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Abstract

The purpose of this thesis is to investigate the effect of uncertainty and incomplete financial markets on interest rates

and on the distribution of wealth, namely by studying the impact caused by the introduction of some further form

of market uncertainty and the transition of the interest rate and of the wealth distribution curve from a stationary

equilibrium to another in financial markets. To this end, this work is primarily based on the analysis of the Aiyagari-

Bewley-Huggett heterogeneous agent model of income and wealth distribution in continuous time; its contribution

consists in a generalization of the model, in order to investigate the effect of labour income shocks on the interest

rates, wealth distribution and risk premium in the case in which agents can self-insure themselves by investing,

besides in riskless bonds, also in risky assets. In particular, this extended version is modeled within the framework

of Mean Field Games and solved numerically using MATLAB codes.

Keywords: Heterogeneous agents, Interest rate, Wealth distribution, Incomplete markets, Income shocks, Sta-

tionary equilibrium, Mean Field Games



6 1 Introduction

1 Introduction

In this work, a quantitative investigation about the introduction of risky investment opportunities within

the investable universe of individuals is performed, in particular by assessing the impact of this condition

on the risk-free interest rate and on the net worth distribution of individuals bymeans of a continuous-time

general-equilibriummodel characterized by an incomplete market wherein a continuum of heterogeneous

households allocate their wealth in both unproductive risk-free assets (namely, bonds) and risky assets

(in the only form of productive capital) and are subject to uninsured idiosyncratic risk by means of labour

income shocks. This structure is founded on the basic implementation of the heterogeneous agent models

defined by Achdou et al. (2021), that recasts in continuous time the standard incomplete market models

of Huggett (1993), Bewley (1986) and Aiyagari (1994). In particular, the model under analysis can be

interpreted as a combination of the parsimonious market model of Huggett, where individuals can only

save in unproductive bonds, and the more sophisticated Aiyagari model, where the only asset available

for investment is risky and productive capital: this market model includes both bonds and capital in the

investable universe of individuals and differs from the set-up of Aiyagari in that it is implemented by a

stochastic depreciation on capital.

To be more specific, the main features of the model under consideration are detailed as follows. The

economy comprises both heterogeneous individuals and firms. First of all, agents solve an individual

optimization problem by optimally choosing their consumption level (thus, defining their consumption

and savings policies) and their wealth allocation in risky capital, while the remaining portion of their

net worth is invested in riskless assets. They also provide the firms with a labour endowment, which

is remunerated at a competitive wage. Then, in every time period, agents are subject to idiosyncratic

shocks on their labour income, implying that their heterogeneity results from both their income and their

wealth. At the same time, firms borrow capital and use labour for production, undergoing idiosyncratic

uncertainty as well, in the form of stochastic depreciation on the value of capital.

The assumption of market incompleteness, namely the inability for households to self-insure against

risk (Levine and Zame (2002)), indicates that agents do not have the possibility of writing insurance

contracts contingent on the shocks on their labour income (Allais et al. (2020)); in addition to this, it is

fundamental to assume also independence between the different sources of uncertainty for individuals,

i.e. labor income shocks and risky investments: the presence of some pattern of dependence between

these two would allow agents to benefit form a sort of partial insurance. Furthermore, in reaching their

optimal allocation, individuals face a borrowing constraint, meaning that they cannot exploit additional

loans to fully smooth out their individual income shocks (Allais et al. (2020)). It must also be noted that,

consistently with the tradition of relevant literature, the model does not encompass any contribution of
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social security for income shocks as well, with the result that agents need to figure out how to self insure

themselves; in this respect, the only means at their disposal are investments in bond and capital. As a

consequence, labor income fluctuations result to be uninsurable for households, except for the possibility

to invest in riskless and risky assets.

The general-equilibrium feature of the model implies that the prices or quantities characterizing the econ-

omy are endogenously determined. In the specific case of this work, the endogenous dimensions, which

are determined by the balance between demand and supply in the market, are the riskless interest rate

and the aggregate level of risky capital. Additionally, the wage level for labour and the rental rate of

capital, in equilibrium, are exactly the same for all the individuals and firms, respectively, and depend on

the aggregate capital level: this means that, although they are exogenous at the individual level, they are

endogenously determined in the aggregate.

Aggregate uncertainty or shocks are not covered under this analysis; therefore, given the mere presence

of purely idiosyncratic shocks, households face a constant level of interest rate in a steady state. Then, for

a given interest rate, optimal individual consumption and saving policies lead to a distribution of agents

with different levels of assets, as a consequence of their different histories in terms of labour endowment

shocks (Aiyagari (1994)).

Thismodel is encompassedwithin the broader class of continuous-time incomplete-market heterogeneous-

agent models, which are analytically described by a system of two coupled partial differential equations

(hereinafter, PDE): first, the so-called Hamilton-Jacobi-Bellman (HJB, for short) Equation characterizes

(by means of the so-called value function) the optimal choices of an individual agent, who considers the

evolution of the distribution as given; secondly, given the optimal policies of the individuals, the so-

called Kolmogorov-Forward (KF, shortly) Equation (also called Fokker-Plank Equation) determines the

evolution of the distribution. This set-up can be solved in the context of the mathematical theory of Mean

Field Games (MFG), which was first introduced by Larsy and Lions (2007) and where the system of cou-

pled HJB and KF Equations is known as the “backward-forward MFG system”. Referring to the market

model under analysis, the HJB Equation characterizes the optimal consumption and saving policies of

individuals, given a stochastic process for the shocks on income and another for the depreciation of cap-

ital, whereas the KF Equation characterizes the evolution of the joint distribution of income shocks and

wealth. The two equations are coupled because optimal consumption and saving depend on the interest

rate which is determined in equilibrium and hence depends on the wealth distribution.

With reference to the numerical resolution, the model is implemented in MATLAB by means of an al-

gorithm based on a finite difference method and a bisection approach. In a nutshell, in the first place

the HJB Equation is solved for a given value of the aggregate capital and a given time path of prices

(i.e. interest rate); secondly, given the optimal consumption and saving policies of individuals, the KF
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Equation is solved for the evolution of the joint distribution of income shocks and wealth. Lastly, the

algorithm is iterated and the first two steps are repeated until the equilibrium interest rate and aggregate

level of capital are found.

The main contribution of this work is twofold. First, from an economic and financial perspective, it

analyzes the consequences of the model under considerations on individuals and on the economy, mainly

providing some useful insights on the impact on the interest rate and on the distribution of wealth and

inequality. Briefly, the main results in the context of greater uncertainty suggest the following effects:

the riskless interest rate is reduced, as well as consumption, whereas savings increase; an increase in the

riskiness of capital causes the risk premium of capital (and also its Sharpe Ratio) to increase; inequalities

in the wealth distribution are found to be dependent on the output elasticity of capital. In the second place,

this work provides the methodological approach with which the HJB and KF Equations are derived, and

shows how, respectively, the value function and the joint density of labour income shocks and wealth are

solutions to such equations, with arguments that are more than mere heuristics.

This work is organized as follows. Section 2 describes the market model, detailing the mathematical

set-up and reasonings. Section 3 illustrates the Dynamic Programming Method in the specific case under

analysis, providing a detailed derivation of the HJB Equation, while the KF Equation is derived in Section

4. Section 5 presents the numerical algorithm implemented for the resolution of the model (whereas the

exact MATLAB codes are disclosed in the Appendix) and illustrates the results obtained. Section 6

outlines and comments on the results, providing an economic interpretation. Section 7 concludes and

gives the reader insights on some possible future work.
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2 A Mathematical Description of the Model

Consider a continuos-time infinite-horizon market model. As in Achdou et al. (2021), there exists a

continuum of households (with unit mass), who are heterogeneous in terms of their wealth at, and of the

shocks yt to which they are subject on their labour income. Individuals have standard preferences over

utility flows from future consumption ct, and discount the future with discount factor β (t) = e−ρt, with

rate ρ ≥ 0. The functional of such a problem is indicated as follows1:

J = E

(∫ +∞

0
e−ρtu(ct)dt

)
, (2.1)

where the expected value will be later specified. The function u is assumed strictly increasing and strictly

concave; it is defined as the Constant Relative Risk Aversion (CRRA) utility function with coefficient of

relative risk aversion γ > 0:

u (c) =
c1−γ

1− γ
. (2.2)

Differently from Achdou et al. (2021), the economy includes also competitive and risk-neutral firms.

At time t, individuals provide the firms with their labour endowment lt, which is remunerated at the

competitive wage wt. The labour supply is provided inelastically by individuals, meaning that their

labour endowment is supplied to the firms entirely, and independently of the level of the wage. Hence,

agents do not exhibit other preferences besides work, and individual labour supply can be standardized to

a unit: lt = 12. Moreover, the agents are subject to idiosyncratic risk in the form of exogenous shocks, yt,

on their fixed wage. This idiosyncratic exogenous uncertainty can be interpreted as a shock on the agents’

idiosyncratic labour endowment. It is assumed that the wage shock follows a two-state Poisson process

yt ∈ {y1, y2}, with y2 > y1. The two states can be interpreted as sickness (y1) and health (y2): although

agents supply their labour inelastically, the ones who get sick can only provide a smaller endowment of

labour than those who are healthy. The process yt jumps from state 1 to state 2 with intensity λ1 and vice

versa with intensity λ2: in this respect, λ1 is the recovery rate and λ2 the sickness rate. However, in the

aggregate, since agents have unit mass and sickness and health conditions offset themselves, the values

of the switching intensities λ1 and λ2 are set such that the aggregate labour supply equals a unit: L = 1.

Households choose their level of consumption, ct, as well as the allocation of their net worth, at, between

risk-free bonds, bt, and physical capital, kt, in order to differentiate investments in riskless and risky
1 The functional J depends on the consumption function t 7→ ct (indicated also with c, when no ambiguity may arise) and will also be made

dependent, in Section 3, through the state equation, on the capital holdings function t 7→ kt (similarly, k), on the initial instant of time t0 and
on the corresponding initial state of the economy (a, y) in terms of wealth and income shocks. Then, J = J (c; k; t0; a; y). In the case of
(2.1), the initial time is t0 = 0.

2 More specifically, the rationale behind the inelasticity of labour can be summarized as follows. First, agents do not experience disutility
from labour, since their utility function depends only on consumption. Furthermore, when they provide firms with their labour endowment,
agents are always remunerated with a positive wage. As a consequence, the optimal choice for individuals it to supply labour inelastically.



10 2 A Mathematical Description of the Model

assets on the market. Therefore, the following balance sheet constraint holds at time t:

at = bt + kt. (2.3)

Bonds evolve with dynamics:

dbt = rtbtdt, (2.4)

where rt is the endogenous risk-free rate on bonds, to be determined at equilibrium.

The capital value kt is an Itô process whose variation in time, dkt, will be specified after a few preliminary

considerations.

Firms are risk-neutral. At each instant of time, they produce an output good by means of a standard

Cobb-Douglas production technology:

Yt = Akαt l
1−α
t , (2.5)

whose inputs are physical capital kt and labour lt, and withA the total-factor productivity and α ∈ (0, 1)

the capital share parameter, denoting the relative weight assigned to capital (with respect to labour) in

the production process. At the same time, firms bear a cost from borrowing their production inputs from

households at rates µt (capital rental rate) and wt (wage), both of which are determined endogenously as

a solution of the following (static) maximization problem for instantaneous profits:

max
kt,lt

P (kt, lt) ≡ max
kt,lt

Yt − (ktµt + ltwt)︸ ︷︷ ︸
Production costs

 , (2.6)

where ktµt is the cost of capital, and ltwt the cost of labour, both remunerated to households. The first-

order conditions of the problem lead to the following optimal choices for firms in terms of capital rental

rate and labour wage:

∂P (kt, lt)

∂kt
= 0 ⇔ µ∗

t = αAkα−1
t l1−α

t ,
∂P (kt, lt)

∂lt
= 0 ⇔ w∗

t = (1− α)Akαt l
−α
t , (2.7)

showing that both the two optimal remuneration rates paid by firms depend on the capital, labour and

technology employed in the production process, but the capital rental rate is proportional to the relevance

attributed to capital with respect to labour, and vice versa for wage. Given the optimal strategies in eq.

(2.7), firms’ profits as defined in eq. (2.6) result to be always zero (verify that ∂Ytkt
∂kt

+ ∂Ytlt
∂lt

= Yt; in

other words, all output is spent to remunerate the production factors).

Since firms are competitive in the markets for capital and for labour, they all set the same rental rate on

capital and the same labour wage at equilibrium. Therefore, by substituting the aggregate labor supply, L
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(which equals 1, as previously explained) and the aggregate capital level (to be determined at equilibrium),

K, in the optimal firm choices, one gets that the rental rate is defined as:

µ∗ = µ∗ (K) ≡ αAKα−1, (2.8)

whereµ∗ (K) represents the deterministic component (which is endogenous and depends on the aggregate

capital) of the return on capital. Similarly, the equilibrium wage is a function of aggregate capital as well

and is obtained as:

w∗ = w∗ (K) ≡ (1− α)AKα. (2.9)

As a consequence, α can be interpreted as the share of the firms’ profits that are allocated to capital

remuneration, whereas the remaining (1− α) is the share set aside to pay for the labour supply.

Finally, in order to assess the evolution in time of capital kt, it is assumed that firms return capital to

households (after borrowing) at rate µ∗
t , and that capital depreciates at the stochastic rate δdt + σdWt,

as in Waelde (2011). In particular, dWt is a standard Brownian Motion that indicates a firm-specific (id-

iosyncratic) shock, representing the risk borne by firms when deciding to borrow capital from individuals.

