
Master’s degree in Economics and Finance

Models and Methods of Quantitative Economics - EMJMD QEM

Final Thesis

Directional movement prediction of stock

returns using LSTM and Tree-Based models

Supervisors:

Prof. Roberto Casarin

Prof. Marco Corazza

Graduand:

Abhishek Pokhrel

Matriculation Number

888376

Academic Year

2021/2022

2

ABSTRACT

In a binary classification task, this research investigates the performance of ma-

chine learning models in predicting stock return movements of the 30 Dow Jones

Industrial Average (DJIA) stocks. We apply two ensemble-of-trees algorithms,

namely XGBoost, and BART, and one recurrent neural network algorithm, namely

LSTM in order to forecast daily returns depending on target classifications. Daily

stock return lags are used as inputs to the machine learning algorithms. We look

at two scenarios: one to evaluate the direction of stock returns, and the other to

evaluate a stock’s ability to outperform the market average. In the first scenario,

we estimate whether stock returns will be negative or positive next period, and in

the second, we predict if a stock return would exceed the cross-sectional median

of all stock returns in the index.

3

ACKNOWLEDGEMENTS

The author is grateful to Prof. Roberto Casarin and Prof. Marco Corazza for

formulating the dissertation topic and their continued guidance and support. I

also express immense gratitude to my family for their enduring encouragement

and support.

4

TABLE OF CONTENTS

Abstract 2

Acknowledgements 3

1 Introduction 6

1.1 An Overview of Function Estimation 7

1.2 Bias-Variance Tradeoff . 8

2 Introduction to Tree-based Models 10

2.1 Background . 10

2.2 Traditional Tree-based Models . 12

3 The Bayesian Methodology 17

3.1 Bayesian CART . 17

3.2 Bayesian Additive Regression Trees (BART) 20

4 Neural Networks 23

4.1 General Features . 23

4.2 Advantages of Neural Networks 26

4.3 Recurrent Neural Network . 26

4.4 Long Short-Term Memory (LSTM) 27

5 Experiments and Results 31

5.1 Data Preprocessing . 31

5.2 Model Targets . 32

5.3 Model Evaluation . 33

5.4 Model Implementation . 34

5.5 Results . 36

6 Concluding Remarks 38

References 40

5

Chapter 1

Introduction

In his work Statistical Modeling: The Two Cultures, published in 2001, Leo

Breiman bemoaned the fact that the community of statisticians had grown un-

duly dependent on stochastic data models, resulting in ”irrelevant theory” and

”questionable conclusions” (Breiman, 2001b). Simultaneously, a new breed of

data analysts following the machine learning approach were successfully employ-

ing black-box, algorithmic models. Among this were random forests and Ad-

aBoost, which were ensemble models of thousands of decision trees which had no

obvious relationship to classical statistics. And thus, statisticians remained on

the sidelines while new, more effective algorithmic tools supplanted model-based

linear regression methods.

Since then, the situation has drastically altered, as indicated by the introduction

of statistical machine learning (Hastie et al., 2009). Optimization served as a

crucial link between machine learning’s ”black-boxes” and stochastic data models,

allowing statisticians to explain these algorithms in maximum likelihood terms.

Using AdaBoost to fit an additive regression model in a stage wise approach is

a classic example of this link (Friedman et al., 2000). In early 2000s, ensembles

of trees were considered as the black-box methods in the realm of data analysis.

Now, with the ability to work with millions of parameters, neural networks are

considered as the black-box methods of today. That being the case, these models

are still explainable in words of regularization and deviance, i.e. in the language

that statisticians are familiar with.

7

1.1 An Overview of Function Estimation

Many applications call for predicting the value of an unknown variable based

on measurements that are known. For example, one would want to forecast the

direction of a stock’s movement based on the stock’s fundamentals. A problem of

such nature may be regarded as a function estimation problem. We can represent

it mathematically as:

yi = f(xi) + ϵi ; where E(ϵi) = 0

Here, yi represents the target variable of interest (stock increase) of stock i.

xi represents the input variables which is a set of features affecting the target

variable of interest

There are numerous approaches to estimate f due to the universality of the func-

tional form. The structure of the underlying function f , as well as the distribution

of xi and ei, have a significant impact on the effectiveness of a method. Using the

foundation of statistical learning is one approach. Numerous machine learning

algorithms have their theoretical basis provided by the statistical learning theory

(Von Luxburg and Schölkopf, 2011). The process of constructing predictive mod-

els under this paradigm is known as supervised learning and they are basically

predictive functions meant to generate accurate predictions on novel, unseen data

from the joint distribution of X,Y.The estimator is a mapping from the training

data (xi, yi) to a set of functions represented by F . Every estimate f ∈ F is a

X −→ R mapping which produces prediction ŷi = f̂(xi) given data x.

A loss function L(yi, ŷi) is used to evaluate the accuracy of the function’s predic-

tions by measuring the deviation between the predicted and actual outputs. We

examine the generalization error, which evaluates L(ỹi, f̂(x̃i)) using unseen data

(x̃i, ỹi). It’s possible to evaluate L(f(x̃i), f̂(x̃i)) if we know the true underlying

function f . In reality, we don’t know the true underlying nature of f , whether

it is linear or non-linear, single index or multi index. Therefore, non–parametric

approaches are used in contemporary statistics to estimate f flexibly. Support

8

Vector Machines (Cortes and Vapnik, 1995) and Multivariate Adaptive Regression

Splines (Friedman, 1991) achieve flexibility by expanding the basis. By introduc-

ing non–linearity, neural networks obtain flexibility. Recursive partitioning on X

utilizing its covariates is how tree-based approaches acquire flexibility. Summary

statistics from the last partitions are used to make predictions.

The methods presented above are capable of representing complex functions.

They have the advantage of being able to learn the non-linearities present in

functions. However, they run the risk of overfitting to data noise and creating

results that aren’t generalizable, which is a drawback. As a result, it’s helpful

to think about the Bias-Variance tradeoff while evaluating an estimator’s perfor-

mance.

