

Master’s Degree in
Global Development
& Entrepreneurship

Final Thesis

International Trade
Modelling with

Recurrent Graph
Neural Networks

Supervisor
Ch. Prof. Massimo Warglien

Graduand
Claudio
Casellato
861553

Academic Year
2020 / 2021

1

2

TABLE OF CONTENTS

Table of contents ... 2

Abstract ... 4

0 Introduction ... 5

1 Introduction to Graphs .. 9

1.1 Undirected and Directed Graphs ... 9

1.2 Stochastic Graphs .. 10

1.3 Dynamic Graphs .. 11

2 Explorative Analysis: Network Measures ... 12

2.1 Node Degree .. 12

2.2 Closeness Centrality ... 13

2.3 Link Density .. 14

2.4 Jaccard Similarity .. 14

3 Static Graph Encoder ... 15

3.1 Artificial Neural Network .. 15

3.1.1 Sigmoid Activation ... 17

3.1.2 Relu Activation .. 17

3.1.3 Softplus Activation ... 18

3.1.4 Leaky-Relu Activation .. 18

3.1.5 Tanh Activation ... 18

3.2 Autoencoder Model .. 19

3.3 Training a neural network... 20

3.4 Graph Neural Networks .. 20

3.4.1 Graph Attention Network ... 21

4 Static Graph Decoder .. 24

5 Recurrent temporal encoder .. 25

5.1.1 Recurrent Neural Network ... 26

5.1.2 Gated Recurrent Unit .. 28

5.1.3 Training with Back Propagation Trough Time (BPTT) 29

6 Loss Function ... 30

7 Aleatoric and Epistemic Uncertainty estimation ... 32

7.1 Aleatoric Uncertainty .. 32

7.2 Epistemic Uncertainty with Dropout .. 33

3

8 Model Evaluation .. 37

8.1 Regression ... 38

8.1.1 Mean Absolute Error ... 38

8.1.2 Root Mean Squared Error ... 38

8.1.3 Accuracy ... 38

8.1.4 Explained Variance .. 39

8.1.5 Edge Distribution ... 39

8.2 Classification ... 40

8.2.1 ROC curve .. 40

8.2.2 Precision Recall Curve .. 41

8.2.3 Confusion Matrix .. 42

8.2.4 Expected Calibration Error ... 42

9 Embedding Visualization ... 43

10 Dataset ... 44

11 Results Analysis ... 45

12 Conclusion .. 61

13 REFERENCES ... 62

14 Appendix ... 67

4

ABSTRACT

Graph Neural Networks (GNN) are a powerful technique to model data on non-eucledian

domains with neural network universal function approximator. They are mainly used on

static networks where nodes and edges do not change over time. To overcome this issue

new models extended the GNN model to incorporate temporal data and the resulting

model is defined as a Dynamic Graph Neural Networks (DGNN). We use this technique to

model the bilateral trade evolution of the International Trade Network (ITN) where

nodes in the network represent the countries, encoded as a feature vector and the edges

represent the trade relations between two countries. We analyze the topological and

statistical properties of the estimated model and visualize the evolution of relations

between countries. We then evaluate the model predictive performance on link

prediction and reconstruction capabilities.

5

0 INTRODUCTION

The aim of this thesis is to develop an algorithm that can predict the time evolution of

the international trade network for different commodities. The analysis of networks has

long been of interest for many the research communities as many real-world problems

arise from a network structured data. However, the focus has usually been on graphs

that do not change over time, known as static graphs (Chen & Chen, 2017). Examples of

some field of study that necessitate the use of graph algorithms are neuroscience, where

the neurons can be viewed as nodes in the graph and the synapses as the edge

connecting two nodes (Bessadok, Mahjoub, & Rekik, 2021); chemistry, where the atoms

of a molecule represent the nodes of the graph and edge bonds between atoms

represent the edges (Hannes, 2021) (Bonginia & Bianchini, 2021); traffic prediction

where the nodes are sampled points on a road-map and the edges are the roads

connecting the nodes (Yu, Yin, & Zhu, 2018) (Zhao, et al., 2020) (Zheng, Fan, Wang, & Qi,

2020); knowledge graphs, where nodes are the entities and the connections are the

relations between entities (Wang & He, 2019) (Ji, Pan, & Cambria, 2021), social network

analysis where the nodes are people and the edges represent a friendship (Hoff, Raftery,

& Handcock); financial transaction where the sender and receiver of the transaction are

the nodes and the transaction amount represent the edge between nodes (Dan, Jiajing,

Qi, & Zibin, 2020) (Wei, Zhang, & Liu, 2021).

6

The focus of this thesis is however on dynamic graphs applied to the International Trade

Network (ITN) where both nodes’ attributes and the resulting edges between the nodes

change over time, thereby adding a temporal dimension to the graph.

The problem with having a graph as input is that the graph is that a graph is an irregular

domain since not all the nodes are connected, therefore the neighborhood of a node,

defined as the set of nodes connected to a node, changes for different nodes. For

example, images can be thought as a regular graph where the size on the neighborhood

of a pixel in the image is the same for every pixel. Instead, in the ITN the neighborhood

size of nodes changes depending on the country. Therefore, one needs to design an

algorithm that can process a variable input size.

Many techniques have been developed to allow a statistical model to process graph

structured data. One stream of research focuses on modelling the graph through

Bayesian methods by putting a prior probability distribution on the edge of the network

(Caimo & Friel, 2011) and estimating the posterior of the parameters of the model

though Monte Carlo Markov Chain (MCMC) sampling. A more advanced model was

developed by (Billio, Casarin, Kaufmann, & Iacopini) where they generalize the VAR

models to dynamic tensors and estimate the parameters with MCMC. Another stream of

research approaches the problem from a dimensionality reduction stand-point, called

Latent Factor Models (LFM), where one tries to reconstruct the network from the latent

characteristics of the nodes and assumes that the network structure can be fully defined

by the node features (Hoff, Raftery, & Handcock) (Kim, Lee, Xue, & Niu, 2018). A

generalization of latent factor models to multiple dimensions can be defined via tensor

decomposition techniques (Bader, Harshman, & Kolda, 2007) where a Three-way DEDI-

COM model is used to decompose the dynamic graph, however one downside is that the

model cannot be used in an inductive setting. Another stream of research focuses on the

topological structure of the network and take a statistical mechanics approach of

estimating the distribution of the edges (Tiziano, Fagiolo, & Diego, 2011). Another

stream of research focuses on the evolution of edges by applying a generative model of

the network inspired by the Ecology literature with a preferential attachment model

(García-Algarra, Mouronte-López, & Galeano, 2019). Another stream of research

approaches the problem through a graph theory perspective. The two main branches are

spectral based methods (Sandryhaila & Moura, 2013) (Bruna, Zaremba, Szlam, & LeCun,

7

2014) (Gavili & Zhang, 2017) (N. & Welling, 2017) and spatial based methods (Petar, et

al., 2018) (Dwivedi & Bresson, 2021). The spectral methods analyze the spectrum of the

Laplacian matrix by the eigenvalue-eigenvector decomposition. Due to the intense

computational requirements of computing the eigenvectors of the Laplacian (Defferrard,

Bresson, & Vandergheynst, 2017) introduced an approximation of the spectral filters by

the Chebyshev expansion of the graph Laplacian. The spatial methods define the

convolutions directly on the graph instead of first transforming the graph into the

spectral domain. The neural network based architecture call “Graph Attention Network”

(Petar, et al., 2018) build on a previous technique used in the sequential modelling

domain called the “Attention Mechanism” (Vaswani, Shazeer, & Parmar, 2017) and

applies it to the graph domain. The advantage of this technique is that it does not

require a fixed size neighborhood, can be efficiently parallelizable and can be used in

inductive learning problems where one does not need to recompute the parameters of

the model when adding a new node to the graph.

Most of the previous techniques focus on encoding a static graph. For a more general

model, one would need to estimate the effect that previous node interactions have on

future nodes interactions. The next paragraph will introduce different techniques for

modelling a dynamic graph.

The model from (Singer, Guy, & Radinsky, 2019) first computes the representation of the

nodes by a biased random walk through each snapshot of the dynamic graph, with a

technique called node2vec (Grover & Leskovec, s.d.). Then tries to align the consecutive

timesteps node embeddings by minimizing the distance between timesteps embedding

with a rotation matrix that rotates the future node embedding in the direction of the

previous node embedding. The final node representations are fed through a LSTM

recurrent neural network and LSTM hidden state is used for classification. This model

however is not end-to-end differentiable since the node2vec algorithm is a sampling

based algorithm. Furthermore, the model is limited to model the node representations

of the node embeddings and does not predict the evolution of the embeddings nor the

adjacency matrix.

The model from (Pareja & Domeniconi, 2019) first utilizes a Graph Convolutional Neural

Network (GCN) to get the node embeddings for each node in the graph, the utilizes a

recurrent neural network model to directly predict the weights of the GCN.

8

The model from (Zhao, et al., 2020) called T-GCN is similar to the previous model but

instead of feeding to the recurrent model the weights of the GCN, the recurrent model

takes as inputs the node embeddings previously generated. This thesis will build on the

architecture from this model to encode the node embeddings which will be used as

factors to reconstruct the graph. The main differences between this model and the one

which will be presented is that we utilize a different architecture called Graph Attention

Network to encode the nodes of the graph, as the GCN cannot process directed graphs.

Furthermore the T-GCN in the paper focuses on temporal graphs which are graph with a

fixed adjacency matrix and evolving node features. The model developed in this thesis

instead accepts different adjacency matrices for each time step prediction.

The model from (Chen & Chen, 2017) defines a bilinear latent factor model to get the

graph reconstruction from the nodes features and estimates the factors by defining the

auto-cross-covariance matrices at lag h between the column of the factor matrix. This

thesis will utilize the bilinear model to reconstruct the graph from the node embeddings

found with the T-GCN model.

The outline of thesis is as follow: the second chapter introduces the notion of a graph

and the different types of graphs, the third chapter introduces some network measures

to analyze the statistics of the nodes, the fourth chapter introduces the encoder building

block, the fifth chapter introduces the decoding building block and the sixth chapter

introduces the recurrent temporal modelling block, the seventh chapter defines the loss

function utilized to estimate the parameters of the model and the eighth chapter

introduces two uncertainty measures related to the data and the model.

9

1 INTRODUCTION TO GRAPHS

A graph 𝐺 ∈ {𝑁, 𝐸} is defined as the collection of a set of nodes 𝑁 ∈ {𝑛0, … , 𝑛𝑘} , where

𝑘 = |𝑁| is the total number of nodes, and a set of edges 𝐸 ∈ {𝑒0, … , 𝑒𝑚} connecting two

nodes, where 𝑚 = |𝐸| is the total number of edges. The edges 𝑒𝑖𝑗 = (𝑛𝑖, 𝑛𝑗) ∈ 𝐸 of a

graph are usually indexed by the indices of the source node i and the target node j. The

graph can be of three types depending on the values of the edges. The first type is the

binary graph where the edges are either 0 or 1: 𝑒𝑖𝑗 ∈ 0,1. The second type is the

weighted graph where the value of the edges are real numbers: 𝑒𝑖𝑗 ∈ ℝ. The weighted

graph is a generalization of a binary graph. The third type of graph is defined as an

attributed graph, where the edges have a vector as the value: 𝑒𝑖𝑗 ∈ ℝ𝑑. The attributed

graph is a generalization of a weighted graph.

1.1 UNDIRECTED AND DIRECTED GRAPHS

The graph can be furthermore split in two categories. The first category is the

undirected and thereby symmetric graph where the value of edges between the source

node and the target node is the same: 𝑒𝑖𝑗 = 𝑒𝑗𝑖.