Depreciation shocks are assumed to be independent and idiosyncratic across households. Accordingly,

individual households’ capital holdings evolve with the following dynamics:

dkt = kt [(µ
∗
t − δ) dt− σdWt] , (2.10)

where µ∗
t is given by eq. (2.7). Without loss of generality, it also assumed that δ = 0, so that the expected

depreciation for unit of capital stock equals zero:

dkt = kt (µ
∗
tdt− σdWt) , (2.11)

Rewriting the riskless holding as a function of wealth and capital, bt = at − kt, the dynamic evolution

of wealth is then given by:

dat = dbt + dkt = [rt (at − kt) + ytw
∗
t − ct] dt+ kt (µ

∗
tdt− σdWt)

= (rtat + ytw
∗
t − ct + (µ∗

t − rt) kt) dt− σktdWt

= rtatdt+ ytw
∗
t dt+ kt [(µ

∗
t − rt) dt− σdWt]− ctdt. (2.12)

It is also assumed that Wt and yt are independent random variables. The independence assumption

between the Brownian Motion Wt that characterizes the uncertainty on the return on capital and the
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Poisson process yt of labour income shocks is fundamental for the construction of the market model.

Indeed, as a consequence of independence, the two sources of uncertainty in the model turn out to be

uncorrelated: although investing in capital (as well as in bonds) provides individuals with a sort of means

of partial-insurance against income uncertainty, the absence of correlation implies that the market is still

incomplete, given that agents cannot totally insure themselves against risk.

Altogether, the state of the economy is the joint distribution xt = (at, yt), while the strategy is the couple

ht = (ct, kt)
3, and is described by the evolution system:

dat = rtatdt+ ytw
∗
t dt+ kt [(µ

∗
t − rt)dt− σdWt]− ctdt, t ∈ [0,+∞)

dkt = kt (µ
∗
tdt− σdWt) , t ∈ [0,+∞)

yt ∈ {y1, y2}, t ∈ [0,+∞)

a0 = a, y0 = y,

(2.13)

where the µ∗
t and w∗

t , representing the optimal choices taken by firms in terms of capital rental rate and

labour wage at time t, are taken as given by households.

Additional constraints on the state and on the controls are required: consumption is naturally non-negative,

and the same non-negativity constraint is posed on capital holdings as well, while total wealth must not

be lower than a given limit. Altogether:

ct ≥ 0, at ≥ −a, kt ≥ 0

that translates, as a consequence of the budget constraint, into a restriction on bond holdings, as follows:

ct ≥ 0, bt ≥ −kt − a, kt ≥ 0 (2.14)

meaning that risky capital cannot be shorted, while the short position on bonds cannot exceed the amount

of capital holdings owned, indicating that indebtedness is allowed up to a certain limit in this economy.

Hence, the original condition on wealth generates actually a leverage constraint, posing a limitation on the

relationship between the amount of bond and capital: at the borrowing constraint, the value of leverage

is higher than 1.

In addition to this, it becomes necessary to underline that, in equilibrium, the rates of return on capital

3 In terms of controls, besides capital holdings, agents optimally choose the labour endowment lt to provide to firms as well. However,
households supply labour inelastically to firms and, as a consequence, their individual labour endowment is standardized to 1, which corresponds
to the agents’ optimal choice, lt = 1. Hence, lt is omitted from the control function.
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and on bond are determined such that the following relationship is satisfied:

µ∗ > r, (2.15)

according to which the risky rate of return must be higher than the riskless rate. In other words, it must be

convenient for agents to invest in risky capital, since they are assumed to be risk averse. Indeed, the lack

of investment in risky capital would cause the absence of future income, given that capital is related by a

certain degree of complementarity to labour in the production process: without capital, labour cannot be

employed to produce output and, thus, to generate income for agents through their labour wage.

The problem that is addressed is that of choosing the consumption levels ct and the individual capital

holdings kt so to maximize the overall utility of agents, J , under (2.13) and (2.14), taking as given the

evolution of the interest rate rt, and the evolution of capital at the aggregate level K, together with the

following market clearing condition:

∑
j∈{1,2}

∫ +∞

a
adGj (a, t) =

∑
j∈{1,2}

∫ +∞

0
k (a) dGj (a, t) +B, (2.16)

where

• Gj (a, t) is the joint cumulative distribution function (CDF) of labour income shocks yj and wealth

a, where ∂Gj(a,t)
∂a = gj (a, t), which is the joint density function of these two variables;

• B ∈ [0,+∞) is the net fixed bond supply, which is assumed to be set at B = 0 indicating that

bonds are in zero-net supply.

According to this way of closing the economy following Huggett (1993) (bonds in zero-net supply) and

Aiyagari (1994) (total wealth equals total capital), the prices in this economy are the riskless interest rate,

rt, and the deterministic component of the return on capital, µ∗, which are determined by the requirement

that, in equilibrium, the total net worth of individuals must equal the aggregate level of capital in the

economy, given that the net supply of bonds is zero in the aggregate.

Later on in this work, it will be thoroughly proven that, in a stationary equilibrium, the consumption-

saving decision of the individuals (including their allocation choice between risky and riskless assets) and

the evolution of the joint distribution of their income shocks and wealth can be expressed by the following

couple of HJB and KF differential equations (for further details and clarification, see Subsections 3 and
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4, respectively):

ρvj (a) = sup
c,k

{
u (c) + v′j (a) (ra+ yjw

∗ − c+ (µ∗ − r) k) +
1

2
v′′j (a)σ

2k2 + λj (v−j (a)− vj (a))

}
,

(2.17)

0 = − (ra+ yjw
∗ − c+ (µ∗ − r) k) g′j (a) +

1

2
σ2k2g′′j (a) + λ−jg−j (a)− λjgj (a) , (2.18)

where j = 1, 2, the −j index stands for 3− j.

These equations represent the focus of the next Sections, where a more detailed analysis and derivation

is presented. In a nutshell, the derivation of the HJB Equation is built upon the definition of the Bellman

Equation, which is satisfied by the value function vj (a), while the KF Equation considers the density

of the joint distribution of income shocks and wealth as the density dynamics of a population with some

specific birth and death intensities.

Furthermore, the HJB Equation in (2.17) can be rewritten more explicitly, as indicated and proven in

Subsection 3.2, by separating the maximization problem with respect to consumption c, and the maxi-

mization with respect to capital holding k, and by computing and substituting their maximum values into

the equation4. In particular, the expression ra + yjw
∗ − c + (µ∗ − r) k in (2.17), when determined for

the optimal controls c∗ and k∗, corresponds to the savings policy function:

sj (a) = ra+ yjw
∗ − c∗ + (µ∗ − r) k∗, (2.19)

where the optimal choice of consumption, c∗, will be determined as:

c∗ =
(
u′
)−1 (

v′j (a)
)
, (2.20)

and the optimal share of risky capital, k∗, will be computed as:

k∗ = −µ∗ − r

σ2

v′j (a)

v′′j (a)
. (2.21)

4 Notice that in (2.20) and (2.21) c∗ and k∗ are derived assuming that maxima in the Hamiltonians are attained in the interior.
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3 The Dynamic Programming Method

The problem stated in Section 2 is solved using the tools of Dynamic Programming, introduced by Bell-

man in the early 1950s (Bellman (1954)5, Bellman (1957)). The application of this method to optimal

control problems is based on the following idea: by considering a family of optimal control problems

that differs in terms of initial times and state variables, relationships among these problems can be estab-

lished exploiting the HJB Equation, which is a nonlinear second-order PDE (under stochasticity). In case

the HJB Equation is solvable (either analytically or numerically), then one can obtain an optimal control

by taking the maximizer of the Hamiltonian or generalized Hamiltonian involved in the HJB Equation.

More in detail, one would:

(a) establish that the value function of the optimal control problem is a solution (in classical or weakened

sense) of the HJB Equation associated to the problem - note that the HJB Equation is the infinitesimal

version of the Bellman Equation for the control problem;

(b) obtain a solution of the HJB Equation (if solvable), either analytically or numerically;

(c) obtain a formula for the optimal control by taking the maximizer of the Hamiltonian involved in the

HJB Equation; the optimal control is then expressed as a function of the state in real time, i.e. it is an

optimal feedback control, and such relationship involves (the data of the problem and) the first and second

derivatives of the solution of the HJB;

(d) obtain a state equation in feedback form (also known as closed-loop equation) by inserting the optimal

feedback control into the original state equation, and generate simultaneously an optimal couple, i.e. the

couple given by the optimal control and trajectory;

(e) prove that the value function and the solution of the HJB coincide, either because the solution of the

HJB is unique or through the so-called verification technique.

Following this approach, one actually finds solutions to the whole family of optimal control problems

taken into consideration (with different initial times and state variables), and, in particular, to the original

problem to be investigated.

Of this entire procedure, a sketch of the proof for (a) and (c) is performed, while (b) and (d) are addressed

numerically.

By applying the Dynamic Programming method to the problem under consideration (with initial time

equal to 0), then the problem needs to be immersed into a family of problems with initial time t and

initial state x = (a, y) where, for every τ ∈ [t,+∞), the state variable is xτ = (aτ , yτ ) and the control

5 It includes an extensive bibliography of the literature in the area, up to the year 1954.
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variable is hτ = (cτ , kτ ), and evolution in time is described by means of the following system:

daτ = [raτ + yτw
∗
τ − cτ + (µ∗

τ − rτ )kτ ] dτ − σkτdWτ , τ ∈ [t,+∞)

dkτ = kτ (µ
∗
τ − σdWτ ) , kt = k0, τ ∈ [t,+∞)

yτ ∈ {y1, y2}, τ ∈ [t,+∞)

at = a, yt = y,

(3.1)

where the µ∗
τ and w∗

τ , representing the optimal choices taken by firms in terms of capital rental rate and

labour wage at time τ , are taken as given by households. The associated constraints on controls and state

become, then:

cτ ≥ 0, aτ ≥ −a, kτ ≥ 0 ∀τ ≥ t

that is

cτ ≥ 0, bτ ≥ −kτ − a, kτ ≥ 0 ∀τ ≥ t. (3.2)

The overall utility from future consumption, J , is made dependent on the control function h = (c, k) and

on the initial state x = (a, y), that is:

J(h; t, x) = E

(∫ +∞

t
e−ρτu(cτ )dτ

)
. (3.3)

The set of admissible controls at the initial couple (t, x) = (t, (a, y)) is the set H(t, x) of measurable

functions (adapted to the filtrations generated by the Brownian MotionWt and the Poisson process yt)

(cτ , kτ ) : [t,+∞)× Ω → R2,

satisfying (3.2), and where aτ = aτ (t, x) represents a solution to the problem (3.1) with initial values

(t, x). Moreover, the value function associated to this problem is defined as:

v(t, x) = sup
h∈H(t,x)

J (h; t, x) .

It is useful to note that the following relationship between the value function at a generic instant of time

t ≥ 0 and the value function at time t = 0 exists:

v(t, x) = e−ρtv(0, x) (3.4)
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since ∫ +∞

t
e−ρτu(cτ )dτ = e−ρt

∫ +∞

0
e−ρξu(cξ+t)dξ

so that

v(t, x) = e−ρt sup
h∈H(t,x)

∫ +∞

0
e−ρξu(cξ+t)dξ = e−ρt sup

h(t+·)∈H(0,x)

∫ +∞

0
e−ρξu(cξ+t)dξ = e−ρtv(0, x).

As a consequence, to compute the value function v(t, x) for a generic instant of time t ≥ 0 it is sufficient

to know v(0, x), hereinafter indicated by v(x).

The one just described is classified as an optimal control problem for jump-diffusion processes, as the

stochasticity in the state equations is given jointly by jumps induced by yτ and by the diffusion represented

by the Brownian MotionWτ . A useful reference for optimal control for jump-diffusion processes is, for

instance Oksendal and Sulem (2005), while a more classical reference for merely diffusion processes is

Yong and Zhou (1999).

3.1 Bellman Equation

This section contains the derivation of the Bellman Equation associated to the optimal control problem

described above, and in which the state equation describes a stochastic process of jump-diffusion type.

The reader is advised that a mathematically precise treatment of the subject require tools in stochastic

control that are beyond the scope of this thesis, and proofs are in fact heuristic.

3.1.1 General equation

Consider the general state variable x, which corresponds to the couple xτ = (aτ , yτ ), and the control

variable hτ = (cτ , kτ ). The following statement then holds.

Lemma 1. The value function v of the optimal control problem described by (3.1) satisfies the general

Bellman Equation

v(t, x) = sup
h∈H(t,x)

E

{∫ τ

t
e−ρsu(cs)ds+ v (τ, xτ )

}
, (3.5)

v(x) ≡ v(0, x) = sup
h∈H(0,x)

E

{∫ τ

0
e−ρsu(cs)ds+ e−ρτv (xτ )

}
. (3.6)

Sketch of the Proof. Recalling (3.3), taking a time τ ∈ [t,+∞) one can split the functional J into the
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sum of two terms:

J (t, x;h) = E

(∫ τ

t
e−ρsu(cs)ds+

∫ +∞

τ
e−ρsu(cs)ds

)
= E

(∫ τ

t
e−ρsu(cs)ds

)
+ J (τ, xτ ;h (·+ τ)) .

Once proven that for all the choices of h ∈ H(0, x), one has that h (·+ τ) is admissible at (τ, xτ ), then

it is always true that:

J (τ, xτ ;h (·+ τ)) ≤ v (τ, xτ ) ,

so that, taking the supremum as h ∈ H(t, x) on both sides:

v (t, x) ≤ sup
h∈H(t,x)

E

{∫ τ

t
e−ρsu(cs)ds+ v (τ, xτ )

}

and one has so proven ≤ in (3.5). To prove the converse inequality, fix ϵ > 0 and consider an ϵ−optimal

control h∗ϵ = (c∗ϵ , k
∗
ϵ ) ∈ H(τ, xτ ), i.e. maximizing the functional on the right-hand side, short of the

value of ϵ:

v (τ, xτ )− ϵ ≤ J (τ, xτ ;h
∗
ϵ ) .

Then, build a control ĥ = (ĉ, k̂) so that:

ĥ (s) =


h (s) s ∈ [t, τ)

h∗ϵ (s) s ∈ [τ,+∞)

where h = (c, k) ∈ H(t, x) is any admissible control at (t, x). Once proven that ĥ ∈ H(t, x), by

definition:

v (t, x) ≥ J(t, x; (ĉ, k̂))

= E

(∫ τ

t
e−ρsu(cs)ds+ J (τ, xτ ;h

∗
ϵ )

)
≥ E

(∫ τ

t
e−ρsu (cs) ds+ v (τ, xτ )

)
− ϵ.

