Committee (no. 2015.004CE, 09/04/2015, 

NCT04394728). All subjects gave written informed consent. 

 
2.3  Chemicals  

Acetonitrile and methanol (LC-MS grade) were purchased from Carlo Erba Reagents (Milan, Italy). 

Ultrapure water was generated by a Milli-Q Plus system (Millipore, Billerica, MA, USA). Formic acid, 

ammonium formate, ammonium acetate and dimethyl sulfoxide (DMSO) were purchased from 

Sigma-Aldrich (Milan, Italy). Analytical standards of trabectedin and its deuterium-labelled 

derivative d3-trabectedin were provided by PharmaMar (Colmenar Viejo, Madrid, Spain). 

Trabectedin-free human plasma used for calibration curves and QCs preparation was obtained from 

healthy volunteers at CRO, Aviano. The AbsoluteIDQ® Bile Acids kit, consisting of five calibrators, 

three levels of QCs and labelled IS, was acquired from Biocrates Life Sciences (Innsbruck, Austria). 

Analytical reference standards and labelled IS for amino acids quantification were purchased from 

Toronto Research Chemicals (North York, ON, Canada) and Jasem (Istanbul, Turkey).  

2.4 Sample collection 

Time- serial blood sampling for PK analysis, was performed collecting whole blood in 5 ml tubes 

containing EDTA as anticoagulant. Plasma was separated from blood cells by centrifugation at 4 °C 

for 10 min at 3200 rpm (Thermo Scientific Heraeus Megafuge 16R centrifuge). Pre-dose serum 

samples for metabolomics analysis were obtained from whole blood collected in glass tubes (5ml) 

let to clot for 30 minutes at room temperature and then centrifuged for 15 min at 3200 rpm. Both 
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serum and plasma samples were immediately transferred into polypropylene tubes and stored at 

−80 °C until analysis. 

 

2.5 LC-MS/MS Analyses 

The measurement of plasma trabectedin and the metabolomics profile, encompassing amino 

acids (AAs) and derivatives and bile acids (BAs), were carried out by ultra-performance liquid 

chromatography coupled with tandem MS (UPLC-MS/MS). The UPLC system consisted of a 1290 

Infinity II binary pump equipped with an integrated degassing unit, a column thermostat, and a 

refrigerated auto-sampler (Agilent Technologies, Santa Clara, California). The tandem MS was an 

Ultivo triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara, California) with 

orthogonal Jet Stream ESI source. 

 

2.5.1 Trabectedin Pharmacokinetics: method development and validation 

Preparation of calibrators, QC solutions and plasma samples 

Trabectedin and d3-trabectedin stock solutions were prepared in DMSO at a concentration of 

100 µg/mL. Two independent series of working solutions, each for plasma calibrators and QCs, were 

obtained diluting the trabectedin stock solution in acetonitrile–0.1% formic acid in water (70:30, 

v/v) at the nominal concentration of 100, 10 and 1 ng/mL. The IS working solution was diluted till 

100 ng/mL in acetonitrile–0.1 % formic acid in water (70:30, v/v) and stored at −30 °C. Calibrators 

were prepared diluting working solutions in drug-free plasma at eight different concentrations: (A) 

2.5 ng/mL, (B) 1.0 ng/mL, (C) 0.5 ng/mL, (D) 0.25 ng/mL, (E) 0.1 ng/mL, (F) 0.05 ng/mL, (G) 0.025 

ng/mL, and (H) 0.01 ng/mL. Each batch of analysis included also three levels of drug-free plasma QCs 

at high (0.80 ng/mL, QC-H), medium (0.16 ng/mL, QC-M) and low (0.04 ng/mL, QC-L) concentrations, 

a double blank (plasma without IS) and a blank (plasma with IS). 

Pre-analytical sample processing consisted of protein plasma precipitation using as solvent 

acetonitrile containing 1 % formic acid and 0.1 ng/mL d3-trabectedin. Briefly, 200 µL of this solution 

were added to 50 µL of plasma/calibrators/QCs and vigorously vortexed. After centrifugation at 

20,800 g for 10 min 4°C (5430R Eppendorf centrifuge), the supernatant was transferred into UPCL 

glass vials and 3 µL were injected into the UPLC-MS/MS system. 

LC conditions 

Chromatographic separation was performed on a HILIC Acquity BEH Amide 2.1 × 100 mm, 1.7 µm 

column (Waters, Mil-ford, MA, USA) maintained at 25 °C. The mobile phases (MP) consisted of 

acetonitrile–0.1% formic acid (MPB) and water–0.1 % formic acid (MPA) flowed at a rate of 0.2 

mL/min. Separation was carried out using gradient elution program, starting with 1.5 min of isocratic 
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step at 80% of MPB followed by a rapid drop to 50% B at 5 min and another 1 min isocratic step 

before re-equilibrating at initial conditions of 80 % B. 

MS conditions 

The LC system was coupled to Ultivo QQQ equipped with ESI source working in positive polarity. 

Samples were quantified in MRM mode using the following transitions m/z 762→234 and m/z 

765→234 for trabectedin and d3-trabectedin, respectively. The MRM transitions m/z 762→206 and 

m/z 762→557 for trabectedin, and m/z 765→206 and m/z 765→560 for d3-trabectedin were used 

for further qualification (Table 1). The ESI source conditions were optimized to have the best 

ionization and the selected parameters were: gas temperature, 350 °C; gas flow, 10 L/min; nebulizer 

gas, 30 psi; sheath gas temperature, 400 °C; sheath gas flow, 12 L/min; capillary voltage, 4000 V; and 

nozzle voltage, 50 V. Data were processed with Mass Hunter Quantitative Data Analysis software. 

 

Table 1. MRM transitions of trabectedin, d3-trabectedin and optimized parameters of the ESI source 

 Precursor 
(m/z) 

Product 
(m/z) 

CE  
(V) 

Fragmentor 
(V) 

Quantifier MRM         

Trabectedin 762 234 30 150 

d
3
-trabectedin 765 234 30 150 

     

Qualifier MRM 
    

Trabectedin 762 206 30 150 

Trabectedin 762 557 25 150 

d
3
-trabectedin 765 206 30 150 

d
3
-trabectedin 765 560 25 150 

MS Jet Stream ESI Source Parameters 

Gas Temperature 350 °C 

Gas Flow 10 L/min 

Nebulizer gas 30 psi 

Sheath gas temperature 400 °C 

Sheath gas flow 12 L/min 

Capillary voltage 4000 V 

Nozzle voltage 50 V 

MRM, multiple reaction monitoring; CE, collision energy; ESI, electrospray ionization source 
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Method validation 

The method was validated according to the Food and Drug Administration guidelines [137] with 

respect to linearity, low limit of quantification (LLOQ), selectivity, intra- and inter-day accuracy and 

precision, matrix effect and recovery, stability [137]. 

Linearity was evaluated on three independent plasma calibration curves by plotting the relative peak 

area ratio (area trabectedin/ area d3-trabectedin) against the analyte concentration. The calibration 

curves were built by weighted (1/X) least-squares linear regression and the accuracy and precision 

of back-calculated concentrations of calibrators were considered valid when ≤15 %. Accuracy was 

calculated as relative error (RE), that is the absolute error divided to the real nominal concentration 

(eq. 1); while precision was expressed as relative standard deviation (RSD) also known as coefficient 

of variation (CV) (eq.2). 

Eq. 1    𝑅𝐸 (%) =
back calculated concentration−nominal concentration 

nominal concentration
 ∙ 100 

Eq. 2  𝐶𝑉 (%) =
standard deviation

mean
 ∙ 100 

 

LLOQ is the lowest quantifiable concentration of the analyte with a CV (precision) and accuracy (RE) 

≤20 %. LLOQ was determined by comparing the signal from samples with known low concentrations 

of analyte and by selecting that with a signal-to-noise ratio (S/N) of 5.  

Selectivity of the method was assessed to exclude the presence of endogenous compounds in the 

matrix interfering with the trabectedin quantification. It was investigated by analysing six different 

plasma samples added with trabectedin at the LLOQ concentration. The absence of peaks at the RT 

of trabectedin, CV and RE ≤ 20 % were the criteria used to establish method selectivity.  

Intra-day and inter-day accuracy and precision were determined over three different days by 

analysing QCs samples processed in the same way of calibrators and plasma samples. Intra-day 

precision and accuracy were assessed calculating CV and RE for 12 replicates of QCs samples in one 

day, while the inter-day validation was carried out using 6 QCs run over three consecutive days. 

Accuracy and precision were required to be ≤15 %. 

The extraction overall recovery was determined by comparing trabectedin peak areas in triplicates 

between plasma samples spiked with the analyte (Plasmaspiked) and neat solution spiked with the 

analyte (Neatspiked) at QCs concentrations (eq.3). Matrix effect was evaluated by comparing in 

triplicates the peak area of post-preparation plasma samples spiked with trabectedin at three QC 

levels (Plasmapost-spiked)concentrations and d3-trabectedin with those of Neatspiked (eq. 4) [138]. 
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Eq. 3    𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(%) =
Plasma spiked 

Neat spiked
 ∙ 100 

Eq. 4    𝑀𝑎𝑡𝑟𝑖𝑥 𝑒𝑓𝑓𝑒𝑐𝑡 (%) =
Plasma post spiked 

Neat spiked
 ∙ 100 

Stability of trabectedin was assessed using QCs plasma samples in triplicates at different 

experimental conditions: a) 4 hours at 4°C or room temperatures (short-term stability); b) 24 hours 

at 4°C in the autosampler injector to verify plasma extract stability; c) after three freeze-thaw cycles, 

for samples frozen at – 30° C for 24h and kept 1 h at room temperature after thawing (freeze-thaw 

stability); d) after 3 months of storage at -30°C (long-term stability). Stability was verified whether 

RE values of samples at each condition were ≤15 %. 