1.2 Bias-Variance Tradeoff

As outlined before, in regression problems, every estimate f ∈ F is a X −→ R

mapping which produces prediction ŷi = f̂(xi) and we use a loss function to eval-

uate the accuracy of the function’s prediction by measuring the deviation between

the predicted and actual outputs. Mean Squared Error (MSE) is one type of loss

function that is typically used in the problem of this nature. Mathematicaly, it’s

defined as:

MSEY |x = E[(Y − Ŷ)2]

For interpretability, we can simply decompose the above into:

E[(Y − Ŷ)2] = [Y − E(Ŷ)]2 + V ar(Ŷ)

= Bias(Y, Ŷ)2 + V ar(Ŷ)

The duality between consistency in prediction is represented by this breakdown.

Low bias, high variation can give rise to very accurate yet inconsistent forecasts

leading to data overfitting. On the other hand, low variance, high bias can result

in a relatively consistent yet erroneous prediction leading to data underfitting.

9

The combination that minimizes Mean Squared Error (by construction) is the

best compromise between bias and variation. The purpose of cross validation is

to use data to discover the best combination of Bias and Variance (Hastie et al.,

2009).

Chapter 2

Introduction to Tree-based Models

As a result of their great capacity to yield better forecasts in a wide range of

classification and regression tasks, ensembles of trees algorithms have taken cen-

ter stage in machine learning. Traditional algorithms like random forests and

gradient boosting produce data-fits using procedures based on algorithms while

the recent algorithms like Bayesian Additive Regression Trees (BART) produce

data-fits using an underlying Bayesian probabilistic model.

2.1 Background

Decision Trees

A decision tree model is a model of computation that may be broadly described

as repeatedly partitioning the sections of the predictor variables and therefore

building a tree-based model that can predict the response. We can trace the

origin of this model all the way back to the early 1960s.

With the introduction of the Classification and Regression Tree (CART) algo-

rithm by Breiman et al. (1984), tree-based models have acquired tremendous

ground in numerous areas of study. The CART algorithm divides the input vari-

able space into numerous sections that are mutually exclusive. This results in a

layered hierarchy of branches that resembles a tree structure, with each branch

(or separation) labelled as a node. Each of the decision tree’s bottom nodes,

known as terminal nodes, has a distinct path for data to reach the region. Fol-

lowing the construction of the decision tree, paths can be used to determine the

area or terminal node to which a new collection of predictor variables will belong.

11

The decision tree model can be separated into two types based on the objective

of predictive modeling: regression trees and classification trees.

Ensemble Methods of Decision Tree

Early decision tree approaches had the potential drawback of producing incon-

sistencies as a result of overfitting. However, these original tree models were

improved and their use extended with the development of algorithms such as

grandient boosting and random forests. This led to tree based models being

adopted for numerous predictive modelling tasks. Random forest simply is a

method of creating ensembles of trees from a group of fully grown unpruned

trees. Basically, the trees are created using a bootstrap sampling method ap-

plied to the source data and using subsample of input variables on every split.

Breiman (2001a) demonstrated that using random forests improved prediction

accuracy significantly.

Boosting algorithms are able to achieve a sound balance in the Bias-Variance

tradeoff which has led this algorithm to become increasingly popular in machine

learning. Boosting algorithms create trees in a sequential manner, so that a tree

grows with each subsequent iteration. This model integrates weak learners to

create strong ones. As explained by Friedman (2002), early approaches of gradient

boosting trees used optimization predicated on gradient descent algorithms, which

then coined the terminology gradient boosting.

Uses of Tree-Based Models

In recent years, tree-based models have become increasingly popular for classi-

fication and regression tasks. It’s a supervised learning technique with a lot of

benefits, especially when it comes to analyzing financial data.

For starters, tree-based models are non-parametric, which means no distribution

assumptions are required. Secondly, tree-based models can be utilized as a useful

approach for dealing with missing data. This is significant since it is usual for

12

some information to be missing or unrecorded in real-world databases. More-

over, tree-based models can deal naturally with categorical variables which are

advantageous because standard statistical modeling makes it difficult to manage

several category levels.

Furthermore, tree-based models can discover non-linear effects and potential links

between input factors automatically. Conventional linear models, on the other

hand, often capture just linear effects, necessitating additional analysis to uncover

non-linearity and interactions.

Finally, by measuring the relative relevance of explanatory factors, tree-based

models can provide a variable selection mechanism.

However, because of the variations in their rules and principles, a comparison

of the prediction accuracy of conventional linear models with tree-based models

may be inappropriate. In practice, however, this comparison may be made to

better assess model quality. See, for instance, Thuiller et al. (2003), Maroco

et al. (2011).

2.2 Traditional Tree-based Models

Classification and Regression Trees

The Classification and Regression Trees (CART) algorithm (Breiman et al., 1984)

constructs a tree structure via a greedy search technique termed recursive binary

partitioning. Traditionally, the algorithm’s output trees are referred to as clas-

sification trees whenever the response variable is categorical, otherwise, they’re

referred to as regression trees whenever the response variable is continuous. For

regression, the following loss function is used to determine the optimal tree:

L =
N∑
i=1

(yi − ŷi)
2

The estimate ŷi is a function of xi Thus, given partitions of data P1,, PK , the

13

estimate is:

ŷ = f̂(x) =
K∑
k=1

µkI(x ∈ Pk)

For every k, we need:

argmin
µ̂k

[
N∑
i=1

(yi −
K∑
k=1

µkI((x ∈ Pk))
2

]
=

1

Nk

∑
xi∈Pk

yi

Nk= No. of observations of pk

To discover partitions P1,, PK , CART identifies binary partitions of the data on

variable j with cutpoint c in a recursive and greedy manner such that: Pleft(j, c) =

X|Xj ≤ c and Pright(j, c) = X|Xj > c which minimizes:

argmin
j,c

 ∑
xi∈Pleft(j,c)

(yi − µleft)
2 +

∑
xi∈Pright(j,c)

(yi − µright)
2


Then, using cost-complexity pruning, CART prunes the fully developed tree. So,

it determines which subtree Tα of the entire tree Tfull minimizes the following:

Cα(T) =

|T |∑
k=1

=
∑

Xi∈Pk

(yi − µk)
2 + α|T |

|T |= No. of Terminal Nodes

Individual decision trees have a large variance. Tiny changes in the input data

may cause significant effect on the end model and the forecast. Additionally,

tree forecasts are not smooth functions due to their discrete fitting procedure.