Now taking the supremum as h ∈ H(t, x) on both sides, one derives:

v (t, x) ≥ sup
h∈H(t,x)

E

{∫ τ

t
e−ρsu (cs) ds+ v (τ, xτ )

}
− ϵ

and since ϵ > 0 was arbitrarily chosen, the same inequality holds at limits for ϵ → 0+, and the proof of

(3.5) is complete.
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To prove (3.6) one then needs simply to apply (3.4).

3.1.2 Bellman Equation with a two-state Poisson wage shock process

In the specific case of the problem, since the labour income shock, yt, is a two-state Poisson process that

takes only the values yt ∈ {y1, y2}, the two generic income shock states are indicated by yj and y−j ,

where j can be either 1 or 2, and the −j index stands for 3− j. The process yt jumps from state j to −j

with intensity λj and vice versa with intensity λ−j , such that individuals with shock on wage yj receive

the same shock with probability pj (τ) = e−λjτ and switch to state y−j with probability (1− pj (τ)).

As before, the control is hτ = (cτ , kτ ), while aτ and yτ are taken into account separately by means of

the following notation for the value function:

vj (a) ≡ v (0, a, yj) = v(a, yj).

Lemma 2. The value function v of the optimal control problem described by (3.1) satisfies the following

Bellman Equation when yt = yj

vj (a) = sup
h∈H(0,x)

E

(∫ τ

0
e−ρsu (cs) ds+ e−λjτvj (aτ ) +

(
1− e−λjτ

)
v−j (aτ )

)
. (3.7)

Sketch of the Proof. The Bellman Equation (3.6) is rewritten for a fixed j, and taking separately the mean

value with respect to the probability spaces for the Brownian Motion , E1, and the Poisson process, E2,

one gets:

vj (a) = sup
h∈H(0,x)

E

(∫ τ

0
e−ρsu (cs) ds+ e−ρτv (aτ , yτ )

)
= sup

h∈H(0,x)

E1

(∫ τ

0
e−ρsu (cs) ds+ e−ρτE2 (v (aτ , yτ ))

)
= sup

h∈H(0,x)

E

(∫ τ

0
e−ρsu (cs) ds+ e−ρτpj (τ) vj (aτ ) + e−ρτ (1− pj (τ)) v−j (aτ )

)
= sup

h∈H(0,x)

E

(∫ τ

0
e−ρsu (cs) ds+ e−ρτe−λjτvj (aτ ) + e−ρτ

(
1− e−λjτ

)
v−j (aτ )

)
.

Summing up, one can write the couple of equations for j and −j:


vj (a) = suph∈H(0,x)E

(∫ τ
0 e−ρsu (cs) ds+ e−λjτvj (aτ ) +

(
1− e−λjτ

)
v−j (aτ )

)
, yt = yj

v−j (a) = suph∈H(0,x)E
(∫ τ

0 e−ρsu (cs) ds+ e−λ−jτv−j (aτ ) +
(
1− e−λ−jτ

)
vj (aτ )

)
, yt = y−j

.



20 3 The Dynamic Programming Method

Given the symmetry of the two equations, the generic equation for j will be considered in the next steps.

3.2 Hamilton-Jacobi-Bellman Equation

Now, the HJB Equation in (2.17) is derived heuristically.

Lemma 3. The Hamilton-Jacobi-Bellman Equation of the optimal control problem described in Section

2 is:

ρvj (a) = sup
c,k

{
u (c) + v′j (a) (ra+ yjw

∗ − c+ (µ∗ − r) k) +
1

2
v′′j (a)σ

2k2 + λj (v−j (a)− vj (a))

}
,

where c ≥ 0, and k ≥ −b− a.

Sketch of the Proof. Consider the Bellman Equation:

vj (a) = sup
h∈H(0,x)

E

{∫ τ

0
e−ρsu (cs) ds+ e−ρτ

[
e−λjτvj (aτ ) +

(
1− e−λjτ

)
v−j (aτ )

]}
.

Subtract (1− ρτ) vj (a) from both sides and divide by τ :

vj (a)− (1− ρτ) vj (a)

τ
= sup

h∈H(0,x)

E

{
1

τ

∫ τ

0
e−ρsu (cs) ds+

e−(ρ+λj)τvj (aτ )− vj (a)

τ
+

+
e−ρτ

(
1− e−λjτ

)
τ

v−j (aτ ) +
ρτ

τ
vj (a)

}

ρvj (a) = sup
h∈H(0,x)

E

(
1

τ

∫ τ

0
e−ρsu (cs) ds

)
︸ ︷︷ ︸

(1)

+E

(
e−(ρ+λj)τvj (aτ )− vj (a)

τ

)
︸ ︷︷ ︸

(2)



+ sup
h∈H(0,x)

E

(
e−ρτ

(
1− e−λjτ

)
τ

v−j (aτ ) + ρvj (a)

)
︸ ︷︷ ︸

(3)

 .

Then, consider the three parts taking the lim as τ → 0.

(1) = E
(
1
τ

∫ τ
0 e−ρsu (cs) ds

)
−→ u (c0) as τ → 0.

(2) = E

(
e
−(ρ+λj)τvj(aτ )−vj(a)

τ

)
= E

(
1
τ

∫ τ
0 d
(
e−(ρ+λj)τvj (aτ )

)
dt
)
= (∗),
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where d
(
e−(ρ+λj)τvj (aτ )

)
is the stochastic differential of e−(ρ+λj)τvj (aτ ) which is given by the Itô-

Doeblin formula:

d
(
e−(ρ+λj)τvj (aτ )

)
= − (ρ+ λj) e

−(ρ+λj)τvj (aτ ) dτ + e−(ρ+λj)τv′j (aτ ) daτ +
1

2
e−(ρ+λj)τv′′j (aτ ) (daτ )

2

= e−(ρ+λj)τ

[
− (ρ+ λj) vj (aτ ) dτ + v′j (aτ ) daτ +

1

2
v′′j (aτ ) (daτ )

2

]

and, since

daτ = (raτ + yτw
∗ − cτ + (µ∗ − r) kτ ) dτ + σkτdWτ ,

taking the square

(daτ )
2 = (raτ + yτw

∗ − cτ + (µ∗ − r) kτ )
2

0︷ ︸︸ ︷
(dτ)2 + (σkτ )

2

dτ︷ ︸︸ ︷
(dWτ )

2+

+ 2 (raτ + yτw
∗ − cτ + (µ∗ − r) kτ ) (σkτ )

dτ
3
2=0︷ ︸︸ ︷

dτ (dWτ )

= σ2k2τdτ

the differential becomes

d
(
e−(ρ+λj)τvj (aτ )

)
= e−(ρ+λj)τ

[
− (ρ+ λj) vj (aτ ) + v′j (aτ ) (raτ + yτw

∗ − cτ + (µ∗ − r) kτ )+

+
1

2
v′′j (aτ )σ

2k2τ

]
dτ + e−(ρ+λj)τv′j (aτ )σkτdWτ .

Therefore,

(∗) = 1

τ
E

[∫ τ

0
e−(ρ+λj)s

[
− (ρ+ λj) vj (as) + v′j (as) (ras + ysw

∗ − cs + (µ∗ − r) ks) +
1

2
v′′j (as)σ

2k2s

]
ds

]

+
1

τ
E


∫ τ

0
e−(ρ+λj)τv′j (aτ )σkτdWτ︸ ︷︷ ︸

Ito integral


︸ ︷︷ ︸

=0

.

Taking the lim as τ → 0 under the expectation:

(2) → − (ρ+ λj) vj (a) + v′j (a) (ra+ yjw
∗ − c+ (µ∗ − r) k) +

1

2
v′′j (as)σ

2k2,

where a0 = a, y0 = yj , k0 =: k and c0 =: c.
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(3) = E

(
e−ρτ

(
1−e−λjτ

)
τ v−j (aτ ) + ρvj (a)

)
τ→0−→ −

[
d
dτ

(
e−λjτ

)]
|τ=0

v−j (a)+ρvj (a) = λjv−j (a)+

ρvj (a) .

By putting (1), (2) and (3) together, one has proven the equation:

ρvj (a) = sup
c,k

{
u (c) + v′j (a) (ra+ yjw

∗ − c+ (µ∗ − r) k)+

+
1

2
v′′j (a)σ

2k2 − (ρ+ λj) vj (a) + λjv−j (a) + ρvj (a)

}
= sup

c,k

{
u (c) + v′j (a) (ra+ yjw

∗ − c+ (µ∗ − r) k) +
1

2
v′′j (a)σ

2k2 + λj (v−j (a)− vj (a))

}
.

Remark. By computing the maximizers and substituting them, if these values are internal, the equation

can be rewritten as follows:

ρvj (a) = u∗
(
v′j (a)

)
− (µ∗ − r)2

2σ2

(
v′j (a)

)2
v′′j (a)

+ v′j (a) (ra+ yjw
∗) + λj (v−j (a)− vj (a)) . (3.8)

Indeed, by separating the supremum with respect to c and with respect to k:

ρvj (a) = sup
c

{
u (c)− cv′j (a)

}
+ sup

k

{
(µ∗ − r) kv′j (a) +

1

2
v′′j (a)σ

2k2
}

+ v′j (a) (ra+ yjw
∗) + λj (v−j (a)− vj (a))

= H1

(
v′j (a)

)
+H2

(
v′j (a) , v

′′
j (a)

)
+ v′j (a) (ra+ yjw

∗) + λj (v−j (a)− vj (a))

where it is set:

H1 (p) = sup
c≥0

{u (c)− cp} , H2 (p, q) = sup
k≥−b−a

{
(µ∗ − r) kp+

1

2
qσ2k2

}
.

By imposing first-order conditions, if the maximizers are interior one gets:

∂

∂c
[u (c)− cp] = 0 ⇔ u′ (c)− p = 0 ⇔ c∗ =

(
u′
)−1

(p)

implying (2.20), that is:

c∗ =
(
u′
)−1 (

v′j (a)
)

and meaning that the consumption is such that its marginal utility equals the marginal value of the value

function.
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Similarly
∂

∂k
[(µ∗ − r) kp+

1

2
qk2] = 0 ⇔ k =

(µ∗ − r) p

qσ2

implying (2.21), that is:

k∗ = −µ∗ − r

σ2

v′j (a)

v′′j (a)
.

By substituting such expression in the definition ofH1 and H2, (3.8) is obtained:

ρvj (a) = u∗
(
v′j (a)

)
− (µ∗ − r)2

2σ2

(
v′j (a)

)2
v′′j (a)

+ v′j (a) (ra+ yjw
∗) + λj (v−j (a)− vj (a)) .
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4 Kolmogorov-Forward Equation

In this Section, the Kolmogorov-Forward (briefly, KF) Equation is derived, which, associated with the

HJB Equation, constitutes a so-called Mean Field Game. The Mean Field Games have been under inves-

tigation over the last decade, starting from the pioneering work of Larsy and Lions (2007), and represent

one of the most prolific frontiers of research.

In this context, both the transitional (i.e. time-dependent) KF Equation and its stationary version (at

equilibrium) are derived. They are, respectively6:

∂gj (a, t)

∂t
= − (rtat + yjw

∗
t − ct + (µ∗

t − rt) kt)
∂gj (a, t)

∂a
+

1

2
σ2
t k

2
t

∂gj (a, t)

∂a∂a
+ λ−jg−j (a, t)− λjgj (a, t) ,

(4.1)

and:

0 = − (ra+ yjw
∗ − c+ (µ∗ − r) k) g′j (a) +

1

2
σ2k2g′′j (a) + λ−jg−j (a)− λjgj (a) .

To do so, we proceed heuristically as follows. Consider the following equation that describes the density

of the joint distribution of income shock yj and wealth a:

dg (a, yj , t) = dgj (a, t) = [λ−jg−j (a, t)− λjgj (a, t)] dt.

This can be interpreted as the density dynamics of a population with birth intensityλ−j and death intensity

λj , where death means moving from health/sickness to sickness/health and vice versa for birth.

As before, the households’ net worth a evolves with dynamics:

dat = (rtat + yjw
∗
t − ct + (µ∗

t − rt) kt) dt+ σtktdWt,

where, for the sake of simplicity:

ηt = rtat + yjw
∗
t − ct + (µ∗

t − rt) kt,

βt = σtkt,

so that:

dat = ηtdt+ βtdWt.

6 Given that the density g is a measure and not a function and that its properties (e.g. continuity or differentiability) are not properly stated,
the derivatives of g would need to be adequately interpreted in a mathematical context.
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Consider a test function f of classC2, i.e. with continuous second-order partial derivatives, f (a, yj , t) =

fj (a, t), and having compact support in [s,+∞) × (a,+∞), that is, f is null outside a compact sub-

set of [s,+∞) × (a,+∞).Then, the differential d [fj (a, t) gj (a, t)] can be computed as follows. Call

Fj (a, t) = fj (a, t) gj (a, t) and apply the Itô-Doeblin formula with:

∂Fj (a, t)

∂t
=

∂fj (a, t)

∂t
gj (a, t) + fj (a, t)

∂gj (a, t)

∂t
,

∂Fj (a, t)

∂a
=

∂fj (a, t)

∂a
gj (a, t) + fj (a, t)

∂gj (a, t)

∂a
,

∂Fj (a, t)

∂a∂a
=

∂fj (a, t)

∂a∂a
gj (a, t) + fj (a, t)

∂gj (a, t)

∂a∂a
+ 2

∂fj (a, t)

∂a

∂gj (a, t)

∂a
.

