
Master’s Degree program
in Computer Science
LM-18 Class D.M. 270/2004

Final Thesis

Analysis of Cryptographic
Vulnerabilities in Docker Images

Supervisor
Ch. Prof. Riccardo Focardi

Graduand
Filippo Camoli
Matriculation Number 871380

Academic Year
2021 / 2022

2

I would like to thank Professor Riccardo Focardi, supervisor of this

thesis, for allowing me to undertake this thesis work whose work was

facilitated by his spin-off company, Cryptosense, in particular the

collaboration with the CEO and founder Graham Steel. Also, an

important mention to the Cryptosense’s Software Engineer Ian

Barnes, for having provided support and availability for every need

related to the company's products.

Last but not least, a special thanks to my cat, Bizet, for keeping me

company from the beginning of my university career, despite his

paws on the keyboard, writing apparently nonsense sentences amid

the reports and source codes in these last 5 years.

3

Summary
Introduction 6

Cryptosense 7

Cryptography and Cyber Security 8
The Basis of the IT Security 8
Some Attack Scenarios 9
Why Cryptography? 11

Cryptographic Keys 11
Certificates and Digital Signatures 15
Keyrings 17

Debian Authentication Keyrings 17
Java KeyStore (JKS) 19

The Docker Images Analyzer Program 20
Dependencies 20
System Requirements 21
CAP Integration 23
Implementation 25

Data Structure 25
Structs 25
Lists 27

Web Scraping Docker Hub in Python 29
Overview 30
Analyzing Concurrently 32

Scan Thread 32
Upload Thread 33
Import Thread 33
Report Generation Thread 33
Check Report Thread 33

JKS Analysis 34

Analysis’ Results of Docker Images 35
Non-conformities Cheatsheet 35
The Evolution in Time 44
Statistics 47
Still, Open Questions 51

4

Conclusions 52
What Has Been Learned 52
Assumptions and Limitations 53
What Impact Should We Expect 54
Future Developments 54

Some Additional Information … 56
… on CAP 56
… on Docker 57
… on the CA Certificates 58
… on Key Lengths 59

Bibliography and Sitography 60
Basic Information and Definitions 60
Teaching Materials 63
Debian References 64
Publications 65

5

1. Introduction
In the enterprise IT1 world there is a strong push and interest in

virtualization2, especially for the many advantageous reasons that benefit
both business and customer users. A fundamental pillar of the world of
virtualization is the solution proposed by Docker3, an open-source project that
speeds up the deployment of applications in software containers that offer an
additional level of abstraction by operating at the Application level. These
containers, often light and small in size, are based on images that contain
reduced operating systems including Linux and Windows distributions. In
Docker, each container is derived from a docker image, which can be seen as
an environment that can be created, modified, and deleted without affecting
the main core of the base system image used.

This leads the research into looking for non-conformities in widely used
products by the industry that could potentially put many users at risk. The
current setup is focusing only on the cryptographic vulnerabilities and the
purpose is to learn about them by answering some questions like “Why does
this vulnerability exist? Is there any way to fix this permanently?”.

In the context discussed, thus the vulnerabilities in Docker images apply to
any Linux environment and distribution, however, this thesis aims to give
additional and direct support to the images curators given the great variety of
distributions and applications present in the Docker community. All Docker
images that have Windows, as their basic operating system, are not included
in this thesis work, as they are incompatible with the software used in the
experimental phase.
This thesis work provides a current4 overview of some of the docker images,
in particular, an extended look into vulnerabilities related to certificates, keys,
and keystores5. Thanks to this overview, it is possible to understand the
reasons behind the existence of these vulnerabilities and their fixes to avoid
hypothetical attack scenarios.

5 In particular Java Keystores, referred from now on with the acronym “JKS”.
4 Some of the results are gathered from images between March and May 2022.
3 Docker is not classified into Emulation and Para-Virtualization, but into Container-based Virtualization.

2 Computer Science can be referred to as the act of abstracting something, thus virtualizing Hardware and/or
Software layers.

1 Information Technology,

6

The methods applied in the experimental phase of this thesis will be
explained, from which it was possible to observe some collected statistics that
provide thoughts for both end users and publishers/curators of Docker
Images, to make them more aware of security risks and stimulate them to
improve their solutions.

The results obtained show that there are some criticalities, at least minor than
those reported by the analysis tools, which, however, it is always good to be
able to take into account if the reader in the future wants to build or contribute
to the development of applications distributed through Docker. The
conclusions will have some open questions to which it has not been possible
to obtain an official answer, this could emphasize that the lack of
transparency can create not only ambiguities but also concerns.

Following the conclusion of the work carried out, the reader can find a section
not strictly linked to the topic discussed, which is, therefore, a section of
backgrounds relating to various information from the IT world, Docker, and
Cryptosense, as well as the problems arising in the researching process of
which I invite readers to read to understand the mechanisms behind these
organizational realities better.

1.1. Cryptosense
Cryptosense is a software company located in France backed by some

European-American secured capital firms whose core business is creating
Cryptographic automated tools [1], in particular the Cryptosense Analyzer
Platform (CAP)6 which I used to perform analysis on Docker Images. The
CAP consists of a suite of different products like the Analyzer Platform,
Application Tracer, Network Scanner, FileSystem Scanner, and HSM
Scanner. The CAP is easily accessible by everyone and a free version is
given to new subscribers. All the Cryptosense tools used in this thesis are
part of the CAP suite.

In Section 6.1 the reader can find more information about the CAP product.

6 The tools used in the experimental part are essentially the Analyzer Platform, via its APIs and the
FileSystem Scanner via Host Scanner; more details are provided in Chapter 3.

7

2. Cryptography and Cyber Security
Before diving into the explanation of the experimental process or its

analysis results, it is important to understand why and how Cryptography is
essential in Security applied to Computer Science, starting with the basics
fundamentals of Cryptographic concepts and scenarios used in this project.

2.1. The Basis of the IT Security
Cyber Security (CS)7, aims to protect computer systems, networks, and

their derivatives, starting from the Hardware to the Software layer. As with the
rest of IT, Cyber Security covers a great variety of macro areas, however, all
these areas have in common the fundamental key concept of IT security: the
"CIA" triad. All the following explanations are elaborated from the original
FIPS8 publication n.199 [2].
"CIA" is nothing more than the anagram of Confidentiality, Integrity, and
Availability. Terms that accompany every component of the computer world
and that we will take into consideration throughout the thesis.
By Confidentiality, we mean restricting the authorization limits on sensitive
data, in particular, in the context of data confidentiality, the aim is to not
disclose such data to unauthorized entities.
Integrity, on the other hand, ensures that these aforementioned data are, over
time, consistent, accurate, and reliable despite the changes that will have to
follow a specific way with specific authorizations for being manipulated. In the
context of System Integrity, the statement is similar but applied to a system
that operates with its intended functions without exhibiting unauthorized
manipulations.
The last one, Availability, ensures that the system will always provide
information only for its authorized users.
There are other terms like Authenticity (An entity must be identified correctly)
and Accountability (Events are traced by unique entities) [3], but among the
aforementioned terms, the most important ones for this research work are
Confidentiality, Integrity, and Authenticity.

8 Federal Information Processing Standards
7 Formally known as IT Security.

8

2.1.1. Some Attack Scenarios
Achieving these properties is almost trivial, here are listed the most

common attack scenarios that illustrate the attack and what property will be
broken [3][4]. As an assumption, we state that there exists an information
flow from a Source (S) to a Destination (D).

a) Interruption: The attacker (A) actively9 interrupts the flow of
information.
→ It breaks System Integrity and Availability.

b) Interception: The Attacker (A) passively10 intercepts information with
unauthorized access.
→ It breaks Confidentiality.

10 Passive attacks aim on learning information without altering the resources.
9 Active attacks aim on altering existing resources.

9

c) Modification: The Attacker (A) intercepts passively and actively
manipulates both flow and information.
→ It breaks Integrity.

d) Forging: The Attacker (A) actively forges, without authorization, new
information in the system.
→ It breaks Confidentiality, Integrity, and Authenticity.

e) Corruption: The Attacker modifies system functions.
→ It breaks System Integrity.

f) Misappropriation: The software of the Attacker abuses hardware and
software resources without authorization.
→ It breaks System Integrity.

If any of these properties is broken in our system, then it is possible that the
other ones will be broken, opening to more complex attack scenarios.

10

2.2. Why Cryptography?
By definition [4][5], Cryptography helps us to protect secret information

in an insecure environment (i.e: the presence of a malicious entity), thus by
applying some mechanism and protocols, the previously discussed properties
can be safely archived but not maintained11 if we do not perform some
manutention over the time.

The following notions and mechanisms need to be explained to understand
how these useful tools require some care and attention since their incorrect
use or the administrator’s negligence could lead to the loss of important
security properties.

2.2.1. Cryptographic Keys
The main core of cryptography is algorithms and keys. When algorithms

were not enough to protect messages exchanged between two parties (i.e.:
the algorithm was leaked and became public knowledge), keys are the best
alternative, not only for security reasons (i.e.: they are simple to maintain).

The security strength of a key [6] lies in its conformation, like its algorithm,
length12, generation13, and process of exchanging keys14. Nowadays the
standard is to use, RSA encryption, at least 2048 bits for current systems
[11]. We will see that many non-conformed keys found in Docker Images
have short key length issues.

14 Dubbed RSA exchange key method does not preserve the forward secrecy property, instead, it is preferred
to use a Diffie-Hellman algorithm in a security context [7][8].

13 Keys must be generated randomly in order to avoid guessing.
12 Referred also as Size, it is measured in bits and it is decided by the algorithm adopted.
11 By maintaining, we mean following the international standards that keep evolving through time.

