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Introduction 

 The term “extreme” refers to the complete class of phenomena whose occurrence 

is rare, and which can lead, precisely because of their unusual character, to disastrous 

environmental, economic, and human impacts.  

 The probabilistic theory dealing with these events is called Extreme Value Theory 

and aims to develop mathematical methods and models able to describe and to predict the 

occurrence of such rare phenomena.  

 Initially, the analysis of extremes was introduced in hydrology and meteorology 

in order to study flood levels and natural disasters. However, in recent years the domain 

of application of this statistical methodology has managed to include other disciplines 

and applied sciences such as finance, traffic prediction, insurance, and structural 

engineering.  

 The first studies on extreme values date back to the first part of the twentieth 

century, when Tippet and Fisher (1928) stated an asymptotic argument which represents 

the cornerstone of extreme value theory: the Extremal Types Theorem. In the subsequent 

years, the asymptotic theory was extended and codified by Gnedenko (1948) and Gumbel 

(1958), while the characterization of extremes as observation exceeding and high 

threshold is due to Pickands (1970). 

 In this thesis, the role of Extreme Value Theory (EVT) in risk management is 

addressed as a method for modelling and measuring extreme risks applied to a portfolio. 

The synchronization of the markets is of fundamental importance in this application to 

know how it affects the composition of the best portfolio, in particular the correlation 

between returns of the stocks in the portfolio, and the calculation of risk measures.  

 The present thesis is articulated in four chapters. Firstly, Chapter 1 contains an 

overview of the Markowitz model used to compose different portfolio and select the best 

one according to the Sharpe ratio. Furthermore, in the other paragraph of the chapter are 

presented the importance of diversification in a portfolio and how it affects the risk, and 

the role of the correlation in this model. Lastly, the criticisms of the Markowitz model are 

described.  
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 The problem of diversification of the market and the returns’ stocks is defined in 

Chapter 2. Here, State-Space models are described, which is the model that is used to 

synchronize data, and which are the main characteristics of these models. 

The two main types of models are then described in Chapter 3 about the EVT. The 

first class of model is the Block Maxima. In particular, it is studied how to derive it from 

the Fisher-Tippet Theorem and how to estimate the distribution of the model through the 

maximum likelihood function. Finally, it is possible to calculate specific risk measures 

using the estimates of the Block Maxima coefficients. Subsequently, a similar process is 

used to describe the second class of model: the Peak Over Threshold (POT) model. Also, 

for this model, the main characteristics are studied and, through the likelihood function, 

the coefficient for the computation of the risk measures are estimated. In the last 

paragraph are defined the two main risk measure that can be calculated using the estimates 

of the POT model: the Value-at-Risk (VaR) and the Expected Shortfall (ES). 

Finally, in Chapter 4, all previously mentioned techniques and models are applied 

to a data consisting of stock prices, over the last seven years (2015-2021) from all over 

the World, with the aim of analyzing the behaviour of the VaR and ES as the initial 

assumptions of -the models change. In particular, three Python codes are created in order 

to have different scenarios to be analyzed. It is possible to examine the codes in Annex A.  
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Chapter I Portfolio Optimization 

 Portfolio optimization is the process of selecting the best portfolio of given assets, 

or assets distribution, out of the set of all portfolios being considered. But which is the 

best portfolio available? This question is probably as old as the stock-market itself.  

 Harry Markowitz pioneered this stand of literature, and in his contribution 

“Portfolio Selection” published in 1952 in the Journal of Finance1 provided the 

foundation for Modern Portfolio Theory (MPT) as a mathematical problem.  

 1.1. Markowitz Model 

 Until Markowitz’s study, a portfolio was considered diversified if it consisted of 

a series of individual assets, each valued separately from the others. The overall portfolio 

risk was derived from the sum of the individual risks of each security. 

 In the model proposed by Markowitz, it is stated that it is not enough to consider 

the characteristics of the asset individually, but it is necessary to account for the 

movements that occur between them, and which are represented by the covariance 

between the different assets. Markowitz indeed stated that if the investor also studies the 

correlation between the assets in the construction of a portfolio, then he will be able to 

build better portfolios with higher expected returns at the same level of risk or obtain a 

lower risk’s portfolio for the same expected return, compared to the portfolios constructed 

by ignoring the effects of the correlation between assets. In the Markowitz model, the risk 

is measured by the variance. Therefore, the variance of the portfolio is derived from the 

variance of the individual assets included in the portfolio and by the correlation between 

the assets. For the implementation of the model, the required inputs are the expected 

returns and the variance of each asset, and the covariance between the different securities.  

 Markowitz proved that an investor, under precise assumptions, can build optimal 

portfolios which, through an efficient combination of mean, variance, and covariance, 

maximize the expected returns given a certain level of risk, or minimize the risk given a 

certain expected return. This result is achieved through the diversification of the assets in 

the portfolio. Markowitz also defined the concept of diversification, in which it is stressed 

the need to combine highly correlated assets, but it is convenient to consider assets 

belonging to not necessarily correlated sectors. It is for this reason that the Markowitz 

 
1 Markowitz, H. (1952), Portfolio Selection, The Journal of Finance, Vol. 7, No. 1, pp. 77-91. 
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model, based on the Mean-Variance criteria for portfolio selection, is still considered the 

starting point of the Modern Portfolio Theory. 

 The portfolio selection process can be divided into two macro-phases: the first 

one is based on the analysis of the historical returns of the assets whose data are used to 

predict their future performance; the second macro-phase considers the analysis outlined 

above to select the best portfolio combination.  

 Before proceeding with the description of the Markowitz model, it is necessary to 

describe the assumptions needed to define this model: 

• Absence of taxes and transaction costs. 

• Analysis is based on a single-period model of investment. 

• Perfect market competitiveness. 

• An investor is risk-averse. 

 Consider a portfolio with n different assets. Let 𝜇𝑖 and 𝜎𝑖
2 be the corresponding 

mean and variance of a single asset i and let 𝜎𝑖,𝑗 be the covariance between 𝑅𝑖 and 𝑅𝑗. 

Suppose that the relative amount of the value of the portfolio invested in asset i is 𝑥𝑖. If 

R is the return of the whole portfolio, then: 

 
𝜇 = 𝐸[𝑅] =∑𝜇𝑖𝑥𝑖

𝑛

𝑖=1

 
 

(1.1) 

 
𝜎2 = 𝑉𝑎𝑟[𝑅] =∑∑𝜎𝑖,𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 
 

(1.2) 

 
∑𝑥𝑖

𝑛

𝑖=1

= 1 
 

(1.3) 

 𝑥𝑖 ≥ 0 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛 (1.4) 

 Equation (1.1) is the portfolio return defined as the proportion-weighted sum of 

the assets’ returns that compose the portfolio; Equation (1.2) is the portfolio volatility that 

is a function of the covariances between the different assets. Condition (1.3) defines that 

the sum of weights must be equal to 1; Condition (1.4) allows to take only long positions, 

alternatively, it defines the impossibility to short-sell any asset2. For different choices of 

 
2 When short sales are prohibited, single assets may lie on the frontier. When short sales are 

allowed, portfolios can be constructed that offer the same expected return and lower variance of 
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𝑥1, … , 𝑥𝑛 the investor will get different combination of 𝜇 and 𝜎2, meaning that the 

characteristics of the portfolio will change. The set of all possible (𝜇, 𝜎2) combinations 

is called the attainable set. Those (𝜇, 𝜎2) with maximum 𝜇 for a given 𝜎2 or less and 

minimum 𝜎2 for a given 𝜇 or more are called the efficient set, or efficient frontier; while 

the remaining segment of the attainable set is the inefficient part. Since an investor wants 

a high profit and a small risk, he/she wants to maximize 𝜇 and minimize 𝜎2 and therefore 

he/she should choose a portfolio that lies on the efficient frontier.  

Figure 1: The attainable set in the (𝜇, 𝜎2) plane. 

 

Source: Markowitz H. (1952), Portfolio Selection, The Journal of Finance, Vol. 7, No. 1., 

pp. 77-91. 

 In Figure 1 it can be noticed that each portfolio composition that lies on the 

efficient frontier is more attractive than any other portfolio in the inefficient part, this is 

because for a given 𝜎2 any efficient portfolios have a higher 𝜇, or for a given 𝜇 they have 

a lower 𝜎2. This is the reason why an investor should choose a portfolio that lies on the 

efficient frontier. 

 

 

  

 

 

 
the single assets that lie on the frontier. These portfolios typically will have short positions in low-

expected-return assets.  
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Figure 2: Efficient frontier in the (𝜇, 𝜎2) plane. 

 

Source: Own production. 

 Figure 2 is focused on the efficient frontier, and the most important portfolio 

composition is the Global Minimum-Variance Portfolio that defines the separation 

between the efficient and the inefficient frontier. As it can be seen, for any portfolio that 

lies on the dashed part of the frontier (inefficient frontier) there exist a portfolio with the 

same volatility and a larger expected return positioned directly above it. The Global 

Minimum-Variance Portfolio is the one with the lowest variance among all the efficient 

portfolios.  

 Once the efficient frontier has been determined, the second part of the 

optimization is to select which is the best portfolio. In order to find the optimal portfolio, 

a possibility is to use the Capital Allocation Line3 (CAL) with the highest Sharpe ratio 

(the steepest slope) that allows to find the tangency condition between the efficient 

frontier and the CAL itself. The function of the Capital Allocation Line4 is given by: 

 
𝐶𝐴𝐿: 𝐸(𝑟𝐶) = 𝑟𝑓 + 𝜎𝐶

𝐸(𝑟𝑃) − 𝑟𝑓

𝜎𝑝
 

 

(1.5) 

 The slope of the CAL defines the function of the Sharpe ratio: 

 
𝑆 =

𝐸(𝑟𝑃) − 𝑟𝑓

𝜎𝑝
 

 

(1.6) 

 
3 The capital allocation line measures the risk of risky and risk-free assets. Its slope is known as 

the “reward-to-volatility ratio”. In this thesis, for simplicity, the risk-free rate is not considered.  
4 Bodie, Z., Kane, A., Marcus, A. J. (2018), Investments, Eleventh Edition, McGraw-Hill 

Education, New York. 
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 Where 𝐸(𝑟𝑃) is the expected return of the portfolio, 𝜎𝑝 is its standard deviation 

(or the volatility) and 𝑟𝑓 is the risk-free rate. The Sharpe ratio can be used to evaluate a 

portfolio’s performance where actual returns are used in the formula (1.6), it represents 

the remuneration that the portfolio gives for each unit of risk, in other words it is the price 

of the risk.  

 Finally, from the tangency between the efficient frontier and the Capital 

Allocation Line with the highest Sharpe ratio, it is possible to find the optimal portfolio 

P, or Market Portfolio, as it can be seen in Figure 3. 

Figure 3: Tangency between Capital Allocation Line (CAL) and Efficient Frontier 

 

Source: Own production. 

 To complete the model, assuming that each investor can assign a utility to 

competing portfolios based on the expected return and risk of those portfolios, it can be 

stated that higher the utility values are assigned to portfolios with more attractive risk-

return profiles. Therefore, the optimal portfolio is different for each investor due to the 

individual level of risk-aversion. An investor tries to maximize his/her utility function 

and to achieve this it can be used a quadratic function5: 

 
𝑈 = 𝐸(𝑟) −

1

2
𝐴𝜎2 

 

(1.7) 

 
5 Bodie, Z., Kane, A., Marcus, A. J. (2018), Investments, Eleventh Edition, McGraw-Hill 

Education, New York 
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 Where A identifies the risk-aversion coefficient of the individual investor6 and the 

value 
1

2
 represents a scaling factor; the utility (U) increases with high expected returns, 

but it decreases with a high volatility.  

 For each portfolio can be computed the utility value given the risk-aversion 

coefficient of the investor, and equally preferred portfolio lie in the Mean-Variance plane 

on an indifference curve which connects all the portfolios with the same level of utility. 