The differential becomes:

d [fj (a, t) gj (a, t)] =

[
∂fj (a, t)

∂t
dt+

∂fj (a, t)

∂a
da+

1

2

∂fj (a, t)

∂a∂a
(da)2

]
gj (a, t)

+ fj (a, t)

[
∂gj (a, t)

∂t
dt+

∂gj (a, t)

∂a
da+

1

2

∂gj (a, t)

∂a∂a
(da)2

]
+

1

2
2
∂fj (a, t)

∂a

∂gj (a, t)

∂a
(da)2

= dfj (a, t) gj (a, t) + fj (a, t) dgj (a, t) +
∂fj (a, t)

∂a

∂gj (a, t)

∂a
(da)2 .

Then, the last term can be rewritten as dfj (a, t) dgj (a, t) since:

dfj (a, t) dgj (a, t) =

[
∂fj (a, t)

∂t
dt+

∂fj (a, t)

∂a
da+

1

2

∂fj (a, t)

∂a∂a
(da)2

]
·

·
[
∂gj (a, t)

∂t
dt+

∂gj (a, t)

∂a
da+

1

2

∂gj (a, t)

∂a∂a
(da)2

]
=

∂fj (a, t)

∂t

∂gj (a, t)

∂t
(dt)2 +

∂fj (a, t)

∂t

∂gj (a, t)

∂a
dtda+

∂fj (a, t)

∂t

1

2

∂gj (a, t)

∂a∂a
dt (da)2

+
∂fj (a, t)

∂a

∂gj (a, t)

∂t
dadt+

∂fj (a, t)

∂a

∂gj (a, t)

∂a
(da)2 +

∂fj (a, t)

∂a

1

2

∂gj (a, t)

∂a∂a
(da)3

+
1

2

∂fj (a, t)

∂a∂a

[
∂gj (a, t)

∂t
dt (da)2 +

∂gj (a, t)

∂a
(da)3 +

1

2

∂gj (a, t)

∂a∂a
(da)4

]
=

∂fj (a, t)

∂a

∂gj (a, t)

∂a
(da)2 ,

where (dt)2 = dtda = dt (da)2 = (da)3 = (da)4 = 0. Since in the specific case of the problem:

dgj (a, t) = [λ−jg−j (a, t)− λjgj (a, t)] dt,



26 4 Kolmogorov-Forward Equation

then

dfj (a, t) dgj (a, t) =

[
∂fj (a, t)

∂t
dt+

∂fj (a, t)

∂a
da+

1

2

∂fj (a, t)

∂a∂a
(da)2

]
[λ−jg−j (a, t)− λjgj (a, t)] dt

= 0.

By substituting

dat = ηtdt+ βtdWt,

(dat)
2 = β2

t (dWt)
2 = β2

t dt,

the differential becomes:

d [fj (a, t) gj (a, t)] =

[
∂fj (a, t)

∂t
+ ηt

∂fj (a, t)

∂a
+

1

2
β2
t

∂fj (a, t)

∂a∂a

]
gj (a, t) dt

+ [λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dt

+ βt
∂fj (a, t)

∂a
gj (a, t) dWt.

Integrating over time and given the properties of the test function over the support:

∫ +∞

s
d [fj (a, t) gj (a, t)] =

∫ +∞

s

[
∂fj (a, t)

∂t
+ ηt

∂fj (a, t)

∂a
+

1

2
β2
t

∂fj (a, t)

∂a∂a

]
gj (a, t) dt

+

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dt+

∫ +∞

s
βt

∂fj (a, t)

∂a
gj (a, t) dWt

lim
u→+∞

∫ u

s
d [fj (a, t) gj (a, t)] =

∫ +∞

s

[
∂fj (a, t)

∂t
+ ηt

∂fj (a, t)

∂a
+

1

2
β2
t

∂fj (a, t)

∂a∂a

]
gj (a, t) dt

+

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dt+

∫ +∞

s
βt

∂fj (a, t)

∂a
gj (a, t) dWt

lim
u→+∞

[ →0

fj (a, u)gj (a, u)−
=0

fj (a, s)gj (a, s)

]
=

∫ +∞

s

[
∂fj (a, t)

∂t
+ ηt

∂fj (a, t)

∂a
+

1

2
β2
t

∂fj (a, t)

∂a∂a

]
gj (a, t) dt

+

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dt

+

∫ +∞

s
βt

∂fj (a, t)

∂a
gj (a, t) dWt
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0 =

∫ +∞

s

[
∂fj (a, t)

∂t
+ ηt

∂fj (a, t)

∂a
+

1

2
β2
t

∂fj (a, t)

∂a∂a

]
gj (a, t) dt

+

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dt+

∫ +∞

s
βt

∂fj (a, t)

∂a
gj (a, t) dWt.

Integrating over wealth:

0 =

∫ +∞

a

∫ +∞

s

[
∂fj (a, t)

∂t
+ ηt

∂fj (a, t)

∂a
+

1

2
β2
t

∂fj (a, t)

∂a∂a

]
gj (a, t) dtda

+

∫ +∞

a

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dtda+

∫ +∞

a

∫ +∞

s
βt

∂fj (a, t)

∂a
gj (a, t) dWtda,

where the last term equals zero because all the Brownian Motions are independent across households

over a.

0 =

∫ +∞

a

∫ +∞

s

∂fj (a, t)

∂t
gj (a, t) dtda+

∫ +∞

a

∫ +∞

s
ηt
∂fj (a, t)

∂a
gj (a, t) dtda

+
1

2

∫ +∞

a

∫ +∞

s
β2
t

∂fj (a, t)

∂a∂a
gj (a, t) dtda+

∫ +∞

a

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dtda.

Integrating by parts, piece by piece:

(1)
∫ +∞
a

[∫ +∞
s

∂fj(a,t)
∂t gj (a, t) dt

]
da =

∫ +∞
a

{
limu→+∞

∫ u
s

∂fj(a,t)
∂t gj (a, t) dt

}
da

=
∫ +∞
a

{
limu→+∞

[
[fj (a, t) gj (a, t)]

t=u
t=s −

∫ u
s fj (a, t)

∂gj(a,t)
∂t dt

]}
da

=
∫ +∞
a

{
limu→+∞

[
[fj (a, u) gj (a, u)− fj (a, s) gj (a, s)]−

∫ u
s fj (a, t)

∂gj(a,t)
∂t dt

]}
da

=
∫ +∞
a

{
limu→+∞ fj (a, u) gj (a, u)− fj (a, s) gj (a, s)− limu→+∞

∫ u
s fj (a, t)

∂gj(a,t)
∂t dt

}
da

= −
∫ +∞
a

∫ +∞
s fj (a, t)

∂gj(a,t)
∂t dtda,

since limu→+∞ fj (a, u) = 0 and fj (a, s) = 0 for the boundary conditions on f .

(2)
∫ +∞
a

[∫ +∞
s ηt

∂fj(a,t)
∂a gj (a, t) dt

]
da =

∫ +∞
s

{∫ +∞
a ηt

∂fj(a,t)
∂a gj (a, t) da

}
dt for the Fubini-Tonelli

theorem

=
∫ +∞
s

{
limx→+∞

∫ x
a ηt

∂fj(a,t)
∂a gj (a, t) da

}
dt

=
∫ +∞
s

{
limx→+∞

[
[ηtfj (a, t) gj (a, t)]

a=x
a=a −

∫ x
a fj (a, t)

∂gj(a,t)
∂a da

]}
dt

=
∫ +∞
s

{
limx→+∞

[
[ηtfj (x, t) gj (x, t)− ηtfj (a, t) gj (a, t)]−

∫ x
a ηtfj (a, t)

∂gj(a,t)
∂a da

]}
dt

=
∫ +∞
s

{
limx→+∞ ηtfj (x, t) gj (x, t)− ηtfj (a, t) gj (a, t)− limx→+∞

∫ x
a ηtfj (a, t)

∂gj(a,t)
∂a da

}
dt

= −
∫ +∞
s

∫ +∞
a ηtfj (a, t)

∂gj(a,t)
∂a dadt = −

∫ +∞
a

∫ +∞
s ηtfj (a, t)

∂gj(a,t)
∂a dtda,

since limx→+∞ fj (x, t) = 0 and fj (a, t) = 0 for the boundary conditions on f .
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(3) 1
2

∫ +∞
a

∫ +∞
s β2

t
∂fj(a,t)
∂a∂a gj (a, t) dtda = 1

2

∫ +∞
s

{∫ +∞
a β2

t
∂fj(a,t)
∂a∂a gj (a, t) da

}
dt for the Fubini-Tonelli

theorem

= 1
2

∫ +∞
s

{
limx→+∞

∫ x
a β2

t
∂fj(a,t)
∂a∂a gj (a, t) da

}
dt

= 1
2

∫ +∞
s

{
limx→+∞

[[
β2
t
∂fj(a,t)

∂a gj (a, t)
]a=x

a=a
−
∫ x
a β2

t
∂fj(a,t)

∂a
∂gj(a,t)

∂a da

]}
dt

= 1
2

∫ +∞
s

{
limx→+∞

[[
β2
t
∂fj(x,t)

∂x gj (x, t)− β2
t
∂fj(a,t)

∂a gj (a, t)
]
−
∫ x
a β2

t
∂fj(a,t)

∂a
∂gj(a,t)

∂a da
]}

dt

= 1
2

∫ +∞
s

{
limx→+∞ β2

t
∂fj(x,t)

∂x gj (x, t)− β2
t
∂fj(a,t)

∂a gj (a, t)− limx→+∞
∫ x
a β2

t
∂fj(a,t)

∂a
∂gj(a,t)

∂a da
}
dt

= −1
2

∫ +∞
s

{
limx→+∞

∫ x
a β2

t
∂fj(a,t)

∂a
∂gj(a,t)

∂a da
}
dt

= −1
2

∫ +∞
s

{
limx→+∞

[[
β2
t fj (a, t)

∂gj(a,t)
∂a

]a=x

a=a
−
∫ x
a β2

t fj (a, t)
∂gj(a,t)
∂a∂a da

]}
dt

= −1
2

∫ +∞
s

{
limx→+∞

[[
β2
t fj (x, t)

∂gj(x,t)
∂x − β2

t fj (a, t)
∂gj(a,t)

∂a

]
−
∫ x
a β2

t fj (a, t)
∂gj(a,t)
∂a∂a da

]}
dt

= −1
2

∫ +∞
s

{
limx→+∞ β2

t fj (x, t)
∂gj(x,t)

∂x − β2
t fj (a, t)

∂gj(a,t)
∂a − limx→+∞

∫ x
a β2

t fj (a, t)
∂gj(a,t)
∂a∂a da

}
dt

= 1
2

∫ +∞
s

∫ +∞
a β2

t fj (a, t)
∂gj(a,t)
∂a∂a dadt = 1

2

∫ +∞
a

∫ +∞
s β2

t fj (a, t)
∂gj(a,t)
∂a∂a dtda,

since limx→+∞
∂fj(x,t)

∂x = 0, ∂fj(a,t)
∂a = 0, limx→+∞ fj (x, t) = 0 and fj (a, t) = 0 for the boundary

conditions on f .

Therefore, by putting parts together and rearranging one gets:

0 = −
∫ +∞

a

∫ +∞

s
fj (a, t)

∂gj (a, t)

∂t
dtda−

∫ +∞

a

∫ +∞

s
ηtfj (a, t)

∂gj (a, t)

∂a
dtda

+
1

2

∫ +∞

a

∫ +∞

s
β2
t fj (a, t)

∂gj (a, t)

∂a∂a
dtda+

∫ +∞

a

∫ +∞

s
[λ−jg−j (a, t)− λjgj (a, t)] fj (a, t) dtda

=

∫ +∞

a

∫ +∞

s

[
−∂gj (a, t)

∂t
− ηt

∂gj (a, t)

∂a
+

1

2
β2
t

∂gj (a, t)

∂a∂a
+ λ−jg−j (a, t)− λjgj (a, t)

]
fj (a, t) dtda.

Since the equality above must hold for any test function f , then, for a well known Lemma, one gets (4.1):

∂gj (a, t)

∂t
= −ηt

∂gj (a, t)

∂a
+

1

2
β2
t

∂gj (a, t)

∂a∂a
+ λ−jg−j (a, t)− λjgj (a, t)

= − (rtat + yjw
∗
t − ct + (µ∗

t − rt) kt)
∂gj (a, t)

∂a
+

1

2
σ2
t k

2
t

∂gj (a, t)

∂a∂a
+ λ−jg−j (a, t)− λjgj (a, t) .

To obtain (2.18), it suffices to observe that, at equilibrium, the density is time-independent, and hence the

derivative of g with respect to time is null:

0 = −ηtg
′
j (a) +

1

2
β2
t g

′′
j (a) + λ−jg−j (a)− λjgj (a)

= − (ra+ yjw
∗ − c+ (µ∗ − r) k) g′j (a) +

1

2
σ2k2g′′j (a) + λ−jg−j (a)− λjgj (a) .
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5 Numerical resolution

5.1 Description of the algorithm

The numerical solution to the problem under analysis is found using MATLAB algorithms. Both the

basic model as in Achdou et al. (2021), where individuals can only save in unproductive bonds, and

its extended version as described in this thesis, introducing also labour supply and investments in risky

capital, are solved numerically with the aim of obtaining comparable results and, therefore, to characterize

the behavior of the interest rate. Furthermore, exploiting comparative statics within the scope of themodel

under consideration, it is also possible to investigate how thewealth distribution, the risk-free interest rate,

the aggregate capital level and the risky interest rate (limited to its deterministic component) change in

relation to variations in the depreciation rate, in the output elasticity of capital and in the stochastic shocks

on labour wage.

With regards to the basic model, the algorithm is implemented on the basis of the codes provided in

the Benjamin Moll Website for the Huggett economy. By exploiting the available scripts by Moll, the

version used for the purpose of this work7 consists of a combination of the codes to determine the asset

supply function and the interest rate in a stationary equilibrium, integrated also in terms of the graphical

representation of results. The model with bonds and capital is implemented on the basis of the previous

code, taking also advantage of the Moll script for the Aiyagari model with a fat-tailed wealth distribu-

tion and two assets. Differently from Moll, the version implemented for the purpose of this thesis does

not consider a fat-tailed wealth distribution. A brief explanation of the functioning of the code for the

extended model8 (which derives directly from the numerical resolution of the basic model) is provided

below.