11

There are three main types of keys:

a) Elliptic Curves [13][14]

Elliptic Curves Cryptography (ECC) is a type of Public Key
Cryptography where EC is both a geometric and algebraic object
defined over Finite Fields. In general, EC keys benefit from a shorter
key length, while providing the same security strength by assuming
that a public point is known (ie: Public Key) and finding its discrete
logarithm element is infeasible (ie: infeasible to find an associated
Private Key given the Public one). ECC is mostly used for Key
Agreements and Digital Signatures, so many existing algorithms for
Symmetric and Asymmetric Keys were adapted to ECs.

b) Symmetric Keys

The encryption15 and decryption16 phases use the same key, making it
efficient but it requires an offline sharing for establishing the key,
moreover, encrypted messages are not uniquely making it difficult to
distinguish the parties who sent the message.
Most famous algorithms used for Symmetric Key Cryptography
according to [10]: AES, DES, 3DES17, IDEA, Blowfish, RC4, RC5,
RC6.
Other algorithms may be deprecated due to known vulnerabilities on
ciphers or due to insufficient support on key length complexity over its
performance.

Symmetric Keys are now used only to ensure confidentiality and
integrity of exchanged messages in a session18.

18 In TLS connections, the Symmetric Key is used as a Session Key [9].
17 3DES is actually a variant of DES.
16 Decryption of a cipher text into a plain text through a decryption algorithm.
15 Encryption of a plain text into a ciphertext through an encryption algorithm.

12

c) Asymmetric Keys

Each party has a pair of keys, a Public one, known to everyone, which
is derived from a Private key, that is only known by its owner and
infeasible to compute using its associated Public key. This kind of
cryptography is now used everywhere for everything.
By using the Public key in encryption, the decryption can be only
made by using the Private key.

If the Private Key is used for encryption, thus the Public Key for
decryption, then we are dealing with Digital Signatures.

Thus, Asymmetric Cryptography is used for establishing19 a new Symmetric
Key, called Session Key, whose purpose is to exchange information ensuring
Confidentiality and Integrity, but temporarily. Authenticity is not achieved yet
since the key exchange does not guarantee that a Server owns a Public Key.
This can be achieved by using Certificates.

19 Establishing a session key through Dubbed RSA will not preserve the forward secrecy property, it is
suggested using a Diffie-Hellman key exchange method to achieve this property.

13

NIST provided [12] a table of recommended key lengths (in bits):

In Asymmetric Algorithms with Finite-Fields Cryptography20, L is the public
key length, while N is the private key length. Rows in red are no anymore
used for security reasons.

Security
Strength21

Symmetric
Key

Algorithms
FFC22 (DSA,

Diffie-Hellman) IFC23 (RSA) Elliptic Curves

≤ 80 2TDEA
L=1024

N=160 1024 160-223

112 3TDEA
L=2048

N=224 2048 224-255

128 AES-128
L=3072

N=256 3072 256-383

192 AES-192
L=7680

N=384 7680 384-511

256 AES-256
L=15360

N=512 15360 ≥ 512

23 Integer-Factoring Cryptography, RSA is based on performing integer factorization [13].
22 Finite-Field Cryptography, see note #15 above.

21 It is the estimated maximum-security strength in bits provided by the algorithms and their key lengths in its
row.

20 Group-based cryptography done over the integers modulo a prime [13].

14

2.2.2. Certificates and Digital Signatures
Authenticity is easily achieved by an Identity Certificate, also known as

Public Key Certificate, which validates the identity of the owner through the
data digitally signed on the certificate itself. Digital Signature (DS) is a
scheme to verify the authenticity of a document. An implicit effect of DS is to
detect tampered or forged data. It is based on Asymmetric Cryptography and,
as mentioned in the previous section, a document can be signed by using the
private key of an entity and the latter must provide its public key for signature
check (thus the certificate).

A standard certificate X.50924 (v3) includes several pieces of information [15]:

Subject (The identity of the owner)

Public Key (Of the owner)

Issuer (Who released the certificate)

Validity (Not Before and Not After DateTime)

Serial Number (A unique ID for revocation tracking when a subject
is compromised)

The most important ones for achieving the Authenticity property are the:

● Signature Algorithm (It contains the hashing25 algorithm used in
signature and the encryption algorithm).

● Signature (the body of the certificate is hashed26 and then encrypted
with the private key of the owner, according to the algorithms specified
in the Signature Algorithm field).

Thus we can check a digital signature of a certificate with its public key, and
trust27 the certificate if, and only if, the hashed signature matches with the
hashed body of the certificate itself.

27 Under assumption that the private key is not leaked/compromised.

26 It is more time-space efficient to sign the hashed value of a document than sign the entire document itself,
due to its shorter length.

25 A Cryptographic Hash Function is a deterministic algorithm that always maps original information into its
same hash value, a.k.a. message digest. Hash Functions are strongly used because of their properties such
as the one-way property, which makes hash functions infeasible to reverse their computation. The only way
to break a hash function is to use a brute-force approach of possible inputs or using a rainbow table.

24 Standard defined by International Telecommunication Union (ITU).

15

In this research work, certificates are mostly Self-Signed certificates and
Certificate Authorities (CAs). A certificate can be released by the owner itself
within its signature. A self-signed certificate can be trusted only if the
certificate chain can be checked successfully, which is a list of certificates
such that [8]:

“
1. The Issuer of each certificate (except the last one) matches the

Subject of the next certificate in the list;
2. Each certificate (except the last one) can be verified using the

public key contained in the next certificate in the list;
3. The last certificate is a trust anchor: a self-signed certificate that

one trusts because it was issued by a trusted certification
authority.

”

Credits: Yuhkih, CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

A Certificate Authority [16] is an authoritative entity that stores, signs, and
issues digital certificates used in HTTPS. Typically, CAs sign 3rd parties
certificates for web servers and emails. Self-signed CAs are called “Root CA”,
and CAs signed by other CAs are called “intermediate CA”. Root CAs are
provided with the OS and/or with internet browsers. Further information can
be found in Section 6.3.

16

2.2.3. Keyrings

The last, useful, tool to introduce are keyrings.

Keyrings are digital archives to store cryptographic keys but also passwords.
In our study case, we are dealing with GPG28 keyrings used by Debian distros
and a sub-type of keyrings, the Java Keystore.

2.2.3.1. Debian Authentication Keyrings

Debian operative system allows users to install Debian packages
(.dpkg) through APT29, a useful tool whose purpose is to automatically solve
dependencies, configure modules of the packages, and manage the installed
packages. APT is capable of providing safe and trusted packages through a
secure mechanism: the “Debian Project” [18].

The goal of the Debian Project is to ensure the Debian distribution system
has strong security against forgeries. It consists of distributing, collecting, and
managing the digital signatures of developers within the OpenPGP standard
keyring, containing keys of Debian Developers. This keyring
(Debian-keyring.gpg) relies on GnuPG (GPG) implementation, whose
realization is a concatenation of multiple .gpg files containing keys.

Some keyrings are stored in the following path: /usr/share/keyrings/ , and the
main keyrings are provided with the Debian release installation. Keyrings can
be updated through the official repository, the Debian Public Key Server (
keyring.debian.org) a PKI30 that deals only with keys for Debian Project
members. These members can enroll in the Debian Project program and
through a complex iter, which involves an identification check31, the new
members can become part of it and get the associated personal pair of
keys32. Each new pair of keys are signed by two other members. New
developers can sign their packages and put them online through Debian
Archive33.

33 Debian Archives is an official repository maintained by Debian official members, in these archives there
are software and security updates, major releases and packages.

32 A Private key and its associated Public key.
31 GPG refers to this mechanism as “web of trust” in its official manual [17].

30 Public Key Infrastructure, a theoretical infrastructure as a superset of policies, roles, and entities that
create, manage, revoke, use, store certificates and public key encryption.

29 Advanced Packaging Tool.

28 GNU Privacy Guard [17] is a free multi-platform implementation of the RFC4880 standard (OpenPGP) and
its purpose is to offer a cryptographic suite (including most used Public Keys, Ciphers, Hashes,
Compressions).

17

Each Debian release comes with a set of keyrings, the main ones located in
/usr/share/keyrings/ are the following ones with an explanation of their
purposes according to [19][20][21]:

debian-keyring.gpg:
Contains all OpenPGP keys of Debian Developers with upload
privileges to Debian Archives.

debian-archive-keyring.gpg:
This includes all actively used APT keys to sign Release files in
supported Debian releases.

debian-archive-removed-keys.gpg:
This includes all used keys in previous releases, that were used to
sign Release files, and now are no longer supported.

Every time the user uses APT, with a Debian mirror, a Release34 file is
checked for Packages.gz integrity (MD535 sums) and it contains all the
Debian packages available in that mirror [22]. APT uses all the keys used in
these important keyrings in /etc/apt/trusted.gpg.d/, for checking the signatures
of the acquired Release file against the key database.

In the trusted GPG directory, several keyrings usually consist of three types of
keyrings, each of them for every latest three Debian releases:

debian-archive-bullseye36-automatic.gpg
debian-archive-bullseye-security-automatic.gpg
debian-archive-bullseye-stable.gpg

debian-archive-buster37-automatic.gpg
debian-archive-buster-security-automatic.gpg
debian-archive-buster-stable.gpg

debian-archive-stretch38-automatic.gpg
debian-archive-stretch-security-automatic.gpg
debian-archive-stretch-stable.gpg

38 Debian 9 (2017).
37 Debian 10 (2019).
36 Bullseye is the actual and latest release - Debian 11 (2021).

35 A MD5 checksum is a method of taking a file and condense it to a unique short number that identifies the
content of the file.

34 Starting from Debian 10, Release is deprecated and instead inRelease is used. The former uses a
detached Release.gpg signature and the latter is cryptographically signed in-line.

18

Automatic public key is used for using the release of the next Debian release
and upcoming expiring keys in 2027. The Security-Automatic key is used for
security archives (i.e. security updates) and its key is signed by the
FTP-Master key only. Lastly, the Stable public key is used for the current
stable Debian release.

These keys usually are strictly verified and under control39, which is why we
will never see them through the report’s analysis in Chapter 4.

2.2.3.2. Java KeyStore (JKS)

The JKS is a repository for storing public and private keys within signed
certificates used in SSL40/TLS41 encrypted connections. TrustStore, instead, is
similar to the KeyStore concept, but it is meant to contain only the trusted
certificates of the entities (i.e. CA certificates) that the user will use when
dealing with third-party certificates.
Default Java KeyStore and TrustStore are installed as part of the Java
Development Kit (JDK). The main one is the cacerts file, which stores CA
certificates, hence self-signed CA certificates embedding the CA public key.
Java keytool program is provided in the JDK but it cannot extract private
keys, there is a need to use third-party programs to do it, for instance,
KeyStore Explorer or other programs that are discussed in Section 3.4.5.