Figure 1 Example of an Undirected Graph and undirected adjacency matrix

The second category is the directed and thereby asymmetric graph where the value of

edges between the source node and the target node may not be the same. Since the

transaction between countries has a directed structure as not all edges are mirrored and

the magnitude of the exchange differs whether the country is small or big, we utilize this

graph structure to build the model.

10

Figure 2 Example of a Directed Graph and a directed adjacency matrix

The adjacency matrix 𝐴 ∈ ℝ𝑘𝑥𝑘 is a square matrix the matrix used to represent the graph

where values 𝑎𝑖𝑗 are the edge weights. If the graph if undirected then 𝐴 = 𝐴𝑇 .

1.2 STOCHASTIC GRAPHS

A stochastic graph is a graph 𝐺 ∈ {𝑁, 𝐸, 𝑋} where N is the set of nodes, E is the set of

edges and X is the set of features associated with each node, is sampled from a

probability distribution defined over the space of graphs: 𝐺~ 𝑃(𝐺). Since the model

developed in this thesis belongs to a latent factor model, it assumes that the graph

structure can be fully characterized by the features of the nodes. We can define the

probability distribution over the graph as conditional to the node features:

𝐺~ 𝑃(𝐺|𝑋)

Since the ITN has a weighted directed graph structure one needs to model both whether

and edge is present between two nodes according to their features and, conditional on

the presence of an edge, the weight of the edge. The joint probability of the binary and

weighted edges can be decomposed as a probability distribution over binary edges B

conditioned on the node features and a probability distribution over the edge weights W

given the existence of an edge and the node features:

𝐺~ 𝑃(𝑊|𝑋, 𝐵)𝑃(𝐵|𝑋)

Where 𝑃(𝑊|𝑋, 𝐵) is a joint probability over the weighted edges of the graph and can be

any parametric continuous distribution:

11

𝑃(𝑊|𝑋, 𝐵) = ∏ ∏ 𝑃(𝑊𝑖𝑗|𝑥𝑖, 𝑥𝑗 , 𝐵𝑖𝑗)

𝑗𝑖

𝑊𝑖𝑗 ~𝑃(𝑊𝑖𝑗|𝑥𝑖, 𝑥𝑗 , 𝐵𝑖𝑗) = 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑊𝑖𝑗 | 𝑥𝑖 , 𝑥𝑗 , 𝐵𝑖𝑗; 𝜇𝑖𝑗 , 𝜎𝑖𝑗)

Since it is known that a log-normal distribution approximates quite well the value of the

transaction of the ITN (Aitchison & Brown, 1957), we choose this distribution to model

the weighted adjacency matrix, parametrized by the mean 𝜇 and variance 𝜎:

𝑃(𝐵|𝑋) is a joint distribution with independent Bernoulli components parametrized by

𝑝𝑖𝑗.

𝑃(𝐵|𝑋) = ∏ ∏ 𝑃(𝐵𝑖𝑗|𝑥𝑖, 𝑥𝑗)

𝑗𝑖

𝑃(𝐵𝑖𝑗|𝑥𝑖, 𝑥𝑗) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐵𝑖𝑗 | 𝑥𝑖 , 𝑥𝑗 ; 𝑝𝑖𝑗)

1.3 DYNAMIC GRAPHS

A dynamic graph is a graph where the nodes features, and the adjacency matrix change

over time. Formally a dynamic graph can be defined as a collection of graph snapshots

𝐺𝑑𝑦𝑛 ∈ {𝐺0, … , 𝐺𝑡} where each snapshot 𝐺𝑡 ∈ {𝑁𝑡, 𝐸𝑡, 𝑋𝑡} is the graph associated with a

time stamp indexed by t. The node features are vectors 𝒙𝒕
𝑛𝑖

∈ ℝ𝑑 associated with the

characteristics of the node. The full nodes feature matrix for timestamp 𝑋𝑡 ∈ ℝ𝑘 𝑥 𝑑 is the

matrix containing all the stacked node features. If the nodes do not have features, then

the graph is called a featureless graph. To model a featureless graph the node features

are set as a one-hot encoded vector where the vector has value 1 corresponding to the

index of the node and zero everywhere else. The vector is therefore the indicator

function 𝟙𝑖 .

The transition dynamics of a dynamic graph evolve according to a transition function

that take the node features at the previous time step and the current node features to

predict the next time step node features:

𝑋𝑡+1 = 𝑓(𝑋𝑡, 𝑋𝑡−1)

The function can either be a deterministic function or a stochastic function. In this thesis

the transition function will be a deterministic recurrent neural network.

12

2 EXPLORATIVE ANALYSIS: NETWORK MEASURES

To understand and visualize the structure of each snapshot of the dynamic graph we

utilize a diverse set of node similarity metrics which measure different statistics of the

nodes of the graph. For large graph the direct visualization of nodes and edges becomes

cumbersome since the plot would be too crowded to analyze. The different metrics on

the vertices can capture different aspects of different type connectivity of the graph. We

first introduce the simplest and most common metrics for directed graphs which are the

in-degree and out-degree of the nodes, the closeness between two nodes, the link

density and the Jaccard Similarity. We then introduce more sophisticated ones such as

the eigen-vector centrality and the Laplacian Clustering. (Zafarani, Abbasi, & Liu, 2014).

We utilized the Networkx library (Hagberg, Schult, & Swart, 2008) to compute the

following metrics.

2.1 NODE DEGREE

The node degree centrality counts the number of nodes adjacent nodes j to a node i. The

degree D is therefore the size of the neighborhood of node i:

𝐷(𝑛𝑖) = |𝒩𝑖|

Where 𝒩𝑖 = {𝑛𝑗|𝑒𝑖𝑗 ∈ 𝐸} is the set of nodes j that have a connecting edge with node i.

One can easily compute the node degree by summing alone one axis of the adjacency

matrix.

For directed graph one needs to distinguish the in-degree and the out-degree on the

node. For node 𝑛𝑖 , the in-degree 𝐷−(𝑛𝑖) measures the number of incoming edges for

node and the out-degree 𝐷+(𝑛𝑖) measures the out-going edges. The total degree is the

sum of the in-degree and out-degree. When combining the in/out degree one ignores the

edge direction, and the result will be the degree of an undirected graph:

𝐷−(𝑛𝑖) = ∑ 𝐴𝑖𝑗

𝑗

𝐷+(𝑛𝑖) = ∑ 𝐴𝑖𝑗

𝑖

𝐷𝑡𝑜𝑡(𝑛𝑖) = 𝐷+(𝑛𝑖) + 𝐷−(𝑛𝑖)

13

To see which noes are more central, the degree measures can be ranked to see which are

the most important nodes. If the in-degree is high, it signifies that a node has high

prestige in the network. If the out-degree is high, it signifies that a node has high

gregariousness, therefore having high influence in the network.

Figure 3 Node Degrees for the True graph (blue color) and Predicted graph (red color)

2.2 CLOSENESS CENTRALITY

The closeness between two nodes is a measure of centrality which calculates the inverse

of the shortest path between two nodes. The shorter the path distance between two

nodes the higher the closeness:

𝐶(𝑛𝑖, 𝑛𝑗) =
1

𝑑(𝑛𝑖 , 𝑛𝑗)

The shortest path can be computed by the A* search algorithm. The distance matrix

computed by the closeness centrality can be utilized for computing the closeness

centrality measure which sums the closeness between node i and all the other nodes

excluding itself:

𝐶(𝑛𝑗) =
𝑛 − 1

∑ 𝑑(𝑛𝑘, 𝑛𝑗)𝑘−1
1

14

2.3 LINK DENSITY

The link density measures the ratio between the existing edges and the total possible

edges. It allows to understand how much the graph is connected compared to a

complete graph where every node has a connection with every other node. For directed

graph the formula is:

𝐿𝑖𝑛𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠
=

|𝐸|

𝑘(𝑘 − 1)

For undirected graph one need to account for the fact that every edge is reciprocated,

thereby dividing by two the total edges:

𝐿𝑖𝑛𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠
=

|𝐸|

𝑘(𝑘 − 1)/2

2.4 JACCARD SIMILARITY

The Jaccard Similarity measures the overlap between the neighborhoods of two distinct

nodes. The measure is defined as the size of the intersection between two node’s

neighborhoods over the union of the two neighborhoods:

𝐽(𝑛𝑖 , 𝑛𝑗) =
|𝒩𝑖 ∩ 𝒩𝑗 |

|𝒩𝑖 ∪ 𝒩𝑗 |

15

3 STATIC GRAPH ENCODER

3.1 ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANN) (Goodfellow, Bengio, & Courville, 2016) is technique

that can model nonlinear relations between the input and the output. It is a biologically

brain-inspired function where each node of the network receives the input from the

sender and chooses how much of the signal to forward to subsequent nodes. Each layer

of the neural network is usually comprised of two steps: the composition of a linear

function with a nonlinear function. Considering the layer l, the first function in the

network layer projects the input features 𝑋 ∈ ℝ𝑘 × 𝑑, where k is the number of sampled

points and d is the original input size, by a linear projection matrix weight matrix

𝑊𝑙 ∈ ℝ𝑑×𝑜, where o is the size of the output. In addition, one can use a bias term 𝑏 ∈

ℝ𝑘×1 shared across the output dimensions, which acts as a translation the output space:

𝑧𝑙
𝑘 = 𝑥𝑘

T ⋅ 𝑊𝑙 = ∑ 𝑥𝑘𝑑𝑑 ⋅ 𝑊𝑙
𝑑𝑜 + 𝑏𝑘

𝑧𝑙
𝑘 ∈ ℝ𝑜

Which in matrix notation is

𝑍𝑙 = 𝑋 ⋅ 𝑊𝑙 + 𝑏𝑙

𝑍𝑙 ∈ ℝ𝑘 × 𝑜

The hidden representation Z is then transformed by a nonlinear function 𝜎(∙) selected

from a set of available functions. The non-linearity is applied element wise for each

output dimension of the vector 𝑧𝑘. The result of the nonlinear transformation is called

the activation of a neuron:

𝑎𝑘𝑜
𝑙 = 𝜎(𝑧𝑙

𝑘𝑜)

𝐴𝑙 = 𝜎(𝑍𝑙)

Chaining these operations will result in a deep neural network with multiple layers:

𝐷𝑁𝑁𝐿(𝑋) = 𝜎𝐿 (𝑍𝐿 … (𝜎0(𝑍0(𝑊𝑙𝑋)))) = 𝜎𝐿 ∘ 𝑍𝐿 ∘ 𝑊𝐿 ∘ . . .∘ 𝑋

16

Where L is the number of layers.

Figure 4 Diagram of a Deep Neural Network (https://stackoverflow.com/, 2021)

The above diagram represents the output units as nodes and the weights connections as
directed edges.

Figure 5 Visualization data transformed by the hidden layer and activation layer

17

3.1.1 Sigmoid Activation

One common activation function is the logistic function also called sigmoid. This

function has the property of mapping the domain of the function onto the range

contained between (0,1).

𝜎(𝑥) =
1

1 + 𝑒−𝑥

Figure 6 Sigmoid Function and its derivative

This activation can be used as either the hidden activation or for the final layer for

binary classification. One issue with this activation function is that the derivative

saturates for large values of the input, thereby impeding the learning process since the

derivative update will be close to zero.

3.1.2 Relu Activation

The most common activation function is the relu function which is 𝜎𝑟𝑒𝑙𝑢(𝑥) = max (0, 𝑥).

This activation is very common and performs empirically well because it solves the

gradient saturation problem (Xu, Wang, Chen, & Li, 2015) because the gradient is

constant independently from the values of the input. One problem with this activation is

that the gradient is a step function. For values less than zero the gradient update will be

zero.

