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ABSTRACT 

Graph Neural Networks (GNN) are a powerful technique to model data on non-eucledian 

domains with neural network universal function approximator. They are mainly used on 

static networks where nodes and edges do not change over time. To overcome this issue 

new models extended the GNN model to incorporate temporal data and the resulting 

model is defined as a Dynamic Graph Neural Networks (DGNN). We use this technique to 

model the bilateral trade evolution of the International Trade Network (ITN) where 

nodes in the network represent the countries, encoded as a feature vector and the edges 

represent the trade relations between two countries. We analyze the topological and 

statistical properties of the estimated model and visualize the evolution of relations 

between countries. We then evaluate the model predictive performance on link 

prediction and reconstruction capabilities. 
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0 INTRODUCTION  

 

The aim of this thesis is to develop an algorithm that can predict the time evolution of 

the international trade network for different commodities. The analysis of networks has 

long been of interest for many the research communities as many real-world problems 

arise from a network structured data. However, the focus has usually been on graphs 

that do not change over time, known as static graphs (Chen & Chen, 2017). Examples of 

some field of study that necessitate the use of graph algorithms are neuroscience, where 

the neurons can be viewed as nodes in the graph and the synapses as the edge 

connecting two nodes (Bessadok, Mahjoub, & Rekik, 2021); chemistry, where the atoms 

of a molecule represent the nodes of the graph and edge bonds between atoms 

represent the edges (Hannes, 2021) (Bonginia & Bianchini, 2021); traffic prediction 

where the nodes are sampled points on a road-map and the edges are the roads 

connecting the nodes (Yu, Yin, & Zhu, 2018) (Zhao, et al., 2020) (Zheng, Fan, Wang, & Qi, 

2020); knowledge graphs, where nodes are the entities and the connections are the 

relations between entities (Wang & He, 2019) (Ji, Pan, & Cambria, 2021), social network 

analysis where the nodes are people and the edges represent a friendship (Hoff, Raftery, 

& Handcock); financial transaction where the sender and receiver of the transaction are 

the nodes and the transaction amount represent the edge between nodes (Dan, Jiajing, 

Qi, & Zibin, 2020) (Wei, Zhang, & Liu, 2021). 
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The focus of this thesis is however on dynamic graphs applied to the International Trade 

Network (ITN) where both nodes’ attributes and the resulting edges between the nodes 

change over time, thereby adding a temporal dimension to the graph.  

The problem with having a graph as input is that the graph is that a graph is an irregular 

domain since not all the nodes are connected, therefore the neighborhood of a node, 

defined as the set of nodes connected to a node, changes for different nodes. For 

example, images can be thought as a regular graph where the size on the neighborhood 

of a pixel in the image is the same for every pixel. Instead, in the ITN the neighborhood 

size of nodes changes depending on the country. Therefore, one needs to design an 

algorithm that can process a variable input size.  

Many techniques have been developed to allow a statistical model to process graph 

structured data. One stream of research focuses on modelling the graph through 

Bayesian methods by putting a prior probability distribution on the edge of the network 

(Caimo & Friel, 2011) and estimating the posterior of the parameters of the model 

though Monte Carlo Markov Chain (MCMC) sampling. A more advanced model was 

developed by (Billio, Casarin, Kaufmann, & Iacopini) where they generalize the VAR 

models to dynamic tensors and estimate the parameters with MCMC. Another stream of 

research approaches the problem from a dimensionality reduction stand-point, called 

Latent Factor Models (LFM), where one tries to reconstruct the network from the latent 

characteristics of the nodes and assumes that the network structure can be fully defined 

by the node features (Hoff, Raftery, & Handcock) (Kim, Lee, Xue, & Niu, 2018). A 

generalization of latent factor models to multiple dimensions can be defined via tensor 

decomposition techniques (Bader, Harshman, & Kolda, 2007) where a Three-way DEDI-

COM model is used to decompose the dynamic graph, however one downside is that the 

model cannot be used in an inductive setting. Another stream of research focuses on the 

topological structure of the network and take a statistical mechanics approach of 

estimating the distribution of the edges (Tiziano, Fagiolo, & Diego, 2011). Another 

stream of research focuses on the evolution of edges by applying a generative model of 

the network inspired by the Ecology literature with a preferential attachment model 

(García-Algarra, Mouronte-López, & Galeano, 2019). Another stream of research 

approaches the problem through a graph theory perspective. The two main branches are 

spectral based methods (Sandryhaila & Moura, 2013) (Bruna, Zaremba, Szlam, & LeCun, 
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2014) (Gavili & Zhang, 2017) (N. & Welling, 2017) and spatial based methods (Petar, et 

al., 2018) (Dwivedi & Bresson, 2021). The spectral methods analyze the spectrum of the 

Laplacian matrix by the eigenvalue-eigenvector decomposition. Due to the intense 

computational requirements of computing the eigenvectors of the Laplacian (Defferrard, 

Bresson, & Vandergheynst, 2017) introduced an approximation of the spectral filters by 

the Chebyshev expansion of the graph Laplacian. The spatial methods define the 

convolutions directly on the graph instead of first transforming the graph into the 

spectral domain. The neural network based architecture call “Graph Attention Network” 

(Petar, et al., 2018) build on a previous technique used in the sequential modelling 

domain called the “Attention Mechanism” (Vaswani, Shazeer, & Parmar, 2017) and 

applies  it to the graph domain. The advantage of this technique is that it does not 

require a fixed size neighborhood, can be efficiently parallelizable and can be used in 

inductive learning problems where one does not need to recompute the parameters of 

the model when adding a new node to the graph.  

Most of the previous techniques focus on encoding a static graph. For a more general 

model, one would need to estimate the effect that previous node interactions have on 

future nodes interactions. The next paragraph will introduce different techniques for 

modelling a dynamic graph.  

The model from (Singer, Guy, & Radinsky, 2019) first computes the representation of the 

nodes by a biased random walk through each snapshot of the dynamic graph, with a 

technique called node2vec (Grover & Leskovec, s.d.). Then tries to align the consecutive 

timesteps node embeddings by minimizing the distance between timesteps embedding 

with a rotation matrix that rotates the future node embedding in the direction of the 

previous node embedding. The final node representations are fed through a LSTM 

recurrent neural network and LSTM hidden state is used for classification. This model 

however is not end-to-end differentiable since the node2vec algorithm is a sampling 

based algorithm. Furthermore, the model is limited to model the node representations 

of the node embeddings and does not predict the evolution of the embeddings nor the 

adjacency matrix. 

The model from (Pareja & Domeniconi, 2019) first utilizes a Graph Convolutional Neural  

Network (GCN) to get the node embeddings for each node in the graph, the utilizes a 

recurrent neural network model to directly predict the weights of the GCN.  
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The model from (Zhao, et al., 2020) called T-GCN is similar to the previous model but 

instead of feeding to the recurrent model the weights of the GCN, the recurrent model 

takes as inputs the node embeddings previously generated. This thesis will build on the 

architecture from this model to encode the node embeddings which will be used as 

factors to reconstruct the graph. The main differences between this model and the one 

which will be presented is that we utilize a different architecture called Graph Attention 

Network to encode the nodes of the graph, as the GCN cannot process directed graphs. 

Furthermore the T-GCN in the paper focuses on temporal graphs which are graph with a 

fixed adjacency matrix and evolving node features. The model developed in this thesis 

instead accepts different adjacency matrices for each time step prediction.  

The model from (Chen & Chen, 2017) defines a bilinear latent factor model to get the 

graph reconstruction from the nodes features and estimates the factors by defining the 

auto-cross-covariance matrices at lag h between the column of the factor matrix. This 

thesis will utilize the bilinear model to reconstruct the graph from the node embeddings 

found with the T-GCN model.  

The outline of thesis is as follow: the second chapter introduces the notion of a graph 

and the different types of graphs, the third chapter introduces some network measures 

to analyze the statistics of the nodes, the fourth chapter introduces the encoder building 

block, the fifth chapter introduces the decoding building block and the sixth chapter 

introduces the recurrent temporal modelling block, the seventh chapter defines the loss 

function utilized to estimate the parameters of the model and the eighth chapter 

introduces two uncertainty measures related to the data and the model.  
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1 INTRODUCTION TO GRAPHS 

A graph 𝐺 ∈ {𝑁, 𝐸} is defined as the collection of a set of nodes 𝑁 ∈ {𝑛0, … , 𝑛𝑘} , where       

𝑘 = |𝑁| is the total number of nodes, and a set of edges 𝐸 ∈ {𝑒0, … , 𝑒𝑚} connecting two 

nodes, where 𝑚 = |𝐸| is the total number of edges. The edges 𝑒𝑖𝑗 = (𝑛𝑖, 𝑛𝑗) ∈ 𝐸 of a 

graph are usually indexed by the indices of the source node i and the target node j. The 

graph can be of three types depending on the values of the edges. The first type is the 

binary graph where the edges are either 0 or 1: 𝑒𝑖𝑗 ∈ 0,1. The second type is the 

weighted graph where the value of the edges are real numbers: 𝑒𝑖𝑗 ∈ ℝ. The weighted 

graph is a generalization of a binary graph. The third type of graph is defined as an 

attributed graph, where the edges have a vector as the value: 𝑒𝑖𝑗 ∈ ℝ𝑑. The attributed 

graph is a generalization of a weighted graph.  

1.1 UNDIRECTED AND DIRECTED GRAPHS 
 

The graph can be furthermore split in two categories. The first category is the 

undirected and thereby symmetric graph where the value of edges between the source 

node and the target node is the same: 𝑒𝑖𝑗 = 𝑒𝑗𝑖.  

 

Figure 1 Example of an Undirected Graph and undirected adjacency matrix 

 

The second category is the directed and thereby asymmetric graph where the value of 

edges between the source node and the target node may not be the same. Since the 

transaction between countries has a directed structure as not all edges are mirrored and 

the magnitude of the exchange differs whether the country is small or big, we utilize this 

graph structure to build the model. 
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Figure 2 Example of a Directed Graph and a directed adjacency matrix 

The adjacency matrix 𝐴 ∈ ℝ𝑘𝑥𝑘 is a square matrix the matrix used to represent the graph 

where values 𝑎𝑖𝑗 are the edge weights. If the graph if undirected then 𝐴 =  𝐴𝑇 . 