Particularly, only 2d (d = maximum depth) potential values are available for

each given tree . Here, d is maintained quite low as a result of the pruning

described above.

Bagging and Random Forests

Random Forests is based on a method referred to as ”bagging” (Breiman, 1996),

where numerous variants of a base learner are generated autonomously using

14

various bootstrapped data samples and the predictions of each learners are sub-

sequently aggregated. Trees, when grown deep enough, are considered low-bias,

high-variance learners, making them ideal candidates for bagging. Aggregating

over numerous instances can help decrease variability and lessen errors in gener-

alization.

Random Forests improves on bagging by taking it a step further in order to

further minimize the variance. The important innovation is examining a portion

of predictor variables rather than all variables while searching for an optimal

divide at every partitioning phase. Choosing m̄ ≤ p factors introduces an extra

source of unpredictability into the tree-growing process. This unpredictability

de-correlates decision trees over the ensembles which thus reduces their variance.

There are two major tuning parameters in Random Forests. First being the

number of decision trees to be used in the ensemble. The number should be

chosen such that the model is computationally stable and doesn’t overfit the

data. The second major parameter is the number of predictor variables m̄ to

evaluate at every node split. Owing to empirical evidence, typically m̄ is selected

to be p/3 for regression problems, and
√
p for classification problems.

Algorithm 1 Random Forest (Hastie et al., 2009)

Input: Training dataset X∗, y, B
1 for b= 1,....,B do
2 Using the training data, draw a bootstrap sample X∗ of size sampsize;

Grow a decision tree Tb on the bootstrap sample X∗ with recursive binary
splitting, and randomly select m̄ variables from the p predictor variables
with best split criterion nodesize;

3 end
4 Return the ensemble of trees {Tb}Bb=1;

5 Average fB(x
∗) = 1

B

∑B
b=1 Tb(x

∗) {For Regression}
6 Take Majority Vote CB(x

∗)=majority vote {Cb(x
∗)}Bb=1 {For Classification}

Gradient Boosted Trees

Adaptive Boosting (AdaBoost) (Freund and Schapire, 1997) is an ensemble strat-

egy that iteratively fits weak learners. Weak learners are models that perform

marginally better than random. Usually in boosting, they are decision trees. Ad-

15

aBoost, which was initially designed for classification tasks, has over the years

been generalized to Gradient Boosting (Friedman, 2001), which operates on any

loss function that is differentiable. Gradient Boosted Trees, successively fits de-

cision trees to the residuals of the preceding trees. By utilizing the residual, the

model compels the subsequent tree to discover data variations not explained by

the preceding trees. This method decreases the total predictive bias.

Individual trees depend on one another via the residual, making parallelization

difficult. However, Gradient Boosting often produces smaller trees than Random

Forests. In addition, rapid and scalable implementations of gradient boosting

algorithms, such as open source XGBoost (Chen and Guestrin, 2016), Microsoft’s

open source LightGBM (Ke et al., 2017), have discovered ways to parallelize

other aspects of the computation. These algorithms have become increasingly

popular due to their quick fitting and prediction times, excellent performance

on heterogeneous data, and considerable transparency in contrast to black–box

models such as neural networks.

Algorithm 2 Gradient Boosted Trees (Hastie et al., 2009)

Input: Training dataset X,y; learning rate λ; depth K; subsampling rate p
1 Initialize a constant f̂(x) = arg minα

∑N
i=1 L(yi, α)

2 for j= 1,....,J do
3 Compute the negative gradient as working response

zi = −
∂L(yi, f(xi))

∂f(xi)

∣∣∣∣
f(xi)=f̂(xi)

4 Randomly select p × N cases from the dataset
5 Fit a regression tree with K terminal nodes, h(x) = E(z|x) using the randomly

selected cases
6 Compute the optimal terminal node predictions, α1,, αK , as

αk = argmin
α

∑
xi∈Sk

L(yi, f̂(xi) + α)

where Sk is the set of x that define terminal node k.
7 Update f̂(x) as

f̂(x)← f̂(x) + λαk(x)

where k(x) denotes the index of the terminal node in which an observation
with features x would fall.

8 end

16

Boosting algorithms have influenced Bayesian Additive Regression Trees (BART).

Chapter 3

The Bayesian Methodology

3.1 Bayesian CART

Chipman et al. (1998) with Bayesian CART model put forward a Bayesian ap-

proach to searching for CART models. It begins by specifying the prior on the

tree space and a prior on the conditional distribution which are determined at the

terminal nodes of every tree. After, it specifies a Metropolis-Hastings algorithm

to explore the posterior and thereby sampling trees from the distribution.

Prior

The CART model is characterized by Θ = µ1,µM , and the tree structure

T . Bayesian analysis of the problem begins with the specification of a prior

probability distribution p(Θ, T). Compositionally, the prior can be defined as:

p(Θ, T) = p(Θ|T)p(T)

The tree prior p(T) is specified by a tree-generating random process. Every tree

realization is regarded as a random draw from p(T). The process of drawing from

the prior begins with a single root node tree. The tree subsequently grows by

randomly splitting the terminal nodes which entails the assignment of splitting

rules, and right and left children nodes. The specification of the two functions

psplit(η, T) and prule(ρ|η, T) determines the growth process. Given an intermedi-

ate tree T , psplit(η, T) denotes the probability that the terminal node η is split,

and if split, prule(ρ|η, T) denotes the probability of assigning splitting rule ρ to η.

Probability prule is used to pick the variables and cut–points to use for splitting.