Following the online numerical appendix by Achdou et al. (2020)9 to the reference paper, the algorithm

is based on a finite-difference approach and uses a bisection method on the endogenous variables (i.e. the

riskless interest rate and the aggregate capital level in the model under analysis). This algorithm - as well

as the one for the basic model - uses uniform grids10, where the discrete grid points are equally spaced

from each other. Since in the context of a steady-state equilibrium the HJB and KF Equations constitute a

system of coupled equations, the algorithm is required to work iteratively on them. First of all, the values

of the riskless interest rate and aggregate capital level are set according to an initial guess, which is then
7 See Huggett_bonds.m in Appendix A.1
8 See ExtendedModel_bonds_capital.m in Appendix A.2
9 The cited reference is an appendix to the previous version (2020) of the paper by Achdou et al. No later version of this numerical appendix

has been published yet, but it is assumed it constitutes a reliable and still updated source for the numerical methods used to solve the model.
10 By contrast, the code for the Aiyagari model with a fat-tailed distribution by Moll exploits non-uniform grids. The decision not to follow

Moll and to adopt, instead, equispaced grids also in the case of the extended version of the model is for the sake of consistency: as mentioned
before and specified later (see Subsection 5.2), the codes for the two models should be as analogous as possible in order to be able to compare
the results.
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updated iteratively. In particular, as a second step, the HJB Equation is solved by approximating the value

function, via the finite-difference method, at a finite number of discrete points in the space dimension

(namely, wealth). The finite-difference approximation of the HJB Equation at the i-th point in the space

dimension, ai, is the following:

ρvi,j (ai) = u (ci,j)+v′i,j (ai) (rai + yjw
∗ − ci,j + (µ∗ − r) ki,j)+

1

2
v′′i,j (ai)σ

2k2i,j+λj (vi,−j (ai)− vi,j (ai)) ,

where the approximation of the consumption and capital holdings is given by:

ci,j =
(
u′
)−1 (

v′i,j (ai)
)
,

ki,j = −µ∗ − r

σ2

v′i,j (ai)

v′′i,j (ai)
.

The so-called “implicit method” is used to update the value function: starting from an initial value, the

value function is updated through a functional implicit equation. In addition to this, the so-called “upwind

scheme” is employed in order to determine whether a backward or forward difference is more suitable for

the approximation: briefly, the forward difference approximation is computed whenever the drift of the

state variable (here, savings as the drift of wealth: sj (a) = ra+yjw
∗−c+(µ∗ − r) k) is positive, whereas

the backward difference approximation is computed whenever this drift is negative. As highlighted by the

previous formula, to compute backward or forward savings, also consumption and capital holdings need

to be approximated with a backward and forward procedure. Then, the first- and second-order derivatives

of the value function can be computed employing the upwind scheme to finally get to the value function

approximation. This procedure is iterated as long as the approximated value function at a specific step of

the cycle is close enough (according to a given threshold) to the approximation computed at the previous

step.

Once the value function is converged to its true approximated value, the KF Equation can be solved,

as before, by approximating the wealth distribution through the finite-difference method. The finite-

difference approximation of the KF Equation at the i-th point in the space dimension, ai, is as follows:

0 = − (rai + yjw
∗ − ci,j + (µ∗ − r) ki,j) g

′
i,j (ai) +

1

2
σ2k2i,jg

′′
i,j (a) + λ−jgi,−j (ai)− λjgi,j (ai) .

Differently from the HJB Equation, no iterative procedure is needed to solve this equation, given that it

is linear in gj . As before, an upwind scheme is employed for the computation of the first-order derivative

of g.

Given the wealth distribution from the resolution of the KF Equation, the total amount of wealth

(
∑

j∈{1,2}
∫ +∞
a adGj (a, t)) and the aggregate level of capital (

∑
j∈{1,2}

∫ +∞
0 k (a) dGj (a, t)) in the
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economy, as implied by the model, can be computed. Therefore, exploiting the market clearing condition

in (2.16) the riskless interest rate can be update using the bisection algorithm: it is increased whenever

the total net worth of individuals is lower than the aggregate level of capital, and decreased whenever the

total net worth of individuals is higher than the aggregate level of capital.

Once the updated interest rate is close enough (given a certain threshold) to its previous value, then also

the aggregate capital level needs to be updated, according to a similar bisection approach: it is increased

whenever the aggregate capital level in the economy implied by the model is higher than its previous

value, while it is decreased whenever the aggregate capital level in the economy implied by the model is

lower than its previous value. Once the updated level of aggregate capital is close enough (given a certain

threshold) to its previous value, then the equilibrium riskless interest rate and aggregate capital level in

the economy are found.

5.2 Model parametrization

For the purpose of obtaining comparable results from the two above-mentioned models, the following

parameters have been initialized to the same values in the MATLAB scripts. The CRRA coefficient

for utility is set to γ = 2.5, which represents an average value of risk aversion between investors in

the real economy, within the range of most commonly accepted measures that lie between 1 and 3, as

illustrated in Gandelman and Hernandez-Murillo (2014). The individual discount rate ρ is set equal to

0.05, which is quite low, indicating that individuals consider future consumption almost as relevant as

present consumption. The recovery rate (which can be interpreted as the job-finding rate in the basic

model, where y is simply the stochastic income process) is assumed to be quite close to 1, namely λ1 =

0.9, while the sickness rate (corresponding to the job-destruction rate in the basic model) is considerably

lower, λ2 = 0.075, indicating that recovering from illness (or finding an employment) has a significantly

higher probability than switching from the healthy condition to sickness (or leaving a job). As outlined

before (see Section 2), the switching intensities λ1 and λ2 are set in a way such that, in the aggregate, the

supply of labour L equals a unit. Lastly, individuals are borrowing-constrained through a restriction on

their total amount of wealth: a ≥ −a, where a = −2.

On the other hand, the y process plays different roles in the two models and, therefore, requires to be dealt

with accordingly. To solve the basic model, where y represents the two-state stochastic income process,

it is set that y1 = 0.7 (unemployment income) and y2 = 1.6 (employment income), whereas in the

extension of the model y describes the two-state stochastic multiplicative shock of wage and it is denoted

as y1 = 0.3 (sickness state) and y2 = 1.1 (healthy state). It must be underlined that the values of the y’s

in the two models are chosen in a way such that, after the multiplicative shock is applied in the case of
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the extended version, the y’s result to be of comparable size. Furthermore, the additional parameters of

the extended version of the model are set up as follows: the total factor productivity is normalized to the

unit, A = 1; the output elasticity of capital is specified as α = 1
3 ; lastly, the depreciation rate of capital

is defined as σ = 20%.

5.3 Main results and graphical representation

5.3.1 Model comparison: interest rate, asset supply and optimal policies

In equilibrium, the main result of the numerical resolution for the basic model concerns the risk-free

interest rate on bonds, which results to be r = 3.79%.

On the other hand, the numerical algorithm for the extended version of the model provides the following

results:

• Riskless interest rate: r = 3.13%,

• Aggregate capital level: K = 12.23,

• Deterministic component of the return on capital: µ∗ = 6.28%.

It can be easily observed that the introduction of an additional source of uncertainty, in the form of a

stochastic depreciation rate on the capital invested by agents, in the framework of an heterogenous agent

model with exogenous idiosyncratic shocks leads to a slight reduction in the interest rate on riskless

bonds, which decreases from around 3.8% to approximately 3.1%. Indeed, it is proven that a higher

level of uncertainty corresponds to an increase in agents’ demand for precautionary saving; this, in turn,

leads to lower interest rates, in order to ensure the clearing for the savings market (Amisano and Tristani

(2019)).

In addition to this, it can be noted that, in the higher-uncertainty model the aggregate level of assets

held (or invested) by individuals, which describes the dimension of the whole economy, is around 12,

according to the equilibrium condition of equivalence between net worth and aggregate capital, since the

net supply of bonds is imposed to be zero.

Furthermore, these results prove to be consistent with the interest rates inequality illustrated in the the-

oretical set-up of the model (see eq. (2.15) in Section 2): the riskless interest rate is, indeed, materially

lower than the risky return on capital (around half of it), ensuring that households are not disincentivized

from choosing riskier investments and continue to contribute to their future income.
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In terms of wealth distribution, the following plots illustrate the distributions implied by the benchmark

and by the extended model, showing also the different behaviour for the two types of agents in the econ-

omy:

Fig. 5.1: Stationary distribution in the basic model (left) and extended model (right)

It can be seen that, in the basic model, the agents are entirely condensed in the left part of the wealth

distribution, namely the part referred to the lowest values of wealth (from the lower limit, −2, to around

1), while from a certain low level of wealth on, the mass of agents reduces drastically to exactly 0. For

the extended model, the wealth distribution is significantly different, with households being distributed

in a more uniform way: with respect to type-2 agents (that are, individuals with employment income

in the basic model and individuals in a healthy condition in the extended model), the majority of the

mass is still concentrated in the left tail of the distribution, although some quantity of agents exhibit also

higher levels of wealth, quite differently from what occurs for the benchmark model; for type-1 agents

(individuals with unemployment income or in a sick condition, depending on the model), the distribution

appears almost flat and very close to 0 for every value of wealth (a small mass is only visible in the left

tail). It should be noted that the discrepancy between the stationary densities of wealth under the two

models may be partly explained also by the fact that the distribution takes into account financial wealth

only, which corresponds to total wealth under the benchmark model, whereas in the extended model total

wealth comprises labour income as well.

The following graphs, showing the consumption and savings behaviour and the capital and bond holdings

of individuals, contain also the illustration of the stationary density functions (as shown in the previous

figures) in order to contextualize any comments made with respect to the distribution of agents. Looking

at the consumption policies optimally chosen by households in the two models, their functions with

respect to wealth are plotted below,:
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Fig. 5.2: Consumption policy functions in the basic model (left) and extended model (right)

The plots highlight that, in the model with additional uncertainty due to the investment in risky capital,

the consumption curve is moderately steeper than in the benchmark model, but consumption level cor-

responding to low values of wealth is slightly lower with higher uncertainty. For instance, for values of

wealth just above the constraint (which is set at−2), the consumption curve for type-1 and type-2 agents

in the basic model is at around 0.6 and 1.3, respectively, while in the extended version agents consume

below 0.4 and 1.2, respectively.

For what concerns the optimal savings policies determined by households, their functions with respect to

wealth in the two models are shown below:

Fig. 5.3: Savings policy functions in the basic model (left) and extended model (right)

It emerges that savings, which are decreasing in wealth, for type-2 households are significantly higher in

the model with increased uncertainty, showing positive values for all the wealth levels illustrated in the

graph (up to 30); in the basic version of the model, savings for type-2 agents are still positive for wealth

levels corresponding to a non-zero mass of individuals, but quite lower than in other model. Differently,
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for type-1 households savings are negative in all the wealth domain in both models, and decrease very

rapidly in wealth; in this case, the savings trend is similar under the two models.

Additionally, as for the extended version of the model, below is a plot of the Lorenz curve implied by the

model:

Fig. 5.4: Lorenz curve in the extended model

The Lorenz curve illustrates the distribution of wealth within an economy using cumulative quantities.

The area between the line of equidistribution (i.e. the case where wealth is equally distributed in the

population) and the true Lorenz curve represents the concentration of wealth in the population. Being

below the 45-degree line, the curve indicates that wealth is unequally distributed in the population and

presents an high concentration: most of the wealth in the economy is owned by the a small fraction of

households. For instance, the richest 30% of households possess more than 70% of total wealth in the

economy.

Furthermore, the following plots illustrate the behaviour of capital holdings and bond holdings, respec-

tively, as functions of wealth:

Fig. 5.5: Capital holdings (left) and bond holdings (right) as a function of wealth
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In relation to capital, the plot shows that the risky holdings are always positive (due to the constraint

posed on capital) and significantly increase, both for type-1 and type-2 agents, as wealth increases. In

particular, capital holdings rise much faster for the agents of the second type, for whom the function of

capital with respect to wealth is also clearly concave; this evidence is not so explicit for the other category

of agents, whose function seems, instead, to be convex in wealth.

Looking at the second plot, one can observe that bond holdings are initially negative and diminishing in

wealth, decreasing more for type-2 agents and reaching a low at below −4. From values of wealth ap-

proximately in the range (3, 5), the holdings of riskless bonds start to increase exponentially and become

positive for both types of agents, so that bond holdings are convex functions in wealth.

5.3.2 Comparative statics: changes in wealth distribution, interest rate, aggregate capital

and capital rental rate

Exploiting some comparative statics, it is possible to investigate the changes in the wealth distribution,

in the riskless interest rate and in the capital rental rate that are caused by changes in the depreciation rate

of capital, in the output elasticity of capital and in the stochastic shocks on labour wage.

First, by considering the depreciation rate of capital, σ, is must be highlighted that the MATLAB code is

very sensitive to changes in its value. Indeed, convergence for the level of aggregate capital is not always

guaranteed for different values of the depreciation. Ceteris paribus, small changes in the depreciation

rate of capital lead to the following trends in the other parameters:

Depreciation rate, σ Interest rate, r Aggregate capital,K Deterministic capital rental rate, µ∗

10% 4.40% 15.97 5.26%

15% 3.65% 14.47 5.61%

17% 3.40% 13.61 5.85%

20% 3.13% 12.23 6.28%

It emerges that halving the depreciation rate from 20% to 10% implies the following: the riskless interest

rate increases from above 3% to around 4.5%; the aggregate capital level is also increased from approx-

imately 12 to almost 16; by contrast, the deterministic rental rate on capital shows a slight decrease,

reaching around 5% from an initial value of more than 6%. Furthermore, the density functions of wealth

for the different values of the depreciation rate are illustrated in the following plots:
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Fig. 5.6: Stationary density functions for different values of the depreciation rate

As the depreciation rate on capital increases, the percentage of households that exhibit the lowest amount

of net worth (wealth from the minimum value, −2, until 5, for instance) increases and the distribution

shows an increasingly higher peak. This effect is clearly evident for type-2 agents, while it is much more

smoothed for type-1 agents.