Figure 4: Risk-Averse indifference curves 

 

Source: Phillips P. J. (2009)7 

 As it can be seen in Figure 4, the higher is the indifference curve, the greater is 

the utility provided by the portfolios that lie on this curve:  

 𝑢6 > 𝑢5 > 𝑢4 > 𝑢3 > 𝑢2 > 𝑢1 (1.8) 

   

 In the end, to find the best portfolio for a single investor, knowing the risk-

aversion coefficient, it is enough to select the portfolio where the indifference curve is 

tangent to the efficient frontier, as shown in Figure 5. 

 

 

 

 
6 In this model, it is assumed that the investor is risk-averse, therefore: A > 0. 
7 Phillips, P.J. (2009), Applying Modern Portfolio Theory to the Analysis of Terrorism, Defence 

& Peace Economics, 20, pp. 193-213. 
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Figure 5: Optimal portfolio choice for a single investor 

 

Source: Phillips P. J. (2009)8 

 1.2. The effects of diversification 

 As said in the first part of the chapter, the diversification is one of the most 

important characteristics of this model due to the fact that all the securities are subject to 

various sources of uncertainty. First, there is the risk caused by conditions in the general 

economy, such as business cycle, inflation, interest rates, and exchange rates. It is 

exceedingly difficult to precisely predict these factors, that jointly affect the rate of return 

of each stock in the market. In addition to these macroeconomic factors, there are the 

firm-specific influences. These asset-specific risks (idiosyncratic) can be compensated 

through diversification in the portfolio. Diversification consists in including additional 

securities in the portfolio. Obviously, when common sources of risk affect all securities, 

even extensive diversification cannot eliminate risk at all. However, it can be proved that 

the portfolio volatility falls as the number of securities increases, even though it cannot 

be reduced to zero. The risk that remains even after extensive diversification is called 

market risk, which is attributable to market-wide risk sources. This risk is also called 

systemic risk, or nondiversifiable risk. Conversely, the risk that can be eliminated by 

diversification is called unique risk, firm-specific risk, non-systematic risk, or 

diversifiable risk. 

 

 

 
8 Phillips, P.J. (2009), Applying Modern Portfolio Theory to the Analysis of Terrorism, Defence 

& Peace Economics, 20, pp. 193-213. 
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Figure 6: Portfolio diversification 

 

Source: Statman M. (1987), How Many Stocks Make a Diversified Portfolio?. 

 It is of interest to figure out how many assets are necessary to build a portfolio 

affected just by the market risk. Such analysis has been empirically implemented through 

data on NYSE stocks (Meir Statman9). Figure 6 shows that the average standard deviation 

of an equally weighted portfolio constructed by selecting stocks at random as a function 

of the number of stocks in the portfolio. On average, portfolio risk decreases as 

diversification takes place, but the ability of diversification to reduce risk is limited by 

systematic risk.  

 Given an introduction of the concept of diversification and the limits to the 

benefits of diversification, it is possible to show how this effect affects analytically the 

variance of a portfolio10. Recalling the general formula for the variance of a portfolio 

composed of n assets as 

 
𝜎2 =∑∑𝜎𝑖,𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 
 

(1.9) 

 Consider now the diversification strategy in which an equally weighted portfolio 

is constructed, meaning that 𝑥𝑖 =
1

𝑛
 for each security. In this case Equation 1.9 may be 

rewritten as11 

 
9 Statman M. (1987), How Many Stocks Make a Diversified Portfolio?, Journal of Financial and 

Quantitative Analysis 22. 
10 Bodie, Z., Kane, A., Marcus, A. J. (2018), Investments, Eleventh Edition, McGraw-Hill 

Education, New York. 
11 Noting that when i=j, 𝐶𝑜𝑣(𝑟𝑖, 𝑟𝑗) = 𝜎𝑖,𝑗 = 𝜎𝑖

2, i.e., the covariance equals the variance.  
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𝜎2 =

1

𝑛
∑

1

𝑛
𝜎𝑖
2

𝑛

𝑖=1

+∑∑
1

𝑛2
𝜎𝑖,𝑗

𝑛

𝑖=1

𝑛

𝑗=1
𝑗≠𝑖

 
 

(1.10) 

 In Equation 1.10 there are n variance terms and n(n – 1) covariance terms. 

Defining the average variance and average covariance of the assets as 

 
𝜎2 =

1

𝑛
∑𝜎𝑖

2

𝑛

𝑖=1

 
 

(1.11) 

 
𝐶𝑜𝑣̅̅ ̅̅ ̅ =

1

𝑛(𝑛 − 1)
∑∑𝜎𝑖,𝑗

𝑛

𝑖=1

𝑛

𝑗=1
𝑗≠𝑖

 
 

(1.12) 

The portfolio variance can be expressed as 

 
𝜎2 =

1

𝑛
𝜎2 +

𝑛 − 1

𝑛
𝐶𝑜𝑣̅̅ ̅̅ ̅ 

 

(1.13) 

 Now it is possible to examine analytically the effect of the diversification. 

Equation 1.13 shows easily that when the average covariance (𝐶𝑜𝑣̅̅ ̅̅ ̅) among asset returns 

is zero, the portfolio variance only depends on the risk firm-specific, meaning that it can 

be arbitrarily reduced and therefore driven to zero. In fact, the second term of the equation 

will be zero in this case, while the first term approaches to zero as n increases. Therefore, 

when the security returns are uncorrelated, the power of diversification to reduce portfolio 

risk is unlimited.  

 However, zero correlation among assets is hard to be obtained and therefore the 

most important case study for diversification is when risk factors induce positive 

correlation among asset’s returns. In this case, as the number of assets in the portfolio 

increases, portfolio variance remains positive. Firm-specific risk approaches to zero as 

diversification becomes higher (n gets larger), it is the first term in Equation 1.13, but the 

second term tends to the average covariance. This means that the systematic risk of a 

diversified portfolio depends on the average covariance of the returns.  

 Equation 1.13 can be expressed in terms of correlation (𝜌) 

 𝜎𝑖,𝑗 = 𝜌𝑖,𝑗𝜎𝑖𝜎𝑗  (1.14) 
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 Plugging Equation 1.14 in Equation 1.13, the resulting formula is 

 
𝜎2 =

1

𝑛
𝜎2 +

𝑛 − 1

𝑛
𝜌𝑖,𝑗𝜎𝑖𝜎𝑗 

(1.15) 

 In Equation 1.15 the effect of correlation is explicit. As before, when 𝜌 = 0, the 

portfolio variance approaches zero as the number of assets increases.  

1.3. Role of correlation 

  Correlation, like diversification, plays a crucial role in this model. It has been 

shown that there is a relation between diversification and correlation useful to reduce the 

portfolio variance when 𝜌 = 0, but not often the correlation between assets equals zero. 

In fact, the coefficient of correlation ranges between -1 and +1 (−1 ≤ 𝜌 ≤ +1), and there 

are two extreme cases in which this value affects the shape of the efficient frontier, and 

they are when 𝜌 = ±1.  

 To show the effect on the efficient frontier, it is necessary that the portfolio is 

composed by only two assets. In addition, it is necessary to hypothesize that: 

• 𝑅1 𝑎𝑛𝑑 𝑅2 are respectively the expected returns of asset 1 and asset 2. 

• 𝑟1 𝑎𝑛𝑑 𝜎1
2 are the mean and the variance of 𝑅1. 

• 𝑟2 𝑎𝑛𝑑 𝜎2
2 are the mean and the variance of 𝑅2. 

• 𝜎1,2 = 𝜌1,2𝜎1𝜎2 is the covariance between 𝑅1 and 𝑅2. 

• 𝑟1 < 𝑟2 and 𝜎1
2 < 𝜎1

2 (or 𝑟1 > 𝑟2 and 𝜎1
2 > 𝜎1

2). 

 The last hypothesis is necessary to not have an asset that dominates the other. In 

fact, if 𝑟1 > 𝑟2 and 𝜎1
2 < 𝜎1

2 in this case asset 1 dominates the other based on the mean-

variance criteria.  

 1.3.1. Coefficient of correlation between 𝑅1 and 𝑅2 equals +1 (𝜌1,2 = +1) 

 When the coefficient of correlation is equal to +1, it indicates a perfect positive 

correlation between the two assets: as Asset 1 increases, asset 2 increases. As Asset 1 

decreases, Asset 2 decreases.  
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Figure 7: Efficient frontier with perfect positive correlation 

 

Source: Own production. 

 In Figure 7, it can be seen as the efficient frontier becomes a line that connects the 

two different assets. Is it possible, in case of perfect correlation, to reduce the risk? All 

portfolios represented in the efficient frontier have no less risk than the less risky asset; 

which means that diversification does not lead to a lower-risk portfolio.  

 1.3.2. Coefficient of correlation between 𝑅1 and 𝑅2 equals -1 (𝜌1,2 = −1) 

 This second extreme case is the opposite situation of the perfect positive 

correlation, in fact, this is perfect negative correlation. As Asset 1 increases, Asset 2 

decreases and vice versa.  

Figure 8: Efficient frontier with perfect negative correlation 

 

Source: Own production. 

 As can be observe in Figure 8, it is possible to distinguish the efficient frontier 

(continuous line) and the inefficient frontier (dashed line), and as said in the previous 

paragraphs all the efficient portfolios lie on the efficient part. The intercept is a theoretical 

portfolio composition, it does not exist, and it is risk-free.  
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 Differently from the previous one, in this case, it is possible to obtain a reduction 

of the risks, thanking to diversification. In fact, any portfolio composition that lies on the 

efficient frontier and has volatility between 0 and 𝜎2, has lower risk than asset 2 and a 

higher return.  

 

 1.4. Criticisms of the Modern Portfolio Theory 

 Despite its theoretical importance, critics of Modern Portfolio Theory argue 

whether it is an ideal investment tool since this model of financial markets does not match 

the real world in numerous ways.  

 Each individual has his/her own utility function that should be maximized through 

a quadratic utility function since, as Markowitz suggests, riskiness should only be 

described with the expected return and variance, i.e., the first and the second moments of 

the Gaussian distribution. Therefore, the implicit assumption is that the Skewness, the 

Kurtosis and all the subsequent moments have practical no impact on decision making. 

This is not credible since empirical evidence, such as the Jarque-Bera test to check 

whether a series is normally distributed, discards this hypothesis really often. In fact, in 

presence of Skewness and Kurtosis the non-normality is likely. The test is based on these 

two moments, and the test statistics reads as follows: 

 
𝐽𝐵 =

𝑛

6
(𝑆2 +

(𝐾 − 3)2

4
) 

 

(1.16) 

 where n is the number of observations, or degrees of freedom, S is the Skewness 

and K is the Kurtosis.  

 When the test results different from zero means that there is non-normality.  

 It is worth noting that non-normality implies that the quadratic utility function is 

misspecified, due to the significant presence of Skewness and Kurtosis, which is omitted. 

Therefore, the decisions cannot be obtained by only using the first two moments of the 

return’s distribution.  

 The second issue is mostly empirical. The estimate of the risk is never equal to its 

corresponding true value. In fact, even under unbiasedness, an estimator is affected by 

sampling errors (or estimation errors), that might be large with small samples. So, when 

applying the statistical formulas, the variance-covariance matrix might not be the correct 
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or precise one since it is an estimated matrix in which it is also included noise. In 

particular, empirical evidence suggested un this case that the mean-variance model tends 

to overweight asset that are characterized by: 

• High expected returns. 

• Negative correlation. 

• Small value of variance. 

 When the choice is close to the optimal portfolio (which is on the efficient 

frontier), there are many statistical equivalent portfolios with similar expected return and 

variance (or standard deviation), but with vastly different weights. In case of revision of 

the portfolio, even a minimal change in parameters can lead to a heavy revision of the 

portfolio and, consequently, large transaction costs.  