1.2 STOCHASTIC GRAPHS 

A stochastic graph is a graph 𝐺 ∈  {𝑁, 𝐸, 𝑋} where N is the set of nodes, E is the set of 

edges and X is the set of features associated with each node, is sampled from a 

probability distribution defined over the space of graphs: 𝐺~ 𝑃(𝐺). Since the model 

developed in this thesis belongs to a latent factor model, it assumes that the graph 

structure can be fully characterized by the features of the nodes. We can define the 

probability distribution over the graph as conditional to the node features:  

𝐺~ 𝑃(𝐺|𝑋) 

Since the ITN has a weighted directed graph structure one needs to model both whether 

and edge is present between two nodes according to their features and, conditional on 

the presence of an edge, the weight of the edge. The joint probability of the binary and 

weighted edges can be decomposed as a probability distribution over binary edges B 

conditioned on the node features and a probability distribution over the edge weights W 

given the existence of an edge and the node features: 

𝐺~ 𝑃(𝑊|𝑋, 𝐵)𝑃(𝐵|𝑋) 

Where 𝑃(𝑊|𝑋, 𝐵) is a joint probability over the weighted edges of the graph and can be 

any parametric continuous distribution: 
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𝑃(𝑊|𝑋, 𝐵)  = ∏ ∏ 𝑃(𝑊𝑖𝑗|𝑥𝑖, 𝑥𝑗 , 𝐵𝑖𝑗) 

𝑗𝑖

 

𝑊𝑖𝑗  ~𝑃(𝑊𝑖𝑗|𝑥𝑖, 𝑥𝑗 , 𝐵𝑖𝑗) = 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑊𝑖𝑗 | 𝑥𝑖 , 𝑥𝑗 , 𝐵𝑖𝑗; 𝜇𝑖𝑗 , 𝜎𝑖𝑗) 

Since it is known that a log-normal distribution approximates quite well the value of the 

transaction of the ITN (Aitchison & Brown, 1957), we choose this distribution to model 

the weighted adjacency matrix, parametrized by the mean 𝜇 and variance 𝜎: 

𝑃(𝐵|𝑋) is a joint distribution with independent Bernoulli components parametrized by 

𝑝𝑖𝑗. 

𝑃(𝐵|𝑋)  = ∏ ∏ 𝑃(𝐵𝑖𝑗|𝑥𝑖, 𝑥𝑗) 

𝑗𝑖

 

𝑃(𝐵𝑖𝑗|𝑥𝑖, 𝑥𝑗) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐵𝑖𝑗 | 𝑥𝑖 , 𝑥𝑗  ; 𝑝𝑖𝑗) 

1.3 DYNAMIC GRAPHS  

A dynamic graph is a graph where the nodes features, and the adjacency matrix change 

over time. Formally a dynamic graph can be defined as a collection of graph snapshots 

𝐺𝑑𝑦𝑛 ∈ {𝐺0, … , 𝐺𝑡}  where each snapshot 𝐺𝑡 ∈ {𝑁𝑡, 𝐸𝑡, 𝑋𝑡} is the graph associated with a 

time stamp indexed by t. The node features are vectors 𝒙𝒕
𝑛𝑖

∈ ℝ𝑑  associated with the 

characteristics of the node. The full nodes feature matrix for timestamp 𝑋𝑡 ∈ ℝ𝑘 𝑥 𝑑 is the 

matrix containing all the stacked node features. If the nodes do not have features, then 

the graph is called a featureless graph. To model a featureless graph the node features 

are set as a one-hot encoded vector where the vector has value 1 corresponding to the 

index of the node and zero everywhere else. The vector is therefore the indicator 

function  𝟙𝑖 .  

The transition dynamics of a dynamic graph evolve according to a transition function 

that take the node features at the previous time step and the current node features to 

predict the next time step node features: 

𝑋𝑡+1 = 𝑓(𝑋𝑡, 𝑋𝑡−1) 

The function can either be a deterministic function or a stochastic function. In this thesis 

the transition function will be a deterministic recurrent neural network.  
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2 EXPLORATIVE ANALYSIS: NETWORK MEASURES  

To understand and visualize the structure of each snapshot of the dynamic graph we 

utilize a diverse set of node similarity metrics which measure different statistics of the 

nodes of the graph. For large graph the direct visualization of nodes and edges becomes 

cumbersome since the plot would be too crowded to analyze. The different metrics on 

the vertices can capture different aspects of different type connectivity of the graph. We 

first introduce the simplest and most common metrics for directed graphs which are the 

in-degree and out-degree of the nodes, the closeness between two nodes, the link 

density and the Jaccard Similarity. We then introduce more sophisticated ones such as 

the eigen-vector centrality and the Laplacian Clustering. (Zafarani, Abbasi, & Liu, 2014). 

We utilized the Networkx library (Hagberg, Schult, & Swart, 2008) to compute the 

following metrics. 

2.1 NODE DEGREE  

The node degree centrality counts the number of nodes adjacent nodes j to a node i. The 

degree D is therefore the size of the neighborhood of node i:  

𝐷(𝑛𝑖) = |𝒩𝑖| 

Where 𝒩𝑖 = {𝑛𝑗|𝑒𝑖𝑗 ∈ 𝐸} is the set of nodes j that have a connecting edge with node i. 

One can easily compute the node degree by summing alone one axis of the adjacency 

matrix. 

For directed graph one needs to distinguish the in-degree and the out-degree on the 

node. For node 𝑛𝑖 , the in-degree 𝐷−(𝑛𝑖) measures the number of incoming edges for 

node and the out-degree 𝐷+(𝑛𝑖) measures the out-going edges. The total degree is the 

sum of the in-degree and out-degree. When combining the in/out degree one ignores the 

edge direction, and the result will be the degree of an undirected graph: 

𝐷−(𝑛𝑖) = ∑ 𝐴𝑖𝑗

𝑗

 

𝐷+(𝑛𝑖) = ∑ 𝐴𝑖𝑗

𝑖

 

𝐷𝑡𝑜𝑡(𝑛𝑖) =  𝐷+(𝑛𝑖) +  𝐷−(𝑛𝑖) 
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To see which noes are more central, the degree measures can be ranked to see which are 

the most important nodes. If the in-degree is high, it signifies that a node has high 

prestige in the network. If the out-degree is high, it signifies that a node has high 

gregariousness, therefore having high influence in the network.  

 

Figure 3 Node Degrees for the True graph (blue color) and Predicted graph (red color) 

2.2 CLOSENESS CENTRALITY 

The closeness between two nodes is a measure of centrality which calculates the inverse 

of the shortest path between two nodes. The shorter the path distance between two 

nodes the higher the closeness: 

𝐶(𝑛𝑖, 𝑛𝑗) =  
1

𝑑(𝑛𝑖 , 𝑛𝑗)
 

The shortest path can be computed by the A* search algorithm. The distance matrix 

computed by the closeness centrality can be utilized for computing the closeness 

centrality measure which sums the closeness between node i and all the other nodes 

excluding itself: 

𝐶(𝑛𝑗) =  
𝑛 − 1

∑ 𝑑(𝑛𝑘, 𝑛𝑗)𝑘−1
1
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2.3 LINK DENSITY 

The link density measures the ratio between the existing edges and the total possible 

edges. It allows to understand how much the graph is connected compared to a 

complete graph where every node has a connection with every other node. For directed 

graph the formula is: 

𝐿𝑖𝑛𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =  
𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠
=  

|𝐸|

𝑘(𝑘 − 1)
 

For undirected graph one need to account for the fact that every edge is reciprocated, 

thereby dividing by two the total edges: 

𝐿𝑖𝑛𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =  
𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠
=  

|𝐸|

𝑘(𝑘 − 1)/2
 

2.4 JACCARD SIMILARITY 

The Jaccard Similarity measures the overlap between the neighborhoods of two distinct 

nodes. The measure is defined as the size of the intersection between two node’s 

neighborhoods over the union of the two neighborhoods: 

𝐽(𝑛𝑖 , 𝑛𝑗)  =  
|𝒩𝑖  ∩ 𝒩𝑗  |

|𝒩𝑖  ∪ 𝒩𝑗  |
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3 STATIC GRAPH ENCODER  

3.1 ARTIFICIAL NEURAL NETWORK  
 

Artificial Neural Networks (ANN) (Goodfellow, Bengio, & Courville, 2016) is technique 

that can model nonlinear relations between the input and the output. It is a biologically 

brain-inspired function where each node of the network receives the input from the 

sender and chooses how much of the signal to forward to subsequent nodes. Each layer 

of the neural network is usually comprised of two steps: the composition of a linear 

function with a nonlinear function. Considering the layer l, the first function in the 

network layer projects the input features 𝑋 ∈ ℝ𝑘 × 𝑑, where k is the number of sampled 

points and d is the original input size, by a linear projection matrix weight matrix     

𝑊𝑙 ∈ ℝ𝑑×𝑜, where o is the size of the output. In addition, one can use a bias term 𝑏 ∈

ℝ𝑘×1 shared across the output dimensions, which acts as a translation the output space: 

𝑧𝑙
𝑘 = 𝑥𝑘

T ⋅ 𝑊𝑙 = ∑ 𝑥𝑘𝑑𝑑 ⋅ 𝑊𝑙
𝑑𝑜 + 𝑏𝑘  

𝑧𝑙
𝑘 ∈ ℝ𝑜  

Which in matrix notation is  

𝑍𝑙 =  𝑋 ⋅ 𝑊𝑙 + 𝑏𝑙 

𝑍𝑙 ∈ ℝ𝑘 × 𝑜 

The hidden representation Z is then transformed by a nonlinear function 𝜎(∙) selected 

from a set of available functions. The non-linearity is applied element wise for each 

output dimension of the vector 𝑧𝑘. The result of the nonlinear transformation is called 

the activation of a neuron:  

𝑎𝑘𝑜
𝑙 =  𝜎(𝑧𝑙

𝑘𝑜) 

𝐴𝑙 =  𝜎(𝑍𝑙) 

Chaining these operations will result in a deep neural network with multiple layers: 

𝐷𝑁𝑁𝐿(𝑋) = 𝜎𝐿 (𝑍𝐿 … (𝜎0(𝑍0(𝑊𝑙𝑋)))) = 𝜎𝐿 ∘ 𝑍𝐿 ∘ 𝑊𝐿 ∘ . . .∘ 𝑋 
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Where L is the number of layers.  

 

Figure 4 Diagram of a Deep Neural Network (https://stackoverflow.com/, 2021)  

The above diagram represents the output units as nodes and the weights connections as 
directed edges.  

 

 

Figure 5 Visualization data transformed by the hidden layer and activation layer 
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3.1.1 Sigmoid Activation 

One common activation function is the logistic function also called sigmoid. This 

function has the property of mapping the domain of the function onto the range 

contained between (0,1).  