18

Commonly, a predictor xi is chosen uniformly at random, followed by a cut–point

c chosen uniformly at random from the observed values of xi.

psplit(η, T) allows us to determine the size and shape of trees generated by the

growth process. A general form of psplit(η, T) which gives greater control for the

shape and size of the trees is given as:

psplit(η, T) = α(1 + dη)
−β

where, dη is the depth of the node η, and β ≥ 0. α and β modeling parameters

whose values can be set using cross validation.

The follows algorithm follows from the Chipman et al. (1998):

Algorithm 3 Tree Prior Generation Process

1 Begin by setting T to be the trivial tree consisting of a single root (and terminal)
node denoted η

2 Procedure GROW (η, T)
3 Split the terminal node η with probability psplit(η, T)
4 if SPLIT then
5 Assign splitting rule ρ from distribution prule(ρ|η, T) and create the left

and right children nodes.
GROW (ηr, t) and GROW (ηl, t)

6 else
7 return

p(Θ|T) is the specification of the parameter prior. In practice, we utilize the

following zero–centered priors to center and scale the data:

µj | T
iid∼ N(0, τ)

σ2 ∼ IG(ν/2, νλ/2)

19

Metropolis-Hasting Algorithm

The Metropolis–Hasting algorithm is used to generate draws from the tree pos-

terior by simulating a Markov Chain sequence of trees T 0, T 1, T 2,

It begins with an initial tree T 0 after which it iteratively simulates the transitions

from T i to T i+1 with the steps as outlined in the Algorithm below:

Algorithm 4 Metropolis-Hastings Search Algorithm

1 Generate a candidate value T with probability distribution q(T i.T ∗).
2 Set T i+1 = T ∗ with probability

min

[
q(T ∗, T i

q(T i, T ∗
p(Y |X,T ∗)p(T ∗)

p(Y |X,T i)p(T i)
, 1

]
3 Otherwise, set T i+1 = T i

The transition kernel q(T, T ∗) is specified as a kernel which generates a new tree

T ∗ from the existing tree T by randomly selecting among the following four steps:

1. GROW: : Randomly pick a terminal node and split it into two new ones by

assigning it a splitting rule randomly based on the prule used in the prior.

2. PRUNE: Randomly pick a parent of two terminal nodes and turn it into a

terminal node by collapsing the nodes below it.

3. CHANGE: Randomly select an internal node, and reassign it a splitting

rule according to prule.

4. SWAP: Randomly select a parent-child pair which are both internal nodes.

Swap their splitting rules unless the other child has the identical rule. In

which case, swap the splitting rule of the parent with that of both children.

Observe, GROW and PRUNE restrain each other, whereas CHANGE and SWAP

are counterparts of each other. In other words, if a chain is caught in a minima,

the algorithm permits it to retrace and consider alternative solutions. However,

once a suitable tree is discovered, the Markov Chain tends to become sticky.

Although this issue remains, trees grown using the Bayesian CART approach

outperform those grown using the conventional CART method.

20

3.2 Bayesian Additive Regression Trees (BART)

Bayesian Additive Regression Trees− BART (Chipman et al., 2010) is a ”sum-

of-trees” model which works by defining a regularization prior for the trees and

subsequently drawing samples from a posterior distribution using an iterative

Bayesian Backfitting MCMC algorithm. Motivated in particular from Gradient

Boosting, BART defines an ensemble method of Bayesian CART. BART has a

better mix than Bayesian CART and in many applications, has shown to yields

superior results to Random Forests and Gradient Boosting. The model is thus

expressed as:

Y =
m∑
j=1

g(x;Tj,Mj) + ϵ ; ϵ ∼ N(0, σ2)

Every g(x;Tj,Mj) corresponds to a single tree generated with Bayesian CART

method. Tj corresponds to the jth binary regression tree and Mj = {µ1,j,µb,j}

are its corresponding terminal node parameters.

Prior

BART uses regularization prior which are spread across numerous trees, used

to create weak learners. This approach compels every tree to acquire a more

nuanced understanding of the desired function.

The regularization prior is specified as:

p((T1,M1),, (Tm,Mm), σ) =

[∏
j

p(Tj,Mj)

]
p(σ)

=

[∏
j

p(Tj|Mj)p(Tj)

]
p(σ)

where,

p(Mj|Tj) =
∏
i

p(µij|Tj)

21

For every Tj, p(Tj), and p(Mj|Tj), the priors are specified as in Bayesian CART.

Bayesian Backfitting MCMC Algorithm

Given observed data y, the Bayesian Backfitting MCMC algorithm specifies a

tree sampling process from the following posterior distribution:

p((T1,M1),, (Tm,Mm), σ|y)

Definingm trees, it locally modifies individual trees sequentially using the residual

trees.

Defining T(j) to be the set of all trees in the sum excluding Tj. Also, define M(j)

in similar manner. T(j) will be a collection of m − 1 trees, with M(j) being the

corresponding terminal node parameters. The draws are defined to fit on the

residual by:

(Tj,Mj)|T(j),M(j), σ, y

σ|T1,, Tm, y

We draw σ using the inverse gamma conjugate. To obtain m tree draws, we must

first determine the vector of partial residuals Rj that are based on a fit which

excludes the jth tree. The equation is given by:

Rj ≡ y −
∑
k ̸=j

g(X;Tk,Mk)

This allows for a more compact representation of the tree’s posterior as:

(Tj,Mj)|Rj, σ

As Mj employs a conjugate prior, we can carry out every draw from the tree’s

22

posterior in the two sequential steps as:

Tj|Rj, σ

Mj|Tj, Rj, σ

The draw of Tj can be obtained using the Metropolis−Hastings algorithm as

defined for Bayesian CART model. The draw of Mj can be obtained using the

simple Gaussian conjugate for every µij.