 The alternative to the optimal portfolio is to take the equally-weighted portfolio 

and the Global Minimum-Variance (GMV) portfolio. Both portfolios have attractive 

characteristics; in fact, the GMV portfolio is efficient and the least risky. On the other 

side, the equally-weighted portfolio, generally, turns to be a good solution because of its 

expected return, which is higher than the GMV portfolio’s expected return, moreover it 

is easy to construct. Furthermore, it has the advantage of being characterized by low 

transaction costs in the event of a revision of the portfolio and may not outperform the 

worst performing asset. 
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Chapter II Synchronization of the Returns 

 Given the importance of correlations among assets in the Markowitz model, it is 

necessary to analyze how correlation changes when the returns of the individual securities 

in the portfolio are not synchronized. Since the assets in the portfolio, as it will be shown 

in this thesis, but very often it is also found in reality, come from different stock 

exchanges, the daily prices, and consequently the returns, are asynchronous and this is 

due to the fact that when, for example, the New York Stock Exchange is open, the Tokyo 

Stock Exchange is closed. This leads not only to a distortion of the portfolio’s value, but 

also to an incorrect calculation of risk measures and hedging strategies. And it is for this 

reason that in this thesis the problem of the synchronization of returns is discussed, in 

order to obtain an “adjusted” correlation matrix, not sensitive to asynchronous 

observations, between the different stocks that should be used to get correct estimates.  

 For this work, the chosen assets come from five Stock Exchanges, precisely from 

the exchanges of Sydney, Hong Kong, London, Milan, and New York. As can be seen in 

Figure 9, each exchange has its own opening and closing time, for example, when it is 

10:00 AM in Sydney and the stock exchange opens, it is 1:00 AM in Italy (Milan); at 4:00 

PM in Sydney the exchange closes, that corresponds to 7:00 AM in Italy, where markets 

are not open yet. Consider, for example, a day when the Italian Market falls 1% after 

Sydney closes. Valuing Sydney stocks at the closing price is highly inaccurate. It will 

result in the Italian share of the portfolio declining today, while the Sydney share might 

receive the impact of bad news in Milan tomorrow. The same reasoning can be applied 

with respect to other countries.  

Figure 9: Asynchronous dynamics of closing prices in Stock Exchanges  

 

Source: Own production. 
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 Aiming at obtaining reliable estimates, the general approach is to recognize that 

even when markets are closed, the asset value may change and that new values can be 

estimated for use before the market reopens. Value at risk calculations, asset allocations 

and hedging decisions should all be considered based on the estimated value of portfolio. 

Considering the information available to the market, the estimated prices should have the 

property that they are unbiased; the average returns are unchanged, only the timing is 

different.  

 Following Burns, Engle and Mezrich (1998), the synchronized log-price for asset 

j is defined as 

 log 𝑆𝑡,𝑗
𝑠 = 𝐸 [log 𝑆𝑡𝑗,𝑗 |𝐹𝑡] (2.1) 

 where 𝑡𝑗 is the closing price for market j and where 𝐹𝑡 includes all the prices 𝑆𝑡𝑗,𝑗 

observed at or before instant t12. Clearly, if S is observed at t, then its expectation is just 

this value. Equation 2.1 explains that if the market closed before t, the past prices and all 

the market that have subsequently closed, are potentially useful in predicting S at time t. 

 It is assumed that synchronized prices are unbiased predictors for the next 

recorded price 

 log 𝑆𝑡,𝑗
𝑠 = 𝐸[log 𝑆𝑡,𝑗 |𝐹𝑡] = 𝐸 [log 𝑆𝑡𝑗+1,𝑗 |𝐹𝑡] (2.2) 

 Generally, returns for day t for n assets can be calculated as 

 

𝑟𝑡
0 =

(

  
 
log (

𝑆𝑡1,1

𝑆𝑡1−1,1
)

⋮

log (
𝑆𝑡𝑛,𝑛

𝑆𝑡𝑛−1,𝑛
)
)

  
 

 

 

 

 

(2.3) 

 Synchronized returns are defined as 

 

𝑟𝑡
𝑠 = (

log 𝑆𝑡,1
𝑠 − log 𝑆𝑡−1,1

𝑠

⋮
log 𝑆𝑡,𝑛

𝑠 − log 𝑆𝑡−1,𝑛
𝑠

) 
 

(2.4) 

 
12 𝐹𝑡 is defined as 𝐹𝑡 = {𝑆𝑡𝑖,𝑖|𝑡𝑖 ≤ 𝑡, ∀𝑖} 
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 After several mathematical passages and simplification that can be found in 

Burns, Engle and Mezrich (1998)13, synchronized returns can be defined in matrix 

notation as 

 𝑟𝑡
𝑠 = 𝑟𝑡

0 + 𝐸𝑡[𝑟𝑡+1
0 ] − 𝐸𝑡−1[𝑟𝑡

0] (2.5) 

 Equation 2.5 proves that synchronized returns are equivalent to asynchronous 

returns plus a correction term. To make the synchronization possible, there is the need to 

define a statistical model able to estimate 𝐸𝑡[𝑟𝑡+1
0 ]. As Burns, Engle and Mezrich (1998) 

in their Discussion paper Correlations and Volatilities of Asynchronous Data suggested, 

it can be done using a Moving Average Model, to account for the lag 1 autocorrelation 

implied by the asynchronicity effect. In this work, the MA model is represented by a 

State-Space Model.  

 

 2.1. State-Space Model 

 The State Space Model (SSM) refers to a probabilistic model class which 

describes the probabilistic dependence between the latent state variable and the observed 

measurement. The SSM offers a general framework for the analysis of deterministic and 

stochastic systems which are observed through a sequence of observations, consistent 

with a stochastic process trajectory. In fact, SSM is used to gain a computational 

advantage in estimating the Maximum Likelihood function by defining a stochastic model 

in a more complex way that will result more efficient for the computational issues.  

 A State Space Model for a multivariate time series 𝑦𝑡 consists of a measurement 

equation relating the observed data to a non-observable state vector 𝛼𝑡, and a transition 

equation that defines the evolution of the state vector over time.  

 The general measurement equation of a State Space Model can be written as 

 𝑦𝑡 = 𝑍𝑡𝛼𝑡 + 𝑑𝑡 + 𝜖𝑡 𝑤𝑖𝑡ℎ 𝜖𝑡~𝑁(0, 𝜎
2) (2.6) 

 The transition equation for the state vector 𝛼𝑡 is 

 𝛼𝑡 = 𝑇𝑡𝛼𝑡−1 + 𝑐𝑡 + 𝑅𝑡𝜂𝑡 𝑤𝑖𝑡ℎ 𝜂𝑡~𝑁(0, 𝜎
2) (2.7) 

 
13 Burns, P., Engle, R., Mezrich, J., (1998), Correlations and Volatilities of Asynchronous Data, 

University of California, Discussion Paper 97-30R. 
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 It is assumed that the measurement equation errors 𝜖𝑡 are independent of the 

transition equation errors. The state space representation is completed by specifying the 

behaviour of the initial state 𝛼0~𝑁(𝛼0,𝑃0). If 𝑦𝑡 is covariance stationary, then the state 

space system will be time invariant.  

 Consider the standard 1st order Moving Average, MA(1) 

 𝑦𝑡 = 𝜇 + 𝜂𝑡 + 𝜃𝜂𝑡−1, 𝜂𝑡~𝑁(0, 𝜎
2)  (2.8) 

 Define 𝛼𝑡 = (𝑦𝑡, 𝜂𝑡), so that the transition equation is 

 𝛼𝑡 = (
𝑦𝑡
𝜂𝑡
) = [

0 𝜃
0 0

] (
𝑦𝑡−1
𝜂𝑡−1

) + (
1
1
) 𝜂𝑡  (2.9) 

 In this way, it is possible to define the measurement equation as 

 𝑦𝑡 = (1, 0)𝛼𝑡 + 𝜇  (2.10) 

 Finally, this is the Model in state space form that has been used to obtain the 

synchronized returns and the adjusted correlation matrix for the calculation of the 

measures of risk. An important tool, which can be used to determine which are the optimal 

estimates of the state vector 𝛼𝑡 and to evaluate the Likelihood function, is the Kalman 

filter. This filter is a set of recursive formulas. 
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Chapter III Extreme Value Theory 

 After completing the analysis and the synchronization of the returns, it is possible 

to apply the Extreme Value Theory (EVT) to the portfolio of stocks. This theory is useful 

for measuring the magnitudes and the probabilities of significant potential losses due to 

extreme events such as currency crisis, trading scandals or stock market crashes. The 

methods of Extreme Value Theory concentrate on modelling the tail behaviour of a loss 

distribution using only extreme values rather than all of the data.  

 In this chapter are discussed the two main types of models used for the extreme 

value theory. The first group of models refer to the Block Maxima models, while a more 

recent approach is labelled as Peaks-Over-Threshold (POT). In addition to the definition 

of these models, the way in which they can be estimated through the maximum likelihood 

function will also be analyzed. Finally, thanks to the estimation of these models, it will 

be possible to calculate the main risk measures such as Value-at-Risk (VaR) and Expected 

Shortfall (ES).  

3.1. Modelling Block Maxima 

 Before describing the family of Block Maxima models, it is necessary to state the 

main result underlying this theory, i.e., the Fisher-Tippet Theorem. This theorem suggests 

a suitable transformation of the maxima that converges to a particular distribution called 

Generalized Extreme Value (GEV) distribution, useful for the description of the Block 

Maxima models.  

 3.1.1. The Fisher-Tippet Theorem and the GEV Distribution   

 Considering a sequence of independent and identically distributed (i.i.d.) random 

variables 𝑋1, 𝑋2, … , 𝑋𝑛 representing risks or losses with an unknown cumulative 

distribution function (CDF) of the type 

 𝐹(𝑥) = Pr{𝑋𝑖 ≤ 𝑥} (3.1) 

In general, for financial application the random variables 𝑋𝑖 describe negative 

returns or losses on a financial asset or portfolio. Note that in this thesis losses are treated 

as a positive numbers and extreme events occur when losses take values in the right tail 

of the loss distribution F. The worst-case loss in a sample of n losses can be defined as  

 𝑀𝑛 = max (𝑋1, . . . , 𝑋𝑛) (3.2) 

  



28 

 

 

 From the i.i.d. assumption, the CDF of 𝑀𝑛 is given by 

 
Pr{𝑀𝑛 ≤ 𝑥} = Pr{𝑋1 ≤ 𝑥, . . . , 𝑋𝑛 ≤ 𝑥 } =∏𝐹(𝑥)

𝑛

𝑖=1

= 𝐹𝑛(𝑥) 
 

(3.3) 

 Since 𝐹𝑛 is unknown and the empirical distribution function is an extremely poor 

estimator of 𝐹𝑛(𝑥), the Fisher-Tippet Theorem14 provides a solution to make inference 

on 𝑀𝑛. In addition, since 𝐹𝑛(𝑥) → 0 or 1 as 𝑛 → ∞ and 𝑥 is fixed, since it describes a 

probability raised to power n, it is convenient to study the asymptotic approximation of 

𝐹𝑛 is based on the following standardization 

 
𝑍𝑛 =

𝑀𝑛 − 𝜇𝑛
𝜎𝑛

 
 

(3.4) 

 where 𝜇𝑛 and 𝜎𝑛 > 0 are sequences of real numbers, and they can be interpreted, 

respectively, as a location measure and a scale measure, such that 

 lim
𝑛→∞

Pr (𝑍𝑛 ≤ 𝑥) = lim
𝑛→∞

𝐹𝑛(𝜎𝑛𝑥 + 𝜇𝑛) = 𝐻(𝑥) (3.5) 

 where 𝐻(𝑥) is a non-degenerate distribution function. If the standardized value 

expressed in Equation 3.4 converges to some non-degenerate distribution function, it 

must be a Generalized Extreme Value (GEV) distribution of the form  

 
𝐻𝜉(𝑧) = {

exp{−(1 + 𝜉𝑧)−1 𝜉⁄ }          𝜉 ≠ 0, 1 + 𝜉𝑧 > 0

exp{−exp(−𝑧)}              𝜉 = 0,−∞ ≤ 𝑧 ≤ ∞
  

(3.6) 

 If 𝑍𝑛 converges to the limit in equation 3.6, then the CDF F of the underlying data 

is in the domain of attraction of 𝐻𝜉 . The parameter 𝜉 is a shape parameter and determines 

the tail behavior of 𝐻𝜉 . When 𝜉 = 0 then 𝐻𝜉  is of the Gumbel type, distributions in the 

domain of attraction of the Gumbel type are thin tailed distributions such as the normal, 

log-normal, exponential, and gamma, and for all these distributions it is possible to 

estimate all the moments. When 𝜉 > 0, 𝐻𝜉  is of the Fréchet type, that are thick tailed such 

as the Pareto, and Student-t distributions. When 𝜉 < 0, 𝐻𝜉  is of the Weibull type and the 

tail is finite. Distribution in the domain of attraction of the Weibull type are uniform and 

 
14 Fisher, R.A., Tippet, L.H.C., (1928), Limiting Forms of Frequency Distribution of the Largest 

or Smallest Members of a Sample, Proceedings of the Cambridge Philosophical Society, 24, 

180-190 
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beta distributions. Typically, when dealing with financial losses or negative returns, the 

distribution is expected to be of the Fréchet type. 