There are other alternatives for the JKS (or Java TrustStore), like the PKCS
format which is taking the lead with its latest versions of PKCS#1142 and
PKCS#1243. In macOS, the equivalently default Keystore used is the
KeychainStore which also embeds KeyChains.

As stated in [23], the pre-2017 versions of JKS are weak and insecure44. New
JKS versions use, according to Oracle, an increased iteration count of the
weak algorithm used, the SHA-1. This “fix” is not gonna mitigate the problem
since it will just extend the brute-force attack time required for cracking such a
format. It is recommended to use the PKCS#12 format since, at least for now,
it does not present any security issues.

44 CVE-2017-10356.

43 PKCS#12 is a software format for storing certificates and private keys, mainly used when converting or
migrating such information to different platforms.

42 PKCS#11 is an interface/hardware format for HSM or any cryptographic tokens hardware-based through
its API, it provides the usual operations for dealing with certificates and keys.

41 Transport Layer Security: the successor of the SSL.

40 Secure Socket Layer: It is a cryptographic protocol designed for providing security over communications in
computer networks.

39 Each key in trusted.gpg.d is signed by two Debian FTP-Masters, members of the FTP team [24].

19

3. The Docker Images Analyzer Program
In this section will be illustrated the realization of the analyzer “script45”

made by the author. Its purpose is to get all the Officials and
Verified-Publisher Docker Images, execute the Cryptosense Host-Scanner
executable, upload the generated trace and launch its analysis to get a
report. Through the report, some checks and statistics are performed. Most of
the final data obtained are analyzed manually.

There will be no code fragments in the following explanation, if the reader
wants to see the source code, it can be seen through my GitHub repositories:
here for the C++ program and here for the Python Web Scraping script.

3.1. Dependencies
In this project there were used some external libraries:

For the Python Script:

- Selenium 4, for scraping static and dynamic web pages.

- Web Driver Manager [deprecated46], used for automatically managing
the web drivers.

For the C++ Program:

- Curl, for making requests/responses to/from CAP APIs.

- Boost, for Thread Pool and other minor stuff.

- Botan, an X.509 parser.

- Nlohmann-json, is a beautiful json parser extremely versatile.

- Python [deprecated], official Python Library for C/C++, originally used
for embedding the WebScaping script but unfortunately something is
broken under macOS47.

47 The entire project was developed under macOS and Xcode.

46 I used the Safari web driver embedded in Selenium 4, but deprecated code is still commented with
Microsoft Edge web driver implementation.

45 Mixture of Script and Program actually.

20

https://github.com/pilo1996/Auto-Traces-Collector
https://github.com/pilo1996/Docker-Hub-Web-Scraping-Script

3.2. System Requirements
For completion:

● Processor with 4+ Thread/Core support
● At least 700MB of RAM (when dealing with ~500 Docker Images)
● At least 1GB of free disk space (and r/w permissions)
● Internet access
● Python (3.9+ suggested) installed

○ and its dependencies, see above
● C++ Compiler (Clang was used during development)

○ and its dependencies, see above
● Docker Installed and booted up

○ At least 200GB+ free space if you want to analyze ~500 Docker
Images

○ Docker Account signed-in.48

● A Cryptosense Account and API Token
● A lot of time

3.3. File Structure

DIR Files Purpose

/Data

/list_docker_official_imag
es_RAW.json

/list_docker_store_image
s_RAW.json

/list_docker_official_imag
es_API.json

List containing all docker images from
docker hub (through WebScrape script) in
the form <namespace> / <name>. ‘Official’
are those images marked as official
images, all of them have Library as
namespace; ‘Store’ are those images
released by Verified Publishers.
Only official images can be retrieved
through docker APIs directly in the C++
program in the <namespace> / <name> :
<tag> format.

/list_docker_store_image
s_FIXED.json

The above list is giving no tags, the
Program will resolve the latest tags to
keep track of the versioning and to resolve
platform issues49. Only the official list (with
API) comes with tags.

49 See Chapter 6 - Docker.
48 See Chapter 6 - Docker for its limitations.

21

/Data

/list_docker_images_FAI
LED.json

/list_docker_images_NO
_TRACES.json

List of Docker Images in json format from
Data Structure described in Section
3.5.1.1.
The FAILED list contains all the docker
images that have failed after the trace
creation (Error occurred when using CAP)
or they have created a non-valid Trace
(size is 0 Bytes).
The NO_TRACES list contains all docker
images that have no trace created from
the first phase (Error occurred in Docker
Client Engine).
Both lists can be used in the next runs to
try to resolve the issues or just for logs.

/Stats_871380@stud.uni
ve.it i-th.json

/JKS_871380@stud.univ
e.it i-th.json

/Reports_871380@stud.
unive.it i-th.json

Reports, is a local cache of the reports
generated on the CAP.
Stats, will contain some simple stats of the
analyzed reports.
JKS is the list of reports for JKS files
where it describes the type of keys inside
the Keystore.

/JKS
Contains folders with
names of the format:

<namespace>_<name>-
<tag>

The C++ program provides a JKS check
and creates a final JKS report (see
above). To do this check, it was necessary
to use a temporary directory to extract all
the JKS files from the Image and then
checked against Floyd’s .jar tool for
extracting private keys in /JKS. This .jar
script creates a hash.txt output file, if it’s
empty, then the JKS contains only Public
Keys, if it contains at least one hash, then
it contains a Private Key.

/Script

/start_container.sh
/terminate_container.sh

Bash Script for Docker CLI management.
Start and Terminate a container given the
full image name [namespace/name:tag]
and the sanitized name (no special
symbols are supported in Docker CLI like
‘/’ and ‘:’).

/process_image.sh
As above, but: it starts, copies in the
container & runs the host-scanner
executable, copies the generated trace

22

https://github.com/floyd-fuh/JKS-private-key-cracker-hashcat
https://docs.cryptosense.com/host-scanner/

into the host, and then terminates the
container.

/copy_extract_jks.sh

A script that prepares the directories
necessary to run the .jar file. Copy from
the container to the host the JKS file
reported by CAP reports and then execute
the .jar check for extracting private keys.

/Traces
“/Tests” directory
(just for personal

purposes)

It contains all compressed traces (with
extension .cst.gz) obtained from the
process_image.sh script, to be uploaded
to the CAP.

3.4. CAP Integration
CAP allows organizations to create and manage users in different roles

such as Analysts. Each Analyst-User is allowed to manage Profiles, that is a
set of rules to determine the cryptographic critical issues, and also to create
some Projects that act like folders, and in these folders, we can upload
Traces (up to 100 per Project) and generate Reports from them.
To generate a trace, we need to scan the OS with some tools like the
Cryptosense Host Scanner50. In this project, due to compatibility issues with
Docker Images dependencies, JAR51 files are not considered. Once the trace
is uploaded to CAP, we can generate its Report by using a Profile. A Report is
made of Instances and Certificates.

An Instance is the result of a found key whose key information determines the
criticality according to the selected Profile. Each Instance has a type52, which
is defined by the author for extracting statistics. There is also provided an
explanation on why such a level of criticality is assigned that includes the path
of this key.

Certificates are just an abstraction of the real certificates into the
scanned/analyzed host and they can be considered a specialization of
Instances.

Note: Multiple Instances referred to the same file can occur since this file
could be an archive of keys, and an Instance is created for each key.

52 Types of Instances classified by me: CERT_SHA1, STALE_PK_RSA, STALE_PK_DSA, CERT_EXPIRED,
SHORT_RSA, SHORT_DSA, CERT_3650, JKS_VALIDITY, JKS_SHA1, SOMETHING_ELSE.

51 Also known as Static scan.
50 It allows scans of different formats and modalities.

23

Cryptosense Analyzer Platform can be used and almost fully managed53

through restful APIs via API Key. It is possible to

- Get User and Organization information
- Create a Project
- Upload a Trace
- Analyze the Trace and Generate a Report
- Delete a Report and a Trace
- Get Reports (Instances and Certificates)
- And more…

The requests are made in GraphQL format and the query construction can be
made through the provided API Documentation or using the Cryptosense
Query Explorer accessible in the personal area.

All the responses are in json format, except for one which is in XML format54.

54 For details see Section 3.5.4.2.
53 In comparison to the Web UI, see Section 6.1 for more backgrounds.

24

https://docs.cryptosense.com/api-documentation/

3.5. Implementation
Despite the efforts made to parallelize everything at its finest, Docker

CLI operates the commands sequentially, meaning that some parallelism is
lost in multiple commands present in process_image.sh bash script. For
example, if we have three threads that have to execute this script, the script is
running in parallel, but for each Docker command, Docker CLI puts in a
Stack the commands and executes them, but only the execution of Docker
commands is sequential, meaning that multiple containers can analyze in
parallel after a sequential analysis launch, which is the part with the most
gain.

Bash execution respects the ENV33-C rule [25] for executing trusted
commands.

3.5.1. Data Structure
To keep track of the data managed and manipulated, and also to

facilitate the debugging process, it was necessary to create several data
structures. Buffers used in the program are lists.

3.5.1.1. Structs
Many structures were made in this project. Each of them provides a

To/From jSon serialization to automatically provide json compatibility with
these structures. The following table there are illustrated the purpose of each
structure with additional information for some of them:

Struct Name Purpose

Profile Struct for the CAP Profiles, which includes the name,
types, and ids.

Project
Struct for the user Projects with name and ids. It also
counts the number of traces in a project, this is helpful to
create a new project when the other ones are full.

25

DockerImage
Struct for the Docker Images information such as
namespace, image name, and tag, which is resolved at
object instantiation via Docker Hub API v2.

Image

The most important struct for tracking the Images dealt
with the analysis throughout the entire program. It is
used to save image information such as its sanitized
name, trace file information, trace id, and report id.

Report
Struct that has a reference to the original Image object
and saves the information as to its id and list of
Instances and Certificates.

Instance Struct is used to keep information such as severity,
criticality, and the type of Instance.