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 

 

Figure 6 Sigmoid Function and its derivative 

This activation can be used as either the hidden activation or for the final layer for 

binary classification. One issue with this activation function is that the derivative 

saturates for large values of the input, thereby impeding the learning process since the 

derivative update will be close to zero.  

3.1.2 Relu Activation 

The most common activation function is the relu function which is 𝜎𝑟𝑒𝑙𝑢(𝑥) = max (0, 𝑥). 

This activation is very common and performs empirically well because it solves the 

gradient saturation problem (Xu, Wang, Chen, & Li, 2015) because the gradient is 

constant independently from the values of the input. One problem with this activation is 

that the gradient is a step function. For values less than zero the gradient update will be 

zero. 

 

Figure 7 Relu Function and its derivative 
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3.1.3 Softplus Activation 

The softplus activation function is an improvement over the relu function as it 

smoothens the boundary at 0. Therefor the gradient still exists for values near zero.  

𝜎𝑠𝑜𝑓𝑡𝑝𝑙𝑢(𝑥) = ln (1 + 𝑒𝑥) 

 

 

 

 

 

 

 

Figure 8 Softplus Activation function and its derivative 

 

3.1.4 Leaky-Relu Activation  

The Leaky-Relu activation function is similar to the Relu activation function however it 

has a small nonzero gradient for values less than 0 controlled by the parameter 𝛼. 

𝜎𝑙𝑒𝑎𝑘𝑦−𝑟𝑒𝑙𝑢(𝑥)  =  𝑚𝑎𝑥(𝛼𝑥, 𝑥) 

𝛼 ∈  [0,1] 

 

Figure 9 Leaky-Relu Function and gradient 

3.1.5 Tanh Activation 

The Tanh activation maps the input domain onto the range (-1, 1) and is often used as a 

gating function in recurrent neural network models. 
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3.2 AUTOENCODER MODEL 
 

A deep neural network can be though as an encoding step which maps the inputs to a 

lower dimensional space called hidden space. If a decoding step which maps the hidden 

back to the original input space is present, the resulting architecture is defined as an 

autoencoder, as it tries to automatically encode the input features by non-linearly 

projecting them to a lower dimensional space and then trying to reconstruct the original 

input features in the original space. Formally, an autoencoder is defined as: 

𝐷𝑁𝑁𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∶ 𝑋 → 𝑋′  

𝐷𝑁𝑁𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ∶ 𝑋′ → 𝑋 

Where 𝑋 ∈ ℝ𝑘 × 𝑑 and 𝑋′ ∈ ℝ𝑘 × 0, and o < d. Then one needs to define how close the 

reconstruction is from the true data points: 

𝐿(𝑋, 𝑋′) =  ||𝑋, �̂�||2 =  ||𝑋 − 𝐷𝑁𝑁𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝐷𝑁𝑁𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋))||2 

=  ||𝑋 − 𝜎𝐿 (𝑍𝐿 … (𝜎0(𝑍0(𝑋)))) ||2 

Where 𝐿(𝑋, 𝑋′) is the 𝐿2 norm reconstruction loss between the input and the predicted 

output of the neural network. Many different loss functions can be utilized based on the 

task at hand, which will be explained more in details in chapter 7. The autoencoder 

model is a general model which can be used with many different architectures such as 

Convolutional Neural Networks (CNN) (LeCun, Haffner, Bottou, & Bengio, 1999), 

Recurrent Neural Networks (RNN) (David, Geoffrey, & Ronald, 1985) and GNNs.  
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3.3 TRAINING A NEURAL NETWORK  

 The parameters of the neural network are optimized with gradient descent. At every 

step of the iteration, called epoch, the weights of the NN are updated by the gradient of 

the weights with respect to the loss function. The gradient is multiplied by a parameter 

that controls how much the weights will be updated: 

𝜃𝑡+1 = 𝜃𝑡 − ∇𝜃𝐿(𝑋, �̂�) 

To calculate the gradient w.r.t the loss function, the back-propagation algorithm is used 

(Rumelhart, Hinton, & Williams, 1986). This algorithm is based on the chain rule of 

derivation and efficiently computes the gradient for every layer. Here we show an 

example of computing a single weight partial derivative w.r.t the loss function as layer 𝑙. 

𝜕𝐿(𝑋, �̂�)

𝜕𝑊𝑖𝑗
(𝑙)

=
𝜕𝐿(𝑋, �̂�)

𝜕𝜎𝑖
(𝐿)

⋅
𝜕𝜎𝑖

(𝐿)

𝜕𝑧𝑖
(𝐿)

⋅
𝜕𝑧𝑖

(𝐿)

𝜕𝑊𝑖𝑗
(𝐿)

⋅
𝜕𝑊𝑖𝑗

(𝐿)

𝜕𝜎𝑖
(𝐿−1)

… ⋅
𝜕𝑧𝑖

(𝐿−1)

𝜕𝑊𝑖𝑗
(𝐿−1)

 

 

 

 

 

 

3.4 GRAPH NEURAL NETWORKS 

The main difference between an ANN and a Graph Neural Network (GNN) is that the 

GNN operates on a set of nodes features with a dependency structure based on the 

adjacency matrix, instead of treating the nodes as an independent sampled point. The 

static graph encoder is a neural network function that maps the node features of the 

graph to a latent representation. The main idea behind a graph neural network is that 

the node features, and therefore the information related to a node, is shared between 

adjacent nodes based on the adjacency matrix. Therefore, the GNN takes as input both 

the node features and the adjacency matrix. The procedure of sharing messages is called 

the message passing step. Formally a GNN is a function defined as 𝐺𝑁𝑁: (𝑋, 𝐴) → 𝑋′. All 

GNN models so far developed can be casted into a message passing framework 

(Bronstein, Bruna, Cohen, & Veličković, 2021).  
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Figure 10 Message Passing Representation (Bronstein, Bruna, Cohen, & Veličković, 2021) 

 

The node features 𝑥𝑖  are updated by weighting the incoming nodes features 𝑥𝑗  of the 

neighbors. The node features are then aggregated via a permutation invariant operator 

such as the sum, mean or max operator.   

For a convolutional neural network, the values of the weights depend directly on the 

weights of the adjacency matrix. 

For the graph attention network, the weights are implicitly computed based on the 

agreement between node features of the incoming neighbors and the receiver node via 

the attention mechanism. The message passing framework is the superset of the two 

methods where the message between two nodes is computed by a learnable function. In 

the following paragraph the graph attention model will be explained more in details.  

3.4.1 Graph Attention Network  

The graph attention network (GAT) (Petar, et al., 2018) was developed to increase the 

flexibility of the GCN by having learnable filter graph which learns the weight to assign a 

node neighbor in order to efficiently learn to propagate the signal through the graph. For 

each time step of the dynamic graph we have a set of node features 𝑋 =  {𝑥0, … , 𝑥𝑘} ∈

ℝ𝑘 × 𝑑. The GAT model will product a new set of node features 𝑋′ as its output.  

The initial set is to first multiply the initial features by a matrix 𝑊 ∈  ℝ𝑑×𝑓 which will 

project the initial node features to the space of dimension f: 

𝐻 = 𝑋𝑊 

Then the transformed node features H will be utilized to get the edge attention matrix A. 

First a scoring function will be used to get the score of the tuple of nodes (i,j) features. 



22 
 

The scoring is done by concatenating the edge features of the two nodes and multiplying 

the resulting vector by a learnable kernel, followed by an activation function: 

𝑒𝑖𝑗 = 𝑅𝑒𝑙𝑢(𝑘𝑇[ℎ𝑖||ℎ𝑗]) 

To efficiently calculate the edge scores one can split the kernel 𝑘 ∈ ℝ2𝑓×1 by half, where 

one half will score the so-called self-attention, and the other half will score the neighbor. 

The result of the two scores ℎ𝑠𝑙𝑒𝑓 ∈ ℝ𝑘×1 and ℎ𝑛𝑒𝑖𝑔ℎ𝑏 ∈ ℝ𝑘×1 can be summed together 

by taking advantage of broadcasting operations of mathematical libraries to get the edge 

score matrix 𝐸 ∈ ℝ𝑘×𝑘 .  

Since the score matrix E will be dense as the attention scores every node tuple, many 

nodes that are not in the neighborhood of the aggregating node will have influence in the 

message aggregation step. To avoid this issue the authors proposed to apply a mask to 

every edge which in not in the edge set.  

𝑒𝑖𝑗 = 𝑒𝑖𝑗 + 𝑚𝑎𝑠𝑘𝑖𝑗  

𝑚𝑎𝑠𝑘𝑖𝑗 =   𝟙𝑒𝑖𝑗∈𝐸 

Where the values of the mask are 0 for existing edges and −10𝑒8 for non-existing edges.  

The high negative value in the mask is necessary because the edge scores will be 

normalized by a softmax function, therefore if the mask values were not high enough 

there would be still some weight given to that specific edge attention. The edge scores 

are then normalized as follows: 

𝑎𝑖𝑗 =  
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘∈𝒩𝑖 
 

The attention weights will then be used to compute a linear combination of the features 

by multiplying the attention matrix A with the node features X, followed by an activation 

function: 

𝑋′ = σ(A ⋅ X) 

𝑥𝑖
′ = 𝜎 ( ∑ 𝑎𝑖𝑗

𝑘 ℎ𝑗

𝑗∈𝒩𝑖

) 
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To stabilize the training and encoding different graph views the authors proposed to 

multiple kernels for the attention mechanism {𝑘𝑖, … , 𝑘𝐾} and either concatenate the 

resulting output node features:  

𝑥𝑖
′ = [𝜎 ( ∑ 𝑎𝑖𝑗

0 ℎ𝑗

𝑗∈𝒩𝑖

) || … || 𝜎 ( ∑ 𝑎𝑖𝑗
𝐾 ℎ𝑗

𝑗∈𝒩𝑖

)] 

or average output node features: 

𝑥𝑖
′ =  

1

𝑘
∑ 𝜎 ( ∑ 𝑎𝑖𝑗

0 ℎ𝑗

𝑗∈𝒩𝑖

)

𝑘

 

This architecture can be castes into a message passing framework as: 

 

Figure 11 Message passing GAT (Bronstein, Bruna, Cohen, & Veličković, 2021) 

 

Where ℎ𝑢 is the final node representation, 𝑥𝑢 is the initial node representation, the ⨁ is 

the aggregation operator that aggregates messages from the neighbors, which in this 

case is just the sum operator, 𝜓 is an initial node embedding transformation function 

which in the case of GAT is a linear transformation, 𝑎(𝑥𝑢, 𝑥𝑣) is a function that scores the 

nodes, which in this case is the attention mechanism and 𝜙 is a final transformation 

which in this case is the final activation function.  
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4 STATIC GRAPH DECODER  

Now that we have defined the framework to encode the original input nodes into a 

latent embedding dimension, we can now focus on how to reconstruct the graph 

adjacency matrix for a single time step. Formally, given the resulting transformed node 

features outputted by the GAT model, we would like to design a function such that takes 

as input two nodes and returns a value which will be the parameters of the predictive 

distribution: 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ∶ 𝑋′ × 𝑋′ → 𝐴 

We will need to implement three separate decoders, one for each parameter of the 

distribution. The first decoder will be used to parametrize the joint Bernoulli 

distribution to predict the existence of and edge, the second decoder will be used to 

parametrize the mean of the Lognormal joint distribution and the third will be used to 

parametrize the variance of the Lognormal join distribution.  

