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INTRODUCTION 
 

The concern of energy efficiency has always existed in a latent form (sometimes 

disguised even as resource saving), but awareness of this issue has occurred only in the 

19th century, the 20th century helped to insert into the collective mentality through media, 

standardization and regulation and 21st century is found in the conjuncture of widespread 

concerns in many areas. 

Starting from about 5500 B.C. in Dacia (Romania), where people used to have 

“bordei” or “coliba” houses, partially or totally built into the ground to keep a constant 

indoor temperature during the year, crossing through about 500 B.C. in Greece, where 

houses were oriented South (Socratic Houses) and through the 1500s in Italy, as Leonardo 

Da Vinci was building the first mechanical indoor air cooler, arriving to 2004 in Germany, 

where is built the solar city of Solarsiedlung am Schlierberg, which is a self-sustaining 

city projected by the architect Rolph Disch (Ionescu et al., 2015). 

Nowadays, buildings’ energy efficiency (EE) is also one of the main directions to 

which the EU pushes to reduce CO2 emissions and fossil fuel consumption to mitigate 

their impact on climate change in the next years. EU has set the target to reach -60% 

emissions in 2030 compared to 2015 and to achieve climate neutrality by 20501. 

According to the European Commission2 in fact, buildings account for 36% of the 

total carbon dioxide emissions and are the single largest energy consumer in Europe (40% 

of the total), of which 80% comes from heating, cooling and domestic hot water. 

Currently, 3 out of 4 buildings in Europe are not efficient  and about 35% are over 50 

years old, while only somewhere between 0.4% and 1.2% are renovated each year 

(renovation can reduce the emissions by 5%). At this rate, it is estimated that 75-90% of 

the old building stock will be still standing by 2050, failing the target established for that 

year (Economidou et al., 2019).   

Moreover, energy efficient buildings are involved in some of the largest economic 

sectors: the construction of buildings (that accounts for the 9% of European GDP), the 

investments (since making a building energy efficient increases its value) and the 

 
1 For further details, see: https://ec.europa.eu/clima/news-your-voice/news/delivering-european-green-

deal-2021-07-14_en.  
2 For further details, check: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-

buildings/energy-performance-buildings-directive_en.  

https://ec.europa.eu/clima/news-your-voice/news/delivering-european-green-deal-2021-07-14_en
https://ec.europa.eu/clima/news-your-voice/news/delivering-european-green-deal-2021-07-14_en
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
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mortgage market. Specifically, in the recent years, the scientific literature studied the 

main drivers to mortgages default, assuming that buildings’ energy efficiency may be one 

of them (in particular, Kaza et al. (2014) and An and Pivo (2020) in the US market, Billio 

et al. (2021) in the Dutch market, Billio et al. (2022) in Italian market, while Zancanella 

et al. (2018) adopted a more general perspective).  

Those analysis identified three main channels through which energy efficiency 

may impact the mortgages’ default risk: 

i) personal characteristics of the borrowers captured by the choice of an EE 

building (e.g., environmental consciousness); 

ii) improvements in building performance that help free up a borrower’s 

disposable income through lower utility bills; 

iii) the positive effect on the dwelling value and thus, on the loan-to-value 

ratio (LTV). 

In addition to that, a work by Burt et al. (2010) argues that house EPC ratings (the 

European main EE classification) can accurately predict annual energy costs, which 

should translate into lower default risk. This work has the objective of expanding the 

work of Billio et al. (2022) to corroborate and/or undermine their findings, by operating 

on the same dataset and applying different or more sophisticated statistical tools to model 

the default risk with special consideration for the relationship between buildings’ EE and 

default. 

The first chapter will perform an exploratory data analysis that aims to investigate 

the structure of the variables and their interactions among them and with the target 

(default). 

The second chapter will expand the type of models and approaches used in 

previous works and has to find, as main objective, if there’s a better performing model 

than the logistic one, in that case what it is, and studying which variables are more 

relevant to the default risk prediction. 

Finally, the third chapter wants to dig deeper into the relationship between the 

energy efficient component and the probability of default, and try to define it clearly 

proposing an additional approach compared to the one used in Billio et al. (2022). 
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Chapter I – Exploratory data analysis 
 

 In this chapter we proceed with a brief explanation of the data cleaning process, 

then we move on the analysis of the plots associated with the different variables, we will 

check the graphs that show the relationship of variables pairs and, finally, we will analyze 

the dependence or independence structure that we encounter using the Pearson’s chi-

squared test on couples of categorical variables. 

 The dataset is the same used in Billio et al. (2022). It contains data from mortgages 

starting from January 2010 and the last “observation” for the ones still “alive” was 

recorded  the 31st December 2019. The dataset is obtained from financial institutions and 

composed by three main types of data:  

i) characteristics of the mortgage and/or of the building itself (e.g., property 

value, loan amount, the energy class (in form of 7 EPC classes, from A to G), 

construction year, property status, etc.); 

ii) information about the person who requested the loan, the borrower (e.g., age 

when requesting the loan, credit score value, residence region, etc.);  

iii) some key macroeconomics variables (e.g., HPI, GDP, unemployment rate, 

inflation rate, etc.). 

The initial dataset includes 104 472 observations and 107 variables.  

First, some data cleaning (van der Loo and de Jonge, 2018) had to be made by 

eliminating duplicated, redundant, or useless variables, then merging some others or 

obtaining some useful information by combining them. In the process, some observations 

had to be discarded as they lacked some essential data (e.g., the end date of the mortgage, 

the loan-to-value proportion or the age of the borrower); however they are roughly the 

3% of the total number of observations. The score value and HPI change rate variables 

were a different story since they were lacking data for, respectively, 30% and 8% of all 

the observations. The imputation method used to deal with that problem was to substitute 

the missing values with the mean of the variable. After the process, we ended up with a 

dataset composed of 101 152 observations and (only) 26 variables that are: 

• default: it is a binary variable that identifies if the loan default or not and 

the target variable of the analysis. A loan is considered defaulted if there 

are arrears older than 90 days that haven’t been paid yet; 

• ID: it is a variable that works as a unique key to identify differently each 

and every different mortgage; 
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• property_value: it is a numeric variable that represents the value that the 

financial institution estimated for the associated dwelling; 

• date_contract_begin: it is a date variable that records the date from which 

the loan starts; 

• date_contract_end: it is a date variable that record the date which the loan 

is supposed to end in; 

• loan_length: it is a numeric variable that represents the supposed duration 

of the loan in years; 

• no_of_instalments: it is a numeric variable that represents the number of 

instalments in which the borrower has to repay the loan plus the interest; 

• periodicity: it is a categorical variable that records the frequency of the 

instalments. It has only three values: M that stands for monthly instalment, 

T that stands for quarterly instalment and S that stands for half-yearly 

instalment; 

• loan_amount: it is a numeric variable that represents the amount of money 

that the financial institution lent to the borrower; 

• ltv: (stands for “loan-to-value” ratio) it is a numerical variable that comes 

out from the fraction: loan _amount divided by property_value. It 

represents the fraction of money that the financial institution lent to the 

borrower with respect to the estimated value of the property; 

• epc: (stands for “energy performance certificate”) it is a categorical 

variable that represents the energy efficiency class to which the building 

belongs to. The rating of the EPC is based on strict rules and depends on: 

the amount of energy consumed per m2 and the level of carbon dioxide 

emissions, in tonnes per year. It is codified, in alphabetical order, with the 

letters from A to G, with the letter A identifying the “greener” buildings 

while the letter G identifies the ones which pollute the most; 

• property_region: it is a categorical variable that identifies the Italian 

Region which the building belongs to; 

• residence_region: it is a categorical variable that identifies the Italian 

Region where the borrower lives in; 

• age_borrower_orig: it is a numerical variable that represents the age of 

the borrower when she got the loan; 



10 

 

• construction_year: it is a numerical variable that represents the year in 

which the building was built (if it took more than one year, the last year is 

considered); 

• property_status: it is a categorical variable that represents the status in 

which the building is, i. e. if it is new (NUOV), it is renovated (RISTR), 

has to be renovated (DARIS), it is almost new (SNUOV) or used (USAT); 

• score_value: it is a numerical variable that represents the credit score of 

the borrower. This variable presented about 30% of missing values, mostly 

regarding old loans, that have imputed with the mean; 

• cadastral_category: it is a categorical variable that identifies more in-

depth the type of dwelling. It has five categories: “appartamento” 

identifies an apartment,  “attico/mansarda” identifies an attic, “loft” 

identifies a loft, “villa/villino” identifies either a manor or a cottage and 

“villetta a schiera” identifies a townhouse; 

• perf_default_date: it is a date variable that records either the date of default 

of the loan or the day of the last observation (31st December 2019) for 

loans still alive; 

• region_macroarea: initially labelled as “NUTS1_region” identifies the 

division of the EU adopted by the Eurostat. It is a 5-categories categorical 

variable that in this case applies only to Italy. Its categories are: “North-

West”, “North-East”, “Centre”, “South” and “Islands”; 

• HPI: (that stands for “House Price Index”) is a broad measure of the 

movement of single-family property prices in the US. In our case, it is a 

numerical variable that indicates the HPI value. 

• HPI_chng: is a numerical variable that indicates the difference between 

the current (referred to time in which the loan started) and the last measure 

of HPI; 

• GDP: (stands for “Gross Domestic Product”) is a broad measure of the 

wealth produced by a Country in a certain period of time. In our case, it is 

a numerical variable that records the GDP values; 

• inflation: it is a numerical variable that, as the name suggests, keeps track 

of the inflation values; 
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• mtgrt: it is a numerical variable that keeps track of the interest rate applied 

to each mortgage; 

• unemployment: it is a numerical variable that, as the name suggests, keeps 

track of the unemployment rate. 

 

 

1.1 Exploration through graphs and plots 
 

In this section we focus on the exploration of the variables’ structures and 

distribution in the whole dataset. Once we have finished looking at each variable alone, 

we will pair some of them and checking if there are meaningful distribution differences 

when organized by other characteristics’ classes. 

Since many of the meaningful variables are categorical, and the target is binary, it 

was decided to start investigating their structure and the relationship between them and 

the default one through some graphical representations. 

 

  1.1.1 Variable distributions 

 

The first variable to check is obviously the target: the binary variable named as 

default that keeps the record of whether the borrower repaid the loan or not. 
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Figure 1 – This figure presents the proportion of defaulted and non-defaulted loans in the entire 

dataset. 

 

Figure 2 – This figure presents the proportion of different type of periodicity for the loans in the 

dataset. M stands for monthly, S for half-yearly and T for quarterly payment. 
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In Figure 1, we can clearly see the imbalance between the two classes of the 

default variable: the repaid loans account for the 97.6% of the total ones, while only 2.4% 

defaulted. Next, we wanted to inspect the different periodicity of the loans. 

As we can spot in Figure 2, once more, there’s a clear imbalance in the classes: 

almost 96% of the loans has to pay an instalment every month (M), almost 3% every 

quarter (T) and 1.52% only twice a year (S). Then, we move on to the, arguably, most 

important independent variable. 

 

 

Figure 3 – This figure presents the percentage, in the entire dataset, of buildings belonging to each 

class of energy efficiency. The EPC rating define 7 classes: from A (best) to G (worst energy 

efficiency).  

 From Figure 3, we can tell that, the higher the energy efficiency class, the 

less it is present in the dataset, ranging from a little more than 1 out of 20 for A class 

buildings to almost 1 out of 3 for G class buildings. 
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Figure 4 – The figure presents the percentage of buildings in the dataset belonging to each region. 

We’re also interested in getting a picture of the geographical distribution of the buildings. 

In Figure 4, the geographical distribution is clearly uneven among the Italian 

regions: we’ve almost half of the buildings located in Lombardy, almost a third in Emilia 

Romagna and, in the third, spot Piedmont with about 1 building out of 10. After, the 

geographical distribution of the buildings we are interested in how are geographically 

distributed the owners of those buildings. 

 

Figure 5 – The figure presents the geographical distribution (the residence) in percentage of the 

owners of the buildings in the dataset. 
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Figure 6 – The figure presents the percentage distribution of the property status of the buildings 

in the dataset. 

 The plot, in Figure 5, reflects mostly the previous one telling us that the 

distribution of the owners mirrors, more or less, the distribution of the buildings, in the 

Country. Together with the geographical distribution of buildings and owners, we’re also 

interested in understanding the status of the properties. 

We see that more than 65% of the buildings are used/in-use, about 24% are new 

or renovated and the remainder are almost new or to be renovated (Fig. 6). Another one 

of the variables to explore is the cadastral category of the buildings. 

 

Figure 7 – This figure presents the percentage distribution of the buildings in the dataset by cadastral 

category. 
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Figure 8 – This figure presents the box plot that represents the distribution of the values for the “Property 

Value” variable.  