Certificate All the certificates are abstracted in this struct that keeps
information such as the CAP id and its PEM encoding.

26

3.5.1.2. Lists
Plenty of the following lists were used as buffers among threads, thus

some mutex is introduced55. To optimize memory and execution speed, all the
lists are lists of references. For the entire execution of the program, almost all
lists are used as FIFO structures.

The most important ones are:

● std::list<DockerImage::DockerImage*> listDockerImages

○ List of Docker Images containing the information of Docker Hub.

● std::list<Profile*> profiles and std::list<Project*> projects

○ List for saving respectively CAP Profiles and Projects in CAP.
Project list is the only list that needs to maintain its order.

● std::list<Report::Report*> reports

○ List of Reports downloaded from the CAP.

● std::list<Image::Image*> images_failed_no_traces

○ List of Images where they failed in providing their trace in the
Scan phase which involves Docker Commands and Host
Scanner.

● std::list<Image::Image*> images_failed

○ List of Images that in any point of the program, after the Scan
phase, an error occurred (mostly about CAP).

● std::list<Image::Image*> images_to_pull

○ List of all Docker Images that we need to pull from Docker Hub
and be scanned.

● std::list<Image::Image*> images_scanned

○ An Image after being Pulled, so after HostScanner created a trace
file, the Image is now in the list of the Images Scanned. Thus the
images are ready to be uploaded by the upload thread.

● std::list<Image::Image*> images_uploaded

○ List of Images already uploaded into CAP servers56. Thus, images
are ready to be imported.

56 CAP lies on AWS servers, in particular S3 servers.
55 Details on next section 3.5.4.

27

● std::list<Image::Image*> images_imported

○ List of Images already imported into the project, now ready to
launch its analysis/report generation.

● std::list<Image::Image*> images_analyzed

○ List of Images already analyzed/launched to be reported. Report
is not immediately available thus it can also fail. Check Report
thread works on this list for tracking the report’s availability and
success.

● std::list<Image::Image*> images_done

○ List of Images that have completed all the analysis processes and
their report was correctly generated and ready to be downloaded.

28

3.5.2. Web Scraping Docker Hub in Python

To analyze the docker images, a list of images must be provided. The
first method that I found is to use the Docker Hub API v2 which provides a list
of all official images since they are published under user “Library”. Other
images list, unofficial and Verified-Publisher, can be only obtained from the
Docker Hub webpage. This webpage is dynamically generated on the server
side, so a basic web scraping will return only the default piece of HTML code
(header and footer) but not the content that we need.

The final solution consisted of using Selenium (at the time of implementation
and drafting of this thesis, the version is the v4) a Python package that can
assist dynamic web scraping using the Web Drivers.

In short, the web driver gets the content at the generated link, that in this case
is the Docker Hub base link with some URL filtering like the type of image
(official for official images and store for published verified images), the os
(host scanner is a UNIX executable, so Linux is our only choice) and the CPU
architecture (In my case I am working on Apple Silicon/ARM64v8 platform).
As I have been able to ascertain, the platform filter is almost irrelevant,
because after discovering that the “latest” tag for each kind of platform is
used improperly, the only way to fix this compatibility issue is to manually
search for the correct associated tag for the right platform through Docker
Hub API v2, which can be now used since we know the namespace and the
name of the image that we need to pull and analyze.

Once the generated HTML code from the server is downloaded, we can pick
up all the hrefs by ID in the DOM called “searchResults”, which contains the
namespace and name of the image.

The script automatically saves both Official and Verified-Publisher images
and saves the lists into a json array file which will be used in the C++
program, where it will also perform the tag fixing. The total time elapsed for
scraping all the web pages is around 15 minutes, due to the necessity of
introducing 2 seconds of sleep from each request because the Docker Hub
server is quite slow at generating the web pages.

29

3.5.3. Overview
The following UML activity diagram describes, in a very simplified and

notation-abused way, how the C++ program proceeds to analyze the Docker
Images.

In the “loadDockerImagesList” activity, the previously json list files, containing
the docker images (in format namespace/name) are loaded into memory and
for each of them, the appropriate tag is resolved as described in the previous
section. After that, the “downloadProjectsAndProfiles” activity performs a GET
request to the CAP API for downloading all the projects and profiles (name
and id, where the latter one is the only type of information requested in each
GraphQL query to use the CAP features).

30

Now we have the references to check the online traces and reports on the
CAP platform and check if there are any suspended traces or reports from
previously interrupted/failed runs of the program by checking and comparing
the local files. Essentially, this phase prepares all the lists used from now on
as described in the previous section (3.5.1.2) and it defines the counters used
for managing the work-life of each thread used in this program.

As it can be seen from the diagram, 5 threads are created for different
purposes, but actually, this diagram has an abuse of notation because there
are [#DockerImages + 4] threads that are managed through a Thread Pool,
by the Boost library. Specific information about this can be found in the next
section (3.5.4).

After the join of all the active threads that successfully quit their activities
through some race conditions, the thread pool will be empty and now we
have all the reports on the Cryptosense Analyzer Platform ready to be
downloaded. Before downloading them and saving them locally to improve
debugging and performance times (i.e. “Fetching/Updating Reports” activity),
some will be locally written some saving files to keep track of the images that
failed the analyzing process in the Docker-Scan phase or during the CAP
phases to generate a report. These files are made for debugging purposes. In
the last activities, the program will perform some statistical analysis
(“Collecting Stats”) and JKS analysis will be launched to determine if the
vulnerable JKS file also contains private keys or just the public ones (“JKS
Checking”).

31

3.5.4. Analyzing Concurrently
In this section will be covered, briefly, some descriptions and notes of

the most important threads used in run time. This program is mainly written in
C++ for adding concurrency to boost and optimize performances.

3.5.4.1. Scan Thread
There is not a single “Scan Thread” but multiple threads with the same

code are created in the thread pool (i.e. a thread for each docker image), the
purpose is to boost the time performances and avoid sequentiality or
contention since this part takes a lot of time. All lists, mutex, and other
variables are passed by reference. Instead, the (docker) Image object (like
namespace, name, tag, trace path, and trace ids) are passed by value/copy
since each new thread must have its copy of the struct, otherwise spawned
threads will work on the same image reference.
The spawn of these scan threads must take place after creating the other 4
threads, this is because the thread pool is built using a FIFO queue, so we
need to avoid that the following threads are executed at the end, making
concurrency useless.
Image scan is launched through an execve call by using a bash script which
performs these steps:

a) Pull the images from Docker Hub archives.

b) Run the docker images by creating a detached container in
interactive-terminal mode with root privileges (required to save and run
host scanner in some docker images).

c) Copy host-scanner from the host to the container.

d) Execute the host-scanner command line through the docker exec
command in the background but wait for its completion.

Note: the waiting completion is made by the host kernel and not by
Docker.

e) Copy the generated trace file into the host.

f) Terminate and delete the container.

An elegant alternative – with no benefits – is to dynamically generate a
Docker Compose file that automatically executes these commands.

32

Unfortunately, as already anticipated, the implemented solution suffers from a
few sequentiality constraints imposed by the Docker Command Line
Interface, since it uses a FIFO queue of the commands and executes them
sequentially. One possible – but not implemented nor tested – the solution is
to install multiple docker engine instances and spread these threads on these
engines, but it will require much more CPU compute power and RAM space.

3.5.4.2. Upload Thread
In this thread, each docker image labeled as “scanned” (i.e. the trace

file exists, it is valid thus the image is into the images_scanned queue) can be
uploaded to the CAP. The upload consists of two phases: get the AWS S3
server authentication and then upload the file with that authentication
information. The upload process ends with an XML response. This is the only
part of the process that we need to deal with XML objects instead of json.
Each file/trace uploaded is compressed so bandwidth usage and upload time
is reduced.
This thread breaks its life cycle when the counter of all images to
process/upload reaches 0.

3.5.4.3. Import Thread
After a trace is uploaded to the S3 server, it must be imported into the

CAP application and in particular into the Organization/User/Project that we
need to specify. Here new projects can be created on the fly if the current one
is full. The json response can have three different outcomes: the trace import
is pending or failed or done. When all the traces are done or failed, the import
thread breaks its life cycle and it can be joined.

3.5.4.4. Report Generation Thread
If the trace is successfully imported, then an analysis and report

generation can be executed. This part is trivial since we could get a generic
error or get the given report ID. A clarification: having a report ID doesn't
mean that the report is ready. A thread enters the join status after completing
all the report requests present in the queue.

3.5.4.5. Check Report Thread
This last thread checks, by report ID, if the report is pending, done

(ready), or failed. Generally, failed reports are associated with invalid traces,
but this will not happen since both the upload and scan phases check the

33

trace validity and avoid this kind of failure. Once all the reports are done or
failed, the thread breaks its cycle and it can be joined.

3.5.5. JKS Analysis
As already mentioned and anticipated in Section 2.2.3.2, we already

know that JKS is weak and our only concern is restricted only to the private
key presence in that Keystore/truststore. Since many instances are generated
for different keys in a Keystore but refer only to the same file (Section 3.4), a
collection of all JKS paths for each Docker Image is made, then:

- For each list, a new container is run;

- For each path, the script creates temporary directories in the host
computer and copies the JKS into the temporary directory of the host;

- For each JKS copied, Floyd’s .jar utility for extracting the private keys is
executed;

- For each hash.txt file generated by the .jar utility, if it contains at least
one row of text (actually private key hashes), then mark this JKS as
critical (since it contains private keys) otherwise (i.e. no rows are
present in the hash.txt file) then mark the JKS as non-critical since it
contains only Public Keys.

34

4. Analysis’ Results of Docker Images
Analyzing the results obtained from the previously discussed analysis it

can be a little bit trivial since there is a lot of automatism that needed to be
introduced after several manual research, especially on what type of results
we could get from the analysis.
In the following section, it will be presented a cheatsheet table of the found
non-conformities (the so-called “instances” in CAP), which describes the
original purpose of such non-conformity, and how this can be considered a
vulnerability, and its possible fix.

