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Abstract

Convolutional Neural Networks have proved to be a powerful tool to solve a wide range
of Computer Vision tasks, especially where is difficult to implement a solution in a purely
algorithmic way. In the industry, the availability of powerful deep models to address clas-
sification, detection, and image segmentation now offers new possibilities for automating
not only the production, but also the quality assessment of the final products. Unfortu-
nately, industrial applications have to face some limitations, especially when dealing with
the so called ”Embedded Vision” solutions where such models have to be transferred and
used directly on-camera. Indeed, limited memory and computational capability pose im-
portant challenges on the architecture of the model to use. During the last years a large
amount of research aimed to face such problems, proposing various compression algo-
rithms to reduce the number of parameters of neural networks. The purpose of this thesis
is to explore existing literature and to provide some general guidelines that can be bene-
ficial during the deployment of industrial applications. Among all possible problems and
challenges industrial settings present, two very common issues concern the complexity of
the models and the scarcity of data. This work addresses some of the most exploited tech-
niques to tackle such problems, as well as contributes by proposing two novel methods: a
novel data augmentation technique to compensate heavily unbalanced classes, and a filter
pruning algorithm that greatly improves the inference time and reduces the memory foot-
print of a model. The algorithms have been implemented in real-case scenarios, and they
have been compared to other methods in the existing literature.
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1
Introduction

Over the past few years industrial applications have been extensively exploiting the ad-
vantages coming from Deep Learning, in particular when using Convolutional Neural
Networks (CNNs). The intrinsic flexibility of these networks makes them widely adopted
in a variety of practical applications, from medical to industrial. In particular, image and
signal processing tasks are well-suited for the convolutional architecture, therefore a huge
number of Computer Vision solutions have been proposed in the literature. Deploying a
large and accurate model to perform a certain task takes considerable energy and space.
Even if this might not be a problem during the training phase, it becomes a big issue at
inference time, especially if the model has to run on devices with reduced computational
resources or small storage space. With the rising of CNNs popularity and the number of
their possible applications, the scientific community focused on how to adapt these mod-
els to make them accessible in an easier way. As a consequence an enormous number of
compression techniques has been proposed, aiming to reduce the memory consumption
and computational complexity without compromising the original performance. Given the
complexity of Convolutional Neural Networks, or of Neural Networks in general, there
is an unlimited amount of possible solutions to reduce the model footprint. This thesis
aims to provide a gentle introduction to existing compressing algorithms as well as to
contribute with some novel techniques to improve industrial development of applications
exploiting deep learning.

1.1 Neural Networks Background

When talking about Artificial Intelligence (AI) it is impossible to not cross with the
word Deep Learning (DL). Deep Learning takes advantage of Artificial Neural Networks
(ANNs), often simply referred as Neural Networks (NN), to tackle Machine Learning (ML)
problems in a more efficient way. It allows for learning a meaningful representation of
the raw data without the high-level expertise or engineering skills needed to hand-craft
feature extractors. The term deep instead is linked to the structure of the models trained
on ML tasks, as deep learning usually exploits networks with a large number of layers.
Artificial intelligence applications like image and speech recognition, natural language
processing, object detection, autonomous driving, medical diagnosis and game playing
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Figure 1.1: Model of biological neuron.

revealed impressive breakthroughs when using deep learning [33]. This technology cov-
ers a wide range of modern life aspects. Tasks we perform daily, like buying a product
online, making a search on the web, using social medias, sending a message or taking
a picture, are often involved with some kind of artificial intelligence algorithm. For ex-
ample, instead of inserting a code to protect your privacy, you can unlock your phone by
using your fingertips or showing your face, and while typing in a textbox most applica-
tions use auto-completion or smart reply.

1.2 Supervised Learning

One of the most common machine learning problems consists of Supervised Learning
(SL) [105]. The goal is to learn a classifier (or a regressor) given a dataset of labelled
data. The classifier can be seen as a function mapping some data given as input to one of
the classes in a finite set. Deep learning consists on training a Neural Network to fit such
function. Even if the observations need to be labelled to know which class they belong
to, no prior information on how the classes are divided need to be fed to the network in
order to train a good classifier. The dataset has to meet only one requirement: to provide
enough samples to cover all possible cases.

Neural networks are structured in layers made by non linear units which extract infor-
mation from the input data. They are inspired by the shape of human brain’s neurons and
they aim to mimic the brain functioning. A neuron, showed in figure 1.1, can be simpli-
fied as a structure with many incoming connections (dendrites), a main body (soma), and
an output channel (axon). Even if the biological neuron can be more complex, neural net-
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works are made of neurons (often referred also as computational units or nodes), which
adopt this simplified structure.

The output of a single unit i of a neural network is usually defined as :

yi = φ (bi +
m∑
j=0

wijxj) (1.1)

where the unit takes m input values x and a bias b, and after some computations returns
an output y.

Each element of the input vector has a certain importance, defined by its correspond-
ing weight w. The bias b can be seen just as a constant value added to a linear function.
It increases the network’s flexibility by allowing the layers to add a shift. Biological neu-
rons send an output signal only if they receive a big stimulus, usually higher than a certain
threshold. In this case the neuron ”fires” and it sends a signal to the other neurons it is con-
nected to. In a similar way a unit performs a weighted sum of the inputs followed by an
non-linear activation function φ(·), which returns an output dependent on the magnitude
of the input received.

Some of the most common activation functions are:

Sigmoid(z) =
1

1 + e−z

tanh(z) =
2

1 + e−2z
− 1

ReLU(z) =max(0, z)

LeakyReLU(z) =max(0.1z, z)

ELU(z) =

z, z ≥ 0

α(ez − 1), z < 0

(1.2)

The most popular and widely used function is the Rectified Linear Unit (ReLU). It is not
only simple, but also most of the networks using this activation converge faster [147].

Neurons or units are arranged in groups, or layers, and they are connected only to
neurons in a different layer. In neural networks, layers are sequentially arranged and their
units can be connected only to the neurons in the previous or the following layer. If all
the neurons in a certain layer have a connection (often just referred as weight) to all the
units in the next layer, then such layer is called fully connected (fc).

The number of layers used defines the depth of the network and deeper networks
learn higher level representations over the data. The depth of a network, indeed, is highly
correlated to its complexity, as the non linearity of the units allows to fit a more intricate
function around the data. For difficult tasks, deeper networks usually achieve the best
performance and it is for this reason that deep learning has this name.
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1.3 Training

In the context of supervised learning, the final layer or output layer usually returns a vector
of scores as long as the number of classes, which represents the probability of the input to
belong to each category. The learning process consists of tuning the importance the units
give to their input, by changing their weights (and the bias of their corresponding layer).
It is possible to configure the network such that the output scores for every possible input
data belonging to the dataset converge to the desired output (the labels). This is referred
as the training process and it is usually achieved by using error backpropagation.

Training usually consists of two phases: the forward pass and the backward pass.
In the forward pass one observation or a small set of data are fed to the network. The
input flows through the layers, where each neuron processes it and then passes it to the
units in the next layer, until the output vector is computed. Since the optimal values of
weights and biases are initially unknown, they are usually randomly initialized which
results in the network to return an output very far from the desired one. According to
the activation function used by the network there are different distributions that can be
chosen to initialize the weights [48, 65], which is a very important step to make sure
that the network eventually converges toward a good solution. For example, starting with
weights too small or too large can result in the network in not learning or to diverging [89].

After the forward pass we need to adjust the weights and biases of the network such
that the computed output gets closer to the actual labels. This update is performed from
the output layer towards the input layer, and for this reason it is called the backward pass.
To adjust the network parameters toward an optimal configuration we need the objective
function, or error loss:

L =
1

2
||Youtput − Ytarget||22 (1.3)

representing how far the obtained scores (Youtput) are from the desired ones (Ytarget).
The loss can be seen as a high-dimensional space made of hills, saddle points and local
minima. To minimize the error, we can exploit the information coming from the gradient.
Indeed, the opposite direction of the gradient vector indicates the path toward which a
small change in the weights corresponds to a descent in the landscape, getting closer to a
local minima.

To better understand how the weights are updated, we can imagine the objective func-
tion similar to a mountain-like landscape. Since the weights are randomly initialized and
the shape of the objective function is unknown, we can think about being blind-folded in
a random position of this multi-dimensional place made of hills and valleys. The goal
is to reach one of the valleys, which correspond to a weight configuration minimizing
the error. The only tool we have available is taking a small step at a time, and trying to
understand the slope of the ground under our feet. Even if we cannot see around us, the
gradient can tell us in which direction the floor starts to get higher. By taking a step in
the opposite direction we hopefully get further from the peak and walk toward a valley, or
local minima.
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There are different ways to take a step, or different optimizers. The most used opti-
mizers are:

• Gradient Descent(GD)
• Stocastic Gradient Descent(SGD)
• Mini-Batch GD
• RMSProp [69]
• Momentum [172]
• Nesterov Accelerated Gradient (NAG) [149]
• Adaptive Gradient (ADAGRAD) [37]
• AdaDelta [216]
• Adaptive Moment Estimation (ADAM) [93]

The goal of using optimizers is to reach the best configuration in the minimum number
of steps. They define after how many observations to take a step (only one for GD, all
the samples possible for SGD, or something in the middle using a batch-based approach),
but they also specify how much to move, which correspond to the learning rate (lr).
Optimizers also have to take into consideration problematic situations like being in the
middle of a saddle point (in this case the gradient would make the network configuration
oscillate indefinitely between the two highest directions) [162].

Once we decided which direction to go toward, we have to adjust the network param-
eters accordingly. Weights are then updated in the backward pass using the backpropa-
gation algorithm. Backpropagation computes the gradients of the objective function with
respect to all the weights in all the layers. It can be seen as the practical application of
the chain rule as the gradients are computed (and updated) backwards starting from the
output layer toward the input layer in a single pass.

An epoch is what takes the network to see all the data in the training set during the
training process. Several epochs are usually required for the network to converge to an
optimal configuration, and the loss is usually one of the good indicators to understand if
the training process is performed correctly. The training set can be divided in batches,
where a batch is an integer number larger than zero and equal or less than the number of
samples in the training set. The batch size defines when to update the network weights,
so if the batch size is equal to the number of observation in the training set we talk about
Batch Gradient Descent, if the batch size is equal to one than we have the classic SGD,
while all the other values, usually a power of two, are referred as mini-batch Gradient
Descent. The samples are usually randomly sorted into batches in a different way for
every epoch. The size of the batch is critical for the training time, as using larger batches
allows the network to converge faster, but if the batches are too big the algorithm will
struggle to converge close to the optimal minima.

Layers in the middle of a Neural Network are called hidden layers, and the number
of such layers, as well as how many units per layer to use, correspond to the depth and
the width of the network. They are two of the hyperparameters to set before training
a network. Hyperparameters are very important because if the network is too deep the
function modelled can be too complex for the given dataset and the network might lose the
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generalization capability. As opposed to the mentioned problem, called overfitting, also
a too shallow network might not be able to extract a meaningful enough representation
of the data, leading to underfitting. Neural networks with more than one hidden layer are
known as Deep Neural Networks (DNNs).

Other than the hyperparameters defining the architecture of the network, before start-
ing to train a network it is crucial to decide also how the training will be performed.
Weight initialization, learning rate, number of training epochs, batch size are only some
of the hyperparameters that have to be initially set, and they can greatly affect the train-
ing time and avoid the network to be stuck on a not good enough local minima. One of
the best approaches to train a model able to achieve high accuracy is to make sure the
network is complex enough. This usually is assured by using a small balanced portion of
the dataset as validation set. After every epochs the loss or the accuracy on the validation
set is computed and confronted with the one of the training set. If the architecture is
complex, or deep enough, then the loss on both the training and the validation sets will
decrease very fast, but after few epochs the validation loss will not improve anymore, or it
will even increase. This is a clear effect of overfitting. At this point, decreasing the depth
of the network or even trying a different architecture with less parameters is a laborious
and slow process.

Using a very deep model to solve a simple task often results in overfitting. To mitigate
such problems we can take advantage of some mechanisms classified as regularizers. The
most intuitive solution for the case just described is to just stop the training as soon as
the validation loss differs from the one computed on the training set. This regularization
method is called early stopping. Sometimes the data available are too scarce to afford the
luxury of dedicating part the dataset for the validation set, and we need other techniques
to fight overfitting. When talking about regularization the most common used method
consists in adding a penalty, or regularization term to the objective function:

Objectivefunction = Loss+ λ Regularization term (1.4)

The most used regularizations are L1 and L2, also called as Lasso Regression and Ridge
Regression:

L1 =
∑
||w|| =

∑
j

|wj|

L2 =
∑
||w||2 =

∑
j

w2
j

(1.5)

The regularization term poses a constraint on the magnitude of the weights, forcing the
smallest values toward zero. L2 is also called weight decay, as it forces the values toward
zero (close to, but not zero). On the other side L1 can reduce the weights exactly to zero.
In this way the least important features are ignored, and as a lot of matrices are close
to zero the relative neurons are technically not used. This is equivalent to use a smaller,
simpler network than the original one.

A different technique consists in inserting one or more dropout layers, usually toward
the end of the network. These layers work only at training time, and they randomly filter
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out some of the connections with a fixed probability p. This forces the network to exclude
some of the nodes, which can be seen as training a network smaller than the original
one. This subnetwork is simpler and it has less parameters therefore is able to generalize
better. Neurons which weights should not be updated are changed at every epoch, and
this forces the network to not heavily rely always on the same nodes. The approach has
some drawbacks: the probabilities of the dropout layers, as well as their number and
position are all hyperparameters that need to be tuned and it might require training the
same network multiple times to find a good configuration.

One of the best, if not mandatory, practices when training a network is to exploit data
augmentation. This powerful tool allows to greatly increment the size of the dataset, not
only reducing overfitting, but also increasing the accuracy of the network. The idea is sim-
ple: it is possible to add new observations to the dataset by simply performing some kind
of transformations on the available data. In the case of convolutional neural networks, the
most common transformations consist in shifting, scaling, rotating and flipping the data
(usually an image), but there are also a lot of other possible operations, e.g. shearing and
adding noise. Even if the pooling operation, as well as the convolution layers, provides
a certain degree of invariance to the position of the features, they are usually not able to
model such transformations. In this way every observation added to the original dataset
can be considered by the network as a completely new instance that it has never observed,
greatly increasing the performance at inference time.

1.4 Convolutional Neural Networks
The most simple deep learning networks are feedforward Neural Networks, where a fixed-
sized input flows through the network and produces a fixed-sized output without any
loops. A particular case of Neural Networks are Convolutional Neural Networks (CNNs),
specialized networks that take advantage of convolutions. Classical neural networks are
usually made only of fully connected layers and process one-dimensional data. They are
often simply referred as Multilayer Perceptrons (MLPs), even if the name is technically
incorrect as the perceptron introduced by Rosenblatt in 1958 [170] was purely linear [90].
Typical inputs for CNNs, instead, are 2D signals (e.g. images), but they can also be used
to process 1D or 3D signals (e.g. audios and videos). Some examples of 1D CNNs are
presented in section3.2. Convolutional layers use filters, or kernels, to extract meaningful
features from the input and produce a feature map for each filter. In the 2D case, the filter
is shifted over the image and every shift corresponds to a discrete convolution, which
computes a single value of the feature map computed as output. The input image, as well
as the feature maps produced by the convolutional layer can be seen as multidimensional
arrays, and they are often called tensors. The weights to learn are the values of the filters.
Weight sharing is one of the key concept of CNNs: the idea is that if a meaningful feature
is detected within an image, it should not matter in which position the feature is, so the
weights of a filter should not change as it computes the convolution over the whole input.

Convolutional layers are often followed by a pooling layer, which performs a sub-
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sampling operation, reducing the dimensionality and allowing the network to be invariant
to small shifts and distortions. Last layers are usually fully connected layers, like in tra-
ditional NNs, where all the units in a layer are fully connected to the units in the next
layer by single weights. The number of output nodes is usually the same as the number
of classes if the network is trained to solve a classification task. In this case the activation
function of the last layer returns a vector of probabilities, and the specific input image is
assigned to the class or label with the highest probability. There are also other possible
outputs, for example in object detection problems the network returns two coordinates,
which represent the opposite corners of the bounding box containing detected object.

Convolutional Neural Networks are of undeniable importance when working with im-
ages, to the point that they have become de facto standards for various computer vision
and machine learning operations. Since neural networks consist mostly of fully con-
nected layers, the number of weights involved while using images would be unfeasible
high. For example, connecting all values (pixels) of a small RGB image belonging to
CIFAR-10, which is 32× 32× 3, to a single fully connected neuron, would mean to learn
32 × 32 × 3 = 3072 weights. Considering that we need multiple neurons and multiple
layers to build a network, the number of parameters would grow exponentially. On the
other side, when we use CNNs we have more hyperparameters involved.

