
Understanding the Use of Web Storage
in Real-World Web Applications

Ca’ Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

Computer Science Master’s Thesis
Academic Year 2020-2021

Graduand Samuele Casarin
Supervisor Prof. Stefano Calzavara
Co-Supervisor Dott. Pietro Ferrara

i

Acknowledgments

I would like to thank my supervisor, prof. Stefano Calzavara, for the great scientific
and moral support he gave me to complete this project.
I thank Pietro Ferrara, Ph.D., for giving me a direction for the formalization of
the taint tracking approach.
I thank Zubair Ahmad, Ph.D. student, project partner, with whom I shared many
moments of study and friendship, for helping me in the search for related work.
And thanks to my parents, who have always supported me during my studies and
for the gift of life.

ii

Abstract

Formerly born as a simple system for the exchange of public documents, over the
time the Web has become one of the main services of the Internet, and it is still
evolving into an increasingly sophisticated platform. As the complexity of this
structure grows, more and more attention is required to ensure that web applica-
tions meet their security and privacy requirements. The advent of HTML5 brought
many changes to the client-side environment, one of which is the introduction of
Web Storage, a feature that allows web applications to store data in the user’s
browser. In this thesis we perform, to our knowledge, the first empirical analysis
of the use of web storage in the wild. We leverage dynamic taint tracking at the
level of JavaScript to collect explicit flows of information involving web storage in
the Tranco Top 5k sites. Afterwards, we perform an automated classification of
the detected information flows to shed light on the key characteristics of web stor-
age. Our analysis shows that web storage is routinely accessed by third parties,
including known web trackers, who are particularly eager to have both read and
write access to persistent web storage information. This motivates the need for
further research on the security and privacy implications of web storage content.

Keywords Web Storage, Taint Analysis, JavaScript

iii

Contents

1 Introduction 1

2 Background 2
2.1 Basics of the Web . 3

2.1.1 Cookies . 3
2.1.2 JavaScript . 4
2.1.3 Same Origin Policy . 4

2.2 Web Storage . 5
2.3 Information Flow Control . 7

2.3.1 Explicit flows . 7
2.3.2 Implicit flows . 8

2.4 Jalangi . 10

3 Dynamic Taint Tracking 12
3.1 Overview . 13
3.2 Technical Details . 15

3.2.1 Core JavaScript . 15
3.2.2 Taint model . 17
3.2.3 Abstract machine . 18
3.2.4 Generating instructions . 18

3.3 Example . 25
3.3.1 Error handling . 27

4 Web Measurement 29
4.1 Methodology . 30

4.1.1 Sources and sinks . 30
4.1.2 Web crawling . 32
4.1.3 Flow classification . 33

4.2 Measurement Results . 35

5 Related work 38

6 Conclusion 40

iv

Chapter 1

Introduction

In recent years, the Web has seen an exponential growth of the number of appli-
cations that rely on JavaScript to handle a substantial part of their logic in the
browser. In fact, JavaScript is easy to learn, is very well supported, and gives web
users an improved experience than traditional server-side applications, which need
to reload the page to refresh data. The more the web application logic is pushed
from the server to the client, however, the more sensitive data are handled at the
client side rather than at the server side. Unfortunately, the traditional approach
to handle client-side storage on the Web, i.e., HTTP cookies, suffers from signifi-
cant shortcomings: cookies are limited in size, have an unconventional semantics
and are inconvenient to access programmatically. The HTML5 standard thus in-
troduced the Web Storage API, a client-side data storage mechanism which retains
the intuitive flavour of cookies, while addressing their most relevant drawbacks.
Although the Web Storage API has been around for a few years now and is fully
supported by all major web browsers, anecdotal evidence based on previous web
measurements suggests that web storage is still far from the popularity of cookies.
Remarkably, contrary to cookies, web storage also received only limited attention
by the security and privacy community so far. This is concerning, because the web
storage functionality is reminiscent of traditional first-party cookies, hence it can
be employed to implement web authentication [6] or to track users across third
parties [8], all uses that deserve careful scrutiny. In the present thesis, we take a
first step to improve our understanding of the usage of web storage in the wild.
In particular, we perform an empirical analysis of web storage information set by
popular websites based on dynamic taint tracking and an automated classification
of the collected information flows. Our analysis uncovers several uses of web storage
in the wild, for which we discuss relevant security and privacy implications.

Contributions To sum up, in the present thesis, we make the following contri-
butions:

1. We implement a dynamic taint tracking engine for JavaScript inspired by
Ichnaea [19] and we configure it to detect information flows involving the
Web Storage API (Section 3).

2. We perform a large-scale measurement to collect information flows and shed
light on the key characteristics of the use of web storage in the wild. Our
analysis is based on an automated classification of the detected information
flows along different axes (Section 4).

A research article out from this thesis has been accepted at MADWeb 2022 [1].