There are two main ways to reconstruct a stochastic graph parameter from node 

features. The first one is known as the inner-product decoder, the second one is a 

generalization of the inner-product decoder and support asymmetric matrices.  

The inner-product decoder takes two nodes feature matrices and computes the inner-

product of each pair of nodes: 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑖𝑛𝑛(𝑋) = 𝑋𝑋𝑇 

The resulting matrix will have size 𝑘 × 𝑘 where 𝑘 is the size of the set of nodes. The 

inner product measures the unnormalized cosine distance between two points and can 

be though of as a measure of similarity between two embeddings. The issue with this 

type of decoder is that the inner-product is a symmetric operation and therefore cannot 

approximate a directed graph.  

To overcome this issue one simple method is to introduce a square matrix with the same 

dimension of the node features dimension to make the score asymmetric. This type of 

decoder is called a bilinear decoder (Chen & Chen, 2017): 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝑋) = 𝑋𝑅𝑋𝑇 
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Where 𝑅 ∈ ℝ𝑓×𝑓 and 𝑋 ∈ ℝ𝑘×𝑓.  One can realize that if the R matrix was an identity 

matrix with ones as diagonal and zero everywhere else, the bilinear product would 

reduce to an inner-product. One way to justify to the bilinear product formula is to first 

linearly transform the features of the left embedding matrix with a square parameter 

matrix:  𝑋 ⋅  𝑅0, and the same for the right embedding matrix: 𝑋 ⋅  𝑅1. Then we perform 

the inner product between the two transformed matrices: (𝑋 ⋅  𝑅0) (𝑋 ⋅  𝑅1)𝑇 =

 (𝑋 ⋅  𝑅0)(𝑅1
𝑇𝑋𝑇) =  𝑋𝑅𝑋𝑇.  

 

5 RECURRENT TEMPORAL ENCODER  

Having defined how to transform the initial features into a latent embedding via a graph 

neural network encoding and a way to reconstruct a graph from the node embeddings, 

we will now focus on how to model the dynamics of the node to exploit the temporal 

structure of the dynamic graph. The models we will use are recurrent neural network 

models (RNN). These family neural networks are used to process sequential data and 

the parameters of the neural network are shared across time. These models take the 

either the output of the model from the previous time step, the input at the current time 

step or the hidden state from the previous time step which holds information from the 

past and carries it forward in the future. One advantage of using such architectures to 

model temporal data is that they have an inductive bias to model sequential structured 

data and do not necessarily need an explicit time dimension to understand the passage 

of time. However there are two main drawback of using an RNN. The first is that the 

computation runs sequentially and can be slow to run for many time stamps. The second 

major drawback is that they suffer from the so-called vanishing gradient problem 

(Hochreiter, 1998). This problem is inherent from the gradient-based optimization 

algorithm used, which is called Back Propagation Through Time (BPTT). One way to 

alleviate the vanishing gradient problem is to introduce some gating functions that 

modulate the signal going forward and allow better control over the gradient in the 

backward optimization step. The more advanced recurrent models such as the Long 

Short Term Memory (LSTM) network and the Gated Recurrent Units (GRU) utilize gating 

functions and achieve better performance.  
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5.1.1 Recurrent Neural Network  

 

A recurrent neural network is the simplest RNN for of recurrent network. The model 

holds a hidden state for each time step which is used to carry information from the past 

forward into the future. At each time step, the model first encodes the current time step 

input and maps it to a hidden space. The model then merges the hidden state from the 

previous time step and the encoded input and it updates the current hidden state. 

Finally the model decodes the hidden state to get a prediction output which will be 

wither used for downstream tasks or as the actual output of the model. 

Formally a neural network is a function parametrized by the set of parameters 𝜃 of the 

type: 

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1; 𝜃) 

 

Figure 12 Computation diagram of RNN. The left graph is the representation of the 
computational flow of the RNN. The right graph is the “unrolled computational graph” where 

the computational steps are made explicit  (Weijiang, Naiyang, Yuan, AU, & Zhigang, 2017) 

The computation of the functions is done recursively via a feedback loop that feeds back 

the hidden state to the function. The forward propagation of the state is done by the 

following update equations: 

𝑎 = 𝑏 + 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 

ℎ𝑡 =  𝜎(𝑎)  

𝑜 = 𝑏𝑜 + 𝑉ℎ𝑡 

Where ℎ𝑡−1 ∈ ℝ𝑑   is the hidden state vector, 𝑊 ∈ ℝ𝑑×𝑑 is the hidden state parameter 

used to for the hidden state transition,  𝑈 ∈ ℝ𝑖×𝑑 is a weight matrix which maps the 

input 𝑥𝑡 ∈ ℝ𝑖 at time to the hidden state space, 𝑏 ∈ ℝ𝑑  is a bias term and 𝜎 is the tanh 

activation function. To get the final output a further linear projection matrix V is used 
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with a bias term 𝑏𝑜. The initial state ℎ0 is set to the zero-vector indicating that the 

sequence is staring.  

This simple recurrent architecture can be adapted to process the temporal dependence 

of the dynamic graph. First, instead of a vector, the input to the RNN will be the encoded 

node feature matrix  𝑋𝑡 ∈ ℝ𝑘×𝑓 for the current time step. To get the encoded node 

feature matrix we will use the GAT encoder with the initial features and current 

adjacency matrix. The hidden state dimension changes from a vector to a matrix of the 

same shape as the encoded node feature matrix, therefore each node will have its own 

state. The recurrent graph architecture is implemented by the following equations:  

𝑋𝑡
′ = 𝐺𝐴𝑇(𝐴𝑡, 𝑋𝑡) 

𝐻𝑡 = 𝑏 + 𝑊ℎ𝐻𝑡−1 + 𝑊𝑥𝑋𝑡
′ 

𝐻𝑡
′ =  𝜎(𝐻𝑡) 

These equations implement a GAT-RNN cell. Having updated the previous hidden state 

with the current inputs, we can then use the new state at the current time step to decode 

the graph parameters utilized by the joint distribution of the edges with the bilinear 

decoder model followed by an activation function. Each parameter of the distribution is 

computed by an independent GAT-RNN cell, thereby decoupling the dynamics of 

different parameters: 

𝑃𝑡 = 𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝐻𝑡
𝑝)) 

𝑊𝑡 = 𝜎𝑟𝑒𝑙𝑢(𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝐻𝑡
𝑤)) 

𝑉𝑡 = 𝜎𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑏𝑖𝑙(𝐻𝑡
𝑣)) + 1−3 

The activation function for the parameters used to parameterize the Bernoulli 

distribution 𝑃𝑡  is the sigmoid function, since the output of the activation will be bounded 

between (0,1) and therefore can model del probability parameter. The activation 

function used for the edge weights 𝑊𝑡 is the relu function since the transactions amount 

between countries must be greater than zero. The matrix 𝑊𝑡 will be used to parametrize 

the mean of the LogNormal distribution. The activation function for the standard 

deviation parameter is the softplus function with an added a small constant to prevent 

the numerical instabilities. As previously mentioned, this model suffers from the 



28 
 

vanishing gradient problem. One model that deals with this issue is the Gated Recurrent 

Unit recurrent model, which will be introduced in the following paragraph.  

5.1.2 Gated Recurrent Unit  

 

The Gated Recurrent Unit (GRU) (Cho, Merrienboer, Bahdanau, & Bengio, 2014) (Chung, 

Gulcehre, Cho, & Bengio, 2014) is conceptually similar to the simple RNN but it’s more 

suitable for longer time sequences. We chose to implement a GRU instead of the LSTM 

because it has less parameter to estimate compared to the LSTM and empirically 

performs better. To avoid the vanishing gradient problem the, function implements the 

so called gated units which allow the function to forget and update part the hidden state. 

This functionality allows the gradient to create shortcuts path that bypass multiple time 

steps. The two novel states compared to the RNN are the reset gate and the update gate. 

First a candidate state 𝐶𝑡  is proposed by gating the previous state 𝐻𝑡−1 with a reset 

function that output the reset values 𝑅𝑡: 

𝑋𝑡
′ = 𝐺𝐴𝑇(𝑋𝑡, 𝐴𝑡) 

𝑅𝑡 =  𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟𝑋𝑡
′ + 𝑈𝑟𝐻𝑡−1 + 𝑏𝑟) 

𝐶𝑡 = 𝜎𝑡𝑎𝑛ℎ(𝑊𝑐𝑋𝑡
′ + 𝑈𝑐(𝑅𝑡 ⊙ 𝐻𝑡−1) + 𝑏𝑐) 

Where ⊙ is the element wise product. 𝑊𝑟 and 𝑈𝑟 are the weight matrices of the reset 

gate and 𝑏𝑟 is the bias term. 𝑊𝑐 and 𝑈𝑐 are the weight matrices of the candidate state and 

𝑏𝑐 is the bias. The new hidden state is the result of a linear interpolation between the 

previous state 𝐻𝑡−1 and the candidate state 𝐶𝑡. The interpolation coefficient is controlled 

by the update gate function 𝑈𝑡:  

𝑈𝑡 = 𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑢𝑋𝑡
′ + 𝑈𝑢𝐻𝑡−1 + 𝑏𝑢) 

𝐻𝑡 = (1 − 𝑈𝑡) ⊙ 𝐻𝑡−1 + 𝑈𝑡 ⊙ 𝐶𝑡 

We then predict the parameters of the distribution of the edges based on the updated 

hidden state 𝐻𝑡. As in the RNN case, each bilinear decoder will receive the output from a 

different GAT-GRU encoding block, since sharing the hidden state between parameters is 

detrimental for the learning process.   
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5.1.3 Training with Back Propagation Trough Time (BPTT) 

To optimize the weights of a recurrent neural network one needs to backpropagate the 

error gradient to each previous step of the computations. This is because the hidden 

state of the current time step depends on all the previous hidden states. The technique 

to propagate the error gradient to the previous time steps is call Back Propagation 

Through Time (BPTT) (Werbos, 1990).  The method is passed on the backpropagation 

methods, which is simply the chain rule. However, instead of limiting the gradient 

update to just one step, the chain of gradients is computed up to the initial time step for 

each time step of the sequence. The following derivation of the algorithm is applied to 

the simpler RNN case and only for the parameter that multiplies the hidden state. The 

same logic applies to the more complex GRU and the other parameters. 