4.1. Non-conformities Cheatsheet
As already mentioned in previous sections, CAP provides for each

instance a critical level according to the “Cryptosense 2022” profile that I have
used to generate the reports. This profile includes many and most restrictive
rules of other organizations such as FIPS and NIST.
The critical levels are encoded with a color that will be used for each
non-conformity found and reported in this document:

PASSED57:
The instance conforms to all the profile rules and this is not a vulnerability.

LOW:
The instance is a non-conformity to some profile rules and its danger is
classified as low due to the low probability chances to enabling attacks
through this instance.

MEDIUM:
The instance can be classified as a mid-danger vulnerability, not
necessarily an actual dangerous threat but if this vulnerability is exploited
it could lead to serious security leakage.

HIGH:
The instance is already an issue and the exploit can be performed at any
time, meaning that the system is already exploitable and weak.

The analysis of these instances aims also to partially “mistrusts” the critical
level of such vulnerabilities that are not a problem due to their original and
intended purpose, despite being classified even at a high level.

57 Since the theme of the thesis is cryptographic vulnerabilities, all the “PASSED” instances are not
discussed nor reported in this document.

35

The first type of instance regards the “No encryption of private keys”. Among
all the scanned and reported Docker Images only one image has this type of
instance: library/hitch:1.7.2-1.

Instance: Unencrypted RSA/PKCS-8 private key at
/etc/ssl/private/ssl-cert-snakeoil.key

Purpose:
After installing Apache2, a post-install script of the ssl-cert package will
install a snakeoil58 certificate for default HTTPS configuration when no
SSL certs are installed. It helps to ensure encryption but is insecure since
it lacks a root authority signature.

Attack:
The key must be leaked internally. Once obtained the key, encryption,
decryption, and impersonations are enabled.

Fix:
Usually this certificate and key must be insecure and it is checked by a
snake oil user. It should not be removed unless it is used (no SSL certs
are installed or configured), in that case, the Docker Image comes
already with a cert+key configuration which is the same for all Hitch
users, thus running the command:

make-ssl-cert generate-default-snakeoil

helps in ensuring an encrypted communication for the short time required
to get/config the SSL certs.

58 Snakeoil is a term intended as “fake” or “to be not trusted”.

36

Some Docker Images have expired certificates, most of them are CA
certificates and the rest of them are non-CAs self-signed certificates whose
purpose is to provide some functionalities to the applications inside the
Docker Image, like all Node.js-based Docker Images. Many of the certificates
that expired, in the latter scenario, expired in April 2022. See Section 4.2 for
more information about Docker images differences in time.

Instance: Expired X.509 certificate at
/usr/share/ca-certificates/mozilla/Cybertrust_Global_Root.crt

Purpose:
CA certificates provided by Mozilla. CA certificates must be installed
when the chain of trust is used for trusted third parties.

Attack:
Not directly a security risk, but invalid certificates lead to impersonation of
the website, thus exposure for end-users to fake websites and annexed
malware/viruses have more chance to be installed. Fake CA roots certs
are dangerous and could partially break the chain of trust.

Fix:
Remove all (CA) certificates expired (or not valid), get them from
CCADB59, and install them manually (or via trusted scripts).

59 See Paragraph 6.3 for more details.

37

https://www.ccadb.org/resources

Another issue regarding valid certificates is their long validity. CAP profiles
have set the maximum validity field, up to 3650 days (10 years). Many root
authorities set their expiration longer than 10 years (sometimes it is just 10
years and some days). This in reality was a common choice before 2020,
when Apple and Google (which are the most influential browser-maker
companies) announced that starting from September 2020, all certificates
longer than 397 days (almost one year) are not issued anymore. This is due
to some security concerns discussed below but also because of forcing the
transition (rolling out) from SHA-1 to SHA-2 (or others).

Instance: X.509 certificate at
/usr/share/ca-certificates/mozilla/Amazon_Root_CA_4.crt with more than
3650 days validity.

Purpose:
CA certificates provided by Mozilla. CA certificates must be installed
when the chain of trust is used for trusted third parties.

Attack:
The longer the validity, the higher are the chances to obtain the private
key [31]. This could be related also to the algorithm used for encrypting
the signature, if the algorithm is suddenly weak for a 0-day vulnerability
this is not good, for instance, the SHA-1 is nowadays considered weak.

Fix:
Check if there are new certificates with shorter validity, if so, take action
by removing and installing the shorter one. Usually, CAs have limited
validity but old CA certs with longer validity are still used and they do not
need to be replaced. In extreme cases, a certificate revocation is
performed as a countermeasure, thus a revocation check must be done.

38

As we can expect from certificates with too long validity, there are public keys
associated (thus private keys) that must be untouched for the same validity
period. The stale public (and private) key is not a good thing and, as we can
see below, the criticality level depends on the type of key (for what is used)
and its “age”:

Instances (2):
- Stale RSA (or DSA) public key in PGP file at

/usr/share/keyrings/debian-archive-removed-keys.gpg

- Stale RSA (or DSA) public key in PGP file at
/etc/apt/trusted.gpg.d/debian-archive-buster-automatic.gpg

Purpose:
Debian Public Keys are used for managing Debian archives and for
trusting packaging sources, see Section 2.2.3.1 for more details.
Usually, Debian removes old keys from previous releases and keeps
them stored in a .gpg file. This is probably because for manual checking
digital signatures of old files, no motivations are officially provided by
Debian. Removed keys are extremely old (pre-2010), thus the red color.

The second instance is old stale keys, actually used, but created in the
pre-2020s. This explains the orange color.

Attack:
Stale public keys means also stale private keys which is not good since it
gets a higher chance to be compromised.
Keyrings are managed by automated processes like Debian apt-secure
and maintained by Debian teams. Removed keys are intentionally left and
probably can be removed without any undesired effects if the user knows
that they will not be used.

The second instance is possibly a vulnerability because apt did not
update any keyrings for a long time; not a critical security risk, if the
docker image is used nowadays, but the Docker Image must be updated
with new keyrings if it will be used in the future.

Fix:
Usually, a

sudo apt update

should update all the keyrings. Security updates also do this kind of
keyring refresh/update.

39

For updating the Debian Archive Keyring in a safe environment:

apt-get install debian-archive-keyring

If we are extremely paranoid we can get the desired keyring to
update/install from the Debian FTP key page, and check each fingerprint.

In section 2.2.1 we already mentioned the importance of keeping longer key
lengths to avoid brute force attacks in a reasonable time, and despite the lack
of an international, also unique, standardization of key lengths (read more in
Chapter 6.4) many organizations follow the recent results of brute force (and
encryption algorithms) attacks to avoid any security issue regarding
cryptographic keys, by imposing a common consensus like deprecating 1024
bit keys:

Instance: 1024 bit RSA/DSA public key in PGP file at
/usr/share/keyrings/debian-archive-removed-keys.gpg

Purpose:
As in the previous instance, these kinds of .gpg files are old public keys
used by the old Debian Release, left for unknown official reasons. The
guess is that they are left for manual checking digital signatures for old
files.

Attack:
By the age of these keys, many of them had shorter lengths. Nowadays
1024 bit RSA/DSA key lengths are not used because they can be easily
broken by brute force attacks. Pay services allow to break in few hours
512-768 bit keys, it is possible that some entities with high resources can
break 1024 bit keys.

Fix:
In general, dismiss and remove old keys less than 1024 bits. Nowadays
recommendation is to use at least 2048 bits and consider the 4096-bit
length as it will be the next standard.
Most of the instances regarding short key lengths are referred to all the
keys of these removed keys archives left by Debian.

40

https://ftp-master.debian.org/keys.html

As already explained, the digital signature on a certificate requires hashing
firstly the body of the certificate and then encrypting the hash with an
encryption algorithm. Above we saw how encryption could be harmful with
less than 1024 bit key lengths, another concern is about the hash functions.
SHA-1 (Secure Hash Algorithm 1) is (still) the most used, worldwide, and it is
cryptographically broken since 2017. Already in 2004, there were some
(theoretically) concerns about its collision strength, in 2011 NIST decided to
deprecate SHA-1 for signing certificates starting from 2013. In 2020, chosen
prefix attacks in SHA-1 are practical and such attacks allow “colliding
messages with two arbitrary prefixes, which is much more threatening for real
protocols” [33].

Instance: Use of SHA-1 digest algorithm in self-signed X.509 certificate at
/usr/share/ca-certificates/mozilla/EC-ACC.crt

Purpose:
CA certificates provided by Mozilla. CA certificates must be installed
when the chain of trust is used for trusted third parties. As explained in
Section 2.2.2, certificates use hash algorithms for the digital signature on
them.

Attack:
In February 2017 there was found and proved the first public collision
using SHA-1. For this reason, is now considered insecure and should be
avoided even if the chances to create a public collision are low. Once the
collision is done, the private key is leaked and as consequence, all
previously discussed scenarios can be actuated.

Fix:
If it is a self-signed certificate of your possession, update the certificate by
changing the digital signature encryption algorithm with other algorithms
such as SHA-256. CA should update their certificates and then end-users
must follow the updating process through CCADB, but for now, is not a
real necessity (due to low probabilities to do a public collision) and many
CA certs will end nearly (in 2026-2027).

41

One of the biggest flaws in the IT world is that almost every integrity check on
files on the internet is based on MD5 hashes, and still now it is widely used.
According to [34], MD5 was introduced in 1991, and already in 1996, there
was a collision, suggesting to migrate to SHA-1. Between 2004 and 2006
various attacks and algorithms for forcing a collision were made and
improved until the “tunneling” method-based attack [35] created the collision
in just one minute. In 2019, ¼ of the most used CMS still use MD5.
Fortunately, MD5 was not found in any CA certificate in my analysis, although
it is still present on some 3rd parties certificates in some keystores:

Instance: Use of MD5 digest algorithm in self-signed X.509 certificate with
label dukecert in JKS Keystore at
/opt/java/openjdk/sample/jmx/jmx-scandir/truststore

Purpose:
Despite being a path of a sample provided by OpenJDK, the trustore, as
mentioned in Section 2.2.3.2, is used to store trusted certificates such as
CAs.

Attack:
MD5 hash functions are insecure and there are plenty of resources for
breaking these hashes. Generally, collisions in the hash function could
lead to the hash payload being accepted as legitimate when it has been
altered, i.e. tampered artifacts can be created with the same legit hash.