 From the plot in Figure 7, it’s crystal clear that almost every loan was requested 

to buy an apartment (just 3.3% were needed to buy a different type of housing). Despite 

not being a categorical variable, we could also plot the distribution of values for the 

property value variable. 

Unluckily the 5807 outliers (all the property evaluated above € 374 000), flatten 

the important part of the plot, in Figure 8. However, we can say that 25% of the properties 

are worth less than € 124 000, 50% are between € 124 000 and € 224 000 and the 

remainder are worth more. The mean value is € 193 098, while the minimum is € 32 000, 

and the maximum is € 10 000 000. The amount of money lent is highly important, too.  

As in the previous plot, in Figure 9, we have some outliers (4019) that flatten the 

most important part of the plot. We can safely say that 25% of the amounts lent is below 

€ 73 130, 50% are between that value and € 140 000 and the 25% that remains is higher. 

The mean value is € 116 796, while the minimum is € 30 009, and the maximum is € 7 

000 000. Combining the previous two variables we can obtain one of the main predictors 

of default probability: the loan-to-value ratio. 
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Figure 9 – This figure presents the box plot that represents the distribution of the values of the “loan 

amount” variable. 

 

 

Figure 10 – This figure presents the histogram of distribution of the values of “loan-to-value” variable. The 

height of the bars represents the absolute frequency of the associated values.  

Even this time (Fig. 10),  there are some outliers (670 loan-to-value ratios higher than 1), 

but they don’t have much impact on the plot. We can say that 25% of the ratios are lower 

than 0.51, 50% of the total are between 0.51 and 0.79, and the remainder 25% is made of 

higher values. The mean is about 0.65, the minimum 0.04 and the maximum 1.09 (even 
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though some loans exceed the value of the building, we can keep them). We want to 

investigate one more variable: the age of the borrower when she requested the loan. 

 

Figure 11 – The figure presents the histogram of the distribution of the values of Age of borrower variable. 

The age of the borrower taken in consideration is the one she had when the loan was requested. The height 

of the bars represents the absolute frequency of the associated values. 

 In Figure 11, half of the borrowers had between 32 and 46 years when they asked 

for the loan. The total mean is about 40 years, but we have some extreme values like 18 

or 87 years. The construction year of the building is worth investigating as well. 

As long as Figure 12 is concerned, despite having some buildings dating back to 

the first year of the 1900s, 50% of the housing was built between 1964 and 2005. The 

average year of construction is 1980, but there are loans for buildings built in 2019, too. 
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Figure 12 – The figure presents the histogram of frequency of the variable construction_year. The height 

of the bars represents the absolute frequency of the associated values. 

 In addition, from Figure 13, we have the variable score_value distribution, even 

though we had to perform some imputation (in 30% of the values). The imputation may 

have had a great impact on the distribution of this variable since the interquartile range3 

is only 35 (from 503 to 538), the median and the mean overlap at 516.1, even though the 

range of the variables goes from 167 to 598. The loan length is also very important. 

As we can see from the plot (Fig. 14), the most common loan lengths are multiple of five 

and lay between 10 and 30 years, in fact 50% of loan have a duration between 15 and 25 

years. The mean is almost 19 years, the maximum 50 years and the minimum one day 

(may be just an error in the data considering that has also 121 instalments and € 31 000 

to repay). Lastly, we check the default time. 

 

 
3 The distance between the first and the third quartile of the distribution, it identifies the range in which 

fall 50% of the values. 
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Figure 13 – The figure presents the box plot of the distribution of the score_value variable.  

  

 

 

Figure 14 – The figure presents the histogram of the distribution of the values of the variable Loan length. 

That variable indicates the loan duration expressed in years. The height of the bars represents the absolute 

frequency of the associated values. 
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Figure 15 – The figure presents the histogram of distribution of the variable Default time. That variable 

indicates the time elapsed between the start of the loan and its default, expressed in months. The height of 

the bars represents the absolute frequency of the associated values. 

 In Figure 15, we see that 50% of times the default occurred between 20 and 64 

months; the average default time is 43 months, but the range is from 5 to 118 months 

(almost 10 years).  

 

 1.1.2 Variable combination and comparisons 

 

Now we move on by giving a look to the plots of paired variables. To address one 

of our main points we compare the default rates of each energy efficiency class. 
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Figure 16 – This figure presents default/non-default percentage of the loans in the dataset 

organized by energy efficiency classes (A is the best, G the worst). 

 

Figure 17 – This figure presents the percentage of buildings belonging to each EPC class 

organized by region, in alphabetical order. Each region is identified by a three-character acronym. 

As we expected, as we spot from Figure 16, the A class is the one with smallest 

rate of default and the G class the one with the highest. If we exclude the C class, we can 

assume that the lower the energy efficiency class the higher the default probability (which 

is still really small, never reaching even 3%). Next, we compared the shares of buildings, 

organized by EPC classes, in each region.  
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In Figure 17, the region with the highest proportion of A class buildings are 

Molise, Veneto and Calabria, while the ones with the highest proportion of G class 

buildings are Tuscany, Liguria and Lazio. Afterwards, we inspected the default rate per 

region. 

 

Figure 18 – This figure presents the percentage of defaulted/non-defaulted loans organized by 

region, in alphabetical order. Each region is identified by a three-character acronym. 

 

 

Figure 19 – This figure presents the percentage of buildings belonging to each EPC class organized by the 

decade of construction, in chronological order starting from the 1900s to the 2010s. 
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  There are two regions with 0% default: Molise and Friuli Venezia Giulia. The 

third best is Veneto. The highest default rates are found in Lazio, Sicily and Marche 

(Fig.18). Then, we analyze the buildings, organized by EPC class, by construction decade. 

As expected, in Figure 19, there is a significant increase in A class building 

construction only in the last 10 years. As long as G class buildings construction are 

concerned, the rate is decreasing starting from the 1950s. We need to investigate the 

default by decade of construction of the building, too. 

 

Figure 20 – This figure presents the defaulted/non-defaulted percentage of the loans associated to buildings 

organized by construction decade, in chronological order starting from the 1900s to 2010s. 
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Figure 21 – This figure presents the correlogram built on the numerical variables that were not dropped in 

the dataset. The bigger the circle and closer to the blue, the higher and positive is the correlation, while the  

bigger the circle and closer to the red, the higher and negative is the correlation. 

 From Figure 20, we see that the buildings whose loan are more likely to not be 

repaid are the ones built in the 1910s, in the 1970s and in the 1960s. On the other hand, 

the ones of housing built in the 2010s, in the 1920s and in the 1930s have the highest 

probability of being repaid. Finally, we built a correlogram for the numeric variables. 

In Figure 21, there’s a quite high positive correlation between loan_length and 

no_of_instalments, between property_value and loan_amount and ltv, between ltv and  

no_of_instalments. There’s a quite low negative correlation between ltv and 

property_value.  

  

1.2 Pearson’s chi-squared tests 
 

A different approach we still wanted to use, specifically, to look at relationships 

between categorical variables and the default, is the Pearson’s chi-squared test for 

statistical independence (Pearson, 1900). For that test, each observation is allocated to a 

cell of a contingency table according to the values of two outcomes (the two categorical 

variables whose relationship we want to study). The null hypothesis is that the occurrence 

of the outcomes is statistically independent while the alternative hypothesis states the 

opposite. Through the formula: 
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𝜒2 = ∑ ∑
(𝑂𝑖,𝑗− 𝐸𝑖,𝑗)

2

𝐸𝑖,𝑗
 𝑐

𝑗=1
𝑟
𝑖=1 , 

 

we get our test statistic where 𝑂𝑖,𝑗 are the observed occurrences at row i and column j and 

𝐸𝑖,𝑗 are the expected occurrences at row i and column j (the expected occurrences are 

computed by multiplying the sum of the occurrences in row i times the sum of the 

occurrences in column j divided by the total number of occurrences in the table).  

 The test statistic is distributed as a 𝜒2 with degrees of freedom equal to the product 

of the number of rows, minus 1, times the number of columns, minus 1, and the null 

hypothesis is rejected for big values. 

In the case of the relationship between default and energy efficiency class, we 

computed the following contingency table: 

 

EPC/Default NO YES TOTAL 

A 5723 61 5784 

B 6641 126 6767 

C 8371 194 8565 

D 12665 277 12942 

E 15294 341 15635 

F 17607 400 18007 

G 32463 989 33452 

TOTAL 98764 2388 101152 
Table 1 - The table presents the distribution of the defaulted(YES) and non-defaulted(NO) loans organized 

by EPC class. 

With the data in Table 1, the value of the test statistic is 106.39, hence the p-value 

is <2.2*10-16, so we reject the null hypothesis (at 5% confidence level) and we can assume 

that there’s some kind of relationship between the energy efficiency class and default 

probability. 

For Property Status and default, we get the following: 

 

Property 

Status/Default 

NO YES TOTAL 

DARIS 1535 43 1578 

NUOV 12030 252 12282 

RISTR 12047 273 12320 

SNUOV 8676 218 8894 

USAT 64476 1602 66078 

TOTAL 98764 2388 101152 
Table 2 - This table presents the distribution of defaulted (YES)/non-defaulted(NO) loans organized by 

the property status of the building. 
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For the data in Table 2, the value of the test statistic is 8.5923, hence the p-value 

is 0.07214, so we cannot reject the null hypothesis (at 5% confidence level) and we cannot 

assume that there’s some kind of relationship between the property status and the default 

probability. 

While for Cadastral Category and default, we have the following: 

 

Cadastral 

Category/Default 

NO YES 

 

TOTAL 

APPARTAMENTO 95453 2355 97808 

ATTICO/MANSARDA 1035 31 1066 

LOFT 58 0 58 

VILLA/VILLINO 1433 1 1434 

VILLETTA A 

SCHIERA 

785 1 786 

TOTAL 98764 2388 101152 
Table 3 - The table presents the distribution of defaulted(YES) and non-defaulted(NO) loans organized 

by the cadastral category of the buildings. 

Unluckily, from the data in Table 3, even though a very low p-value (7.063*10-

11), the result of this type of test is not reliable because, as a constraint of the methodology, 

we must have at least 5 occurrences in each cell of the table. 

For Region Macroarea and default, we come up with the following: 

 

Region 

Macroarea/Default 

NO YES TOTAL 

CENTRE 3165 80 3245 

ISLANDS 4336 117 4453 

NORTH-EAST 33014 677 33691 

NORTH-WEST 57072 1493 58565 

SOUTH 1177 21 1198 

TOTAL 98764 2388 101152 
Table 4 - This table presents the distribution of defaulted(YES) and non-defaulted(NO) loans organized 

by region macroarea of the Country. 

As long as data in Table 4 are concerned, the value of the test statistic is 30.52, 

hence the p-value is 3.835*10-6, so we can reject the null hypothesis (at 5% confidence 

level) and assume that there’s some kind of relationship between the region (dividing 

Italy in macroareas) of the building and the default probability. With further 

investigations on a higher granularity (splitting into the twenty regions), the methodology 

is not applicable due to not having at least 5 occurrences in each cell of the contingency 

table. After all the EDA, we decided to drop one more variable (periodicity) and keep a 

dataset made of 101 152 observations and 24 variables plus the target one (default). 
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CHAPTER II – Models development 
 

Now, it’s time to create and test models. After the training of a model, we test its 

performance on new data, so it can be compared with other models and we can choose 

the one that fits best our necessity. For this purpose, we decided to split our dataset in two 

parts: the first, called Training Set, contains 80% of the data of the original dataset (80 

921 observations) and is used to train the models; the second, called Test Set, contains 

the remaining 20% of the data (20 231 observations) and is used to measure the 

performance of each model. 

 

2.1 Overview of the methodologies 
 

To address the model choice issue we will make use of 5 different tools that are 

useful to solve a problem of classification (since we want to be able to predict whether a 

mortgage will be repaid or not, we will use models of binary classification):  

i) the Logistic Model;  

ii) the Logistic Model with Ridge penalization;  

iii) the Logistic Model with LASSO penalization;  

iv) the Linear Discriminant Analysis; 

v) the Random Forest.  

 

2.1.1 The Logistic Model 

 

The logistic model (Cramer, 2004) is a generalized linear model that exploit the 

maximum likelihood estimator. Indicating with Yi the values of the target variable for 

each observation i in the training set, we can assume they are random samples from a 

Bernoulli distribution: 

 

𝑌𝑖 ~ 𝐵𝑒𝑟(𝜋𝑖),  i = 1, ..., n, 

 

 where πi is the value of probability of “success”. By this model, denoting with xi 

the vector of variables of the i-th statistical unit and with β the vector of estimated 

parameters, we can assume that 

 

𝑔(𝜇𝑖) = 𝐱𝑖
𝑇β = 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 =  ∑ 𝛽𝑟𝑥𝑖𝑟

𝑝
𝑟=1 , 
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where 𝑔(𝜋𝑖) is called the link function4. The link function we are going to use is the logit: 

 

𝑔(𝜇𝑖) = log (
𝜋𝑖

1 −  𝜋𝑖
) = 𝒙𝑖

𝑇𝜷 

 

 2.1.2 The Logistic Model with Ridge penalization 

 

Basically, the model is the same as the logistic model presented before. The main 

difference is the addition of a penalization parameter aimed at reducing the total mean 

error of the model and able to deal better with multicollinearity. To obtain the estimates 

of the parameters for the model with Ridge, we must minimize the following formula: 

 

−
1

𝑛
∑ {𝑦𝑖(𝛽0 +  𝜷𝑇𝒙𝑖) − log(1 +  𝑒𝛽0+𝜷𝑇𝒙𝑖)}𝑛

𝑖=1 +  𝜆‖𝜷‖2
2, 

 

where λ is a penalization coefficient (James et al., 2014; Hoerl and Kennard, 1970) and n 

the sample size. 