1

Chapter 2

Background

In this chapter, we provide a brief review of the technical ingredients required to
understand the present thesis.
First, we recap the fundamentals of the Web: the HTTP(S) protocol, cookies,
JavaScript, and, regarding security, the Same Origin Policy.
Then, we present web storage, the central element of our thesis. Specifically, we
define its characteristics and and compare them with respect to cookies.
Afterwards, we exhibit the most important findings in the field of information-flow
control, which we intensely leverage for our analysis approach.
Finally, we present an overview of Jalangi, the framework on which we build a tool
for the dynamic analysis of JavaScript based on code instrumentation.

2

2.1 Basics of the Web

The Web is a huge network of resources of any kind, from simple documents to
images and sounds, whose transmission over the Internet is possible by means of
Hyper-Text Transfer Protocol (HTTP) [22], a reliable client-server protocol. The
concept behind this protocol is very simple: (i) the client sends a request message
to the server looking for a resource, then (ii) the server replies to the client with a
response message, which includes the data corresponding to the desired resource.
Note that it is always the client who initiates communication with the server and
never the opposite.
Strictly speaking, HTTP is not a secure protocol: in fact, a network attacker, i.e.
an attacker who has access to the victim’s network, could easily intercept all data
passing over the wire and also alter the message traffic between the server and the
client. At the beginning of the Web, an attack of this kind did not cause critical
consequences due to the platform’s original purpose; but then, with the introduc-
tion of dynamic web pages and web applications, the need to protect user data has
arisen. For this reason, another protocol called HTTP Secure (HTTPS) [24] has
been made available. HTTPS has the same rules as HTTP but relies on the Secure
Socket Layer (SSL) or Transport-Level Security (TLS) protocol for the encryption
of the communication channel.
Typically, users navigate the Web through a web browser, or simply browser. Pop-
ular modern browsers (e.g., Google Chrome and Mozilla Firefox) are large software
products composed of many components, among which the HTTP client, that is
constantly updated to the most recent standard specifications.

2.1.1 Cookies

One significant property of HTTP(S) is that of being a stateless protocol, i.e.,
the server does not keep any information generated from previous requests and
therefore each request is independent of the other. Once again, this characteristic
of HTTP was not a limitation, until session management became essential to keep
a user logged in, or to add items to a shopping cart on an e-commerce site, and
so on.
To overcome this lack, HTTP supports cookies [4], i.e., small strings of data,
created by the server, stored in the browser, and then sent back to the server
on each subsequent request. Cookies are structured as key-value pairs and may
specify some parameters that control their behavior from different perspectives,
including lifetime (how long is the cookie available?) and scope (in what context
is the cookie available?).
As for lifetime, we make distinction between persistent cookies, i.e., cookies whose
expiration time is determined by the application and therefore survive the ex-
ecution of the browser, and session cookies, i.e., cookies that expire when the
browser (or tab) is closed. The expiration time is determined by the Expires
and Max-Age parameters.
Instead, as far as scope is concerned, the browser determines whether to send
a cookie to the server by comparing the domain: in particular, a cookie is sent
together with a request only if the domain of the page corresponds to the domain
of the cookie or to one of its subdomains. However, the Domain, Path, and
Secure parameters can be set in order to further restrict the cookie scope to a
given domain, path, and protocol (only HTTPS or also HTTP?), respectively.

3

2.1.2 JavaScript

Modern web applications have the ability to delegate part of their business logic
to the browser; this is possible by means of JavaScript (JS), the de facto stan-
dard scripting language of the Web. It is a dialect of the general-purpose EC-
MAScript (ES) programming language [11], which extends it with browser-specific
features, among which the Document Object Model (DOM) and the Browser Ob-
ject Model (BOM) that are respectively collections of object-oriented APIs which
enable to control the elements in the page and the browser on the fly.
JavaScript is an interpreted, dynamically-typed, object-oriented programming lan-
guage, that uses an event-driven programming model to deal with the asyn-
chronous nature of the Web: web applications can set callback functions to be
invoked automatically when an event occurs in the page, e.g., when a button in
the page is pressed.
At the time of this thesis, the most popular browsers support the 13th version of
ECMAScript (ES2022). This version includes a lot of additional features including
syntactic with respect to early releases of the language, but still remains backwards
compatible with the latter.
More details about the syntax and semantics of JavaScript will be provided along
the thesis.

2.1.3 Same Origin Policy

The Same Origin Policy (SOP) is the baseline defense mechanism of web browsers,
which enforces a strict separation between content served by different origins, i.e.,
combinations of protocol, host and port. For example, scripts running in a page
fetched from https://www.foo.com cannot access the DOM of a page fetched
from https://www.bar.com. SOP mediates both read and write accesses, thus
acting as the security cornerstone to grant confidentiality and integrity on the
Web. However, when a page at https://www.foo.com includes a script from
a different origin like https://www.bar.com, the script inherits the origin of
https://www.foo.com and is executed with the corresponding privileges.
The scoping rules for cookies constitute a relaxed variant of the traditional SOP:
the origin is defined in terms of the domain, while the protocol and port are not
considered by default.
Cookies are also accessible via JavaScript by reading and writing the property
document.cookie, provided that the HTTPOnly parameter is not explicitly set
by the server. In this case, the traditional SOP dictates the access from JavaScript
to those cookies: the browser forbids any access to document.cookie from a
cross-origin site, even if it is within the same domain of the cookie. For ex-
ample, https://bar.foo.com cannot access document.cookie of https:
//baz.foo.com, despite the domain of the cookie is *.foo.com.