PK parameters 

PK parameters were calculated using a non-compartmental model with no assumptions about body 

compartments. The Cmax was directly obtained from the plasma concentration-time plot of measured 

data. The AUC up to 48 hours (AUC0-48) was calculated by trapezoidal method, while the normalized 

AUC (AUCnorm) by dividing the AUC0-48 for the administered dose of trabectedin (mg). The area under 

the moment curve (AUMC 0-48) was calculated through the trapezoidal method using the plasma 

concentration multiplied by time. The mean resident time (MRT), the average time the drug stays in 

the body, was calculated as AUC0-48/AUMC 0-48 ratio. 

 

2.5.2 Targeted metabolomics analysis of amino-acids and bile acids 

Metabolomics profile was carried out in baseline serum and targeted to 51 AAs and derivatives 

(Appendix 1). For the samples preparation, 10 μL of serum was mixed with 20 μL of a water solution 

containing 34 2H or 13C- or 15N-labeled amino acids. Serum proteins were then precipitated by adding 

150 μL of acetonitrile–0.1% formic acid (75:25, v/v), followed by vigorous vortex and centrifugation 

at 20,800 g for 15 min at 4 °C. The supernatant was transferred to glass vials and 6 μL were injected 

into the UPLC-MS/MS system. Calibration curves were prepared for each batch of analysis using a 

standard mix of 43 AAs (Jasem, Turkey) integrated with another standard mix solution with creatine, 

urea, serotonin, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). 

These stock solutions were stored at – 30°C and serially diluted with 50% acetonitrile to generate 

working solutions at five different concentrations (Appendix 2). QCs solutions in synthetic serum 

(Jasem, Turkey) were used at two concentration levels for method validation. Chromatographic 

separation was performed on XBridge Amide column 3×100 mm, particle size, 3.5 μM (Waters, 

Milford, MA, USA) operating in HILIC mode. The column was kept at 10°C and equilibrated with 20% 

MPA (20 mM ammonium formate pH 3) and 80% MPB (acetonitrile containing 10% water and 20 

mM ammonium formate pH 3) delivered at a flow rate of 0.2 mL/min. Chromatographic gradient 

changed from 80% B to 65% B in 10 min, then it rapidly dropped at 20% for 1 min washing step and 



                                                                                                                                                 
  

23 
 

at 12.1 min it returned at the initial condition of 80% B for 5 min re-equilibration before the next 

injection. The QQQ was set in MRM mode and the ESI Jet Stream source in positive polarity with the 

following optimized parameters: capillary, 2000 V; nozzle voltage, 0 V; gas temperature, 150 °C; gas 

flow, 10 L/min; nebulizer, 40 psi; sheath gas temperature, 400 °C; and sheath gas flow, 10 L/min. 

Intra- and inter-day accuracy and precision were evaluated by analyzing QCs samples in six replicates 

in one day and three different days, respectively.  

 

Serum was also profiled for 16 BAs, encompassing primary BAs (cholic acid, chenodeoxycholic acid), 

secondary bile acids (deoxycholic, lithocholic, hyodeoxycholic and ursodeoxycholic acids) and 10 

taurine- or glycine-conjugated derivatives (Appendix 3). Briefly, 20 μL of serum were mixed with 5 

μL of labelled IS solution (Biocrates Life Sciences). After adding 40 μL of acetonitrile, tubes were 

vigorously vortexed and centrifuged at 20,800 g for 10 min at 4 °C. The extract was then diluted with 

1.5 volume of ultrapure water and 10 μL were injected into the LC-MS/MS system. Five-points 

calibration curves were built using the standard mixture solution (Biocrates Life Sciences) and 

analytical performance was checked by running three QCs levels in each batch of analysis. 

Chromatography was performed in RP mode using a C18 column (Biocrates Life Sciences) kept at 50 

°C and equilibrated with 35% MPB (10 mM ammonium acetate 0.02% formic acid in 65% acetonitrile 

and 35% methanol) and 65% MPA (10 mM ammonium acetate 0.02% formic acid in water). 

Chromatographic separation was performed according to manufacturer’s instruction by the 

following gradient: (a) 35% to 40% B in 0.7 min; (b) 40% to 45% in 2.3 min; (c) 45% to 55% B in 0.2 

min; (d) 55% to 65% B in 2.3 min; and (e) 65% to 100% B in 1 min. A 2 min washing step with 100% 

B and 3 min of equilibration to the initial condition (35% B) preceded the next sample injection. The 

MS parameters were optimized in order to have the highest signal for each MRM transition and for 

ESI source parameters: polarity, negative; capillary, 3000 V; nozzle voltage, 0 V; gas temperature, 

200 °C; gas flow, 12 L/min; nebulizer, 40 psi; sheath gas temperature, 200 °C; and sheath gas flow, 

10 L/min. Raw data were analysed using MassHunter Quantitative Analysis software (Agilent). Intra-

assay and inter-assay variability for each bile acid was accepted whether <15%. 

 

2.6 Statistical analyses 

The statistical power of this pivotal clinical study was investigated to assess the proper number 

of participants required to avoid type I and type II errors. The first refers to the probability of 

rejecting the null hypothesis when it is true, namely declaring that there are differences between 

groups when there are not (false positive). The type error II instead means to accept the null 

hypothesis when it is false, namely conclude that groups are not different when they truly are (false 

negative). The probability of having a type error I or II was quantified as alpha (α) and beta (β) 

respectively, while the likelihood of avoiding these errors as 1-β that is called statistical power [139]. 
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The optimal sample size was calculated setting the power study at 0.8 (80%) with β at 0.2 (20%) in 

order to have the 80% of probability to avoid type error II. The threshold of the statistical significance 

was established as α = 0.05 (5%), meaning that there is a 5% risk to have type error I and that the 

found differences are due to chance. 

Quantitative metabolomics data were pre-processed by log transformation and unit variance scaling 

before statistical analyses. Correlations between PK parameters and metabolites were assessed by 

double stage multivariate PLS analysis, selecting in each step metabolites with variable importance 

in projection (VIP)>1. PLS is a supervised multivariate regression that finds a linear relationship 

between two groups of variables, the predictors (X, metabolites) and the Y-dependent variable 

(AUC).  The PLS was represented projecting on low dimensional hyper planes, the X-score vectors 

(ta) and Y-score vectors (ua), known as latent variables (LVs) that indicate a summary of matrix X and 

Y data, respectively. The PLS loading plot was built to highlight variables that most contributed to 

the regression model, plotting the loading coefficients for the X variables (w) and Y variable (c) as 

w*c for each LV. The validity of the model was tested by K-fold cross-validation, whereby the dataset 

is split into 7 subsets and each one was in turn left out from the model and then predicted back by 

using the model built with the remaining sixth of the dataset. This procedure was repeated until all 

subsets have been kept out at least once in order to calculate the Q2 and R2.  The Q2 is an indicator of 

the predictive ability of the model and was calculated as: 

𝑄2 =
1 − PRESS

𝑇𝑆𝑆
 

where PRESS is the sum of the squared differences between observed and predicted Y values, while 

SS is the total sum of the square. Good predictive ability was considered for the model with Q2>0.4. 

R2 measures the goodness of fit, which indicates how much the model explains the variance. It was 

calculated as: 

𝑅2 =
1 − RSS

𝑇𝑆𝑆
 

where RSS is the residual sum of the square of the data. The best model has R2 =1 while low value 

indicates a large amount of noise or irrelevant information in the data [43].  

In addition, permutation test was performed to assess the degree of overfitting of the model. The Y 

variable AUC was randomly permutated generating corresponding models, whose Q2  and R2 were 

compared with the original values. The test was considered passed when Y-axis intercepts were R2 < 

0.3 and Q2 < 0.05. 

Multiple regression analysis was applied after double stage PLS to further refine the model. 

Backward method was used to reduce the number of metabolites, first entering all variables with p< 

0.05 and then removing the not significant with p> 0.1. Multicollinearity of highly correlated 

variables was checked by evaluation of Variance Inflation Factor (VIF < 2).  
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Multivariate supervised PLS-DA was used to find differences in baseline metabolomics profile 

between PD and SD patients as well as to disclose association with the toxicological response to 

trabectedin treatment. Models were validated by 7-fold cross-validation and permutation test. VIP 

and Student’s t-test were used to identify significant different serum metabolites levels between 

groups. For data with no normal distribution, the non-parametric test Mann-Whitney U was carried 

out. Correlations between categorical variables were evaluated by Fisher’s exact test, while Pearson 

correlation was used for continuous variables. P-values were adjusted (q) by multiple hypothesis 

testing based on false discovery rate (FDR). Statistical significance was accepted for q < 0.05 unless 

otherwise specified. Receiver operating characteristic (ROC) analyses were applied to evaluate the 

ability of selected metabolites to discriminate the groups of interest. The area under the ROC curve 

(AUROC), used as indicator of the diagnostic power, was obtained from the plot sensitivity (true 

positive rate) versus 100-specificity (false positive rate).  