Figure 7 Relu Function and its derivative

18

3.1.3 Softplus Activation

The softplus activation function is an improvement over the relu function as it

smoothens the boundary at 0. Therefor the gradient still exists for values near zero.

𝜎𝑠𝑜𝑓𝑡𝑝𝑙𝑢(𝑥) = ln (1 + 𝑒𝑥)

Figure 8 Softplus Activation function and its derivative

3.1.4 Leaky-Relu Activation

The Leaky-Relu activation function is similar to the Relu activation function however it

has a small nonzero gradient for values less than 0 controlled by the parameter 𝛼.

𝜎𝑙𝑒𝑎𝑘𝑦−𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(𝛼𝑥, 𝑥)

𝛼 ∈ [0,1]

Figure 9 Leaky-Relu Function and gradient

3.1.5 Tanh Activation

The Tanh activation maps the input domain onto the range (-1, 1) and is often used as a

gating function in recurrent neural network models.

19

3.2 AUTOENCODER MODEL

A deep neural network can be though as an encoding step which maps the inputs to a

lower dimensional space called hidden space. If a decoding step which maps the hidden

back to the original input space is present, the resulting architecture is defined as an

autoencoder, as it tries to automatically encode the input features by non-linearly

projecting them to a lower dimensional space and then trying to reconstruct the original

input features in the original space. Formally, an autoencoder is defined as:

𝐷𝑁𝑁𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∶ 𝑋 → 𝑋′

𝐷𝑁𝑁𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ∶ 𝑋′ → 𝑋

Where 𝑋 ∈ ℝ𝑘 × 𝑑 and 𝑋′ ∈ ℝ𝑘 × 0, and o < d. Then one needs to define how close the

reconstruction is from the true data points:

𝐿(𝑋, 𝑋′) = ||𝑋, �̂�||2 = ||𝑋 − 𝐷𝑁𝑁𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝐷𝑁𝑁𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋))||2

= ||𝑋 − 𝜎𝐿 (𝑍𝐿 … (𝜎0(𝑍0(𝑋)))) ||2

Where 𝐿(𝑋, 𝑋′) is the 𝐿2 norm reconstruction loss between the input and the predicted

output of the neural network. Many different loss functions can be utilized based on the

task at hand, which will be explained more in details in chapter 7. The autoencoder

model is a general model which can be used with many different architectures such as

Convolutional Neural Networks (CNN) (LeCun, Haffner, Bottou, & Bengio, 1999),

Recurrent Neural Networks (RNN) (David, Geoffrey, & Ronald, 1985) and GNNs.

20

3.3 TRAINING A NEURAL NETWORK

 The parameters of the neural network are optimized with gradient descent. At every

step of the iteration, called epoch, the weights of the NN are updated by the gradient of

the weights with respect to the loss function. The gradient is multiplied by a parameter

that controls how much the weights will be updated:

𝜃𝑡+1 = 𝜃𝑡 − ∇𝜃𝐿(𝑋, �̂�)

To calculate the gradient w.r.t the loss function, the back-propagation algorithm is used

(Rumelhart, Hinton, & Williams, 1986). This algorithm is based on the chain rule of

derivation and efficiently computes the gradient for every layer. Here we show an

example of computing a single weight partial derivative w.r.t the loss function as layer 𝑙.

𝜕𝐿(𝑋, �̂�)

𝜕𝑊𝑖𝑗
(𝑙)

=
𝜕𝐿(𝑋, �̂�)

𝜕𝜎𝑖
(𝐿)

⋅
𝜕𝜎𝑖

(𝐿)

𝜕𝑧𝑖
(𝐿)

⋅
𝜕𝑧𝑖

(𝐿)

𝜕𝑊𝑖𝑗
(𝐿)

⋅
𝜕𝑊𝑖𝑗

(𝐿)

𝜕𝜎𝑖
(𝐿−1)

… ⋅
𝜕𝑧𝑖

(𝐿−1)

𝜕𝑊𝑖𝑗
(𝐿−1)

3.4 GRAPH NEURAL NETWORKS

The main difference between an ANN and a Graph Neural Network (GNN) is that the

GNN operates on a set of nodes features with a dependency structure based on the

adjacency matrix, instead of treating the nodes as an independent sampled point. The

static graph encoder is a neural network function that maps the node features of the

graph to a latent representation. The main idea behind a graph neural network is that

the node features, and therefore the information related to a node, is shared between

adjacent nodes based on the adjacency matrix. Therefore, the GNN takes as input both

the node features and the adjacency matrix. The procedure of sharing messages is called

the message passing step. Formally a GNN is a function defined as 𝐺𝑁𝑁: (𝑋, 𝐴) → 𝑋′. All

GNN models so far developed can be casted into a message passing framework

(Bronstein, Bruna, Cohen, & Veličković, 2021).

21

Figure 10 Message Passing Representation (Bronstein, Bruna, Cohen, & Veličković, 2021)

The node features 𝑥𝑖 are updated by weighting the incoming nodes features 𝑥𝑗 of the

neighbors. The node features are then aggregated via a permutation invariant operator

such as the sum, mean or max operator.

For a convolutional neural network, the values of the weights depend directly on the

weights of the adjacency matrix.

For the graph attention network, the weights are implicitly computed based on the

agreement between node features of the incoming neighbors and the receiver node via

the attention mechanism. The message passing framework is the superset of the two

methods where the message between two nodes is computed by a learnable function. In

the following paragraph the graph attention model will be explained more in details.

3.4.1 Graph Attention Network

The graph attention network (GAT) (Petar, et al., 2018) was developed to increase the

flexibility of the GCN by having learnable filter graph which learns the weight to assign a

node neighbor in order to efficiently learn to propagate the signal through the graph. For

each time step of the dynamic graph we have a set of node features 𝑋 = {𝑥0, … , 𝑥𝑘} ∈

ℝ𝑘 × 𝑑. The GAT model will product a new set of node features 𝑋′ as its output.

The initial set is to first multiply the initial features by a matrix 𝑊 ∈ ℝ𝑑×𝑓 which will

project the initial node features to the space of dimension f:

𝐻 = 𝑋𝑊

Then the transformed node features H will be utilized to get the edge attention matrix A.

First a scoring function will be used to get the score of the tuple of nodes (i,j) features.

22

The scoring is done by concatenating the edge features of the two nodes and multiplying

the resulting vector by a learnable kernel, followed by an activation function:

𝑒𝑖𝑗 = 𝑅𝑒𝑙𝑢(𝑘𝑇[ℎ𝑖||ℎ𝑗])

To efficiently calculate the edge scores one can split the kernel 𝑘 ∈ ℝ2𝑓×1 by half, where

one half will score the so-called self-attention, and the other half will score the neighbor.

The result of the two scores ℎ𝑠𝑙𝑒𝑓 ∈ ℝ𝑘×1 and ℎ𝑛𝑒𝑖𝑔ℎ𝑏 ∈ ℝ𝑘×1 can be summed together

by taking advantage of broadcasting operations of mathematical libraries to get the edge

score matrix 𝐸 ∈ ℝ𝑘×𝑘 .

Since the score matrix E will be dense as the attention scores every node tuple, many

nodes that are not in the neighborhood of the aggregating node will have influence in the

message aggregation step. To avoid this issue the authors proposed to apply a mask to

every edge which in not in the edge set.

𝑒𝑖𝑗 = 𝑒𝑖𝑗 + 𝑚𝑎𝑠𝑘𝑖𝑗

𝑚𝑎𝑠𝑘𝑖𝑗 = 𝟙𝑒𝑖𝑗∈𝐸

Where the values of the mask are 0 for existing edges and −10𝑒8 for non-existing edges.

The high negative value in the mask is necessary because the edge scores will be

normalized by a softmax function, therefore if the mask values were not high enough

there would be still some weight given to that specific edge attention. The edge scores

are then normalized as follows:

𝑎𝑖𝑗 =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘∈𝒩𝑖

The attention weights will then be used to compute a linear combination of the features

by multiplying the attention matrix A with the node features X, followed by an activation

function:

𝑋′ = σ(A ⋅ X)

𝑥𝑖
′ = 𝜎 (∑ 𝑎𝑖𝑗

𝑘 ℎ𝑗

𝑗∈𝒩𝑖

)

23

To stabilize the training and encoding different graph views the authors proposed to

multiple kernels for the attention mechanism {𝑘𝑖, … , 𝑘𝐾} and either concatenate the

resulting output node features:

𝑥𝑖
′ = [𝜎 (∑ 𝑎𝑖𝑗

0 ℎ𝑗

𝑗∈𝒩𝑖

) || … || 𝜎 (∑ 𝑎𝑖𝑗
𝐾 ℎ𝑗

𝑗∈𝒩𝑖

)]

or average output node features:

𝑥𝑖
′ =

1

𝑘
∑ 𝜎 (∑ 𝑎𝑖𝑗

0 ℎ𝑗

𝑗∈𝒩𝑖

)

𝑘

This architecture can be castes into a message passing framework as:

Figure 11 Message passing GAT (Bronstein, Bruna, Cohen, & Veličković, 2021)

Where ℎ𝑢 is the final node representation, 𝑥𝑢 is the initial node representation, the ⨁ is

the aggregation operator that aggregates messages from the neighbors, which in this

case is just the sum operator, 𝜓 is an initial node embedding transformation function

which in the case of GAT is a linear transformation, 𝑎(𝑥𝑢, 𝑥𝑣) is a function that scores the

nodes, which in this case is the attention mechanism and 𝜙 is a final transformation

which in this case is the final activation function.

24

4 STATIC GRAPH DECODER

Now that we have defined the framework to encode the original input nodes into a

latent embedding dimension, we can now focus on how to reconstruct the graph

adjacency matrix for a single time step. Formally, given the resulting transformed node

features outputted by the GAT model, we would like to design a function such that takes

as input two nodes and returns a value which will be the parameters of the predictive

distribution:

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ∶ 𝑋′ × 𝑋′ → 𝐴

We will need to implement three separate decoders, one for each parameter of the

distribution. The first decoder will be used to parametrize the joint Bernoulli

distribution to predict the existence of and edge, the second decoder will be used to

parametrize the mean of the Lognormal joint distribution and the third will be used to

parametrize the variance of the Lognormal join distribution.

There are two main ways to reconstruct a stochastic graph parameter from node

features. The first one is known as the inner-product decoder, the second one is a

generalization of the inner-product decoder and support asymmetric matrices.

The inner-product decoder takes two nodes feature matrices and computes the inner-

product of each pair of nodes:

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑖𝑛𝑛(𝑋) = 𝑋𝑋𝑇

The resulting matrix will have size 𝑘 × 𝑘 where 𝑘 is the size of the set of nodes. The

inner product measures the unnormalized cosine distance between two points and can

be though of as a measure of similarity between two embeddings. The issue with this

type of decoder is that the inner-product is a symmetric operation and therefore cannot

approximate a directed graph.

To overcome this issue one simple method is to introduce a square matrix with the same

dimension of the node features dimension to make the score asymmetric. This type of

decoder is called a bilinear decoder (Chen & Chen, 2017):

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝑋) = 𝑋𝑅𝑋𝑇

25

Where 𝑅 ∈ ℝ𝑓×𝑓 and 𝑋 ∈ ℝ𝑘×𝑓. One can realize that if the R matrix was an identity

matrix with ones as diagonal and zero everywhere else, the bilinear product would

reduce to an inner-product. One way to justify to the bilinear product formula is to first

linearly transform the features of the left embedding matrix with a square parameter

matrix: 𝑋 ⋅ 𝑅0, and the same for the right embedding matrix: 𝑋 ⋅ 𝑅1. Then we perform

the inner product between the two transformed matrices: (𝑋 ⋅ 𝑅0) (𝑋 ⋅ 𝑅1)𝑇 =

 (𝑋 ⋅ 𝑅0)(𝑅1
𝑇𝑋𝑇) = 𝑋𝑅𝑋𝑇.