While the only parameter to set for a certain layer in a NN is the number of units per
layer, when working with CNNs it is of utmost importance not only the number of filters,
but also their size and how to shift them on the image, which is defined by the stride and
padding parameters.

The stride parameter defines how many pixels or values separate one convolution from
the next one. So, having a stride S = 1 means the output of the convolution will have the
same dimension of the input, while a stride S > 1 will shrink the output. A significant
problem is how to perform the convolution operation on the borders, as the filter has to be
placed inside the input. For this reason a padding is usually used to either add a border of
zero values (zero padding) either adds the same values on the borders, but flipped (same
padding). Even if it is possible to reduce the output dimension of a convolutional layer
simply by setting a stride higher than 1, usually it is preferable to to use a pooling layer.
The pooling layer simply performs a downsampling operation. It has its own window, as
well as padding and stride, and there are different types of pooling (average or max are
the most exploited).

The typical structure of a Convolutional Neural Network consists of the input layer
followed by a sequence of convolutional layers, usually interleaved by pooling layers
(sometimes a convolutional layer and the pooling layer after it are referred together as a
convolutional block). The last layers of a CNNs usually are fully connected layers, which
are connected to the output layer. In supervised learning the output layer is a probability
vector that assigns to the input a certain probability to belong to each of the possible
classes. The class with the highest probability is usually declared as the class the input
belongs to. Sometimes to better assess the accuracy of the network, not only the class
with the highest probability (TOP-1 accuracy) but also if the true class is among the five
classes with the highest probability (TOP-5 accuracy) is taken into account. A scheme of
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Figure 1.2: Example of a classic CNN architecture. There are two convolutional blocks
(convolution + ReLU + pooling). Every operation has its own window size, stride and
padding. The last two layers are fully connected layers (the last one is also the output
layer).

Figure 1.3: AlexNet architecture as shown by the authors.

a classical CNN architecture can be seen in figure 1.2.

1.5 Evolution of CNNs

In 2012 Alex Krizhevsky et al. won the famous ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), proposing his famous architecture, later known as AlexNet [102].
In figure 1.3 we can see the AlexNet architecture. It is made of five convolutional blocks
(some of them containing max pool layers), followed by three fully connected layers. It
reshapes the ImageNet 2012 data into 224x224 RGB images, returning the probability
distribution over the available classes.

Given the extraordinary jump in the performance of this network with respect to other
previously existing methods, CNNs started to become extremely popular and hundreds of
other architectures and algorithms have been proposed since then.

Another popular network is GoogLeNet [183], which was presented only two years
later. Its main advantages are the simplicity (9 identical and relative simple blocks), the
parallelism of the network (each block is structured in 4 parallel pathway) and its effi-
ciency in terms of both computation time and memory usage. The high efficiency comes
at a small cost in term of model accuracy on ILSVRC 2012. In figure 1.5 we can see
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Figure 1.4: Image from [8]. The two ball charts represent the top-1 (left) and top-5 (right)
accuracy on the ImageNet validation set with respect to the computational complexity of
the considered architectures for a single forward pass. The size of the ball represents the
model complexity. There is a direct correlation between the computational complexity
(number of Giga-Flops) and the accuracy of the architectures.

some of the problematic images belonging to the ImageNet validation set being classified
by GoogLeNet.

The scientific community started to realize that the depth of the architecture is of great
importance when it comes to solve complex problems which require high accuracy (see
figure 1.4). In particular, deep neural networks are good at learning multiple levels of
feature representation. Basic features, such as edges and corners, are detected in the first
layers and then combined to allow the network to extract more complex features, like
curves or shapes. As the depth increases, so does the level of abstraction. This concept is
known as representation learning [7].

As a consequence, the networks which became popular in the following years have
more and more layers, such as ResNet [66] and VGG [178]. ResNet stands for Residual
Network. It is a very deep network proposed by He et al. and it comes into more variants.
The most famous ones are ResNet-50 (which counts 50 layers) and ResNet-101 (101
layers deep). The depth and the complexity of the networks represents its major drawback.

VGG network also comes into two different variants, VGG-16 and VGG-19. The
former has 16 layers with learnable weights: 13 convolutional layers and 3 fully connected
layers. VGG-19 has 19 layers with learnable weights: 16 convolutional layers and 3
fully connected layers. In both networks, all convolutional layers have filters of size 3-
by-3. VGG networks are larger and typically slower than other pretrained networks (in
particular with respect to GoogLeNet and ResNet).

Finally, another well known architecture is Inception-v3 [185], which is an evolution
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of the GoogLeNet architecture. Compared to GoogLeNet, Inception-v3 is larger, deeper,
typically slower, but more accurate on the original ILSVRC data set. Inception-v3 is 48
layers deep.

During the last years researchers keep proposing deeper and deeper architectures, with
up to even billions of parameters [158,217], as using networks with more layers achieves
higher accuracy most of the time. One of the main drawbacks with these deep networks
is the vanishing gradient problem and the generalization capability. In particular, the van-
ishing gradient problem might occur in large networks with certain activation functions,
as going toward deeper layers the gradient of the loss function approaches zero, making
hard for the network to learn. For example, the sigmoid function takes a large input space,
but returns only values between 0 and 1. Even when the input values change significantly,
the corresponding variation in the output space will be minimal, leading to a small deriva-
tive. The solutions range from using a different activation function (e.g. ReLU), to exploit
batch normalization to normalize the input. Using residual connections can also help mit-
igate the vanishing gradient problem. Indeed, the family of Residual Neural Networks
(ResNets) allow to train very deep neural networks by adding residual connections be-
tween the input of a residual block and its output (after the activation function is applied).
In this way the initial information is also carried through the network, together with the
output of each block.

To overcome these issues and to address various types of tasks, during the years the
architectures proposed have grown in complexity. Contrary to feedforward neural net-
works, Recurrent Neural Networks (RNNs) allow some of the neurons to be connected to
backward layers. They are specially designed to work on sequences, or in general on data
where time takes high importance. They are extensively exploited for speech recognition
and language processing with context information. In particular, the Long Short Term
Memory (LSTM) and the Gated Recurrent Unit (GRU) variations are the most widely
used, as they have improved memory capability with respect to vanilla RNNs.

Since AlexNet was introduced in 2012, the interest of the scientific community moved
from classic machine learning algorithms to deep learning. The intrinsic flexibility of
Neural Networks allowed researchers to propose an overwhelming number of different
architectures, as well as new training techniques. As a result, even if Neural Networks
can achieve outstanding performance, using deep learning to solve a specific problem
requires to adopt an existing solution and adapt it in a heuristic way.

1.6 Dealing with scarcity of data
Convolutional Neural Networks (CNNs) are a very effective and versatile tool to address
a wide range of Computer Vision classification problems.

There are numerous remarkably large datasets available for such purpose, like MNIST
[106], CIFAR-10/CIFAR-100 [100, 101] ImageNet [173], MS-COCO [121], but also for
Natural Language Processing [29, 128, 209] and Audio/Speech analysis [3, 108]. These
datasets are very helpful in providing the huge amount of samples required to train a
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Figure 1.5: Interesting image taken from [173]. It shows representative validation images
that highlight common sources of error. For each image, the ground truth is displayed in
blue, followed by top 5 predictions from GoogLeNet (red wrong, green right).

CNN, but most of the times we want to train a CNN on our own data. Collecting enough
observations is time-consuming and sometimes impossible. For this reason, specialized
techniques to deal with sample scarcity have been proposed in literature and widely stud-
ied during the last years.

Two of the most important categories of approaches to tackle this problem are cer-
tainly Data Augmentation (already mentioned in section 1.3) and Transfer Learning.

Data Augmentation is about variance: while the exact number of samples is strictly
tied to the particular case-of-study, it is central for the data to have a good diversity to
allow the network to efficiently generalize the object of interest. In other words, the more
diversity the network can see, the better the results. Data Augmentation tackles the prob-
lem by creating new samples out of the available ones. In particular, new data is generated
through the application of several transformations to the original images. Scaling, trans-
lation, rotation, flipping, noise addition, perspective transform, color balance are some of
the most widely used transformation when it comes to augmentation [207]. To this end,
these techniques can be regarded more as a way of simulating new capturing conditions
rather than new samples for the categories of interest.

One of the most popular data augmentation techniques is PCA Color Augmentation,
which was used during the training of AlexNet [102]. They performed PCA on the set of
RGB pixel values of the training set and modified the single images by adding multiples
of the found principal components, where the magnitude is proportional to the relative
eigenvalues. The magnitude is also multiplied by a random variable from a Gaussian
distribution with mean 0 and standard deviation 0.1. This means that to each RGB pixel
Ixy = [IRxy, I

G
xy, I

B
xy]

T they added a quantity [p1, p2, p3][α1λ1, α2λ2, α3λ3]
T , where pi and

λi are ith eigenvector and eigenvalue of the 3× 3 covariance matrix of RGB pixel values,
respectively, and αi is the random variable, which is drawn again for the next image.
This technique significantly reduced the top-1 error training of AlexNet, as it allows the
network to be invariant to light changes, especially to color and intensity of the scene.

Anyhow, generic data augmentation [190] is not the only successful data augmen-
tation technique. Indeed, more advanced techniques have been proposed recently. In
particular, Goodfellow et al. [49] show how to generate new samples after being trained



1.6. Dealing with scarcity of data 13

Figure 1.6: Some examples of synthetic data created with CycleGANs for emotion clas-
sification [175]. The new data are then integrated with existing images to augment the
original dataset.

on samples drawn from some distribution in their seminal work Generative Adversarial
Networks (GANs). An example of images generated with CycleGAN [227] for emotion
classification can be seen in figure 1.6. Rogez and Schmid [168] propose a scheme that
artificially inflate the data set by using domain specific synthesization to produce more
training data. A similar approach has been proposed by Peng et al. [157].

A very different approach to the same task is the one taken by Transfer Learning [211].
In this case the problem is solved by means of a machine learning method where a model
developed for a task is reused as the starting point for a model on a second task, or, as
defined in [152], transfer learning is the improvement of learning in a new task through
the transfer of knowledge from a related task that has already been learned. From a more
practical point of view, transfer learning involves the usage of pre-trained models (which
are usually general enough to cope with different tasks) as the starting point, allowing to
re-train just a part of the network to improve the performance on a specific setting.

The advantages are twofold. First, training a network from scratch is a time and
resource consuming task, in particular if such training happens on a very large dataset.
Secondly, training a network for a more general purpose task allows to use huge database
freely available, like ImageNet [32] (which counts millions of labelled images belonging
to a thousand different categories).

Transfer learning comes in two different flavours. The first takes the name of Develop
Model Approach. This technique uses a related predictive modelling problem (for which a
lot of data is available) to train the network. Next, the model is reused as the starting point
for a model of our task of interest, usually after a fine tuning step. The second approach,
which is the most common one, takes the name of Pre-trained Model Approach, and
makes use of model trained on large and challenging datasets. The use of datasets with a
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great variety of objects allows to train networks which are capable to generalize different
task. Again, these network are used as a starting point and re-trained to cope with the
specific case-of-study that must be dealt with.

1.7 Convolutional Neural Networks for the Industry
During the last years the machine learning algorithms have been widely adopted by the
manufacturing industry to improve and optimize the production processes. In particular,
the Industry 4.0 paradigm focuses on exploiting smart sensors and machines to collect
more data in the production phase to further improve the performance of the current pro-
tocols. Indeed, machine learning techniques are exploited to find patterns in complex
production setups and optimize the overall process, by using continuous inspection, pre-
dictive maintenance, quality improvement, process optimisation, supply chain manage-
ment, and task scheduling [163].

One of the main problems when adopting such intelligent machine learning algorithms
in the industry is that these methods have to be transferred to specific applications. The
extreme flexibility of deep learning algorithms and the large amount of already trained
architectures available in the literature allows us to adopt machine learning to solve a
vast range of problems in the industrial field. However, most of the existing solutions are
either aimed to solve a specific task, either they are theoretical methods that have to be
adapted to actual industrial application systems. For these reasons, when dealing with
real-world scenarios it is never trivial to implement and insert deep learning techniques in
the pipeline of an already existing application.

Among all possible tasks that can be addressed using machine learning, and in partic-
ular deep learning techniques, during my PhD I focused mainly on supervised learning.
When dealing with classification tasks, the best choice is to exploit Convolutional Neural
Networks (CNNs). CNNs are powerful tools, as they greatly reduce the time otherwise
spent on creating hand-crafted filters and easily outperform every other machine learning
algorithms for classification tasks.

Having a solid dataset, free of ambiguous images or mislabelled observations is prob-
ably the most important ground rule. Data labelling is a very long an tedious process,
since it can require to manually label thousands of images, and it is not rare to find some
images that are very hard to assign to a certain class with respect to another. These obser-
vations are what could damage the most the creation of a dataset, and have to be handled
carefully. It is crucial, yet often not trivial, to define specifically which features an image
has to present in order to belong to a specific class. The more these features are different
among the classes, the easier the classification task will be. The instances presenting at
the same time features belonging to different classes can be treated in different manners.
If the image presents features belonging to multiple classes in equal measure, then it has
to be discarded regardless. If instead the image shows mostly characteristics typical of a
certain class, it can be either added to that class either discarded.

Adding this ambiguous image can teach the network to have a certain level of toler-
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ance during the classification, but if the number of uncertain images is large, it is more
difficult for the classifier to draw a line between the classes. For these reason during the
labelling phase I would recommend to discard such samples, as long as a large amount
of images are available for all classes. In the post implementation phase, or in the actual
real-world scenario, the classifier will probably find plenty of such observations, but the
output of the network will naturally reflect how much such images belong to each class.

As most of the times the classes have different importance, and the misclassification
errors have different weight, it is better to manage these instances in the post classifica-
tion phase. An example could be the quality assessment of a certain product, if the object
presents a defect or malformation it has to assigned to a specific class. Misclassifying
a defective product as one good for sale has a different impact than doing the opposite.
Having multiple customers to complain about a product because of its quality or its be-
haviour could lower the reliability of the company, and this is often worse than simply
discarding a defectless product.

Another advantage in simply discarding ambiguous images involves that solving a
simpler classification task is highly correlated with the complexity of the network required
to address the task. Using a more shallow network implies to shorten the inference time,
a feature often required when classification has to occur in real-time.

To fasten the labelling process, one of the most common techniques is to train a sim-
ple network on a subsample of the data, that have been manually assigned to each class
carefully, and then to let such network classify the remaining unlabelled data (similarly
to what happens when using Reinforcement Learning). This approach can be useful if the
number of images to classify is very large, but when we adopted it we found that it is has
a side effect to not underestimate. Even if the classifier will assign a lot images correctly,
they still need to be manually checked and eventually be reassigned or discarded. The
real problem is not to detect such images, rather than how the new labelled images can
introduce a bias in the user manually reassigning them. The only explanation we could
find of this phenomenon is that as a person has to manually inspect hundreds or thousands
of images (often during the same day), if the number of ambiguous images is high, the
person charged with the task often tends to ”accept” the suggestion of the network, instead
of discarding such images.

Such inconvenience introduced a delay in the creation of the database, as the images
had to inspected multiple times and even by different people. For this reason I would
suggest to use this technique very carefully, at least for datasets where a lot of images
need to be discarded.

As already mentioned, if we want to address a classification task, CNNs are usually
the best choice. Unfortunately, having large and accurate networks that have been trained
on millions of images can be rarely useful in an industrial application.

The main reasons limiting the usage of pretrained networks in industrial applications
concern the type of classification task, the data format and the inference time. In partic-
ular, using a network trained to recognize handwritten digits, as in the MNIST dataset,
will most likely perform poorly if it is used to distinguish images of animals. Another
significant difference can be the size of the images used to train the network with respect
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Figure 1.7: Convolutional neural networks are largely exploited in the supervised learning
field. Among multiple possible strategies, this chart shows one of the best ways to tackle
this problem in an industrial application.
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to the resolution of the images available in our specific industrial setup. Finally, what is
probably the most important feature for an industrial application is the time required by
the network to classify new images.

Anyway, pretrained network can be often adapted to solve a different classification
task. This usually implies to use transfer learning, cropping the network and keeping the
first layers, where numerous filters have been trained to detect a large range of features.
This solution still presents numerous problems: as already mentioned, the size of the
images of our dataset can be significantly smaller or bigger, and adapting such images to
the size required as input by the pretrained neural network might create artifacts or harm
the quality of the data. Another issue can be the number of channels (or depth) of the
image: it is not rare that industrial cameras exploit extra channels, for example to store
the near-infrared (NIR) capture of the object. This means to have images with two or
four channels (two if the image is grayscale, four if if it is an RGB or HSV, plus the NIR
frame). Most pretrained networks only allow the inputs to have one (grayscale) channel
or three (RGB) channels, so the extra information coming from infrared has to be ignored.