Figure 10: Generalized Extreme Value PDFs 𝐻𝜉  for Fréchet (𝜉 = 0.5), Weibull (𝜉 =

−0.5) and Gumbell (𝜉 = 0) with 𝜇 = 0 and 𝜎 = 1 

 

Source: Own production (Python code) 

Figure 11: Generalized Extreme Value CDFs 𝐻𝜉  for Fréchet (𝜉 = 0.5), Weibull (𝜉 =

−0.5) and Gumbell (𝜉 = 0) with 𝜇 = 0 and 𝜎 = 1 

 

Source: Own production from Python 

 A nice property of the GEV distribution states it is invariant with respect to linear 

transformations, and in fact 

 𝐻𝜉(𝑧) = 𝐻𝜉 (
𝑥 − 𝜇

𝜎
) = 𝐻𝜉,𝜇,𝜎(𝑥) 

(3.7) 
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 Therefore, the Fisher-Tippet Theorem states that, for large n, the distribution of 

𝑀𝑛 is a GEV, and this is given by 

 
Pr(𝑍𝑛 < 𝑧) = Pr (

𝑀𝑛 − 𝜇𝑛
𝜎𝑛

< 𝑧) ≈ 𝐻𝜉(𝑧) 
 

(3.8) 

 

 3.1.2. Estimating the GEV distribution by the Maximum Likelihood 

 Once the Fisher-Tippet has been described and analyzed, it can be used practically 

by estimating the model’s parameters using parametric methods such as the maximum 

likelihood. 

 Let 𝑋1, … , 𝑋𝑇 be identically distributed losses from a sample of size T with 

unknown CDF F and let 𝑀𝑇 denote the sample maximum. For inference on 𝑀𝑇 the 

parameters 𝜉, 𝜎𝑇 and 𝜇𝑇 must be estimated. Since there is only one value of 𝑀𝑇 for the 

entire sample, it is not possible to use a likelihood function for computing the parameters’ 

estimates. However, if interest is on the maximum of X over a large finite subsample or 

block size 𝑛 < 𝑇, 𝑀𝑛, implementing the Block Maxima, it is possible to use the likelihood 

function for the parameters 𝜉, 𝜎𝑛 and 𝜇𝑛. The general idea behind Block Maxima models 

is to split the whole data sample in blocks of equal size and find the maximum value on 

each block. In this way, a sequence of extreme observations is obtained, and can be used 

as a sample to evaluate the GEV’s parameters. For the application of this model, it is 

assumed that the block size n is sufficiently large so that the Fisher-Tippet Theorem holds.  

 The sample is divided into m non-overlapping blocks of equal size 𝑛 =
𝑇

𝑚
 

 [𝑋1, … , 𝑋𝑛|𝑋𝑛+1, … , 𝑋2𝑛| … | 𝑋(𝑚−1)𝑛+1, … , 𝑋𝑚𝑛] (3.9) 

 and 𝑀𝑛
(𝑗)

 is defined as the maximum value of 𝑋𝑖 in block 𝑗 = 1,… ,𝑚.  

 The log likelihood function assuming i.i.d. observations from a GEV distribution 

with 𝜉 ≠ 0 is  
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𝑙(𝜇, 𝜎, 𝜉) = −𝑚 ln(𝜎) − (1 +

1

𝜉
)∑ln [1 + 𝜉 (

𝑀𝑛
(𝑖) − 𝜇

𝜎
)]

𝑚

𝑖=1

−∑[1 + 𝜉 (
𝑀𝑛
(𝑖)
− 𝜇

𝜎
)]

−1/𝜉𝑚

𝑖=1

 

 

 

 

 

 

(3.10) 

  

 such that  

 
1 + 𝜉 (

𝑀𝑛
(𝑖)
− 𝜇

𝜎
) > 0 

 

 

(3.11) 

 The log-likelihood for the case 𝜉 = 0 (Gumbel family) is 

 
𝑙(𝜇, 𝜎, 𝜉) = −𝑚 ln(𝜎) −∑(

𝑀𝑛
(𝑖)
− 𝜇

𝜎
)

𝑚

𝑖=1

−∑exp [−(
𝑀𝑛
(𝑖)
− 𝜇

𝜎
)]

𝑚

𝑖=1

 

 

 

 

 

 

(3.12) 

 For 𝜉 > −0.5  the Maximum Likelihood Estimates for the location, scale and 

shape parameters are consistent and asymptotically normally distributed with asymptotic 

variance given by the inverse of the observed information matrix.  

 The properties of the MLE will depend on the number of blocks (sample size) and 

the block size (convergence achieved by the Fisher-Tippet theorem). There is a trade-off 

between bias and variance. It can be proved that the bias of the MLE is reduced by 

increasing the block size, and the variance of the MLE is reduced increasing the number 

of blocks, i.e., the number of observations in the sample.  

 3.1.3. Return Level  

 A useful risk measure for block maxima that is related to a high quantile is the 

return level. First, for 𝛼 ∈ (0,1) a quantile of a continuous distribution with distribution 

function F is the value 𝑞0 such that  

 𝑞0 = 𝐹
−1(𝛼) (3.13) 

 The k n-block return level, 𝑅𝑛,𝑘, can be defined as the level which exceeded in 

one out of every k block of size n on average. Formally, the k n-block return level is the 

loss value such that 
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Pr{𝑀𝑛 > 𝑅𝑛,𝑘} =

1

𝑘
 (3.14) 

 The n-block in which the return level is exceeded is called stress period. Note 

that, by construction, 𝑅𝑛,𝑘 is simply the 1 −
1

𝑘
 quantile of 𝐻𝜉(𝜇, 𝜎) and can be analytically 

computed from 

 
𝑅𝑛,𝑘 ≈ 𝐻𝜉,𝜇,𝜎

−1 (1 −
1

𝑘
) = 𝜇 −

𝜎

𝜉
(1 − (− ln (1 −

1

𝑘
))

−𝜉

) 
 

(3.15) 

 Using the Maximum Likelihood Estimators for the parameters 𝜉, 𝜇 and 𝜎, the 

MLE for 𝑅𝑛,𝑘 is given by 

 
�̂�𝑛,𝑘 = �̂� −

�̂�

𝜉
(1 − (− log (1 −

1

𝑘
))

−�̂�

) 
 

(3.16) 

 3.1.4. Return Period  

 The average number of blocks passed before observing an extreme event 𝑀𝑛 >

𝑢, for a given u, is the k n-block return period, 𝑘𝑛,𝑢. 

 Given that 𝐻𝜉,𝜇,𝜎 = Pr(𝑀𝑛 < 𝑢), the event 𝑌 = (𝑀𝑛 > 𝑢) is observed for the first 

time after k blocks has probability 

 Pr(𝑌 = 𝑘) = 𝐻𝜉,𝜇,𝜎
𝑘−1 (1 − 𝐻𝜉,𝜇,𝜎) (3.17) 

 This is a geometric distribution with average 
1

1−𝐻𝜉,𝜇,𝜎
, and therefore the k n-block 

return period is given by 

 
𝑘𝑛,𝑢 =

1

1 − 𝐻𝜉,𝜇,𝜎(𝑢)
 (3.18) 

 

3.2. Peaks Over Thresholds (POT) 

 Modelling data only using Block Maxima is inefficient when other data on 

extreme values are available, since the sample size corresponds to the number of blocks, 

and therefore the method requires a huge time series to be effective. A more efficient 

alternative approach that uses more data is to model the behaviour of extreme values 

above some pre-defined high threshold. This approach is known as Peaks Over 

Thresholds (POT). An advantage of this approach, in addition of being a more efficient 
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model, is that common risk measures as Value-at-Risk and Expected Shortfall may be 

easily computed.  

 3.2.1. The Limiting Distribution of Extremes Over High Threshold and the GPD 

distribution 

 As for the analysis of the Block Maxima, let 𝑋1, 𝑋2, … , 𝑋𝑛 be a sequence of i.i.d.15 

random variables representing risks or losses with an unknown CDF F and let, as in the 

previous chapter, 𝑀𝑛 be the sample maximum16. A measure of extreme events are values 

of the 𝑋𝑖 that exceed a high threshold u. The excess distribution above the threshold u can 

be defined as the conditional probability 

 
𝐹𝑢(y) = Pr{𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢} =

𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
, 𝑦 > 0 (3.19) 

 It can be shown that, for the family of distribution F such that the CDF of the 

standardized value of 𝑀𝑛 converges to a GEV distribution, for large enough u there exists 

a positive parameter 𝛽(𝑢), that depends on the value u, such that the excess distribution 

is given in equation 3.19 can be well approximated by the Generalized Pareto 

Distribution (GPD) 

 

𝐺𝜉,𝛽(𝑢)(y) =

{
 
 

 
 

1 − (1 + (
𝜉𝑦

𝛽(𝑢)
)
−
1
𝜉
)

1 − exp (−
𝑦

𝛽(𝑢)
)  𝑓𝑜𝑟 𝜉 = 0

 𝑓𝑜𝑟 𝜉 ≠ 0 , 𝛽(𝑢) > 0 

(3.20) 

 this is defined for 𝑦 ≥ 0 when 𝜉 ≥ 0 and 0 ≤ 𝑦 ≤ −
𝛽(𝑢)

𝜉
 when 𝜉 < 0. This means 

that 𝐹𝑢(𝑦) ≈ 𝐺𝜉,𝛽(𝑢)(y) for a sufficiently large values of u. To achieve this result, the 

value of the threshold must be defined and the estimates of the unknown parameters 𝜉 

and 𝛽(𝑢) must be computed.  

 In can be shown that there is a close connection between the GEV distribution for 

block maxima and the GPD for the threshold excesses. For a given value of the threshold 

u, the parameters 𝜉, 𝜇 and 𝜎 of the GEV distribution determine the parameters 𝜉 and 

𝛽(𝑢). Specifically, 𝜉, or rather the shape parameter of the GEV distribution, is the same 

shape parameter 𝜉 in the GPD, independently from the threshold value u. Hence, when 

 
15 Remind that i.i.d. means Independent and Identically Distributed  
16 𝑀𝑛 = 𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑛} 
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𝜉 < 0 then F is of the Weibull type and 𝐺𝜉,𝛽(𝑢) is a Pareto type II distribution; when 𝜉 =

0 then F is of the Gumbel type and 𝐺𝜉,𝛽(𝑢) is an exponential distribution; and the most 

interesting case for risk management purposes is when 𝜉 > 0 then F is in the Fréchet 

family and 𝐺𝜉,𝛽(𝑢) is a Pareto distribution. Furthermore, it can be shown that 𝐸[𝑋𝑘] = ∞ 

for 𝑘 ≥ 𝛼 =
1

𝜉
. 