 

 2.1.3 The Logistic Model with LASSO penalization 

 

 Similarly to the case of Ridge penalization, this model is really similar to the 

logistic one. We still intend to reduce the total mean error of the model with the addition 

of a penalization parameter but, in this case, we also operate a variable selection. To 

obtain the estimates of the parameters for the model with LASSO, we must minimize the 

following formula: 

 

−
1

𝑛
∑ {𝑦𝑖(𝛽0 +  𝜷𝑇𝒙𝑖) − log(1 +  𝑒𝛽0+𝜷𝑇𝒙𝑖)}𝑛

𝑖=1 +  𝜆‖𝜷‖1, 

 

where λ is a penalization coefficient (James et al., 2014; Tibshirani, 1996) and n the 

sample size. It also does exist a model which combines linearly the Ridge and LASSO 

penalization, called Elastic Net (James et al., 2014; Zou and Hastie, 2005), but we decided 

to not follow that path in this analysis. 

  

 
4 The link function is a function that directly links the usual formulation of linear model with the “new” 

type of model. Different link functions are utilized in different contexts (Agresti, 2015). 
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  2.1.4 The Linear Discriminant Analysis 

 

In the LDA (Fisher, 1936), we assume to have a p-dimensional variable X ed a 

categorical random variable Y, that represents the class to which an observations belong. 

The whole population of interest is divided into K classes having the probability 

distribution function (p.d.f.), for the distribution of X, respectively p1(x), ..., pK(x), with 

weight π1, ..., πK. We hypothesize, also, that each density pk(x) is a random variable with 

mean µk and variance (matrix) Σ, hence 

 

𝑝𝑘(𝑥) =  
1

(2𝜋)𝑝/2det(𝛴)1/2  𝑒
{−

1

2
(𝒙−𝝁𝑘)𝑇𝛴−1(𝒙−𝝁𝑘}

, 

 

for k = 1, ..., K (in this case K = 2). 

The other component of the density for the whole population is πk that, unless 

differently specified, is estimated as follows: 

 

�̂�𝑘 =
𝑛𝑘 

𝑛
, 

where nk is the number of subjects belonging to the k-th class and n the size of the sample. 

The prior probability of a non-classified subject to belong to the k-th class is πk, 

while the posterior probability is computed by Bayes’ theorem. We compute a 

discriminant analysis for each k: 

 

𝑑𝑘(𝑥) = 𝑙𝑜𝑔𝜋𝑘 + 𝑙𝑜𝑔𝑝𝑘(𝑥0), 

 

the value of k which gives the highest value of the function, identifies the group to which 

we assign the subject. 

 

2.1.5 The Random Forest 

 

The random forest (Ho, 1995) is an ensemble learning method that operates by 

constructing a multitude of decision trees (Breiman et al., 1984) at training time. The 

decision tree learning is a supervised learning approach used to build a predictive model 

to draw conclusions about a set of observations. 
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A tree is built by splitting the source dataset (the root node) into subsets (the 

successor children). The splitting is based on a set of rules applied to the classification 

rules (Shalev-Schwartz and Ben-David, 2014). The process is repeated in a recursive 

manner and it’s completed when the subset at a node has all the same values of the target 

variable, or when splitting no longer adds value to the predictions. For classification tasks, 

the output value of the random forest is the class selected by most trees.  

 

2.2 Application 
 

In this section, we are going to fit different models on our Training Set and check 

their prediction performances on the Test Set, so we can choose which one is the best 

depending on what metric or measure we will use to decide. In our case, since the data 

come from financial institutions it is reasonable to go for the model that has the highest 

sensitivity. 

The first model applied to the Training Set is the Logistic Model. At first, we used 

as predictors, the following variables: the loan duration, the number of instalments, the 

amount of money loaned, the loan-to-value ratio, the energy efficiency class, the age of 

the borrower when the loan was requested, the construction year of the building, the score 

value of the borrower, the cadastral category of the building and the region macroarea of 

the building. After the estimation of the parameters, the construction year of the building 

resulted non statistically significant, so the variable was dropped. The parameters 

associated with some classes of the categorical predictors were not statistically 

significant, however the variable (in the complex) was significant, so each dummy created 

must be kept in the model. Only the dummies, associated with the categories 

“attico/mansarda” and “loft” of the variable cadastral category were eliminated, and 

those two categories were merged with the baseline one (“apartment”). 

 To check if the model had any predictive ability we evaluated its performance on 

the Training Set. The confusion matrix came out as follows: 

Predicted/Actual NO YES TOTAL 

NO 44411 580 44991 

YES 34598 1332 35930 

TOTAL 79009 1912 80921 

Table 5 - The table presents the confusion matrix of the logistic model fitted on the training set. 
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The resulting ROC Curve is the following: 

 

Figure 22 – The figure presents the ROC curve of the logistic model fitted on the training set. 

And the main metrics resulted as follows: 

ACCURACY SENSITIVITY SPECIFICITY 

0.5652797 0.6966527 0.5621005 

Table 6 - The table presents the value of the main metrics associated to the logistic model fitted on the 

training set. 

Indeed, not a great performance. Then we evaluated the performance on the Test 

Set. The confusion matrix is the following: 

Predicted/Actual NO YES TOTAL 

NO 10276 116 10392 

YES 9479 360 9849 

TOTAL 19755 476 20231 

Table 7 - The table presents the confusion matrix of the logistic model fitted on the test set. 
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The ROC Curve as follows: 

 

Figure 23 – The figure presents the ROC curve of the logistic model fitted on the test set. 

The main metrics became as follows: 

ACCURACY SENSITIVITY SPECIFICITY 

0.5257278 0.7563025 0.5201721 

Table 8 - This table presents the values of the main metrics associated to the logistic model fitted on the 

test set. 

Even though the ROC curve had a higher AUC, as expected the 2 out of 3 of the 

main metrics were lower on the Test Set compared with the Training Set. Then, seeking 

out a further improvement we tried to add to the model some macroeconomics measures 

like: HPI change over year, HPI, inflation rate, mortgage rate, unemployment rate and 

GDP. The only variable that turned out to be not statistically significant, in the end, was 

the unemployment rate, which was eliminated in the subsequent step. With the 

introduction of those new variables we computed, once more, our measures on the Test 

Set. The Confusion Matrix is the following: 

Predicted/Actual NO YES TOTAL 

NO 13596 113 13709 

YES 6159 363 6522 

TOTAL 19755 476 20231 

Table 9 - The table presents the confusion matrix of the logistic model fitted with the macroeconomics 

variables on the test set. 
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The ROC Curve as follows: 

 
Figure 24 – The figure presents the ROC curve of the logistic model fitted with the macroeconomics 

variables on the test set. 

 

And the main metrics became the following: 

ACCURACY SENSITIVITY SPECIFICITY 

0.6899807 0.762605 0.6882308 

Table 10 - The table presents the values of the main metrics associated to the logistic model fitted with the 

macroeconomics variables on the test set. 

The addition of the macroeconomics measures as variables led to a big 

improvement in the performance of the model.  However we still thought there was room 

for improvement, so we went on fitting the logistic model with the Ridge penalization. 

The penalization coefficient λ was estimated through a 5-fold Cross-Validation on the 

Training Set (Allen, 1974; Stone, 1977). The results were the following. 

The Confusion Matrix turned out to be as follows: 

 

Predicted/Actual NO YES TOTAL 

NO 12575 89 12664 

YES 7180 387 7567 

TOTAL 19755 476 20231 

Table 11 - The table presents the confusion matrix of the logistic model with ridge penalization fitted on 

the test set. 
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The ROC Curve, the following: 

 
Figure 25 – The figure presents the ROC curve of the logistic model with ridge penalization fitted on the 

test set. 

And the main metrics became the following: 

ACCURACY SENSITIVITY SPECIFICITY 

0.6406999 0.8130252 0.6365477 

Table 12 - The table presents the values of the main metrics associated to the logistic model with ridge 

penalization fitted on the test set. 

 The value of the AUC for the ROC curve decreased slightly and the accuracy and 

the specificity did it by about 0.05 compared to the previous model. On the other hand, 

the sensitivity gained about 0.05. We went on fitting the logistic model with the LASSO 

penalization, too. The penalization coefficient λ, was still estimated as in the previous 

case. The results came as follows. 

The Confusion Matrix, the following: 

 

Predicted/Actual NO YES TOTAL 

NO 13522 112 13634 

YES 6233 364 6597 

TOTAL 19755 476 20231 

Table 13 - The table presents the confusion matrix of the logistic model with LASSO penalization fitted 

on the test set. 
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The ROC Curve as follows: 

 
Figure 26 – The figure presents the ROC curve of the logistic model with LASSO penalization fitted on 

the test set. 

And the main metrics resulted as follows: 

ACCURACY SENSITIVITY SPECIFICITY 

0.6863724 0.7647059 0.6844849 

Table 14 - The table presents the values of the main metrics associated to the logistic model with LASSO 

penalization fitted on the test set. 

 This version of the model is quite similar to the logistic one without penalization 

primarily in terms of main metrics. However, as in the previous case, the AUC of the 

ROC curve is slightly smaller than the basic logistic one. The next step was to tackle the 

problem by a different “angle” and with a different tool: the LDA. The result we got are 

the following. 

The Confusion Matrix is shown below: 

 

Predicted/Actual NO YES TOTAL 

NO 13736 116 13852 

YES 6019 360 6379 

TOTAL 19755 476 20231 

Table 15 - The table presents the confusion matrix of the LDA fitted on the test set. 
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The ROC Curve is plotted below: 

 
Figure 27 – The figure presents the ROC curve of the LDA fitted on the test set. 

And the main metrics are the following: 

ACCURACY SENSITIVITY SPECIFICITY 

0.6967525 0.7563025 0.6953176 

Table 16 - The table presents the values of the main metrics associated to the LDA fitted on the test set. 

Even though the AUC of the ROC curve keeps getting smaller, compared with the 

one of the logistic model without penalization, this model has better accuracy and 

specificity compared to any other of the previous ones and has the lowest sensitivity 

among them. As last methodology applied to address the issue of modeling, we resort to 

the Random Forest, too. Our results, for the version composed by 50 classification trees5, 

were the following. 

The Confusion Matrix turned out to be, the following: 

 

Predicted/Actual NO YES TOTAL 

NO 15297 198 13852 

YES 4458 278 6379 

TOTAL 19755 476 20231 

Table 17 - The table presents the confusion matrix of Random Forest fitted on the test set. 

 

 

 
5 The number of 50 trees was defined by computational power and time constraints. 
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The ROC Curve as follows: 

 
Figure 28 – The figure presents the ROC curve of the Random Forest fitted on the test set. 

And the main metrics are the following: 

ACCURACY SENSITIVITY SPECIFICITY 

0.7689684 0.5882353 0.7733232 

Table 18 - The table presents the values of the main metrics associated to the Random Forest fitted on the 

test set. 

In Figure 29, we can also show the error decrease as the number of trees increased 

in the forest: 

 
Figure 29 – The figure presents the fall of the error associated with the Random Forest as the number of 

trees in it increases. 
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And the features importance (in terms of Node Purity increase) is plotted in Figure 30: 

 

 
Figure 30 – The figure presents the variables importance in terms of increase in node purity. 

 

Even though the AUC of the ROC curve is the lowest recorded among the models, with 

the Random Forest we get the highest accuracy and the highest specificity. Unluckily, we 

also record the lowest sensitivity. 

 

 

  2.3 Model selection and comments 
 

Summarizing the performances of all the models, we have the following table: 

MODEL ACCURACY SENSITIVITY SPECIFICITY AUC ROC 

LOGISTIC 0.6899807 0.762605 0.6882308 0.792 

RIDGE 0.6406999 0.8130252 0.6365477 0.791 

LASSO 0.6863724 0.7647059 0.6844849 0.791 

LDA 0.6967525 0.7563025 0.6953176 0.787 

RANDOM 

FOREST 

0.7689684 0.5882353 0.7733232 0.756 

Table 19 - The table summarizes the values of the main metrics and the AUC of the different models fitted. 