One of the most problematic issues is the inference time: even if with transfer learning
we can discard most of the pretrained network parameters and train a new network pre-
dicting the class of a single image with impressively shorter time, such network is often
not the fastest one. Having so many nodes (or filters) in the first layers most likely im-
plies that the network does not exploit all of them. This means that the network trained by
using transfer learning, even if it usually achieves very high accuracy, is not the optimal
architecture that can be used, as most like there exists a network with less parameters and
shorter inference time that can reach the same performance. A short inference time is
of crucial importance not only for real-time applications but also for embedded systems.
The complexity of the network, the prediction speed, the battery and the memory used to
store the model are all highly related, and optimizing the size of the networks is vital to
exploit these technologies in small portable devices.

For all these reasons the adoption of state-of-the-art CNNs networks to solve super-
vised learning problems has to be tackled very carefully, and when the classification has
be in real time or requires very short time for processing, it is more advantageous to train
a new network from the start. Using an ad hoc solution allows to take into consideration
all the variables and aspects of the setup, as the dataset format, the complexity of the task
and the requirements on the accuracy and on the inference time.

Training your own network requires to draw a configuration of hyperparameters from
a very large pool of possible values and methods. The choice of the architectures is
probably the most important task and it usually requires multiple runs. Indeed, it is not
only sufficient for the architecture to achieve high accuracy, as it also has to prevent
overfitting. One of the most common strategies consists in looking for architectures used
on a similar task and adopt one of them. If the network performs poorly it might be
not complex enough to solve the specific task, and it probably requires to have more
parameters. This can be easily achieved by adding more filters to the existing layers
and/or changing their size, or even adding a whole new convolutional layer to the network
to improve its capability to extract high level features. If rising complexity of the network
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in different ways did not result in improving the performance, this might hint to a poorly
labelled dataset, where numerous images could have been assigned to the wrong class. A
flowchart showing how to exploit CNNs to solve an industrial classification problem can
be seen in figure 1.7.

Even if in the academic field a lot of time is spent in introducing a certain level of
novelty, for example by proposing new modules or training algorithms, the industrial
world is mostly application oriented, and problems have to be faced and solved in an
heuristic fashion. Most of the time is occupied in adapting existing solutions, rather than
creating new ones, especially when there are deliverables and deadlines. The need to
present a functioning classifier in a limited amount of time is the main reason why looking
for an existing similar model is preferable rather than blindly trying random architectures.

After finding a model that overfits on the dataset (which can be simply tested by
running the CNN on the test set) it is possible to prune the architecture to make it smaller
and faster. Actually it is not required for model to overfit, as long as it achieves high
accuracy on the training set after the training phase. A good technique is to decrease the
number of nodes and/or layers and to train such completely new architectures, in order to
find the smallest possible model able to match the complexity of the classification problem
that has to be solved.

The next step, after finding an architecture that optimizes the trade-off between the
complexity of the network and the test accuracy, is to even further reduce this model by
exploiting compression techniques. Chapter 2 presents a general overview of the most
popular compression methods.

The training phase is also very important: as changing training parameters can affect
the performance of an architecture, using a wrong initialization could mislead to think
that a particular architecture is not suited to solve the specific classification task. A good
approach is to start from the same parameters (e.g learning rate, optimization function,
decay, etc.) used to train the network we initially adopted (if it was possible to find
a network solving a similar task), and as we use a smaller architecture we need to adapt
certain values, for example the learning rate, to match with the complexity of the network.
The amount of possible hyperparameters and different techniques available sometimes
makes it extremely hard to find the best configuration. Even if some comparative studies
are available (for example it is known that ReLU activation and Adam optimizer are the
best choices as they make the network to converge faster and easier to train), most of the
time the experience of the developer and the complexity of the classification task are what
matters the most.

1.8 Thesis Contents
The content of this thesis is divided in the following way: chapter 1 provides a gentle
introduction to Neural Networks (section 1.1), in particular showing how Convolutional
Neural Networks (section 1.4) are the best choice to address Supervised Learning (section
1.2) tasks in Industrial Applications (section 1.7).
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Chapter 2 presents most popular compression methods and techniques. Compression
covers a crucial role in the development of industrial applications, as it allows to reduce
existing models such that they can be stored and run on embedded devices. Specifically,
section 2.1 considers methods concerning the network’s architecture, some examples are
tensor decomposition, knowledge distillation and compact networks. In section 2.2 there
are most popular pruning techniques, with a special consideration for filter pruning. Fi-
nally section 2.3 focuses on quantization algorithms to further compress the models.

In the second half of this thesis we present some practical problems coming from an
industrial environment. We show how we applied compression and other techniques to
such cases of study. Specifically, in chapter 3 we present different problems concerning
two industrial applications, respectively in sections 3.1 and 3.2, while in chapters 4 and 5
we show how we addressed such tasks.

As our contribution, we propose a novel technique to mitigate the lack of data in one of
the classes in a binary classification problem (4.2.1). The algorithm exploits a particular
type of data augmentation and it has been published in [45]. We also examine a more
complex problem: how to compress compact CNNs to perform camera tasks to deploy
them on a FPGA support. The advantage coming from this approach is the capability
to process images in real time on-board of the camera, extracting valuable information
like interesting areas on which further computing can then be run. We show a possible
implementation of these models, and we also propose a effective yet simple technique to
compress them and transfer them on embedded systems (5.2).

For both projects we present the experiments that have been performed using previ-
ously mentioned techniques and examine the results. We provide an accurate evaluation
of advantages and possible drawbacks of proposed methods, especially compared to other
similar methods published so far.

The last chapter contains final considerations and personal learning I acquired during
my PhD, as well as future works and challenges I would like to face.
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2
Model Compression Overview

The amount of research studies on the Deep Learning field during the last years has expo-
nentially increased. Neural networks are capable of unquestionable flexibility since they
can be exploited to solve an infinite number of tasks. The most stunning results from
studying these architectures is the capability to solve complex tasks, sometimes even bet-
ter than humans [138].

As a consequence, over the past few years, industrial applications have been exploiting
extensively the advantages coming from Deep Learning, in particular when using Con-
volutional Neural Networks (CNNs). The intrinsic flexibility of these networks makes
them widely adopted in a variety of practical applications, from medical to industrial. In
particular, image and signal processing tasks are well-suited for the convolutional archi-
tecture, therefore a huge number of Computer Vision solutions have been proposed in the
literature. Deploying a large and accurate model to perform a certain task takes consider-
able energy and space. Even if this might not be a problem during the training phase, it
becomes a big issue at inference time, especially if the model has to run on devices with
reduced computational resources or small storage space [126, 208].

This is the case with many modern applications, including IoT devices, smart sen-
sors and cameras, drones, robots, smartphones or any other kind of device characterized
by limited resources and low energy consumption requirements. For this reason, the
adaptation of inference networks to embedded systems has been covered by many re-
searchers [182], devising solutions ranging from architectures specially crafted for Field
Programmable Gate Arrays (FPGAs) [82,161] to techniques focused on low consumption
for wireless and mobile devices [218].

Searching for the best architecture to train over a certain task is not a trivial problem.
As large architectures lead to overparametrization and possible overfitting, using a too
shallow configuration certainly lowers the overall performance. Finding the best trade-off
between smallest network capacity and highest accuracy often requires many attempts
and good expertise.

Indeed, according to the type of task to perform, two main approaches are to be found
in literature. The choice is between training a small specialized network from scratch, or
compressing a large pre-trained network and adapting it for the task.

Given the wide range of existing algorithms used to compress Neural Networks, it can
be very challenging to categorize them into completely separated groups, and multiple
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hierarchies have been proposed.
Keeping in mind that usually a network is either compressed, either used as a starting

point to build another more performing model, we propose to partition the studies present
in literature into three main groups, namely:

• Architecture search

• Pruning

• Quantization.

We consider belonging to the architecture search group all the algorithms where an initial
architecture is modified. So, for example, looking for the smallest possible architecture,
introducing a new design for a certain layer, or using the initial network to train another
one, are all techniques which will be presented inside this section.

On the other hand, both pruning and quantization do not seek a new architecture,
but focus on modifying an existing model to reduce its footprint without affecting the
accuracy in a relevant way.

Pruning methods focus on removing unnecessary parameters from a model. These pa-
rameters can be weights, nodes or even whole layers. For sake of simplicity, we consider
removing a layer as searching for a completely new architecture, therefore we explore
these types of approaches within the related section.

The last group relates to quantization. While pruning reduces the number of param-
eters of a model, quantization instead reduces the amount of memory used to store such
parameters.

Even if compression algorithms can be semantically divided into groups, at implemen-
tation time there are no constraints on choosing only one method belonging to a single
category. Indeed, what most often happens is that multiple strategies are applied together
in a pipeline, in order to produce a model compressed as much as possible. As the num-
ber of publications on new compression algorithms grows noticeably every year, the way
it is possible to combine different techniques together also grows exponentially. At the
same time, this makes it extremely hard to compare the performance of such joint-way or
hybrid methods between each other.

Other barriers to comparison are the ambiguity of the architecture or the metrics used,
like choosing outdated architectures for comparison, or picking a dataset too small or not
complex enough [10]. Moreover, there might be different implementations of the same
architecture as the authors did now share their code, or different evaluation metrics, often
dependant on the implementation environment.

To overcome these problems it is of uttermost importance to clearly define which
evaluation metrics have to be used. The compressing ratio is defined as original size /
compressed size of the model, while another commonly used parameter is the number
of floating-point operations (FLOPs) performed by the network. Some papers misuse the
compression ratio term by not defining if it refers to the size of the model, to the number of
parameters or how many FLOPs have been been avoided. In other cases the compressing
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ratio is computed as 1 - (original size/compressed size). It is important to notice that the
number of FLOPs can variate across different implementation platforms and libraries, so
sometimes for the same architecture and dataset, different papers report different numbers
for the FLOPs value.

2.1 Architecture-Related Compression Methods
Given a determined dataset and a specific task, there is an infinite number of possible
architectures, and their related training processes, that can greatly perform over the pro-
posed problem. The scientific community mostly focuses on reaching the best results,
often regardless of time or resources constraints. In an industrial environment, unfortu-
nately, sometimes such limits require to find new and smart solutions just to solve a simple
task. Even if deep learning models are extensively used in many industrial applications,
time has a key role in this field. Looking for a performing network has to be done as fast
and as efficiently as possible. For this reason, most of the time it is not feasible to just train
a large range of network configurations, while also looking for the best hyperparameters
to match. Instead, it is of vital importance to reduce as much as possible the time spent
for architecture search. To accommodate such requirements it is very important not only
to start from an already almost optimal architecture, but also to use simple models that
can be retrained in a short time, if needed. Even if in some cases a lot of time can be spent
on searching for the best architecture (or the hardware available allows to train multiple
networks in parallel), the program still has to produce the output as fast as possible, since
it is often introduced in the online production pipeline.

On the other hand, one of the most important features when using deep learning to
solve industrial tasks is the level of accuracy. Reducing the inference time is strictly
related to limit the depth or complexity of the model used, leading to an unavoidable drop
in accuracy. To create a balance between performance and inference time of a network
the choice of the architecture has the absolute priority.

Fortunately, a lot of literature deals with the search of the best architecture, some-
times just to increase the performance, other times to reduce the model complexity. A
good strategy consists in looking for an architecture that has been used to solve a similar
task. If such architecture exists but after training it on our dataset did not fit our data too
well, the best strategy is to either add some layers and/or nodes and try this new, more
complex architecture, either to look for a completely different, deeper structure. In the
eventuality that after training the model instead performed well on our data, hopefully
even overfitting, we use such architecture as the starting point to look for a smaller one.
Even if the smaller network we are looking for is not intended to be transferred on em-
bedded systems, it is always a good practice to not exploit a complex network, but rather
to look for one that fits the data just right.

This section focuses on some of the most popular methods that target the architecture
of a network to make it more computationally efficient. In particular, tensor decompo-
sition focus on simplifying the tensor representation by factorizing the weight matrices,
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lightweight networks target the convolutional layers by modifying their structure, and fi-
nally knowledge distillation use the information produced by a complex trained model to
train a simpler one.

2.1.1 Tensor Decomposition
The computational cost during training and testing time of Convolutional Neural Net-
works heavily depends on the convolutional operations. As a consequence, a lot of effort
has been put on improving the efficiency of these operations [19, 136]. One of the tech-
niques most widely applied to CNNs is Tensor Decomposition [35, 71, 81, 104, 176].

The convolutional operation in 2D CNNs takes as input a 3D tensor where the first
two dimensions are the spatial dimensions (height and width), and the third dimension is
the number of feature maps, or channels (depth). The output is still a 3D tensor, where the
number of output feature maps, or depth, depends on the number of filters, or kernels, used
in the convolutional layer. The output spatial dimensions depend on the choice of stride
and padding, but usually they are similar to the input tensor dimensions. The convolution
kernel itself is a 4D tensor: the first two dimensions are the spatial dimensions, followed
by the input image maps and the output image maps. Tensor decomposition is usually
applied to the kernel tensor, consisting of the network’s weights, to reduce the overall
memory footprint.

Tensor decomposition is the application of Matrix Decomposition or Matrix Factor-
ization principles to tensors. Tensors are just the generalization of matrices, where a
single dimensional tensor is an array, a two dimensional tensor is a matrix, and when the
number of dimensions is higher than two it is usually just called a d-dimensional tensor
or a d-way array (with d ≥ 3).

Decomposing or factorizing a matrix into smaller parts is an old and well known
problem in mathematics. Transforming complex data in an equivalent, but smaller, repre-
sentation not only helps with analysing the data, but also provides a compressed version
of them. Probably the most known algorithms that are applied to decompose matrices are
the Principal Components Analysis (PCA) and the Singular Value Decomposition (SVD).

When dealing with tensors, such algorithms have to be generalized, with the advantage
that the mathematics hold for an arbitrary number of dimensions [99]. Both the CANDE-
COMP/PARAFAC (CP) [14, 62] and Tucker [192] tensor decompositions can be consid-
ered to be higher order generalizations of SVD and PCA. Other well-known algorithm
used for tensor decompositions are INDSCAL [14], PARAFAC2, CANDELINC [15],
DEDICOM [61], and PARATUCK2 [63].

Tensor decomposition methods are based on two important properties:

1. if a d-way tensor has Rank R = 1 it can be decomposed into the outer product of d
vectors;

2. the rank R of a tensor is defined as the minimum number of rank-1 tensors which
are needed to produce such tensor as their sum.
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Figure 2.1: Decomposition of a rank-1 matrix.

In the simplest case, given matrix A ∈ Rm×n with rank r ≤ min(m,n), the rank decom-
position of A can be represented as A = WH , where W ∈ Rm×r and H ∈ Rr×n. This
means that the spatial complexity can be reduced fromO(mn) toO(r(m+n)) if the rank
r is much smaller than m or n [33]. A graphic exemplification can be seen in figure 2.1.

The problem is that filters are usually far from having small rank, so they are usually
approximated by a low-rank representation before being decomposed. This approxima-
tion introduces an error that we want to minimize. Unfortunately, such approach leads to
a great loss in accuracy and can be usually applied only to fully connected layers [34].
A good low rank approximation of a matrix, instead, can be obtained by using SVD (see
figure 2.2), as most information of the filters is described by the singular values. Such
method has been proposed by Denton et al. in [35] where they propose to find an appro-
priate low-rank approximation for each convolutional layer through decomposition and
clustering based on SVD in order to take advantage of similarities between learned fea-
tures.

The principle for tensors is the same, if the rank is small, we can use a small number
of operations between vectors to express the tensor, for this reason tensor decomposition
is also defined as splitting a tensor into the sum of a finite number of rank-1 tensors. If
the rank of a d-way tensor is smaller than d, not only it takes less space, but it is also
computationally convenient to express it as its decomposition.

Ideally, we want tensors to have low ranks, such that they can be decomposed exactly,
or approximated, as the sum of few rank-1 tensors. One solution might be to force the
network to learn separable filters, but this poses a heavy constraint on the filter space, so
a more effective option is to force the network to learn filters with a low rank, such that
they can be decomposed or approximated.