Figure 12: Generalized Pareto PDFs for Pareto (𝜉 = 0.5), Pareto Type II (𝜉 = −0.5) and 

exponential (𝜉 = 0) with 𝜇 = 0 and 𝜎 = 1 

 

Source: Own production (Python Code) 

Figure 13: Generalized Pareto CDFs for Pareto (𝜉 = 0.5), Pareto Type II (𝜉 = −0.5) and 

exponential (𝜉 = 0) with 𝜇 = 0 and 𝜎 = 1 

 

Source: Own production (Python Code) 

 The evaluation of the threshold value u, from which the asymptotic Pareto 

approximation should work, is one of the key issues in the POT method. Some empirical 
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research17, suggested to select the value of the threshold u such that 𝑃(𝑋 > 𝑢) ≈ 10% −

15%.  

 An alternative method is to study the mean excess function. Suppose the threshold 

excess 𝑋 − 𝑢0 follows a GPD with parameters 𝜉 < 1 and 𝛽(𝑢0). The mean excess over 

the threshold 𝑢0 is defined as 

 
𝐸[𝑋 − 𝑢0|𝑋 > 𝑢𝑜] =

𝛽(𝑢0)

1 − 𝜉
 (3.21) 

 Furthermore, for any 𝑢 > 𝑢0, the mean excess function 𝑒(𝑢) can be defined as 

 
𝑒(𝑢) = 𝐸[𝑋 − 𝑢|𝑋 > 𝑢] =

𝛽(𝑢0) + 𝜉(𝑢 − 𝑢0)

1 − 𝜉
 (3.22) 

 Alternatively, for any 𝑦 > 0 

 
𝑒(𝑢0 + 𝑦) = 𝐸[𝑋 − (𝑢0 + 𝑦)|𝑋 > 𝑢0 + 𝑦] =

𝛽(𝑢0) + 𝜉𝑦

1 − 𝜉
 (3.23) 

 Note that the mean excess function 𝑒(𝑢) is a linear function of 𝑦 = 𝑢 − 𝑢0, for a 

given value of 𝜉. Therefore, a graphical method can be used to make inference on the 

optimal value for u. The empirical mean excess function is defined as 

 

𝑒𝑛(𝑢) =
1

𝑛𝑢
∑(𝑥(𝑖) − 𝑢)

𝑛𝑢

𝑖=1

 (3.24) 

 where 𝑥(𝑖)18 are the values of 𝑥𝑖 such that 𝑥𝑖 > 𝑢. Figure 14 shows the mean 

excess plot that is a plot of 𝑒𝑛(𝑢) against u and should be linear in u for 𝑢 > 𝑢0. An 

upward sloping plot indicates heavy-tailed behavior. Especially, a sign of Pareto 

behaviour in tail is designed by a straight line with positive slop above 𝑢0. Therefore, the 

threshold u can be chosen as the smaller value from which 𝑒𝑛(𝑢) is linear (and possibly 

increasing). 

 Conversely, a downward trend shows thin-tailed behaviour, while a line with zero 

slope shows an exponential tail.  

 

 
17 Zivot, E., Wang, J., (2006), Modelling Financial Time Series with S-PLUS, Ch. 5, Springer. 
18 With 𝑖 = (1,… , 𝑛𝑢) 
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Figure 14: Example of empirical mean excess plot for the S&P 500 negative returns. 

 

Source: Zivot, E., Wang, J., (2006), Modelling Financial Time Series with S-Plus. 

 In Figure 14, it can be seen as for the S&P 500 negative returns the empirical 

mean excess plot is linear and with positive slop for 𝑢 > 1, i.e., Pareto tail behaviour.  

 3.2.2. Estimating the GPD by the Maximum Likelihood 

 Once u is set, it is possible to estimate the GPD using Maximum Likelihood. Let 

𝑥1, … , 𝑥𝑇 be an i.i.d. sequence of losses with unknown CDF F. Extremes are those 𝑥𝑖 

value for which 𝑥𝑖 − 𝑢 > 0. These ordered extreme values can be defined as 𝑥(1), … , 𝑥(𝑘) 

and the threshold excess as 𝑦𝑖 = 𝑥(𝑖) − 𝑢 for 𝑖 = 1,… , 𝑘. The GPD log-likelihood 

function, for 𝜉 ≠ 0, is defined as 

 
𝑙(𝜉, 𝛽(𝑢)) = −𝑘 ln(𝛽(𝑢)) − (1 +

1

𝜉
)∑ln (1 +

𝜉𝑦𝑖
𝛽(𝑢)

)

𝑘

𝑖=1

 (3.25) 

 on condition that 𝑦𝑖 ≥ 0 when 𝜉 > 0 and 0 ≤ 𝑦𝑖 ≤ −
𝛽(𝑢)

𝜉
 when 𝜉 < 0. 

 3.2.3. Estimating the Tails of the Loss Distribution 

 Note that for sufficiently high threshold u, 𝐹𝑢(𝑦) ≈ 𝐺𝜉,𝛽(𝑢)(y), and suppose u is 

set, as described above. Setting 𝑥 = 𝑢 + 𝑦 and using the equation 3.19, the tails of the 

unknown loss distribution F(x) for 𝑥 > 𝑢 can be approximated as 

 𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝛽(𝑢)(y) + 𝐹𝑢(𝑦) (3.26) 
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 Using the empirical CDF, it is possible to estimate non parametrically the value 

of F(u) 

 
�̂�(𝑢) =

(𝑛 − 𝑘)

𝑛
 (3.27) 

 where n is the sample size and k denotes the number of exceedences over the 

threshold u. Combining the formulas, the result gives an estimator for the tail of the loss 

distribution 𝐹(𝑥) 

 

�̂�(𝑥) = 1 −
𝑘

𝑛
(1 + 𝜉

𝑥 − 𝑢

�̂�(𝑢)
)

−
1

�̂�
 (3.28) 

 where 𝜉 and �̂�(𝑢) are the Maximum Likelihood Estimators of 𝜉 and 𝛽(𝑢), 

respectively. It is worth noting that �̂�(𝑥) is an estimate of the negative returns and it can 

be used to compute risk measures as VaR and ES.  

 

3.3. Risk Measures 

 The extremes over high threshold methods are really useful to evaluate two 

common risk measures: Value-at-Risk (VaR) and Expected Shortfall (ES). VaR is a high 

quantile of the loss distribution. That is, for 0.95 ≤ 𝛼 ≤ 1, 𝑉𝑎𝑅𝛼 is the 𝛼th quantile of 

the distribution F 

 𝑉𝑎𝑅𝛼 = 𝐹
−1(𝛼) (3.29) 

 where 𝐹−1 is the inverse of F. An estimate of equation 3.29 based on inverting 

the tail estimation equation 3.28, for a given probability 𝛼 > 𝐹(𝑢), is  

 

𝑉𝑎�̂�𝛼 = 𝑢 +
�̂�(𝑢)

𝜉
((
𝑛

𝑘
(1 − 𝛼))

−�̂�

− 1) (3.30) 

 Expected shortfall is the expected loss size, given that 𝑉𝑎𝑅𝛼 is exceeded 

 𝐸𝑆𝛼 = 𝐸[𝑋|𝑋 > 𝑉𝑎𝑅𝛼] (3.31) 

 The 𝑉𝑎𝑅𝛼 and the 𝐸𝑆𝛼 are strictly related by 

 𝐸𝑆𝛼 = 𝑉𝑎𝑅𝛼 + 𝐸[𝑋 − 𝑉𝑎𝑅𝛼|𝑋 > 𝑉𝑎𝑅𝛼] (3.32) 
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 where the second term in equation 3.32 is the mean of the excess distribution 

𝐹𝑉𝑎𝑅𝛼(𝑦) over the threshold  𝑉𝑎𝑅𝛼. By the properties of the GPD distribution, the 

approximation of GPD to 𝐹𝑉𝑎𝑅𝛼(𝑦) has shape parameter 𝜉 and scale parameter 𝛽(𝑢) +

𝜉(𝑉𝑎𝑅𝛼 − 𝑢). Then, provided 𝜉 < 1, gives 

 
𝐸[𝑋 − 𝑉𝑎𝑅𝛼|𝑋 > 𝑉𝑎𝑅𝛼] =

𝛽(𝑢) + 𝜉(𝑉𝑎𝑅𝛼 − 𝑢)

1 − 𝜉
 (3.33) 

 Combining the previous results, the GPD approximation to 𝐸𝑆𝛼 is given by 

 
𝐸�̂�𝛼 =

𝑉𝑎�̂�𝛼

1 − 𝜉
+
�̂�(𝑢) + 𝜉𝑢

1 − 𝜉
 (3.34) 
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Chapter IV Real Data Application 

 In this chapter, it will be shown the empirical analysis based on some software 

written through Python and taking advantage of the libraries Pandas and 

Statsmodels. A portfolio, composed by 10 stocks from all over the world with a time 

horizon of 7-years is considered, i.e., from January 2015 to December 2021, on which it 

will be applied the Extreme Value Theory to compute the VaR and the ES.  

 The stocks considered come mainly from the Australian, Chinese, Italian, British 

and American stocks exchanges. In particular, BHP Billiton Ltd and Sonic Healthcare 

Ltd are Australian firms; Wuliangye Yibing Co Ltd and Wanhua Chemical Group are 

listed in the Chinese stock exchange; Leonardo S.p.A. and Hera S.p.A. are Italian firms; 

Phoenix Group Holdings PLC and Barclays PLC are British companies; and Intel 

Corporation and Tesla Inc are listed in the American stock exchange.  

Table 1: Descriptive statistics  

 

Source: Own production 

 Table 1 provides the mean, the variance and the standard deviation of the different 

stocks computed using Python. 

 The idea is to evaluate, in terms of portfolio selection, if synchronization is 

actually an issue. For this reason, some Python routines have been created to compare the 

different behaviours of the portfolio as the initial assumption change: a first case in which 

the returns of the stocks are not synchronized, while in the following two the 

synchronization of the returns has been considered19, but with a small difference in the 

imputation of data between the two cases (that refers to problem of dealing with missing 

data). In the first code of synchronized returns, the ‘inner’ parameter is used within the 

Python ‘pd.merge’ function with the aim of creating a database that only includes the 

days in which all the stocks have a price/observation. In the second case of 

 
19 In this code, it is used the ‘inner’ parameter in the ‘pd.merge’ function. 

BHP Billiton 

Ltd (BHP)

Sonic 

Healthcare Ltd 

(SHL)

Leonardo Spa 

(LDOF)

Hera Spa 

(HRA)

Phoenix Group 

Holdings PLC 

(PHNX)

Barclays PLC 

(BARC)

Intel 

Corporation 

(INTC)

Tesla Inc 

(TLSA)

Wuliangye 

Yibin Co Ltd 

(000858)

Wanhua 

Chemical 

Group Co Ltd 

(600309)

Mean 0.0004620 0.0006900 0.0002150 0.0005300 0.0001710 0.0001320 0.0004470 0.0026820 0.0017390 0.0013820

Variance 0.0004060 0.0002330 0.0006300 0.0002500 0.0002720 0.0006590 0.0004350 0.0013250 0.0006540 0.0007170

St. Deviation 0.0201494 0.0152643 0.0250998 0.0158114 0.0164924 0.0256710 0.0208567 0.0364005 0.0255734 0.0267769
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synchronization, instead, ‘outer’ is used, i.e., with the possibility of replacing a missing 

value with the previous value, doing this it is possible to account for all the available days 

in the sample. A missing value is observed, for example, when a particular stock exchange 

is closed because of a national holiday, for instance, while all the others are open. A real 

example is December 31st, when the Italian stock exchange is closed, while the Chinese 

exchange is open. In fact, as it can be noted form the number of rows of the prices’ 

database using the parameter ‘inner’, 1598 daily prices are used for the calculation of the 

returns, while in the case of ‘outer’ the number of prices used are 1821.  