  

The main metrics we keep in consideration are accuracy, sensitivity, specificity 

and the AUC (Flach et al., 2011) of the ROC curve (Fawcett, 2006). 

 The accuracy is computed as the sum between the True Positives (TP) and the 

True Negatives (TN), divided by the total number of observations (N). 
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 The sensitivity, or True Positive Rate (TPR), is computed as the TP, divided by 

the sum of TP and False Negatives (FN). 

 The specificity, on the other hand, which can be obtained also as 1 – False Positive 

Rate (FPR), is more commonly computed as the TN, divided by the sum of TN and False 

Positives (FP).  

 The AUC (Area Under the Curve) measures the area that is under the ROC curve 

starting from the bottom-right corner of the plot to the curve itself; a value of 0.5 of the 

AUC indicates that the binary classification method associated has the same performance 

as a coin toss and is kept as lowest acceptable value. The ROC (Receiver Operating 

Characteristic) curve is a graphical representation of the diagnostic ability of a binary 

classifier as its discrimination threshold varies. It is created by plotting the TPR against 

the FPR at various threshold settings and is useful because it displays the trade-off 

between the two. In fact, the metrics in the previous table are computed with the threshold 

that maximizes the Youden’s J statistic (Youden, 1950) in each model, which is, basically, 

the sum of sensitivity and specificity.  

In general, to choose the more appropriate model, just one (or at most two) of the 

aforementioned metrics are used. If our goal is to correctly classify the highest number of 

observations possible, we should choose the model with the highest accuracy, in our case, 

the Random Forest. If we want to minimize the incorrect classification of the loans as 

non-defaulted when they are in fact, we should opt to the highest sensitivity, in our case, 

the Logistic Model with Ridge. If our goal is to have the least possible amount of 

incorrectly classified loans, as defaulted when they are not, we should go for the highest 

specificity, the Random Forest, again. Finally, if we want a model that can perform well 

at different threshold values, it would be a forced choice to go with the highest AUC of 

the ROC curve, the simple Logistic Model, in this case. 

Since the data we got come from banks, is safe to assume that making a type I 

error (predicting that a loan will be repaid while it won’t) has a higher weight compared 

to making a type II error (predicting that a loan will not be repaid while it will), because 

that kind of companies prefer a missed chance of profit than a certain financial loss. 

Keeping that in mind, the model to choose is the one with the highest sensitivity: the 

Logistic Model with Ridge penalization.  

Furthermore, the development of the aforementioned models made us understand 

what variables, apart from the energy efficient class, are relevant in predicting the 

probability of default of a loan and what kind of impact they have. As long as mortgage 
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and/or building data are concerned, we have the loan-to-value ratio and the number of 

instalments as important predictors (both positively correlated with the default 

probability). The loan length has a remarkable effect, too (event though the correlation 

with the default is negative). The variables about the borrower that are impactful are the 

age when loan was requested, with positive correlation with the default and the credit 

score value. The credit score value has a difficult interpretation because, because out of 

three models, in two of them, the higher the value the higher the probability of default 

whereas, in the third one, the effect is quite the opposite, indicating that high credit score 

values are associated with low default probabilities. The last interpretation is more in line 

with what should be expected but, since the variable got 30% of the data imputed 

automatically during the data cleaning, the likely introduction of some kind of biases in 

the analysis is something we have to take into account. Lastly, the variables concerning 

macroeconomics indices that greatly affect the models are the Home Performance Index 

(HPI), the inflation rate, both with positive impact on the default, and the Gross Domestic 

Product (GDP), with opposite leverage. As a matter of fact, the EPC variable shows an 

increasing likelihood of default as the energy class gets worse in the models, but it’s true 

nature will be investigated in the next chapter. 
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CHAPTER III – Evaluation of the energy efficiency 

component 
 

 After having explored the different models we investigate further the relationship 

between the energy efficiency of the buildings and the probability of default of the 

associated loan. 

 

3.1 Overview of the methodologies 
 

The tools we mainly intend to use to evaluate the relationship mentioned above 

are two: the Cox Proportional Hazards Model and an array of different specification of 

the same model with different coding/splitting of the energy efficient variable. 

  

3.1.1 The Cox Proportional Hazards Model 

 

The Cox Proportional Hazards Model (Cox, 1972) is one of the most common 

models utilized with survival data. It’s defined 

 

ℎ(𝑡, 𝒙) =  ℎ0(𝑡)𝑒𝑥𝑝(∑ 𝛽𝑙𝑥𝑙
𝑝
𝑙=1 ), 

 

where ℎ0(𝑡) is a baseline hazard function (that depends only on time t), each 𝑥𝑙 a covariate 

and each 𝛽𝑙 the associated parameter. The useful property is that, while the baseline 

hazard function depends only on the time t, the exponential function depends only on the 

covariates. The hazard ratio is defined as the ratio of hazards for two subjects in the study. 

Assuming that we have subject i and subject j, we can express the hazards ratio as 

 

𝐻�̂� = exp(∑ 𝛽�̂�
𝑝
𝑙=1 (𝑥𝑙

𝑖 − 𝑥𝑙
𝑗
)) = θ, 

 

so the relation between two subjects can be expressed as ℎ̂(𝑡𝑘
𝑖 , 𝑿𝑖) =  θℎ̂(𝑡𝑘

𝑗
, 𝑿𝑗).  

 The empirical survival function, represented by the Kaplan-Meier curve (Kaplan 

and Meier, 1958), can show if the proportional hazards assumption holds on. The 

definition of the function is 

 
�̂�𝑡𝑚

 =  ∏ Pr 𝑚
𝑖=1 (𝑇 >  𝑡𝑖 | 𝑇 ≥  𝑡𝑖), 
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where 𝑡𝑚 is the event time (ordered) and the probabilities are approximated by the 

frequency. In the context of mortgage analysis, we must take into consideration the left-

truncated mortgages (that originated before the first observation date) and right-

censored mortgages (which still ongoing by the end of the study). It is common practice 

to use a dummy variable to identify censored observations, so we followed that route. 

 

3.1.2 The Array of Different Models 

 

To investigate further the effect of the energy efficiency on the default probability 

we will also use a different approach. We will compare the predictive abilities of the 

Logistic Model with Ridge using different sets of variables. The first set does not contain 

any information on the energy efficiency of the building (“NO” model), the second has 

only a dummy that identifies if the building is an A class building (“EE_A” model), the 

third will have a dummy that identifies if the building falls into class A, B o C (“EE_ABC” 

model), and the last one will have a dummy for each class (minus 1, for basic 

multicollinearity reasons) as it was in the models fitted in the previous chapter (“EPC” 

model).  

 

 

3.2 Application 
 

To assess the impact of energy efficiency on default risk, we created a dummy 

(called “EE_A”) that takes value 1 if the building belongs to class A and 0 otherwise, and 

then applied the Cox Proportional Hazards Model. The coefficient associated with the 

dummy indicates that, by the model, if the building of the class belongs to class A the 

“survival probability” of the loan is lower (conversely to the results obtained in Billio et 

al., 2022) and the Log-Rank test (that evaluates if the variable has a significant impact on 

the survival function) has a p-value lower than 2.2*10-16, so we have the reject the null 

hypothesis that states the absence of impact by the energy efficiency on the default. The 

same result is found even when adding the credit score, the loan-to-value, the loan term, 

the building age, the borrower age when requesting the loan, the inflation, the 

unemployment and the HPI change as control variables, even though the magnitude of 

the EE_A variable decreases slightly. 

 The aforementioned results are also supported by the Kaplan-Meier curve, in 

Figure 31. 
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Figure 31 -  The figure presents the Kaplan-Meier curve for the survival probability of A class buildings 

(in blue) and non-A class buildings (in red). 

 

 

 For the comparison of the models with the four different sets of variable, we also 

built another dummy variable (called “EE_ABC”) which takes value 1 if the building 

belongs to class A, B or C and 0 otherwise. In each one of them the variable associated 

with the energy efficiency, if present, is statistically significant. The results are 

summarized in the following table: 

MODEL ACCURACY SENSITIVITY SPECIFICITY AUC ROC 

NO 0.7206268 0.7289916 0.7204252 0.788 

EE_A 0.7221079 0.7268908 0.7219944 0.789 

EE_ABC 0.64788177 0.8046218 0.6440395 0.789 

EPC 0.6406999 0.8130252 0.6365477 0.791 

Table 20 - The table summarizes the value of the main metrics and the AUC of the models fitted. The NO 

model is the model without any variable concerning the energy efficiency; the EE_A model is the model 

that splits the energy efficiency buildings between A-class dwellings and the other ones; the EE_ABC 

model is the model that divides the energy efficient buildings between A-, B-, or C-class dwellings and 

the other ones; the EPC model is the model that has a dummy for each class different from A-class.  

As we can see in Table 20, no matter what our main metric is, there will always 

be a model including some type of energy efficiency variable with better performance 

than the model without. However, we can go even a step further. We noted that, if our 

main goal is to have the better predictive capability possible, there’s no need to split the 
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energy efficient variable into 7 categories (1 for each class), it would be better to just 

divide the A class buildings from the other ones. By doing that, we don’t just improve the 

model performance but also reduce the model complexity and computational cost. 

Whereas, if our most important metric is the sensitivity, as we claimed in the previous 

chapter in the model selection section, the splitting of the variables is necessary so that 

we can minimize the chance to identify a loan a non-defaulting, when in fact it is going 

to default. Conversely, if we want to rely mostly on specificity, so minimizing the missed 

chance of loan (minimizing the potential loans that are predicted as defaulting while 

they’re going to be repaid), we can go back to the A-class splitting: we should have a 

dummy that is equal to 1 if the buildings belong to class A and 0, otherwise, exactly as 

we would do, if we wanted to give the most importance to the accuracy. In case we wanted 

more flexibility, so be generically better at predicting, independently by the threshold 

value, the 7-class splitting, as in the case of maximum sensitivity, is mandatory. Lastly, 

we can point out that the splitting between A, B and C classes buildings doesn’t provide 

enough benefits in any case considered, since we found that the models with a different 

set of dummy variables perform better. 

However, those last considerations hold as long as the logistic model with Ridge 

penalization is considered. The comparison between models was performed with that as 

a model structure because it was the best model chosen, for our purposes, in the selection 

section. If the same analysis was performed with a different model structure, for example 

a random forest, the results may have led to different conclusions. 
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CONCLUSION 
 

 The goals of the analysis are to find a better performing model than the logistic 

model (used as a benchmark) and to investigate the relationship between the energy 

efficiency of a dwelling and the default risk of the mortgage associated. The first part was 

carried out by fitting different types of models (Logistic, Logistic with both Ridge and 

LASSO penalizations, Linear Discriminant Analysis and Random Forest) and comparing 

their performances, while the second objective was achieved by two different approaches: 

we fitted a Cox Proportional Hazards Model to check if the A-class buildings had a 

significantly different probability of defaulting compared to all the other buildings and 

we compared the predictive performances of the best model found in the first part of the 

analysis (in our case, the Logistic Model with Ridge Penalization) with different sets of 

variables, by the point of view of the energy efficiency (we had a model without any 

information about energy efficiency, a model with a splitting between A-class buildings 

and the others, a model with a splitting between the A-, B- and C-class buildings and the 

others, and a model that had a dummy associated to each EE class). 

In chapter II, we have been able to build different types of models to predict the 

default probability of a loan and, starting from the classical Logistic Regression as a 

benchmark, we obtained greater performance by adding more sophisticated elements (the 

Ridge or Lasso penalizations) or by taking different approaches (the Linear Discriminant 

Analysis and the Random Forest). As already mentioned, the “best” model, by our point 

of view, is the Logistic Model with Ridge penalization but, based on different premises 

and considerations, the model selection may lead to a different decision. However, 

primarily, if the choice has to fall on another and more complex/different model as the 

best one (e.g. LDA or Random Forest), we may end up facing some interpretability issues.  

 For this reason, it is common practice, primarily in business environments, to go 

back to the easier (and simpler) classical Logistic Model that, despite being less accurate, 

is much more easily understandable and explainable than the other ones consider may be.  

Anyway, counterintuitively, the models identify as default risk boosters the impacts of 

the loan-to-value, number of instalments, age of the borrower when requesting the loan, 

HPI and inflation variables. On the other side, we have the GDP and the loan term 

variables and the EPC dummies as long as the class is higher than the G one. The impact 

of the credit score value variable is mutable, in the classical logistic and in the Ridge 

models it has a positive impact on the default probability, while in the LASSO model, we 
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have the opposite. This “double-agent” behavior of the variable may be due the 

imputation procedure that it had to go through and that causes some issues also, in the 

following part of the analysis. A further feature of the analysis, worth discussing, is that 

probably the most “correct” model, at least in terms of impact interpretation of the 

different components of introduced in modeling the default risk, is the LASSO one, since 

it's the only model in which the credit score variable behaves as it supposed to be, despite 

the missing values imputation and even though the prediction accuracy metrics are not as 

good as in other cases. 