The OS analysis was performed in a subset of patients receiving trabectedin as second and third line 

(n = 24) in order to consider a homogeneous time interval in the samples group. The risk predictive 

OS model was obtained by application of Cox proportional hazard regression. It is a commonly used 

multivariate regression analysis for modelling survival data that allows the simultaneous assessment 

of the effect of many factors on survival [140]. Univariate Cox analysis was first used to select 

metabolites and clinical data significantly correlated with the OS (p < 0.01). Multivariate Cox 

regression was then applied to further screen important variables by backward method. The Cox 

model was expressed by hazard function as follows:  

ℎ(𝑡) = ℎ0(𝑡0) × exp(𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ 𝑏𝑛𝑋𝑛) 

where h(t)  is the hazard function, h0(t0) is the baseline hazard (the hazard value for an individual 

when the risk variables are equal to 0), bn are the regression coefficients measuring the impact of the 

variable in the model and exp(bn) is the relative hazard risk. Value of exp(bn) greater than 1 belongs 

to covariates positively associated with the risk of death, conversely, value < 1 indicates inverse 

correlation. Harrell's concordance index (C-index) was calculated to evaluate the goodness of fit of 

the model with a value close to 1 indicating a good prediction ability for the survival event. The Cox 

model generated risk scores for each patient that were used to classify them into high-risk, falling 

into the fourth quartile, and low- medium-risk group including the first three quartiles. The Cox 

regression model is based on the proportional hazard assumption that the hazard function remains 

constant over time [141]. Schoenfeld residuals were analysed, for the selected variables, to test such 

assumption along with the Kaplan Meyer survival analysis between high-risk and low-moderate risk 

patients’ groups. The univariate Kaplan–Meier analysis was also used to identify correlations 

between OS and clinical data including tumour type, PS, tumour grade, absolute ANC, haemoglobin, 

albumin and lactate dehydrogenase. The statistical significance of the differences between Kaplan-

Meier curves was evaluated by  
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log-rank test. Martingale residuals were calculated from the Cox regression model for the variable 

with q < 0.05 to assess the significance of the correlation with the OS and to establish a possible cut-

off for short and long survivors. Statistical analyses were performed using R version 4.0, SIMCA 

Umetrics version 14.0, MedCalc v. 19.2.1, GraphPad Prism 7, and MetaboAnalyst 4.0 tools [142]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 

3. RESULTS 

 
3.1 Patient population 

This monocentric study enrolled 40 metastatic STSs patients (45% females and 55% males) 

receiving trabectedin treatment.  Patients had a median age of 66 years with equal percentage of 

subjects under and above 65 years (Table 2). Leiomyosarcoma and liposarcoma (L-sarcoma) were 

the most prevalent histological subtypes accounting for about 30% and 12.5%, respectively. Most of 

the tumours were poorly differentiated with high-grade G3, and only 25% were characterized by 

modest differentiation (G2). The 52.5% of patients showed good general wellbeing with a PS of 0, 

while the remaining 47.5% had a PS between 1 and 2. Patients received trabectedin for a median of 

three cycles (range, 1-48) mainly as second-third line (60%), preceded by other chemotherapy 

treatments based on anthracyclines or gemcitabine. The trabectedin therapy provoked modest 

haematological toxicities (G0-2), such as anaemia, leukopenia, neutropenia, in 60% of patients and 

more severe toxic effects (G3-4) in the remaining 40%. Total haematological and extra-

haematological toxicities (nausea, asthenia, alopecia, mucositis) of G0-2 and G3-4 grade occurred in 

the 52.5% and 47.5% of patients, respectively. Because of severe adverse effects, trabectedin dose 

was reduced by 75% during cycles in 16 patients. After three cycles of treatment, the status of the 

disease was re-evaluated by positron emission tomography (PET): 20 patients showed progressive 

disease (PD) with an increase of tumour size and/or metastasis spread, 16 showed neither an 

increase nor a decrease (SD), while 4 were not evaluable because of early death. The median OS was 

13 months (range, 0.8-47 months) with 20 patients already died at the data analysis and 4 still alive.  
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Table 2. Demographic and clinical characteristics of metastatic soft tissue sarcoma patients. 

Characteristics Value 

Sex, n (%)  
Female 18 (45.0) 

Male 22 (55.0) 

Age (years), median, range  66 (37–90) 

Age, n (%)  
<65 years 18 (45.0) 
≥65 years 22 (55.0) 

BMI (kg/m2), median (range) 27.0 (17.5–41.8) 

Tumor subtype, n (%)  

L-sarcomasa 17 (42.5) 
Other sarcomasb 23 (57.5) 

Tumour grade, n (%)  

G2 10 (25.0) 
G3 30 (75.0) 

Performance status (ECOG score), n (%)  

0 21 (52.5) 
1-2 19 (47.5) 

Trabectedin therapy, n (%) 
1st line 

 
16 (40) 

2nd line 18 (45) 

3rd line 6 (15) 

Hematological toxicity grade, n (%) 
G0-2 
G3-4 

24 (60.0) 
16 (40.0) 

Hematological and extra- toxicity grade, n (%) 
G0-2 
G3-4 

21 (52.5) 
19 (47.5) 

Disease status 3rd cycle, n (%) 
PD 
SD 
NE 

 
20 (50%) 
16 (40%) 

4 (10) 

Overall survival, median (months)c 13 

BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; PD, progressive disease; SD, stable disease; NV, 

not evaluable. a Leiomyosarcomas (n = 12) and liposarcoma (n = 5). b Other sarcomas include: malignant peripheral 

nerve sheath tumor (n = 3), fibrosarcoma (n = 4), undifferentiated pleomorphic sarcoma (n = 4), chondrosarcoma (n 

= 2), synovial sarcoma (n = 2), not otherwise specified sarcoma (n = 4), endometrial stromal sarcoma (n = 2), and 

desmoplastic small-round-cell tumor (n = 1), Malignant fibro histiocytoma (n = 1). c in a subset of 24 patients. 

 

 
3.2 Trabectedin PK analysis 

3.2.1 HILIC-MS/MS method development 

The full scan of trabectedin and trabectedin-d3 showed more intense signals when measured in 

ESI positive polarity, due to the presence in the chemical structure (Figure 4) of several hydroxylic 

and aminic groups able to accept a proton in presence of formic acid in the MP [143]. 
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Figure 4. Chemical structures of trabectedin and the deuterated IS d3-trabectedin. 

 

The scan spectra of both trabectedin and d3-labelled IS showed two main intense peak ions 

corresponding to the protonated drug [M+H]+ at m/z 762 (trabectedin) and m/z 765 (d3-

trabectedin), and to the molecules after water loss [M–H2O+H]+ at m/z 744 and m/z 747 

respectively. The less intense peaks were attributed to the sodium adducts [M + Na]+  at m/z 784 and 

m/z 787 for trabectedin and d3-trabectedin, respectively. A very low peak corresponding to 

potassium adduct was observed at m/z 800 for trabectedin (Figure 5 a, b). 
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Figure 5. ESI-positive MS scan spectra of trabectedin (a) and d3-trabectedin (b). 

 

The precursor ions [M+H]+  were filtered in the first quadrupole and sent into the collision cell where 

product ions were generated by fragmentation at the optimal selected collision energy (CE) and 

fragmentor voltage conditions. The highest signals in the product ion scan spectra were observed at 

m/z 234 for both trabectedin and IS (Figure 6 a,b) and were chosen for the quantification. The lower 

peaks at m/z 206, 557 (for trabectedin) and 206, 560 (for d3-trabectedin) were used for qualification. 

The hypothetic chemical structures of these ion fragments were shown in Figure 6a. 
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Figure 6. Product ion scan spectra of trabectedin (a) and d3-trabectedin (b) with proposed fragmentation pattern. 

 

After fragmentation, the selected precursor and production ions were monitored in the third 

quadrupole in MRM mode as reported in Table 1. The elution of trabectedin and IS from the Amide 

HILIC column occurred at 2.8 min with no interfering peaks deriving from the human plasma matrix 

(Figure 7a). The MRM chromatograms of the extracted human plasma spiked with trabectedin at the 

LLOQ (0.01 ng/mL) and that with d3-trabectedin (0.1 ng/mL) showed an intense signal with a S/N of 

about 5 and 58, respectively (Figure 7 b,c). 



 

32 
 

 

Figure 7. MRM chromatograms of human blank plasma sample (a); human blank plasma sample spiked with trabectedin 

at LLOQ (0.01 ng/mL) (b); human blank plasma sample added with IS (0.1 ng/mL) (c). 

 

3.2.2 Method validation 

Calibration curves, evaluated in three independent days in the range of 0.01-2.5 ng/mL, showed 

good linearity with a mean R2 = 0.9939 ± 0.003. The precision and accuracy over the 3 days were 

within the 15% of error, indeed the RE ranged from -13.31 % to 10.68 %, while the CV ranged from 

0.04% to 13.83 %.  

The LLOQ was 0.01 ng/mL since up to such concentration both precision and accuracy resulted 

≤ 20 %. In particular, the CV ranged between 9.30% and 13.83%, while RE from -7.16% to 7.80%.  

The selectivity of the method was demonstrated using six different human plasma samples 

spiked with trabectedin at the LLOQ and as many plasma samples (double blank) and no endogenous 
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molecules were found to co-elute with the drug and interfere with its detection. The CV in the analysis 

was 7.84% and the RE between -10.59 % and 6.02 %. 

Intra-day accuracy and precision resulted both < 15% at all QC levels (n=12), ranging from               

-8.52% to 1.19% and from 3.95% to 12.35%, respectively. The inter-day validation over three 

different days showed as well good RE (from -6.78% to -1.92%) and CV (from 6.57 % to 10.74 %) 

(Table 3). 

Table 3. Intra‐ and inter-day validation for trabectedin quantification in plasma. 

  

Intra-day   Inter-day 

Day 1 
(n=12) 

Day 2 
(n=6) 

Day 3 
(n=6) 

Days 1-3 
(n=24) 

Nominal concentration Back-calculated concentrations 

LLOQ, 0.01 ng/mL         

RSD (%) 13.83 9.30 11.22 12.49 

RE (%) -0.20 -7.16 7.80 0.72 

QC-L, 0.04 ng/mL     

RSD (%) 12.35 3.95 11.66 10.74 

RE (%) -3.21 -6.24 1.19 -2.87 

QC-M, 0.16 ng/mL     

RSD (%) 6.26 7.97 6.76 6.57 

RE (%) -1.50 -1.37 -3.32 -1.92 

QC-H, 0.80 ng/mL     

RSD (%) 4.75 6.30 10.61 7.00 

RE (%) -7.75 -3.10 -8.52 -6.78 

RSD, relative standard deviation; RE, relative error  

 

The overall recovery of the extraction sample processing resulted higher when acetonitrile 

containing 1% of formic acid was used and it reached a mean of 54.4 ± 3.8%. The matrix effect was 

found to suppress the trabectedin signal of 24.54 ± 5.1%, however, such effect was controlled by 

adding IS during sample preparation. 

The stability of QCs was successfully evaluated at different experimental conditions (Table 4). 

The short-term stability for 4h at 4°C and room temperature had good RE, indicating good stability 

of the drug at the condition resembling those of the sample preparation. Trabectedin resulted stable 

also in the extract kept at 4°C in the autosampler for 24h since RE ≤ 8.43% as well as after three 

freeze-thaw cycles (RE≤ 8.63%). Finally, the evaluation of the long-term storage stability at -30°C for 

three months showed a slight decrease of the trabectedin concentration up to -10.77%.  
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Table 4.  Stability of trabectedin  at different experimental conditions. 