 For clarity, these three different codes will be identified as Case 1, Case 2, and 

Case 3, respectively20.  

 After importing the prices of the different stocks and creating a single database, 

the daily returns of the stocks are calculated using the following formula 

  
𝑅𝑡 = (

𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

) ∗ 100 (4.1) 

 Subsequently, after calculating the returns, the correlation matrix of the returns 

was created, thus finding the first differences between the different cases studied in this 

thesis.  

 

 

 

 

 

 

 

 

 

 
20 Case 1: not synchronized returns; Case 2: synchronized returns with ‘inner’; Case 3: 

synchronized returns with ‘outer’. 
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Figure 15: Case 1 – Correlation Matrix of Returns 

 

Source: Own production (Python Code) 

Figure 16: Case 2 – Correlation Matrix of Return with ‘inner’ parameter 

 

Source: Own production (Python Code) 
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Figure 17: Case 3 – Correlation Matrix of Returns with ‘outer’ parameter 

 

Source: Own production (Python Code) 

 Correlation matrices of Case 1 and Case 2, as can be noticed, respectively, from 

Figure 15 and Figure 16, are identical and this is due to the same ‘inner’ parameter used 

for the imputation of the data. Instead, comparing the first two matrices with the third 

one, it is possible to note that in some cases the correlation between returns, observable 

in Figure 17, is greater or lower. Consider the correlation, for example, between Tesla 

and Barclays, in cases 1 and 2 it is equal to 0.22, while in Case 3 the value of the 

correlation is greater and equal to 0.24. conversely, comparing the correlation between 

Phoenix (PHNX) and Sonic Healthcare (SHL), in Case 3 it turns out to be lower than in 

the first two cases.  

 In Case 1, remembering that in this code there is not synchronization of the 

returns, it is possible to directly build the portfolio through the Markowitz model. In this 

first case, the portfolio composition gives an expected return of 32.30% with a volatility 

of 21.145% and the Sharpe ratio is 1.528. 

 In Case 2 and Case 3, on the other hand, firstly, the returns are synchronized 

following the MA(1) model described in the previous chapters. It is necessary to estimates 

the parameter of the model, and since the thesis is based on ten stocks, there are 145 

parameters to be estimated, but only the first 45 parameters are the necessary ones to 

compute the synchronized returns, while the remaining 100 are the noise parameters. 
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 Once the parameters of the model are estimated, for both Case 2 and Case 3, the 

synchronized returns can be calculated, and subsequently it is created, as before, the 

correlation matrix, but in this cases using the synchronized returns.  

Figure 18: Case 2 – Correlation Matrix of Synchronized Returns with ‘inner’ parameter 

 

Source: Own production (Python Code) 

Figure 19: Case 3 – Correlation Matrix of Synchronized Returns with ‘outer’ parameter 

 

Source: Own production (Python Code) 
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 Comparing the correlation matrices in Figures 16 and 17 with those in Figure 18 

and Figure 19, it is worth noting how most of the correlation values increase in the 

synchronized case, while only in few cases, such as for example the correlation between 

BHP Billiton (BHP) and Sonic Healthcare (SHL) (both stocks listed on the Australian 

stock exchange), decreases. 

 Afterwards, as in Case 1, the best portfolio composition is selected, the one with 

the highest Sharpe ratio among 1000 possibilities, with expected return of 31.81% and 

28.04%, and volatility 22.78% and 21.57%, respectively for Case 2 and Case 3. 

Figure 20: Case 2 – Portfolio with the highest Sharpe ratio  

 

Source: Own production (Python Code) 

 Figure 20 shows all the possible portfolio compositions and the best one, i.e., the 

one with the highest Sharpe ratio, can be identified by a red dot. Similar results can be 

found for Case 1 and 3. 
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Table 2: Weights of the optimal portfolios 

 

Source: Own production 

 Table 2 shows the different weights of the stocks that compose the three portfolios 

calculated using Markowitz. It is worth noting that, despite the different way in which 

missing values in Case 2 and Case 3 are computed, the weights associated to each stocks 

are the same. 

After the selection of the best portfolio composition, it is possible to recover the 

time series of the portfolio’s returns and on that sequence apply the Extreme Value 

Theory, starting with the Block Maxima model and then moving on to the Peak Over 

Threshold, and, finally, calculating the risk measures (VaR and ES). 

 Firstly, for the construction of the Block Maxima model, it is necessary to define 

the size of the blocks, and, in this thesis, the size has been defined as six months. After 

the blocks are built, it is possible to measure the maximum for each block, analyze how 

each maximum behaves.   

 

 

 

 

 

 

 

Case 1 Case 2 Case 3

BHP 15.29% 8.80% 8.80%

SHC 4.28% 15.44% 15.44%

Wuliangye 2.51% 11.98% 11.98%

Wanhua 5.77% 11.21% 11.21%

Hera 16.18% 12.06% 12.06%

Leonardo 12.11% 16.72% 16.72%

Phoenix 8.74% 11.10% 11.10%

Barclays 16.69% 1.82% 1.82%

Tesla 0.52% 9.92% 9.92%

Intel 17.90% 0.95% 0.95%



46 

 

Figure 21: Case 1 – Identification of the maximums and comparison with a quantile 

 

Source: Own production (Python Code) 

Figure 22: Case 2 and Case 3– Identification of the maximums and comparison with a 

quantile 
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Source: Own production (Python Code) 

 The first chart identifies the different maximums over time and in all the three 

cases it is possible to observe that the highest maximum is between years 2020 and 2021. 

The second graph, instead, describes the behavior of the maximums with respect to a 

quantile of an Exponential distribution. It is used this particular distribution because is 

the one that behaves most similarly to the GEV distribution. As it can be observed, from 

the graph in Figure 21 and Figure 22, all dots are in line with the quantile, apart the last 

located in the top-right corner.  

 The next step is to estimate the GEV distribution using the Maximum Likelihood 

Function, as seen in Chapter 321. For this particular distribution, estimates of the shape, 

location and scale parameters are needed.  

 Once estimated the parameters and therefore the GEV distribution, it is possible 

to compare the Crude Residuals of the GEV with the quantile of an Exponential 

distribution. Crude residuals allows to evaluate if the fit of the model is appropriate, and 

in particular, if the crude residuals closely follow an exponential distribution, it implies 

the model is correctly specified. Crude residuals are built in a way that their correct 

distribution is actually exponential, exploiting some properties of the transformation of 

random variables. In fact, a continuous CDF F, it is known that 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝐹(𝑋) ≤ 𝐹(𝑥)) = 𝐹(𝑥) (4.2) 

 Therefore, the transformation 𝑈 = 𝐹(𝑋) gives a Uniform random variable. 

Applying the crude transformation, namely, − log𝐹(𝑋) = − log(𝑈). And noting that if 

U is Uniform, also 1 − 𝑈 is Uniform, proves that crude residuals are actually 𝐸𝑥𝑝(1). 

In fact, note that − log(1 − 𝑈) is the inverse of 𝐹−1 for an 𝐸𝑥𝑝(1). So, − log(𝑈) 

is 𝐸𝑥𝑝(1). Consequently, applying the − log(𝐹(𝑋)) transformation, it is expected to 

obtain an exponential distribution.  

For this reason it is possible to compare the crude residuals with the quantile of 

an exponential distribution.  

 

 
21 See Chapter 3.1.2. Estimating the GEV distribution by the Maximum Likelihood 
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Figure 23: QQ – Plots of Case 1, Case 2 and Case 3 

 

Source: Own production (Python Code) 

 It can be noticed that it seems reasonable compare the crude residuals and an 

exponential quantile, since the majority of the maximum lie on the quantile. There are 

two dots, for each graph, that are far from the other and they represents exactly the 

abnormal dot in the second graph of Figure 21 and Figure 22. 

 With the estimates made, it is possible to calculate the risk measures seen before 

such as the return level22 and the return period23.  

A possible example is to answer to the questions: it is possible to observe an 

extreme loss larger than u? This corresponds to compute the probability of 𝑀𝑛 > 𝑢. For 

instance, what happen if 𝑢 = 3%? 

Based on the assumption and the data, for Case 2, it takes almost 2.44 years on 

average to observe a loss larger than 3%. This questions has also been applied to Case 1 

and 3, and respectively 2.30 years and 2.38 years are the results obtained.  

A criticism of the Block Maxima model is the rigidity because assuming that in a 

year there have been many significant maximum peaks, while in another year there have 

not been any. Using the Block Maxima model and looking for, for example, an annual 

maximum, in the first year the greatest peak will be taken excluding the other significant 

peaks, while in the year in which there are no significant peaks, it may result as a 

maximum an extremely low value, such as 1%. 

 
22 See Chapter 3.1.3. Return Level 
23 See Chapter 3.1.4. Return Period 
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For this reason, the Peaks Over Threshold (POT) model is used. This model is 

closely related to the Block Maxima model, but here the tail of the distribution of a very 

large sample is directly analyzed. In the POT model, a threshold is defined above which 

an observation can be interpreted as a maximum. To define the threshold value, it is 

possible to use a graphical method. 

Figure 24: Case 2 – Definition of the threshold value 

 

Source: Own production (Python Code) 

 Figure 24 shows the empirical excess mean for the definition of the threshold of 

Case 2, the graph of Case 1 and Case 3 behave similarly.   

As seen in Chapter 3, when the empirical excess mean becomes linear and 

positively sloped, it means that the approximation works, and consequently the threshold 

is identified as the curve begins to increase. In the three cases, the threshold assumes 

values 0.7, 0.5, and 0.6, respectively for Case 1, Case 2 and Case 3.  

 As for the GEV distribution, the GDP’s parameters, for each case, are estimated 

through Maximum Likelihood using as threshold the value identified before. In the GPD 

the parameters estimated are 𝜉 and �̂�(𝑢). 

 Similarly, than for Block Maxima, crude residuals might provide hints on the 

goodness of the GPD model. In this case, crude residuals are defined as 

 
𝑤𝑖 =

1

𝜉
log (1 +

𝜉𝑧𝑖

�̂�
) (4.2) 

 where 𝑧𝑖 are excess losses. 
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 It is possible to compare the crude residuals with respect to the quantile of an 

exponential distribution, and also in this case the approximation given by the crude 

residuals seems to be reasonable in comparison with an exponential distribution.  

Once the parameters estimates are known, it is possible to use them to calculate 

the Value-At-Risk and the Expected Shortfall, using formulas seen in Chapter 324.  

The results of the different VaR and ES for each code are summarized in Table 1. 

Table 3: Results of VaR and ES at 99% and 95% level of confidence 

 

Source: Own production 

 Table 3 provides results about the two main risk measures VaR and ES with 99% 

and 95% level of confidence. As seen in Chapter 3, generally, the 𝐸𝑆𝛼 > 𝑉𝑎𝑅𝛼 and here 

can be also see that 𝑉𝑎𝑅0.99 > 𝑉𝑎𝑅0.95. 

Notable as Case 3, i.e., the code with synchronization using parameter ‘Outer’ 

provides lower values for VaR and ES than the other two cases, that have closed results. 

In fact, it is possible to see how Case 1 with respect to Case 2 has a lower VaR, but a 

higher ES for both, 99% and 95%, levels of confidence.  

Analyzing the results of Case 3, it can be stated that with 1% probability the daily 

return could be as low as −3.318% and, given that the return is less than −3.318%, the 

average return value is −4.748%. Similarly, with 5% probability the daily return could 

be as low as −1.711% with an average return of −2.765%, given that the return is less 

than −1.711%. 