The described backfitting algorithm is ergodic, and generates a series of draws of

(T1,M1),, (Tm,Mm), σ which converges in distribution to the posterior

p((T1,M1),, (Tm,Mm), σ|y) i.e. p(f |y) of ”true” f(.). Thus, to obtain sample

from the posterior, an obvious choice is to use the average of the after burn-in

sample f ∗
1 , f

∗
2 ,, f

∗
K :

1

K

K∑
k=1

f ∗
k (x)

The solution is not confined to the average of the posterior distribution, but rather

the posterior can accommodate any function of interest, as is the case with all

Bayesian analyses. With this algorithm, it’s also possible to extract the median

or a desired credible intervals from the posterior. This is a great advantage

of using this algorithm as opposed to other traditional ensembles algorithms.

Nevertheless, there is a computational burden in using BART. It fits relatively

slowly and, by contemporary standards, it is not feasible to fit on big datasets.

Chapter 4

Neural Networks

4.1 General Features

Second half of the 20th century saw an enormous advancements in computer

technology which would subsequently inspire researchers to make advances in

artificial intelligence. Artificial Neural Networks (ANN) are a mathematically

complicated idea whose inspiration came from the human brain and its neural

cells. ANNs are a subtype of machine learning methods known as supervised

learning. Under this form of learning, the neural networks require instances of

complete sets of inputs and outputs when training to understand the relationships

between them.

McCulloch and Pitts (1943) designed the first neural network with the notion

that neurons may be utilized to perform logical binary operations depending on

the binary inputs gathered. Output depended on whether or not the neuron was

fired which subsequently depended on whether or not a certain threshold was

fulfilled. Later, Rosenblatt (1958) introduced weights to the individual inputs,

enabling more complicated computations. It was the earliest neural network to

consist of a single perceptron.

Once perceptrons (often referred to as neurons) existed, it was desirable for them

to approximate all mathematical functions and handle classification problems.

Block (1970) demonstrated that a single perceptron cannot anticipate the output

of the XOR (exclusive OR) function given two inputs. Their proposed approach

was thus to expand the structure of a single layer into a multi-layer model of

neurons connecting to each neuron in the subsequent layer. This new model was

24

dubbed a multi-layer perceptron (MLP).

Now we outline the fundamental characteristics of neural networks in general:

Layers: The layers of Neural Networks (NN) are classified into three types: In-

put Layer, Hidden Layer, and Output Layer. Serving as a starting point,

the input layer is where the researchers establish what shape the input

should take based on the type of the problem. As an example, in clas-

sifying handwritten digits, the input layer typically contains the number

of neurons necessary to recognize the number of pixels in the image. The

input layer neurons are linked to the first hidden layer neurons. It may

be difficult to determine the number of hidden layers and the number of

neurons. These layers are essential to the nonlinear modeling of output, but

the optimal amount need not be extremely high. Employing the parsimony

principle serves to avoid model overfitting and a lengthy procedure. The

output layer is dependent on the nature of the problem. As an example,

if the output is one among the ten recognized digits, then the number of

output neurons will be ten. An outcome of the process is delivered by the

one with the highest value of output. An output layer may consist of a

single neuron with an activation function in order to decide whether the

value of the output (0 or 1).

Activation Function: In Neural Networks, each neuron forms a summing func-

tion which is a weighted mathematical sum of its inputs and an added bias.

y =
n∑

i=1

(wixi) + b

where y is an output, xi are n inputs with respective weights wi, and b is

the bias.

The neuron’s final output computes the summing function first, then uses

the result as input to the activation function. An example of a frequently

used activation function is the sigmoid function, given as:

25

f(x) =
1

1 + e−x

It’s features (non-linear, differential, decreasing, bounded) enable sigmoid

to integrate inputs in a non-linear manner and enhance the model’s training

capability.

Optimizers: These are algorithms that change the weights of neurons in order

to minimize the loss to its maximum extent. Gradient descent is the most

popular of the optimizers. This optimizer searches for the loss minima by

changing weights based on the first-order derivative of the loss function.

The loss is propagated backwards through the layers by a process called

backpropagation. Then, the output and loss function are computed, accom-

panied by an update to the selected weights. The fundamental drawback of

the Gradient descent optimizer is the local minima trap. For big datasets,

the method may struggle to converge to the minima. We employ the Adam

optimizer in our models invented by Kingma and Ba (2014). Adam is

more cost-effective than other optimizers in terms of training time. Adam

permits us to configure an initial learning rate, exponential decays for the

first and second-moment estimations, and an epsilon, a small value that

prevents zero division throughout the optimization process. In the major

libraries, these options are configured by default. Initial weights are small

random numbers. Given the nature of algorithms, this characteristic en-

ables stochastic algorithms to investigate the set of possible solutions more

effectively.

Loss Function: A goal of the optimizer is to adjust weights so as to reduce

a loss function. The loss is a metric that indicates how well our model

accomplishes its goal. The goal is to reduce a model’s loss, as a lower

loss indicates that the model is performing better. There are several loss

functions to pick from, and which one to use relies significantly on the

26

task for which the neural network is being utilized. In this thesis, we are

dealing with a binary classification problem, and therefore we use the widely

regarded binary cross-entropy loss function.

Dropout: Dropout is a regularization method proposed by Srivastava et al.

(2014) that is applicable to all neural network types. The dropout seeks

to prevent the model from becoming overfitted. Here, randomly selected

neurons are eliminated during the training phase, resulting in ”thinned net-

works” that are immune to over co-adaptation and faster to calculate. In

the test phase, all ”thinned networks” are approximated to their original

form and made ready for the evaluation of test data. During the building of

the model in Keras , the likelihood of a unit being dropped can be specified

and applied to either the input or hidden layers.

4.2 Advantages of Neural Networks

The complicated computational technique of neural networks serves primarily

to identify nonlinear relationships in the data. Furthermore, the multi-layer de-

sign permits dimension reduction without knowledge of the association between

variables. Researchers can also discover novel relationships between factors that

appear to be unrelated and drastically reduce forecasting errors. Moreover, if a

substantial amount of data is available, neural networks become more effective

than other (conventional) learning techniques.

4.3 Recurrent Neural Network

Recurrent Neural Networks (RNN) are characterized by their recurrent cells,

which provide the capacity to recall information from prior stages of compu-

tations. RNNs are advantageous for voice recognition models because they can

process strings of texts. From the 2010s, recurrent neural networks have been

utilized successfully for the development of music, dialogue, images, and molec-

27

ular design. They were even utilized to create a script for a film, which was

subsequently cast with real actors. In addition, they are a valuable instrument

for time series forecasting and anomaly identification, such as with financial data.