For each time step, a loss function is computed, and the total loss function will be the 

sum of the losses divided by the number of time steps: 

𝐿𝑡𝑜𝑡 =
1

𝑇
∑ 𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝑡

 

Where 𝑦 is the desired output and 𝑦�̂� is the predicted output. The derivative w.r.t the 

weights that multiply the hidden state at time t will be (Hu, s.d.): 

𝜕𝐿

𝜕𝑤ℎ
=  

1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝜕𝑤ℎ
𝑡

=
1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝜕𝑤ℎ
𝑡

=
1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡, 𝑦�̂�)

𝜕𝑜𝑡
𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕𝑤ℎ
 

The problem now stems from the fact that 
𝜕ℎ𝑡

𝜕𝑤ℎ
 depends on the previous ℎ𝑡−1 according 

to the update equation of the RNN: ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1; 𝑤ℎ). To compute the partial 

derivative of the hidden state w.r.t the weight 𝑤𝑡 we need a recursive formula that 

computes the partial derivative of the previous hidden state to the current hidden state 

for each time step  (Murat, s.d.): 

𝜕ℎ𝑡

𝜕𝑤ℎ
= (∏

𝜕ℎ𝑡+1

𝜕ℎ𝑡

𝑡−1

𝑡=1

)
𝜕ℎ𝑡

𝜕𝑤ℎ
 

⟹
𝜕𝐿

𝜕𝑤ℎ

=  
1

𝑇
 ∑

𝜕𝐿𝑡(𝑦𝑡 , 𝑦�̂�)

𝜕𝑜𝑡
𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

 (∏
𝜕ℎ𝑡+1

𝜕ℎ𝑡

𝑡−1

𝑡=1

)
𝜕ℎ𝑡

𝜕𝑤ℎ

 

Since the formula for the derivative contains the product of the partial derivative of the 

hidden state up to time t-1, this will lead to instability during training as the gradient 
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would either vanish or blow up. To mitigate this effect the one can truncate gradient 

computation to T-k time steps. The summation will thereby begin on the k time step and 

the gradient will then backpropagated up to k time steps. Thanks to modern auto 

differentiation frameworks the recursive gradient updates is calculated automatically.  

 

 

6 LOSS FUNCTION  

The following loss function is based on the maximization of the log-likelihood of the 

distribution parameterizing the network edges. The likelihood of a function is the 

probability of the data being generated by the parameter of the distribution: 

ℒ(𝜃|𝒙) = 𝑃(𝑥0, … , 𝑥𝑖|𝜃) = ∏ 𝑃(𝑥𝑖; 𝜃)

𝑖

 

Where, in the example above, 𝒙 is a vector containing independently sampled points 

generated by the true parameter 𝜃∗. ℒ is the likelihood function of the parameter 𝜃. 

Since the points are independently sampled, the join probability of the points is the 

product of their individual probability distribution parametrized by the parameter 𝜃. 

We would therefore like to find the parameter of the distribution that maximize the 

likelihood:  

𝑎𝑟𝑔𝑚𝑎𝑥 𝜃ℒ(𝜃|𝒙) 

The likelihood of a graph corresponding to a single time step if defined by the edge 

distribution. Since the network adjacency matrix is a sparse matrix with many more 

missing edges that existing edges, we chose the zero-inflated lognormal distribution to 

model the edge probability. The zero inflated lognormal distribution is a mixed discrete-

continuous distribution.  

One component of the zero-inflated lognormal is the lognormal distribution. Samples 

from a lognormal distribution are distributed according to exponentiated gaussian 

samples and vice versa, the natural log of samples from the lognormal distribution will 

be distributed as a gaussian distribution: 
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𝑥 ∼ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇, 𝜎) 

𝑒𝑥 =  𝑦 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑒𝜇, 𝑒𝜎) 

The lognormal is characterized by the following pdf parametrized by 𝜇 and 𝜎: 

𝑃𝐷𝐹(𝑥) =
1

𝑥𝜎√2𝜋
𝑒

− 
ln(𝑥)−𝜇

2𝜎2  

The discrete component of a zero-inflated distribution is the Bernoulli distribution: 

{0,1} ∼ 𝐵𝑒𝑟𝑛𝑢𝑙𝑙𝑖(𝑝) 

The pdf of the zero-inflated lognormal distribution is (Vandal, Kodra, Dy, & Ganguly, 

2018): 

𝑃𝐷𝐹(𝑥) =  𝑓(𝑥; 𝜇, 𝜎, 𝑝) = {

1 − 𝑝                                  𝑥 = 0

𝑝
1

𝑥𝜎√2𝜋
𝑒

− 
ln(𝑥)−𝜇

2𝜎2 , 𝑥 > 0
 

Since the likelihood function is a product of individual probability density functions, it 

would not be computational feasible to directly optimize it because of the product rule 

of differentiation. One common way to obviate the problem is maximizing the log-

likelihood. The log is a monotonically increasing function. The same value will maximize 

both the likelihood and the log-likelihood. Taking the log of the products will result in a 

sum over log-densities functions for each possible edge in the graph. The log likelihood 

of join distribution of the edges for one time step will be: 

 𝐿𝑜𝑔(ℒ(𝜃)) =  ln(𝑓(𝐸 ; 𝜃)) =  
1

𝑘2
∑ ∑ 𝟙𝑒𝑖𝑗>0 ⋅ 𝑃𝑖𝑗 + (1 −

𝑗𝑖

 𝟙𝑒𝑖𝑗>0)(1 − 𝑃𝑖𝑗) 

                                                                        −
1

2𝑘2
∑ 𝑉𝑖𝑗

−2

𝑖,𝑗∈𝐸

|| log(𝐸𝑖𝑗) − 𝑊𝑖𝑗||2 + log (𝑉𝑖𝑗
2)   

Where 𝜃 = {𝑃, 𝑊, 𝑉} is the set on weight matrices that will parametrize the distribution 

and 𝑘2 is the total number of edges. P is the decoded probability matrix, W is the 

decoded mean matrix and V is the decoded standard deviation matrix. From the formula 

one can recognize that the first part is the cross-entropy binary loss classification loss, 

and the second part is the regression loss with an adjustment for the variance. If the 

variance was constant the regression loss would reduce to the squared error loss. The 
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loss function takes as input the adjacency of the t+1 time step and the parameters of the 

distribution over edges predicted at time step t, which will be used to compute the 

likelihood for the adjacency matrix.  

To optimize the weights of the network, for each time step we update the parameter 

weights based on the gradient of the negative log-likelihood function, so that the 

optimization process will minimize the loss function: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝐿𝑜𝑔(ℒ(𝜃𝑡)) 

Where 𝛼 is the learning rate hyper-parameter that controls how much the weights are 

updated. The problem with the maximum likelihood estimation is that it gives a point 

estimate of the optimal parameters and not the full posterior distribution. The following 

chapter will present how to approximate the full posterior and the difference between 

model and data uncertainty  

7 ALEATORIC AND EPISTEMIC UNCERTAINTY ESTIMATION 

The total uncertainty can be divided into a model uncertainty part called epistemic 

uncertainty, which represent the uncertainty over the model parameters, and the 

aleatoric uncertainty, which represent the inherent variability of the data. The epistemic 

uncertainty is also known as reducible uncertainty because as the number of data points 

increases, the lower the uncertainty over the parameter of the model. For points close to 

the training input data points the epistemic uncertainty will be low and will 

progressively be higher for point outside the training distribution.  

7.1 ALEATORIC UNCERTAINTY  

The expectation and variance of the distribution is (Vandal, Kodra, Dy, & Ganguly, 2018): 

𝔼[𝐸𝑠] = 𝑃𝑠  𝑒𝑥𝑝(𝑊𝑠 + 
1

2
𝑉)  

𝕍[𝐸𝑠] = 𝑃𝑠
2 𝑒𝑥𝑝(2𝑊𝑠 +  2𝑉)  

The variance of 𝕍[𝐸𝑠] represents the uncertainty of the data, also known as aleatoric and 

irreducible uncertainty.  
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7.2 EPISTEMIC UNCERTAINTY WITH DROPOUT  

Dropout (Srivastava, Hinton, & Krizhevsky, 2014) is a simple technique to inject noise 

into every layer of the neural network. The resulting output will be stochastic, and the 

variance of the output will represent the model uncertainty over the input data. Dropout 

samples, at every layer, either a binary mask or a continuous valued mask from either a 

Bernoulli distribution or a gaussian distribution and multiplies the mask to the layer 

activations outputs.  

𝒎𝑙~ 𝐵𝑒𝑟𝑛𝑢𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) 

𝜎𝑙
′(𝑧) =  𝜎𝑙(𝑧) ∗ 𝒎𝑙   

𝜎𝑙+1(𝑧) =  𝜎𝑙
′(𝑧)𝑊𝑙  

 

Figure 13 Dropout visualization (Srivastava, Hinton, & Krizhevsky, 2014) 

Where 𝜎 if the activation function of the units in a single layer l and 𝒎𝑙 ∈ ℝ|𝑧| is the 

mask of the same size of the activation output and 𝑝 is the probability of retention. This 

will result on some activations to be dropped from the network. During training, only 

the resulting subnetwork weights are updated, however all the neural network weights 

will be update in expectation during many epochs of training. This can be though as 

model averaging. Dropout is also used as a function regularizer which allows the model 

to generalize better to unseen data points and leads to faster parameter convergence.  

As demonstrated by (Gal, 2016), any neural network optimized with dropout is 

equivalent to a form of approximate inference in a probabilistic interpretation of the 

model. This result is important because it shows that the optimal weights found by 

training a neural network with dropout will be the same as the ones found by optimizing 

a Bayesian Neural Network with variational inference. Therefore, this means that a 
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neural network trained with dropout already is a Bayesian neural network. The prior 

distribution on the neural network weights is related to the amount of noise of the mask. 