 

 

 

 
24 See Chapter 3.3. Risk Measures 

No Synchronization Syncronization with 'Inner ' Synchronization with 'Outer'

VaR 99% 3.495% 3.521% 3.318%

ES 99% 5.544% 5.128% 4.748%

VaR 95% 1.673% 1.782% 1.711%

ES 95% 2.933% 2.931% 2.765%
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Conclusion 

The main purpose of this thesis has been that of exploiting the statistical 

procedures deriving from extreme value theory and the synchronization of the markets, 

in order to model the behavior of extreme events. In particular, it was decided to study 

the observations of a portfolio composed of ten stocks, from January 2015 to December 

2021 to have sufficient observations.  

Firstly, the correlation structure between returns of different stocks is different 

when the synchronization procedure is applied. As previously seen, in general, the 

correlation increases, and becomes a higher positive value, i.e., the stocks move in the 

same direction: as one increases, also the other increases. Only in a few cases, the 

correlation decreases, while, however remaining, positive.  

Then, it has been proved that the composition of the best portfolio in the three 

cases analyzed changes as the initial assumptions of the code change. In fact, the quantity 

invested in the single stock varies and this directly affects the time series of the portfolio, 

which is used to implement the Extreme Value Theory. In fact, looking at the application 

of the Block Maxima model, the six-months blocks created have different maximum 

based on the time series of the portfolio.  

Anyway, the most interesting results derive from the analysis carried out by 

comparing the values obtained for the Value-at-Risk and the Expected Shortfall. The two 

risks measures are affected by the synchronization, and this changes the probabilities to 

observe an extreme event. 

 To conclude, the extreme value analysis certainly represents the more suitable 

technique able to predict the occurrence of extreme events. However, as it tries to make 

inference outside of the range of available data, a critic view is always required when 

applying such methodology to real life examples.  
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Annex A Code 

The following code is one of the three codes that have been used to produce all 

the figures and the results presented in the previous chapters. 

#libraries 

import pandas as pd 

import numpy as np 

import scipy 

import statsmodels.api as sm 

import matplotlib.pyplot as plt 

import seaborn as sn 

from functools import reduce 

import scipy.stats 

import datetime as dt 

 

#uploading the prices of the stocks 

INT=pd.DataFrame(pd.read_excel('Intel Corp.xlsx', 

index_col=0)) 

BCS=pd.DataFrame(pd.read_excel('Barclays.xlsx', 

index_col=0)) 

BHP=pd.DataFrame(pd.read_excel('BHP Billiton.xlsx', 

index_col=0)) 

HER=pd.DataFrame(pd.read_excel('Hera SpA.xlsx', 

index_col=0)) 

LDO=pd.DataFrame(pd.read_excel('Leonardo SpA.xlsx', 

index_col=0)) 

PHNX=pd.DataFrame(pd.read_excel('Phoenix Group.xlsx', 

index_col=0)) 

SHC=pd.DataFrame(pd.read_excel('Sonic HealthCare.xlsx', 

index_col=0)) 

TSLA=pd.DataFrame(pd.read_excel('Tesla.xlsx', index_col=0)) 

WAN=pd.DataFrame(pd.read_excel('Wanhua Chemical.xlsx', 

index_col=0)) 

WUL=pd.DataFrame(pd.read_excel('Wuliangye Yibin.xlsx', 

index_col=0)) 

 

#database of the prices 

prezzi=pd.merge(BHP, SHC, on='Data', how='inner') 

prezzi=pd.merge(prezzi, WUL, on='Data', how='inner') 

prezzi=pd.merge(prezzi, WAN, on='Data', how='inner') 

prezzi=pd.merge(prezzi, HER, on='Data', how='inner') 

prezzi=pd.merge(prezzi, LDO, on='Data', how='inner') 

prezzi=pd.merge(prezzi, PHNX, on='Data', how='inner') 

prezzi=pd.merge(prezzi, BCS, on='Data', how='inner') 

prezzi=pd.merge(prezzi, TSLA, on='Data', how='inner') 

prezzi=pd.merge(prezzi, INT, on='Data', how='inner') 

prezzi 

 

#returns of the stocks 

k=len(prezzi.columns) 
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returns=(prezzi.iloc[:, :k].pct_change(1)*100) 

returns=returns.dropna(axis=0) 

returns 

 

#correlation matrix 

corr_mat=returns.corr() 

sn.heatmap(corr_mat, annot=True) 

plt.show() 

 

# Construct the model for an MA(1) with diagonal MA matrix 

class MA1d(sm.tsa.statespace.MLEModel): 

    def __init__(self, endog): 

        # Initialize the state space model 

        super(MA1d, self).__init__(endog, k_states=20, 

k_posdef=10, 

                                   

initialization='stationary') 

        # Setup the fixed components of the state space 

representation 

        self['design'] = np.hstack((np.eye(10), 

np.zeros((10,10))))   

        self['transition'] = np.zeros((20,20))                  

         self['selection'] = np.vstack((np.eye(10), 

np.eye(10))) 

# Describe how parameters enter the model 

    def update(self, params, transformed=True, **kwargs): 

        params = super(MA1d, self).update(params, 

transformed, **kwargs) 

#self['design', 0, 1] = params[0] 

        self['transition', 0, 11] = params[0] 

        self['transition', 0, 12] = params[1] 

        self['transition', 0, 13] = params[2] 

        self['transition', 0, 14] = params[3] 

        self['transition', 0, 15] = params[4] 

        self['transition', 0, 16] = params[5] 

        self['transition', 0, 17] = params[6] 

        self['transition', 0, 18] = params[7] 

        self['transition', 0, 19] = params[8] 

        self['transition', 1, 12] = params[9] 

        self['transition', 1, 13] = params[10] 

        self['transition', 1, 14] = params[11] 

        self['transition', 1, 15] = params[12] 

        self['transition', 1, 16] = params[13] 

        self['transition', 1, 17] = params[14] 

        self['transition', 1, 18] = params[15] 

        self['transition', 1, 19] = params[16] 

        self['transition', 2, 13] = params[17] 

        self['transition', 2, 14] = params[18] 

        self['transition', 2, 15] = params[19] 

        self['transition', 2, 16] = params[20] 

        self['transition', 2, 17] = params[21] 
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        self['transition', 2, 18] = params[22] 

        self['transition', 2, 19] = params[23] 

        self['transition', 3, 14] = params[24] 

        self['transition', 3, 15] = params[25] 

        self['transition', 3, 16] = params[26] 

        self['transition', 3, 17] = params[27] 

        self['transition', 3, 18] = params[28] 

        self['transition', 3, 19] = params[29] 

        self['transition', 4, 15] = params[30] 

        self['transition', 4, 16] = params[31] 

        self['transition', 4, 17] = params[32] 

        self['transition', 4, 18] = params[33] 

        self['transition', 4, 19] = params[34] 

        self['transition', 5, 16] = params[35] 

        self['transition', 5, 17] = params[36] 

        self['transition', 5, 18] = params[37] 

        self['transition', 5, 19] = params[38] 

        self['transition', 6, 17] = params[39] 

        self['transition', 6, 18] = params[40] 

        self['transition', 6, 19] = params[41] 

        self['transition', 7, 18] = params[42] 

        self['transition', 7, 19] = params[43] 

        self['transition', 8, 19] = params[44] 

 

        self['state_cov', 0, 0] = params[45] 

        self['state_cov', 0, 1] = params[46] 

        self['state_cov', 0, 2] = params[47] 

        self['state_cov', 0, 3] = params[48] 

        self['state_cov', 0, 4] = params[49] 

        self['state_cov', 0, 5] = params[50] 

        self['state_cov', 0, 6] = params[51] 

        self['state_cov', 0, 7] = params[52] 

        self['state_cov', 0, 8] = params[53] 

        self['state_cov', 0, 9] = params[54] 

        self['state_cov', 1, 0] = params[55] 

        self['state_cov', 1, 1] = params[56] 

        self['state_cov', 1, 2] = params[57] 

        self['state_cov', 1, 3] = params[58] 

        self['state_cov', 1, 4] = params[59] 

        self['state_cov', 1, 5] = params[60] 

        self['state_cov', 1, 6] = params[61] 

        self['state_cov', 1, 7] = params[62] 

        self['state_cov', 1, 8] = params[63] 

        self['state_cov', 1, 9] = params[64] 

        self['state_cov', 2, 0] = params[65] 

        self['state_cov', 2, 1] = params[66] 

        self['state_cov', 2, 2] = params[67] 

        self['state_cov', 2, 3] = params[68] 

        self['state_cov', 2, 4] = params[69] 

        self['state_cov', 2, 5] = params[70] 

        self['state_cov', 2, 6] = params[71] 
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        self['state_cov', 2, 7] = params[72] 

        self['state_cov', 2, 8] = params[73] 

        self['state_cov', 2, 9] = params[74] 

        self['state_cov', 3, 0] = params[75] 

        self['state_cov', 3, 1] = params[76] 

        self['state_cov', 3, 2] = params[77] 

        self['state_cov', 3, 3] = params[78] 

        self['state_cov', 3, 4] = params[79] 

        self['state_cov', 3, 5] = params[80] 

        self['state_cov', 3, 6] = params[81] 

        self['state_cov', 3, 7] = params[82] 

        self['state_cov', 3, 8] = params[83] 

        self['state_cov', 3, 9] = params[84] 

        self['state_cov', 4, 0] = params[85] 

        self['state_cov', 4, 1] = params[86] 

        self['state_cov', 4, 2] = params[87] 

        self['state_cov', 4, 3] = params[88] 

        self['state_cov', 4, 4] = params[89] 

        self['state_cov', 4, 5] = params[90] 

        self['state_cov', 4, 6] = params[91] 

        self['state_cov', 4, 7] = params[92] 

        self['state_cov', 4, 8] = params[93] 

        self['state_cov', 4, 9] = params[94] 

        self['state_cov', 5, 0] = params[95] 

        self['state_cov', 5, 1] = params[96] 

        self['state_cov', 5, 2] = params[97] 

        self['state_cov', 5, 3] = params[98] 

        self['state_cov', 5, 4] = params[99] 

        self['state_cov', 5, 5] = params[100] 

        self['state_cov', 5, 6] = params[101] 

        self['state_cov', 5, 7] = params[102] 

        self['state_cov', 5, 8] = params[103] 

        self['state_cov', 5, 9] = params[104] 

        self['state_cov', 6, 0] = params[105] 

        self['state_cov', 6, 1] = params[106] 

        self['state_cov', 6, 2] = params[107] 

        self['state_cov', 6, 3] = params[108] 

        self['state_cov', 6, 4] = params[109] 

        self['state_cov', 6, 5] = params[110] 

        self['state_cov', 6, 6] = params[111] 

        self['state_cov', 6, 7] = params[112] 

        self['state_cov', 6, 8] = params[113] 

        self['state_cov', 6, 9] = params[114] 

        self['state_cov', 7, 0] = params[115] 

        self['state_cov', 7, 1] = params[116] 

        self['state_cov', 7, 2] = params[117] 

        self['state_cov', 7, 3] = params[118] 

        self['state_cov', 7, 4] = params[119] 

        self['state_cov', 7, 5] = params[120] 

        self['state_cov', 7, 6] = params[121] 

        self['state_cov', 7, 7] = params[122] 
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        self['state_cov', 7, 8] = params[123] 

        self['state_cov', 7, 9] = params[124] 

        self['state_cov', 8, 0] = params[125] 

        self['state_cov', 8, 1] = params[126] 

        self['state_cov', 8, 2] = params[127] 

        self['state_cov', 8, 3] = params[128] 

        self['state_cov', 8, 4] = params[129] 

        self['state_cov', 8, 5] = params[130] 

        self['state_cov', 8, 6] = params[131] 

        self['state_cov', 8, 7] = params[132] 

        self['state_cov', 8, 8] = params[133] 

        self['state_cov', 8, 9] = params[134] 

        self['state_cov', 9, 0] = params[135] 

        self['state_cov', 9, 1] = params[136] 

        self['state_cov', 9, 2] = params[137] 

        self['state_cov', 9, 3] = params[138] 

        self['state_cov', 9, 4] = params[139] 

        self['state_cov', 9, 5] = params[140] 

        self['state_cov', 9, 6] = params[141] 

        self['state_cov', 9, 7] = params[142] 

        self['state_cov', 9, 8] = params[143] 

        self['state_cov', 9, 9] = params[144] 

 

#Specify start parameters and parameter names 

    @property 

    def start_params(self): 

        return 

[0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 

                

0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 

                0.,0.,0.,0.,0.,0.,0.,    

                1.,0.,0.,0.,0.,0.,0.,0.,0.,0.,  

                0.,1.,0.,0.,0.,0.,0.,0.,0.,0.,  

                0.,0.,1.,0.,0.,0.,0.,0.,0.,0.,  

                0.,0.,0.,1.,0.,0.,0.,0.,0.,0.,  

                0.,0.,0.,0.,1.,0.,0.,0.,0.,0.,  

                0.,0.,0.,0.,0.,1.,0.,0.,0.,0.,  

                0.,0.,0.,0.,0.,0.,1.,0.,0.,0.,  

                0.,0.,0.,0.,0.,0.,0.,1.,0.,0.,  

                0.,0.,0.,0.,0.,0.,0.,0.,1.,0.,  

                0.,0.,0.,0.,0.,0.,0.,0.,0.,1.] 