Kamruzzaman et al. (2006) lists a variety of uses of neural networks in financial

and manufacturing challenges, including trading and forecasting, future price

estimate, portfolio selection, foreign exchange rate forecasting, bankruptcy pre-

diction, and fraud detection.

Assume we have an observed time series sequence, (−→σ1,
−→σ2,,

−→σn). To predict

−−→σi+1 with an RNN cell, we suppose it is a function of −→σi and
−→
hi , the hidden state

of the preceding RNN cell:

−−→σi+1,
−−→
hi+1 = RNN

(−→σi ,
−→
hi

)
Here, it is anticipated that the RNN function will compute an updated hidden

state, and then use it to predict the new output, returning both. The hidden

state is updated using an activation function.

−−→
hi+1 = tanh

(−→
Wo
−→oi +

−→
Wh

−→
hi +B

)
−−→oi+1 = σ

(−−→
Wyh

−→
hi +By

)

With time, however, as a result of the vanishing gradient problem induced by a

technique employed during training, the RNN’s memory of previous steps fades

in favor of more recent ones. Although RNNs have a memory, the typical models

have a limited one.

4.4 Long Short-Term Memory (LSTM)

There are numerous subtypes of RNN, one of them being the Long Short-Term

Memory (LSTM) neural network which was introduced by Hochreiter and Schmid-

huber (1997). Their goal was to solve the major RNN problem, the vanishing

28

gradient, where there is rapid loss of information over time. To combat this

issue, recurring cells were updated into memory cells which had completely dif-

ferent characteristics. This network has feedback connections and every neuron

with a memory cell has three gates: input gate, output gate, and forget gate.

The forget gate uses the last observed output, applies a sigmoid function to the

current input, and multiplies the result by the internal state to determine, on

a scale from 0 to 1, how much information will be passed on. The input gate

combines the most recently observed output with the fresh input and passes

them to the activation function. The subsequent layer returns a vector to be

added to the cell’s internal state using a hyperbolic tangent. The proportion

of this new vector is added to the existing state and multiplied by the forget

gate before being sent to the output gate. This implies that in addition to the

weights of the neurons, we must additionally consider the current state of the

network. Throughout this process, LSTM is learning how much historical data

to retain and how much to discard. These requirements predestine LSTM to be

highly advantageous for any sort of time series prediction. Particularly for data

where a certain degree of dependence on past observations is envisaged. They are

well-equipped for identifying, analyzing, and predicting time-dependent data.

Due to the structures of so-called gates, LSTMs are distinguished by their exten-

sive memory. Input, output, and a forget gate comprise the three gates in the

network’s architecture. These gates determine what information should be added

to memory and what should be forgotten. There are two states in the LSTM: the

cell state and the hidden state. The initial cell state is employed for information

storage, whereas the concealed state is used for formulating predictions. As noted

previously, the forget gate is a highly crucial gate of the LSTM. While the cell

state stores and collects all information in its memory, the forget gate determines

the information to forget and maintain.

This forget gate is governed by a basic mathematical sigmoid function with a

result of 0 when we wish to totally clear information from memory and a result

29

of 1 when the knowledge should be retained, or a result in between (the sigmoid

function is however, always positive). The sigmoid function contains a sum of

the input multiplied by the weights from the input to the hidden layer, the pre-

vious state of the hidden layer multiplied by its weights, and the bias for this gate.

Output vector from forget gate :
−→
ft

Previous hidden state :
−−→
ht−1

Current input : −→xt

Weight vector for forget gate :
−→
Wf

Bias for forget gate :
−→
Bf

−→
ft = σ

(−→
Wf .

[−−→
ht−1,

−→xt

]
+
−→
Bf

)
After the forget gate vector has been computed, the input gate comes into play.

The input gate determines whether or not to add fresh information to the memory.

It is composed of two neuron layers, the sigmoid and tanh layers. The sigmoid

layer determines which information to update, while the tanh layer produces a

vector of temporary cell state containing candidates which can thus be utilized

to update the actual cell state.

Input gate vector :
−→
it

Candidate cell state values :
−→
Ct

The input gate vector and candidate cell state are determined as follows:

−→
it = σ

(−→
Wi.

[−−→
ht−1,

−→xt

]
+
−→
Bi

)
−→
Ct = tanh

(−→
Wc.

[−−→
ht−1,

−→xt

]
+
−→
Bc

)

30

Given that we now have the forget and input gate output vector as well as the

candidate state, we update the old cell state
−−→
Ct−1. We begin by multiplying

−−→
Ct−1

with
−→
ft . Meaning that if a number in the forget gate output vector is 0, the

corresponding number in the old cell state becomes 0 and is forgotten, however

if the number is 1, the cell state’s number remains unaltered. Subsequently, we

multiply the input gate output vector by the candidate cell state vector and add

the resulting product to the initial product. The new cell state is thus given as:

−→
Ct =

−→
ft ∗
−−→
Ct−1 +

−→
it ∗ C̃t

The final component is the output gate, via which the new hidden state ht is

obtained. This state produces a filtered rendition of the new cell state as its

output. Similar to the input gate, it comprises a sigmoid and tanh layer. The

sigmoid layer uses the previous hidden state as well as the input to determine

which elements of the cell state will be included in the output. The cell state is

then passed across the tanh layer. Finally, the product of these layers is multiplied

to produce the final output.

−→ot = σ
(−→
Wo

[−−→
ht−1,

−→xt

]
+
−→
Bo

)
−→
ht =

−→ot ∗ tanh
(−→
Ct

)

Chapter 5

Experiments and Results

In this empirical analysis, we have implemented three machine learning algo-

rithms, XGBoost, BART, and LSTM to predict the one year daily directional

movements for the 30 stocks of the DJIA. The analysis was done using the R

programming language. The methodology that we used are outlined in the fol-

lowing sections.