Experimental conditions 
Nominal 

concentration 
(ng/mL) 

RE (%) 

Short-term stability: 4°C, 4 h 
 

0.04 10.72 
0.16 -0.44 
0.80 -4.47 

Short-term stability: room temperature, 4 
h 

0.04 10.39 

 
0.16 1.59 

 
0.80 9.60 

Plasma extract stability: 4 °C, 24 h 0.04 2.16 
  0.16 8.43 
  0.80 -0.68 

Freeze-thaw stability, 3 cycles 0.04 8.63 
 0.16 4.83 

 0.80 -2.51 

Long-term stability: -30 °C, 3 months 0.04 -3.26 
  0.16 -7.69 
  0.80 -10.77 

RE, relative error  

3.2.3 Trabectedin PK profiles of patients 

The plasma trabectedin concentration was measured in 40 STS patients receiving a dose of 1.5 

mg/m2 body surface, during the 24h intravenous infusion and for the following 24 h from the end of 

the administration. The drug showed multi-phase kinetics (Figure 8), initially characterized by a 

rapid and linear increase as a first-order PK, and then by a non-linear trend reaching the steady-state 

at about 8 h. The drug elimination showed as well as bi-exponential kinetics, with a rapid decline 

immediately after the end of the infusion, and then a slower elimination up to 48 h.  

 

Figure 8. Plasma concentration-versus-time profile of trabectedin in 40 STSs patients undergoing  1.5 mg/m2 dose as 24 h 

intravenous infusion. 
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PK analyses (Table 5) revealed a mean experimental AUC 0-48 of 33.2 ± 11.2  ng·h·mL-1 with a wide 

range from 12.7 to 63.4 and a mean Cmax of 1.2 ng/mL (range, 0.4–2.5). The mean AUMC 0-48  and MRT 

were 596.8 ± 202.2 ng·h2/mL and 18.0 ± h, respectively.  The drug exposure, expressed as  AUC norm, 

obtained from the AUC0-48/dose ratio, ranged from 6.33 to 31.70 with a mean of 13.6 ± 5.3 ng·h·mL-1 

·mg-1. 

 
Table 5.  PK parameters of trabectedin in 40 STSs patients. 

PK parameters Mean SD Range 95% CI 

AUC 0-48 (ng·h·mL-1) 33.2 11.2 12.7-63.4 29.6 to 36.7 

AUMC 0-48 (ng·h2·mL-1) 596.8 202.2 214.2-1105.1 53 to 660 

MRT (h) 18.0 1.0 13.9-20.4 17.7 to 18.3 

Cmax (ng·mL-1) 1.2 0.5 0.4-2.5 1.1 to 1.4 

AUC norm (ng·h·mL-1·mg-1) 13.6 5.31 6.33-31.70 11.9 to 15.3 

Cmax-norm (ng·mL-1·mg-1) 0.50 0.21 0.22-1.24 0.43 to 0.57 

SD, standard deviation; CI, confidence interval; AUC, area under the curve; AUMC, area under the first  
Moment curve; MRT, mean residence time; Cmax; maximum concentration 
 
 

3.4 Metabolomics analyses of AAs and BAs 

The metabolomics analysis of AAs and derivatives included 51 compounds of which 12 were 

excluded not being detected in serum samples or being detected but not properly quantified 

(Appendix 1). The accuracy of the analytical AAs measurements in plasma samples, performed in two 

different batches, was assessed by the inclusion of QCs. The PLS-DA of all patients’ samples, QC1 and 

QC2 from both batches showed a clear separation of the three groups indicating the good 

performance of the analytical method (Figure 9a). Moreover, the QCs of the two different batches 

did not show significant differences allowing to rely on quantitative data (Figure 9b). Among the 16 

BAs, only two were excluded from the analysis being not quantifiable (Appendix 3). The single batch 

BAs analysis, represented in the PLS-DA, did not show any analytical bias since patients and QCs were 

perfectly separated (Figure 9c) and the QCs variations were within the indicated limits (Figure 9d). 
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Figure 9. PLS-DA of plasma samples and QCs for the AAs (a) and BAs (c) analyses. Analysis of variance of QC samples by 

PLS-DA score plot with the first LV, in AAs (b) and BAs (d) LC-MS/MS analyses. The dashed yellow and red lines indicate 

the min and max tolerable limits of 2-fold and 3-fold standard deviations, respectively.  

 

 

3.5 Power analysis 

The power analysis indicated that the minimum sample size required to have a statistical power 

of 80% was 40. This result was obtained hypothesizing a number of 5 latent variables, a small effect 

size of sES=0.3, and a type error I of 5%. Moreover, since model performance, in any case, may be 

overestimated, internal validations were performed for the further analyses of PK or PD 

metabolomics associations.  

 
3.6 Correlations between PK and baseline metabolic profiles 

A predictive model for the PK of trabectedin was developed by double stage PLS regression 

analysis using the AUCnorm as representative of the total drug exposure. The initial PLS score plot, 

including AAs and BAs, showed a good linear relationship between the baseline metabolomics profile 

of patients and the AUCnorm with a R2 =0.59 (Figure 10a). The PLS loading plot depicted the most 
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important metabolites correlated with the AUCnorm (Figure 10b). Metabolites in the top right 

quadrant with high positive coefficients showed direct relation with the AUCnorm, conversely, those 

in the bottom left with negative coefficients showed an inverse correlation (Figure 10c).  

 

Figure 10. PLS regression analysis for AUCnorm prediction by serum baseline metabolites. Each dot represents a patient 

plotted as score from the baseline serum metabolites levels (X) versus the AUC (Y). The colour scale from blue to red 

indicates increasing values of AUC (a). PLS loading plot where each point is a metabolite plotted as loading coefficient from 

PLS LV1 (w*c1) vs the coefficient from LV2 (w*c2) (b). Metabolites mostly correlated with AUC sorted by decreasing 

loading coefficients (c). 

 
Twenty-four metabolites contributed more to model prediction according to their VIP>1 and were 

included in the second PLS regression model (Figure 11a). This PLS model showed good 

performance when 7-fold validation was assessed with high goodness of fit (R2 = 0.70) and 

predictability (Q2 = 0.42). The result of the validation by random permutation revealed no risk of 

overfitting (Figure 11b) with all R2 and Q2 from the permutated models smaller than the original 

values (R2 intercept <0.3 and Q2 intercept<0.05). The predicted AUCnorm values from the PLS model 

plotted against the real AUCnorm resulted to have a good correlation as indicated by the regression 

coefficient line of 0.70 (Figure 11c). 
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Figure 11. Variable importance projection (VIP) scores ranked by increasing values from the first PLS model based on pre-

dose serum metabolites (a); internal validation by permutation showing goodness of fit (R2, green) and predictability 

parameters (Q2, blue) from the permuted models (intercepts: R2 = 0.275, Q2 = -0.276) (b); Predicted vs. observed AUCnorm 

plot calculated by the second PLS model (c).  

 

The model was further refined to improve the clinical feasibility by backward multiple regression 

analysis that identified five variables as significantly associated with the AUCnorm: the AAs derivatives 

citrulline, cystathionine and the phenylalanine-tyrosine ratio (Phe/Tyr), the conjugated primary bile 

acid TCA and haemoglobin (Hb). These compounds showed to have an independent impact on 

AUCnorm prediction without risk of multicollinearity (VIF < 2) (Table 6). 
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Table 6. Multiple regression analysis of significant predictive variables. 

Independent variables Coefficient p-value rpartial VIF 

Cystathionine 2.69 0.036 0.35 1.44 

Hb -0.82 0.037 -0.35 1.56 

TCA 15.70 0.001 0.53 1.62 

Citrulline -0.15 0.011 -0.42 1.59 

Phe/Tyr 5.16 0.013 0.42 1.07 

(Constant) 20.07       
VIF, Variance Inflation Factor; rpartial, partial correlation coefficient. 

 
The final predictive model was represented by the following equation: 
 
 
  

 

The predicted vs. observed AUC plot showed a good prediction ability of the model (R2 = 0.73; R2-adj 

= 0.69) with a bias and precision of 4.6% and 17.4%, respectively (Figure 12). For citrulline and Hb 

with negative coefficients, as their serum concentrations decrease, AUC is predicted to increase, 

while for variables with positive coefficients (TCA, cystathionine, Phe/Tyr), as their value increase, 

AUC is predicted to increase too.  

 

 
Figure 12. Predicted vs. observed AUCnorm plot calculated by multiple regression analysis without. The baseline showed a 

coefficient of regression of 0.703 and a bias of 17.4%. 

 
 
Differences in the trabectedin AUCnorm were also investigated as function of the baseline patients’ 

clinical and demographic characteristics (Figure 13). Patients with L-sarcomas showed significantly 

lower AUCnorm compared to those having other sarcomas (p = 0.008, t-test) as well as tumour grade 

G2 patients compared to G3 (p = 0.001) had 1.4-fold higher AUCnorm. PS was also found associated 

𝐴𝑈𝐶𝑛𝑜𝑟𝑚 = −0.15 [𝐶𝑖𝑡𝑟𝑢𝑙𝑙𝑖𝑛𝑒] − 0.82 [𝐻𝑏] + 15.70 [𝑇𝐶𝐴] + 2.69 [𝐶𝑦𝑠𝑡𝑎𝑡ℎ𝑖𝑜𝑛𝑖𝑛𝑒]

+ 5.16 [𝑃ℎ𝑒/𝑇𝑦𝑟] + 20.07 
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with PK, indeed wealthy patients with PS=0 showed significant lower AUCnorm than individuals with 

PS =1 (p = 0.042). No other correlations were found between PK and gender or age.  

 
Figure 13. Associations between trabectedin normalized AUC and clinical characteristics such as histotypes, tumour 

grading, PS, sex and age. AUC data are expressed as mean and SD. Abbreviations: L, leiomyosarcoma and liposarcoma; O, 

other sarcomas; PS, performance status; F, female; M, male; G2, G3, tumour grade. 