5 RECURRENT TEMPORAL ENCODER

Having defined how to transform the initial features into a latent embedding via a graph

neural network encoding and a way to reconstruct a graph from the node embeddings,

we will now focus on how to model the dynamics of the node to exploit the temporal

structure of the dynamic graph. The models we will use are recurrent neural network

models (RNN). These family neural networks are used to process sequential data and

the parameters of the neural network are shared across time. These models take the

either the output of the model from the previous time step, the input at the current time

step or the hidden state from the previous time step which holds information from the

past and carries it forward in the future. One advantage of using such architectures to

model temporal data is that they have an inductive bias to model sequential structured

data and do not necessarily need an explicit time dimension to understand the passage

of time. However there are two main drawback of using an RNN. The first is that the

computation runs sequentially and can be slow to run for many time stamps. The second

major drawback is that they suffer from the so-called vanishing gradient problem

(Hochreiter, 1998). This problem is inherent from the gradient-based optimization

algorithm used, which is called Back Propagation Through Time (BPTT). One way to

alleviate the vanishing gradient problem is to introduce some gating functions that

modulate the signal going forward and allow better control over the gradient in the

backward optimization step. The more advanced recurrent models such as the Long

Short Term Memory (LSTM) network and the Gated Recurrent Units (GRU) utilize gating

functions and achieve better performance.

26

5.1.1 Recurrent Neural Network

A recurrent neural network is the simplest RNN for of recurrent network. The model

holds a hidden state for each time step which is used to carry information from the past

forward into the future. At each time step, the model first encodes the current time step

input and maps it to a hidden space. The model then merges the hidden state from the

previous time step and the encoded input and it updates the current hidden state.

Finally the model decodes the hidden state to get a prediction output which will be

wither used for downstream tasks or as the actual output of the model.

Formally a neural network is a function parametrized by the set of parameters 𝜃 of the

type:

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1; 𝜃)

Figure 12 Computation diagram of RNN. The left graph is the representation of the
computational flow of the RNN. The right graph is the “unrolled computational graph” where

the computational steps are made explicit (Weijiang, Naiyang, Yuan, AU, & Zhigang, 2017)

The computation of the functions is done recursively via a feedback loop that feeds back

the hidden state to the function. The forward propagation of the state is done by the

following update equations:

𝑎 = 𝑏 + 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡

ℎ𝑡 = 𝜎(𝑎)

𝑜 = 𝑏𝑜 + 𝑉ℎ𝑡

Where ℎ𝑡−1 ∈ ℝ𝑑 is the hidden state vector, 𝑊 ∈ ℝ𝑑×𝑑 is the hidden state parameter

used to for the hidden state transition, 𝑈 ∈ ℝ𝑖×𝑑 is a weight matrix which maps the

input 𝑥𝑡 ∈ ℝ𝑖 at time to the hidden state space, 𝑏 ∈ ℝ𝑑 is a bias term and 𝜎 is the tanh

activation function. To get the final output a further linear projection matrix V is used

27

with a bias term 𝑏𝑜. The initial state ℎ0 is set to the zero-vector indicating that the

sequence is staring.

This simple recurrent architecture can be adapted to process the temporal dependence

of the dynamic graph. First, instead of a vector, the input to the RNN will be the encoded

node feature matrix 𝑋𝑡 ∈ ℝ𝑘×𝑓 for the current time step. To get the encoded node

feature matrix we will use the GAT encoder with the initial features and current

adjacency matrix. The hidden state dimension changes from a vector to a matrix of the

same shape as the encoded node feature matrix, therefore each node will have its own

state. The recurrent graph architecture is implemented by the following equations:

𝑋𝑡
′ = 𝐺𝐴𝑇(𝐴𝑡, 𝑋𝑡)

𝐻𝑡 = 𝑏 + 𝑊ℎ𝐻𝑡−1 + 𝑊𝑥𝑋𝑡
′

𝐻𝑡
′ = 𝜎(𝐻𝑡)

These equations implement a GAT-RNN cell. Having updated the previous hidden state

with the current inputs, we can then use the new state at the current time step to decode

the graph parameters utilized by the joint distribution of the edges with the bilinear

decoder model followed by an activation function. Each parameter of the distribution is

computed by an independent GAT-RNN cell, thereby decoupling the dynamics of

different parameters:

𝑃𝑡 = 𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝐻𝑡
𝑝))

𝑊𝑡 = 𝜎𝑟𝑒𝑙𝑢(𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝐻𝑡
𝑤))

𝑉𝑡 = 𝜎𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝐻𝑡
𝑣)) + 1−3

The activation function for the parameters used to parameterize the Bernoulli

distribution 𝑃𝑡 is the sigmoid function, since the output of the activation will be bounded

between (0,1) and therefore can model del probability parameter. The activation

function used for the edge weights 𝑊𝑡 is the relu function since the transactions amount

between countries must be greater than zero. The matrix 𝑊𝑡 will be used to parametrize

the mean of the LogNormal distribution. The activation function for the standard

deviation parameter is the softplus function with an added a small constant to prevent

the numerical instabilities. As previously mentioned, this model suffers from the

28

vanishing gradient problem. One model that deals with this issue is the Gated Recurrent

Unit recurrent model, which will be introduced in the following paragraph.

5.1.2 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) (Cho, Merrienboer, Bahdanau, & Bengio, 2014) (Chung,

Gulcehre, Cho, & Bengio, 2014) is conceptually similar to the simple RNN but it’s more

suitable for longer time sequences. We chose to implement a GRU instead of the LSTM

because it has less parameter to estimate compared to the LSTM and empirically

performs better. To avoid the vanishing gradient problem the, function implements the

so called gated units which allow the function to forget and update part the hidden state.

This functionality allows the gradient to create shortcuts path that bypass multiple time

steps. The two novel states compared to the RNN are the reset gate and the update gate.

First a candidate state 𝐶𝑡 is proposed by gating the previous state 𝐻𝑡−1 with a reset

function that output the reset values 𝑅𝑡:

𝑋𝑡
′ = 𝐺𝐴𝑇(𝑋𝑡, 𝐴𝑡)

𝑅𝑡 = 𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟𝑋𝑡
′ + 𝑈𝑟𝐻𝑡−1 + 𝑏𝑟)

𝐶𝑡 = 𝜎𝑡𝑎𝑛ℎ(𝑊𝑐𝑋𝑡
′ + 𝑈𝑐(𝑅𝑡 ⊙ 𝐻𝑡−1) + 𝑏𝑐)

Where ⊙ is the element wise product. 𝑊𝑟 and 𝑈𝑟 are the weight matrices of the reset

gate and 𝑏𝑟 is the bias term. 𝑊𝑐 and 𝑈𝑐 are the weight matrices of the candidate state and

𝑏𝑐 is the bias. The new hidden state is the result of a linear interpolation between the

previous state 𝐻𝑡−1 and the candidate state 𝐶𝑡. The interpolation coefficient is controlled

by the update gate function 𝑈𝑡:

𝑈𝑡 = 𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑢𝑋𝑡
′ + 𝑈𝑢𝐻𝑡−1 + 𝑏𝑢)

𝐻𝑡 = (1 − 𝑈𝑡) ⊙ 𝐻𝑡−1 + 𝑈𝑡 ⊙ 𝐶𝑡

We then predict the parameters of the distribution of the edges based on the updated

hidden state 𝐻𝑡. As in the RNN case, each bilinear decoder will receive the output from a

different GAT-GRU encoding block, since sharing the hidden state between parameters is

detrimental for the learning process.

29

5.1.3 Training with Back Propagation Trough Time (BPTT)

To optimize the weights of a recurrent neural network one needs to backpropagate the

error gradient to each previous step of the computations. This is because the hidden

state of the current time step depends on all the previous hidden states. The technique

to propagate the error gradient to the previous time steps is call Back Propagation

Through Time (BPTT) (Werbos, 1990). The method is passed on the backpropagation

methods, which is simply the chain rule. However, instead of limiting the gradient

update to just one step, the chain of gradients is computed up to the initial time step for

each time step of the sequence. The following derivation of the algorithm is applied to

the simpler RNN case and only for the parameter that multiplies the hidden state. The

same logic applies to the more complex GRU and the other parameters.

For each time step, a loss function is computed, and the total loss function will be the

sum of the losses divided by the number of time steps:

𝐿𝑡𝑜𝑡 =
1

𝑇
∑ 𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝑡

Where 𝑦 is the desired output and 𝑦�̂� is the predicted output. The derivative w.r.t the

weights that multiply the hidden state at time t will be (Hu, s.d.):

𝜕𝐿

𝜕𝑤ℎ
=

1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝜕𝑤ℎ
𝑡

=
1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝜕𝑤ℎ
𝑡

=
1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝜕𝑜𝑡
𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕𝑤ℎ

The problem now stems from the fact that
𝜕ℎ𝑡

𝜕𝑤ℎ
 depends on the previous ℎ𝑡−1 according

to the update equation of the RNN: ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1; 𝑤ℎ). To compute the partial

derivative of the hidden state w.r.t the weight 𝑤𝑡 we need a recursive formula that

computes the partial derivative of the previous hidden state to the current hidden state

for each time step (Murat, s.d.):

𝜕ℎ𝑡

𝜕𝑤ℎ
= (∏

𝜕ℎ𝑡+1

𝜕ℎ𝑡

𝑡−1

𝑡=1

)
𝜕ℎ𝑡

𝜕𝑤ℎ

⟹
𝜕𝐿

𝜕𝑤ℎ

=
1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡 , 𝑦�̂�)

𝜕𝑜𝑡
𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

 (∏
𝜕ℎ𝑡+1

𝜕ℎ𝑡

𝑡−1

𝑡=1

)
𝜕ℎ𝑡

𝜕𝑤ℎ

Since the formula for the derivative contains the product of the partial derivative of the

hidden state up to time t-1, this will lead to instability during training as the gradient

30

would either vanish or blow up. To mitigate this effect the one can truncate gradient

computation to T-k time steps. The summation will thereby begin on the k time step and

the gradient will then backpropagated up to k time steps. Thanks to modern auto

differentiation frameworks the recursive gradient updates is calculated automatically.

6 LOSS FUNCTION

The following loss function is based on the maximization of the log-likelihood of the

distribution parameterizing the network edges. The likelihood of a function is the

probability of the data being generated by the parameter of the distribution:

ℒ(𝜃|𝒙) = 𝑃(𝑥0, … , 𝑥𝑖|𝜃) = ∏ 𝑃(𝑥𝑖; 𝜃)

𝑖

Where, in the example above, 𝒙 is a vector containing independently sampled points

generated by the true parameter 𝜃∗. ℒ is the likelihood function of the parameter 𝜃.

Since the points are independently sampled, the join probability of the points is the

product of their individual probability distribution parametrized by the parameter 𝜃.

We would therefore like to find the parameter of the distribution that maximize the

likelihood:

𝑎𝑟𝑔𝑚𝑎𝑥 𝜃ℒ(𝜃|𝒙)

The likelihood of a graph corresponding to a single time step if defined by the edge

distribution. Since the network adjacency matrix is a sparse matrix with many more

missing edges that existing edges, we chose the zero-inflated lognormal distribution to

model the edge probability. The zero inflated lognormal distribution is a mixed discrete-

continuous distribution.