In chapter III, on the other hand, we investigated specifically the relationship 

between energy efficiency and the default risk, with two different approaches. In that 

case, the results of the Cox models (both with and without the control variables) were 

unexpectedly in contrast with the findings in previous works, in particular the one by 

Billio et al. (2022), since it shared the same initial data. The difference between the two 

analysis, and the reason why ours may be considered less influential, is primarily due to 

the dataset handling: in the aforementioned work, the Cox Proportional Hazard Model 

was fitted on a dataset of about 70 000 observations while, in our case, we kept 30 000 

more observations in the analysis and those underwent an imputation procedure for the 

credit score value variable (almost every previous work, and even our findings, on the 

topic demonstrated the importance of the credit score in predicting the default risk in a 

mortgage). Considering that the score value is one of the most decisive factors also in our 

prediction of a loan default, and that the imputation method provided just the mean, 

having 30% of the values of a suboptimal quality, may have generated important biases 

in the model that led to the unexpected or misleading results. Moreover, the 30 000 

observations which underwent the imputation procedure, had a share of defaulted loans 

twice as large as the average one in the dataset, so that may have played a big role in 

adding bias to the analysis, too. Supporting our hypothesis that the data imputation may 

have biased the results of the model, the results for the credit score value and the inflation 

control variables is the opposite from the one in Billio et al. (2020). 

 As long as the other approach adopted (the comparison between models with 

different sets of variables) is concerned, the results are in line with the findings of 

previous papers and strongly support the assumption according to which the energy 

efficiency component of a building is a significant predictor of the default probability of 

the loan associated to it. 
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According to what came out in this analysis, the usual procedures and/or models 

used to compute the credit score of a borrower, and therefore, the policies regarding loans 

should be updated. Generally, the credit score value takes into account just behavioral, 

financial and demographical information about the borrower, and those information, 

combined with loan-specific characteristics such as the LTV ratio are used to predict the 

probability of default of a mortgage. However, also considering the energy efficiency of 

the building involved in the loan, would bring benefits to both the lender and the 

borrower, since the default risk is used to determine the volume of credit granted and the 

interest rate charged.  
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APPENDIX 

The analysis was carried out in RStudio environment mounting the software R 

version 4.1.1 (2021-08-10, “Kick Things”). The whole code running time lasts between 

one hour and a half and two hours, depending on the computational power of the machine 

that runs that (the longer lasting part is the fitting of the random forest with 50 trees). 

The code below is the one used to perform the analysis, from uploading data to 

model development and final comparison. 

#Uploading useful libraries 
 
library(tidyverse) 
library(lubridate) 
library(ggplot2) 
library(Hmisc) 
library(corrplot) 
library(pROC) 
library(glmnet) 
library(MASS) 
library(randomForest) 
library(survival) 
library(survminer) 
 
#Uploading and giving a first look to data 
data<-read.csv("EeDaPP_Portfolio_CRIF.csv") 
data_cox_chapter<-data 
str(data) 
summary(data) 
 
##################### DATA CLEANING ########################### 
 
#Dropping useless columns in bunches 
data<-subset(data, select=-X) #drop X column 
data<-subset(data, select=-age_borrower_today) #drop redundant column 
data<-subset(data, select=-c(perf_30_06_2010:perf_31_12_2019)) #drop useless columns 
data<-subset(data, select=-c(perf_6m:perf_48m)) #drop useless columns 
data<-subset(data, select=-c(anno_nascita)) #drop redundant column 
data<-subset(data, select=-c(residence_province)) #drop column to reduce granularity 
data<-subset(data, select=-cadastre_category) #drop useless column 
data<-subset(data, select=-birthday) #drop useless column 
data<-subset(data, select=-property_type_enc) #drop duplicated column 
data<-subset(data, select=-score_class_enc) #drop duplicated column 
data<-subset(data, select=-score_class) #drop redundant column 
data<-subset(data, select=-id) #drop useless column 
data<-subset(data, select=-NUTS1_region_enc) #drop duplicated column 
data<-subset(data, select=-itter107) #drop useless column 
data<-subset(data, select=-property_region_enc) #drop duplicated column 
data<-subset(data, select=-score_class_4_groups) #drop useless column 
data<-subset(data, select=-c(p30,p70)) #drop useless columns 
data<-subset(data, select=-c(yq, ym, year)) #drop useless columns 
data<-subset(data, select=-c(default_12m, default_24m)) #drop useless columns 
data<-subset(data, select=-c(epc_date)) #drop useless column 
data<-subset(data, select=-c(loan_term, EE, EE_A, EE_ABC, default_since_origination, 
                             building_age_orig:lloan_term, last_perf_date)) 
data<-subset(data, select=-lGDP) 
data<-subset(data, select=-case) #drop useless column 
data<-subset(data, select=-role)#drop useless column 
data<-subset(data, select=-date)# drop useless column 
data<-subset(data, select=-c(territory, property_status_group, months_since_originati
on, 
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             months_since_origination_cat, lmonths_since_origination,  
             months_beg_last_perf, tipo_valutazione)) #drop useless columns 
 
 
#combining information to have onloy default date column 
colnames(data)[24]<-"perf_default_date" 
for (i in 1:dim(data)[1]){ 
  if (data$perf_default_date[i]=="" & data$perf_date[i]!=""){ 
    data$perf_default_date[i]<-data$perf_date[i] 
  } 
} 
 
#Dropping some more useless columns and incomplete rows plus changing data type 
data$perf_default_date<-as.Date(data$perf_default_date) 
data<-subset(data, select=-c(default_date_G, default_date_I, default_date_S,  
                             default_date_X, default_date_Y,perf_date)) 
data$date_contract_begin<-as.Date(data$date_contract_begin) 
data$date_contract_end<-as.Date(data$date_contract_end) 
data<- data[!(is.na(data$date_contract_end)),] 
data<- data[!(is.na(data$ltv)),] #drop rows with ltv equal to Na (since they all 
                                 #have a loan amount greater than the property value) 
data<- data[!(is.na(data$age_borrower_orig)),] #drop rows with age_borrower_orig equa
l 
                                               #Na (just 0.5% of data) 
 
 
#Data imputation 
score_val_mean<-mean(data$score_value, na.rm=TRUE) 
for (i in 1:dim(data)[1]){ 
  if (is.na(data$score_value[i])){ 
    data$score_value[i]<-score_val_mean #replace Na with mean 
  } 
} 
 
HPI_chng_mean<-mean(data$HPI_chng, na.rm=TRUE) 
for (i in 1:dim(data)[1]){ 
  if (is.na(data$HPI_chng[i])){ 
    data$HPI_chng[i]<-HPI_chng_mean #replace Na with mean 
  } 
} 
 
# Make regions name equal between two columns 
for (i in 1:dim(data)[1]){ 
  if(data$property_region[i]=="EMILIA ROMAGNA"){ 
    data$property_region[i]<-"EMILIA-ROMAGNA" 
  } 
} 
for (i in 1:dim(data)[1]){ 
  if(data$property_region[i]=="TRENTINO ALTO ADIGE"){ 
    data$property_region[i]<-"TRENTINO-ALTO ADIGE" 
  } 
} 
for (i in 1:dim(data)[1]){ 
  if(data$property_region[i]=="VALLE D AOSTA"){ 
    data$property_region[i]<-"VALLE D'AOSTA" 
  } 
} 
 
for (i in 1:dim(data)[1]){ 
  if(data$property_region[i]=="FRIULI VENEZIA GIULIA"){ 
    data$property_region[i]<-"FRIULI-VENEZIA GIULIA" 
  } 
} 
 
for (i in 1:dim(data)[1]){ 
  if(data$residence_region[i]=="ND" | data$residence_region[i]==""){ 
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    data$residence_region[i]<-"SCONOSCIUTA" 
  } 
} 
 
#changing column names 
colnames(data)[21]<-"region_macroarea" 
colnames(data)[25]<-"inflation" 
 
#default encoding 
data$default<-ifelse(data$default==0, "No", "Yes") 
 
data<- data[!(data$periodicity=="N"),] #only 4 occurrences 
data<- data[!(data$periodicity=="V"),] #only 4 occurrences 
 
#dropping useless variablr, creating a new one and arranging data by id 
data<-subset(data, select=-property_type) 
loan_length<-time_length(difftime(data$date_contract_end,data$date_contract_begin), 
                         "years") 
data<-cbind(data[,1:3],loan_length,data[,4:26]) 
r<-data$row_id 
data<-subset(data, select=-row_id) 
data<-data.frame(cbind(r, data)) 
colnames(data)[1]<-"ID" 

data<-subset(data, select=-delta_val_cntr) 
data<-arrange(data, ID) #arrange data by row_id 
summary(data) 
 
################################# DESCRIPTIVE ANALYTICS ###################### 
 
# CREATING VARIABLE'S GRAPHS and SUMMARY STATISTICS # 
 
data<-as_tibble(data) 
default_prop <- data %>% 
                group_by(default) %>% 
                summarise(cnt = n()) %>% 
                mutate(freq = round(cnt / sum(cnt)*100, 1)) 
   
default_prop #highly unbalanced classes 
ggplot(default_prop, aes(x = default, y = freq, fill = default)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "Default distribution", 
       y = "Percentage (%)", x = "Default") 
 
 
periodicity_prop <- data %>% 
  group_by(periodicity) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 2)) 
 
periodicity_prop  
ggplot(periodicity_prop, aes(x = periodicity, y = freq, fill = periodicity)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "Periodicity distribution", 
       y = "Percentage (%)", x = "Periodicity") 
 
 
epc_prop <- data %>% 
  group_by(epc) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 1)) 
 
epc_prop  
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ggplot(epc_prop, aes(x = epc, y = freq, fill = epc)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "EPC distribution", 
       y = "Percentage (%)", x = "EPC class") 
 
 
PReg_prop <- data %>% 
  group_by(property_region) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 3)) 
 
PReg_prop  
 
ggplot(PReg_prop, aes(x = property_region, y = freq, fill = property_region)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "Property Region distribution", 
       y = "Percentage (%)", x = "Region") 
 
 
RReg_prop <- data %>% 
  group_by(residence_region) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 3)) 
 
RReg_prop  
 
ggplot(RReg_prop, aes(x = residence_region, y = freq, fill = residence_region)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "Residence Region distribution", 
       y = "Percentage (%)", x = "Region") 
 
PStatus_prop <- data %>% 
  group_by(property_status) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 3)) 
 
PStatus_prop  
 
ggplot(PStatus_prop, aes(x = property_status, y = freq, fill = property_status)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "Property Status distribution", 
       y = "Percentage (%)", x = "Status") 
 
CCategory_prop <- data %>% 
  group_by(cadastral_category) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 3)) 
 
CCategory_prop  
 
ggplot(CCategory_prop, aes(x = cadastral_category, y = freq, fill = cadastral_categor
y)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -0.5)+ 
  labs(title = "Cadastral Category distribution", 
       y = "Percentage (%)", x = "Category") 
 
 
 
ggplot(data) + 
  geom_boxplot(aes(y = property_value))+ 
  labs(title = "Property Value", 
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       y = "Value (???)") 
IQR_prop_value<-IQR(data$property_value) 
summary(data$property_value) 
 
 
ggplot(data) + 
  geom_boxplot(aes(y = loan_amount))+ 
  labs(title = "Loan Amount", 
       y = "Value (???)") 
IQR(data$loan_amount) 
summary(data$loan_amount) 
 
ggplot(data)+ 
  geom_histogram(aes(x=ltv))+ 
  labs(title = "Loan to Value", 
       y = "Frequency") 
IQR(data$ltv) 
summary(data$ltv) 
sum(data$ltv>1) 
 
ggplot(data)+ 
  geom_histogram(aes(x=age_borrower_orig))+ 
  labs(title = "Age of borrower (when the loan was requested)", 
       y = "Frequency") 
IQR(data$age_borrower_orig) 
summary(data$age_borrower_orig) 
mean(data$age_borrower_orig) 
 
 
 
ggplot(data)+ 
  geom_histogram(aes(x=construction_year))+ 
  labs(title = "Construction Year", 
       y = "N°", x = "Year") 
 
summary(data$construction_year) 
 
ggplot(data) + 
  geom_boxplot(aes(y = score_value))+ 
  labs(title = "Score Value", 
       y = "Value") 
summary(data$score_value) 
 
 
ggplot(data)+ 
  geom_histogram(aes(x=loan_length))+ 
  labs(title = "Loan length (in years)", 
       x = "Length (years)", y = "Frequency") 
summary(data$loan_length) 
 
def_data<- data %>% 
  filter(default=="Yes") %>% 
  mutate(def_time=time_length(difftime(perf_default_date,date_contract_begin), 
                                  "months")) 
 
def_data 
 
ggplot(def_data)+ 
  geom_histogram(aes(x=def_time))+ 
  labs(title = "Default time (in months)", 
       x = "Length (months)", y = "Frequency") 
 
summary(def_data$def_time) 
 
def_per_class<- data %>% 
  group_by(epc, default) %>% 
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  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt / sum(cnt)*100, 2)) 
 
def_per_class 
 
ggplot(def_per_class, aes(x = epc, y = freq, fill = default)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -1)+ 
  labs(title = "Default by EPC class", 
       y = "Percentage (%)", x = "Class") 
 
 
class_per_reg<- data %>% 
  group_by(property_region, epc) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt/sum(cnt)*100, 2)) 
 