One of the first tensor decomposition approaches has been proposed by Rigamonti et
al. [167] to speedup codebook learning. They decompose a bank of filters X into linear
combinations of a shared bank of separable (decomposable) filters Y . The decomposi-
tions of filters within Y are independent (components are not shared). In the same year
Jaderberg et al. [81] applied the method to CNNs and improved it by approximating the
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Figure 2.2: Singular Value Decomposition of a m× n complex matrix A. U is a m×m
unitary matrix, Σ is a m× n rectangular diagonal matrix with non-negative real numbers
on the diagonal (called singular values of A), and V is a n×n complex unitary matrix. If
A is real then U and V are orthogonal matrices, and SVD is also defined as UΣV T . The
number of non-zeros singular values is the same as the rank (r) of A. Taking the k largest
singular values (with k < r) allows to produce the best approximation of A having rank
k.

4D kernel tensor as a composition of two 3D tensors. Figure 2.3 shows the difference
between the conventional convolution, the decomposition proposed by [81] and the CP-
Decomposition of [167]. In [104] Lebedev et al. use the canonical polyadic decomposi-
tion (CP-decomposition, also called as CANDECOMP/PARAFAC model) [99] combined
with the fine-tuning of the entire network, achieving considerable speedups with minimal
loss in accuracy.

Tensor decomposition has gained increasing interest in the scientific community, and
a large number of works have been published on the subject. Unlikely, current decompo-
sition methods are more suitable for fc layers than convolutional layers, as fc layers have
more redundancy and can be better compressed [33]. For these reason we do not focus
further on such techniques.

2.1.2 Lightweight Networks
Another somehow related approach consists on re-designing the convolutional layers, cre-
ating architectures that take advantage of small filters to reduce the memory footprint.
Such networks are usually referred to as Lightweight CNNs or Compact CNNs.

In this category belong the ResNet series [43, 67, 204] and NASNet series [123, 187,
229, 230]. Additionally, the MobileNet series [73, 74, 174], ShuffleNet series [132, 222],
and EfficientNet series [188,189] achieve impressing performance while being lightweight
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Figure 2.3: Figure from [167]. Gray boxes correspond to 3D tensors of a CNN. Full
convolution applies one filter to the input tensor S to compute a single value of the output
tensor T . Jaderberg et al. [81] (b) approximate the initial convolution as a composition of
two linear mappings with the intermediate map stack having R maps (where R is the rank
of the decomposition). Each of the two mappings computes each target value based on a
spatial window of size 1×d or d×1 in all input maps. Finally, CP-decomposition [167] (c)
approximates the convolution as a composition of four convolutions with small kernels,
so that a target value is computed based on a 1D-array that spans either one pixel in all
input maps, or a 1D spatial window in one input map.

[119].
The idea of using small filters, in particular 1x1, was already exploited by Network

in Network [117] and by GoogLeNet [184, 186] and their inception modules. In the
literature, several efficient network architectures have become popular due to their com-
pact size and low computational requirement [27]. SqueezeNet, developed by Iandola et
al. [79], is a small CNN based architecture. The authors exploit three strategies: they
replace 3× 3 filters with 1× 1 filters, they decrease the number of input channels to 3× 3
filters, and they use downsampling late in network, so convolutional channels have larger
inputs. They also define what is called a Fire module (figure 2.6) which substitute the con-
volutional layers by using a Squeeze and an Expand module. SqueezeNet has 50 times
less parameter than the AlexNet and achieves the same accuracy on the ImageNet dataset.
Moreover, using the compression technique introduced by Han et al. [58], authors reduce
the size of SqueezeNet to less than 0.5 MB, which is 510× smaller in size compared to
the original AlexNet model.

Another popular work has been published by Howard et al., who introduced Mo-
bileNets [74], an efficient architecture specifically thought for mobile devices. To create
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Figure 2.4: Traditional convolution. Given in input tensor hxwx3, for example an RGB
image (top row left, in blue) a 3x3x3 filter (orange) is passed over the input. The depth
of the tensor and of the filter have to be the same, while the window (height and width of
the filter) can be arbitrary. As the filter passes over the input, it produces a feature map
with depth one (top right). If multiple filters are used (bottom) the resulting tensor will be
made of d feature maps, where d is the number of filters used.

the lightweight NN, MobileNets merge the idea of separable convolutions and depth-
wise convolutions, proposing their depthwise separable convolutions: a combination of
depthwise and 1 × 1 (point-wise) convolution. To create the depth-wise separable fil-
ter, standard filters are replaced by two layers: depth-wise convolution and point-wise
convolution (see figure 2.5). The paper also introduces two hyper-parameters: the width
multiplier α and the resolution parameter ρ. The parameter α can improve the computa-
tional cost and the number of network parameters, while ρ is applied to the input image to
reduce the computational cost by an order of ρ2. MobileNets are tested on various tasks
like classification, object detection showing improved results over other existing methods.
The MobileNets architecture has 22 times less parameters than SqueezeNet, while achiev-
ing 60% top-1 accuracy (better than both SqueezeNet and AlexNet). In 2018 Sandler et
al. introduced MobileNetsV2 which revised the previous version. A similar solution has
been adopted by another popular network called ThinNet [13].

Another computationally efficient CNN based architecture has been proposed by Zhang
et al. [222], where they introduce new operations: pointwise group convolution and chan-
nel shuffle. ShuffleNet achieves approximately 13× speed-up over AlexNet with similar
accuracy. Tested on the ImageNet and the MS COCO [121] dataset, ShuffleNet reported
better performance than the MobileNets. The MS COCO (Microsoft Common Objects in
Context) dataset is a large-scale object detection, segmentation, key-point detection, and
captioning dataset (the dataset consists of 328K images).

In another research, Huang et al. [76] introduced DenseNet, in which each layer of the
network is connected to every alternate layer. DenseNet has several observable benefits
like reduction in the number of parameters, feature-reuse and in lowering the vanishing



2.1. Architecture-Related Compression Methods 29

Figure 2.5: Depthwise separable convolution introduced in [74]. There are two steps. At
the top row we can see a depthwise convolution: the depth of the feature map this time
has the same depth of the filter used. The output on the right (hxwx3) is produced by the
filter (3x3x3, in this case) passing over the input (hxwx3, in blue). After this operation a
pointwise convolution (middle row) is used to reduce the depth and to produce the same
output of a conventional convolution. If d 1x1 filters are used (bottom row) we have
a tensor of depth d. The depth, or number of channels is 3 in this case, but it can be
arbitrary.

gradient issue. DenseNet contains multiple dense blocks each dense block contains mul-
tiple layers. The experiments results with SVHN, CIFAR10, CIFAR100 and ImageNet
datasets shows that DenseNet has performance improvements over other existing archi-
tectures [27]. Table 2.1 reports the number of parameters, FLOPs, and accuracy on the
ImageNet dataset of the popular efficient networks mentioned above.

Such solutions are only some of the networks proposed in the last years. They are
usually targeted for mobile devices, like [85, 199], but can also be implemented in large
networks to reduce their size.

2.1.3 Knowledge Distillation
The idea behind Knowledge Distillation (KD) is to exploit a large trained network, called
teacher, to train a smaller student network on the same task.

The concept has been introduced by Baciluă et al. in 2006 [12], when they used a
large ensemble of models to label a large unlabelled dataset. Then, they trained a small
neural network on the newly labelled data. This new network can be considered as a
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Figure 2.6: SqueezeNet Fire module [159].

Model # Param (M) FLOPs (M) Accuracy (Top1)
SqueezeNet 1.25 1700 57.5
MobileNets 4.2 569 70.6

MobileNetsV2 3.4 300 72.0
ShuffleNet 3.4 527 71.5

ShuffleNetV2 5.3 292 73.7
DenseNet-201 (k = 32) 22 295 77.42

Table 2.1: Comparison of some Compact CNNs on the ImageNet dataset as reported
in [174].

compression of the original setup, since it is several times smaller than the ensemble and
it has almost no loss in performance.

In 2015 Hinton et al. in [70] further explored this concept by identifying the knowl-
edge to learn as the mapping between input and output vectors, rather than the architecture
and the learned parameter values of a single model. In particular, they discovered a lot of
information is contained in the output vector and in the logits, the input values fed to the
output layer. When the network produces the vector of probabilities related to a single
observation, we expect the probabilities of belonging to the wrong classes to be much
smaller than the correct class. Still, the distribution of these output probabilities holds
plenty of information about the network generalization capability. They exploit the class
probabilities produced by the complex, or ”cumbersome” model (as they called it), named
soft targets, to train the student model.

The output vector of a neural network trained on a classification task is usually the
output of a softmax layer, which takes the logit zi for each class and gives a probability
qi, by comparing zi with the other logits. They introduce a term T called temperature to
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Figure 2.7: Model Hinton’s knowledge distillation.

produce a softer probability distribution over the classes:

qi =
exp(zi/T )∑
j exp(zj/T )

(2.1)

The distillation process tunes the final softmax using a certain temperature, such that the
teacher model produces a suitably soft set of targets. The same temperature is set when
training the student model.

The temperature T is usually set to 1, but higher values of T produce a softer proba-
bility distribution over classes. They found that the method can be significantly improved
by forcing the student not only to match the soft targets, but also to produce the correct
labels. For this reason the objective function is split into two. The first part consists of the
cross entropy with the soft targets and the same high temperature for both models. The
second part is the cross entropy with the correct labels. The best results are obtained by
using a weighted average of the objective functions with a considerably lower weight on
the second one.
Figure 2.7 shows the basic model of knowledge distillation proposed by Hinton and his
team. An important result they obtained was that their method works remarkably well
even if the dataset provided to the student network during the training lacks any observa-
tions of one or even more of the classes.

The knowledge distillation paradigm has received increasing attention from the re-
search community in the recent years. It is a powerful method to compress neural net-
work, improving the accuracy of low-precision networks and being widely applicable to
a lot of models [142].

Distilling the knowledge from large powerful deep neural networks involves decisions
on three different components: the type of knowledge to learn, the distillation algorithm
to use, and which teacher-student architecture to deploy [51].

The information transferred by Hinton is considered a feature-based knowledge, where
the output layer and the logits are used to teach the student network. This concept has
been further extended in Fitnets [169] by using also the output of previous hidden layers
(feature maps). Since then, a lot of other feature-based works have been published, for ex-
ample, focusing on what to put the attention to [77,215], using also the parameter sharing
of intermediate layers [224] or proposing a cross-layer knowledge that assigns adaptively
proper teacher layers for each student layer [21]. Feature-based knowledge algorithms
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are the most common, but knowledge can be also response-based [22, 141], where only
information from the output layer is used, and relation-based, that further explores the
relationships between different feature maps [156, 210].

Another important topic when applying knowledge distillation consists in which ar-
chitectures to use. Most works focus either on which knowledge transfer scheme to
use between the two models [42, 150, 198], either on designing their respective archi-
tectures [52, 127, 203].

How to transfer the teacher knowledge to a student is one of the key steps. There
are different possible distillation schemes, according to when the the knowledge is trans-
ferred. Offline distillation is the vanilla version, where the teacher model is first trained
on a set of samples before the distillation takes place. Methods using the offline scheme
[70, 169] focus on the transfer process. Online distillation [20, 53] instead aims to im-
prove the student performance by training both models at the same time. One last scheme
is called self-distillation, where same architecture is used both for the teacher and the
student [144, 220].

Given the complexity of the KD paradigm, a large number of distillation algorithm has
been proposed. From using the adversarial networks [50] to generate synthetic data to use
by the teacher [23,125], to transferring the knowledge of more than one teacher to a single
student [41, 212], as well as using graphs [111], or even exploiting quantization [160].

Knowledge distillation has gained rising popularity in the last years. Even if tradition-
ally it is used on classification problems and visual recognition, it has also been widely
exploited for natural language processing (NLP) [124] and speech recognition [18]. It
has also plenty of other applications: for example it has been used to preserve data secu-
rity [198], to fight adversarial attacks [155] and also to avoid catastrophic forgetting [109].

2.2 Pruning
Fitting large inference networks to embedded systems is a topic that attracted the atten-
tion of many researchers in the recent past. One possible solution involves deploying the
DNN over the cloud [113], where there are no limits on computational power and mem-
ory. Keeping the model on the cloud means to send the data to process and wait for the
results. This process raises many problems: there is not only the latency introduced by the
exchange of information (which highly depends on the available internet connection), but
also introduces privacy issues, as we might be sending sensitive data. One last drawback
is the total cost of ownership (TCO) of the data center, since the model is not stored and
run locally.

For these reasons, when using small devices or embedded systems, it is more conve-
nient to process the data locally on the device rather than sending them to a server for
processing, fetching the results, and then making the decision [27]. On the other side,
running a DL model on a mobile system implies to take into consideration the available
storage space, the energy used to run the model, which highly affects the battery, and the
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computational capability, which is related to the time to produce a response. In particular,
the time required for a DRAM operation is several times higher than having the network
stored on the cache. This implies that it is utterly important to have very light models with
as few as possible parameters.

Fortunately, already in 1990 LeCun [107] has verified that not all the parameters
of a neural networks are important, meaning that most of the trained models are over-
parameterized [34]. When such parameters are removed, or pruned, the network achieves
great compression, often with minimal performance drop.

During the last years, great effort has been put on techniques that compress existing
networks in such way. In particular, the compression is achieved by reducing the number
and/or precision of each weight. Methods that focus on edges/nodes removal are usually
referred as Pruning methods [10], while algorithms that target the precision fall into the
Quantization category [30, 58, 164].

Pruning comes in a lot of different flavours, and sometimes it is difficult to actually
understand which method performs the best [226], especially considering the high incon-
stancy of performance for different application scenarios [130]. Most pruning algorithms,
though, belong to two main categories: either weight pruning either filter pruning.

Both methods have their advantages and drawbacks, and will be analyzed in the next
sections.

Even if there are numerous works published tackling both approaches, there is always
a common pipeline that most methods follow. The first step of course concerns deciding
what to remove: pruning is often referred also as network sparsification, and the object
targeted for pruning reflects the granularity of sparsification. For example, pruning can
be element-wise, vector-wise, block-wise or even layer-wise. Weight pruning and filter
pruning are the most used approaches, and they correspond to element-wise and block-
wise sparsity. The second decision concerns how to decide what is superfluous. For
example a connection that has weight zero, or a filter which weights have very low mag-
nitude. This step is very important, as pruning random connections or nodes can damage
the trained network beyond repair [213]. Most of the algorithm use one of the following
criteria [148]:

• using magnitude-based pruning, looking at the weights or filters with the smallest
absolute value [114]

• forcing the network to learn small weights, exploiting the regularization mechanism
(e.g. l1, l2, lasso) [112, 197, 200]

• analyzing how removing a certain parameter affects the network (sensitivity analy-
sis) [39, 88, 110, 146]

The next step involves where the pruning occurs: can the algorithm be run on all of
the network or should only some layers be taken in consideration? The pruning process
halts according to a threshold, for example we can decide to prune a certain percentage
of weights or filters from specific layers, for layer-wise pruning methods, or set a global
limit and let the algorithm pick which layers to target.
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Finally after every pruning operation usually we need to assess if there has been any
loss in accuracy, and if possible to recover the performance loss.

2.2.1 Weight Pruning
An early approach to pruning was the Biased Weight Decay [60], but the pioneering works
on weight pruning are the Optimal Brain Damage (OBD) [107] and the Optimal Brain
Surgeon (OBS) [64]. These methods reduced the number of connections based on the Hes-
sian of the loss function, which achieved higher accuracy than magnitude based pruning
methods (e.g.weight decay). In particular, OBD estimates weight importance by making a
local approximation of the loss with a Taylor series and uses the 2nd derivative of the loss
with respect to the weight as a criterion to perform a type of weight sharing constraint.
OBS algorithm improves the previous work by preserving the off diagonal values of the
Hessian, as they claim these terms to be important for pruning. As 2nd order derivatives
are expensive to compute and the approximation proposed may not be sufficient to rep-
resent the full Hessian, other approaches use instead the 1st order derivative [134, 191].
Another famous work on weight pruning is the deep compression proposed by Han et
al. [58, 59], demonstrating how a large portion of weights can be removed without af-
fecting the network performance. Their simple method performs an iterative ablation on
weights with small absolute magnitude, followed by a fine-tuning step. They also further
compress the pruned network by grouping the connection that survived using Huffman
coding and exploiting quantization (see figure 2.8).