One component of the zero-inflated lognormal is the lognormal distribution. Samples

from a lognormal distribution are distributed according to exponentiated gaussian

samples and vice versa, the natural log of samples from the lognormal distribution will

be distributed as a gaussian distribution:

31

𝑥 ∼ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇, 𝜎)

𝑒𝑥 = 𝑦 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑒𝜇, 𝑒𝜎)

The lognormal is characterized by the following pdf parametrized by 𝜇 and 𝜎:

𝑃𝐷𝐹(𝑥) =
1

𝑥𝜎√2𝜋
𝑒

−
ln(𝑥)−𝜇

2𝜎2

The discrete component of a zero-inflated distribution is the Bernoulli distribution:

{0,1} ∼ 𝐵𝑒𝑟𝑛𝑢𝑙𝑙𝑖(𝑝)

The pdf of the zero-inflated lognormal distribution is (Vandal, Kodra, Dy, & Ganguly,

2018):

𝑃𝐷𝐹(𝑥) = 𝑓(𝑥; 𝜇, 𝜎, 𝑝) = {

1 − 𝑝 𝑥 = 0

𝑝
1

𝑥𝜎√2𝜋
𝑒

−
ln(𝑥)−𝜇

2𝜎2 , 𝑥 > 0

Since the likelihood function is a product of individual probability density functions, it

would not be computational feasible to directly optimize it because of the product rule

of differentiation. One common way to obviate the problem is maximizing the log-

likelihood. The log is a monotonically increasing function. The same value will maximize

both the likelihood and the log-likelihood. Taking the log of the products will result in a

sum over log-densities functions for each possible edge in the graph. The log likelihood

of join distribution of the edges for one time step will be:

 𝐿𝑜𝑔(ℒ(𝜃)) = ln(𝑓(𝐸 ; 𝜃)) =
1

𝑘2
∑ ∑ 𝟙𝑒𝑖𝑗>0 ⋅ 𝑃𝑖𝑗 + (1 −

𝑗𝑖

 𝟙𝑒𝑖𝑗>0)(1 − 𝑃𝑖𝑗)

 −
1

2𝑘2
∑ 𝑉𝑖𝑗

−2

𝑖,𝑗∈𝐸

|| log(𝐸𝑖𝑗) − 𝑊𝑖𝑗||2 + log (𝑉𝑖𝑗
2)

Where 𝜃 = {𝑃, 𝑊, 𝑉} is the set on weight matrices that will parametrize the distribution

and 𝑘2 is the total number of edges. P is the decoded probability matrix, W is the

decoded mean matrix and V is the decoded standard deviation matrix. From the formula

one can recognize that the first part is the cross-entropy binary loss classification loss,

and the second part is the regression loss with an adjustment for the variance. If the

variance was constant the regression loss would reduce to the squared error loss. The

32

loss function takes as input the adjacency of the t+1 time step and the parameters of the

distribution over edges predicted at time step t, which will be used to compute the

likelihood for the adjacency matrix.

To optimize the weights of the network, for each time step we update the parameter

weights based on the gradient of the negative log-likelihood function, so that the

optimization process will minimize the loss function:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝐿𝑜𝑔(ℒ(𝜃𝑡))

Where 𝛼 is the learning rate hyper-parameter that controls how much the weights are

updated. The problem with the maximum likelihood estimation is that it gives a point

estimate of the optimal parameters and not the full posterior distribution. The following

chapter will present how to approximate the full posterior and the difference between

model and data uncertainty

7 ALEATORIC AND EPISTEMIC UNCERTAINTY ESTIMATION

The total uncertainty can be divided into a model uncertainty part called epistemic

uncertainty, which represent the uncertainty over the model parameters, and the

aleatoric uncertainty, which represent the inherent variability of the data. The epistemic

uncertainty is also known as reducible uncertainty because as the number of data points

increases, the lower the uncertainty over the parameter of the model. For points close to

the training input data points the epistemic uncertainty will be low and will

progressively be higher for point outside the training distribution.

7.1 ALEATORIC UNCERTAINTY

The expectation and variance of the distribution is (Vandal, Kodra, Dy, & Ganguly, 2018):

𝔼[𝐸𝑠] = 𝑃𝑠 𝑒𝑥𝑝(𝑊𝑠 +
1

2
𝑉)

𝕍[𝐸𝑠] = 𝑃𝑠
2 𝑒𝑥𝑝(2𝑊𝑠 + 2𝑉)

The variance of 𝕍[𝐸𝑠] represents the uncertainty of the data, also known as aleatoric and

irreducible uncertainty.

33

7.2 EPISTEMIC UNCERTAINTY WITH DROPOUT

Dropout (Srivastava, Hinton, & Krizhevsky, 2014) is a simple technique to inject noise

into every layer of the neural network. The resulting output will be stochastic, and the

variance of the output will represent the model uncertainty over the input data. Dropout

samples, at every layer, either a binary mask or a continuous valued mask from either a

Bernoulli distribution or a gaussian distribution and multiplies the mask to the layer

activations outputs.

𝒎𝑙~ 𝐵𝑒𝑟𝑛𝑢𝑜𝑢𝑙𝑙𝑖(1 − 𝑝)

𝜎𝑙
′(𝑧) = 𝜎𝑙(𝑧) ∗ 𝒎𝑙

𝜎𝑙+1(𝑧) = 𝜎𝑙
′(𝑧)𝑊𝑙

Figure 13 Dropout visualization (Srivastava, Hinton, & Krizhevsky, 2014)

Where 𝜎 if the activation function of the units in a single layer l and 𝒎𝑙 ∈ ℝ|𝑧| is the

mask of the same size of the activation output and 𝑝 is the probability of retention. This

will result on some activations to be dropped from the network. During training, only

the resulting subnetwork weights are updated, however all the neural network weights

will be update in expectation during many epochs of training. This can be though as

model averaging. Dropout is also used as a function regularizer which allows the model

to generalize better to unseen data points and leads to faster parameter convergence.

As demonstrated by (Gal, 2016), any neural network optimized with dropout is

equivalent to a form of approximate inference in a probabilistic interpretation of the

model. This result is important because it shows that the optimal weights found by

training a neural network with dropout will be the same as the ones found by optimizing

a Bayesian Neural Network with variational inference. Therefore, this means that a

34

neural network trained with dropout already is a Bayesian neural network. The prior

distribution on the neural network weights is related to the amount of noise of the mask.

One can get the estimates of the parameter uncertainty by doing T forward passes with

T different sampled masks and then estimate the variance of the output of the model.

This variance will be the model uncertainty or epistemic uncertainty. The total variance

of the model will therefore be the epistemic variance plus the aleatoric variance.

At inference time one can decide whether to sample the dropout activation mask to

make the output of the network stochastic. If the dropout is not used during inference,

the weight matrices of the network must be scaled by the dropout probability 𝑝:

𝑊𝑡𝑒𝑠𝑡 = 𝑝𝑊𝑡𝑟𝑎𝑖𝑛

To make a concrete example, the following figures represent a regression problem on a

toy dataset where the independent variable follows a heteroskedastic gaussian

distribution with linear mean and nonlinear variance. The first figure shows the training

data point and the prediction from the estimated model.

Figure 14 True and Predicted samples

35

Figure 15 True and Predicted mean and variance without dropout during inference

Figure 16 True and Predicted mean and variance with dopout

The second and third figures show the estimated and true parameter of the distribution.

The function used to parametrize the mean and variance of the gaussian distribution is a

deep neural network parametrized by the weight matrices and biases θ = {𝑊𝑙 , 𝑏𝑙}. The

figure on the left shows the uncertainty over the parameters of the model. For each

36

forward pass of the model a different set of parameters (𝜇, 𝜎) are sampled which will

then be used to parametrize a gaussian distribution:

μ, σ~𝐷𝑁𝑁(𝑥; 𝜃)

𝑦~𝑁(𝑥; σ, μ)

The figure on the right instead does not use dropout during the inference stage and

therefore the parameters of the output distribution are deterministic. As one can see in

the left figure, the higher the variance of the data the more uncertain the parameters

values are, however the mean of the distribution closely approximates the true mean of

the parameters.

To get the total uncertainty estimate, we need to sample 𝑆𝑝 number of parameters which

will parametrize the zero-inflated distribution. Then one can proceed in two ways. The

first is to sample 𝑆𝑑 points and compute the mean and variance of the data points for

each sampled coefficient.

𝑊𝑠𝑝
, 𝑉𝑠𝑝

, 𝑃𝑠𝑝
 ~ 𝑀𝑜𝑑𝑒𝑙(𝐴𝑡, 𝑋𝑡; 𝜃, 𝑀)

𝐸𝑠𝑑
 ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑊𝑠𝑝

, 𝑉𝑠𝑝
, 𝑃𝑠𝑝

)

𝔼[𝐸] =
1

𝑆𝑡𝑜𝑡
∑ 𝐸𝑠𝑑

𝑆𝑠𝑑

𝕍[𝐸𝑠] =
1

𝑆𝑡𝑜𝑡
∑(𝐸𝑠𝑑

− 𝔼[𝐸])
2

𝑆𝑑

Where 𝑆𝑡𝑜𝑡 = 𝑆𝑝 ∗ 𝑆𝑑.

The second method is to compute the expected mean and variance of the final

distribution by taking a Monte Carlo estimate of the mean and variance of the aleatoric

uncertainty:

𝔼[𝐸] =
1

𝑆𝑝
∑ 𝑃𝑠𝑝

 𝑒𝑥𝑝(𝑊𝑠𝑝
+

1

2
𝑉𝑠𝑝

)

𝑆𝑝

𝕍[𝐸] =
1

𝑆𝑝
∑ 𝑃𝑠𝑝

2 𝑒𝑥𝑝(2𝑊𝑠𝑝
+ 2𝑉𝑠𝑝

)

𝑆𝑝

37

The second method is the preferred method since it requires a smaller number of

samples (Vandal, Kodra, Dy, & Ganguly, 2018).

8 MODEL EVALUATION

To assess the model performance, one needs to define a diverse set of metrics that can

capture the predictive capabilities of the model. These metrics can either be computed

during the training phase to check whether the optimization process is running

correctly or can be computed during the evaluation phase there the optimization

process is stopped, and the model is evaluated on unseen data.

The usual way to evaluate a model is to split the dataset in three blocks. The first set

which will contain most of the data is the training set. The model will be optimized on

this training set. The second set is called the validation set where in each iteration of the

optimization procedure the model will be evaluated on this set to check whether the

model is overfitting to the training set. The third set is the test set which will be used to

evaluate the model on completely unseen data. The difference between the validation

set and the test set is that if the modeler tunes some hyperparameters of the model, for

example the learning rate, the number of layers or the activation function, the model

could still overfit to the test set even though the model itself has not been trained on it.

Therefore, the test set is used to evaluate the performance of the model on completely

unseen data. One can then check the discrepancy between the evaluation metrics

computed on the different dataset splits and check whether the model overfits to the

training set and how well it generalizes to unseen data.

Since the input data of the model is an ordered set of adjacency matrices, to implement

the training, validation split we mask some of the edges of each input adjacency matrix

𝐴𝑡 and output adjacency matrix 𝐴𝑡+1 by sampling a binary matrix with probability 𝑝:

𝑀𝑡
𝑡𝑟𝑎𝑖𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑡𝑟𝑎𝑖𝑛) 𝑎𝑛𝑑 𝑀𝑡

𝑡𝑒𝑠𝑡 = 1 − 𝑀𝑡
𝑡𝑟𝑎𝑖𝑛

𝐴𝑡
𝑡𝑟𝑎𝑖𝑛 = 𝐴𝑡 ⊙ 𝑀𝑡

𝑡𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝐴𝑡
𝑡𝑒𝑠𝑡 = 𝐴𝑡 ⊙ 𝑀𝑡

𝑡𝑒𝑠𝑡

We sample 𝑇 − 𝑡𝑡𝑒𝑠𝑡 binary masks and leave the next 𝑡𝑡𝑒𝑠𝑡 time steps for the test set.