 

 

3.7 Metabolomics signatures associated with treatment response 

Clinical benefit was evaluated on the basis of changes in tumours sizes after three cycles of 

treatment and patients were accordingly classified as PD (n=20) and SD (n=16). The supervised PLS-

DA model clearly distinguished the pre-dose serum metabolomics and clinical data profiles of the 

two investigated groups (Figure 14a) with acceptable model performance (R2 = 0.57, Q2 = 0.33) and 

no risk of overfitting (Figure 14b). The variables that mainly contributed to such group classification 

with a VIP>1 included 15 AAs and derivatives, 3 BAs and 6 clinical parameters (Figure 14c). 
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Figure 14. Partial least squares discriminant analysis (PLS-DA) score plot discriminated serum clinical-metabolomics 

profiles of PD (n = 20, red) and SD patients (n = 16, green) (a). Permutation test showed R2 (green) and Q2 (blue) validation 

parameters significantly different between permuted and original models (b). Variable importance in projection (VIP) of 

PLS-DA model ranked by increasing values (c). 

 

When t-test was applied only five serum variables resulted to be statistically different, in particular, 

Hb was significantly lower in PD patients compared to the SD group (p = 9·10-4), while serum 

cystathionine (p = 0.002), agmatine (p = 0.03), and CA (p = 0.02) were higher in PD than SD patients. 

The mean serum concentrations of these compounds together with the relative fold change (mean 

PD/SD ratio) were depicted in Figure 15. Interestingly, the PD group showed also a normalized 

trabectedin AUC 1.5-fold higher than the counterpart SD group (p = 5·10-5). Despite the increased 

drug exposure, the toxicity rate did not result statistically different between groups with G0-2 
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toxicity occurring in 12 PD and 9 SD patients, while G3-4 toxicity in 8 PD and 9 SD patients (p =0.503, 

Fisher exact test). Moreover, the high G3 tumour grade and the histotype different from L-sarcomas 

were also found associated with a bad prognosis (Fisher test, p =0.0017 and p =0.041, respectively). 

No significant differences were instead present between PD and SD patients in terms of PS, age or 

gender.  

 

 

 
Figure 15. Serum concentrations of variables significantly different between PD (red) and SD patients (green) expressed 

as mean± SE (a) and corresponding fold change (FC) expressed as mean concentration ratio between PD and SD (b). 

 

The ROC analysis of each singles variable showed for Hb and cystathionine the highest diagnostic 

capability in distinguishing PD and SD patients with an AUROC of 0.78 (55% sensitivity, 100% 

specificity) for Hb and of 0.80 (85% sensitivity, 62.5% specificity) for cystathionine (Figure 16a,b). 

The combination of these variables in a logistic regression model resulted in a better discriminatory 

power with an AUROC=0.87, a sensitivity of 90%, and a specificity of 75% (Figure 16c). Moreover, 

the integration of the model with the PK parameter Cmax norm further improved the ability of the model 

in distinguishing SD and PD patients (AUROC=0.92, sensitivity 90%, specificity 81.3%) (Figure 16d). 
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Figure 16. Receiving operator characteristic (ROC) curve for single Hb (a), cystathionine (b) with an AUROC of 0.78 and 

0.8, respectively. The combination of these molecules (c) and the integration also with Cmax (d) had higher AUROC of 0.87 

(sensitivity, 90%; specificity 75%) and 0.95 (sensitivity, 90%; specificity 81.3%), respectively. 

 

Differences in the baseline metabolomics profiles were investigated also as function of the 

toxicological response. The PLS-DA analysis showed a modest separation between patients having 

G0-2 (n= 21) and G3-4 (n= 19) total toxicity (Figure 17), however, the model did not pass the internal 

validation test (R2 = 0.47, Q2 = −0.21), not allowing the identification of specific metabolomics 

signatures of trabectedin toxicological response. The potential association of the toxicity with the PK 

of the drug was also investigated, however, no differences were found in AUCnorm values between G0-

2 and G3-4 groups (p = 0.550). 
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Figure 17. PLS-DA score plot based on serum clinical-metabolomics profiles of patients with G0-2  (n = 21, green) and G3-

4  toxicity (n = 19, blue). 

 

3.8 Overall survival prediction by metabolomics 

Selection of potential survival predictors  

The Kaplan-Meier curve showed a very low survival for metastatic STSs patients, characterized 

by a median OS of 13.0 months (95% CI, 5.6–23.5) with only 20% of the population surviving more 

than 1 year (Figure 18).  

 

 
Figure 18. Kaplan–Meier survival analysis in all metastatic STSs patients (n= 24). The censored data included 4 patients, 

while the other 20 were not censored. 

 
 
Associations between survival and baseline clinical data analyses indicated that patients with L-

sarcoma had a significant longer OS (median, 23.5 months; 95% CI, 4.1–33.2) than patients with other 

histological types (11.3 months; 95 % CI, 1.7–25.8; p = 0.046 log-rank test) (Figure 19a). Long OS 

characterized also patients with PS of 0 (23.5 months; 95% CI, 5.6–25.8) compared to those with PS= 

1-2 (7.6 months; 95% CI, 2.1–33.2; p = 0.026) (Figure 19b). Conversely, having Hb <12 g/dL was 

found to be significantly associated with a shorter OS (4.1 months; 95% CI, 0.8–24.2 vs. 21.8 months; 

95% CI, 7.6–33.2; p = 0.001) in respect of Hb ≥12 g/dL (Figure 19f). No other associations were 



 

45 
 

found with tumour grade, age, blood ANC, sodium, albumin, lactate dehydrogenase (Figure 19c-e, g, 

h). 

 

 
Figure 19. Kaplan-Meier curves of OS in patients stratified for: L-sarcomas (n=9, blue) vs. other histotypes (n=15) (a); PS 

score of 0 (n=13, blue) vs. 1 (n=11) (b); tumor grade G3 (n=16, blue) vs. G2 (n=8) (c); age<65 (n=15, blue) vs. ≥65 years 

(n=9)(d); absolute neutrophil count <7.5 ∙109 cells/L (n=21, blue) vs. ≥7.5 ∙109/L (n=3) (e); hemoglobin <12 g/dL (n=9, 

blue) vs. ≥12 g/dL (n=15) (f); albumin <3.5 g/dL (n=7, blue) vs. ≥3.5 g/dL (n=17) (g); lactate dehydrogenase <320 U/L 

(n=12, blue) vs. ≥320 U/L (n=12) (h).  
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Correlations between OS and baseline metabolomics data were also investigated by univariate Cox 

proportional hazards regression (Table 7). Four AAs were selected as best predictor variables, 

however, only citrulline and histidine resulted still significantly correlated after FDR correction 

(FDR<0.05).  

Table 7. Univariate Cox regression analysis of the baseline metabolites. 

Covariate p FDR* Exp(b) 95% CI 

Citrulline 0.001 0.018 0.907 0.86–0.96 

Histidine 0.006 0.035 0.942 0.90–0.98 

Cystathionine 0.011 0.053 11.343 1.75–73.43 

TCA 0.023 0.070 41.431 1.67–1.03·103 

* p-value corrected by Benjamini and Hochberg false discovery rate (FDR) procedure.  
Exp(b), relative hazard risk; CI, confidence interval. 

 

The assessment of their predictive ability for OS was further investigated by plotting martingale 

residuals from the Cox model vs. citrulline (Figure 20a) and histidine (Figure 20b) serum levels. 

Martingale residuals for both AAs were closer to the fitted line indicating a good potential predictivity 

for OS. In the plot, each point corresponded to patients’ residuals, those below zero had a low risk to 

die, while those above an increased risk. Moreover, the inflexion points of the curves indicated the 

cut-off values for distinguishing long and short survival patients, in particular, it was about 30 µM for 

citrulline and 75 µM for histidine.  

 

Figure 20. Martingale residuals from null Cox model vs. citrulline (a) and histidine (b) serum concentrations plotted with 

locally weighted scatterplot smoothing (LOWESS) fitting line. 

 

The baseline serum levels of citrulline but not histidine were found significantly associated with the 

tumour grade. Specifically, patients with G3 tumours showed lower citrulline than patients with G2 

tumour grade (p = 0.03). with a mean value of 30.7 ± 10.7 and 39.8 ± 9.6 µM, respectively.   
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Risk prediction model 

Metabolites and clinical data (tumour grade, histotypes PS and blood test parameters) selected 

by univariate Cox regression were subjected to further screening by multivariate Cox proportional 

hazard regression analysis. Three covariates were identified as significantly associated with OS 

(Table 8) and thus used to build the risk prediction model equated as follows: 

 

𝑙𝑛 (
𝐻(𝑡)

𝐻0 (𝑡)
) = −0.084 · [Citrulline] − 0.388 · [Hb]+1.117 · [PS] 

 

where H(t)/H0(t) and its natural log represent the hazard ratio and the risk score, respectively. The 

sign of coefficients indicates the direct or inverse association with the death risk. Therefore, for 

citrulline and Hb the lowest is the concentration the highest the risk to die, conversely, for PS with a 

positive coefficient, as its value increases the hazard risk decreases and consequently OS is predicted 

to be longer. 

 

Table 8. Multivariate Cox regression of significant prognostic factors. 

Covariate p b Exp(b) 95% CI of Exp(b) 

Citrulline 0.010 - 0.084 0.919 0.86–0.98 

Hemoglobin 0.009 - 0.388 0.679 0.51–0.91 

PS 0.036 1.117 3.056 1.07–8.70 

b, regression coefficient; Exp(b), relative hazard risk; CI, confidence interval; PS, performance status. 

 

The predictive ability of the model was successfully assessed by calculating Harrell’s C-index, which 

resulted 0.8. As citrulline showed a relative hazard risk of 0.92, its effective impact on OS prediction 

was tested removing it from the risk Cox model and recalculating the C-index. The latter was found 

to decrease from 0.8 to 0.75 (p = 0.02) when citrulline was excluded, underlining the good prognostic 

value of the AA. The risk scores generated by the model ranged from −10.81 to −3.36, with a median 

of −7.11. Patients with a score ≥ -6.19 fell into the 75th percentile and were classified as high-risk 

group (H-Risk), while patients with a score ≤ -3.36 constituted the low- to moderate-risk (LM-Risk) 

group. 
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Figure 21.  Box-and-whisker plot of the risk score from the Cox regression model.  Horizontal lines indicated 

the median values that separated the lower 25th and the upper 75th quartiles; vertical lines denote the highest 

and lowest whiskers. Patients with a risk score > the 75th quartile value (-6.19) were included in the H-Risk 

(orange) while those with a risk score < the 25th quartile into the LM-Risk groups (blue). 