A following work by Guo et al.introduced dynamic network surgery [55] to reduce
the complexity of the network by connection pruning. The proposed method has two-
part, pruning and splicing. In pruning, the unimportant weight connections are removed
while in splicing, if any time the pruned or mistakenly pruned parameters are found to
be important, splicing enables the recovery of such connections. Pruning and splicing are
performed in an iterative way. Different from Han’s algorithm, which needs more than
4800K iterations to get a 9x compression rate, dynamic network surgery only requires
700K iterations to get 17.7 times compression rate with similar accuracy. In 2017 Zhu
et al. [226] proposed a simple magnitude-based gradual pruning method that can be in-
corporated in training and requires minimal tuning to achieve the preset level of sparsity.
The results show that the proposed algorithm decreases the number of non-zero elements
in the network by pruning small magnitude weights.

Recently, the paper published by Frankle et al. [40] has received increasing atten-
tion. They claim that in dense, randomly-initialized, feed-forward networks there win-
ning tickets: subnetworks that achieve test accuracy comparable to the original unpruned
network. They identify a ticket by training a network and then pruning its smallest-
magnitude weights. The difference with any previous work is that after the pruning pro-
cess they recover the original random initialization used before the same network was
trained. Finding such configurations highly depends on the random initialization, usually
requiring many attempts, but generally deeper network have a higher chance to contain
such subnetworks. Winning tickets are less than 10-20% of the the size of many fully-
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Figure 2.8: Pruning and quantization scheme of deep compression proposed by Han [58].
After pruning the network, the weights are quantized. This promotes weight sharing, and
by using a Code Book the network can be efficiently compressed.

connected and CNNs architectures for MNIST and CIFAR10, without any performance
loss. They are recently gaining a lot of interest in the scientific community, since there
is an interesting implication: winning tickets can be transferred to work on a different
tasks [133, 145, 153, 194]. They can been found also in architectures trained for object
recognition [47] and pre-trained bert networks [24]. Another important consequence of
this work is that it is always better to start with a larger network and prune it, rather
than using a smaller configuration from the start, as large trained networks are publicly
available, and they can be fine-tuned and then compressed for the specific task.

Sparse pruned networks achieve higher accuracy than their unpruned dense versions,
and also work better than having the sparse architecture re-trained from scratch [33], but
the connections to remove have to carefully chosen.

2.2.2 Filter Pruning
Weight pruning techniques remove single connections by setting some weights to zero,
but the resulting sparse matrices cannot exploit BLAS libraries and are hard to implement
on FPGA [58]. A simpler and more structured manner is to prune whole kernels from a
Convolutional Neural Network. This procedure is often referred as filter or kernel pruning
or sometimes trimming [75].

There is a large amount of literature about filter pruning, but one of the most natural
grouping has been proposed by Lin et al. in [118]: in this paper they separate existing
methods considering what the pruning algorithm takes into consideration to assess which
filter to remove. In particular, they distinguish methods focusing on property importance
and others concentrating on adaptive importance.

In the first group we find methods which prune filters according to intrinsic properties
of the networks, and do not modify the training loss.
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In 2016, Hu et al. [75] proposed a layer-wise method which analyses the neuron out-
puts to compute the Average Percentage of Zero (APoZ) activations after the ReLU map-
ping. The idea is to remove neurons with an APoZ larger than one standard deviation
from the average APoZ of the target trimming layer. Instead of looking at the outputs,
the method proposed by Li et al. [114] measures the relative importance of a filter in each
layer by computing the sum of its absolute weights (i.e. its L1-Norm). A more recent
approach has been suggested by He et al. [68]. It expands the norm-based filter criterion
by computing the Geometric Median (GM) of the filters within the same layer. The idea is
that filters close to the GM can be represented by the other filters, and therefore are good
candidates to be pruned. The authors illustrate how the smallest norm filters can be very
important, as they could actually be larger than zero or they can have a small norm devi-
ation. In 2020 Lin et al. [118] proposed a method called Filter Pruning using High-Rank
Feature Maps (HRank). They claim that average rank of multiple feature maps generated
by a single filter is independent from the distribution of the images. Filters which generate
lower-rank feature maps are less important and can be removed first in a one-shot manner,
requiring only a few fine-tuning epochs after the pruning phase.

Adaptive importance methods like [120, 129] usually achieve better compression and
speed-up than property importance based ones. On the other hand, these techniques
change the loss function up to the point that retraining becomes a separated problem,
usually requiring to search again a new best set of hyper-parameters.

There is a last class of filter pruning algorithms that deserves to be mentioned. Some-
times filter pruning is exploited to find the best sub-network from an original one. It is the
case of [44] and [180] where they use PCA to compressing both length and width of the
network. Their goal however is more related to the architecture search topic, rather than
to compress an existing network without the need to retrain it completely.

Methods aiming to remove parameters from the network, regardless where the con-
nections or the filters are, can be considered global. Usually there is only one threshold
to be set, such as the number of filters or the compression rate to achieve. Some methods
focus on specific layers, usually relying on certain statistics to pick the most promising
ones. Rather than global methods, these layer-wise pruning algorithms require more than
one threshold or other parameters to be set, making them less robust.

Finally, pruning is usually performed in three stages: (i) preparation of an appropri-
ately large network either by training it from scratch or by adapting an existing trained
network using transfer learning; (ii) removal of superfluous parameters and (iii) fine-
tuning to recover the loss of accuracy. The second and third stages are often repeated
until the network reaches the desired level of compression. Some methods, however,
perform pruning in a one-shot fashion by removing a chosen set of weights in a single
pass [118].

Filter pruning presents several advantages with respect to weight pruning. It is a more
structured way to remove parameters from the network, and for this reason it is often
called structured pruning while weight pruning is referred as unstructured pruning. As
pruning the weights gives more control on what to discard from the architecture, pruned
connections are never actually removed, but rather just zeroed-out. Even if this can reduce
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the memory required to store the model, the number of operations (both Multiply Accu-
mulate (MACs) and Floating Point operations (FLOPs)) does not change. Multiplications
are still performed, the only difference is that the matrices are sparse. Accelerating such
operations requires specific libraries and even specific hardware. On the other hand, each
operation performed by a filter pruning algorithm corresponds to creating a new archi-
tecture with one (or multiple) filter missing, skipping all the multiplications previously
related to such filter. The number of parameters involved by removing a kernel is surely
more significant than removing a single connection. This results in filter pruning algo-
rithms to remove more parameters in a single fashion than any weight pruning techniques.
Removing a batch of weights, rather than a single one, might cause the accuracy to drop
much faster. For this reason filter pruning techniques have to pay much more attention to
the performance loss and quickly recover it if necessary. Anyway, the advantages of filter
pruning over weight pruning, such as the higher model compression ratio, the reduced
number of memory accesses and the efficiency from a hardware perspective, makes struc-
tured pruning the best approach for mobile implementation [135].

2.3 Quantization
The weights of CNNs are typically stored as 32-bits single precision floating point (FL)
numbers. Using a smaller number of bits to represent the weights not only results in
reducing the memory required to storage the model, but also in lowering the power con-
sumption [131]. For this reason, half-precision and integers (16 bits) are commonly used.
Such low-precision can be even further decreased, by using only 8, 4, 2 or even 1-bit rep-
resentation to store the weights. The adoption of fixed point representation for the network
weights and data can significantly reduce memory footprint and computation resources,
but this often comes with a price: less precision most likely leads to lower accuracy. To
recover the loss in performance quantized networks are usually fine-tuned to settle on the
new weights.

There are multiple data objects that can be quantized in a neural network, not only
weights and activations, but also error [225], gradient, and weight update [202]. There is a
plentiful number of quantization techniques proposed in the literature, proposing different
levels or quantization [30, 54], also designed for specific devices [201]. For instance,
ternary neural networks Mellempudi et al. [139] ternarize pretrained full precision models
and constrain activations to 8 and 4-bits. In [143] the authors propose to use non-uniform,
base-2 logarithmic representation to encode weights, taking advantage of the non-uniform
distribution of weights and activations in a trained network.

The maximal level of quantization is given by network binarization: the work in [164]
proposes two efficient approximations of standard CNNs, namely Binary-Weight Net-
works and XNOR-Networks. In Binary-Weight Networks the filters are approximated
with binary values, while in XNOR-Networks both the filters and the input to convolu-
tional layers are binary, so that convolutions use primarily binary operations. Other meth-
ods involving binarized networks can be found in [31, 78, 137, 177]. Other approaches
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such as [219] propose to jointly train a quantizer together with the CNN, instead of using
some fixed quantization schemes. Such technique can be applied to both weights and
activations, with an arbitrary-bit precision.
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Industrial Applications
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During my PhD I have been working to find and optimize solutions for industrial ap-
plications for a specific company. In particular, I studied extensively the best setups for
different Convolutional Neural Networks to solve image classification problems. CNNs
are a very effective and versatile tool to address a wide range of Computer Vision tasks,
and they are largely exploited in industrial applications. Contrary to the academic envi-
ronments, where data are usually manually collected from few experiments, this process
is often automatized by industrial machines, where thousand of images can be easily col-
lected and stored to be used during the training. Even if a certain degree of human inspec-
tion is always required, for example to correctly label each image or to discard inaccurate
acquisitions, there is an undeniable advantage in dealing with industrial machines when
creating a proper dataset. Indeed, one of the most important requirements to properly train
a CNN is to have a large dataset available, with a good variance of the observations. Since
the data acquisition step is usually not a problem, most of the focus is usually centered
at maximizing the accuracy of the model, while minimizing the inference time. Finding
the best trade-off between performance and number of parameters of a model is the main
topic of this thesis, and in this part I present some of the problems that I had been working
on during these years.
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3
Related Work

3.1 Fruit processing

One of the industrial applications of computer vision algorithms is fresh produce classi-
fication. Classifying fruit and vegetables results particularly challenging, especially due
to interclass similarities and irregular intraclass characteristics [57]. The sensors used
to acquire the images, as well as the type of preprocessing and the selection of relevant
features play a very important role for a successful analysis of the acquisitions. Current
literature on the topic covers problems like quality assessment and robotic harvesting, but
the algorithms are usually very specific and use extremely limited datasets.

Machine learning techniques like Support Vector Machine (SVM), K-Nearest Neigh-
bour (KNN), Decision Trees, and finally Artificial Neural Net-works (ANN) and Con-
volutional Neural Networks (CNN) are the most exploited methods to extract features
meaningful for the classification. The work proposed by Sun et al. [181] suggest that
exploiting hyperspectral information can improve the performance of the classification
algorithm. Similar works use such methods in the food industry [17, 26].

In table 3.1 we can see some interesting papers on fruit and vegetable classification.
Most existing algorithms usually focus on classification [11,223], quality assessment [16,
193], fruit harvesting [87], object detection [28], bruise detection [84], disease detection
[56] and grading [4].

year Fruit/veg Dataset size Classifier Accuracy Ref
2015 Olive 77 Fisher Discriminant Analysis (FDA) 100.00% [46]
2015 Fruit (5 classes) Transfer Learning 50.00% [103]
2016 18 fruit 1653 NN and Deep Learning(DL) 99.88% [223]
2017 Tomato - ANN 98.50% [214]
2018 Lettuce 320 CNN. 86.00% [16]
2018 Dates 8000 Caffee Net 99.24% [72]
2018 Tomato 150 BPNN 100.00% [196]
2018 Orange 355 Naive Bayes, ANN, Decision Tree 93.45% [195]

Table 3.1: Comparison of machine vision techniques for fruit and vegetable classification
inspired by [57].
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3.2 Signal processing
Given the incredible results CNNs have achieved when working on 2D signals, 1D CNNs
have recently been proposed and already reached state-of-the-art performance levels in
several applications, such as personalized biomedical data classification and early diag-
nosis, structural health monitoring, anomaly detection and identification in power elec-
tronics and motor-fault detection [94].

For example, many researchers have tried to use deep CNNs for fault diagnosis of
bearings, where the data are collected by multiple accelerometers. One of the most com-
mon approach consist in simply reshaping the 1D signal (vibration) into a matrix (vibra-
tion image) [221]. Another technique applies the Discrete Fourier Transform (DFT) to the
vibration signals collected from two accelerometers [83]. For electrocardiogram (ECG)
beat classification and arrhythmia detection, the common approach is to first compute
power- or log-spectrogram to convert each ECG beat to a 2D image [171, 228]. After
the data are transformed in such a way, it is possible to simply feed the matrices to a
conventional CNN. The drawback of these approach is that 2D CNNs require a conspic-
uous size of data for the training process, while for many practical 1D signal applications
labelled data are often scarce. Another limitation consists on the hardware side, as 2D
CNNs usually require a GPU for the training process, while most of 1D applications are
simple enough to use only the CPU. Finally, given their high computational complexity
they are not suitable for real time applications on embedded system with memory and
power constraints.

The first compact and adaptive 1D CNNs to operate directly on patient-specific ECG
proposed [98] by Kiranyaz et al. in 2015 overcame these problems. In a very short time
it became popular and the same approach has been used not only for early arrhythmia
detection in electrocardiogram (ECG) beats [96, 97], but also for other purposes, such as
structural health monitoring and structural health detection [1, 2, 5, 6], high power engine
fault monitoring [80], real-time monitoring of high-power circuits and damage detection
in bearings [95].

Peak Detection A typical application of 1D CNNs is Peak detection. In particular the
approach in [140] proposes peak detection and the peak integration in raw liquid chro-
matography–mass spectrometry (LC–MS) data. Authors developed a pipeline named
peakonly, which excludes low-intensity noisy peaks and shows good results in the de-
tection of true positive peaks. First some interesting ROIs are identified within the signal,
then a CNN classifies ROIs into three classes: (1) ROI does not contain peaks (2) ROI
contains one or more peaks (3) ROI contains something like a peak, but a specialist is
required. A second CNN similar to U-Net is used for a segmentation problem to tell
whether the point in a ROI corresponds to the peak or not.

The method presented by Kanazawa et al. [86] introduces a technique to generate
fake chromatograms using a generative adversarial network (GAN). Results show that
such synthetic data are effective for training and evaluating peak-picking neural networks.
In [92] the authors present an automated peak detector based on Faster R-CNN [165]
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Figure 3.1: Example of a 1D CNN to classify ECG data.

optimized for the task. The peak detector architecture is considerably simpler than the
architecture used for natural image classification since peak detection involves only two
classes (i.e., peaks and non-peaks) and the geometric patterns of peaks (like relative size
and sharpness) are the only information needed by the network. Finally, the work pro-
posed in [151] involves the usage of a CNN to identify human-labelled peaks in ChIP-seq
(chromatin immunoprecipitation followed by sequencing) data. This task is particularly
challenging since sequencing errors, local bias and biological variability make complicate
solving the peak-calling problem.

There are several differences between one and two dimensional convolutional neural
networks. In figure 3.1 we can see an example of a classic one dimensional CNN used to
classify if the electrocardiogram signal presents signs of arrhythmia. While conventional
CNNs work on tensors, all the operations in a single dimension CNN are array operations,
simplifying tremendously both the forward and backward pass. As a result most of the
time they do not need dedicated hardware for the training phase, since they are easier
to implement and faster to train. Another advantage is that there is usually no need for
complex architectures, as using only a few hidden layers with a few neurons is enough to
reach and even surpass the performances achieved by other methods that do not exploit
neural networks.

One dimensional CNNs are often not considered, as the community focuses most of
the attention on its 2D counterpart, but it is one of the most powerful tools when dealing
with signals and 1D data.

Ellipse fitting and detection In the literature, the amount of applications proposed for
CNNs in image processing tasks is huge [38]. Some of the most popular tasks include
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image segmentation [179], feature extraction [25, 206], object recognition [36, 165].
Among the wide range of algorithms, a number of works employ CNNs for ellipse

detection and fitting. This can been as addressing the peak detection task in the two
dimensional space. Some of them rely on a well-known CNN to preprocess data in order
to identify the regions of interest where an ellipse is present. For instance, in [205] Faster
R-CNN is first used to get the regions where ellipses may lie. In [116] Mask R-CNN is
first used for pupil region segmentation, then estimation of pupil localization parameters is
performed introducing anchor ellipses and ellipse regressions. Finally, Li et al.developed
a Gaussian Proposal Networks [115]. Such model learns to propose bounding ellipses as
2D Gaussian distributions on the image plane. An interesting application for detection
of knots in sawn lumber is presented in [154]: the authors adapted Faster R-CNN with
to model elliptical objects with a Gaussian function, and extended the Gaussian Proposal
Network architecture. The Wasserstein distance is employed in the loss function to predict
the precise locations of elliptical objects.
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Fruit Image Classification

One of the first tasks I had been working on during my PhD was the classification of
images of fruit. In particular, I worked on training models to classify the goodness of
different fruit, especially olives and dates. The new classifier had to be integrated with
the already working software of a multisensorial optical sorter, an industrial machine that
provides optimized sorting of fruits and vegetables. The machine has ultra-high-speed
image processing with a resolution of up to 0.1 mm/pixel, and can detect even the smallest
and most difficult external quality defects.