Fix:
Keystores must be updated to use other hash algorithms such as
SHA-256. If you want to still stick with MD5 (due to compatibility issues),
consider adding salt60 and hashing iteratively the produced hashing with
MD5.

Oracle, one of the biggest companies in the US, develops and maintains
Java, a high-level, multi-platform, class-based, programming language. Java
is distributed through JDK (Java Development Kit) and provides a great
amount of APIs. Among these APIs, Java supports internet communication
with its JSSE (Java Secure Socket Extension) which implements SSL, TLS,
and many useful tools such as encryption and decryption algorithms, server
authentication, and message integrity. As can be intuitively known from
Chapter 2, to achieve the CIA properties, certificates (and their related public
and private keys) need to be used in these JSSE APIs. To fulfill the
chain-of-trust mechanism, CA must be installed on the system.

60 Random data added into the input of the hash function to safeguards secrets/passwords.

42

Oracle itself wanted to minimize dependencies when it comes to Java
programs, thus in early 2005, they introduced the known Java Keystore for
distributing CA certificates (see Section 2.2.3.2).

Unfortunately, JKS are weak:

Instance: JKS Keystore at /opt/java/openjdk/jre/lib/security/cacerts.

Purpose:
JKS are keystores that keep keys and their related certificates, in a single
archive file. In this case, CA certificates are provided in a JKS truststore
format for SSL/TLS connections for the Java Sockets. Such JKS are
provided by Oracle in all OpenJDK distributions.

Attack:
As already mentioned in the same Section 2.2.3.2, Java KeyStore is a
weak insecure format that relies on SHA-1 encryption. Moreover, Oracle
itself provided a not-properly fix by enforcing the number of hash
iterations but this will only increase the amount of time to break the JKS.
This Floyd Github page provides the tools and a guide to breaking a JKS
file and in particular decrypting private keys using HashCat. All the CIA
paradigm is taken down.

Fix:
Convert the keystores into other formats known to be secure, like
PKCS12. There are several ways to do that, through GUI programs like
KeyStore Explorer or CLI using Java Keytool:

keytool -importkeystore -srckeystore old.jks -destkeystore new_ks.p12
-srcstoretype JKS -deststoretype PKCS12 -deststorepass
[PASSWORD_PKCS12]

Java Keytool is provided in any JRE and JDK installations.

43

https://github.com/floyd-fuh/JKS-private-key-cracker-hashcat

4.2. The Evolution in Time
Now we are going to see some reports on the evolution of a Docker

Image after some time passed since the previous analysis. This part could
have been automatized but since there are too many variables to consider
with a short time for implementing it, this idea was not implemented at all.

So, in this section, there are reported only two cases that are selected and
performed manually, after a long manual search of the best interesting
candidate among the ones used in this research.

Our first candidate is Hitch, an official image. More specifically
library/hitch:1.7.2-1. Hitch is a “libev-based high performance SSL/TLS proxy
by Varnish Software”61.
Hitch was analyzed firstly on April 14th, 202262. The second analysis took
place on May 9th, 2022. From April to May there are no differences in terms
of vulnerabilities, maybe some differences in the instances, but in a quick look
nothing changed at all:

62 In April, tag management was not yet introduced, so the first analysis taken in April was using the latest
tag.

61 Took from the Hitch - Official Image | Docker Hub page description.

44

https://hub.docker.com/_/hitch

So Hitch, for almost 1 month, had several issues (7 rules) that failed to pass
the vulnerability check.

The third analysis took place on May 31st, 2022. Almost all Hitch version tags
were updated 3 days before, so May 28th, 2022. As we can see from the
following image:

The number of rules that failed to pass the CAP check is reduced –
significantly – by 5 rules. Only SHA-1 and the long certificate validity rules are
left. Since we are considering only the rules, the number of instances for each
rule could be a great amount.

So the Hitch Docker Community, which is responsible for maintaining this
Docker Image, worked hard to provide the best and safest environment for
Docker users. In particular:

- Expired (CA) Certificates were removed.
- Thus some stale public keys were removed.

- Unencrypted Private Keys were removed (one was a temporary private
key, the snakeoil seen above, the other one was a private key for test).

- Other stale public keys were removed, hence Debian keyrings were
updated

- By checking the keyring folder at /usr/share/keyrings/ all keyrings
are updated to February 25th, 202163.

- RSA/DSA keys too short were removed
- This is because all short keys were part of the

debian-removed-keys keyring that was probably updated.

63 Unfortunately, I do not have access anymore to the previous version of the image for checking the
DateTime of the keyrings.

45

https://github.com/varnish/docker-hitch

SHA-1 encrypted signatures on CA certificates are still present, thus the
same CAs with long validity are still present. Unfortunately, there are no
changelogs on GitHub or docker hub pages.

The second study case is logstash. The logstash version with a serious
vulnerability was library/logstash:6.8.19, dated October 16th, 2021. Starting
from logstash 8.0+64 the big issue was solved. The instance was an
unencrypted private key more specifically private keys used by jRuby65:

As we can see from the path of these unencrypted keys, these keys were
used as test keys, so probably not a very big issue. As said before, after v8.0
and later, this instance disappeared. There is also something else to say:
Starting from version 6.8.14, the Log4Shell CVE scan was introduced as a
Docker safety check scan and a Log4Shell CVE was detected in every
logstash version until version 6.8.21 and 7.16.1. This CVE seems to be not
entirely correlated with the unencrypted private key issue, but Log4Shell
seems to be related to the Apache Log4j that is based on Java [32].

65 jRuby is a programming language (originally Ruby) adapted to the Java Virtual Machine (JVM).
64 Repted tests made in versions: 8.0 (May 31st 2022), 8.1.3 (May 9th 2022) and 8.2.2 (May 31st 2022).

46

https://www.docker.com/blog/apache-log4j-2-cve-2021-44228/

4.3. Statistics
Statistical data are useful to understand how such vulnerabilities are

diffused and how such vulnerabilities are real threats.

Due to time constraints (see paragraph 6.2), research has been conducted
only66 on Official Images (~120) and Verified-Publisher Images (~180). Other
constraints bound to the build of some Docker Images and the Host-Scanner
compatibility, the number of Docker Images analyzed is reduced to ~300
Images (some of them are excluded for redundant purposes regarding the
evolution in time discussed in the previous paragraph). For other ideas
discharged from such constraints, see the “Future Developments” paragraph
in Chapter 5.
The following image is dynamically built by the CAP after these months of
research:

As we can see from it, each Docker Image provides, on average, at least
~80% “secure” artifacts, thus certificates, keys, and keystores are safe and do
not suffer from any cryptographic non-conformity case discussed in the
cheatsheet section (4.1). Interesting how, always on average, the High
criticality is the first criticality class in terms of the percentage of issues
present (~15%), following the Low one with ~5% and Medium with a
percentage under the 1%. This could also mean that all the reports generated

66 In the moment of writing the thesis (May-June 2022), Docker also introduced another category called
“Open Source Program” which could be more useful for such docker communities.

47

with the “Cryptosense 2022” profile are prone to “emphasize” such
vulnerabilities, which is good from a security point of view.

In reality, we already saw in the non-conformities cheatsheet (4.1) that many
of the instances are about false positives, such as the Debian removed keys
keyring (labeled as high criticality), or CA certificates using long time validity
(whose criticality label is set to low), thus we can almost deduct that the
overall security artifacts percentage can be increased at least by a 10%.

Even if we consider the raw results, another interesting statistic is that the
same criticality proportions:

PASSED LOW MEDIUM HIGH

79.02% 4.94% 0.67% 15.35%

That can be rewritten as “non-passed only” criticality proportions:

LOW MEDIUM HIGH

23.57% 3.20% 73.23%

They are almost the same for both Official and Verified-Publisher Images.

Note that for the issues that arose before, only ~120/145 Official images and
only ~180/400 Verified-Publisher Images were analyzed. It could be possible
that Verified-Publisher images could be worse (in terms of proportions) since
~220 images were not analyzed (see Limitations in 5.2).

Here follow the statistic results for each type of instance-class:

- In a total of 523 Certificates:

Self-Signed CA Hash
Vulnerable67

Validity
Length
(>10 yrs)

Expired Insufficient68

Key Length

94.26% 77.25% 39% 84.32% 13.96% 3.63%

Interesting results for Certificates, where most of them are self-signed
certificates thus a big piece of that percentage is related to CA certificates.

68 Multiple supported key lengths by CAP, the Insufficient ones are RSA < 2048 bit and EC < 256 bit.

67 Supported hashes in CAP are MD2/5, SHA-1/256/224/384/512, and SHAKE-128/256. Hash vulnerable
functions considered are the following: MD2, MD5 and SHA-1.

48

Another interesting and worrying data is the hash vulnerability share (39%)
which is still greater than expected. The majority of the certificates with more
than 10 years (84.32%) are CA certificates and root authorities certificates of
the company that built the Docker Image. Even if the expired certificates are
around 14%, this is probably not relevant information since some Docker
Images were updated in the meantime and almost one (that I have verified)
updated an expired CA certificate. Still, expired certificates provide security
issues and need to be replaced as soon as possible. As already mentioned, a
few of the expired certificates are CA certificates and it’s up to the Docker
community team to update such certificates. The last data, “Insufficient Key
Lengths” (share of 3.63%) should not be confused with key lengths of Debian
keys (in GPG files). Such low share can be related to extremely old
certificates, already expired (for example the brutus.neuronio.pt certificate
expired in 1996, present in Bitnami69 and Amazon70 images where it comes
from a test directory71 of Python 3.8).

- In a total of 952 Keys (certificates + keyrings):

Private
Type Insufficient

Key LengthsRSA DSA EC

1.58% 67.33% 26.89% 4.83% 29.83%

A small percentage of these keys are private keys, all of them are coming
from test directories72, especially from pygpgme [36]:

“
PyGPGME is a Python module that lets you sign, verify, encrypt and
decrypt messages using the OpenPGP format. It is built on top of
the GNU Privacy Guard and the GPGME library.