 
The proportional hazard assumption of the multivariate Cox model was validated by plotting the 

Schoenfeld residuals against the survival time for each selected prognostic variable, citrulline, Hb 

and PS.  Since the fitted lines from the residuals of each predictor resulted to be horizontal (Figure 

22) and not statistically significant (p > 0.05), the proportional hazards assumption was satisfied, 

thus demonstrating that the log hazard ratio [Beta(t)] remain constant over time.  



 

49 
 

 

 

 
Figure 22.  Schoenfeld residuals vs. overall survival time plot for citrulline, Hb and PS. The beta(t) is the log of hazard ratio 

and the black curve line is the fitted line indicating the time-dependency of covariates. The dashed lines are the confidence 

interval corresponding to ± two standard errors.  

 

The proportional hazard assumption was also tested by Kaplan-Meier survival analysis (Figure 23) 

by comparison of the two investigated risk groups. The H-Risk patients showed a median OS of 2.1 

months (95% CI, 0.8–7.6), significantly lower than that of the LM-Risk group with a median OS of 

19.1 months (95% CI, 11.3–25.8). The significant differences between the Kaplan-Meier curve(p < 
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0.0001, log-rank test) ensured that the Cox proportional assumption was not violated. 

 

Figure 23. Kaplan–Meier survival analysis for overall survival in the high-risk (H-Risk, n = 6) and low- to medium-risk (LM-

Risk, n = 18) groups identified according to their risk score from Cox regression model based on citrulline, Hb and PS. 

 

The ROC analysis showed a good diagnostic power of the two serum variables of the model, with 

citrulline found able to discriminate H-Risk and LM-Risk patients with a sensitivity of 100 % and a 

specificity of 77.8% (AUROC= 0.96; 95% CI, 0.74–0.99) and Hb with a sensitivity of 100%, and 

specificity was 72.2% (AUROC = 0.87; 95% CI, 0.67–0.97) (Figure 24). The cut-off values identified 

for group classification were 33.7 µM and 12.4 g/dL for citrulline and Hb, respectively.  

 

 

Figure 24. ROC curve analysis of serum citrulline and Hb. The AUC of citrulline was 0.926, with a sensitivity of 100 % and 

a specificity of 77.8 %. For Hb, the AUC was 0.870, with a sensitivity of 100 % and a specificity of 72.2 %. 

 
 

The differences between H-Risk and LM-Risk groups in serum levels of citrulline and related AAs 

involved in its metabolism were investigated. Besides citrulline, ornithine was found 0.43-fold 

significantly lower in the H-Risk group compared to the LM-risk one (p = 0.02, Student’s t test); 
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however, after normalization for arginine only the citrulline-arginine (CIT/ARG) ratio maintained 

the statistical significance (p< 0.0001) (Figure 25). Moreover, the variability in trabectedin PK was 

also investigated and high AUC values resulted associated with a worse survival prognosis, indeed 

the H-risk group showed a median AUCnorm of 18.5 compared to 10.4 ng/mL h-1 mg-1 of the LM-Risk 

group (p =0.023, Mann-Whitney) as well as a significant higher Cmax-norm of 0.7 ng/mL vs. 0.4 of the 

LM-R group (p =0.019). 

 

Figure 25. Serum concentrations of metabolites and their ratios involved in citrulline metabolism in H-R and LM-R groups. 

Values are expressed as mean and SD. *** p < 0.001; ** p < 0.01; * p < 0.05, Student’s t-test. LM-R, low- to the medium-risk 

group; H-R, high-risk group; CIT, citrulline; ARG, arginine; ORN, ornithine; GLN, glutamine; NS, not significant



 

 
 

4. DISCUSSION 

Trabectedin has been found to be highly effective in advanced STSs patients, however, a broad 

variability in the clinical outcome is observed among patients. Several studies evaluating its efficacy, 

reported a median PFS and OS of 4 and 12 months, respectively, but with only about 8-17% of 

patients achieving a complete or partial response, and 8% still alive after 4-years of follow-up 

[94,144–149]. The reasons behind such response variability to the same therapeutic regimen are 

barely known, making challenging the prediction of the clinical outcome and highlighting the need of 

predictive markers for trabectedin efficacy. Since the alterations in drug exposure can impact the 

final clinical effect, in this study we have attempted to explain the inter-individual trabectedin PK 

variations by metabolomics. The metabolomics profile intrinsically contains information about all 

those individual genetic and environmental factors that directly or indirectly can affect drug 

absorption, distribution metabolism and elimination (ADME) and influence the drug response. The 

trabectedin PK profiles, results of the individual ADME processes, was measured in all enrolled 

patients by the use of a new developed and validated HILIC-MS/MS method. The derived PK 

parameters resulted superimposable with those reported in other PK studies [115,145,150] showing 

the clinical suitability of the novel analytical method. As expected, the drug exposure expressed by 

AUC, showed a variability of about 34% in the investigated population and such differences were not 

found associated with age and gender factors, in agreement with literature data [150,151]. 

Interestingly, the baseline metabolomics profile resulted strongly correlated with the AUC, and the 

PLS regression model, based on metabolomic pre-dose data, allowed to predict with adequate 

accuracy the individual PK of trabectedin. However, a PLS model that includes numerous metabolites 

is not easily applicable in clinical practice, hence it was further resized by narrowing the number of 

the variables and integrating the clinical parameters.  The final model, despite included only five 

metabolites, maintained a good prediction accuracy of the AUC, thus demonstrating the close 

relationship between the individual metabolic phenotype and the trabectedin PK. In particular, high 

drug exposure was associated with low serum levels of citrulline and Hb, and with high cystathionine, 

TCA and Phe/Tyr ratio. These metabolites could indirectly affect the drug PK by altering the 

expression and activity of CYP3A, which is the main enzyme responsible for the hepatic 

biotransformation and clearance of trabectedin [114,152,153]. The metabolite more likely involved 

in the CYP3A modulation is the TCA, which is a primary BA synthesized from cholesterol in the liver 

and conjugated with taurine. Different studies demonstrated that BAs, beyond their activity in 

dietary lipids absorption, can alter the CYP expression through direct interaction with the nuclear 

farnesoid X receptor (FXR) [154–156]. In particular, high levels of primary free and conjugated BAs 

can induce FXR activation that enhances CYP3A4 expression in a positive feedback mechanism 

[156,157]. The concomitant high serum TCA levels and drug AUC observed in this study, may thus 

result controversial since it would be expected an increased trabectedin metabolism with higher CYP 

expression. We could speculate that the CYP3A may have a lower affinity for trabectedin compared 
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to BAs and thus explain the higher drug exposure, but no published literature works evaluated the 

effect of BAs on trabectedin metabolism not allowing us to support such assumption. However, 

despite the difficulty to explain the mechanism of PK modulation by BAs, other 

pharmacometabolomics studies found a positive correlation between serum BAs and drug AUC 

[74,158,159], supporting the role of BAs as potential predictors of PK interindividual variability. 

Besides metabolic clearance, the association between TCA and AUC can instead find an explanation 

in altered drug transport mechanism. Indeed, both BAs and trabectedin are substrates of the ATP 

Binding Cassette 1-2 (ABCC1-2) also known as multidrug resistance-associated protein 1-2 (MRP1-

2) [160–162]. These proteins, mainly localized in the membrane of hepatocytes, kidney and intestine 

cells, regulate the excretion of organic anions like bilirubin, bile acids and xenobiotics protecting cells 

from their toxic accumulation [163–169]. In our patients’ population, the high baseline TCA levels 

may act as a competitive antagonist for the ABCC binding of trabectedin thus resulting in raised 

plasma drug concentration. Moreover, beyond TCA, also other free and conjugated BAs showed to 

increase proportionally with AUC, thus likely contributing to hamper trabectedin binding. Such 

potential inhibitory mechanism has led to an increased systemic drug exposure, which may induce 

acute trabectedin toxicity, as reported in different studies where severe hepatotoxicity was observed 

in patients and animals with dysfunctional ABCC transporters [170–173]. However, in our series of 

patients no significant associations between trabectedin AUC  and liver toxicity were found, likely 

because all patients received a pre-treatment with dexamethasone, a potent ABCC inducer 

[155,174,175], that efficiently decreased the risk of hepatic injuries. Unlike TCA, the other 

metabolites cystathionine, citrulline, Phe/Tyr and Hb, identified as AUC predictors, did not show any 

direct link with the ADME processes. These metabolites more likely seemed to delineate a specific 

cancer patients phenotype characterized by a highly progressive disease. Different studies reported 

serum cystathionine accumulation in patients with more aggressive tumours [176–178] as well as 

low serum levels of citrulline were frequently associated with poor outcome [179–181]. In the same 

way,  the Phe/Tyr ratio could reflect a  pathophysiological status associated with ongoing 

inflammation processes being this metabolic ratio value correlated with immune activation markers 

[182,183]. All together these metabolites may identify a fragile phenotype characterized by a more 

aggressive tumour disease that may indirectly affect PK processing, predisposing these patients to 

an increased trabectedin exposure. This is corroborated by the observation that subjects with high 

AUC presented also a poor PS, a high G3 tumour grade and a non-L-sarcoma histotype, which is, in 

general, less responsive to trabectedin treatment. Taken all together, these findings showed that 

baseline metabolomic profile may contain relevant information to unveil differences in the individual 

phenotypes that in turn, may determine the variability in the drug PK.  Hence, the proposed 

pharmacometabolomics model for trabectedin PK prediction could represent an integrative valuable 

approach for guiding clinicians in the assessment of the best therapeutic regimen, going toward 

therapy personalization.   
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Beyond PK, baseline metabolomics profiling could provide effective biomarkers also for the 

prediction of trabectedin pharmacodynamics. In this context, we searched for metabolic signatures 

associated with the inter-patients response variability evaluated as both clinical benefit and OS. The 

PLS analysis showed that patients in PD could be clearly distinguished from those in SD on the basis 

of their pre-dose clinical and metabolomics profile. In particular, low serum Hb and high levels of 

cystathionine, agmatine and CA were identified as negative prognostic factors. Their ability to classify 

patients according to the response to trabectedin treatment was investigated by ROC analysis, which 

highlighted cystathionine and Hb as the best classifiers, especially if used in combination. This serum 

metabolomic signature may be the result of the complex host-tumour metabolic interplay. The 

tumour metabolic reprogramming can induce modification not only at cellular level but it may 

involve the entire systemic host metabolism. This would result in changes in blood metabolites 

concentrations since some metabolites could be consumed to satisfy the cancer energy demand, 

while others could be synthesized to increase the pool for anabolic reactions necessary to sustain 

cancer proliferation and diffusion [184].  