 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="ABRUZZO", 
                                      "ABR", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="BASILICATA", 
                                      "BAS", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="CALABRIA", 
                                      "CAL", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="CAMPANIA", 
                                      "CAM", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="EMILIA-ROMAGNA
", 
                                      "EMR", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="FRIULI-VENEZIA 
GIULIA", 
                                      "FVG", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="LAZIO", 
                                      "LAZ", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="LIGURIA", 
                                      "LIG", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="LOMBARDIA", 
                                      "LOM", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="MARCHE", 
                                      "MAR", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="MOLISE", 
                                      "MOL", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="PIEMONTE", 
                                      "PIE", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="PUGLIA", 
                                      "PUG", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="SARDEGNA", 
                                      "SAR", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="SICILIA", 
                                      "SIC", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="TOSCANA", 
                                      "TOS", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="TRENTINO-ALTO A
DIGE", 
                                      "TAA", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="UMBRIA", 
                                      "UMB", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="VALLE D'AOSTA", 
                                      "VDA", class_per_reg$property_region) 
class_per_reg$property_region<-ifelse(class_per_reg$property_region=="VENETO", 
                                      "VEN", class_per_reg$property_region) 
   
   
 
ggplot(class_per_reg, aes(x = property_region, y = freq, fill = epc)) +  
  geom_col() + 
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  labs(title = "EPC Classes per Region", 
       y = "Percentage (%)", x = "Region") 
 
def_per_reg<- data %>% 
  group_by(property_region, default) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt/sum(cnt)*100, 2)) 
 
 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="ABRUZZO", 
                                      "ABR", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="BASILICATA", 
                                      "BAS", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="CALABRIA", 
                                      "CAL", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="CAMPANIA", 
                                      "CAM", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="EMILIA-ROMAGNA", 
                                      "EMR", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="FRIULI-VENEZIA GIUL
IA", 
                                      "FVG", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="LAZIO", 
                                      "LAZ", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="LIGURIA", 
                                      "LIG", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="LOMBARDIA", 
                                      "LOM", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="MARCHE", 
                                      "MAR", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="MOLISE", 
                                      "MOL", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="PIEMONTE", 
                                      "PIE", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="PUGLIA", 
                                      "PUG", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="SARDEGNA", 
                                      "SAR", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="SICILIA", 
                                      "SIC", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="TOSCANA", 
                                      "TOS", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="TRENTINO-ALTO ADIGE
", 
                                      "TAA", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="UMBRIA", 
                                      "UMB", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="VALLE D'AOSTA", 
                                      "VDA", def_per_reg$property_region) 
def_per_reg$property_region<-ifelse(def_per_reg$property_region=="VENETO", 
                                      "VEN", def_per_reg$property_region) 
 
 
 
ggplot(def_per_reg, aes(x = property_region, y = freq, fill = default)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -1)+ 
  labs(title = "Default per Region", 
       y = "Percentage (%)", x = "Region") 
 
 
decade<-rep("",dim(data)[1]) 
 
for (i in 1:dim(class_per_conyear)[1]){ 
  if (class_per_conyear$construction_year[i]<=1909){ 
    decade[i]<-"1900s" 
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  } 
  if (class_per_conyear$construction_year[i]>1909 &  
      class_per_conyear$construction_year[i]<=1919){ 
    decade[i]<-"1910s" 
  } 
  if (class_per_conyear$construction_year[i]>1919 &  
      class_per_conyear$construction_year[i]<=1929){ 
    decade[i]<-"1920s" 
  } 
  if (class_per_conyear$construction_year[i]>1929 &  
      class_per_conyear$construction_year[i]<=1939){ 
    decade[i]<-"1930s" 
  } 
  if (class_per_conyear$construction_year[i]>1939 &  
      class_per_conyear$construction_year[i]<=1949){ 
    decade[i]<-"1940s" 
  } 
  if (class_per_conyear$construction_year[i]>1949 &  
      class_per_conyear$construction_year[i]<=1959){ 
    decade[i]<-"1950s" 
  } 
  if (class_per_conyear$construction_year[i]>1959 &  
      class_per_conyear$construction_year[i]<=1969){ 
    decade[i]<-"1960s" 
  } 
  if (class_per_conyear$construction_year[i]>1969 &  
      class_per_conyear$construction_year[i]<=1979){ 
    decade[i]<-"1970s" 
  } 
  if (class_per_conyear$construction_year[i]>1979 &  
      class_per_conyear$construction_year[i]<=1989){ 
    decade[i]<-"1980s" 
  } 
  if (class_per_conyear$construction_year[i]>1989 &  
      class_per_conyear$construction_year[i]<=1999){ 
    decade[i]<-"1990s" 
  } 
  if (class_per_conyear$construction_year[i]>1999 &  
      class_per_conyear$construction_year[i]<=2009){ 
    decade[i]<-"2000s" 
  } 
  if (class_per_conyear$construction_year[i]>2009 &  
      class_per_conyear$construction_year[i]<=2019){ 
    decade[i]<-"2010s" 
  } 
} 
head(decade) 
class_per_conyear<-as_tibble(data.frame(cbind(class_per_conyear,decade))) 
 
class_per_conyear<- class_per_conyear %>% 
  group_by(decade, epc) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt/sum(cnt)*100, 2)) 
head(class_per_conyear)   
 
ggplot(class_per_conyear, aes(x = decade, y = freq, fill = epc)) +  
  geom_col() + 
  labs(title = "EPC Classes per Construction Year", 
       y = "Percentage (%)", x = "Decades") 
 
 
def_per_conyear<-data 
 
for (i in 1:dim(def_per_conyear)[1]){ 
  if (def_per_conyear$construction_year[i]<=1909){ 
    decade[i]<-"1900s" 
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  } 
  if (def_per_conyear$construction_year[i]>1909 &  
      def_per_conyear$construction_year[i]<=1919){ 
    decade[i]<-"1910s" 
  } 
  if (def_per_conyear$construction_year[i]>1919 &  
      def_per_conyear$construction_year[i]<=1929){ 
    decade[i]<-"1920s" 
  } 
  if (def_per_conyear$construction_year[i]>1929 &  
      def_per_conyear$construction_year[i]<=1939){ 
    decade[i]<-"1930s" 
  } 
  if (def_per_conyear$construction_year[i]>1939 &  
      def_per_conyear$construction_year[i]<=1949){ 
    decade[i]<-"1940s" 
  } 
  if (def_per_conyear$construction_year[i]>1949 &  
      def_per_conyear$construction_year[i]<=1959){ 
    decade[i]<-"1950s" 
  } 
  if (def_per_conyear$construction_year[i]>1959 &  
      def_per_conyear$construction_year[i]<=1969){ 
    decade[i]<-"1960s" 
  } 
  if (def_per_conyear$construction_year[i]>1969 &  
      def_per_conyear$construction_year[i]<=1979){ 
    decade[i]<-"1970s" 
  } 
  if (def_per_conyear$construction_year[i]>1979 &  
      def_per_conyear$construction_year[i]<=1989){ 
    decade[i]<-"1980s" 
  } 
  if (def_per_conyear$construction_year[i]>1989 &  
      def_per_conyear$construction_year[i]<=1999){ 
    decade[i]<-"1990s" 
  } 
  if (def_per_conyear$construction_year[i]>1999 &  
      def_per_conyear$construction_year[i]<=2009){ 
    decade[i]<-"2000s" 
  } 
  if (def_per_conyear$construction_year[i]>2009 &  
      def_per_conyear$construction_year[i]<=2019){ 
    decade[i]<-"2010s" 
  } 
} 
head(decade) 
def_per_conyear<-as_tibble(data.frame(cbind(def_per_conyear,decade))) 
def_per_conyear<- def_per_conyear %>% 
  group_by(decade, default) %>% 
  summarise(cnt = n()) %>% 
  mutate(freq = round(cnt/sum(cnt)*100, 2)) 
head(def_per_conyear)   
 
ggplot(def_per_conyear, aes(x = decade, y = freq, fill = default)) +  
  geom_col() + 
  geom_text(aes(label = freq), vjust = -1) + 
  labs(title = "Default Rate per Construction Year", 
       y = "Percentage (%)", x = "Decades") 
 
 
#create new dataframe with only numerical variables 
corr_data<-subset(data, select=-c(ID, date_contract_begin, date_contract_end, periodi
city, 
                                  epc, property_region, residence_region, property_st
atus,  



62 

 

                                  cadastral_category, perf_default_date, default, 
                                  region_macroarea, HPI, HPI_chng, GDP, inflation,  
                                  mtgrt, unemployment)) 
 
 
res<-rcorr(as.matrix(corr_data)) 
res 
corrplot(res$r, type="upper", order="hclust",  
         p.mat = res$P, sig.level = 0.01, insig = "blank") 
 
#high correlation between loan_length, no_of_instalments (and periodicity) 
data<-subset(data, select=-periodicity) 
#high correlation between property_value, loan_amount and ltv (use only loan_amount  
#and ltv in models) 
 
# PERFORMING INDEPENDENCE TESTS # 
 
epc_def<-table(data$epc,data$default) 
epc_def_chitest<-chisq.test(epc_def) 
epc_def_chitest #p-value < 2.2e-16, there's dependence 
sum(data$default=="No") 
 
PStatus_def<-table(data$property_status,data$default) 
PStatus_def_chitest<-chisq.test(PStatus_def) 
PStatus_def_chitest #p-value = 0.07214, no dependence at 5% 
 
CadCat_def<-table(data$cadastral_category, data$default) 
CadCat_def_test<-chisq.test(CadCat_def) 
CadCat_def_test #Even though p-value = 7.063e-11, the chi-squared is not reliable 
                #(loft, villa/villino and villetta a schiera default equal to 0,1 and 
1) 
 
RegMA_def<-table(data$region_macroarea,data$default) 
RegMA_def_test<-chisq.test(RegMA_def) 
RegMA_def_test #p-value = 3.835e-06, there's dependence (dig deeper with region) 
 
 
Reg_def<-table(data$property_region, data$default) 
Reg_def_test<-chisq.test(Reg_def) 
Reg_def_test #Even though p-value = 3.986e-05, the chi-squared is not reliable 
             #(many regions have less than 5 default occurencies) 
 
ResReg_def<-table(data$residence_region, data$default) 
ResReg_def_test<-chisq.test(ResReg_def) 
ResReg_def_test #Even though p-value = 7.167e-05, the chi-squared is not reliable 
                #(many regions have less than 5 default occurencies) 
 
############################ Models ############################################ 
 
# TRANSFORMING DATA TYPE # 
 
data$epc<-as.factor(data$epc) 
data$property_region<-as.factor(data$property_region) 
data$residence_region<-as.factor(data$residence_region) 
data$property_status<-as.factor(data$property_status) 
data$cadastral_category<-as.factor(data$cadastral_category) 
data$default<-as.factor(data$default) 
data$region_macroarea<-as.factor(data$region_macroarea) 
relevel(data$default, ref="Yes") 
 
# Train/Test Splitting 
set.seed(42)  
sample <- sample.int(n = nrow(data), size = floor(.8*nrow(data)), replace = F) 
data_train <- data[sample, ] 
data_test  <- data[-sample, ] 
#keep unbalanced classes, roughy 2.36% defaults for data and each split 
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# Logistic Regression # 
## MAIN METRIC: SENSITIVITY ## 
 
log_model<-glm(default~loan_length+no_of_instalments+loan_amount+ltv+epc+ 
                age_borrower_orig+construction_year+score_value+ 
                 cadastral_category+region_macroarea, family=binomial, data=data_trai
n) 
summary(log_model) #move on dropping non-significant variables 
 
log_model2<-update(log_model, .~.-construction_year) 
summary(log_model2) 
anova(log_model2, test="Chisq") 
 