The following paragraphs will introduce two types of evaluation metrics. The first type

of measures is related to the regression task, where the analysis is focused on the

38

distance between the true edge weight and the sampled edge weight. The second type of

measures are related to the classification task, where the analysis if focused on the

predictive distribution of the existence of an edge.

8.1 REGRESSION

The regression metrics measure the distance between the predicted value and the true

value. The closer the forecasted values are from the actual outcome the lower the

distance and the better the performance of the model. Since the values of the edges are

lognormally distributed, for each metric we take the logarithm of 𝐴𝑖𝑗 = log (𝐴𝑖𝑗)

8.1.1 Mean Absolute Error

The mean absolute error (MAE) measures the absolute distance between the values of

the true adjacency matrix 𝐴𝑖𝑗 and the predicted adjacency matrix �̂�𝑖𝑗 . Every difference

between the values will have the same weight.

𝑀𝐴𝐸𝑡 =
1

𝑘2
∑ ∑ |𝐴𝑖𝑗 − �̂�𝑖𝑗|

𝑗𝑖

8.1.2 Root Mean Squared Error

The root mean squared error (RMSE) measures the squared distance between the

values of the true adjacency matrix 𝐴𝑖𝑗 and the predicted adjacency matrix �̂�𝑖𝑗 . Large

values of the error will have proportionally larger impact in the score than small

error values.

𝑅𝑀𝑆𝐸𝑡 = √
1

𝑘2
∑ ∑(𝐴𝑖𝑗 − �̂�𝑖𝑗)

2

𝑗𝑖

8.1.3 Accuracy

The accuracy measures the precision of the regression. The higher the accuracy the

higher the model performance. In the numerator the Frobenius norm is used to score

the difference between the true and predicted adjacencies. The Frobenius norm is the

square root of the sum of the absolute squared values of the errors:

𝐴𝐶𝐶𝑡 = 1 −
||𝐴 − �̂� ||

𝐹

||𝐴||
𝐹

 𝑤ℎ𝑒𝑟𝑒 ||𝐴||𝐹 = √∑ ∑ |𝐴𝑖𝑗|2

𝑗𝑖

39

8.1.4 Explained Variance

The explained variance calculates the percentage of the variance that is explained by the
model. The higher the score the better the model captures the variability in the data.

𝑉𝐴𝑅 = 1 −
𝕍[𝐴𝑖𝑗 − �̂�𝑖𝑗]

𝕍[𝐴𝑖𝑗]

8.1.5 Edge Distribution

The distribution of edge weights is a simple way to visualize the discrepancy between

the predicted values and the true values. From this plot one can see whether the model

has a bias and how well the model approximates the true probability distribution of the

data.

Figure 17 Example of true and predicted trade

40

8.2 CLASSIFICATION

Classification metrics evaluate different aspects of a classifier. Since the model

developed has a component that predicts the probability of the existence of an edge

between two nodes, the model can be considered a binary classifier.

8.2.1 ROC curve

Figure 18 Example of ROC curve

The Receiver Operating Characteristic (ROC) curve is a chart that evaluates the

performance of a binary classifier by varying the classification threshold. The False

Positives Rate (FPR) is plotted on the x axis and the True Positive Rate (TPR) is plotted

on the y axis. The TPR and FPR are defined as:

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Every point on the curve corresponds to a different classification threshold. The higher

the threshold the lower the TPR will be since only the data points classified with a high

probability will be considered and many true positives will be excluded. The higher the

classification threshold the lower the FPR will be, since only points on which the

classifier is sure of the prediction will be included in the set. The opposite effect is true

for low threshold values.

41

The optimal point on the curve is the point minimizing the distance between (0,1),

which is the point where the FPR is zero and the TPR is 1 (Unal, 2017). For each point

the distance between the point and the optimal value is computed and the point

associated with the lowest distance is returned.

8.2.2 Precision Recall Curve

Figure 19 Example of Precision and Recall Curve

The Precision-Recall Curve shows the tradeoff between the precision score and the

recall score for different level of classification thresholds. The precision score is the

number of true positives i.e. the number of points correctly classified as positive, divided

by the total number of positives i.e. the total number of points the classifier classified as

positive:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

The recall measures the number of true positives divided by the number of actual

positives. It measures how many items from the total set the classifier managed to

identify:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

42

8.2.3 Confusion Matrix

The confusion matrix shows the number of true positives, true negative, false positive

and false negatives. The off-diagonal elements are misclassified points. The y axis

represents the true label of the point and the x axis represent the predicted label from

the model. The upper left element of the confusion matrix represents the number of

True Negative training points, which are the missing edges which were correctly

classified as missing edges. The lower right element represents the number of True

Positive edges, which are the edges that were correctly classified as belonging to the

graph. The upper right elements represent the False Positive edges, which are the edges

that were classified as present but are missing from the graph. The lower right elements

represent the number of False Negatives edges, which are edges that were classified as

missing but are present in the graph.

Figure 20 Confusion matrix example

8.2.4 Expected Calibration Error

The expected calibration error measures how much the probability estimated from the

model match the actual frequency distribution of the accuracy of the model (Guo, Pleiss,

& Weinberger, 2017). This metric measures the distance from the confidence and

accuracy of the probability output of the model. If the model makes predictions with

high confidence but the accuracy for those predictions is low, then the model is said to

be mis calibrated. The expected calibration error will then take this measure in

expectation. One can estimate this expectation by taking the mean of the difference

43

between the probability output and the accuracy relative to each probability. Formally

the expected calibration error is defined as:

𝔼𝑃[|ℙ(�̂� = 𝑌|�̂� = 𝑝) − 𝑝|]

In practice the first is estimated by counting the accuracy how many of the predicted

points which fall in a small interval on the probability support where correct. The

second term is the average confidence within a small interval bin.

9 EMBEDDING VISUALIZATION

To visualize the high dimensional node embeddings, representing the countries

characteristics, coming from the RNN model we utilize a technique called T-Distributed

Neighbor Stochastic Embedding (t-SNE) (Maaten & Hinton, 2008). This dimensionality

reduction technique tries to minimize the LK-divergence between distribution of the

high dimensional inputs 𝑥𝑖 and lower dimensional outputs 𝑦𝑖:

𝑝𝑖|𝑗 =
exp (−||𝑥𝑖 − 𝑥𝑗||2/2𝜎𝑖

2)

∑ exp (−||𝑥𝑖 − 𝑥𝑘||2/2𝜎𝑖
2)𝑘≠𝑖

𝑞𝑖|𝑗 =
exp (−||𝑦𝑖 − 𝑦𝑗||2/2𝜎𝑖

2)

∑ exp (−||𝑦𝑖 − 𝑦𝑘||2/2𝜎𝑖
2)𝑘≠𝑖

𝐶 = ∑ 𝐾𝐿(𝑃𝑖||𝑄𝑖)

𝑖

= ∑ ∑ 𝑝𝑖|𝑗log (
𝑝𝑖|𝑗

𝑞𝑖|𝑗
)

𝑗𝑖

Where 𝑝𝑖|𝑗 and 𝑞𝑖|𝑗 are the conditional probabilities of the higher and lower dimensional

input respectively. We utilized the Scikit-Learn python library (Pedregosa, 2011) to get

the lower dimensional embeddings.

We then utilized the k-means algorithm clustering algorithm (X. & J., 2011) to cluster the

embedded low dimensional nodes. K-means first randomly distributes some centroid

points which are the points which represent the center of the clusters. Then for each

iteration it calculates the distance between each of the points to the centroid and assigns

a cluster to each point based on the closets cluster. It then updates the centroid based on

the average position of the points assigned to the cluster and iterates until convergence.

The final result will be the centroid and the points associated to the centroid.

44

10 DATASET

The source of the data used for the analysis comes from the UN Comtrade database

(United Nations. UN Comtrade , s.d.). UN Comtrade is the most used database for annual

data on international merchandise trade statistics detailed by commodity and partner.

From the databased we can extract the amount of trade by dollar value and the quantity

exchanged by the imported and exporter. In the database the countries can have either

an exporter role or an importer role. Since the export of one country is the import of the

other the two values should match. In realty this is not the case since the imports are

measured at CIF, which is the Cost, Insurance and Freight Import Value. This value

includes import charges and customs fees. Exports are instead measured as FOB, which

is the Free On-Board values. This value includes loading and transportation costs but

does not include customs fees and import charges (Methodology Guide for UN Comtrade

User on UN Comtrade Upgrade 2019, 2019). The merchandise in the database follows

two different reporting standard codes, the HS standard, the SITC standard and the BEC

standard. The HS and SITC standards have different codes based on the year revisions.

We utilized the SITC standard with revision 1 because it allows to gather data from 1964

to 2019. The countries codes follow the ISO3 naming convention (https://www.iso.org/,

2020). One issue with this dataset is that the dataset is not homogenized, and the actual

trade values may be different than the ones reported. Furthermore, the values of the

trade below 𝑒5 are missing from the years before the year 2000. This leads to inaccurate

estimates of the level of trade and higher variance in the prediction.

45

11 RESULTS ANALYSIS

In this section we will first explore the ITN structure with the network measures

previously introduced and compare the measures of the predicted network estimated

from the model and the actual network measures. We will the follow with the analysis of

the predictive performance of the model by visualizing the regression and classification

metrics.

To understand the main players in the international trade network we plot the total sum

of import and export of each country in the dataset, from 1995 to 2019, and rank the

countries from the biggest to the lowest trader.

Figure 21 Total sum of trade ranked by country

From this plot we can see that China has surpassed the United States in terms of total

goods traded. In the second place we find the United States, followed by Germany, Japan,

France, Italy and the United Kingdom. From the graph we can see that the total trade

follows an exponential curve. We will now show true and predicted adjacency matrix

from corresponding to a randomly sampled product from the dataset. We will analyze

more in details the performance of the model in the subsequent paragraphs.

46

Figure 22 Predicted Adjacency Matrix

Figure 23 True Adjacency Matrix

47

From the two images we can see that the model is able to reconstruct the adjacency

matrix of the next time steps. The zero lines in the middle that cross the plot are

countries that no ceded to exist. However, the model still sampled some points from the

missing countries because we did not explicitly model the entrance or exit probability of

the countries.

The following plot shows the distribution of the in-degree, out-degree and closeness

centrality of the network, relative to different years, and how they evolve through time.

Figure 24 In Degree, Out Degree and Closeness Centrality from the true data and model samples

48

As we can see from the plots, all statistics tend to shift to the left, indicating the increase

of each measure through time. For example, the increase in in-degree shows that the

countries of the network tend to increase the amount of product they import.

The same reasoning applies to the out-degree measure. The closeness centrality shows

that the countries become more integrated through time and the path from one country

to the other gets shorter in the space of the network, even though the position of the

country stays the same in the spatial coordinates. This signifies that the trade increases

through time as the countries become more interconnected with each other. The

closeness in 1965 was 0.2 and in 2013 was 0.4 on average. This means that the countries

were twice as close in 2013 as they were in 1965.

We can see that the measures derived from the sampled adjacency matrix follow closely

the actual node statistics.

Another statistic which shows the evolution of the international trade network is the

evolution of the edge distribution. The following plot shows the edge distribution 1965

to 2010.

From the plot we ca see that the mean of the distribution shifts to the right, indicating

that on average the value of trade increases. One can also notice that the data from the

49

Comtrade dataset does not have the values below 𝑒5 before the year 2000. This induces

a bias in the model as the distribution is truncated.

The following plots show the evolution of the Jaccard centrality measure which

measures the similarity between two nodes in the network by comparing the

neighborhoods of the nodes.