Cystathionine is an important intermediate of the trans sulphuration pathway consisting of two 

steps: the homocysteine and serine condensation by cystathionine β-synthase to produce 

cystathionine, and its hydrolysis by cystathionine γ-lyase into cysteine [185]. The latter is an 

essential AA for the synthesis of glutathione (GSH), an endogenous antioxidant that protects cells 

from reactive oxygen species (ROS) damage [186]. The high cystathionine concentrations in the PD 

group might result from an intensification of such pathway to sustain the pool of cysteine and GSH, 

which makes cancer cells able to survive also in a highly oxidant environments as those induced by 

chemotherapeutics [187]. This hypothesis was supported by different studies reporting an 

association between the high cystathionine β-synthase activity and the tumour progression of drug-

resistant phenotype [188–193].  

The present study also pointed out that low baseline Hb can be linked with a poor prognosis of STSs 

patients, in agreement with previous  studies  [132,194–198]. The presence of anaemia before the 

anticancer treatment was frequently reported in STSs patients as well as in other tumour types [199–

202], suggesting that likely tumour itself can induce such anaemic status. It has been demonstrated 

that interleukin-6 (IL-6), a pro-inflammatory cytokine often elevated in advanced cancer patients 

including STSs [203–205], can reduce the gut absorption of iron necessary for erythropoiesis, so 

resulting in a blood Hb drop [206]. The low Hb found in the series of patients who experience PD, 

may reflect a more aggressive tumour behaviour with increased systemic inflammation, commonly 

associated with poor prognosis [203–205]. Moreover, low Hb levels were found to induce tumour 

hypoxia [207] that in turn can trigger the activation of several molecular pathways promoting 

angiogenesis, anaerobic metabolism and the transcription of targeted genes implicated in tumour 

metastasis and proliferation [208–211]. The results of the current investigation, besides confirming 

the prognostic role of Hb in STSs, underlined the importance of the integration of clinical and 
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metabolomics data to improve the early identification of patients with a more aggressive disease. 

However, although Hb and cystathionine could represent potential prognostic biomarkers for overall 

clinical outcome of STSs, they seemed not specifically predict the response to trabectedin treatment. 

In this context, since PD group showed a significantly higher trabectedin Cmax, we integrated the 

model with this PK parameter, increasing not only their prognostic value, but also their specificity 

for the evaluation of clinical benefit of trabectedin treatment. The Cmax can inform about the total 

drug exposure, being highly correlated with AUC, but compared to the latter, it requires only a blood 

sample collection, making its use in prognostic model as feasible as common blood biomarkers.  

The second clinical endpoint of the study was the identification of specific metabolomics signature 

associated with the  OS [212]. The investigated STSs population showed a median OS of 13 months 

with a great variability (95% CI, 5.6–23.5) superimposable with results of other similar clinical 

investigations [144,147,213]. Tumour histology, PS and baseline Hb were confirmed as prognostic 

factors of STSs OS [132,195,196,214,215], while no associations were found with other reported OS 

biomarkers, such as blood ANC, albumin and sodium [132,133]. This latter conflicting result was 

likely due to the more fit patients’ population, which showed a better PS compared to those of 

patients considered in previous studies.  The prognostic value based only on such clinical factors 

resulted limiting to explain the OS variability among patients, hence baseline metabolomics profiles 

were investigated in attempt to improve the prediction of the clinical outcome of metastatic STSs 

patients. Two serum AAs, citrulline and histidine, showed positive correlations with OS, indicating 

that the higher is their serum levels better is the prognosis. However, when Cox regression analysis 

was performed, only citrulline remained as significant predictor for OS together with Hb and PS 

[212]. The clinical-metabolomic model allowed the classification of STSs patients according to their 

mortality risk, identifying a H-Risk group with low OS (median, 2.1 months) and a LM-Risk group 

with longer OS (median, 19.1 months, p < 0.0001). The cut-off values for the discrimination of these 

two groups were derived from the ROC analysis: having citrulline ≤ 33.7 µM, Hb ≤ 12.4 g/dL and PS 

≥ 1 was indicative of poor survival and identified H-Risk patients. The low serum citrulline in the 

group of H-Risk patients, as mentioned above, may derive from the tumour metabolism 

reprogramming that induces changes in the whole host metabolome, resulting in blood shortage of 

those metabolites necessary for cancer growth.  

Citrulline is a non-proteogenic AA belonging to arginine metabolism. It is synthesised in the gut from 

glutamine, while in kidney and liver it participates in the de novo biosynthesis of arginine and in the 

urea cycle, respectively [216,217] (Figure26).  
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Figure 26. Citrulline metabolism. It is synthesised in enterocytes from glutamine and released into the circulation, reaching 

the kidneys, where it is used for arginine synthesis or the liver where it entered into the urea cycle for ammonia 

detoxification. Abbreviation: CPS, carbamoyl phosphate synthetase; ASS, argininosuccinate synthase; AL, argininosuccinate 

lyase; AR, arginase; OTC, ornithine transcarbamoylase. 

 

Citrulline depletion is generally associated with intestinal injuries as a result of gut inflammation or 

damage from chemotherapy [217,218]. However, the citrulline shortage observed in the H-Risk 

patients seemed not associated with altered bowel function or citrulline biosynthesis, since the 

concentration of the precursor glutamine resulted equal in both LM- and H-Risk groups. Moreover, 

the bile acids produced by gut microbiome activity did not show any significant differences between 

groups, excluding the hypothesis of dysbiosis in these patients. Analogously, the serum urea 

concentrations were similar in the two groups, thus suggesting a normal hepatic functionality for 

ammonia detoxification by the urea cycle. This result is supported by the urea/arginine and 

ornithine/arginine ratios that did not significantly differ in the investigated groups. Therefore, the 

systemic loss of citrulline and ornithine in the H-Risk group may be related to their increased 

consumption rather than to the altered urea cycle. In the H-Risk patients, the high ornithine use might 

be liked to an increased polyamine synthesis. However, this assumption could not be confirmed since 

the polyamines spermine, spermidine and putrescine were not detected in this metabolomics 

analysis. The high citrulline utilization in the H-Risk patients may be due to an intense host 

metabolism aimed to maintain a systemic stock of the semi-essential AA arginine. This hypothesis is 

supported by the observation that the citrulline/arginine ratio was significantly lower in the H-Risk 

group, suggesting an increased conversion of citrulline into arginine [212]. Furthermore, in STSs it 

was reported a low expression of arginine metabolism enzyme, in particular of the argininosuccinate 

synthetase-1 (ASS1), which catalysed the arginine synthesis from citrulline  [219,220]. Such 
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enzymatic loss makes STSs tumours auxotrophic for arginine, therefore the observed citrulline 

depletion in H-Risk patients may reflect an aggressive STS phenotype with a higher arginine demand 

to sustain its growth and progression needs. This hypothesis may explain the correlation between 

the low serum citrulline and short OS observed in the H-Risk patients. However, the relationship 

between such metabolic features and the trabectedin efficacy remains difficult to explain since 

arginine metabolism is not directly involved in the antitumor activity of the drug. Likely, such altered 

arginine metabolism does not influence trabectedin activity, but it may reflect a specific metabolic 

phenotype and its individual capability to face the deleterious effects of the disease. In this context, 

citrulline could be considered a prognostic factor independent from the type of chemotherapy and 

also from the cancer type. This is supported by recent studies reporting reduced citrulline levels in 

short survival patients with high-grade serous ovarian cancer [180] and with non-small cell lung 

cancer undergoing immunotherapy treatment [179]. This evidence suggests that the role of citrulline 

as negative prognostic factor may be applicable in other cancer patients and not only in STSs. 

However, given the limitation of the study, further investigations are needed to confirm and validate 

these results. The small number of patients and the lack of an external independent patients’ group 

hindered a full validation of the findings. Moreover, the study involved only metastatic high tumour 

grade patients, limiting the application of the metabolomics models to STSs patients with advanced 

disease. Finally, to better assess the relationship between trabectedin efficacy and the identified 

prognostic biomarkers further studies should include STS patients undergoing different treatments. 

 

 



                                                                                                                                                                                                                                                                                                                                            

 
 

5. CONCLUSION 

This exploratory study, to our knowledge, is the first to propose a pharmacometabolomics 

approach for the prediction of individualized trabectedin PK. A metabolic phenotype predictive of 

drug exposure was identified, allowing to explain the PK inter-patients variability in a metastatic 

STSs population. The use of this baseline metabolomic profile, based on citrulline, cystathionine, TCA 

and Hb, may help physicians to predict the drug’s fate and manage the safety and efficacy of 

trabectedin therapy. This study also contributed to the identification of pre-dose metabolomic 

signature associated with the clinical outcome of STS patients treated with trabectedin. The main 

findings are that cystathionine and Hb emerged as potential prognostic biomarkers of a poor 

responsive tumour helping to early individuate patients who would not benefit from the treatment. 

Moreover, the development of a survival risk model based on citrulline, Hb and PS, further improved 

the assessment of the clinical outcome, allowing the early identification of high-risk patients. 
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APPENDIX 1 
Table A1. Amino-acids and derivatives included in the LC-MS/MS analysis. 