”

72 The most frequents were the following:
/var/www/html/addon/securemail/vendor/singpolyma/openpgp-php/tests/data/*
/usr/share/doc/pygpgme-0.3/tests/keys/*

71 The directories are:
/var/lang/lib/python3.8/test/capath/*

70 From the Docker Image: amazon/aws-sam-cli-emulation-image-python3.8:2022-04-27.

69 From the following Docker Images: bitnami/node-snapshot:12.22.8-debian-10-r20 and
bitnami/python-snapshot:3.6.15-debian-10-r129.

49

Another interesting fact is the short diffusion of Elliptic Curves keys, which
requires shorter lengths to have the same strength as a high number of bit
lengths required for RSA/DSA keys. This time, the considered keys are not
just the ones present in certificates but also keyrings, especially the
debian-removed-keys.gpg keyring that has the biggest share of old keys with
shorter lengths. Just for completeness: all the insufficient keys are RSA/DSA
keys with 1024 bits.

- In a total of 33 JKS files (into ~311 images):

Although JKS are especially diffused as keyrings in general, it’s interesting
how the ~99% of them:

● Contain only public keys
● They are provided by JDK installations.

Just one JKS found contained a private key in a Groovy73 Image, and it was a
key for sample/test purposes.

~98% of them were cacerts files, the ~1% were truststore files and the
remaining ~1% were generic keystores.

By keeping in mind all these statistics, the overall situation is not bad at all,
especially considering that I have only analyzed Docker Images supposedly
to be in a good state since its official status. The only real issue of this
overview is that the end user should not use those left keys and certificates
as production tools, which is extremely impossible to do by “mistake” in a
scripted way.

73 In particular this image: library/groovy:jdk8.

50

4.4. Still, Open Questions
Many questions and doubts were dissipated during the previous

sections regarding docker images, but there are still a few opened questions
related to the parties involved in this analysis process:

- Why does Oracle not provide a PKCS12 Keystore format for cacerts in
its JDK installations?

- Why do some 3rd parties software provide non-conformities tools such
as unprotected private keys or short keys for test purposes?

- How are the real74 proportions of all Verified-Publisher Images?
- How much are different the results compared from community75

images?
- Why is there still a large diffusion of SHA-1/MD5 hash functions,

especially when it is used for security mechanisms?
- Why is there no organization that standardizes whose CA/roots

authoritative certificates are “safe76”?
- What is the real purpose of keeping the removed Debian archive keys

in the latest releases?

These are only a few questions that the companies and organizations
themselves cannot provide, nor directly and not transparently, especially
when they are security-oriented questions that must be a concern for
everyone.

76 See Paragraph 6.3.

75 All the images uploaded by the Docker community, not marked as official nor uploaded as verified
publisher.

74 Intended as proportions of all 400+ scanned images available on Docker hub.

51

5. Conclusions
This chapter concludes the thesis and internal stage work for Ca’

Foscari University of Venice, part of the conclusion were already given in the
previous chapter due to evidence of the given results. Following this
conclusive chapter, a background section is given for explaining more
in-depth some aspects that were previously simplified for readability and for
adding some interesting elements into the context of some entities related to
this thesis work.

5.1. What Has Been Learned
The whole project was biased on CAP capabilities to provide a fast and

flexible analysis that consisted basically of certificates, keys, and keystores.

In the Cryptographic and Cyber Security sections many notions were
introduced to give also a motivational explanation of why these three objects
were relevant and important to consider, and much useful information was
discovered because of understanding the results of analysis, such as the JKS
vulnerability (see 2.2.3.2); the Debian organization into teams and their
internal processes to ensure that such teams could provide the best security
effort for their operative system and how this one works in terms of security
and cryptography.

The implementation phase of the automated script program for analyzing
such images revealed a lot about how the Cryptosense Analyzer Platform
works and what are their strengths points, whose points can be found also in
Section 6.1 (“Some Additional Information … on CAP”).

The analysis part revealed a lot about how these services (i.e. CAP) provide
different levels of analysis (i.e. profiles) and how much these results can
easily trick the end-user into believing that the scanned Docker Image is
potentially a security problem… When in reality most of the instances
detected are just left for unknown official reasons and probably (but no
guarantees) could be easily deleted, especially test directories (see
cheatsheet) that are full of non-conformities and provide only noise.

In the statistical analysis part there is a full overview of many problems
related to standard transitions (i.e. broken hashes functions), which is a
common problem in the IT industry, and also minor issues regarding the

52

distribution of CA certificates in a simple, easily accessible, way (see also the
Backgrounds on CA Certificates).

The indirect results learned from the analysis revealed also how the Docker
Community works on their products in a certain amount of time (see The
Evolution in Time); there is also a way for Docker itself, as an organization, to
improve the security of its hub.

Though the results were not explicitly shocking, it was reassuring to see that
– at least for the ones analyzed – the results were good and there could be a
slight chance to improve cryptographic safety/cleanliness as the community
members of the Hitch image proved in these months (see the first study case
of section 4.2).

5.2. Assumptions and Limitations
Some assumptions and limitations were already written in many parts of

the thesis.

The first assumption is that our target images were the most used and
downloaded, thus the original ones. Despite this motivation, the assumption is
enforced due to technical limitations explained below.

Another assumption is that the entire analysis is biased on CAP and Docker,
so their limitations would affect the thesis work: the statistics and instances
types are retrieved (manually) from the ones discovered by the actual
analysis results explicitly written in the CAP reports.

Implicit CAP limitations were imposed by the required dependencies of the
Host-Scanner executable for running which could not be used in many
Docker Images. As already mentioned for the number of images scanned out
of its total, the statistics and final results could not be exactly compared
between the Official images and Verified-Published images though they were
still interesting.

At the API level of the CAP, it is not possible (yet) to change the project size
to its maximum number of traces (which is 100 for every kind of license) right
after a new project is created, since its default value is 20. This default
behavior will fill up the project slots when using automated scripts/programs
like the ones created for this project. Right now the only way is to use the
Web UI and manually edit the project limit.

53

Technical limitations were applied due to Docker constraints such as the
number of pull requests, tag versioning, and platform compatibility with
Arm64/v8 processors. Other limiting factors to the C++ implementation were
applied due to the huge amount of data available and the (almost) infinitely
many ways of how this data could be formatted, thus some analyses like
certificate revocation, JKS cracking (with HashCat), and Docker Image
sanitizer (for cleaning/solving all detected issues) were not implemented.

Due to time constraints and the aforementioned limitations, it was not
possible to implement the difference checks between one image and its
updated (or previous) version, that is why few checks were made manually,
although it would have been easier and probably more interesting to analyze
a trend in this scenario.

Informative limitations are bound to companies, organizations, and web
transparency: most of the information found, was a little bit difficult to find,
mostly because of the highly fragmented documentation (i.e. Debian).

5.3. What Impact Should We Expect
From an optimistic point of view, we should expect that the Docker

Community of each Docker Image should act more quickly and use these
platforms for detecting security vulnerabilities. Awareness of security
concerns must be spread not only to local hosts and not be confined to
non-cryptographic scenarios.

Docker already provides a Docker Scan feature77 [37] but it’s an optional
plugin, not so advertised, moreover, the provided results are more or less
approximated to only a few CVE defined by the Snyk engine itself and lack a
dedicated platform to view, manage and report (automatically) such
vulnerabilities detected, especially with UI for basic end-users that do not
have the cryptographic/cyber security knowledge. Thus, Docker should give
users an alternative way (possibly automated and user-friendly) to verify the
Images (and Dockerfiles) in its Hub, as already suggested in 5.1.

5.4. Future Developments
The C++ project can be optimized and extended into researching more

images (the community ones), providing fixes to existing images, and then

77 Docker Scan runs on Snyk engine.

54

being pushed into Docker Hub. There could also be a way to improve the
number of scans of the docker images by reducing the missing dependencies
between the image and the host scanner program.

The Venafi integration (See in Section 6.1) in CAP is tempting because it
could enable the certificate revocation check for an extended analysis. Other
certificate improvements can be made by providing also the new CA to
update/install through the CCADB list in an automatic way.

A possible way to speed up the process is to deploy the project into a cluster
of servers by creating a cooperative computing layer for splitting the workload
among the servers, especially with different proxies since the main bottleneck
(also in terms of policies) is Docker Hub.

Docker itself still has some work to be done: starting from the API
infrastructure that exists and works only if the user knows what images it
wants, and ending with the possibility to introduce other vulnerabilities-scan
engines by integrating them and providing less spartan78 solutions.

Last but not least important, is to build a global database (maybe run by
Docker) of the instances/issues detected, collect them and categorize them in
the correct criticality, for example: if it is an unused key or something
important left by mistake. The purpose of such a database is to give correct
information about how images can be sanitized or corrected.

78 json reports only through shells.

55

https://www.ccadb.org/resources

6. Some Additional Information …
In this section there are a little information and fun but not-so-fun facts

about some entities involved in the project.

6.1. … on CAP

❖ During the first implementations of the projects, some mechanisms
were found difficult to deal with the CAP APIs. Still, fortunately, the
Software Engineers in Cryptosense listened to my feedback and they
also provided new features to CAP, like the deletion of the report via
API and the new Certificates Navigation page which helped a lot in the
manual research of suspicious certificates.

❖ An interesting feature, that was barely mentioned in the whole project,
is the Venafi Integration. Venafi is a company that manages and
provides services regarding machine identities. Among the offered
services, there is integration into CAP for analyzing certificates found in
reports and checking their revocation. This integration is useful but
unfortunately requires a Venafi subscription for obtaining an API token
to be put into CAP.

❖ In Section 2.2.3.2 we already saw that JKS vulnerability/weakness was
discussed in [23], among the links provided by Floyd, there is also this
link [26] for Cryptosense’s CEO that explains JKS weakness and how
this vulnerability is now a fixed check on its Cryptosense Analyzer
Platform.

56

https://www.venafi.com

6.2. … on Docker
❖ There exists a pull limit of up to 100 pull requests every 6 hours; for

signed-in users into the Docker Dashboard application, this limit is
extended up to 200 pull requests/6hrs.