5.1 Data Preprocessing

Following Krauss et al. (2017), we use three years of daily stock data to train

our models, and one year of daily stock data to test our models. We select the

period from 2018-01-01 until 2020-12-31 for training, and the period from 2021-

01-01 until 2021-12-31 for testing. We download the daily adjusted closing price

of each of the 30 stock constituents of the Dow Jones Industrial Average (DJIA).

To this end, the current stock constituents of DJIA were scraped from Wikipedia

by using the rvest package, and the closing price were downloaded using the

quantmod package. We then calculate the daily returns of stock s at time t,

denoted as Rs
t from the adjusted closing price using the formula:

Rs
t =

AdjClosingPricest
AdjClosingPricest−1

− 1

For model fitting and testing, we consider a lag period of 7 to be used as our

input. Therefore, for stock s at time t, we define the feature vector by Xs
t =

(Rs
t−1,, R

s
t−7).

32

5.2 Model Targets

We then calculatd two target criterias for our models, outlined as follows:

Criteria 1

Following Fischer and Krauss (2018), we use the cross-sectional median returns

of all DJIA stocks at a particular time t to define this target criteria. Taking

the DJIA as the market proxy, we try to predict whether a particular stock

outperformed the market i.e. the average of the DJIA stocks. Thus, we define:

Y s
t =


1 if Rs

t > Mt

0 else

where,

Y s
t is the target for stock s at time t.

Rs
t is the returns for stock s at time t.

Mt = median(R1
t , R

2
t ,, R

30
t) is the cross-sectional median of the returns of all

30 stocks at time t.

Note: Target criteria can still be 1 even if the individual returns is negative, and

0 even if returns is positive.

Criteria 2

Following Basak et al. (2019), we use the directional price movements of a par-

ticular stock s at a particular time t to define this target criteria. Here, we try to

predict whether the price of a particular stock goes up or down. Thus, we define:

Y s
t =


1 if Rs

t > 0

0 else

33

5.3 Model Evaluation

Given the input features and their respective target criteria, the machine learning

models calculated a target probability f̂(Xs
t) ∈ (0, 1). We then transformed these

probability values into a target class Ŷ s
t ∈ (0, 1) based on:

Criteria 1:

Here, we transform the predicted probability to class 1 if it’s greater than the

predicted cross-sectional median.

Ŷ s
t =


1 if f̂(Xs

t) > M̂t

0 else

where,

M̂t = median
(
f̂(X1

t),, f̂(X
30
t)

)
is the cross-sectional median of the predicted

probabilities of all 30 stocks at time t.

Criteria 2:

Here, we transform the predicted probability to class 1 if it’s greater than 0.5 i.e.

positive return is predicted with probability greater than 0.5.

Ŷ s
t =


1 if f̂(Xs

t) > 0.5

0 else

Prediction Accuracy:

The prediction accuracy of the models was calculated by averaging the total

number of correct classifications. That is,

Accuracy =
1

30N

30∑
s=1

N∑
t=1

1[yst=ŷst]

where, N is the total number of trading days, yst is the target class observed and

34

ŷst is the target class predicted for stock s at time t, 1 is the indicator function

and 30 is the total number of stocks.

5.4 Model Implementation

The models were implemented in R and we describe the method for each model

used.

XGBoost

We used the package xgboost (Chen et al., 2015) to implement this model. The

function xgb.DMatrix() was used to first convert the training and testing data

to matrix form as this structure was needed to run the model. For our binary

classification model, we set the argument objective to ”binary : logistic”, and

the booster is set as ”gbtree”.

We further tuned the parameters and used the following parameter settings to

run the model:

Also, after tuning, we thus used 478 trees while training for Criteria 1 model, and

731 trees while training for Criteria 2 model.

BART

We used the package bartMachine (Kapelner and Bleich, 2013) to implement

this model. We use the default parameter setting to implement the model, where

the number of trees is set to 50. After running the model, we observe that the

35

MCMC sampling reached convergence at around 200 iterations, as shown in the

convergence diagnostic plot below:

Figure 5.1: Plot Convergence Diagnostics - Criteria 1

Figure 5.2: Plot Convergence Diagnostics - Criteria 2

36

LSTM

We used the package keras to implement this model, using the keras model sequential

function. In our model, we used the 7 period lags as inputs in the input layer.

Our model also had 2 hidden layers each comprising of h= 10 neurons, while the

output layer comprised of 1 neuron. ReLU was the activation function that we

used in all layers besides the output layer, for which we used the sigmoid activa-

tion function. Motivated by Fischer and Krauss (2018), we also apply dropout

regularization within the hidden layers, using a relatively low dropout value of

0.1. Consequently, the danger of overfitting is decreased and generalization is

enhanced as a result of the random removal of a proportion of the input units

at each training update, both at the input gates and the recurrent connections.

To further reduce overfitting risk, we use early stopping to derive the number of

epochs dynamically.

Subsequently, we train the model on the training data for all stocks and then use

it to predict our testing data.

5.5 Results

When applied to our test data, we observe a prediction accuracy of about 50%

with considerably low volatility suggesting that our models, XGBoost, BART,

and LSTM are no better than random chance in predicting the directional move-

ment of returns. Thus, this implies that the features used, i.e. the 7 period

returns lags, contains no information that aids in our prediction.

Observing the prediction accuracy of BART and LSTM models for Criteria 2

which are slightly above 0.5, we might say they predict slightly better than ran-

dom. However, the lower confidence interval only marginally edges above 0.5

giving no evidence of improved prediction accuracy above 0.5. Also, a thing to

note is that the LSTM prediction for criteria 2 has almost zero specificity with re-

spect to target value 1. This means that the model completely fails at predicting

37

the target class 0 and is therefore not a model that can be generalized.

The following figures shows the prediction accuracy of the models on the testing

dataset for both Criteria 1 and 2.