The image acquisition process occurs in a controlled environment by this industrial
machine (see fig. 4.1). The fruit is dropped at one end of the sorter on a carousel, which
is made of parallel rolls, rotating the fruits in place while also moving them forward. The
fruit enters in an obscuration box containing cameras and synchronized lights. The RGB
camera and the infra-red sensor (NIR) are synchronized with the illumination system (the
NIR image has to be captured in the dark). By adjusting the speed settings of the machine,
it is possible to take between 7 and 20 images for each fruit. This results in a collection
of images from different angles, as the machine forces the fruit to spin around their major
axis (see figure 4.2). Images of the positions where the fruit was missing are automatically
discarded by using a simple threshold (this is not a problem as the background is black).
The acquired images are cropped according to the olives borders, where the size of the
largest image is 86× 96× 3 pixels, while the smallest one is 58× 56× 3 pixels.

After collecting the images, they have to be classified in real time, as the next and final
part of the machine has to separate the fruit according to their quality, usually by driving
them to different directions by means of compressed air.

The main task consisted in creating a model for the classification of a particular variety
of green Turkish olives called Edremit. A small portion of the olives presented some kind
of malformations which made them unqualified for selling. In particular, two kind of
defects occurred, the first one could be identified as the presence of gibberish parts, a
deformity which often happens in many other kind of fruit, modifying the usually smooth
surface of the olives in an unpleasant way. The gibbosity often was more visible around
the pedicel, where the fruit is attached to the tree. A certain degree of deformation was
still considered normal and acceptable. Such defect was defined by the suppliers as Takoz,
and we maintained the Turkish name for the olives presenting this kind of feature (see fig.
4.3).
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Figure 4.1: Image acquisition system. The conveyor belt is specifically designed to place
and align the olives on the same axes, while rotating them in place. After the images
are captured there is not much time before the olives have to be sorted: the classification
algorithm has to predict the correct class in real time.

Figure 4.2: Multiple images from different angles of the same olive. The number of se-
quences depends on the settings of the machine. This particular fruit presents some inter-
esting features: firstly it has a long petiole, while it is rare to even find fruits with a small
one still attached. Secondly, the fruit shows some cuts (second and third acquisition).
Such features have both to be learned by the network as not relevant to the classification
task. To achieve this, it is vital for the network to see plenty of such instances.
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Figure 4.3: Some examples of olives with the Takoz malformation. This defect does not
affect the goodness of the olive, but only the external appearance. This fruit can be still
used for other purposes, e.g. the production of oil.

Even if only a small portion of the olives belonged to this category, a even smaller part
presented another type of defect. Some of the olives displayed a furrowed surface, often
coupled by patches of darker skin, similar to bruises. Such kind of rare defect was named
as Wrinkled and fruit presenting such feature had to be discarded.

As already mentioned in section 1.7, the creation of the dataset is one of the most
important tasks to produce accurate models. Some of the acquisitions had to be discarded.
In particular, olives presenting both types of malformation could not be included in the
dataset. Another problem was the degree of defect for the Takoz class. The humps showed
by the image had to bee prominent enough to be selected as not saleable without possible
doubt. Some of the olives have been damaged before the image acquisition, and the only
way to distinguish if the olive belonged to the wrinkled quality or the darker spots were
hollow parts, was using the near infrared (NIR) channel see figure 4.4. For all these
reasons, only the images presenting the defects (or the lack of them) in unmistakable
manner were included in the dataset.

Since the number of defective olives was significantly smaller than the normal, round,
smooth fruits, collecting the images for the database creation lead to have unbalanced
classes. This problem was even more prominent for another breed of olives called Pink
that we had to classify. These kind of olives, reddish in color, only presented the wrinkled
malformation, or at least only the fruit we were provided with did. In particular, the
number of Pink olives we had available for the data collection process was extremely
small, to the point where it was impossible to train a network able to find the defective
reddish olives. The client required to train multiple models for different tasks, for example
to distinguish good-for-sale olives only of the Edremit variety, or to classify the quality
when both the green and reddish olives are processed at the same time. Even if the Pink
olives are similar to the green type, they still are smaller and present higher values for the
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Figure 4.4: An example of an olives presenting darker spots. From the RGB (left) or the
grayscale (middle) images it is not easy to understand if such dark patches are bruises or
just a discoloration, but using the NIR (right) we can see that the surface of the fruit is
actually smooth.

red channel, so the network needs to see a good amount of such olives (see figure 4.5).
To face such problem, we exploited data augmentation and the large available dataset of
green olives to forge new images of the Pink quality. This method has been published
in [45] and is further discussed in section 4.2.

4.1 Classifying Edremit olives

At the beginning of my PhD I worked extensively in finding the best architectures to
solve different classification tasks on fruit images. In particular, one of the requests of
the supplier was to classify olives of the Edremit variety using CNNs, achieving both
small inference time and high accuracy. I was required to train multiple models to classify
between the three possible classes (good, takoz and wrinkled), but also to focus only on the
distinction between olives good for sale and olives presenting only the Takoz deformity.
Such models needed to have a very small number of parameters and FLOPs, while still
reaching high accuracy. Such limitations depended on the implementation hardware, as
exploiting a GPU in industrial machine is expensive, especially when maintenance is
required and because we need to use licensed external libraries.

The faster approach to obtain high performance classification methods is to find a
network trained on a similar task (for example small networks with high accuracy on CI-
FAR10) and try the same architecture on the available data. Such process is particularly
time consuming, as a lot of possible configuration exists, especially when considering
what optimizer to use, the optimal batch size, the degree of data augmentation (how many
transformations) to implement, which activation function works the best, the type of pool-
ing to apply and so on.

Even if such parameters can be decided in a heuristic way, the number of layers and
the relative number of filters play an important role in the model complexity and the
resulting inference time. Before trying any possible compression approach, it is vital
to try many possible architecture configurations and compiling options, to find the best
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Figure 4.5: On the left there are the images of an olive before and after the compensation.
After the compensation process the olive looks a lot more orange than what someone
would like it to be. Anyway, comparing the images with the physical olives we can see
that the compensation is correct with respect to the actual color of the olives. On the right
picture we can see how the color of the olives after the compensation is closer than the
real color of the fruits. The olives belongs to two different breeds, the Endremit veriety,
which is the one we have in our dataset, and the Pink variety, that is reddish.

trade-off between model size and accuracy.
Even when a small trained network performs well on the data, there might be some

issues depending on the image acquisition process. As the images of the fruit are acquired
by using a specific machine, sometimes the settings of the camera or different version of
the software can result in having very different captures of the same fruit in a different
machine of the same series. Such inconvenient often requires to resume the training
process and add new images presenting the new variance.

Unfortunately, the final version of the architectures implemented in the sorter cannot
be disclosed due to secrecy, but advanced draft of possible configurations is presented in
section 5.3.2. On the other way, it is not necessary to have highly optimized architectures
to be able to appreciate the advantages coming from using handmade models. Even dur-
ing my master’s thesis [166] I have achieved significant results by working only on the
Edremit dataset.

In particular, I studied how the complexity of the network affects the prediction time
and the accuracy, and I compared standard architectures widely used as AlexNet, GoogleNet,
ResNet and various versions of VGG networks with small custom networks that I de-
signed and trained personally. Table 4.1 shows the accuracy and inference time of some
of the most popular neural network, that have been used to classify the images of Edremit
olives in two classes: good or not-for-sale (in case of presence of the takoz deformity).

Finally, I implemented and trained from scratch a new custom architecture, by using
only 5 convolutional blocks and a softmax layer for the prediction, similar to this:

conv max pool relu conv relu avg pool conv relu avg pool conv relu conv softmaxloss
5x5x3x32 3x3 - 5x5x32x32 - 3x3 5x5x32x64 - 3x3 4x4x64x64 - 1x1x64x2 -

stride 1 stride - stride 1 - stride 2 stride 1 - stride 2 stride 1 - stride 1 -
pad 2 pad [0 1 0 1] - pad 2 - pad [0 1 0 1] pad 2 - pad [0 1 0 1] pad 0 - pad 0 -
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time per image # layers best on olives top-5 error
AlexNet 0.0391 8 0.9881 19.2
VGG-F 0.0457 8 0.9877 18.8
VGG-M-2048 0.0683 8 0.9915 15.8
VGG-M-128 0.0781 8 0.9793 18.4
VGG-S 0.0890 8 0.9923 15.3
VGG-VD-16 0.2299 16 0.9965 9.9
GoogleNet 0.1209 22 0.9905 12.9
ResNet 0.1734 50 0.9912 7.7

Table 4.1: In this table we can see the results of using state-of-the-art architectures to
solve the classification problem on the Edremit dataset. The networks have been adapted
by using transfer learning. In particular, only the output layer has been replaced, and
they have been fastly retrained freezing the filters in the first layers. Notice that the best
accuracy is achieved by VGG-16, but it takes about 230 ms to classify one single image.
Even considering the smaller version VGG-S, about 90 ms are required to process a single
image.

From my work emerged that the size of the input plays a crucial role in the complexity
of the network, as a lower number of layers can be used to extract and combine significant
features across all the input image. The number of channels, instead, is what impacted
the most on the accuracy, as using grayscale images lead to lower performances than
using the RGB version, and a small further improvement could be obtained by using
the NIR channel too. Since the small inference time was a strong requirement in the
deployment of the models, using only one channel (grayscale images) and resizing the
images from 64 × 64 pixels (a size similar to the original) to 32 × 32 pixels was the
best combination to use to reduce the model complexity. While this solution implied to
lose a lot of information and lower the performance, using basic data augmentation and
doubling the training set by simply mirroring the images, greatly improved the overall
accuracy. The resulting networks achieve 98.80% accuracy while needing only about
1.6ms for predicting a single image. This work is important to underline how most of
the times it is unfeasible to exploit pretrained networks in an industrial context, especially
when there is the need of real time algorithms. The small inference time is even more
important in this context due to the requirements of the application: as the fruit rolls and
expose different sides, it is vital to classify multiple views of the same olive in a short
time, as there might be only one or two acquisitions where the defect is noticeable.

4.2 Classifying both Edremit and Pink
Within modern Deep Learning setups, data augmentation is the weapon of choice when
dealing with narrow datasets or with a poor range of different samples. However, the
benefits of data augmentation are abysmal when applied to a dataset which is inherently
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Figure 4.6: Sample of Edremit (top) and Pink (bottom) images. They are affected by
similar defect patterns (wrinkled) which must be detected (middle and right). However
Pink are more rare and it is difficult to gather a significant dataset. Would it be possible
to design a training process exploiting the abundance of Edremit to better classify Pink ?

unable to cover all the categories to be classified with a significant number of samples.
To deal with such desperate scenarios, we propose a possible last resort: Cross-Dataset
Data Augmentation. That is, the creation of new samples by morphing observations from
a different source into credible specimens for the training dataset. Of course specific and
strict conditions must be satisfied for this trick to work. In the paper [45] we propose a
general set of strategies and rules for Cross-Dataset Data Augmentation and we demon-
strate its feasibility over a concrete case study (olive image classification). Even without
defining any new formal approach, we think that the preliminary results of our paper are
worth to produce a broader discussion on this topic.

The main idea underlying this paper is to exploit data augmentation and transfer learn-
ing to train a model able to classify both Edremit and Pink olives. Specifically, we are
dealing with the case where very few samples are available for the family of objects to be
classified, still large datasets exists for similar, but not identical, objects. Within this sce-
nario we are seeking to exploit the information from the second set (and from networks
trained on it) to obtain a network capable of classifying objects from the first set. For
this process to be feasible a few conditions must hold. Broadly speaking, our ideal sce-
nario provides objects that are mostly similar between the two datasets except for some
features. Such set of inter-dataset distinctive features must be disjoint with the set of the
inter-category features that are to be used for classification within each dataset. These
inter-category features, in turn, must be shared between datasets.

While, at this stage, it is difficult to generalize some cross-dataset data augmentation
approach, with this paper we try to define some basic principles and to define a general
recipe to adopt to deal with similar scenarios. In particular, we are interested in comparing
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different combinations of augmentation strategies to see which one yields better results.
In order to perform this task, we apply cross-dataset data augmentation to solve a real-
world problem: the classification of olive fruits that can be affected by specific defects. By
doing this, we supply additional collateral contributions by designing two novel network
architectures to cope with fruit defect detection with special attention to performance and
speed.

4.2.1 Cross-Dataset Data Augmentation

According to the generally adopted semantic within the Deep Learning field, data aug-
mentation is any synthetic alteration of dataset images, performed with the goal of inflat-
ing the number of samples to be supplied to the training process.

We introduce the concept of Cross-Dataset Data Augmentation (CDDA), a term used
to describe a novel pre-processing strategy involving the transfer of information between
two datasets by means of image processing. The term recalls the idea of a data aug-
mentation step which, instead of processing the samples internal to a dataset, works by
transforming samples between a source and a destination dataset.

The main assumption is the existence of a strong relation between the source and
destination datasets. That is, we assume that they share most of the features that are sig-
nificant to perform a certain classification task, while they differ with respect to features
that can be ignored by the classifier.

Specifically, we model each dataset as a (possibly infinite) set of features (see Fig.
4.7). Some feature are global, such as color histograms, orientation of the blob, PCA

Dataset A Dataset B

Dataset Characteristic Features (DCF)

Category Characteristic Features (CCF)
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Figure 4.7: A graphical representation of the main concept underlying Cross-Dataset Data
Augmentation.
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components, etc. Some others are local, such as intensity maxima, corners, and so on.
Given two datasets, A and B, each of their features can be deemed to belong to one

of the following three sets:

• Dataset Characteristic Features (DCF): these are features that distinguish one dataset
from the other. The idea is that these features should not take a role in the classifica-
tion we want to perform. For instance, if we want to classify vehicles with respect
to the size of the wheels, then the number of the wheels is a DCF. In fact, it distin-
guishes bikes from cars, still it is not a constraint if the classification is about the
size and not the number of wheels. Of course, this does not mean that DCFs are
not distinctive in general. Of course a classifier trained to distinguish bikes from
cars will exploit them. They are just not distinctive with respect to the specific
classification task we are dealing with.

• Category Characteristic Features (CCF): these are features that are important for
the classification task we are considering. For CDDA to work, CCFs must be shared
between datasets A and B. Going back to the example with vehicles and wheel
sizes, the radius of the tire is a DCF and the number of spokes could be one, de-
pending on the classifier. In principle a classifier that uses CCFs to distinguish A
from B should not work as they are preserved between the two datasets.

• ”don’t care” features: these are simply the features that are in the datasets, but are
not significant for a specific classification task.

Let A and B two strongly related datasets, with B that contains too few samples to
be effectively used to train a CNN. We assume the two datasets to be strongly related if
there exists a set of features in common (CCF) and a disjointed set of features that allows
to distinct samples belonging to the two (DCF). Then, the CDDA is some image process-
ing function fCDDA : A → B that transforms samples belonging to the dataset A into
samples that could belong to the dataset B. This is achieved by applying a transformation
to the DCF features of the sample. This results in a new dataset with higher cardinality
that could be used to train a more efficient CNN. Our bet is that the newly forged dataset
allows to train more efficient networks which outperform networks trained using stan-
dard data augmentation strategies. Of course the nature of fCDDA strongly depends on
the characteristics of A and B and it is not possible to give a general rule at this point.
However it is possible to experiment the effectiveness of the concept with a real-world
case.

In our specific case-of-study, we address the problem of low cardinality dataset in
an image classification task. While a more in-depth introduction of the datasets can be
found in Section 4.2.2, we anticipate that the dataset contains olive images belonging to
two different families. Figure 4.8 shows some sample images from the dataset. As will
be shown in Section 4.2.4, the number of samples are not enough to achieve satisfying
accuracy level, in particular when compared to the results obtained on a similar dataset
(Green olives dataset). On the other hand, the Green dataset can be considered strongly
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Figure 4.8: Some samples drawn from the dataset used in the experimental session. The
rows show, respectively, sample from the Red dataset (good on the left, wrinkled on the
right), from the Green dataset and the same images from the second row transformed
according to the proposed Cross-Dataset Data Augmentation approach.

related to the Red dataset and thus a CDDA approach can be used to transform samples
from the Green dataset to sample that belongs to the Red dataset.

In this first stage of the study, we decided to focus on the two most trivial differences
between samples belonging to the two datasets, namely the shape and the colour of the
olives. Thus, we define a two-step transformation function. Both transformations include
a learning phase in which a standard representation of that particular feature is learned.