One can get the estimates of the parameter uncertainty by doing T forward passes with 

T different sampled masks and then estimate the variance of the output of the model. 

This variance will be the model uncertainty or epistemic uncertainty. The total variance 

of the model will therefore be the epistemic variance plus the aleatoric variance.  

At inference time one can decide whether to sample the dropout activation mask to 

make the output of the network stochastic. If the dropout is not used during inference, 

the weight matrices of the network must be scaled by the dropout probability 𝑝: 

𝑊𝑡𝑒𝑠𝑡 = 𝑝𝑊𝑡𝑟𝑎𝑖𝑛 

To make a concrete example, the following figures represent a regression problem on a 

toy dataset where the independent variable follows a heteroskedastic gaussian 

distribution with linear mean and nonlinear variance. The first figure shows the training 

data point and the prediction from the estimated model.  

 

Figure 14 True and Predicted samples 
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Figure 15 True and Predicted mean and variance without dropout during inference 

 

Figure 16 True and Predicted mean and variance with dopout 

The second and third figures show the estimated and true parameter of the distribution. 

The function used to parametrize the mean and variance of the gaussian distribution is a 

deep neural network parametrized by the weight matrices and biases θ = {𝑊𝑙 , 𝑏𝑙}. The 

figure on the left shows the uncertainty over the parameters of the model. For each 
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forward pass of the model a different set of parameters (𝜇, 𝜎) are sampled which will 

then be used to parametrize a gaussian distribution: 

μ, σ~𝐷𝑁𝑁(𝑥;  𝜃) 

𝑦~𝑁(𝑥; σ, μ) 

The figure on the right instead does not use dropout during the inference stage and 

therefore the parameters of the output distribution are deterministic. As one can see in 

the left figure, the higher the variance of the data the more uncertain the parameters 

values are, however the mean of the distribution closely approximates the true mean of 

the parameters. 

To get the total uncertainty estimate, we need to sample 𝑆𝑝 number of parameters which 

will parametrize the zero-inflated distribution. Then one can proceed in two ways. The 

first is to sample 𝑆𝑑 points and compute the mean and variance of the data points for 

each sampled coefficient.  

𝑊𝑠𝑝
, 𝑉𝑠𝑝

, 𝑃𝑠𝑝
 ~ 𝑀𝑜𝑑𝑒𝑙(𝐴𝑡, 𝑋𝑡; 𝜃, 𝑀) 

𝐸𝑠𝑑
 ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑊𝑠𝑝

, 𝑉𝑠𝑝
, 𝑃𝑠𝑝

) 

𝔼[𝐸] =
1

𝑆𝑡𝑜𝑡
∑ 𝐸𝑠𝑑

𝑆𝑠𝑑

  

𝕍[𝐸𝑠] =  
1

𝑆𝑡𝑜𝑡
∑(𝐸𝑠𝑑

− 𝔼[𝐸])
2

𝑆𝑑

 

Where 𝑆𝑡𝑜𝑡 =  𝑆𝑝 ∗ 𝑆𝑑. 

The second method is to compute the expected mean and variance of the final 

distribution by taking a Monte Carlo estimate of the mean and variance of the aleatoric 

uncertainty: 

𝔼[𝐸] =
1

𝑆𝑝
∑ 𝑃𝑠𝑝

 𝑒𝑥𝑝(𝑊𝑠𝑝
+  

1

2
𝑉𝑠𝑝

)

𝑆𝑝

  

𝕍[𝐸] =
1

𝑆𝑝
∑ 𝑃𝑠𝑝

2  𝑒𝑥𝑝(2𝑊𝑠𝑝
+  2𝑉𝑠𝑝

) 

𝑆𝑝
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The second method is the preferred method since it requires a smaller number of 

samples (Vandal, Kodra, Dy, & Ganguly, 2018).  

8 MODEL EVALUATION 

To assess the model performance, one needs to define a diverse set of metrics that can 

capture the predictive capabilities of the model. These metrics can either be computed 

during the training phase to check whether the optimization process is running 

correctly or can be computed during the evaluation phase there the optimization 

process is stopped, and the model is evaluated on unseen data.  

The usual way to evaluate a model is to split the dataset in three blocks. The first set 

which will contain most of the data is the training set. The model will be optimized on 

this training set. The second set is called the validation set where in each iteration of the 

optimization procedure the model will be evaluated on this set to check whether the 

model is overfitting to the training set. The third set is the test set which will be used to 

evaluate the model on completely unseen data. The difference between the validation 

set and the test set is that if the modeler tunes some hyperparameters of the model, for 

example the learning rate, the number of layers or the activation function, the model 

could still overfit to the test set even though the model itself has not been trained on it. 

Therefore, the test set is used to evaluate the performance of the model on completely 

unseen data. One can then check the discrepancy between the evaluation metrics 

computed on the different dataset splits and check whether the model overfits to the 

training set and how well it generalizes to unseen data.  

Since the input data of the model is an ordered set of adjacency matrices, to implement 

the training, validation split we mask some of the edges of each input adjacency matrix 

𝐴𝑡  and output adjacency matrix 𝐴𝑡+1 by sampling a binary matrix with probability 𝑝: 

𝑀𝑡
𝑡𝑟𝑎𝑖𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑡𝑟𝑎𝑖𝑛)  𝑎𝑛𝑑  𝑀𝑡

𝑡𝑒𝑠𝑡 = 1 − 𝑀𝑡
𝑡𝑟𝑎𝑖𝑛 

𝐴𝑡
𝑡𝑟𝑎𝑖𝑛 = 𝐴𝑡 ⊙ 𝑀𝑡

𝑡𝑟𝑎𝑖𝑛  𝑎𝑛𝑑  𝐴𝑡
𝑡𝑒𝑠𝑡 = 𝐴𝑡 ⊙ 𝑀𝑡

𝑡𝑒𝑠𝑡 

We sample 𝑇 − 𝑡𝑡𝑒𝑠𝑡  binary masks and leave the next 𝑡𝑡𝑒𝑠𝑡 time steps for the test set. 

The following paragraphs will introduce two types of evaluation metrics. The first type 

of measures is related to the regression task, where the analysis is focused on the 
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distance between the true edge weight and the sampled edge weight. The second type of 

measures are related to the classification task, where the analysis if focused on the 

predictive distribution of the existence of an edge.  

8.1 REGRESSION 

The regression metrics measure the distance between the predicted value and the true 

value. The closer the forecasted values are from the actual outcome the lower the 

distance and the better the performance of the model.  Since the values of the edges are 

lognormally distributed, for each metric we take the logarithm of 𝐴𝑖𝑗 = log (𝐴𝑖𝑗) 

8.1.1 Mean Absolute Error 

The mean absolute error (MAE) measures the absolute distance between the values of 

the true adjacency matrix 𝐴𝑖𝑗  and the predicted adjacency matrix  �̂�𝑖𝑗 . Every difference 

between the values will have the same weight.   

𝑀𝐴𝐸𝑡 =  
1

𝑘2
∑ ∑ |𝐴𝑖𝑗 −  �̂�𝑖𝑗|

𝑗𝑖

 

8.1.2 Root Mean Squared Error 

The root mean squared error (RMSE) measures the squared distance between the 

values of the true adjacency matrix 𝐴𝑖𝑗  and the predicted adjacency matrix  �̂�𝑖𝑗 . Large 

values of the error will have proportionally larger impact in the score than small 

error values. 

𝑅𝑀𝑆𝐸𝑡 =  √
1

𝑘2
∑ ∑(𝐴𝑖𝑗 −  �̂�𝑖𝑗)

2

𝑗𝑖

 

8.1.3 Accuracy 

The accuracy measures the precision of the regression. The higher the accuracy the 

higher the model performance. In the numerator the Frobenius norm is used to score 

the difference between the true and predicted adjacencies. The Frobenius norm is the 

square root of the sum of the absolute squared values of the errors: 

𝐴𝐶𝐶𝑡 = 1 −
||𝐴 − �̂� ||

𝐹

||𝐴||
𝐹

   𝑤ℎ𝑒𝑟𝑒   ||𝐴||𝐹 =  √∑ ∑ |𝐴𝑖𝑗|2

𝑗𝑖
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8.1.4 Explained Variance  

The explained variance calculates the percentage of the variance that is explained by the 
model. The higher the score the better the model captures the variability in the data. 

𝑉𝐴𝑅 = 1 −
𝕍[𝐴𝑖𝑗 − �̂�𝑖𝑗]

𝕍[𝐴𝑖𝑗]
 

 

8.1.5 Edge Distribution  

The distribution of edge weights is a simple way to visualize the discrepancy between 

the predicted values and the true values. From this plot one can see whether the model 

has a bias and how well the model approximates the true probability distribution of the 

data. 

 

Figure 17 Example of true and predicted trade 
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8.2 CLASSIFICATION 

Classification metrics evaluate different aspects of a classifier. Since the model 

developed has a component that predicts the probability of the existence of an edge 

between two nodes, the model can be considered a binary classifier.  

8.2.1 ROC curve 

 

Figure 18 Example of ROC curve 

The Receiver Operating Characteristic (ROC) curve is a chart that evaluates the 

performance of a binary classifier by varying the classification threshold. The False 

Positives Rate (FPR) is plotted on the x axis and the True Positive Rate (TPR) is plotted 

on the y axis. The TPR and FPR are defined as: 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

Every point on the curve corresponds to a different classification threshold. The higher 

the threshold the lower the TPR will be since only the data points classified with a high 

probability will be considered and many true positives will be excluded. The higher the 

classification threshold the lower the FPR will be, since only points on which the 

classifier is sure of the prediction will be included in the set. The opposite effect is true 

for low threshold values.  
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The optimal point on the curve is the point minimizing the distance between (0,1), 

which is the point where the FPR is zero and the TPR is 1 (Unal, 2017). For each point 

the distance between the point and the optimal value is computed and the point 

associated with the lowest distance is returned.  

 

8.2.2 Precision Recall Curve  

 

Figure 19 Example of Precision and Recall Curve 

The Precision-Recall Curve shows the tradeoff between the precision score and the 

recall score for different level of classification thresholds. The precision score is the 

number of true positives i.e. the number of points correctly classified as positive, divided 

by the total number of positives i.e. the total number of points the classifier classified as 

positive: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The recall measures the number of true positives divided by the number of actual 

positives. It measures how many items from the total set the classifier managed to 

identify: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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8.2.3 Confusion Matrix  

The confusion matrix shows the number of true positives, true negative, false positive 

and false negatives. The off-diagonal elements are misclassified points. The y axis 

represents the true label of the point and the x axis represent the predicted label from 

the model. The upper left element of the confusion matrix represents the number of 

True Negative training points, which are the missing edges which were correctly 

classified as missing edges. The lower right element represents the number of True 

Positive edges, which are the edges that were correctly classified as belonging to the 

graph. The upper right elements represent the False Positive edges, which are the edges 

that were classified as present but are missing from the graph. The lower right elements 

represent the number of False Negatives edges, which are edges that were classified as 

missing but are present in the graph. 