❖ If we pull a docker image without any tag, the Docker Hub system
checks the platform compatibility with the default “latest” tag, but if this
does not succeed, it will run another pull request by itself for checking
the appropriate platform, but this will probably fail again because tag
associated to the platform were used improperly by their publishers,
often creating one tag for each version and each platform.

➢ The counter of the pull requests (one request made by the user +
more than one made by the server) will be increased unjustifiably,
for this reason, limiting more pull requests.

❖ An issue about certificates is the lack of automatism to update CA
certificates in the Docker images buildings, especially the deprecated
ones. Deprecated images can be divided into two categories: the ones
that cannot be updated due to no active members in charge of
maintaining that image, or because the owner itself deprecated the
image because of product evolution. It would be nice if Docker provided
this option for deprecated images.

❖ There are still problems with the Apple Silicon platforms, more
specifically ARM64/v8 platforms: many tags are associated with the
variants of the ARM64 processors, but the problem is that many times
the manifest file associated with that docker image is not properly built,
Docker should establish some standard rules, and not simple
guidelines, on how the publisher should use properly tags and create
manifest files in the right way.

Note: Among the ARM64/v8 processors, the Apple Silicon can still run
AMD64 containers but, due to the malformation of the manifest file,
some of these will not run even if the platform supports that.

57

6.3. … on the CA Certificates

❖ Roots Certificates, or CAs, are provided by some organizations, like
Mozilla in their CA Certificate Program. Mozilla provides this root store
(CAs database) for embedding the trust anchors into its product like
Firefox and Thunderbird. Mozilla is maintaining its root store with a lot of
effort. When in Section 4 we were asking how to update/replace CA
root certificates, Mozilla allowed us through the CA Certificate Program
to see the adopted policies and get a list of PEM certificates of CAs,
Intermediate Certificates, and Removed CAs. There is a problem:
Mozilla provides all the certificates but some of them are not trusted by
Mozilla itself [28], and these “distrusted” certificates are managed via
their products, not by the root store. For example in [29] we can find a
conversation among Mozilla developers taking a distrusting action after
a proposal consensus (among browser makers) on distrusting
Symantec Roots certificates. Thus, always Mozilla in [28], suggests not
using all of the provided root certificates in the CA Certificate Program
but using the root certificates in the “Common CA Database”.

❖ The Common CA Database [30] is a repository for maintaining a list of
trusted root certificates among the CCADB members. This organization
is run by Mozilla but active members are also Google and Microsoft.
The fact that: Mozilla itself runs its root store; it will not trust all of the
certificates in it; and only three members maintain the CCADB;
emphasizes the lack of standardization for trusting the root certificates,
despite the effort made by browser makers trying to reach a consensus
for distrusting these CAs.

58

https://wiki.mozilla.org/CA
https://www.ccadb.org/resources

6.4. … on Key Lengths

❖ Key lengths are almost standardized due to mathematical agreements
among researchers but their status as recommended or deprecated is
not. In [27] we can see that many different organizations have different
minimum/suggested key length requirements that keep evolving.

❖ Theoretically, actual computing models cannot break anything in a
reasonable time, but quantum computing aims to solve such computing
problems (like factorization for breaking RSA encryption) in a short time.
This is truly a problem for cryptography but since quantum computing is
far away from reality and commercialization, this problem “is not a
problem”.

59

7. Bibliography and Sitography

7.1. Basic Information and Definitions
[1] Cryptosense. “About Cryptosense.” Cryptosense, 2022,

https://cryptosense.com/about.

[5] Wikipedia. “Cryptography.” Wikipedia, 2022,

https://en.wikipedia.org/wiki/Cryptography.

[6] Wikipedia. “Key (cryptography).” Wikipedia, 2022,

https://en.wikipedia.org/wiki/Key_(cryptography).

[7] Arampatzis, Anastasios, and Sandeep Singh. “Diffie-Hellman Key

Exchange vs. RSA Encryption.” Venafi, 14 July 2020,

https://www.venafi.com/blog/how-diffie-hellman-key-exchange-different-

rsa.

[10] Smirnoff, Peter, and Dawn M. Turner. “Symmetric Key Encryption - why,

where and how it's used in banking.” Cryptomathic, 18 January 2019,

https://www.cryptomathic.com/news-events/blog/symmetric-key-encrypti

on-why-where-and-how-its-used-in-banking.

[14] Wikipedia. “Elliptic-curve cryptography.” Wikipedia, 2022,

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography.

[15] Wikipedia. “Public key certificate.” Wikipedia, 2022,

https://en.wikipedia.org/wiki/Public_key_certificate.

[16] Mozilla. “CA/FAQ.” MozillaWiki, 30 December 2022,

https://wiki.mozilla.org/CA/FAQ#What_are_certificates.3F.

60

[25] Tucker, Ben, and David Svoboda. “ENV33-C. Do not call system() - SEI

CERT C Coding Standard - Confluence.” Confluence, 30 November

2021,

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=871

52177.

[27] Giry, Damien, and Jean Quisquater. “NIST Report on Cryptographic

Key Length and Cryptoperiod (2020).” Keylength,

https://www.keylength.com/en/4/.

[28] Mozilla.org. “Beware of Applications Misusing Root Stores - Mozilla

Security Blog.” The Mozilla Blog, 10 May 2021,

https://blog.mozilla.org/security/2021/05/10/beware-of-applications-misu

sing-root-stores/.

[29] Mozilla Developers. Wikipedia, the free encyclopedia,

https://groups.google.com/g/mozilla.dev.security.policy/c/FLHRT79e3XE

.

[30] Common CA Database by Mozilla, https://www.ccadb.org/.

[31] Bisson, David. “4 Reasons Shorter Certificate Validity Periods Are a

Good Thing.” Venafi,

https://www.venafi.com/blog/4-reasons-why-shorter-certificate-validity-p

eriods-are-good-thing.

61

[32] Okamoto, Hideki. “Log4j – Apache Log4j Security Vulnerabilities.”

Apache Logging Services, 23 February 2022,

https://logging.apache.org/log4j/2.x/security.html.

[34] Tao, Xie, et al. “MD5.” Wikipedia, https://en.wikipedia.org/wiki/MD5.

[36] Henstridge, James. “pygpgme · PyPI.” PyPI, 8 March 2012,

https://pypi.org/project/pygpgme/.

[37] Docker Inc. “Vulnerability scanning for Docker local images.” Docker

Documentation, https://docs.docker.com/engine/scan/.

62

7.2. Teaching Materials
[3] Focardi, Riccardo. [CM0475-1] SECURITY 1 (CM9) - a.a. 2020-21 |

"Basic Concepts". 2020.

[4] Luccio, Flaminia. [CM0480] CRYPTOGRAPHY (CM9) - a.a. 2020-21 |

"Lecture 1", “Lecture 11”. 2021.

[8] Calzavara, Stefano. [CM0475-2] SECURITY 2 (CM9) - a.a. 2020-21 |

"HTTPS". 2021.

[13] Salibra, Antonino. [CM0525] CRYPTOGRAPHY FOUNDATION (CM9) -

a.a. 2020-21 | "Finite Fields and Elliptic Curve" & "Factorisation I & II".

2020-2021.

63

7.3. Debian References
[17] Code GmbH. “Using the GNU Privacy Guard.” GnuPG, 2017,

https://gnupg.org/documentation/manuals/gnupg/.

[18] Wolf, Gunnar. “debian-keyring / keyring · GitLab.” Debian Salsa, 26

April 2022, https://salsa.debian.org/debian-keyring/keyring.

[19] Debian.org. “Distribution Archives.” Debian, 10 September 2021,

https://www.debian.org/distrib/archive.en.html.

[20] Debian.org. README for the debian-archive-keyring package. 2021,

/usr/share/doc/debian-archive-keyring.

[21] Debian.org. “apt-secure(8) — apt — Debian bullseye.” Debian

Manpages, 10 June 2021,

https://manpages.debian.org/bullseye/apt/apt-secure.8.en.html.

[22] Debian.org. “7.5. Package signing in Debian.” Debian,

https://www.debian.org/doc/manuals/securing-debian-manual/deb-pack-

sign.en.html.

[24] Debian | FTP-Master Team. “ftp-master.debian.org Archive Signing

Keys.” FTP Master, https://ftp-master.debian.org/keys.html.

64

7.4. Publications
[2] National Institute of Standards and Technology (NIST). “FIPS 199,

Standards for Security Categorization of Federal Information and

Information Systems.” NIST Technical Series Publications, February

2004, https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.199.pdf.

[9] Calzavara, Stefano, et al. Postcards from the Post-HTTP World:

Amplification of HTTPS Vulnerabilities in the Web Ecosystem. 2019.

Postcards from the Post-HTTP World: Amplification of HTTPS

Vulnerabilities in the Web Ecosystem | IEEE Conference Publication |

IEEE Xplore, IEEE Symposium on Security and Privacy (SP),

https://ieeexplore.ieee.org/document/8835223. doi:

10.1109/SP.2019.00053.

[11] Hellman, Martin E. “AN OVERVIEW OF PUBLIC KEY

CRYPTOGRAPHY.” IEEE Communications Magazine, vol. 16, no. 6,

1978, pp. 42-47,

https://netlab.ulusofona.pt/im/teoricas/OverviewPublicKeyCryptography.

pdf.

[12] Barker, Elaine. “Recommendation for Key Management: Part 1 -

General.” NIST Technical Series Publications, NIST, 5 May 2020,

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1

r5.pdf.

65

[23] Floyd. “Java Key Store (JKS) format is weak and insecure

(CVE-2017-10356).” floyd's, 19 September 2017,

https://www.floyd.ch/?p=1006.

[26] Steel, Graham. “Blog - Mighty Aphrodite - Dark Secrets of the Java

Keystore.” Cryptosense, 21 April 2016,

https://cryptosense.com/blog/mighty-aphrodite-dark-secrets-of-the-java-

keystore.

[33] Leurent, Gaëtan, et al. “SHA-1 is a Shambles∗.” Cryptology ePrint

Archive, 2020, https://eprint.iacr.org/2020/014.pdf.

[35] Klima, Vlastimil. “Tunnels in Hash Functions: MD5 Collisions Within a

Minute.” Cryptology ePrint Archive, 2 April 2006,

https://eprint.iacr.org/2006/105.

66