In the first step, we compute a set of parameters tied to the geometry (the shape) of
the olives. In particular, after the extraction of the boundary from the images, we fit a
bounding box and retrieve both the two perpendicular axes and their orientation. Then,
we compute the mean bounding box representative of the red olives used to compute the
affine transformation between each green olive bounding box to the mean red olive one.
This results in the creation of several reddish-shaped green olives.

To deal with the colour difference, we simply learn the mean colour histogram for
each channel and then apply a histogram equalizer in order to match the colour histogram
of the green olives with the mean colour histogram of the red ones. The third row in
Figure 4.8 shows the result of the application of these two steps to the olives in the second
row.
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4.2.2 Datasets Overview

The olives data evaluated in our paper consists of two fruit varieties: Endremit olives
(characterized by a greenish texture) and Pink olives (which are more reddish).

We created a test bed to compare the performance of the proposed data augmentation
strategy with respect to some of the more well-established data augmentation techniques.
In particular, we tested a set of different datasets (which are the result of different pre-
processing strategies) on both pre-trained networks (through transfer learning) and ad hoc
networks, trained from scratch. The performance are assessed in terms of classification
accuracy. In the proposed case-of-study, the datasets contain olive images belonging to
two different categories, the ones labelled as Good and the the ones labelled as Wrinkled.
The former contains defect-less olives, while the latter contains olives with wrinkles on
the surface.

The first dataset (which will be referred to as Green) contains 14340 green olives, of
which 7580 belongs to the good category while 6760 are wrinkled. The second dataset,
which is much smaller, contains a different type of olives, which will be called the red
ones. The Red dataset consists of 108 olives, divided into 60 belonging to the good class
and 48 which show surface wrinkles.

As introduced in Section 4.2.1, our Cross-Dataset Data Augmentation counts two
independent pre-processing steps that are pipelined together in order to transform a nu-
merous but different dataset of images (the Green dataset) into the less-numerous dataset
containing red olives (see figure 4.9). We will refer to this dataset as the Green2Red (G2R
in shorts) dataset.

The performance of each net is assessed against eight different datasets. Each dataset
is a combination of olives took from the Green, the Red and the Green2Red datasets (some
examples are shown in figure 4.10). Images contained in a dataset are usually splitted into
three subsets. The first, the most numerous one, contains the images which will be used
to learn the weights of the net and is referred to as the training set. Basically, these are the
sample data used to fit the model. The second is the validation set. It contains the sample
data used both to provide an unbiased evaluation (at least at the beginning) of a model

Figure 4.9: How a Green olive is transformed to be a sample of the Red type. In our
case, the shape (step 1) and the color (step 2) are the only two features that separate the
observations between the two datasets.



58 4. Fruit Image Classification

Figure 4.10: Images belonging to the Red class (top row) and to the Green class (mid-
dle row). The last row shows how the same Green images have been transformed into
synthetic samples for the Red class. For all three categories, the first image from the left
displays olives from the Good class, while the rest of the images correspond to olives with
are not good for sale and need to be discarded.

fit on the training dataset and tuning model hyper-parameters. The last set is the test set,
which contains the sample data used to provide an unbiased evaluation of the final model.
Each network has been trained and tested on the following aggregated datasets.

• Green: the networks are trained and tested only on olives contained in the Green
dataset. The green dataset contains a large number of samples, giving a basic idea
of the performance that can be achieved in this specific case-of-study in the best
possible scenario.

• Red: the dataset contains all (and only) the olives belonging to the Red dataset. The
images are divided into the three sub-datasets introduced above, training (90%),
validation (5%) and test (5%). Like for the previous one, the performance achieved
on this dataset should be used only as a reference for the worst scenario for this
particular case-of-study.

• Test 1 (Green+Red): in this test, the dataset contains olives from both the Green
and Red dataset. Red olives are distributed consistently among the training, the
validation and the test set (with a 8 : 1 : 1 ratio).

• Test 2 (Green|TRed): the dataset contains all the olives belonging to the Green
dataset, which are splitted into a training and validation set, while the test set con-
tains only red olives.
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• Test 3 (Green|VRed|TRed): the difference between the previous dataset and the
current one is that a subset of red olives is used both for validation and test purposes,
while the training set contains only Green olives.

• Test 4 (G2R|TRed): in this test, the training and the validation set images are picked
from the Green2Red dataset (i.e. green olives after the proposed preprocessing
steps), while for the testing phase we used only red olives.

• Test 5 (G2R|VRed|TRed): in the fifth test we train the networks on the Green2Red
dataset, while the red olives are used in both validation and test set.

• Test 6 (G2R+Red|VRed|TRed): in the final test, we split olives belonging to the
Red dataset among the training, the validation and the test set. Like in Test 1, red
olives are consistently distributed with the same ratio.

Each test has been created to answer to a specific question. In particular, test 1 to
3 should answer to the question: are the two dataset similar enough to allow networks
mainly trained on the most numerous dataset to perform well on the less numerous one?
On the other hand, test 4 and 5 show how the proposed approach tackle the problem of
low sample number datasets in our specific scenario. All datasets have been augmented
with scale, random rotations, PCA transformation, flipping and translation.

The cross-dataset data augmentation and the tests on the neural networks (pre-trained
nets and the ad hoc ones) are implemented in Matlab using the Neural Network Toolbox.
Both the source code and the datasets are publicly available on the authors web pages.

4.2.3 Network Architectures
To assess the efficacy of the proposed cross-category feature transfer framework, we
compare the classification accuracy achieved by the current state-of-the-art pre-trained
networks for image classification alongside with the results achieved by two custom net-
works developed and trained from scratch for the specific task of defective fruits detec-
tion. In particular, we compare the results using the following architectures: AlexNet,
GoogleNet, ResNet-50, VGG-16, VGG-19 and Inception-v3. All the architectures are
desctibed in section 1.5. All the networks have been trained on the ImageNet database (or
on a subset of it).

Furthermore, we propose two novel network structures to tackle our specific case-of-
study. A discussion about the reasons that lead us to develop the ad hoc networks can
be found in Section 4.2.4, while now we provide some insight on the network architec-
tures. The first proposed architecture counts 6 computational blocks and will be referred
as FruitDef. The first 4 blocks are convolutional blocks. In particular, odd blocks contain
a convolutional layer followed by a max-pooling layer (which halves the previous layer
dimension) and finally an activation layer (ReLU). The even blocks are pretty much the
same, but we use average-pooling as pooling layer. The fifth block contains only 2 lay-
ers: a convolutional layer and a ReLU layer. While the last block is a fully connected
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Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Green+Red | TRed Green|TRed Green|VRed|TRed G2R|TRed G2R|VRed|TRed G2R+Red|VRed|TRed

FruitDef 80.157 59.175 59.461 85.591 86.387 98.782

FruitDefV2.0 82.479 62.899 63.227 86.555 88.866 98.739

AlexNet 89.748 95.582 96.301 97.991 97.629 96.504

VGG16 90.555 95.537 94.139 98.396 99.581 97.699

VGG19 94.685 88.730 89.859 98.744 98.814 98.773

GoogleNet 96.892 96.093 98.372 99.650 99.650 99.028

ResNet50 96.683 97.350 96.373 98.605 98.117 99.744

Inception-v3 97.301 98.465 98.601 99.930 99.841 99.744

Table 4.2: Performance achieved by several networks in terms of classification accuracy.
Test 4 to 6 show the results on the dataset created using the proposed data augmentation
approach.

layer with a softmax layer which yields the classification result. The first 3 convolutional
layers counts 32 filters of dimension 4 × 4, while the last two have 64 filters of the same
dimension.

The second network (FruitDefV2.0) counts 8 macro-blocks. The last two blocks are
the same as the simpler version ones, while the first 6 blocks are convolutional blocks.
Differently from the network introduced before, only block 2, 3 and 6 contain a pooling
layer (average, max and average respectively). In block two, we use two dropout layers
(at the beginning and at the end of the block) with respectively 35% and 45% dropout
percentages. Each block but the last one contains an activation layer (ReLU) right after
the pooling/convolution layer. Both networks are trained from scratch using as datasets
the ones introduced in Section 4.2.2.

4.2.4 Experimental results
Figure 4.11 shows a schematic representation of the tests that were conducted in order
to assess the performance of the proposed approach. The Ds blocks represent a dataset,
while Cs blocks represent the classifier learned on it. Without loss of generality, a pos-
sible strategy is to use a numerous dataset (i.e. a) to train a classifier. This classifier can
be used as it is in the strongly related but less numerous dataset (i.e. b). On the other
hand, the same network can be re-trained (using transfer learning) in order to improve the
performance on the less numerous dataset.

Table 4.2 shows classification accuracies obtained with the different datasets on dif-
ferent network architectures. The results we are most interested in are the ones yield by
the ad hoc networks, which, as you can see, perform slightly worse than the pre-trained
networks. In an industrial application like the one requested for our case-of-study, run-
time performance are central in the development of the network to be used. Hence, even
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Green Red

FruitDef 99.868 94.143

FruitDefV2.0 99.736 94.214

AlexNet 100 94.948

VGG16 96.513 94.948

VGG19 100 91.428

GoogleNet 99.861 86.807

ResNet50 99.650 96.190

Inception-v3 97.350 94.413

Table 4.3: Performance achieved on the base datasets. The performance achieved on
the Green dataset are the best-case-scenario performance (thanks to the high number of
samples in the dataset).

if the pre-trained networks are able to achieve state-of-the-art performance classification-
wise, they are too slow and not practical to use in a real world scenario. This is due to
both the fact that the input images are much bigger than the original image dimension
(about 3 times bigger) and the network structure of the pre-trained networks are much
more complex than the ad hoc networks we proposed. The adoption of simpler networks
whose input image dimension is equal to the original dimension of the images allows us to
perform the classification task an order of magnitude faster (about 0.1ms) on the machine
the tests were performed (3.5 Ghz Intel quad core with nVidia 980 GTX).

The best performance are achieved by the most complex networks, like the Inception-
v3. On the other hand, even simpler and faster pre-trained networks achieve similar per-
formance. Simpler networks (architecture-wise) are the one that get the most benefit from

Green Green2Red

FruitDef 88.421 93.684

FruitDefV2.0 90.336 99.370

Table 4.4: Transfer learning test on custom networks.
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Figure 4.11: An overview of the possible strategies for data augmentation, including both
traditional methods and cross-dataset data augmentation. D blocks represent dataset used
to train a network, while a C block is a classifier obtained after the optimization process.

the proposed approach. All pre-trained networks show a performance gain using a CDDA
approach, even if the mean gain is lower overall with respect to the gain on the custom
networks.

Finally, we compare the performance of ad hoc networks on two last scenarios. The
test involves training from scratch the same networks directly on a dataset of objects
of interest (in opposite to general purpose dataset) followed by a transfer learning step
on a more specific problem. In particular, we trained the custom networks on both the
Green dataset and the Green dataset plus the Green2Red dataset. Then, transfer learning
is performed using the olives in the Red dataset. Performance achieved are shown in
Table 4.4.

4.3 Conclusions
In this chapter I studied a real-world problem, the classification of fruit images for an
industrial sorter. The solutions consist in training small custom CNNs that achieve almost
state-of-the-art accuracy while dramatically reducing the inference time.

I also worked with my colleagues on a new data augmentation approach in which
the additional samples are created by mapping elements from a different pool instead of
being generated from the dataset itself. While traditional data augmentation uses a func-
tion to generate unseen samples from the available ones, we take advantage of a different
dataset which we assume can be mapped to the former by means of an image processing
function. We observed that such approach tends to outperform the classical data augmen-
tation, probably because it has better chance to preserve features that are relevant for the
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classification but not easily embeddable into the generator function. Again, the advantage
is particularly visible in small custom CNNs, where the training phase is sensitive to the
even distribution of different sample categories.

This data augmentation technique has been used to mitigate the scarcity of images of
the Pink variety, allowing us to classify Edremit and Pink olives with the same network.
Since the two species differ in term of shape and color, but not on the nature of their defect
to classify, we investigated a mapping approach instead of the generative one. Results
show that, especially for small networks, the former gives better results in almost all the
tests.
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5
Filter Pruning for Embedded Vision

Another project I worked on during my PhD consisted in creating a lightweight CNN to
locate both 1D and 2D signal peaks respectively in line scan and area scan images. The
final goal is to synthesize these networks on FPGA hardware, available on commercial
smart cameras. For this reason, we designed light architectures able to perform advanced
image processing, recognition of specific elements and computation of descriptors. The
advantages are many: the possibility of offering a complete hardware capable of provid-
ing semantic information, the ability to reduce the weight of data transferred from the
CNN-Camera to the processing systems, and in general the reusability of the framework
for different tasks. After training the networks we exploited model compression tech-
niques to reduce their size. We also introduced a novel pruning algorithm which does
not require manual tuning of parameters and allows to greatly reduce the number of float-
ing point operations (FLOPs) computed. In a throughout experimental section we show
that the trimmed network achieves better results with respect to a network with the same
pruned architecture, but trained starting from random weights. Moreover, the resulting
performance is better than the one obtainable with other state-of-the-art trimming meth-
ods. Finally, by using other compression techniques, such as quantization, the resulting
model can even be further reduced. This filter pruning technique can be used not only to
train networks aimed to be implemented in embedded systems, but can also be used as
a general method to reduce the number of parameters of a model without degrading its
accuracy.

5.1 Motivation

As the number of applications exploiting intelligent algorithms keeps rising, not only for
common devices as watches and smartphones, but also for drones and sensors, there is a
need to create smaller and optimized networks. One of the common solutions is to imple-
ment Convolutional Neural Networks on Field Programmable Array (FPGA) [9,91,122],
semiconductor devices that are based around a matrix of configurable logic blocks con-
nected via programmable interconnects. Thanks to their programmable properties, they
can be used for a large range of applications, not only in the industrial field but also for
medical, automotive and communication purposes. However, they have a limited number
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of logic gates available, and only thanks to the most recent compression algorithm and
efficient network structures it is lately possible to transfer CNNs on FPGA supports. The
small size of these devices allows in particular to insert them in cameras and efficiently
preprocess the images before they are even stored in the memory for processing.

5.2 Relevance Based Filter Pruning
We propose a global filter pruning method based on the idea that kernels can be ranked
by means of a relevance metric computed according to the output after the activation
function. Less relevant filters are iteratively removed in a prune one and re-train fashion,
to allow the network to adjust to the reduced channel. Conforming with this process, we
call our method ReFT (Relevance-based Filter Trimming).

More formally, given a convolutional layer, its input can be represented as a 2D tensor
I×H containing a signal of I single H−dimensional feature vectors1. The convolutional
layer contains K different S ×H kernels that are convolved with the input to produce an
I×K output tensor. This operation requires approximately S×H multiply-add operations
for I filter shift for a total of SHIK operations. Our goal is to define a relevance function
to be computed over the K kernels in order to iteratively remove the kernel with smaller
relevance. Each kernel removal will result in a reduction of the multiply-add operation
in the order of SHI . Furthermore, it will reduce the size of the output of the layer of a
factor proportional to the input I .

In detail, the ReFT iterative reduction process is performed according to the pseudo-
code described in Algorithm 1. Here, Kernels is the full set of kernels in the network,

Algorithm 1: ReFT network reduction
Choose a representative dataset S;
while |Kernels| > t and perfMetric > ε do

for s ∈ S do
for i ∈ Layers do

for c ∈ Kernels(i) do
Oic(s)← output(i, c, s)

end
end

end
(α, β) =i,c (relevance(i, c));
Remove Kernels(α, β) from the network;
if
∑

s∈S O
α
β (s) 6= 0 then

Retrain a few epochs to adapt model;
end

end

1this is actually the case for 1D convolutional layers, but the extension to 2D layers is straightforward
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Kernels(i) is the subset of kernels at layer i andKernels(i, c) points to a specific kernel.
The value output(i, c, s) refers to the output of the activation function after Kernels(i, c)
for data point s.

The network reduction stops when either the number of kernels left is below a given
threshold t or the performance of the network (measured by the function perfMetric) is
less than minimum acceptable value ε. The actual characteristic measured by perfMetric
could change according to the application scenario. For instance it could be a function
of the average loss with respect to a validation set or a specific metric over the confusion
matrix.

During its main iteration the ReFT algorithm selects the least relevant kernel, removes
it from the network and performs a partial retrain if the removed kernel was not negligible
(i.e. exhibiting an output value of 0 for all the samples in S.