 

#Create and fit the model 

endog = returns 

mod = MA1d(endog) 

res = mod.fit() 

print(res.summary()) 

 

#Get fitted residuals from the state space output 

epsilon=res.filtered_state[10:, :] 
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#Theta matrix 

Theta=np.zeros((10,10)) 

Theta[0,1]=res.params[0] 

Theta[0,2]=res.params[1] 

Theta[0,3]=res.params[2] 

Theta[0,4]=res.params[3] 

Theta[0,5]=res.params[4] 

Theta[0,6]=res.params[5] 

Theta[0,7]=res.params[6] 

Theta[0,8]=res.params[7] 

Theta[0,9]=res.params[8] 

Theta[1,2]=res.params[9] 

Theta[1,3]=res.params[10] 

Theta[1,4]=res.params[11] 

Theta[1,5]=res.params[12] 

Theta[1,6]=res.params[13] 

Theta[1,7]=res.params[14] 

Theta[1,8]=res.params[15] 

Theta[1,9]=res.params[16] 

Theta[2,3]=res.params[17] 

Theta[2,4]=res.params[18] 

Theta[2,5]=res.params[19] 

Theta[2,6]=res.params[20] 

Theta[2,7]=res.params[21] 

Theta[2,8]=res.params[22] 

Theta[2,9]=res.params[23] 

Theta[3,4]=res.params[24] 

Theta[3,5]=res.params[25] 

Theta[3,6]=res.params[26] 

Theta[3,7]=res.params[27] 

Theta[3,8]=res.params[28] 

Theta[3,9]=res.params[29] 

Theta[4,5]=res.params[30] 

Theta[4,6]=res.params[31] 

Theta[4,7]=res.params[32] 

Theta[4,8]=res.params[33] 

Theta[4,9]=res.params[34] 

Theta[5,6]=res.params[35] 

Theta[5,7]=res.params[36] 

Theta[5,8]=res.params[37] 

Theta[5,9]=res.params[38] 

Theta[6,7]=res.params[39] 

Theta[6,8]=res.params[40] 

Theta[6,9]=res.params[41] 

Theta[7,8]=res.params[42] 

Theta[7,9]=res.params[43] 

Theta[8,9]=res.params[44] 

 

#sinchronized returns 

rsync=(np.identity(10)+Theta)@epsilon 
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#dataframe with sinchronized returns  

sync_returns=returns.iloc[:, -10:] 

sync_returns 

 

#correlation matrix of synchronized returns 

sync_corr=sync_returns.corr() 

sn.heatmap(sync_corr, annot=True) 

plt.show() 

 

#Markowitz portfolio 

np.random.seed(40)  

num_ports = 1000   

all_weights = np.zeros((num_ports, k)) 

ret_arr = np.zeros(num_ports) 

vol_arr = np.zeros(num_ports) 

sharpe_arr = np.zeros(num_ports) 

 

for x in range(num_ports):  

    # Weights 

    weights = np.array(np.random.random(10)) 

    weights = weights/np.sum(weights) 

    #Save weights 

    all_weights[x,:] = weights 

    # Expected return 

    ret_arr[x] = np.sum((sync_returns.mean() * weights * 

252)) 

    # Expected volatility 

    vol_arr[x] = np.sqrt(np.dot(weights.T, 

np.dot(sync_returns.cov()*252, weights))) 

    # Sharpe Ratio 

    sharpe_arr[x] = ret_arr[x]/vol_arr[x] 

     

print('Max Sharpe ratio:{}'.format(sharpe_arr.max())) 

print('Location of the Max sharpe ratio 

is:{}'.format(sharpe_arr.argmax())) 

 

#return and volatility of the best portfoglio 

ret_port=ret_arr[sharpe_arr.argmax()] 

vol_port=vol_arr[sharpe_arr.argmax()] 

 

#efficient frontier 

plt.figure(figsize=(12,8)) 

plt.scatter(vol_arr, ret_arr, c=sharpe_arr, cmap='viridis') 

plt.colorbar(label='Sharpe Ratio') 

plt.xlabel('Volatility') 

plt.ylabel('Return') 

plt.scatter(vol_port, ret_port,c='red', s=50) # red dot 

plt.show() 

 

#time series of the portfolio 

Port=pd.DataFrame(sync_returns.dot(weights)) 
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Port.index = pd.to_datetime(Port.index) 

Port.columns=['Returns'] 

Port['Loss']=-Port['Returns'] 

Port 

 

#QQ plot vs. Normal quantiles 

plt.rc("figure", figsize=(8, 8)) 

scipy.stats.probplot(Port['Returns'], dist="norm", 

plot=plt) 

plt.rc("figure", figsize=(16, 6)) 

 

#Block Maxima Method with Blocks of 6-months 

BMax=Port.resample('6M').agg({'Loss': 'max'}) 

BMax 

 

#compute the record development plot (see Zivot, p. 150) 

cum_max= Port['Loss'].copy() 

cum_max=cum_max.to_frame() 

cum_max['cmax']= Port['Loss'].cummax() 

#if returns =0, then no new max! 

cum_max['changes']= cum_max['cmax'].pct_change() 

cum_max=cum_max[cum_max['changes'] != 0].dropna() 

cum_max 

 

#descriptive statistics for the maxima 

f,ax=plt.subplots(2,2, figsize=(25,10), sharex=False) 

print(ax) 

 

ax[0,0].plot(BMax['Loss'], color='b' ) 

ax[0,0].set(title='Annual Maxima' ) 

 

ax[0,1].hist(BMax['Loss'],  bins=10) 

ax[0,1].set(title='Annual Maxima histogram' ) 

 

ax[1,0] = scipy.stats.probplot(BMax['Loss'], 

dist="gumbel_r", plot=ax[1,0]) 

 

ax[1,1].plot(cum_max['cmax'], 'o', color='b' , label='cum 

max for losses') 

ax[1,1].set(title='Record Developement Plot' ) 

 

plt.show() 

 

#Calculate the log-likelihood 

def MLE_GEV(x, xi, m, s): 

     

    return np.sum(scipy.stats.genextreme.logpdf(x, xi, m, 

s)) 

 

#set the parameters and compute the likelihood 

from statsmodels.base.model import GenericLikelihoodModel 



63 

 

 

class GEVmle(GenericLikelihoodModel): 

    def __init__(self, endog, **kwds): 

        super(GEVmle, self).__init__(endog, **kwds) 

 

    def nloglikeobs(self, params):        

        xi= params[0] 

        mu = params[1] 

        sigma = params[2] 

        ll = MLE_GEV(self.endog, xi, mu, sigma) 

        return -ll 

    

    def fit(self, start_params=None, maxiter=10000, 

maxfun=5000, **kwds): 

        if start_params == None: 

            # Reasonable starting values 

            start_params = [-0.1, 4.032, 0.297] 

        return super(GEVmle, 

self).fit(start_params=start_params, maxiter=maxiter, 

maxfun=maxfun,**kwds) 

 

#fitting the model 

mod = GEVmle(BMax['Loss']) 

res = mod.fit() 

 

#estimates results 

print(res.summary(xname=['shape', 'loc', 'scale']) ) 

 

#QQ plot of crude residuals 

xi=res.params[0] 

loc=res.params[1] 

scale=res.params[2] 

 

#crude residuals 

w=(1 - xi*(BMax['Loss']-loc)/scale)**(1/xi) 

#is the model's fit good?  

 

plt.rc("figure", figsize=(8, 8)) 

scipy.stats.probplot(w, dist="expon", plot=plt) 

plt.rc("figure", figsize=(16, 6)) 

 

#QQ plot excess losses vs. Exponential, setting as threshold 

u=1 

EPort=Port[ Port['Loss']>1] 

plt.rc("figure", figsize=(8, 8)) 

scipy.stats.probplot(EPort['Loss'], dist="expon", plot=plt) 

plt.rc("figure", figsize=(16, 6)) 

 

#Optimal threshold 

eu = [Port.Loss[ Port['Loss']>j ].mean() -j for j in 

np.arange(-1,3,.04)] 
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#Plotting the threshold 

plt.plot(np.arange(-1,3,.04), eu,  'bo') 

plt.xlabel("u") 

plt.ylabel("Empirical mean excess, $\hat{e}(u$)") 

 

plt.show() 

 

#setting location parameter to 0 

soglia=0.5 

paretopar = scipy.stats.genpareto.fit(Port.Loss[ 

Port['Loss']>soglia ]-soglia, floc=0) 

paretopar 

 

#likelihood function 

def MLE_pareto(x, xi, beta):     

    return np.sum(scipy.stats.genpareto.logpdf(x, xi, 

loc=0, scale=beta)) 

 

 

#set the parameters and compute the likelihood 

class paretomle(GenericLikelihoodModel): 

    def __init__(self, endog, **kwds): 

        super(paretomle, self).__init__(endog, **kwds) 

 

    def nloglikeobs(self, params):  

        xi= params[0] 

        beta = params[1] 

        ll = MLE_pareto(self.endog, xi, beta) 

        return -ll 

     

    def fit(self, start_params=None, maxiter=10000, 

maxfun=5000, **kwds): 

        if start_params == None: 

            # Reasonable starting values 

            start_params = [0.5, 1] 

        return super(paretomle, 

self).fit(start_params=start_params, maxiter=maxiter, 

maxfun=maxfun,**kwds) 

 

#set the threshold 

ts=0.5 

modP = paretomle(Port.Loss[ Port['Loss']>ts ]-ts)   #as input 

exchess losses, namely, (loss-ts) 

resP = modP.fit(start_params=[.1, 1]) 

 

print(resP.summary(xname=['xi', 'beta(u)'])) 

 

#crude residuals 

resP.summary(xname=['xi','beta']) 

xi=resP.params[0] 
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beta=resP.params[1] 

 

#QQplot w vs exponential 

plt.rc("figure", figsize=(8, 8)) 

scipy.stats.probplot(z, dist="expon", plot=plt) 

plt.rc("figure", figsize=(16, 6)) 

 

 

#computing the value at risk and the expected shortfall 

k= len(Port[ Port['Loss']>ts ]) 

n= len(Port) 

 

def VaR_pareto(alpha, xi, beta, n, k, ts): 

    VaR= ts + beta * ( (n*(1-alpha)/k)**(-xi)-1 ) / xi   

    ES= (VaR + beta - xi*ts)/(1-xi) 

     

    return VaR, ES 

 

VaR99, ES99= VaR_pareto(.99, xi, beta, n, k, ts) 

VaR95, ES95= VaR_pareto(.95, xi, beta, n, k, ts) 

 

print(VaR99, VaR95) 

print(ES99, ES95) 

 