 

Figure 20 Confusion matrix example 

 

8.2.4 Expected Calibration Error 

The expected calibration error measures how much the probability estimated from the 

model match the actual frequency distribution of the accuracy of the model (Guo, Pleiss, 

& Weinberger, 2017 ). This metric measures the distance from the confidence and 

accuracy of the probability output of the model. If the model makes predictions with 

high confidence but the accuracy for those predictions is low, then the model is said to 

be mis calibrated.  The expected calibration error will then take this measure in 

expectation. One can estimate this expectation by taking the mean of the difference 
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between the probability output and the accuracy relative to each probability. Formally 

the expected calibration error is defined as: 

𝔼𝑃[|ℙ(�̂� = 𝑌|�̂� = 𝑝) − 𝑝|] 

In practice the first is estimated by counting the accuracy how many of the predicted 

points which fall in a small interval on the probability support where correct. The 

second term is the average confidence within a small interval bin.  

9 EMBEDDING VISUALIZATION 

To visualize the high dimensional node embeddings, representing the countries 

characteristics, coming from the RNN model we utilize a technique called T-Distributed 

Neighbor Stochastic Embedding (t-SNE) (Maaten & Hinton, 2008). This dimensionality 

reduction technique tries to minimize the LK-divergence between distribution of the 

high dimensional inputs 𝑥𝑖  and lower dimensional outputs 𝑦𝑖: 

𝑝𝑖|𝑗 =
exp (−||𝑥𝑖 − 𝑥𝑗||2/2𝜎𝑖

2)

∑ exp (−||𝑥𝑖 − 𝑥𝑘||2/2𝜎𝑖
2)𝑘≠𝑖

 

𝑞𝑖|𝑗 =
exp (−||𝑦𝑖 − 𝑦𝑗||2/2𝜎𝑖

2)

∑ exp (−||𝑦𝑖 − 𝑦𝑘||2/2𝜎𝑖
2)𝑘≠𝑖

 

𝐶 =  ∑ 𝐾𝐿(𝑃𝑖||𝑄𝑖)

𝑖

= ∑ ∑ 𝑝𝑖|𝑗log (
𝑝𝑖|𝑗  

𝑞𝑖|𝑗
)

𝑗𝑖

 

Where 𝑝𝑖|𝑗 and 𝑞𝑖|𝑗 are the conditional probabilities of the higher and lower dimensional 

input respectively. We utilized the Scikit-Learn python library (Pedregosa, 2011) to get 

the lower dimensional embeddings.  

We then utilized the k-means algorithm clustering algorithm (X. & J., 2011) to cluster the 

embedded low dimensional nodes. K-means first randomly distributes some centroid 

points which are the points which represent the center of the clusters. Then for each 

iteration it calculates the distance between each of the points to the centroid and assigns 

a cluster to each point based on the closets cluster. It then updates the centroid based on 

the average position of the points assigned to the cluster and iterates until convergence. 

The final result will be the centroid and the points associated to the centroid. 
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10  DATASET 

The source of the data used for the analysis comes from the UN Comtrade database 

(United Nations. UN Comtrade , s.d.). UN Comtrade is the most used database for annual 

data on international merchandise trade statistics detailed by commodity and partner. 

From the databased we can extract the amount of trade by dollar value and the quantity 

exchanged by the imported and exporter. In the database the countries can have either 

an exporter role or an importer role. Since the export of one country is the import of the 

other the two values should match. In realty this is not the case since the imports are 

measured at CIF, which is the Cost, Insurance and Freight Import Value. This value 

includes import charges and customs fees. Exports are instead measured as FOB, which 

is the Free On-Board values. This value includes loading and transportation costs but 

does not include customs fees and import charges (Methodology Guide for UN Comtrade 

User on UN Comtrade Upgrade 2019, 2019). The merchandise in the database follows 

two different reporting standard codes, the HS standard, the SITC standard and the BEC 

standard. The HS and SITC standards have different codes based on the year revisions.  

We utilized the SITC standard with revision 1 because it allows to gather data from 1964 

to 2019. The countries codes follow the ISO3 naming convention (https://www.iso.org/, 

2020). One issue with this dataset is that the dataset is not homogenized, and the actual 

trade values may be different than the ones reported. Furthermore, the values of the 

trade below 𝑒5 are missing from the years before the year 2000. This leads to inaccurate 

estimates of the level of trade and higher variance in the prediction.  
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11  RESULTS ANALYSIS 

In this section we will first explore the ITN structure with the network measures 

previously introduced and compare the measures of the predicted network estimated 

from the model and the actual network measures. We will the follow with the analysis of 

the predictive performance of the model by visualizing the regression and classification 

metrics.  

To understand the main players in the international trade network we plot the total sum 

of import and export of each country in the dataset, from 1995 to 2019, and rank the 

countries from the biggest to the lowest trader. 

 

Figure 21 Total sum of trade ranked by country 

From this plot we can see that China has surpassed the United States in terms of total 

goods traded. In the second place we find the United States, followed by Germany, Japan, 

France, Italy and the United Kingdom. From the graph we can see that the total trade 

follows an exponential curve. We will now show true and predicted adjacency matrix 

from corresponding to a randomly sampled product from the dataset. We will analyze 

more in details the performance of the model in the subsequent paragraphs. 
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Figure 22 Predicted Adjacency Matrix 

 

Figure 23 True Adjacency Matrix 
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From the two images we can see that the model is able to reconstruct the adjacency 

matrix of the next time steps. The zero lines in the middle that cross the plot are 

countries that no ceded to exist. However, the model still sampled some points from the 

missing countries because we did not explicitly model the entrance or exit probability of 

the countries.  

The following plot shows the distribution of the in-degree, out-degree and closeness 

centrality of the network, relative to different years, and how they evolve through time.  

 

Figure 24 In Degree, Out Degree and Closeness Centrality from the true data and model samples 



48 
 

As we can see from the plots, all statistics tend to shift to the left, indicating the increase 

of each measure through time. For example, the increase in in-degree shows that the 

countries of the network tend to increase the amount of product they import.  

The same reasoning applies to the out-degree measure. The closeness centrality shows 

that the countries become more integrated through time and the path from one country 

to the other gets shorter in the space of the network, even though the position of the 

country stays the same in the spatial coordinates. This signifies that the trade increases 

through time as the countries become more interconnected with each other.  The 

closeness in 1965 was 0.2 and in 2013 was 0.4 on average. This means that the countries 

were twice as close in 2013 as they were in 1965.  

We can see that the measures derived from the sampled adjacency matrix follow closely 

the actual node statistics.  

Another statistic which shows the evolution of the international trade network is the 

evolution of the edge distribution. The following plot shows the edge distribution 1965 

to 2010. 

 

From the plot we ca see that the mean of the distribution shifts to the right, indicating 

that on average the value of trade increases. One can also notice that the data from the 
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Comtrade dataset does not have the values below 𝑒5 before the year 2000. This induces 

a bias in the model as the distribution is truncated.  

The following plots show the evolution of the Jaccard centrality measure which 

measures the similarity between two nodes in the network by comparing the 

neighborhoods of the nodes.   

 

Figure 25 Jaccard Centrality for 1965 for Comtrade raw data 

 

Figure 26 Jaccard Centrality for 1980 Comtrade raw data 

 

Figure 27 Jaccard Centrality for 1995 Comtrade raw data 
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Figure 28 Jaccard Centrality for 2010 Comtrade raw data 

The x and y axes represent the indices of the countries. Each cell of the matrix 

represents the similarity score between the two countries.  

The more intense colors signify a higher centrality measure. By visually inspecting the 

plots we can see that as time progresses, the nodes in the network become more similar. 

This is because the increase in connection of the networks will inherently lead to 

neighbors from different countries to interact with each other, thereby increasing the 

similarity score between the corresponding neighbors. We can also see that the model 

captures these interactions quite well as the more strongly colored cells in the true 

network are closely matches with the predicted network.   

The next plot represents the increase on the network connectivity through time, 

validating the argument that the trade between countries increases as time progresses. 

 

Figure 29 Link Density evolution for predicted and true data 
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This plot shows the link density measure and how it changes through time. We can see 

that the model approximates well this metric. However, in the last three years the two 

measures diverge. This is because we trained the model up to 2012 and the following 

years were taken as the validation set. We can also see that the model underestimates 

the link density up to 1997. This is because the adjacency matrix for the year leading to 

the beginning of the millennium were extremely sparse and therefore the network head 

that acts as the classifier of the presence of the edges between two nodes is biased to 

predict zero edges. We will later show this effect when analyzing the classification 

performance of the model. One can attribute the increase of linkages to the decrease of 

transaction cost of trading between distant countries, the lower transportation costs due 

to the economy of scale of the international trade and the technological advancement 

(Maluck & Donner).  

Since each country in the network is represented by a high dimensional vector, we 

applied the t-SNE dimensionality reduction described in the 9th chapter to project the 

high dimensional embeddings to a 2-dimensional plane. From the plot we can see 

countries belonging to the same continent are clustered together. This is relevant 

because it signifies that the algorithm understood the structure of the network and the 

distance between countries without being fed that information as input. For reference, 

we first show the initial embedding corresponding to an untrained model and then 

visualize the embeddings from the trained model. 

 

Figure 30 Embeddings from the Untrained Model 
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Figure 31 Node Embeddings of Countries 

The following paragraphs will focus more in detail the prediction performance of the 

algorithm. We will show the metrics related to the training and test set. Then we will 

show the regression and classification performance. To finish we will present the 

uncertainty over the parameters of the predictive distribution for a random subset of 

edges.  

We first begin by showing the training curve of the model for every training epoch. 

 

Figure 32 Loss history for training and test set 
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The plot above shows the loss function value for each training epoch corresponding to 

the training and test set. We can see that the loss decreases as the network updates its 

parameters. For this particular training setup we utilized a 50% split between the 

training and test edges. We sampled a mask of ones and zeros with probability 50% for 

each true adjacency matrix and masked the values the values of the matrix entries. We 

can see that the two values of the loss function match closely, which signifies that the 

model can generalize well on unseen edges, thereby reconstructing well the original 

adjacency matrix and predicting the missing edges. We trained for a total of 60 epochs. 