Of course, key to the effectiveness of the ReFT reduction is the choice of a suitable
relevance function. As anticipated when introducing the method, the main idea is to
account for the output distribution of the kernel with respect to real data, rather than for
its input weight (which is much more common in literature). The rationale is to look at
the actual effect of the kernel, rather than at its potential impact expressed in an implicit
way by its input weights. To this end, we define a span function as:

span(i, c, γ) = q100−γ(O
i
c)− qγ(Oi

c)

That is the difference between percentile 100 − γ and percentile γ in the distribution
Oi
c over all the data points s in the dataset S. Thus, we have that span(i, c, 0) represents

the distance between the maximum and the minimum output for Filters(i, c) over the
dataset S.

In principle, the span function could be directly adopted to define relevance by choos-
ing a specific value for γ. However, in order to mitigate the effect of outliers, we would
like to use the full span only to disambiguate between kernels with similar output distri-
butions, while adopting more conservative percentiles most of the time.

To obtain this result, we define relevance as an implicit metric by defining this pairwise
partial ordering function:

relevance(j, k) < relevance(l,m) ⇐⇒
span(j, k, 2) < span(l,m, 2) ∨
span(j, k, 2) = span(l,m, 2) ∧
span(j, k, 0) < span(l,m, 0))

In practice, this means that filter j, k is less relevant than filter n,m if the distance
between the 98th and the 2nd percentile is lower or, if they are equal, the full span is
lower. While it could seem counter-intuitive that the 98th and the 2nd can be frequently
equal, this actually happens a lot due to the behaviour of clamping functions such as
ReLU.
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Figure 5.1: Left: two scanlines acquired by the camera for the peak detection task. Mul-
tiple or no peaks can be present in the same scanline, sometimes very close to each other.
Right: two samples from the Dots dataset. Also in this case there might not be any dot
present or multiple ones. In the bottom right picture the detected dot center is highlighted
by a red cross

5.3 Applications and Experimental Evaluation

In order to have a fair comparison, we selected property importance methods focusing
on the L1-norm of the filters [114], rank of the feature maps (HRank [68]), and layers’
outputs like Apoz [75] and GM [118]. We first analyse the performances of the proposed
technique (ReFT) for specific camera tasks, designed to be carried out in relatively small
embedded devices. After that, we apply our pruning to VGG16 on Cifar10 to show that
the proposed method is effective also when applied to more complex architectures. To
assess the validity of our pruning method we also applied it to compress the network we
trained to solve the fruit classification task.

5.3.1 1D and 2D Peak Detection Task

As already discussed, image processing for quality inspection in an industrial environment
often involves strict requirements. For this reason, smart cameras that can pre-process
frames during acquisition (for example by feeding images to a built-in CNN) may offer
a substantial advantage over classical solutions. Usually, such setups require extreme
and specialised network pruning approaches, in order to improve both time and memory
efficiency. As a case study, we show two practical applications which significantly benefit
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Model Acc Pos err Height err Params Flops Ratio

Peaks 0.999 0.342 0.0149 2.22K 2.412M 1.00

Peaks-ReFT 0.993 0.644 0.0471 0.936K 0.290M 0.42

Peaks-APoZ 0.988 0.717 0.0566 0.885K 0.295M 0.42

Peaks-L1-norm 0.984 0.806 0.0635 0.936K 0.290M 0.42

Peaks-GM 0.965 1.04 0.0784 0.936K 0.290M 0.42

Peaks-ReFT-S 0.989 1.1400 0.0578 0.936K 0.290M 0.42

Table 5.1: Average accuracy, average peak position error, average height error, number
of parameters and compression ratio for Peak network with 34 pruned kernels (out of the
40 available distributed across 3 conv layers). Pruning methods have been repeated 20
times. ReFT-S is the training of Peak-ReFT with random weights. See fig.2 for standard
deviation.

from the proposed pruning method, especially when implemented on a FPGA device.

The first is realized by a CNN to detect peaks in a one-dimensional light intensity
timeserie. This is a typical scenario in 3D reconstruction in which planar laser beams are
projected onto the object under study and observed by one or more cameras geometrically
calibrated with the laser. The intersection of each laser plane with the object results in a
line, usually orthogonal with the pixel arrangement of the linear camera. Therefore, each
line produces a spike, or peak, whose position can be easily related with the depth of the
object 3D point illuminated by the laser (See for example the signal plotted in the left
column of Fig. 5.1). Our tested model is a relatively simple feed-forward Convolutional
Neural Network taking in input a vector of 1024 intensity values and producing a vector
of N output bins, each one containing peak probability, height, location and width of
detected peaks. The network is made of 4 convolutional blocks (interleaved by ReLU
activations and maxpooling) and then it splits to compute the different losses.

The second case study is the 2-dimensional extension of the linear peak detection
network to detect dots in image data (see the right column of Fig. 5.1 for some examples).
The network architecture is essentially equal to the corresponding 1-dimensional case,
except for it takes a 2D images as input and 1-dimensional convolutions are replaced with
their 2D counterparts.

Both networks provide multiple outputs, namely: the probability of the presence of a
peak or dot, the information about peak position, and its height. In the 2D case, we also
consider dot area and eccentricity.
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Model Acc Pos err Ecc err Params Flops Ratio

Dots 1.000 1.11 0.073 14.2K 10.537M 1.00

Dots-ReFT 0.999 3.21 0.073 10.3K 0.332M 0.73

Dots-APoZ 0.997 3.73 0.137 10.2K 0.711M 0.71

Dots-L1-norm 0.791 5.91 0.153 10.3K 0.332M 0.73

Dots-GM 0.745 5.61 0.158 10.3K 0.332M 0.73

Dots-HRank 0.953 4.57 0.156 10.3K 0.332M 0.73

Dots-ReFT-S 0.994 1.25 0.101 10.3K 0.332M 1.00

Table 5.2: Average accuracy, average dot position error, average eccentricity error, num-
ber of parameters and compression ratio with 34 pruned kernels (out of 40) in the first
three convolutional layers. Pruning methods have been repeated 20 times. Dot-ReFT-S is
the training of Dot-ReFT with random weights. See fig.2 for standard deviation.

Synthetic datasets

Our Peaks dataset contains 100000 line scan acquisitions divided into training, validation
and test set with ratio 80:10:10. Intensity ranges from 0 to 255 in vectors of 1024 values
representing a line-camera image. Dots dataset was generated by approximating the in-
tensity response with a bivariate Normal function characterized by a certain height (the
intensity of the dot), eccentricity (how much the dot deviates from being circular) and
angle (the major axis orientation). Signals are assumed to be acquired 80 scanlines at a
time and multiple dots can be simultaneously present in each image. It consists of 100000
acquisitions with separated test and validation set of 10000 samples each.

Network training and pruning

Both the networks were trained with a learning rate (lr) of 1E − 5, decreased by a factor
of 0.1 if the loss does not improve for 3 consecutive epochs. The validation set is used
to stop before overfitting. Fine tuning after pruning is performed with lr = 1E − 5 for a
fixed number of epochs = 3. We pruned both the Peaks and Dots networks only from the
first 3 blocks, which contain 16, 16 and 8 kernels respectively, leaving at least 1 kernel
per block. The architecture of the network for Peaks detection can be see in figure 5.2.
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Figure 5.2: Architecture of the network for Peaks detection. The model used for the 2D
case of study, or Dots detection, has a very similar structure.

Results

Figure 5.3 shows how the performance of the 1D peak detection (top) and 2D dot detec-
tion (bottom) networks are affected by the pruning process. Our method lead to a good
prediction accuracy even if a severe number of kernels are removed. L1-norm tend to per-
form worst, with the accuracy dropping significantly especially for the 2D dot detection
network. Together with the detection accuracy, position and height are better estimated
when the network is pruned with our proposed method. Apoz shows similar performance
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Figure 5.3: Comparison of different pruning techniques for peak and dot detection net-
works (1st and 2nd columns respectively). For each task we report accuracy, MAE of
position error and MAE of height and area.

but higher standard deviation.

Table 5.1 and 5.2 summarize the performance of the two networks while pruning an
optimal number of kernels (33 in this case). It is interesting to notice that both the models
pruned with our method (Peak-ReFT and Dots-ReFT) perform better than a model with
the same number of kernels trained from scratch (Peak-ReFT-S and Dots-ReFT-S). In
other words, it is better to trim a complex network than training a simpler network from
the start.
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VGG16 on Cifar10

To demonstrate that our method is valid also on more complex CNNs we used VGG16
[178] network on Cifar10 dataset [100]. Cifar10 contains 60000 RGB images belong-
ing to 10 classes and it is often used together with VGG16 to assess the efficiency of
compressing methods.

VGG16 is a large convolutional network trained on the ILSVR2012 dataset. The
network contains 13 convolutional layers with 3 fully connected on top and the activation
function for each layer is a ReLU, except for the final softmax. In order to perform
classification on a dataset different from the one the network has been trained on, we
need to use transfer learning. We exploited the pretrained 13 convolutional layers, to
which we attached two more fully connected layers with a small dropout rate and ReLU
activations. Finally, we added one last fully connected layer to reduce the output to the
correct number of classes.

The images are resized from their 32 × 32 original shape to 48 × 48, which is the
smallest input size required to be able to use all VGG16 convolutional layers. We split
the images into 3 separated datasets for train, validation and test with a 60:20:20 ratio.

A fast training with learning rate 3E − 5 is performed on Cifar10 dataset, using the
validation set to stop the training at a proper time. Every time the pruning algorithm
removes a filter we performed a fine tuning step with 5 epochs and a small learning rate
set to 1E − 6, followed by another 5 epochs with the same learning rate divided by 10,
to recover any loss in accuracy. We tested HRank with the same parameters except for
one during the recovery stage, as the pruned kernels are removed in a single pass, and the
authors suggest a higher number of epochs (50) to recover the accuracy. The convolutional
layers are frozen both at training and pruning time, such that the network can only modify
the fully connected weights.

Figure 5.4 shows the top1 accuracy varying the number of pruned kernels. Our method
outperforms the others, with a particularly remarkable difference when more than 1500
kernels are removed. Even though ReFT algorithm achieved fair superior performances,
some credit has to be given to the other methods. In general, methods that are limited
to compute metrics on the filter values (like L1-norm and GM) perform worse than ones
analyzing the output of the layers (our method and Apoz). However, the latter are more
computational intensive and require a representative dataset to be used, something particu-
larly noticeable when working with images on large networks, such as Cifar10 on VGG16.
HRank mitigated this problem by requiring only a small set of images to compute the out-
put responses, but in our tests consistently performed worse than others. HRank, anyway,
needs to be run only once, compensating the increased computing time during the pruning
phase with the speed-up at inference time with superior performances.

5.3.2 Embedded Vision for Fruit Classification

I spent several months on searching the best architectures to classify the Edremit dataset.
At the end of this year, after working extensively on pruning and studying various com-
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(a) Top1 accuracy of VGG16 on Cifar10 with different pruning methods.
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(b) Top5 accuracy of VGG16 on Cifar10 with different pruning methods.

Figure 5.4: Accuracy loss as the number of pruned filter increases for the different meth-
ods analysed. The speed in performance degradation is connect to the experimental setup,
as the fine-tuning phase does not take into consideration the validation loss for a proper
stopping condition, but rather it runs for a fixed number of epochs.

pression algorithms, I also wondered what would have happened if I applied such tech-
niques on the olives networks. Some of the networks I trained during my PhD for this
task are shown in figure 5.5 and 5.6. In particular, I wondered how the performance of
our ReFT pruning algorithm would change if a different percentile was take into consid-
eration. Figure 5.7 shows how the accuracy is affected by changing such parameter, while
figure 5.8 compares our pruning algorithm on the olives dataset with other methods.

Another interesting experiment was to try knowledge distillation to train a smaller
network. The models used have three convolutional blocks made of 3×3 filters, followed
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Figure 5.5: Neural networks trained on the Edremit dataset with input size equal to
48x48 and transformed into grayscale images. Different hyperparameters like padding
(valid/same), the type of pooling (average/max), the size of the convolutional window
and the number of filters in the convolutional layers affects the achieved accuracy. All the
trainings have been using Adam optimizer, with a 0.001 learning rate and data augmenta-
tion (flip, rotation and shift).
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Figure 5.6: Similar to figure 5.5, in this figure we can see the networks trained with a
smaller (32x32) input. Resizing the images allows to significantly reduce the number
of network parameters and their related FLOPs. The last two experiments use the last
architecture, but add another transformation to data augmentation, by slightly zooming in
and out the inputs.



5.3. Applications and Experimental Evaluation 77

Model Top1 Top5 Params Flops Ratio

VGG16 0.801 0.988 15.1M 1.41G 1.000

VGG16-ReFT 0.780 0.986 11.9M 1.15G 0.789

VGG16-APoZ 0.761 0.983 11.5M 1.23G 0.762

VGG16-L1-norm 0.731 0.979 11.9M 1.15G 0.789

VGG16-GM 0.581 0.944 11.9M 1.15G 0.789

Table 5.3: Comparison of top1 accuracy, top5 accuracy, number of parameters, FLOPs
and compression ratio achieved by filter pruning on VGG16 and Cifar10 after pruning
460 filters.
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Figure 5.7: Applying ReFT on the network trained for olives classification. Different
values for the percentile are used. Notice how pruning actually initially increases the
overall accuracy.
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Figure 5.8: Comparison of different pruning methods on the classification model. Prun-
ing 50 kernels out of 96 allows to compress the network by over 50%.

by a flattening layer and a dense layer (with three nodes). A ReLU activation and a
maxpooling operation follow after every convolutional layer. The only difference between
the teacher and the student models was the number of filters used in the convolutional
layers, 64, 32 and 32 for the teacher and 32, 16 and 16 for the student. Table 5.4 shows
the results.

Model Epochs Accuracy Params Flops

Teacher 10 0.98856 34.5K 12.2M

Student 5 0.990325 10.3K 3.44M

Student without KD 5 0.97185 10.3K 3.44M

Table 5.4: Using Knowledge Distillation on two simple networks to classify the olives.
The temperature is set to 10.

Even if the experiment using Knowledge Distillation showed promising results, few
consideration has to be taken into account. Firstly, increasing the number of epochs ac-
tually allows the small network to reach comparable accuracy. Secondly, many attempts
have to be made to find two architectures (teacher and student) that actually allow the KD
algorithm to outperform the small network trained without any help.
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5.4 Conclusions
Filter pruning is a powerful tool to reduce the number of parameters of a network, not
only to exploit deep learning in embedded devices, but also to optimize the model both in
terms of classification speed and memory required.

We presented a simple CNN pruning method working by ranking the relevance of
each convolutional kernel according to the output produced on a representative dataset.
Our heuristic is simple to implement but it better preserves the network predicting power
compared to similar state-of-the-art approaches while pruning a large amount of kernels.

We analysed two practical case study: peak detection in both 1 and 2 dimensional in-
tensity signals to assess the feasibility on simple networks designed for FPGA hardware.
In our tests, we almost halved the number of weights without a noticeable decrease of pre-
diction accuracy. Even if developed to implement low-level vision tasks, our method has
proven to be effective even when applied on classical datasets and network architectures
like VGG16 on Cifar10.

To show the goodness of our filter pruning technique, we also applied it to some of the
networks developed to solve the fruit classification task. With our method we were able to
remove a considerable amount of network parameters, while keeping or even improving
the initial accuracy.
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6
Conclusions and Future Work

In this thesis we have seen how Neural Networks, and in particular Convolutional Neu-
ral Networks, can contribute in industrial applications. After providing a background
on Neural Networks, the main focus was to present the available literature that can be
exploited during the development of applications in industrial environment. Online al-
gorithms with small inference time require small networks, while at the same time there
is a low tolerance for any performance drop. The optimal way to address such problem
using deep learning is to deploy small specialized networks, trained on the available data.
Compression techniques also greatly help to address such challenges, by reducing the size
of a network without affecting its accuracy. Another problem concerns the scarcity of the
available data, as Neural Networks require at least hundreds of images during the training
to converge into an optimal model. The last part of this thesis contributes in solving such
problems by proposing two novel methods, the first exploiting data augmentation and the
second performing a filter pruning algorithm. Such methods have actually been applied
in real-case scenarios: fruit classification and 1D/2D signal detection for cameras, aimed
to be implemented on FPGA. Working on tasks and data that have an actual application
in real life has been stimulating and satisfying. The drawback is that developing models
working on industrial machines does not always travel in parallel with the research field.
Several projects I worked on during my PhD have not been presented in this thesis, as most
of the times they simply involved to implement already existing techniques. Other times,
instead, the models I developed could not be published because covered by industrial se-
crecy. Future work scenarios include further exploring existing compression algorithms,
and especially trying them on the olives dataset. For what concerns the camera tasks,
instead, I would like to train other networks to solve different problems (e.g.keypoint de-
tection), and implement some quantization techniques to further compress our models.
Finally, I would like to actually transfer the trained networks on FPGA and develop smart
cameras.
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