Then, allowing the output elasticity of capital, α, to vary between 0 and 1, all the rest being equal, one

can observe the following trends in the parameters under analysis:

Output elasticity of capital, α Interest rate, r Aggregate capital,K Deterministic capital rental rate, µ∗

1/4 2.82% 7.35 5.60%

1/3 3.13% 12.23 6.28%

0.4 2.95% 18.59 6.93%

It can be noted that an increase in the output elasticity of capital from 25% to 40% leads to the following

evidences: the aggregate capital level almost triple, from approximately 7 to almost 19; also the deter-

ministic rental rate on capital shows a moderate increase, reaching around 7% from an initial value of

5.6%; on the other hand, the riskless interest rate does not display a clear trend, first increasing and then
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decreasing. Like for the depreciation rate, also in this case theMATLAB code is very sensitive to changes

in the output elasticity of capital. Furthermore, the density functions of wealth for the different values of

the output elasticity of capital are illustrated in the following plots:

Fig. 5.7: Stationary density functions for different values of the output elasticity of capital

The graphs show that, as the output elasticity of capital increases, the percentage of households that

exhibit the lowest amount of net worth decreases exponentially. This is clearly observable in the last

plot, corresponding to α = 0.4: the distribution of the density function is considerably smoothed with

respect to the other plots, where the peak in the left-hand side of the function indicates that the majority of

the individuals owns a limited amount of wealth. As before, the effect is much more tangible for type-2

agents than for type-1 individuals, whose density function is smoother.

Lastly, focusing the attention on changes on the stochastic shocks on labour wage that households are

subject to, yj with j = 1, 2, all the rest being equal, the following trends in the parameters under analysis

are observed:
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Shocks on wage, yj Interest rate, r Aggregate capital,K Deterministic capital rental rate, µ∗

y1 = 0.5, y2 = 0.7 4.71% 10.21 7.08%

y1 = 0.9, y2 = 1.1 4.66% 10.78 6.83%

y1 = 0.3, y2 = 1.1 3.13% 12.23 6.28%

y1 = 0.3, y2 = 1.5 2.79% 13.59 5.85%

It is noted that an increase in the gap between the two states of the stochastic shock on labour wage

(meaning that the two values are more extreme compared to one another) with respect to the basic case

of y1 = 0.3 and y2 = 1.1 implemented in the model (look, for example, at the case for y1 = 0.3 and

y2 = 1.5) leads to a slight increase in the aggregate capital level, whereas it causes a small decrease in

the riskless interest rate and in the capital rental rate; accordingly, a decrease in the gap (see the case

for y1 = 0.9 and y2 = 1.1 and the one for y1 = 0.5 and y2 = 0.7) causes a decrease in the aggregate

capital level, while the riskless interest rate and the capital rentale rate are subject to a small increase.

Furthermore, the plots below graphically show the density functions of wealth for the different values of

the stochastic shocks on labour wage:

Fig. 5.8: Stationary density functions for different values of the shocks on labour wage
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It is evident from the graphs that the probability density functions become much more homogeneous as

the divergence between the two states of the stochastic shock on labour wage increases.

As a final remark, again, all the simulations performed in this Subsection fulfill the condition on the

interest rates that must be verified in equilibrium, according to which the return on risky capital must be

greater than the return on riskless bonds.
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6 Economic interpretation of the results

The comparison of the results obtained by the numerical resolution of the basic market model à la Huggett

and its implementation to incorporate risky investment (see Sub-subsection 5.3.1) offers several interest-

ing insights from an economic point of view.

Above all, regarding the consumption policies under both models, as it should be natural, agents of the

second type (namely, employed or in a healthy condition, depending on the model considered) consume

more than other agents, given that they receive an higher income from labour, after accounting for the

effect of the stochastic shocks. In addition to this, comparing the two scenarios, the analysis shows that

consumption is slightly reduced under uncertainty. As one would expect, increased uncertainty typically

depress consumption. It has been widely noted that households are, in fact, incentivized to smooth con-

sumption as a consequence of future income uncertainty and have a precautionary motive to accumulate

assets. Indeed, as it will be better detailed in the next paragraph, precautionary saving as a response to

changing income uncertainty plays an important role in explaining the observed changes in both con-

sumption and savings, as proven by Hahm and Steigerwald (1999).

In terms of savings, the optimal policies adopted by households underline the relevance of the precaution-

ary savingmotive, which consists essentially in the positive extra saving arising, by way of example, from

the fact that future income (here, labour income) is stochastic, and thus random, rather than deterministic

and known beforehand (Leland (1968)). Indeed, for agents of the second type, i.e. the ones receiving

an higher income from labour (either because they are employed or in a healthy condition, depending

on the model considered), the savings are higher with increased uncertainty than in the basic model, for

given levels of individual wealth. This is in accordance with the inclination of households to save more

in times where uncertainty about future earnings is higher. However, although it is true for both agent

types, as well as for both models, that the precautionary motive for saving has a greater impact on lower

wealth levels, for type-1 agents savings show a similar trend under the two models. This outcome could

be seen in light of the fact that there is yet no consensus in literature about the intensity and the impact

of the rationale for saving on individuals (Lugilde et al. (2017)). On the other hand, it is also true that

there is evidence, in literature, that a large share of saving and wealth accumulation is not attributable

to earnings (here, labour wage) uncertainty exclusively, although it being the most addressed rationale

underlying precautionary savings (Guiso et al. (1992)). In particular, it is argued that the precautionary

motive alone cannot justify the wealth levels of the richest, as outlined in Lusardi (1998).

For what concerns capital holdings, which correspond to the risky component of the households’ port-

folios, what emerges from the previous simulations is that households increase their investment in risky

and productive capital as their wealth rises. Indeed, considering that agents exhibit a certain degree of
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risk aversion by assumption, they are inclined to invest more in risky assets as they become wealthier,

since this choice entails an element of uncertainty while providing the possibility to earn larger returns.

Furthermore, the fact that the function of capital holdings for agents of the second type is concave in

wealth indicates that households’ propensity to invest in risky capital slows down for very large values

of wealth, which may be caused by an higher risk aversion.

By considering bonds, since the holdings result to be negative for low wealth values, it emerges that

the poorest borrow money instead of investing in riskless securities. This observed evolution can be

supported by a reasoning, comparable to the previous one, based on the risk aversion of individuals. The

initial negative holdings of bonds, suggest that low-wealth households are prone to indebt themselves -

and increase their indebtedness - at a risk-free interest rate in order to improve their economic condition.

This is even more tangible for agents of the second type, who may be assumed to wish to exploit riskless

borrowing to increase their wealth more than type-1 agents. After reaching a certain level of wealth,

individuals cease to take on more debt and start to invest in risk-free bonds, whose holdings steeply

increase as wealth rises, in a similar fashion for both agent categories. In other words, it may be said that,

as households reach a satisfactory wealth level, they start to invest exploiting a risk-free interest rate.

Below some further considerations on the comparative statics analysis performed in Sub-subsection 5.3.2.

First, changes in the depreciation rate of capital significantly affect the other dimensions investigated.

An increase in the depreciation rate can be translated into an increase in the riskiness of capital; in turn,

this causes a reduction in the riskless interest rate on bonds (for the savings market clearing, as explained

in the previous Sub-subsection, 5.3.1), while the rental rate on capital increases. As a consequence, the

risk premium of risky capital with respect to riskless bonds is increased. This may be seen in terms of

the Sharpe Ratio of capital. To this purpose, below are reported the Sharpe Ratio values computed for

the different values of the depreciation rate and, thus, capital rental rate and risk-free rate:

Depreciation rate, σ Risk premium, µ∗ − r Sharpe Ratio, µ∗−r
σ

10% 0.86% 8.60%

15% 1.96% 13.07%

17% 2.45% 14.41%

20% 3.15% 15.75%

It can be observed that the Sharpe Ratio increases with depreciation, meaning that the risk-adjusted per-

formance of capital improves as its riskiness increases. Therefore, capital holdings constitute profitable

investments, even accounting for their riskiness.

With regards to the output elasticity of capital, an increase in its value implies an increase in the relevance

of capital within the production process, translating into amore capital-intensive production process. This
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can be clearly observed in terms of the increase in the rental rate of capital and in the higher aggregate

level of capital in the economy. Furthermore, the greater importance of capital can be interpreted in terms

of the trend for automation in the production process: as capital becomes more and more used to produce

output, the inequality between households is more evident, given that the poorest (type-1 agents) cannot

increase their investments in capital as they wish, and capital is the most-profitable good in the economy

for high levels of its output elasticity. This inequality in the income distribution is clear in the increased

distance between the densities of the two categories of individuals (as shown in the last plot of figure

5.7).

Lastly, it is worth mentioning the double effect of the depreciation rate and the rental rate on capital on

the risk-free interest rate. Since the interest rate on bonds depends on both of these two dimensions, it

has been empirically observed that a change in one of them does not always provide straightforward and

unequivocal results with respect to the interest rate, given that, for instance, changes in the depreciation

rate cause changes in the rental rate as well. Indeed, the final impact on the risk-free interest rate depends

on how these two effects counterbalance one another and on which of them dominates on the other.
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7 Conclusion

The analysis performed in this work is aimed at investigating the impact that the introduction of addi-

tional market uncertainty causes on the riskless interest rate on bond and on the distribution of wealth

(thus, inequality) in the economy. In particular, the heterogeneous households, besides being subject

to stochastic shocks on their labour income, are given the possibility to invest in risky and productive

capital, which is subject to stochastic depreciation shocks.

As outlined in the introduction, the twofold contribution of this work materializes, first, in the analysis

of the presented in model in order to provide some useful insights in terms of the impact on the interest

rate and on the distribution of wealth, and, secondly, in the provision of a methodological approach to

derive and deal with the system of coupled PDE that describes the economy (namely, the HJB and KF

Equations).

The main evidences arisen from this work are reported below. First, as one would expect, the risk-

free interest rate decreases under greater uncertainty. The rational behind this evidence can be found

in the precautionary motive, according to which increased uncertainty leads to a growing demand for

precautionary saving, which in turn lowers interest rates, in order to ensure the clearing of the market

(Amisano and Tristani (2019)). In terms of the distribution of wealth, it is noted that, in the context

of higher uncertainty, the stationary density becomes more uniformly-distributed than in the benchmark

case. This result must be seen in light of the fact that the models deal with financial wealth only: while

it corresponds to total wealth under the benchmark model, the same is not true for the extended model,

where total wealth comprises labour income as well. Additionally, through the analysis of the Lorenz

curve implied by the model under analysis, it is evident that this type of economy implies significant

inequality in the distribution of wealth. With reference to the consumption and savings policies adopted

by households in the two scenarios, greater uncertainty implicates that consumption is depressed, whereas

savings are increased. Again, an important contribution in explaining these evidences is provided by the

above-mentioned precautionary motive: as a consequence of future income uncertainty, households are

inclined to smooth consumption and have a precautionary motive to accumulate assets. Therefore, it

appears clear that the precautionary motive plays a relevant role in clarifying these dynamics, although

it is not sufficient to justify the large accumulation of wealth and the high wealth holdings of the very

rich, as commonly agreed in literature (Lusardi (1998)). Focusing on the depreciation rate of capital,

the analysis shows that an increase in the depreciation, which indicates that the riskiness of capital is

higher, causes a rise in the risk premium of risky capital with respect to riskless bonds, since the risk-free

interest rate decreases, while the return on capital increases. Another interesting evidence is related to

the the output elasticity of capital, indicating the relative importance of capital with respect to labour
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in the production process. Positive variations in its value have a positive impact on both the return on

capital and the individual capital holdings, leading to a higher level of capital in the aggregate; this is

proven to increase wealth inequalities in the economy. As a last remark, it should be noted that, under

the present set-up, the effect on the riskless interest rate caused by the increased uncertainty is not always

straightforward, due to the fact that it takes into account variations in both the depreciation rate and the

rental rate on capital, which affect each other.

By way of conclusion, the model under analysis presents some clear limitations, which lead the way

to further work. First, the stochastic process defined for the labour income shocks is a basic two-state

Poisson process, which could be implemented to consider a more realistic outlook. Then, individuals

could be assumed to have preferences besides work, so that their labour supply is not inelastic with

respect to wage. In addition, the model does not take into account inflation, according to which no asset

could be actually considered risk-free.
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A Appendix

This appendix provides the full MATLAB codes implemented and used in order to solve numerically the

two models: for the basic model entailing only bonds, the code corresponds mostly to the script by Moll

(Benjamin Moll Website) for the steady-state equilibrium in a Huggett economy, where integrations are

made for what concerns the set-up of the model and the layout of the results; the code for the extended

version of the model is based on the previously-mentioned code, but implemented to include capital

investments.