Figure 25 Jaccard Centrality for 1965 for Comtrade raw data

Figure 26 Jaccard Centrality for 1980 Comtrade raw data

Figure 27 Jaccard Centrality for 1995 Comtrade raw data

50

Figure 28 Jaccard Centrality for 2010 Comtrade raw data

The x and y axes represent the indices of the countries. Each cell of the matrix

represents the similarity score between the two countries.

The more intense colors signify a higher centrality measure. By visually inspecting the

plots we can see that as time progresses, the nodes in the network become more similar.

This is because the increase in connection of the networks will inherently lead to

neighbors from different countries to interact with each other, thereby increasing the

similarity score between the corresponding neighbors. We can also see that the model

captures these interactions quite well as the more strongly colored cells in the true

network are closely matches with the predicted network.

The next plot represents the increase on the network connectivity through time,

validating the argument that the trade between countries increases as time progresses.

Figure 29 Link Density evolution for predicted and true data

51

This plot shows the link density measure and how it changes through time. We can see

that the model approximates well this metric. However, in the last three years the two

measures diverge. This is because we trained the model up to 2012 and the following

years were taken as the validation set. We can also see that the model underestimates

the link density up to 1997. This is because the adjacency matrix for the year leading to

the beginning of the millennium were extremely sparse and therefore the network head

that acts as the classifier of the presence of the edges between two nodes is biased to

predict zero edges. We will later show this effect when analyzing the classification

performance of the model. One can attribute the increase of linkages to the decrease of

transaction cost of trading between distant countries, the lower transportation costs due

to the economy of scale of the international trade and the technological advancement

(Maluck & Donner).

Since each country in the network is represented by a high dimensional vector, we

applied the t-SNE dimensionality reduction described in the 9th chapter to project the

high dimensional embeddings to a 2-dimensional plane. From the plot we can see

countries belonging to the same continent are clustered together. This is relevant

because it signifies that the algorithm understood the structure of the network and the

distance between countries without being fed that information as input. For reference,

we first show the initial embedding corresponding to an untrained model and then

visualize the embeddings from the trained model.

Figure 30 Embeddings from the Untrained Model

52

Figure 31 Node Embeddings of Countries

The following paragraphs will focus more in detail the prediction performance of the

algorithm. We will show the metrics related to the training and test set. Then we will

show the regression and classification performance. To finish we will present the

uncertainty over the parameters of the predictive distribution for a random subset of

edges.

We first begin by showing the training curve of the model for every training epoch.

Figure 32 Loss history for training and test set

53

The plot above shows the loss function value for each training epoch corresponding to

the training and test set. We can see that the loss decreases as the network updates its

parameters. For this particular training setup we utilized a 50% split between the

training and test edges. We sampled a mask of ones and zeros with probability 50% for

each true adjacency matrix and masked the values the values of the matrix entries. We

can see that the two values of the loss function match closely, which signifies that the

model can generalize well on unseen edges, thereby reconstructing well the original

adjacency matrix and predicting the missing edges. We trained for a total of 60 epochs.

We will now present the regression metrics for the edge values through time.

54

From the plots we can see that the RMSE and the MAE increase over the years. This is

because as the non-zero edges increase, there is a higher probability for the regression

to predict wrong values. However, we can also notice that the mean accuracy and the

explained variance increase over the years.

55

We then evaluated the performance of the classifier and regressor on the validation set.

The above plot displays the variance estimated for each edge of the network. We can see

that missing countries have low estimated variance since they do not transact with any

country. The following plot shows the predicted probability matrix for the last time step.

56

The following plots show the ROC curve and the Precision curve for the last time period.

We can see that the area under the curve og the ROC curve is high, hoverver the optimal

classification thershold is lower than 50%. This signifies that the model underestimate

the presence of links between countries . The optimal point is shown in red.

Figure 33 ROC Curve for Comtrade raw data

Figure 34 Precision Recall curve for Comtrade raw Data

57

The following two plots show the frequency distribution of the probabilities predicted

from the classifier for the negative edges and for the positive edges. The overlap

between the two frequency distributions are the misclassified examples. We can see that

the classifier does not have high certainty on the positive edges. This is due to the

sparsity of the adjacency matrix.

58

The following plot shows the calibration curve for the classifier. The closer the curve is

to the diagonal line the more the classifier is calibrated. We can see that the classifier is

not well calibrated and the average accuracy does not resamble the average predicted

probability.

59

Figure 35 Uncertainty over parameters

The plot above shows the mean and uncertainty distribution for the mean, variance and

probability parameters for a random sample of edges. The confidence interval is one

standard deviation wide.

60

Figure 36 Prediction Samples

This plot shows a prediction sample from the model compared to the actual data. The

actual data is plotted with the dashed lines and the model sample with the continuous

lines. We can see that there is high variability in the prediction from the model. This can

stem from the fact that the data itself has high variability.

61

12 CONCLUSION

The aim of this thesis was to develop an algorithm that could predict the dynamically

changing trade network over time. Our empirical results showed that the algorithm was

able to reproduce the network statistics and reconstruct the adjacency matrix even

when partially observed. This algorithm however showed a bias towards the zero edged

because the binary data for the classifier was not balanced and the adjacency matrix was

sparse. Care should be taken to account for such an unbalance data. None the less the

combination between the graph neural network encoder, the recurrent neural network

and the bilinear decoder was successfully able to reconstruct the network. From the

estimated network measures, we were able to tell that the international trade network

is becoming more and more integrated as countries trade with each other, thereby

creating relationships and strong dependencies. Furthermore, we showed that the

embeddings of the countries could represent the physical proximity of those countries.

This fact is interesting since the network structure is closely related to the distance

between the countries.

A future research direction might be to include many factors as initial node features and

not only the indicator function of the country. This would lead to a more complete model

and better embeddings. Furthermore, one could implement more sophisticated

techniques that require the recurrent neural network to be stochastic thereby

improving the dynamics of the network.

62

13 REFERENCES

A.Rodrigueza, M., & JoshuaShinavierb. (20210). Exposing multi-relational networks to

single-relational network analysis algorithms. Journal of Informetrics, 4(1), 29-41.

doi:https://doi.org/10.1016/j.joi.2009.06.004

Aitchison, J., & Brown, J. A. (1957). The Lognormal Distribution, With Special Reference

to Its Uses in Economics. Journal of the Royal Statistical Society, 228-230.

Bader, B. W., Harshman, R. A., & Kolda, T. G. (2007). Temporal Analysis of Semantic
Graphs Using ASALSAN.

Bessadok, A., Mahjoub, M. A., & Rekik, I. (2021, 6 7). Graph Neural Networks in Network

Neuroscience. Retrieved from https://arxiv.org: /pdf/2106.03535.pdf

Billio, M., Casarin, R., Kaufmann, S., & Iacopini, M. (n.d.). Bayesian Dynamic Tensor

Regression.

Bonginia, P., & Bianchini, M. (2021, 05 27). Molecular Generative Graph Neural Networks

for Drug Discovery. Retrieved from https://arxiv.org/: abs/2012.07397

Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric Deep Learning:

Grids, Groups, Graphs, Geodesics, and Gauges. Retrieved from https://arxiv.org:

/abs/2104.13478

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014, 05 21). Spectral Networks and Deep

Locally Connected Networks on Graphs. Retrieved from https://arxiv.org/:

abs/1312.6203

Caimo, A., & Friel, N. (2011). Bayesian inference for exponential random graph models.

Social Networks, 33(1), 41-55. doi:https://doi.org/10.1016/j.socnet.2010.09.004

Chen, E. Y., & Chen, R. (2017). Factor Models for High-Dimensional Dynamic Networks:

with Application to International Trade Flow Time Series 1981-2015. arxiv:

Methodology.

Cho, K., Merrienboer, B. v., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural

machine translation: Encoder-decoder approaches. Retrieved from

https://arxiv.org: /abs/1409.1259

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling. Retrieved from
https://arxiv.org/: abs/1412.3555

Dan, L., Jiajing, W., Qi, Y., & Zibin, Z. (2020). T-EDGE: Temporal WEighted MultiDiGraph

Embedding for Ethereum Transaction Network Analysis. Frontiers in Physics.
doi:10.3389/fphy.2020.00204

David, R., Geoffrey, H., & Ronald, W. (1985). Learning internal representations by error
propagation.

63

Defferrard, M., Bresson, X., & Vandergheynst, P. (2017, 02 05). Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering. Retrieved from

https://arxiv.org/: abs/1606.09375

Dengliang, S. (2017, 05 24). Clarifing a misunderstanding of back-propagation through

time method. Retrieved from https://dengliangshi.github.io:

/2017/05/24/clarifing-a-misunderstanding-of-back-propagation-through-time-

method.html

Dwivedi, V. P., & Bresson, X. (2021, Jan 24). A Generalization of Transformer Networks to
Graphs. Retrieved from https://arxiv.org: /abs/2012.09699

Gal, Y. (2016). Uncertainty in Deep Learning.

García-Algarra, J., Mouronte-López, M. L., & Galeano, J. (2019). A stochastic generative
model of the World Trade Network. Scientific Reports.

Gavili, A., & Zhang, X.-P. (2017). On the Shift Operator, Graph Frequency and Optimal

Filtering in Graph Signal Processing. IEEE Transactions on Signal Processing ,
6303 - 6318.

Goodfellow, I. J., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA, USA:
MIT Press.

Grover, A., & Leskovec, J. (n.d.). node2vec: Scalable Feature Learning for Networks.

Retrieved from https://arxiv.org: /abs/1607.00653

Guo, C., Pleiss, G., & Weinberger, Y. S. (2017 , August). On calibration of modern neural

networks. ICML'17: Proceedings of the 34th International Conference on Machine
Learning, 70, 1321–1330. doi:10.5555/3305381.3305518

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,

and function using NetworkX. Proceedings of the 7th Python in Science Conference
(SciPy2008).

Hammond, D. K., Vandergheynst, P., & Gribonval, a. R. (2011.). Wavelets on graphs via

spectral graph theory. Applied and Computational Harmonic Analysis, 129–150.

Hannes, S. (2021). Self-Supervised learning for small Molecular Graphs.

Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent

Neural Networks. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 107-116.

Hoff, P. D., Raftery, A. E., & Handcock, M. S. (n.d.). Latent Space Approaches to Social
Network Analysis.

https://stackoverflow.com/. (2021). Retrieved from

https://i.stack.imgur.com/j2qa7.png: questions/65600387/when-to-use-a-
neural-network-with-just-one-output-neuron-and-when-with-multiple

https://www.iso.org/. (2020). Retrieved from Codes for the representation of names of

countries and their subdivisions: obp/ui/#iso:std:iso:3166:-1:ed-4:v1:en

64

Hu, R. (n.d.). 8.7. Backpropagation Through Time. Retrieved from https://d2l.ai/:

chapter_recurrent-neural-networks/bptt.html#full-computation

Ji, S., Pan, S., & Cambria, E. (2021, 3 1). A Survey on Knowledge Graphs: Representation,
Acquisition and Applications. Retrieved from https://arxiv.org: /abs/2002.00388

Jin, D., Kim, S., Rossi, R. A., & Koutra, D. (2020, 9 21). From Static to Dynamic Node

Embeddings. Retrieved from https://arxiv.org: /abs/2009.10017

Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with
latent variables. Statistics Survey, 12, 105-135.

LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object Recognition with Gradient-
Based Learning. In Shape, Contour and Grouping in Computer Vision (p. 319).

Maaten, L. v., & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine

Learning Research 9, 2579-2605.

Maluck, J., & Donner, R. V. (n.d.). A Network of Networks Perspective on Global Trade.

doi:10.1371/journal.pone.0133310

Methodology Guide for UN Comtrade User on UN Comtrade Upgrade 2019. (2019).