(a) Criteria 1 (b) Criteria 2

Figure 5.3: XGBoost

(a) Criteria 1 (b) Criteria 2

Figure 5.4: BART

(a) Criteria 1 (b) Criteria 2

Figure 5.5: LSTM

Chapter 6

Concluding Remarks

In the realms of academic and applied research, there have been extensive use

of supervised machine learning algorithms. By learning through experience with

the use of comprehensive data sets, these algorithms have been able to produce

accurate predictions over an extensive number of applications.

In this study, we applied the XGBoost, Bayesian Additive Regression Trees

(BART), and a memory-based LSTM network to a financial prediction task on

the Dow Jones Industrial Average (DJIA) stocks. The results of the three models

where then compared in terms of their prediction accuracy. The primary source

motivating our analysis was the paper by Fischer and Krauss (2018) where they

concluded that memory-based LSTM networks can outperform memory-free clas-

sification models when predicting directional movements of stock prices.

Thus, undertaking this empirical study, we found that the frequently used ma-

chine learning models that are widely recognized as the best performing in terms

of financial market predictions, were unable to predict the price movements bet-

ter than random chance. Our findings suggests that either these algorithms are

incapable of identifying the pattern underlying stock return or that return lags

are white noise.

We should note that in the past few years, the stock market was very unstable.

Fueled by COVID-19, the market was highly uncertain and volatile, which per-

haps led to the poor model performances of our machine learning models. To

combat this, sentiment analysis can be incorporated into financial market predic-

tions. There are several studies which show that the sentiments expressed through

39

social medias, and news stories can provide insights into stock price trends and

thus improve prediction accuracy. See for instance, Li et al. (2020), Ren et al.

(2018). Further research on sentiment analysis into financial markets in combina-

tion with the use of state-of-the-art machine learning models may lead to a more

promising results. ‘

40

REFERENCES

Basak, S., S. Kar, S. Saha, L. Khaidem, and S. R. Dey (2019). Predicting the di-

rection of stock market prices using tree-based classifiers. The North American

Journal of Economics and Finance 47, 552–567.

Block, H. (1970). A review of “perceptrons: An introduction to computational

geometry. Information and Control 17 (5), 501–522.

Breiman, L. (2001a). Random forests. Machine learning 45 (1), 5–32.

Breiman, L. (2001b). Statistical modeling: The two cultures (with comments and

a rejoinder by the author). Statistical science 16 (3), 199–231.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and

regression trees (chapman y hall, eds.). Monterey, CA, EE. UU.: Wadsworth

International Group.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pp. 785–794.

Chen, T., T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, et al.

(2015). Xgboost: extreme gradient boosting. R package version 0.4-2 1 (4),

1–4.

Chipman, H. A., E. I. George, and R. E. McCulloch (1998). Bayesian cart model

search. Journal of the American Statistical Association 93 (443), 935–948.

Chipman, H. A., E. I. George, and R. E. McCulloch (2010). Bart: Bayesian

additive regression trees. The Annals of Applied Statistics 4 (1), 266–298.

Cortes, C. and V. Vapnik (1995). Support vector machine. Machine learn-

ing 20 (3), 273–297.

Fischer, T. and C. Krauss (2018). Deep learning with long short-term mem-

ory networks for financial market predictions. European journal of operational

research 270 (2), 654–669.

41

Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of computer and system

sciences 55 (1), 119–139.

Friedman, J., T. Hastie, and R. Tibshirani (2000). Additive logistic regression:

a statistical view of boosting (with discussion and a rejoinder by the authors).

The annals of statistics 28 (2), 337–407.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of

statistics 19 (1), 1–67.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Annals of statistics , 1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics

& data analysis 38 (4), 367–378.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The ele-

ments of statistical learning: data mining, inference, and prediction, Volume 2.

Springer.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural

computation 9 (8), 1735–1780.

Kamruzzaman, J., R. Begg, and R. Sarker (2006). Artificial neural networks in

finance and manufacturing. IGI Global.

Kapelner, A. and J. Bleich (2013). bartmachine: Machine learning with bayesian

additive regression trees. arXiv preprint arXiv:1312.2171 .

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu

(2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances

in neural information processing systems 30.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 .

Krauss, C., X. A. Do, and N. Huck (2017). Deep neural networks, gradient-

boosted trees, random forests: Statistical arbitrage on the s&p 500. European

Journal of Operational Research 259 (2), 689–702.

Li, X., P. Wu, and W. Wang (2020). Incorporating stock prices and news senti-

ments for stock market prediction: A case of hong kong. Information Processing

& Management 57 (5), 102212.

42

Maroco, J., D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and A. de Men-

donça (2011). Data mining methods in the prediction of dementia: A real-data

comparison of the accuracy, sensitivity and specificity of linear discriminant

analysis, logistic regression, neural networks, support vector machines, classi-

fication trees and random forests. BMC research notes 4 (1), 1–14.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics 5 (4), 115–133.

Ren, R., D. D. Wu, and T. Liu (2018). Forecasting stock market movement

direction using sentiment analysis and support vector machine. IEEE Systems

Journal 13 (1), 760–770.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review 65 (6), 386.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov

(2014). Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research 15 (1), 1929–1958.

Thuiller, W., M. B. Araújo, and S. Lavorel (2003). Generalized models vs. classifi-

cation tree analysis: predicting spatial distributions of plant species at different

scales. Journal of Vegetation Science 14 (5), 669–680.

Von Luxburg, U. and B. Schölkopf (2011). Statistical learning theory: Models,

concepts, and results. In Handbook of the History of Logic, Volume 10, pp.

651–706. Elsevier.

	Abstract
	Acknowledgements
	Introduction
	An Overview of Function Estimation
	Bias-Variance Tradeoff

	Introduction to Tree-based Models
	Background
	Traditional Tree-based Models

	The Bayesian Methodology
	Bayesian CART
	Bayesian Additive Regression Trees (BART)

	Neural Networks
	General Features
	Advantages of Neural Networks
	Recurrent Neural Network
	Long Short-Term Memory (LSTM)

	Experiments and Results
	Data Preprocessing
	Model Targets
	Model Evaluation
	Model Implementation
	Results

	Concluding Remarks
	References