A.1 Basic model MATLAB code

Huggett_bonds.m

%% HUGGETT MODEL - INVESTMENT IN BONDS

% uses implicit upwind method for HJB

clear all; clc; close all;

tic;

%% SET UP

gamma = 2.5; %CRRA utility with parameter gamma

rho = .05; %discount rate

y1 = .7; %income of type 1 agent

y2 = 1.6; %income of type 2 agent

y = [y1,y2]; %income (state variable)

la1 = .9; %lambda_1, switching intensity from state 1 to state 2

la2 = .075; %lambda_2, switching intensity from state 2 to state 1

la = [la1,la2]; %lambda

I = 500; %number of discrete points in the space dimension (a_i with i=1,...,I) used to approximate the
value function (v_i_j=v_j(a_i))

%wealth a (state variable)

amin = -2; %borrowing constraint

amax = 50; %borrowing upper limit

a = linspace(amin,amax,I)’; %generation of a column vector of I points, with space between them of
(amax-amin)/(I-1)

da = (amax-amin)/(I-1); %space between points (delta_a)

aa = [a,a]; %matrix with 2 identical columns of wealth values

yy = ones(I,1)*y; %matrix with 2 columns: the first contains I times y1, the second I times y2

maxit = 100; %maximum number of iterations for value function

crit = 10^(-6); %critical value to evaluate distance of value function at (n+1) from value function at n
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Delta = 1000; %step size of the implicit method used for the HJB

dVf = zeros(I,2); %set up of a matrix of forward differences of value function

dVb = zeros(I,2); %set up of a matrix of backward differences of value function

dV0 = zeros(I,2); %set up of a matrix of differences of value function at steady state

c = zeros(I,2); %set up of a matrix of consumption values (control variable)

%speye(I) creates a sparse IxI identity matrix (1s in the main diagonal, 0s elsewhere)

Aswitch = [-speye(I)*la(1),speye(I)*la(1);speye(I)*la(2),-speye(I)*la(2)];

r0 = .01; %initial guess

Ir = 100; %maximum number of iterations for interest rate

rmin = .01; rmax = .05;

crit_S = 10^(-5); %critical value to evaluate the interest rate

%% RESOLUTION

%Initial guesses

%For interest rate

r = r0;

%For value function: a natural initial guess is the value function of "staying put", which is equal to
u(c)/rho

v0(:,1) = (y(1) + r*a).^(1-gamma)/(1-gamma)/rho;

v0(:,2) = (y(2) + r*a).^(1-gamma)/(1-gamma)/rho;

for ir=1:Ir %iterate for the interest rate

r_r(ir) = r; %save the interest rates

rmin_r(ir) = rmin;

rmax_r(ir) = rmax;

if ir>1

v0 = V_r(:,:,ir-1); %update the initial value function (from step 2 of the for cycle)

end

%% HJB EQUATION

v = v0;

for n=1:maxit %iterate for the value function

V = v;

V_n(:,:,n)=V;

%forward difference approximation of first derivative

dVf(1:I-1,:) = (V(2:I,:)-V(1:I-1,:))/da;

dVf(I,:) = (y + r.*amax).^(-gamma); %will never be used, but impose state constraint a<=amax just in
case: dVf=u’(c(amax))

%backward difference approximation of first derivative

dVb(2:I,:) = (V(2:I,:)-V(1:I-1,:))/da;
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dVb(1,:) = (y + r.*amin).^(-gamma); %state constraint boundary condition: dVb=u’(c(amin))

I_concave = dVb > dVf; %indicator whether value function is concave (problems arise if this is not the
case) %this condition corresponds to ssb > ssf

%consumption and savings with forward difference

cf = max(dVf,10^(-10)).^(-1/gamma);

ssf = yy + r.*aa - cf;

%consumption and savings with backward difference

cb = max(dVb,10^(-10)).^(-1/gamma);

ssb = yy + r.*aa - cb;

%consumption and derivative of value function at steady state

c0 = yy + r.*aa;

dV0 = max(c0,10^(-10)).^(-gamma); %u’(c)

%dV_upwind makes a choice of forward or backward differences based on the sign of the drift

If = ssf > 0; %positive drift --> forward difference

Ib = ssb < 0; %negative drift --> backward difference

I0 = (1-If-Ib); %at steady state

dV_Upwind = dVf.*If + dVb.*Ib + dV0.*I0; %include the third term for taking into account cases where
sf <= 0 <= sb (we set savings=0)

c = max(dV_Upwind,10^(-10)).^(-1/gamma);

u = c.^(1-gamma)/(1-gamma);

%Construct matrix

X = - min(ssb,0)/da;

Y = - max(ssf,0)/da + min(ssb,0)/da; %lambda is subtracted later, when Aswitch is added

Z = max(ssf,0)/da;

%create the part of matrix A referred to values for j=1;

%spdiags(a,b,c,d) creates a cxd matrix and puts in diagonal b the values of a (the main diagonal is indi-
cated by 0)

A1 = spdiags(Y(:,1),0,I,I)+spdiags(X(2:I,1),-1,I,I)+spdiags([0;Z(1:I-1,1)],1,I,I);

%create the part of matrix A referred to values for j=2

A2 = spdiags(Y(:,2),0,I,I)+spdiags(X(2:I,2),-1,I,I)+spdiags([0;Z(1:I-1,2)],1,I,I);

A = [A1,sparse(I,I);sparse(I,I),A2] + Aswitch; %2I x 2I matrix called Poisson transition matrix or Inten-
sity matrix

if max(abs(sum(A,2)))>10^(-9) %sum(A,2) is a column vector containing the sum of each row of A

disp(’Improper Transition Matrix’)

break

end

B = (1/Delta + rho)*speye(2*I) - A;

u_stacked = [u(:,1);u(:,2)]; %column vector of 2xI elements (first the ones for j=1, then for j=2)
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V_stacked = [V(:,1);V(:,2)]; %similarly but for the value function

b = u_stacked + V_stacked/Delta;

V_stacked = B\b;

%Solve system of equations

V = [V_stacked(1:I),V_stacked(I+1:2*I)]; %re-create a matrix with 2 different columns for j=1 and j=2

Vchange = V - v;

v = V;

dist(n) = max(max(abs(Vchange))); %first compute the max of the 2 columns for j=1 and for j=2, then
compute the max of the 2 max

if dist(n)<crit %convergence criterion

disp(’Value Function Converged, Iteration = ’)

disp(n)

break %stop the for cycle of the value function (find the converged value function for each value of the
interest rate)

end

end

toc;

%% FOKKER-PLANCK EQUATION

AT = A’;

b = zeros(2*I,1); %since ATg must be equal to 0

%need to fix one value, otherwise matrix is singular

i_fix = 1; b(i_fix)=.1;

row = [zeros(1,i_fix-1),1,zeros(1,2*I-i_fix)];

AT(i_fix,:) = row; %substitute the first row of AT with the values in row

%Solve linear system

gg = AT\b;

g_sum = gg’*ones(2*I,1)*da;

gg = gg./g_sum;

g = [gg(1:I),gg(I+1:2*I)];

check1 = g(:,1)’*ones(I,1)*da;

check2 = g(:,2)’*ones(I,1)*da;

g_r(:,:,ir) = g;

adot(:,:,ir) = yy + r.*aa - c; %first derivative of a, which corresponds to saving

V_r(:,:,ir) = V;

dV_r(:,:,ir) = dV_Upwind;

c_r(:,:,ir) = c;

S(ir) = g(:,1)’*a*da + g(:,2)’*a*da; %asset supply
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%% UPDATE INTEREST RATE

if S(ir)>crit_S

disp(’Excess Supply’)

rmax = r;

r = .5*(r+rmin); %decrease the interest rate

elseif S(ir)<-crit_S

disp(’Excess Demand’)

rmin = r;

r = .5*(r+rmax); %increase the interest rate

elseif abs(S(ir))<crit_S

disp(’Equilibrium Found, Interest rate =’)

disp(r)

disp(’Asset supply =’)

disp(S(ir))

break %stop the for cycle of the interest rate

end

end

amax1 = 0.6;

amin1 = amin-0.03;

r_S = [r_r’ S’]; %create a matrix where each row contains the interest rate and the corresponding asset
supply

r_S = sortrows(r_S,1); %order the matrix according to the increasing interest rate

%% GRAPHICAL REPRESENTATION OF THE RESULTS

%Consumption Policy Function

figure(1)

set(gca,’FontSize’,16)

plot(a,c_r(:,1,ir),’b’,a,c_r(:,2,ir),’r’,a,g_r(:,1,ir),’b--’,a,g_r(:,2,ir),’r--’,a,zeros(1,I),’k--’,’LineWidth’,1.5);

text(amin,-.235,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [min(min(adot(:,:,ir)))-0.05 amax],’Color’,’Black’,’LineStyle’,’--’)

legend(’c_1(a)’,’c_2(a)’,’g_1(a)’,’g_2(a)’,’Location’,’East’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Consumption, $c_j(a)$’,’interpreter’,’latex’)

xlim([amin1-1 amax-20]) ylim([-.05 3])

title(’Consumption Policy Function’)

saveas(gcf,’Consumption policy function_bonds.jpg’)

%Savings Policy Function

figure(2)
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set(gca,’FontSize’,16)

plot(a,adot(:,1,ir),’b’,a,adot(:,2,ir),’r’,a,g_r(:,1,ir),’b--’,a,g_r(:,2,ir),’r--’,linspace(amin1,amax,I),zeros(1,I),’k-
-’,’LineWidth’,1.5);

text(amin,-1.3,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [min(min(adot(:,:,ir)))-0.05 amax],’Color’,’Black’,’LineStyle’,’--’)

legend(’s_1(a)’,’s_2(a)’,’g_1(a)’,’g_2(a)’,’Location’,’NorthEast’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Savings, $s_j(a)$’,’interpreter’,’latex’)

xlim([amin1-1 amax-20])

ylim([-1.2 0.7])

title(’Savings Policy Function’)

saveas(gcf,’Savings policy function_bonds.jpg’)

%Density Functions

figure(3)

set(gca,’FontSize’,16)

plot(a,g_r(:,1,ir),’b’,a,g_r(:,2,ir),’r’,’LineWidth’,1.5);

text(amin,-.05,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [-0.05 0.8],’Color’,’Black’,’LineStyle’,’--’)

legend(’g_1(a)’,’g_2(a)’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Densities, $g_j(a)$’,’interpreter’,’latex’)

xlim([amin1-1 amax-20])

ylim([-0.01 0.65])

title(’Density Functions’)

saveas(gcf,’Density functions_bonds.jpg’)

A.2 Extended model MATLAB code

ExtendedModel_bonds_capital.m

%% EXTENDED MODEL - INVESTMENT IN BONDS AND CAPITAL

% uses implicit upwind method for HJB

clear all; clc; close all;

tic;

%% SET UP

gamma = 2.5; %CRRA utility with parameter gamma

rho = .05; %discount rate

y1 = .3; %state 1 shock on wage (sickness)
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y2 = 1.1; %state 2 shock on wage (health)

y = [y1,y2]; %idiosyncratic shock on wage

la1 = .9; %lambda_1, switching intensity from state 1 to state 2

la2 = .075; %lambda_2, switching intensity from state 2 to state 1

la = [la1,la2]; %lambda

updk = .2; % Sensitivity parameter <---- important for the convergence of K

%Cobb-Douglas production function

Aprod = 1; % total factor productivity (normalized at 1)

al = 1/3; % alpha (output elasticity of capital)

I = 500; %number of discrete points in the space dimension (a_i with i=1,...,I) used to approximate the
value function (v_i_j=v_j(a_i))

%total wealth (state variable)

amin = -2; %borrowing constraint

amax = 50; %maximum wealth

a = linspace(amin,amax,I)’; %generation of a column vector of I points, with space between them of
(amax-amin)/(I-1)

da = (amax-amin)/(I-1); %space between points (delta_a)

aa = [a,a]; %matrix with 2 identical columns of wealth values

yy = ones(I,1)*y; %matrix with 2 columns: the first contains I times y1, the second I times y2

maxit = 100; %maximum number of iterations for value function

crit = 10^(-6); %critical value to evaluate distance of value function at (n+1) from value function at n

Delta = 1000; %step size of the implicit method used for the HJB

dVf = zeros(I,2); %set up of a matrix of forward differences of value function

dVb = zeros(I,2); %set up of a matrix of backward differences of value function

dV0 = zeros(I,2); %set up of a matrix of differences of value function at steady state

dV2 = zeros(I,2); %set up of a matrix of approximated differences of value function second derivative

c = zeros(I,2); %set up of a matrix of consumption values (first control variable)

k = zeros(I,2); %set up of a matrix of capital values (second control variable)

%speye(I) creates a sparse IxI identity matrix (1s in the main diagonal, 0s elsewhere)

Aswitch = [-speye(I)*la(1),speye(I)*la(1);speye(I)*la(2),-speye(I)*la(2)];

%Interest rate (first endogenous variable)

r0 = .01; %initial guess for interest rate

Ir = 100; %maximum number of iterations for interest rate

rmin = -.01;

rmax = .05; %must be lower than or equal to mu by hypothesis

crit_S = 10^(-4); %critical value to evaluate the interest rate

%Aggregate capital (second endogenous variable)
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K0 = 15; %initial guess for aggregate capital

Kr = 10; %maximum number of iterations for capital

Kmin = 13;

Kmax = 14;

crit_K = 10^(-3); %critical value to evaluate the aggregate capital level

test = zeros(1,Kr);

sig = .20;

sig2 = sig^2;

%% RESOLUTION

%Initial guesses

%For aggregate capital

K = K0;

%For interest rate

r = r0;

%Compute the initial values of the deterministic part of the return on capital and wage

mu = al * Aprod * K^(al-1);

wbar = (1-al) * Aprod * K^al;

%For value function: a natural initial guess is the value function of "staying put", which is equal to
u(c)/rho

v0(:,1) = (wbar*y(1) + r*a + (mu-r)^2/(gamma*sig2)*a).^(1-gamma)/(1-gamma)/rho; %due to the state
constraint

v0(:,2) = (wbar*y(2) + r*a + (mu-r)^2/(gamma*sig2)*a).^(1-gamma)/(1-gamma)/rho; %due to the state
constraint

for kr=1:Kr %iterate for aggregate capital

K_K(kr) = K; %save the aggregate capital level

Kmin_K(kr) = Kmin;

Kmax_K(kr) = Kmax;

if kr>1

mu = al * Aprod * K^(al-1); %update the mu (from step 2 of the for cycle)

wbar = (1-al) * Aprod * K^al; %update the wage (from step 2 of the for cycle)

end

for ir=1:Ir %iterate for the interest rate

r_r(ir) = r; %save the interest rates

rmin_r(ir) = rmin;

rmax_r(ir) = rmax;

if ir>1

v0 = V_r(:,:,ir-1); %update the initial value function (from step 2 of the for cycle)
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end

%% HJB EQUATION

v = v0;

for n=1:maxit %iterate for the value function

V = v;

V_n(:,:,n)=V;

%forward difference approximation of first derivative

dVf(1:I-1,:) = (V(2:I,:)-V(1:I-1,:))/da;

dVf(I,:) = (wbar*y + r.*amax + (mu-r)^2/(gamma*sig2)*amax).^(-gamma); %will never be used, but
impose state constraint a<=amax just in case: dVf=u’(c(amax))