We will now present the regression metrics for the edge values through time.  
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From the plots we can see that the RMSE and the MAE increase over the years. This is 

because as the non-zero edges increase, there is a higher probability for the regression 

to predict wrong values. However, we can also notice that the mean accuracy and the 

explained variance increase over the years.  
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We then evaluated the performance of the classifier and regressor on the validation set.  

 

The above plot displays the variance estimated for each edge of the network. We can see 

that missing countries have low estimated variance since they do not transact with any 

country. The following plot shows the predicted probability matrix for the last time step. 
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The following plots show the ROC curve and the Precision curve for the last time period. 

We can see that the area under the curve og the ROC curve is high, hoverver the optimal 

classification thershold is lower than 50%. This signifies that the model underestimate 

the presence of links between countries . The optimal point is shown in red.  

 

Figure 33 ROC Curve for Comtrade raw data 

 

Figure 34 Precision Recall curve for Comtrade raw Data 
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The following two plots show the frequency distribution of the probabilities predicted 

from the classifier for the negative edges and for the positive edges.  The overlap 

between the two frequency distributions are the misclassified examples. We can see that 

the classifier does not have high certainty on the positive edges. This is due to the 

sparsity of the adjacency matrix.  

 

 

 



58 
 

The following plot shows the calibration curve for the classifier. The closer the curve is 

to the diagonal line the more the classifier is calibrated. We can see that the classifier is 

not well calibrated and the average accuracy does not resamble the average predicted 

probability. 
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Figure 35 Uncertainty over parameters 

  

The plot above shows the mean and uncertainty distribution for the mean, variance and 

probability parameters for a random sample of edges. The confidence interval is one 

standard deviation wide.  
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Figure 36 Prediction Samples 

This plot shows a prediction sample from the model compared to the actual data. The 

actual data is plotted with the dashed lines and the model sample with the continuous 

lines. We can see that there is high variability in the prediction from the model. This can 

stem from the fact that the data itself has high variability.  
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12  CONCLUSION 

The aim of this thesis was to develop an algorithm that could predict the dynamically 

changing trade network over time. Our empirical results showed that the algorithm was 

able to reproduce the network statistics and reconstruct the adjacency matrix even 

when partially observed. This algorithm however showed a bias towards the zero edged 

because the binary data for the classifier was not balanced and the adjacency matrix was 

sparse. Care should be taken to account for such an unbalance data. None the less the 

combination between the graph neural network encoder, the recurrent neural network 

and the bilinear decoder was successfully able to reconstruct the network. From the 

estimated network measures, we were able to tell that the international trade network 

is becoming more and more integrated as countries trade with each other, thereby 

creating relationships and strong dependencies. Furthermore, we showed that the 

embeddings of the countries could represent the physical proximity of those countries. 

This fact is interesting since the network structure is closely related to the distance 

between the countries.  

A future research direction might be to include many factors as initial node features and 

not only the indicator function of the country. This would lead to a more complete model 

and better embeddings. Furthermore, one could implement more sophisticated 

techniques that require the recurrent neural network to be stochastic thereby 

improving the dynamics of the network.  
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14 APPENDIX 

The following three classes are the class for the Bilinear decoder, the GRU-GAT cell and 

full model definition. The full implementation can be found at 

https://github.com/claCase/Master-Thesis. 

import tensorflow as tf 

from tensorflow.keras import layers as l 

from tensorflow.keras import activations 

from tensorflow.keras import initializers 

import tensorflow.keras.backend as k 

 

class BatchBilinearDecoderDense(l.Layer): 

    """ 

    inputs: 

        - X of shape batch x N x d 

        - A of shape batch x N x N 

    outputs: A of shape batch x N x N 

    """ 

 

    def __init__(self, activation="relu", qr=True, regularizer="l2"): 

        super(BatchBilinearDecoderDense, self).__init__() 

        self.activation = activation 

        self.regularizer = regularizer 

        self.qr = qr 

 

    def build(self, input_shape): 

        x = input_shape 

        self.R = self.add_weight( 

            shape=(x[-1], x[-1]), 

            initializer="glorot_normal", 

            regularizer=self.regularizer, 

            name="bilinear_matrix", 

        ) 

 

    def call(self, inputs, *args, **kwargs): 

        x = inputs 

        if self.qr: 

            Q, W = tf.linalg.qr(x, full_matrices=False) 

            W_t = tf.einsum("...jk->...kj", W) 

            Q_t = tf.einsum("...jk->...kj", Q) 

            Z = tf.matmul(tf.matmul(W, self.R), W_t) 

            A = tf.matmul(tf.matmul(Q, Z), Q_t) 

            A = activations.get(self.activation)(A) 

            return tf.matmul(Q, W), A 

        else: 

            x_t = tf.einsum("...jk->...kj", x) 

            mat_left = tf.matmul(x, self.R) 

            A = activations.get(self.activation)(tf.matmul(mat_left, x_t)) 

            return x, A 

 

 

class GRUGAT(l.Layer): 

    def __init__(self, hidden_size=10, attn_heads=10, dropout=0.2, 

hidden_activation="relu", rc_gat=False, 

                 temporal_smoothness=""): 

        super(GRUGAT, self).__init__() 

        self.gnn_u = GATConv(channels=hidden_size // 2, 
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attn_heads=attn_heads, concat_heads=True, 

                             activation=hidden_activation, 

dropout_rate=dropout, kernel_regularizer="l2") 

        self.rc_gat = rc_gat 

        if self.rc_gat: 

            self.gnn_r = GATConv(channels=hidden_size // 2, 

attn_heads=attn_heads, concat_heads=True, 

                                 activation=hidden_activation, 

dropout_rate=dropout, kernel_regularizer="l2") 

            self.gnn_c = GATConv(channels=hidden_size // 2, 

attn_heads=attn_heads, concat_heads=True, 

                                 activation=hidden_activation, 

dropout_rate=dropout, kernel_regularizer="l2") 

 

        self.hidden_activation = hidden_activation 

        self.hidden_size = (hidden_size // 2) * attn_heads 

        self.drop = l.Dropout(dropout) 

        self.state_size = self.hidden_size 

        self.output_size = self.hidden_size 

        self.temporal_smoothness = temporal_smoothness 

        if self.temporal_smoothness: 

            self.tmp_smooth = TemporalSmoothness(0.5, 

self.temporal_smoothness) 

 

    def get_initial_state(self, inputs=None, batch_size=None, dtype=None): 

        x, a = inputs 

        return tf.zeros(shape=(*x.shape[:-1], self.hidden_size)) 

 

    def build(self, input_shape): 

        self.b_u = self.add_weight(shape=(self.hidden_size,), 

initializer="glorot_normal", name="b_u") 

        self.b_r = self.add_weight(shape=(self.hidden_size,), 

initializer="glorot_normal", name="b_r") 

        self.b_c = self.add_weight(shape=(self.hidden_size,), 

initializer="glorot_normal", name="b_c") 

        self.W_u = self.add_weight(shape=(self.hidden_size * 2, 

self.hidden_size), initializer="glorot_normal", 

                                   name="W_u") 

        self.W_r = self.add_weight(shape=(self.hidden_size * 2, 

self.hidden_size), initializer="glorot_normal", 

                                   name="W_r") 

        self.W_c = self.add_weight(shape=(self.hidden_size * 2, 

self.hidden_size), initializer="glorot_normal", 

                                   name="W_c") 

 

    def call(self, inputs, state, training, *args, **kwargs): 

        x, a = inputs 

        # Encoding 

        if state is None: 

            h = self.get_initial_state(inputs) 

        else: 

            h = state 

 

        conv_u = self.gnn_u(inputs, training=training)  # B x N x d 

        if self.rc_gat: 

            conv_r = self.gnn_r(inputs, training=training)  # B x N x d 

            conv_c = self.gnn_c(inputs, training=training)  # B x N x d 

        else: 

            conv_r = conv_u 

            conv_c = conv_u 

        # Recurrence 
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        u = tf.nn.sigmoid(self.b_u + tf.concat([conv_u, h], -1) @ self.W_u) 

        r = tf.nn.sigmoid(self.b_r + tf.concat([conv_r, h], -1) @ self.W_r) 

        c = tf.nn.tanh(self.b_c + tf.concat([conv_c, r * h], -1) @ 

self.W_c) 

        h_prime = u * h + (1 - u) * c 

        h_prime = self.drop(h_prime, training=training) 

        return h_prime 

 

class GRUGATLognormal(m.Model): 

    def __init__(self, hidden_size=4, attn_heads=4, dropout=0.2, 

hidden_activation="relu", temporal_smoothness=""): 

        super(GRUGATLognormal, self).__init__() 

        # Encoders 

        self.GatRnn_p = GRUGAT(hidden_size=hidden_size, 

attn_heads=attn_heads, dropout=dropout, 

                               hidden_activation=hidden_activation, 

temporal_smoothness=temporal_smoothness) 

        self.GatRnn_mu = GRUGAT(hidden_size=hidden_size, 

attn_heads=attn_heads, dropout=dropout, 

                                hidden_activation=hidden_activation, 

temporal_smoothness=temporal_smoothness) 

        self.GatRnn_sigma = GRUGAT(hidden_size=hidden_size, 

attn_heads=attn_heads, dropout=dropout, 

                                   hidden_activation=hidden_activation, 

temporal_smoothness=temporal_smoothness) 

 

        # Decoders 

        self.decoder_mu = BatchBilinearDecoderDense(activation=None, 

qr=False) 

        self.decoder_sigma = BatchBilinearDecoderDense(activation=None, 

qr=False) 

        self.decoder_p = BatchBilinearDecoderDense(activation=None, 

qr=False) 

 

    def call(self, inputs, states, training=None, mask=None): 

        # Encoding 

        h_prime_p = self.GatRnn_p(inputs, states[0]) 

        h_prime_mu = self.GatRnn_mu(inputs, states[1]) 

        h_prime_sigma = self.GatRnn_sigma(inputs, states[2]) 

 

        # Decoding 

        x_p, p = self.decoder_p(h_prime_p) 

        p = tf.expand_dims(p, -1) 

        x_mu, mu = self.decoder_mu(h_prime_mu) 

        mu = tf.expand_dims(mu, -1) 

        x_sigma, sigma = self.decoder_sigma(h_prime_sigma) 

        sigma = tf.expand_dims(sigma, -1) 

        logits = tf.concat([p, mu, sigma], -1) 

        return logits, h_prime_p, h_prime_mu, h_prime_sigma 

 

 

 

 

 