Retrieved from https://comtrade.un.org/:

data/MethodologyGuideforComtradePlus.pdf

Murat, M. (n.d.). Backpropagation Through Time for Recurrent Neural Network. Retrieved
from https://mmuratarat.github.io: /2019-02-07/bptt-of-rnn

N., K. T., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional
Networks. ICLR. Retrieved from https://arxiv.org/abs/1609.02907

Pareja, A., & Domeniconi, G. (2019, 11 18). EvolveGCN - Evolving Graph Convolutional

Networks for Dynamic Graphs. Retrieved from https://arxiv.org:
/abs/1902.10191

Pedregosa, F. a. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 2825-2830.

Petar, V., Guillem, C., Arantxa, C., Adriana, R., Pietro, L., & Yoshua, B. (2018, 02 18). Graph

Attention Networks. Retrieved from https://arxiv.org/: abs/1710.10903

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, pages533–536.

Sandryhaila, A., & Moura, J. M. (2013). Discrete Signal Processing on Graphs. IEEE
Transactions on Signal Processing, 1644-1656. doi:10.1109/TSP.2013.2238935

Sigmoid function. (n.d.). Retrieved from https://en.wikipedia.org/wiki/:

Sigmoid_function#/media/File:Logistic-curve.svg

Singer, U., Guy, I., & Radinsky, K. (2019, 3 21). Node Embedding over Temporal Graphs.

Retrieved from arxiv.org/: abs/1903.08889

65

Squartini, T., Fagiolo, G., & Garlaschelli, D. (2011, 11 2). Randomizing world trade. II. A

weighted network analysis. Retrieved from https://arxiv.org: /abs/1103.1249

Srivastava, N., Hinton, G., & Krizhevsky, A. (2014). Dropout: a simple way to prevent

neural networks from overfitting. The Journal of Machine Learning Research,

1929–1958.

Tiziano, S., Fagiolo, G., & Diego, G. (2011, 11 2). Randomizing world trade I A binary
network analysis. Retrieved from https://arxiv.org: /abs/1103.1243

Unal, I. (2017). Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative

Approach. Computational and Mathematical Methods in Medicine.
doi:https://doi.org/10.1155/2017/3762651

United Nations. UN Comtrade . (n.d.). Retrieved from https://comtrade.un.org: /data/

Vandal, T., Kodra, E., Dy, J., & Ganguly, S. (2018). Quantifying Uncertainty in Discrete-

Continuous and Skewed data with Baeysian Deep Learning. 18: Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2377–2386. doi:https://doi.org/10.1145/3219819.3219996

Vaswani, A., Shazeer, N., & Parmar, N. (2017). Attention is all you need. NIPS'17:

Proceedings of the 31st International Conference on Neural Information Processing

Systems, 6000–6010.

Visualizing networks. (n.d.). Retrieved from
http://www.mkivela.com/pymnet/visualizing.html.

Wang, X., & He, X. (2019, Jun 8). KGAT: Knowledge Graph Attention Network for
Recommendation. Retrieved from https://arxiv.org: /abs/1905.07854

Wei, W., Zhang, Q., & Liu, L. (2021). Bitcoin Transaction Forecasting With Deep Network

Representation Learning. IEEE Transactions on Emerging Topics in Computing, 9.
doi:10.1109/TETC.2020.3010464

Weijiang, F., Naiyang, G., Yuan, L., AU, Z. X., & Zhigang, L. (2017). Audio visual speech

recognition with multimodal recurrent neural networks. In 2. I. Networks (Ed.).

Werbos, P. J. (1990). Backpropagation Through Time: What It Does and How to Do It.

Proceedings of the IEEE, 78, 1550 - 1560.

X., J., & J., H. (2011). K-Means Clustering. Encyclopedia of Machine Learning.
doi:https://doi.org/10.1007/978-0-387-30164-8_425

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical Evaluation of Rectified Activations in
Convolutional Network. CoRR. Retrieved from http://arxiv.org/abs/1505.00853

Yu, B., Yin, H., & Zhu, Z. (2018, 07 12). Spatio-Temporal Graph Convolutional Networks: A

Deep Learning Framework for Traffic Forecasting. Retrieved from
https://arxiv.org: /abs/1709.04875

Zafarani, R., Abbasi, M. A., & Liu, H. (2014). Social Media Mining. Cambridge University.

66

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., . . . Li, H. (2020). T-GCN - A Temporal

Graph Convolutional Network for Traffic Prediction. IEEE Transactions on

Intelligent Transportation Systems, 21, 3848 - 3858.
doi:10.1109/TITS.2019.2935152

Zheng, C., Fan, X., Wang, C., & Qi, J. (2020). GMAN: A Graph Multi-Attention Network for
Traffic Prediction. AAAI, 1234--1241.

Zignago, G. G. (2010). BACI: International Trade Database at the Product-Level. The 1994-

2007 Version. CEPII. Retrieved from
http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=2726

67

14 APPENDIX

The following three classes are the class for the Bilinear decoder, the GRU-GAT cell and

full model definition. The full implementation can be found at

https://github.com/claCase/Master-Thesis.

import tensorflow as tf

from tensorflow.keras import layers as l

from tensorflow.keras import activations

from tensorflow.keras import initializers

import tensorflow.keras.backend as k

class BatchBilinearDecoderDense(l.Layer):

 """

 inputs:

 - X of shape batch x N x d

 - A of shape batch x N x N

 outputs: A of shape batch x N x N

 """

 def __init__(self, activation="relu", qr=True, regularizer="l2"):

 super(BatchBilinearDecoderDense, self).__init__()

 self.activation = activation

 self.regularizer = regularizer

 self.qr = qr

 def build(self, input_shape):

 x = input_shape

 self.R = self.add_weight(

 shape=(x[-1], x[-1]),

 initializer="glorot_normal",

 regularizer=self.regularizer,

 name="bilinear_matrix",

)

 def call(self, inputs, *args, **kwargs):

 x = inputs

 if self.qr:

 Q, W = tf.linalg.qr(x, full_matrices=False)

 W_t = tf.einsum("...jk->...kj", W)

 Q_t = tf.einsum("...jk->...kj", Q)

 Z = tf.matmul(tf.matmul(W, self.R), W_t)

 A = tf.matmul(tf.matmul(Q, Z), Q_t)

 A = activations.get(self.activation)(A)

 return tf.matmul(Q, W), A

 else:

 x_t = tf.einsum("...jk->...kj", x)

 mat_left = tf.matmul(x, self.R)

 A = activations.get(self.activation)(tf.matmul(mat_left, x_t))

 return x, A

class GRUGAT(l.Layer):

 def __init__(self, hidden_size=10, attn_heads=10, dropout=0.2,

hidden_activation="relu", rc_gat=False,

 temporal_smoothness=""):

 super(GRUGAT, self).__init__()

 self.gnn_u = GATConv(channels=hidden_size // 2,

68

attn_heads=attn_heads, concat_heads=True,

 activation=hidden_activation,

dropout_rate=dropout, kernel_regularizer="l2")

 self.rc_gat = rc_gat

 if self.rc_gat:

 self.gnn_r = GATConv(channels=hidden_size // 2,

attn_heads=attn_heads, concat_heads=True,

 activation=hidden_activation,

dropout_rate=dropout, kernel_regularizer="l2")

 self.gnn_c = GATConv(channels=hidden_size // 2,

attn_heads=attn_heads, concat_heads=True,

 activation=hidden_activation,

dropout_rate=dropout, kernel_regularizer="l2")

 self.hidden_activation = hidden_activation

 self.hidden_size = (hidden_size // 2) * attn_heads

 self.drop = l.Dropout(dropout)

 self.state_size = self.hidden_size

 self.output_size = self.hidden_size

 self.temporal_smoothness = temporal_smoothness

 if self.temporal_smoothness:

 self.tmp_smooth = TemporalSmoothness(0.5,

self.temporal_smoothness)

 def get_initial_state(self, inputs=None, batch_size=None, dtype=None):

 x, a = inputs

 return tf.zeros(shape=(*x.shape[:-1], self.hidden_size))

 def build(self, input_shape):

 self.b_u = self.add_weight(shape=(self.hidden_size,),

initializer="glorot_normal", name="b_u")

 self.b_r = self.add_weight(shape=(self.hidden_size,),

initializer="glorot_normal", name="b_r")

 self.b_c = self.add_weight(shape=(self.hidden_size,),

initializer="glorot_normal", name="b_c")

 self.W_u = self.add_weight(shape=(self.hidden_size * 2,

self.hidden_size), initializer="glorot_normal",

 name="W_u")

 self.W_r = self.add_weight(shape=(self.hidden_size * 2,

self.hidden_size), initializer="glorot_normal",

 name="W_r")

 self.W_c = self.add_weight(shape=(self.hidden_size * 2,

self.hidden_size), initializer="glorot_normal",

 name="W_c")

 def call(self, inputs, state, training, *args, **kwargs):

 x, a = inputs

 # Encoding

 if state is None:

 h = self.get_initial_state(inputs)

 else:

 h = state

 conv_u = self.gnn_u(inputs, training=training) # B x N x d

 if self.rc_gat:

 conv_r = self.gnn_r(inputs, training=training) # B x N x d

 conv_c = self.gnn_c(inputs, training=training) # B x N x d

 else:

 conv_r = conv_u

 conv_c = conv_u

 # Recurrence

69

 u = tf.nn.sigmoid(self.b_u + tf.concat([conv_u, h], -1) @ self.W_u)

 r = tf.nn.sigmoid(self.b_r + tf.concat([conv_r, h], -1) @ self.W_r)

 c = tf.nn.tanh(self.b_c + tf.concat([conv_c, r * h], -1) @

self.W_c)

 h_prime = u * h + (1 - u) * c

 h_prime = self.drop(h_prime, training=training)

 return h_prime

class GRUGATLognormal(m.Model):

 def __init__(self, hidden_size=4, attn_heads=4, dropout=0.2,

hidden_activation="relu", temporal_smoothness=""):

 super(GRUGATLognormal, self).__init__()

 # Encoders

 self.GatRnn_p = GRUGAT(hidden_size=hidden_size,

attn_heads=attn_heads, dropout=dropout,

 hidden_activation=hidden_activation,

temporal_smoothness=temporal_smoothness)

 self.GatRnn_mu = GRUGAT(hidden_size=hidden_size,

attn_heads=attn_heads, dropout=dropout,

 hidden_activation=hidden_activation,

temporal_smoothness=temporal_smoothness)

 self.GatRnn_sigma = GRUGAT(hidden_size=hidden_size,

attn_heads=attn_heads, dropout=dropout,

 hidden_activation=hidden_activation,

temporal_smoothness=temporal_smoothness)

 # Decoders

 self.decoder_mu = BatchBilinearDecoderDense(activation=None,

qr=False)

 self.decoder_sigma = BatchBilinearDecoderDense(activation=None,

qr=False)

 self.decoder_p = BatchBilinearDecoderDense(activation=None,

qr=False)

 def call(self, inputs, states, training=None, mask=None):

 # Encoding

 h_prime_p = self.GatRnn_p(inputs, states[0])

 h_prime_mu = self.GatRnn_mu(inputs, states[1])

 h_prime_sigma = self.GatRnn_sigma(inputs, states[2])

 # Decoding

 x_p, p = self.decoder_p(h_prime_p)

 p = tf.expand_dims(p, -1)

 x_mu, mu = self.decoder_mu(h_prime_mu)

 mu = tf.expand_dims(mu, -1)

 x_sigma, sigma = self.decoder_sigma(h_prime_sigma)

 sigma = tf.expand_dims(sigma, -1)

 logits = tf.concat([p, mu, sigma], -1)

 return logits, h_prime_p, h_prime_mu, h_prime_sigma