%backward difference approximation of first derivative

dVb(2:I,:) = (V(2:I,:)-V(1:I-1,:))/da;

dVb(1,:) = (wbar*y + r.*amin).^(-gamma); %state constraint boundary condition: dVb=u’(c(amin))

I_concave = dVb > dVf; %indicator whether value function is concave (problems arise if this is not the
case), this condition corresponds to ssb > ssf

%second derivative approximation (backward and forward only differs at amax)

dV2b(2:I-1,:) = dVf(2:I-1,:)/da - dVb(2:I-1,:)/da;

dV2f(2:I-1,:) = dVf(2:I-1,:)/da - dVb(2:I-1,:)/da;

dV2b(I,:) = -gamma*dVb(I,:)/amax; %boundary condition

dV2f(I,:) = -gamma*dVf(I,:)/amax; %boundary condition

%consumption, capital share and savings with forward difference

cf = max(dVf,10^(-10)).^(-1/gamma);

kf = max(- dVf./dV2f.*(mu-r)/(sig2),0); %optimal choice of capital

ssf = wbar*yy + r.*aa - cf + (mu-r).*kf;

%consumption, capital share and savings with backward difference

cb = max(dVb,10^(-10)).^(-1/gamma);

kb = max(- dVb./dV2b.*(mu-r)/(sig2),0); %optimal choice of capital

ssb = wbar*yy + r.*aa - cb + (mu-r).*kb;

%capital share, consumption and derivative of value function at steady state

k0 = (kb + kf)/2; %very simple but seems to work well and it is fast

c0 = wbar*yy + r.*aa + (mu-r).*k0;

dV0 = max(c0,10^(-10)).^(-gamma); %u’(c)

%dV_upwind makes a choice of forward or backward differences based on the sign of the drift

If = ssf > 0; %positive drift --> forward difference

Ib = ssb < 0; %negative drift --> backward difference

I0 = (1-If-Ib); %at steady state

dV_Upwind = dVf.*If + dVb.*Ib + dV0.*I0; %include the third term for taking into account cases where
sf <= 0 <= sb (set savings=0)
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c = max(dV_Upwind,10^(-10)).^(-1/gamma);

u = c.^(1-gamma)/(1-gamma);

k = max(-dV_Upwind./dV2b.*(mu-r)/sig2,0);

%Construct matrix

X = -Ib.*ssb/da + sig2/2.*k.^2/da^2;

Y = -If.*ssf/da + Ib.*ssb/da - sig2.*k.^2/da^2; %lambda is subtracted later, when Aswitch is added

Z = If.*ssf/da + sig2/2.*k.^2/da^2;

%at the upper boundary a=amax

eps = -amax*(mu-r)^2/(2*gamma*sig2);

X(I,:) = -min(ssb(I,:),0)/da - eps/da;

Y(I,:) = -max(ssf(I,:),0)/da + min(ssb(I,:),0)/da + eps/da; Z(I,:) = max(ssf(I,:),0)/da;

%create the part of matrix A referred to values for j=1;

%spdiags(a,b,c,d) creates a cxd matrix and puts in diagonal b the values of a (the main diagonal is indi-
cated by 0)

A1 = spdiags(Y(:,1),0,I,I)+spdiags(X(2:I,1),-1,I,I)+spdiags([0;Z(1:I-1,1)],1,I,I);

%create the part of matrix A referred to values for j=2

A2 = spdiags(Y(:,2),0,I,I)+spdiags(X(2:I,2),-1,I,I)+spdiags([0;Z(1:I-1,2)],1,I,I);

%at the upper boundary a=amax

A1(I,I) = Y(I,1) + Z(I,1);

A2(I,I) = Y(I,2) + Z(I,2);

A = [A1,sparse(I,I);sparse(I,I),A2] + Aswitch; %2I x 2I matrix called Poisson transition matrix or Inten-
sity matrix

if max(abs(sum(A,2)))>10^(-9) %sum(A,2) is a column vector containing the sum of each row of A

disp(’Improper Transition Matrix’)

break

end

B = (1/Delta + rho)*speye(2*I) - A;

u_stacked = [u(:,1);u(:,2)]; %column vector of 2xI elements (first the ones for j=1, then for j=2)

V_stacked = [V(:,1);V(:,2)]; %similarly but for the value function

b = u_stacked + V_stacked/Delta;

V_stacked = B\b;

%Solve system of equations

V = [V_stacked(1:I),V_stacked(I+1:2*I)]; %re-create a matrix with 2 different columns for j=1 and j=2

Vchange = V - v;

v = V;

dist(n) = max(max(abs(Vchange))); %first compute the max of the 2 columns for j=1 and for j=2, then
compute the max of the 2 max
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if dist(n)<crit %convergence criterion

disp(’Value Function Converged, Iteration = ’)

disp(n)

break %stop the for cycle of the value function (find the converged value function for each value of the
interest rate)

end

end

toc;

%% FOKKER-PLANCK EQUATION

%Recompute transition matrix with reflecting barrier at amax

X = -min(ssb,0)/da + sig2/2.*k.^2/da^2;

Y = -max(ssf,0)/da + min(ssb,0)/da - sig2.*k.^2/da^2; %lambda is subtracted later, when Aswitch is
added

Z = max(ssf,0)/da + sig2/2.*k.^2/da^2;

%at the upper boundary a=amax

%X(I,:) = -min(ssb(I,:),0)/da + sig2/2.*st(I,:).^2/da^2; %unuseful because it is the same formula used for
the other rows

Y(I,:) = min(ssb(I,:),0)/da - sig2/2.*k(I,:).^2/da^2; %lambda is subtracted later, when Aswitch is added

Z(I,:) = 0;

A1=spdiags(Y(:,1),0,I,I)+spdiags(X(2:I,1),-1,I,I)+spdiags([0;Z(1:I-1,1)],1,I,I);

A2=spdiags(Y(:,2),0,I,I)+spdiags(X(2:I,2),-1,I,I)+spdiags([0;Z(1:I-1,2)],1,I,I);

A1(I,I) = Y(I,1) + Z(I,1);

A2(I,I) = Y(I,2) + Z(I,2);

A = [A1,sparse(I,I);sparse(I,I),A2] + Aswitch;

AT = A’;

b = zeros(2*I,1); %since ATg must be equal to 0

%need to fix one value, otherwise matrix is singular

i_fix = 1;

b(i_fix)=.1;

row = [zeros(1,i_fix-1),1,zeros(1,2*I-i_fix)];

AT(i_fix,:) = row; %substitute the first row of AT with the values in row

%Solve linear system

gg = AT\b;

g_sum = gg’*ones(2*I,1)*da;

gg = gg./g_sum;

g = [gg(1:I),gg(I+1:2*I)];

check1 = g(:,1)’*ones(I,1)*da;
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check2 = g(:,2)’*ones(I,1)*da;

g_r(:,:,ir) = g;

adot(:,:,ir) = wbar*yy + r.*aa - c + (mu-r)*k; %first derivative of a, which corresponds to saving

V_r(:,:,ir) = V;

dV_r(:,:,ir) = dV_Upwind;

c_r(:,:,ir) = c;

k_r(:,:,ir) = k;

S(ir) = g(:,1)’*a*da + g(:,2)’*a*da; %total amount of wealth

K = g(:,1)’*k(:,1)*da + g(:,2)’*k(:,2)*da; %aggregate level of capital

%% UPDATE INTEREST RATE

%market clearing condition:

%total amount of wealth equals total amount of capital

if (S(ir)-K)>crit_S

disp(’Excess Supply’)

rmax = r;

r = .5*(r+rmin); %decrease the interest rate

elseif (S(ir)-K)<-crit_S

disp(’Excess Demand’)

rmin = r;

r = .5*(r+rmax); %increase the interest rate

elseif abs(S(ir)-K)<crit_S

disp(’Equilibrium Found, Interest rate =’)

disp(r)

break %stop the for cycle of the interest rate

end

end

%% UPDATE AGGREGATE CAPITAL LEVEL

test(kr) = K-K_K(kr);

if (K-K_K(kr))<-crit_K

disp(’Shortage of investment in capital’)

K = K_K(kr)-updk*abs(K-K_K(kr)); %decrease the aggregate capital

elseif (K-K_K(kr))>crit_K

disp(’Excess investment in capital’)

K = K_K(kr)+updk*abs(K-K_K(kr)); %increase the aggregate capital

elseif abs(K-K_K(kr))<crit_K

disp(’Equilibrium Found, Aggregate capital level =’)
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disp(K)

break %stop the for cycle of capital

end

end

%% GRAPHICAL REPRESENTATION OF THE RESULTS

%Consumption Policy Function

figure(1)

set(gca,’FontSize’,16)

plot(a,c_r(:,1,ir),’b’,a,c_r(:,2,ir),’r’,a,g(:,1),’b--’,a,g(:,2),’r--’,a,zeros(1,I),’b--’,’LineWidth’,1.5);

text(amin,-.235,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [min(min(adot(:,:,ir)))-0.05 amax],’Color’,’Black’,’LineStyle’,’--’)

legend(’c_1(a)’,’c_2(a)’,’g_1(a)’,’g_2(a)’,’Location’,’East’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Consumption, $c_j(a)$’,’interpreter’,’latex’)

xlim([amin-1.3 amax-20])

ylim([-.05 3])

title(’Consumption Policy Function’)

saveas(gcf,’Consumption policy function_bonds_capital.jpg’)

%Savings Policy Function

amax1 = 8;

amin1 = amin-.5;

figure(2)

set(gca,’FontSize’,16)

plot(a,adot(:,1,ir),’b’,a,adot(:,2,ir),’r’,a,g(:,1),’b--’,a,g(:,2),’r--’,linspace(amin,amax,I),zeros(1,I),’k--’,’LineWidth’,1.5);

text(amin,-1.3,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [min(min(adot(:,:,ir)))-1 max(max(adot(:,:,ir)))+1],’Color’,’Black’,’LineStyle’,’--’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Savings, $s_j(a)$’,’interpreter’,’latex’)

xlim([amin1-1 amax-20])

ylim([-1.2 0.7])

legend(’s_1(a)’,’s_2(a)’,’g_1(a)’,’g_2(a)’,’Location’,’NorthEast’)

title(’Savings Policy Function’)

saveas(gcf,’Savings policy function_bonds_capital.jpg’)

%Capital holdings

amax1 = 6;

amin1 = amin-.3;



A.2 Extended model MATLAB code 59

figure(3)

set(gca,’FontSize’,16)

h1 = plot(a,k(:,1),’b’,a,k(:,2),’r’,a,g(:,1),’b--’,a,g(:,2),’r--’,’LineWidth’,1.5);

text(amin,-0.5,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [0 max(max(k))+1],’Color’,’Black’,’LineStyle’,’--’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Capital Holdings, $k_j(a)$’,’interpreter’,’latex’)

xlim([amin-0.1 4]) ylim([-0.1 5])

legend(h1,’k_1(a)’,’k_2(a)’,’g_1(a)’,’g_2(a)’,’Location’,’NorthEast’)

title(’Capital Holdings Function’)

saveas(gcf,’Capital holdings_bonds_capital.jpg’)

%Bond holdings

figure(4)

set(gca,’FontSize’,16)

h1 = plot(a,a-k(:,1),’b’,a,a-k(:,2),’r’,a,g(:,1),’b--’,a,g(:,2),’r--’,linspace(amin1,amax,I),zeros(1,I),’k--’,’LineWidth’,1.5);

text(amin,-5,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [min(min(a-k))-1 max(max(a-k))+1],’Color’,’Black’,’LineStyle’,’--’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Bonds, $b_j(a)$’,’interpreter’,’latex’)

xlim([amin1-0.5 18])

ylim([-4.5 2])

legend(h1,’b_1(a)’,’b_2(a)’,’g_1(a)’,’g_2(a)’,’Location’,’SouthEast’)

title(’Bond Holdings Function’)

saveas(gcf,’Bond holdings_bonds_capital.jpg’)

%Density Functions

figure(5)

set(gca,’FontSize’,16)

h1 = plot(a,g(:,1),’b’,a,g(:,2),’r’,’LineWidth’,1.5);

text(amin,-0.05,’$\underline{a}$’,’FontSize’,16,’interpreter’,’latex’)

line([amin amin], [-0.01 0.65],’Color’,’Black’,’LineStyle’,’--’)

xlabel(’Wealth, $a$’,’interpreter’,’latex’)

ylabel(’Densities, $g_j(a)$’,’interpreter’,’latex’)

xlim([amin-1.3 amax-20])

ylim([-0.01 0.65])

legend(h1,’g_1(a)’,’g_2(a)’)

title(’Density Functions’)
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saveas(gcf,’Density functions_bonds_capital.jpg’)

%Lorenz curve

%Computes y-axis to plot the Lorenz curve

wealth=aa.*g*da; %computes aggregate wealth (net worth) for each type

cum_wealth=cumsum(wealth,1); %computes cumulative wealth for each type

cum_wealth_agg=cum_wealth(:,1)+cum_wealth(:,1); %computes aggregate cumulative wealth

Lorenz=cum_wealth_agg./cum_wealth_agg(end); %computes Lorenz curve

%Computes x-axis to plot the Lorenz curve (cumulative density)

G=cumsum(g,1).*da; G_cum=G(:,1)+G(:,2);

figure(6)

set(gca,’FontSize’,16)

plot(G_cum,Lorenz,’g’,’Linewidth’,1.5)

xlabel(’Cumulative share of net worth, $G(x)$’,’interpreter’,’latex’)

ylabel(’Lorenz curve, $L(G(x))$’,’interpreter’,’latex’)

title(’Lorenz curve’)

xlim([0 1])

ylim([-0.05 1])

refline(1,0)

legend(’Lorenz curve’,’Equidistribution line’,’Location’,’NorthWest’)

saveas(gcf,’Lorenz curve_bonds_capital.jpg’)
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