#enhance model's fitting by merging some categories# 
data_train_merge=data_train 
data_train_merge$cadastral_category<-as.character(data_train_merge$cadastral_categor
y) 
for(i in 1:dim(data_train_merge)[1]){ 
  if (data_train_merge$cadastral_category[i]=="appartamento" | 
      data_train_merge$cadastral_category[i]=="attico/mansarda" | 
      data_train_merge$cadastral_category[i]=="loft"){ 
    data_train_merge$cadastral_category[i]<-"appartamento/attico/loft" 
  } 
} 
data_train_merge$cadastral_category<-as.factor(data_train_merge$cadastral_category) 
 
data_test_merge=data_test 
data_test_merge$cadastral_category<-as.character(data_test_merge$cadastral_category) 
for(i in 1:dim(data_test_merge)[1]){ 
  if (data_test_merge$cadastral_category[i]=="appartamento" | 
      data_test_merge$cadastral_category[i]=="attico/mansarda" | 
      data_test_merge$cadastral_category[i]=="loft"){ 
    data_test_merge$cadastral_category[i]<-"appartamento/attico/loft" 
  } 
} 
data_test_merge$cadastral_category<-as.factor(data_test_merge$cadastral_category) 
 
log_model4<-glm(default~loan_length+no_of_instalments+loan_amount+ltv+epc+ 
                  age_borrower_orig+score_value+ 
                  cadastral_category+region_macroarea, family=binomial, data=data_tra
in_merge) 
summary(log_model4) 
 
## Evaluation on Train Set ## 
 
pred_values_log_OnTrain<-predict(log_model4, data_train_merge, type="response") 
my_roc_train <- roc(data_train_merge$default, pred_values_log_OnTrain) 
metrics_log_train<-coords(my_roc_train, "best", ret ="all") 
 
plot(my_roc_train, print.auc=TRUE) #AUC=0.684 
 
pred_class_log_OnTrain<-ifelse(pred_values_log_OnTrain>as.numeric(metrics_log_train
[1]), "Yes", "No") 
conf_matrix_log_Train<-table(pred_class_log_OnTrain, data_train_merge$default) 
 
Accuracy_log_Train=as.numeric(metrics_log_train[4]) #0.5652797 
Specificity_log_Train=as.numeric(metrics_log_train[2]) #0.5621005 
Sensitivity_log_Train=as.numeric(metrics_log_train[3]) #0.6966527 
Threshold_log_Train=as.numeric(metrics_log_train[1]) #0.02093805 
 
## Evaluation on Test Set ## 
 
pred_values_log_OnTest<-predict(log_model4, data_test_merge, type="response") 
my_roc_test <- roc(data_test_merge$default, pred_values_log_OnTest) 
metrics_log_test<-coords(my_roc_test, "best", ret ="all") 
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plot(my_roc_test, print.auc=TRUE) #AUC=0.690 
 
pred_class_log_OnTest<-ifelse(pred_values_log_OnTest>as.numeric(metrics_log_test[1]), 
"Yes", "No") 
conf_matrix_log_Test<-table(pred_class_log_OnTest, data_test_merge$default) 
 
Accuracy_log_Test=as.numeric(metrics_log_test[4]) #0.5257278 
Specificity_log_Test=as.numeric(metrics_log_test[2]) #0.5201721 
Sensitivity_log_Test=as.numeric(metrics_log_test[3]) #0.7563025 
Threshold_log_Test=as.numeric(metrics_log_test[1]) #0.01977467 
 
 
# Attempt with Macroeconomics metrics # 
log_model5<-update(log_model4, .~.+HPI_chng+HPI+inflation+mtgrt+unemployment+GDP) 
summary(log_model5) 
 
 
anova(log_model5, test="Chisq") 
log_model6<-update(log_model5, .~.-unemployment) 
summary(log_model6) 
anova(log_model6, test="Chisq") 
 
#Predictions w/ Macroeconomics metrics # 
pred_values_log_OnTest_ME<-predict(log_model6, data_test_merge, type="response") 
my_roc_test_ME <- roc(data_test_merge$default, pred_values_log_OnTest_ME) 
metrics_log_test_ME<-coords(my_roc_test_ME, "best", ret ="all") 
 
plot(my_roc_test_ME, print.auc=TRUE) #AUC=0.792 
 
pred_class_log_OnTest_ME<-ifelse(pred_values_log_OnTest_ME>as.numeric(metrics_log_tes
t_ME[1]), "Yes", "No") 
conf_matrix_log_Test_ME<-table(pred_class_log_OnTest_ME, data_test_merge$default) 
 
Accuracy_log_Test_ME=as.numeric(metrics_log_test_ME[4]) #0.6899807 
Specificity_log_Test_ME=as.numeric(metrics_log_test_ME[2]) #0.6882308 
Sensitivity_log_Test_ME=as.numeric(metrics_log_test_ME[3]) #0.762605 
Threshold_log_Test_ME=as.numeric(metrics_log_test_ME[1]) #0.02639929 
 
#Data handling to prepare for advanced models 
 
def_train<-data_train$default 
data_train<-subset(data_train, select=-default) 
data_train<-data.frame(cbind(data_train,def_train)) 
colnames(data_train)[26]<-"default" 
 
 
def_test<-data_test$default 
data_test<-subset(data_test, select=-default) 
data_test<-data.frame(cbind(data_test,def_test)) 
colnames(data_test)[26]<-"default" 
 
data_test_ridge<-ifelse(data_test$default=="Yes",1,0) 
 
 
X_train<-model.matrix(object= default~loan_length+no_of_instalments+loan_amount+ltv+ 
                        epc+age_borrower_orig+construction_year+score_value+ 
                        cadastral_category+region_macroarea+HPI_chng+HPI+inflation+ 
                        mtgrt+unemployment+GDP,data_train)[,-1] 
X_test<-model.matrix(object= default~loan_length+no_of_instalments+loan_amount+ltv+ 
                       epc+age_borrower_orig+construction_year+score_value+ 
                       cadastral_category+region_macroarea+HPI_chng+HPI+inflation+ 
                       mtgrt+unemployment+GDP,data_test)[,-1] 
y_train<-ifelse(data_train$default=="Yes",1,0) 
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# Logistic Regression with Ridge # 
 
set.seed(42) 
cv.ridge<-cv.glmnet(X_train, y_train, alpha=0, family="binomial") 
ridge_model<-glmnet(X_train, y_train, alpha=0, family="binomial", lambda=cv.ridge$lam
bda.min) 
 
prob_ridge<-ridge_model %>% predict(newx= X_test, type="response") 
my_roc_test_ridge <- roc(data_test_ridge, prob_ridge) 
metrics_log_test_ridge<-coords(my_roc_test_ridge, "best", ret ="all") 
 
plot(my_roc_test_ridge, print.auc=TRUE) #AUC=0.791 
 
pred_class_log_OnTest_ridge<-ifelse(prob_ridge>as.numeric(metrics_log_test_ridge[1]), 
"Yes", "No") 
conf_matrix_log_Test_ridge<-table(pred_class_log_OnTest_ridge, data_test_ridge) 
 
Accuracy_log_Test_ridge=as.numeric(metrics_log_test_ridge[4]) #0.6406999 
Specificity_log_Test_ridge=as.numeric(metrics_log_test_ridge[2]) #0.6365477 
Sensitivity_log_Test_ridge=as.numeric(metrics_log_test_ridge[3]) #0.8130252 
Threshold_log_Test_ridge=as.numeric(metrics_log_test_ridge[1]) #0.0223043 
 
# Logistic Regression with LASSO # 
 
set.seed(42) 
cv.lasso<-cv.glmnet(X_train, y_train, alpha=1, family="binomial") 
lasso_model<-glmnet(X_train, y_train, alpha=1, family="binomial", lambda=cv.lasso$lam
bda.min) 
 
prob_lasso<-lasso_model %>% predict(newx= X_test, type="response") 
my_roc_test_lasso <- roc(data_test_lasso, prob_lasso) 
metrics_log_test_lasso<-coords(my_roc_test_lasso, "best", ret ="all") 
 
plot(my_roc_test_lasso, print.auc=TRUE) #AUC=0.791 
 
pred_class_log_OnTest_lasso<-ifelse(prob_lasso>as.numeric(metrics_log_test_lasso[1]), 
"Yes", "No") 
conf_matrix_log_Test_lasso<-table(pred_class_log_OnTest_lasso, data_test$default) 
 
Accuracy_log_Test_lasso=as.numeric(metrics_log_test_lasso[4]) #0.6863724 
Specificity_log_Test_lasso=as.numeric(metrics_log_test_lasso[2]) #0.6844849 
Sensitivity_log_Test_lasso=as.numeric(metrics_log_test_lasso[3]) #0.7647059 
Threshold_log_Test_lasso=as.numeric(metrics_log_test_lasso[1]) #0.02632447 
 
 
# Linear Discriminant Analysis # 
 
data_test_lda<-ifelse(data_test$default=="Yes",1,0) 
 
lda_model<-lda(default~loan_length+no_of_instalments+loan_amount+ltv+ 
                 epc+age_borrower_orig+construction_year+score_value+ 
                 cadastral_category+region_macroarea+HPI_chng+HPI+inflation+ 
                 mtgrt+unemployment+GDP, data=data_train) 
lda_model 
 
prob_lda<-predict(lda_model, newdata= data_test) 
prob_lda_class01<-ifelse(prob_lda$class=="Yes",1,0) 
my_roc_test_lda <- roc(data_test_lda, prob_lda$posterior[,2]) 
metrics_log_test_lda<-coords(my_roc_test_lda, "best", ret ="all") 
 
plot(my_roc_test_lda, print.auc=TRUE) #AUC=0.787 
 
pred_class_log_OnTest_lda<-ifelse(prob_lda$posterior[,2]>as.numeric(metrics_log_test_
lda[1]), "Yes", "No") 
conf_matrix_log_Test_lda<-table(pred_class_log_OnTest_lda, data_test$default) 
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Accuracy_log_Test_lda=as.numeric(metrics_log_test_lda[4]) #0.6967525 
Specificity_log_Test_lda=as.numeric(metrics_log_test_lda[2]) #0.6953176 
Sensitivity_log_Test_lda=as.numeric(metrics_log_test_lda[3]) #0.7563025 
Threshold_log_Test_lda=as.numeric(metrics_log_test_lda[1]) #0.02339972 
 
# Random Forest # 
 
data_test_RF=data_test_lda 
 
set.seed(42)  # Setting seed 
classifier_RF = randomForest(x = X_train, 
                             y = y_train, 
                             ntree = 50) 
 
classifier_RF 
 
# Predicting the Test set results 
y_pred = predict(classifier_RF, newdata = X_test) 
 
my_roc_test_RF <- roc(data_test_RF, y_pred) 
metrics_log_test_RF<-coords(my_roc_test_RF, "best", ret ="all") 
 
plot(my_roc_test_RF, print.auc=TRUE) #AUC=0.787 
 
pred_class_log_OnTest_RF<-ifelse(y_pred>as.numeric(metrics_log_test_RF[1]), "Yes", "N
o") 
conf_matrix_log_Test_RF<-table(pred_class_log_OnTest_RF, data_test$default) 
 
Accuracy_log_Test_RF=as.numeric(metrics_log_test_RF[4]) #0.7689684 
Specificity_log_Test_RF=as.numeric(metrics_log_test_RF[2]) #0.7733232 
Sensitivity_log_Test_RF=as.numeric(metrics_log_test_RF[3]) #0.5882353 
Threshold_log_Test_RF=as.numeric(metrics_log_test_RF[1]) #0.03666667 
 
# Plotting model 
plot(classifier_RF) 
 
# Importance plot 
importance(classifier_RF) 
 
# Variable importance plot 
varImpPlot(classifier_RF) 
 
 
 
########### HIGHEST ACCURACY: Random Forest ################## 
########### HIGHEST SENSITIVITY: Logistic Regression with Ridge Penalization  
 
 
################   Energy Efficiency Evaluation ################# 
#Creating new dataset with EE variable, dropping almost all other variables and 
#adding censoring dummy 
data_EEE<-data 
EE<-ifelse(data_EEE$epc=="A",1,0) 
data_EEE<-data.frame(cbind(data_EEE,EE)) 
data_EEE$EE<-as.factor(data_EEE$EE) 
data_cox<-data_EEE 
data_cox1<-subset(data_EEE, select=-c(property_value, date_contract_end, ltv, 
                                     loan_length,no_of_instalments, loan_amount,  
                                    property_region, residence_region,  
                                     age_borrower_orig, construction_year,  
                                     property_status, delta_val_cntr, score_value, 
                                     cadastral_category, HPI_chng, 
                                     HPI, GDP, region_macroarea, inflation, mtgrt, un
employment)) 
censored<-ifelse(data_cox1$perf_default_date=="2019-12-31",1,0) 
head(censored) 



67 

 

data_cox1<-data.frame(cbind(data_cox1,censored)) 
time<-time_length(difftime(data_cox1$perf_default,data_cox1$date_contract_begin), 
                  "days") 
data_cox1<-data.frame(cbind(data_cox1,time)) 
data_cox<-data.frame(cbind(data_cox,censored,time)) 
 