Amino-acids RT (min) Selected IS 
1-Methyl-L-Histidine 9.3 3-Methylhistidine IS 
2-Aminoadipic acid 7.3 L-Serine IS 

2-Aminobutyric acid 6.5 gamma-Aminobutyric acid IS 

3-Aminoisobutyric acid 5.9 gamma-Aminobutyric acid IS 

3-Methyl-L-Histidine 8.6 3-Methylhistidine IS 

5-Hydroxylysine 10.3 Lysine IS 

ADMA 8.2 ADMA IS 

Alanine 7.0 Alanine IS 

Arginine 9.3 Arginine IS 

Argininosuccinic acid 10.8 Arginine IS 

Asparagine 7.9 Asparagine IS 

Aspartic acid 8.9 Aspartic acid IS 

beta-Alanine 6.7 Alanine IS 

Carnosine 9.7 3-Methylhistidine IS 

Citrulline 7.9 Citrulline IS 

Creatinine 4.3 Creatinine IS 

Cystathionine 10.5 Cystathionine IS 

Cystine 10.7 Cystine IS 

Ethanolamine 5.7 Ethanolamine IS 

gamma-Aminobutyric acid 5.7 gamma-Aminobutyric acid IS 

Glutamic acid 8.1 Glutamic acid IS 

Glutamine 7.6 Glutamine IS 

Glycine 7.3 Glycine IS 

Histidine 9.2 Histidine IS 

Homocitrulline 7.7 Citrulline IS 

Homocystine 5.3 Homocystine IS 

Isoleucine 5.2 Leucine IS 

L-Anserine 9.7 3-Methylhistidine IS 

Leucine 4.9 Leucine IS 

Lysine 9.7 Lysine IS 

Methionine 5.3 Methionine IS 

Ornithine 9.7 Ornithine IS 

ortho-Phosphorylethanolamine 5.3 Lysine IS 

ortho-Phosphoserine 10.5 Lysine IS 

Phenylalanine 4.6 Phenylalanine IS 

Proline 6.2 Proline IS 

Sarcosine 6.6 Sarcosine IS 

SDMA 8.2 SDMA IS 

Serine 7.8 Serine IS 

Serotonin 3.4 Serotonin IS 

Taurine 6.0 Taurine IS 

Threonine 7.3 Threonine IS 

trans-4-Hydroxyproline 6.9 Proline IS 

Tryptophan 4.2 Tryptophan IS 

Tyrosine 5.4 Tyrosine IS 

Urea 4.0 Urea IS 

Valine 5.9 Valine IS 

Kynurenine 4.4 Kynurenine IS 

Agmatine 5.3 Lysine IS 

*in red metabolites not detected in plasma samples 
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APPENDIX 2 

Table A2. Compositions of standards mix AAs solutions used to for calibration curves. 
 

  CAL 1 CAL 2 CAL 3 CAL 4 CAL 5 
1-Methylhistidine 304.4 152.2 76.1 38.1 19.0 

2-Aminoadipic acid 31.3 15.7 7.8 3.9 2.0 
2-Aminobutyric acid 59.9 30.0 15.0 7.5 3.7 

3-Aminoisobutyric acid 97.0 48.5 24.2 12.1 6.1 
3-Methylhistidine 301.5 150.8 75.4 37.7 18.8 

5-Hydroxylysine 299.4 149.7 74.9 37.4 18.7 
ADMA 0.6 0.3 0.2 0.1 0.04 

Alanine 1199.

6 

599.8 299.9 150.0 75.0 
Anserine 19.8 9.9 5.0 2.5 1.2 
Arginine 304.0 152.0 76.0 38.0 19.0 

Argininosuccinic acid 10.0 5.0 2.5 1.3 0.6 
Asparagine 171.4 85.7 42.9 21.4 10.7 

Aspartic acid 145.6 72.8 36.4 18.2 9.1 
Beta-alanine 37.6 18.8 9.4 4.7 2.4 

Carnosine 156.9 78.5 39.2 19.6 9.8 
Citrulline 70.5 35.3 17.6 8.8 4.4 

Creatinine 1000.

0 

500.0 250.0 125.0 62.5 
Cystathionine 21.1 10.6 5.3 2.6 1.3 

Cystine 190.6 95.3 47.7 23.8 11.9 
Ethanolamine 244.4 122.2 61.1 30.6 15.3 

Gamma-aminobutyric acid 98.2 49.1 24.5 12.3 6.1 
Glutamic acid 611.7 305.9 152.9 76.5 38.2 

Glutamine 1219.

3 

609.7 304.8 152.4 76.2 
Glycine 1576.

5 

788.3 394.1 197.1 98.5 
Histidine 615.7 307.9 153.9 77.0 38.5 

Homocitrulline 1585.

5 

792.8 396.4 198.2 99.1 
Homocystine 56.0 28.0 14.0 7.0 3.5 

Isoleucine 232.1 116.1 58.0 29.0 14.5 
Kynurenine 3.0 1.5 0.8 0.4 0.2 

Leucine 391.6 195.8 97.9 49.0 24.5 
Lysine 377.2 188.6 94.3 47.2 23.6 

Methionine 81.1 40.5 20.3 10.1 5.1 
O-Phosphorylethanolamin 78.9 39.4 19.7 9.9 4.9 

O-Phosphoserine 42.4 21.2 10.6 5.3 2.7 
Ornithine 300.7 150.4 75.2 37.6 18.8 

Phenylalanine 430.9 215.4 107.7 53.9 26.9 
Proline 823.4 411.7 205.9 102.9 51.5 

Sarcosine 928.5 464.3 232.1 116.1 58.0 
SDMA 0.5 0.2 0.1 0.1 0.0 

Serine 761.3 380.7 190.3 95.2 47.6 
Serotonin 0.1 0.0 0.0 0.0 0.0 

Taurine 391.5 195.8 97.9 48.9 24.5 
Threonine 454.6 227.3 113.7 56.8 28.4 

Trans-4-hydroxyproline 40.9 20.5 10.2 5.1 2.6 
Tryptophan 138.6 69.3 34.6 17.3 8.7 

Tyrosine 232.2 116.1 58.1 29.0 14.5 
Urea 6000.

0 

3000.

0 

1500.

0 

750.0 375.0 
Valine 696.5 348.3 174.1 87.1 43.5 
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APPENDIX 3 

Table A3. Bile acids included in the LC-MS/MS analysis. 
 

Bile acids RT (min) Selected IS 

TUDCA 3.0 d5-TUDCA 

GUDCA 2.9 d4-GUDCA 

TCA 3.5 d5-TCA 

GCA 3.5 d5-GCA 

TCDCA 4.8 d5-TCDCA 

TDCA 5.1 d5-TCDCA 

GCDCA 4.8 d4-GLCA 

GDCA 5.0 d4-GLCA 

UDCA 5.6 d4-HDCA 

HDCA 5.4 d4-HDCA 

CA 5.7 d5-CA 

TLCA 6.2 d4-GLCA 

GLCA 6.2 d5-CDCA 

CDCA 7.1 d4-GLCA 

DCA 7.2 d5-CDCA 

LCA 8.0 d4-LCA 

*in red metabolites not detected in plasma samples 
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Abstract (EN): 

Trabectedin is successfully used for advanced or metastatic soft tissue sarcomas (STSs) patients. However, 

great variability in the pharmacological response is still observed, highlighting the need for effective 

biomarkers of trabectedin efficacy. This study aimed to find pre-dose serum metabolomics signatures able to 

predict the individual variations in trabectedin pharmacokinetics (PK) as well as the overall clinical response 

to the treatment. The study enrolled 40 STSs patients undergoing trabectedin. Pre-dose targeted metabolomics 

profiles and trabectedin PK were determined by LC-MS/MS. Multivariate and univariate analyses were used to 

find correlations between pre-dose metabolites and PK as well as with the clinical outcome. Individual 

trabectedin area under the curve (AUC) showed a great variation of 34%. Multiple regression model, based on 

specific serum metabolites, well predicted AUC (bias of 5.16%; precision 16.85%). Moreover, metabolic 

signatures of trabectedin response were identified to distinguish patients in stable and progressive disease. A 

survival model allowed to early identify high-risk patients with low overall survival (OS <2.1 months). This 

translation study supports the use of metabolomics as potential tool to explain and manage the trabectedin PK 

variability in STSs patients and to predict the clinical response to the treatment identifying the patients who 

may best benefit from the trabectedin treatment. 

 

 

 

 

 

 

 

                                                             
1 Il titolo deve essere quello definitivo, uguale a quello che risulta stampato sulla copertina dell’elaborato 
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Abstract (IT): 

La trabectidina è utilizzata con successo per i pazienti con sarcomi dei tessuti molli (STS) avanzati o metastatici. 

Tuttavia, si osserva ancora una grande variabilità nella risposta farmacologica, evidenziando la necessità di 

accurati biomarcatori della sua efficacia. Lo scopo dello studio è individuare caratteristiche metabolomiche nel 

siero in grado di prevedere sia le variazioni farmacocinetiche (PK) della trabectidina che la risposta al 

trattamento. Lo studio ha arruolato 40 pazienti con STS trattati con trabectidina. I profili metabolomici al basale 

e la farmacocinetica del farmaco sono stati determinati mediante LC-MS/MS. Analisi multivariate e univariate 

sono state usate per trovare correlazioni tra metaboliti e farmacocinetica nonché con l'esito clinico. L’ area 

sotto la curva (AUC) della trabectidina ha mostrato una grande variazione del 34%. Il modello di regressione 

multipla, basato su specifici metaboliti sierici, ha predetto l’AUC con un errore del 5,16% e una precisione del 

16,85%. Inoltre, sono state identificate caratteristiche metaboliche della risposta alla trabectidina capaci di 

distinguere i pazienti con malattia stabile o progressiva. Il modello di sopravvivenza ha permesso di 

identificare precocemente i pazienti ad alto rischio con bassa sopravvivenza (OS <2,1 mesi). Questo studio 

traslazionale supporta l'uso della metabolomica come potenziale strumento per spiegare e gestire la variabilità 

farmacocinetica della trabectidina nei pazienti con STS e per prevedere la risposta clinica al trattamento, 

identificando i pazienti che possono ricevere il miglior beneficio dalla terapia con trabectidina. 
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