############## COX Model with our data ############### 
 
cox_model_1<-coxph(Surv(time, censored)~ EE, data=data_cox1) 
summary(cox_model_1) 
fit <- survfit(Surv(time, censored) ~ EE, data = data_cox1) 
ggsurvplot(fit, data = data_cox1) 
 
 
cox_model_2<-coxph(Surv(time, censored)~ EE+score_value+ltv+loan_length+construction_
year+ 
                     age_borrower_orig+inflation+unemployment+HPI_chng, data=data_co
x) 
summary(cox_model_2) 
fit <- survfit(Surv(time, censored) ~ EE, data = data_cox) 
ggsurvplot(fit, data = data_cox) 
 
############# COX Model in Billio et al (2020) data ###################### 
 
data_cox_chapter<- data_cox_chapter[!(is.na(data_cox_chapter$score_value)),] 
data_cox_chapter$date_contract_begin<-as.Date(data_cox_chapter$date_contract_begin) 
data_cox_chapter<- data_cox_chapter[!(data_cox_chapter$date_contract_begin<2012-01-0
1),] 
data_cox_chapter$ltv<-round(data_cox_chapter$loan_amount/data_cox_chapter$property_va
lue, 2) 
data_cox_chapter<- data_cox_chapter[!(is.na(data_cox_chapter$ltv)),] 
data_cox_chapter<- data_cox_chapter[!(data_cox_chapter$ltv>1.1),] 
sum(data_cox_chapter$property_status=="USAT") #48164 
sum(data_cox_chapter$property_status=="SNUOV") #5894 
sum(data_cox_chapter$property_status=="RISTR") #9285 
sum(data_cox_chapter$property_status=="NUOV") #6762 
sum(data_cox_chapter$property_status=="DARIS") #951 
data_cox_chapter<- data_cox_chapter[!(is.na(data_cox_chapter$age_borrower_orig)),] 
censored<-ifelse(data_cox_chapter$default_date=="",1,2) 
data_cox_chapter<-data.frame(cbind(data_cox_chapter, censored)) 
 
 
cox_model_chap<-coxph(Surv(months_since_origination, censored)~ EE_A, data=data_cox_c
hapter) 
summary(cox_model_chap) 
fit_chap <- survfit(Surv(months_since_origination, censored) ~ EE_A, data = data_cox_
chapter) 
ggsurvplot(fit_chap, data = data_cox_chapter) 
 
## Comparing models' performances ## 
 
 
data_for_perf=data 
EE_A =ifelse(data_for_perf$epc=="A",1,0) 
EE_ABC=ifelse(data_for_perf$epc=="A" | data_for_perf$epc=="B" | data_for_perf$epc=="C
", 
              1,0) 
data_for_perf<-data.frame(cbind(data_for_perf,EE_A,EE_ABC)) 
data_for_perf$EE_A<-as.factor(data_for_perf$EE_A) 
data_for_perf$EE_ABC<-as.factor(data_for_perf$EE_ABC) 
 
set.seed(42)  
sample_perf <- sample.int(n = nrow(data_for_perf), size = floor(.8*nrow(data_for_per
f)), replace = F) 
data_train_perf <- data_for_perf[sample_perf, ] 
data_test_perf  <- data_for_perf[-sample_perf, ] 
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## Ridge EE_A ## 
 
X_train_perf_A<-model.matrix(object= default~loan_length+no_of_instalments+loan_amoun
t+ltv+ 
                        EE_A+age_borrower_orig+construction_year+score_value+ 
                        cadastral_category+region_macroarea+HPI_chng+HPI+inflation+ 
                        mtgrt+unemployment+GDP,data_train_perf)[,-1] 
X_test_perf_A<-model.matrix(object= default~loan_length+no_of_instalments+loan_amount
+ltv+ 
                       EE_A+age_borrower_orig+construction_year+score_value+ 
                       cadastral_category+region_macroarea+HPI_chng+HPI+inflation+ 
                       mtgrt+unemployment+GDP,data_test_perf)[,-1] 
y_train_perf_A<-ifelse(data_train_perf$default=="Yes",1,0) 
 
 
set.seed(42) 
cv.ridge_A<-cv.glmnet(X_train_perf_A, y_train_perf_A, alpha=0, family="binomial") 
ridge_model_A<-glmnet(X_train_perf_A, y_train_perf_A, alpha=0, family="binomial", lam
bda=cv.ridge_A$lambda.min) 
 
prob_ridge_A<-ridge_model_A %>% predict(newx= X_test_perf_A, type="response") 
my_roc_test_ridge_A <- roc(data_test_perf$default, prob_ridge_A) 
metrics_log_test_ridge_A<-coords(my_roc_test_ridge_A, "best", ret ="all") 
 
plot(my_roc_test_ridge_A, print.auc=TRUE) #AUC=0.789 
 
pred_class_log_OnTest_ridge_A<-ifelse(prob_ridge_A>as.numeric(metrics_log_test_ridge_
A[1]), "Yes", "No") 
conf_matrix_log_Test_ridge_A<-table(pred_class_log_OnTest_ridge_A, data_test_perf$def
ault) 
 
Accuracy_log_Test_ridge_A=as.numeric(metrics_log_test_ridge_A[4]) #0.7221096 
Specificity_log_Test_ridge_A=as.numeric(metrics_log_test_ridge_A[2]) #0.7219944 
Sensitivity_log_Test_ridge_A=as.numeric(metrics_log_test_ridge_A[3]) #0.7268908 
Threshold_log_Test_ridge_A=as.numeric(metrics_log_test_ridge_A[1]) #0.03145736 
 
 
## Ridge w/o epc ## 
 
X_train_perf_NO<-model.matrix(object= default~loan_length+no_of_instalments+loan_amou
nt+ltv+ 
                               age_borrower_orig+construction_year+score_value+ 
                               cadastral_category+region_macroarea+HPI_chng+HPI+infla
tion+ 
                               mtgrt+unemployment+GDP,data_train_perf)[,-1] 
X_test_perf_NO<-model.matrix(object= default~loan_length+no_of_instalments+loan_amoun
t+ltv+ 
                              +age_borrower_orig+construction_year+score_value+ 
                              cadastral_category+region_macroarea+HPI_chng+HPI+inflat
ion+ 
                              mtgrt+unemployment+GDP,data_test_perf)[,-1] 
y_train_perf_NO<-ifelse(data_train_perf$default=="Yes",1,0) 
 
 
set.seed(42) 
cv.ridge_NO<-cv.glmnet(X_train_perf_NO, y_train_perf_NO, alpha=0, family="binomial") 
ridge_model_NO<-glmnet(X_train_perf_NO, y_train_perf_NO, alpha=0, family="binomial", 
lambda=cv.ridge_NO$lambda.min) 
 
prob_ridge_NO<-ridge_model_NO %>% predict(newx= X_test_perf_NO, type="response") 
my_roc_test_ridge_NO <- roc(data_test_perf$default, prob_ridge_NO) 
metrics_log_test_ridge_NO<-coords(my_roc_test_ridge_NO, "best", ret ="all") 
 
plot(my_roc_test_ridge_NO, print.auc=TRUE) #AUC=0.788 
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pred_class_log_OnTest_ridge_NO<-ifelse(prob_ridge_NO>as.numeric(metrics_log_test_ridg
e_NO[1]), "Yes", "No") 
conf_matrix_log_Test_ridge_NO<-table(pred_class_log_OnTest_ridge_NO, data_test_perf$d
efault) 
 
Accuracy_log_Test_ridge_NO=as.numeric(metrics_log_test_ridge_NO[4]) #0.7206268 
Specificity_log_Test_ridge_NO=as.numeric(metrics_log_test_ridge_NO[2]) #0.7204252 
Sensitivity_log_Test_ridge_NO=as.numeric(metrics_log_test_ridge_NO[3]) #0.7289916 
Threshold_log_Test_ridge_NO=as.numeric(metrics_log_test_ridge_NO[1]) #0.03127743 
 
## Ridge EE_ABC ## 
 
X_train_perf_ABC<-model.matrix(object= default~loan_length+no_of_instalments+loan_amo
unt+ltv+ 
                                EE_ABC+age_borrower_orig+construction_year+score_valu
e+ 
                                cadastral_category+region_macroarea+HPI_chng+HPI+infl
ation+ 
                                mtgrt+unemployment+GDP,data_train_perf)[,-1] 
X_test_perf_ABC<-model.matrix(object= default~loan_length+no_of_instalments+loan_amou
nt+ltv+ 
                               EE_ABC+age_borrower_orig+construction_year+score_value
+ 
                               cadastral_category+region_macroarea+HPI_chng+HPI+infla
tion+ 
                               mtgrt+unemployment+GDP,data_test_perf)[,-1] 
y_train_perf_ABC<-ifelse(data_train_perf$default=="Yes",1,0) 
 
 
set.seed(42) 
cv.ridge_ABC<-cv.glmnet(X_train_perf_ABC, y_train_perf_ABC, alpha=0, family="binomial
") 
ridge_model_ABC<-glmnet(X_train_perf_ABC, y_train_perf_ABC, alpha=0, family="binomial
", lambda=cv.ridge_ABC$lambda.min) 
 
prob_ridge_ABC<-ridge_model_ABC %>% predict(newx= X_test_perf_ABC, type="response") 
my_roc_test_ridge_ABC <- roc(data_test_perf$default, prob_ridge_ABC) 
metrics_log_test_ridge_ABC<-coords(my_roc_test_ridge_ABC, "best", ret ="all") 
 
plot(my_roc_test_ridge_ABC, print.auc=TRUE) #AUC=0.789 
 
pred_class_log_OnTest_ridge_ABC<-ifelse(prob_ridge_ABC>as.numeric(metrics_log_test_ri
dge_ABC[1]), "Yes", "No") 
conf_matrix_log_Test_ridge_ABC<-table(pred_class_log_OnTest_ridge_ABC, data_test_perf
$default) 
 
Accuracy_log_Test_ridge_ABC=as.numeric(metrics_log_test_ridge_ABC[4]) #0.6478177 
Specificity_log_Test_ridge_ABC=as.numeric(metrics_log_test_ridge_ABC[2]) #0.6440395 
Sensitivity_log_Test_ridge_ABC=as.numeric(metrics_log_test_ridge_ABC[3]) #0.8046218 
Threshold_log_Test_ridge_ABC=as.numeric(metrics_log_test_ridge_ABC[1]) #0.02314406 
 
## Ridge EPC ## 
 
X_train_perf_EPC<-model.matrix(object= default~loan_length+no_of_instalments+loan_amo
unt+ltv+ 
                                 epc+age_borrower_orig+construction_year+score_value+ 
                                 cadastral_category+region_macroarea+HPI_chng+HPI+inf
lation+ 
                                 mtgrt+unemployment+GDP,data_train_perf)[,-1] 
X_test_perf_EPC<-model.matrix(object= default~loan_length+no_of_instalments+loan_amou
nt+ltv+ 
                                epc+age_borrower_orig+construction_year+score_value+ 
                                cadastral_category+region_macroarea+HPI_chng+HPI+infl
ation+ 
                                mtgrt+unemployment+GDP,data_test_perf)[,-1] 
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y_train_perf_EPC<-ifelse(data_train_perf$default=="Yes",1,0) 
 
 
set.seed(42) 
cv.ridge_EPC<-cv.glmnet(X_train_perf_EPC, y_train_perf_EPC, alpha=0, family="binomial
") 
ridge_model_EPC<-glmnet(X_train_perf_EPC, y_train_perf_EPC, alpha=0, family="binomial
", lambda=cv.ridge_EPC$lambda.min) 
 
prob_ridge_EPC<-ridge_model_EPC %>% predict(newx= X_test_perf_EPC, type="response") 
my_roc_test_ridge_EPC <- roc(data_test_perf$default, prob_ridge_EPC) 
metrics_log_test_ridge_EPC<-coords(my_roc_test_ridge_EPC, "best", ret ="all") 
 
plot(my_roc_test_ridge_EPC, print.auc=TRUE) #AUC=0.791 
 
pred_class_log_OnTest_ridge_EPC<-ifelse(prob_ridge_EPC>as.numeric(metrics_log_test_ri
dge_EPC[1]), "Yes", "No") 
conf_matrix_log_Test_ridge_EPC<-table(pred_class_log_OnTest_ridge_EPC, data_test_perf
$default) 
 
Accuracy_log_Test_ridge_EPC=as.numeric(metrics_log_test_ridge_EPC[4]) #0.6406999 
Specificity_log_Test_ridge_EPC=as.numeric(metrics_log_test_ridge_EPC[2]) #0.6365477 
Sensitivity_log_Test_ridge_EPC=as.numeric(metrics_log_test_ridge_EPC[3]) #0.8130252 
Threshold_log_Test_ridge_EPC=as.numeric(metrics_log_test_ridge_EPC[1]) #0.0223043 
 
# Models order by Sensitivity: EE_A, NO, EE_ABC, EPC # 
# Models order by Accuracy: EPC, EE_ABC, NO, EE_A # 
# Models order by AUC: NO, EE_A - EE_ABC, EPC # 
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