4

https://www.foo.com
https://www.bar.com
https://www.foo.com
https://www.bar.com
https://www.foo.com
https://bar.foo.com
https://baz.foo.com
https://baz.foo.com

2.2 Web Storage

Many modern web applications still take advantage of cookies for client-side data
persistence. Although this standard mechanism is simple to use and works out of
the box, it has several limitations:

• since cookies are included in many requests to the server, the frequent trans-
mission of large cookies may have a negative impact on the performance of
the website;

• cookies are limited in size (4 KB per cookie);

• there is no standard facility to parse the value of document.cookie, there-
fore cookies are inconvenient to access via JavaScript;

• even if the user uses only secure HTTPS connections, a cookie may have
been set using an insecure connection, thus violating the integrity of cookie’s
data (for example, a network attacker could seize the moment the user is
browsing using an insecure connection to inject a cookie with malicious code
that will be executed in the user’s browser) [6].

Introduced among the innovations of the HTML5 standard, the Web Storage
API [33] is a key-value data storage framework, which is proposed as a solid alter-
native to cookies, while maintaining the same degree of simplicity.
The Web Storage API offers two different services, called local storage and session
storage respectively. Both types of storage have the same characteristics, with the
only difference being related to the expiration of the stored content, that recalls
the one between persistent cookies and session cookies. While content in the local
storage persists indefinitely, content in the session storage is purged when the
browser (or tab) is closed.
Web storage is only accessible through JavaScript and its content is never trans-
mitted to the server, thus leaving the web application full control over how stored
data is used. Moreover, the access to the store is protected by traditional SOP.
For example, a script executing in a page fetched from https://foo.com can-
not access the storage of https://bar.com; however, a script fetched from
https://foo.com running in a page with origin https://bar.com have com-
plete control of the storage of the latter.
The Web Storage API provides a convenient set of methods with a clean semantics
to handle the key-value data structure, of which the following are the main ones:

• getItem(key) returns the value of the item associated to the given key ;

• setItem(key , value) assigns value to the item with the given key (it creates
a new item if such item does not exist);

• removeItem(key) deletes the item with the given key .

In particular, the stored keys and values are strings; when setting values of other
type, those are implicitly converted to strings.
Last but not least, web storage has a greater capacity than cookies (5 MB), which
allows one to store larger amounts of data.
We show an example use of session storage below: local storage can be used just
by replacing sessionStorage with localStorage.

5

https://foo.com
https://bar.com
https://foo.com
https://bar.com

1 sessionStorage.setItem('name', 'alice');
2 var n = sessionStorage.getItem('name');
3 // the next line prints "My name is alice"
4 console.log("My name is " + n);

The most popular browsers support both web storage and cookies, and the decision
of web applications to employ the first, the other, or a combination of them is
almost philosophical.
In the following we use the term “web storage” to refer to both local storage and
session storage when the distinction is immaterial to the discussion. Similarly, in
the textual discussion, we just write setItem or getItem to abstract from the
specific web storage object where the method is invoked.

6

2.3 Information Flow Control

Traditional methods of securing secrets in computer science, such as access control
and encryption, check whether a given user or program has the least privileges
to access that sensitive information. However, these methods do not provide any
guarantee over how secrets are used by the programs that handle them.
Information Flow Control (IFC) is a technique to ensure that information transfers
performed by a program, or more generally an information system, do not violate
the security policy [13].
In a typical model, the attacker has access to the source code of a monitored
program. Here, each value is annotated with a security label, that determines
whether it is safe to release the information to the attacker. In particular, labels
are partially ordered in a lattice [10], meaning that any subset of them joins with
a unique least upper bound and meets with a unique greatest lower bound.
In what follows, let H (for “High”) be the label representing a secret information,
whose leak implies a confidentiality violation, and L (for “Low”) be instead the
label associated to a public information, that does not compromise security.
The goal of information flow control is ensuring that data read from a secret (H)
source does not affect data released through a public (L) sink. Generally, data
with a given security label cannot be disclosed through a sink with a lower security
label. The security policy defines the selection of undesired source-to-sink flows.
While we consider only confidentiality, the above argument can be extended in or-
der to protect integrity of information. In this case, data coming from an untrusted
(H) source cannot be written to a trusted (L) sink.
Various security policies and monitoring strategies for information flow control
have been proposed in literature [25]. We exhibit some of the most important
results.

2.3.1 Explicit flows

Let source be a source function that returns an H-labeled number, and sink be
an L-labeled sink function that outputs the value passed as an argument, disclosing
it.
Consider the following JavaScript program:

1 var secret = source();
2 var disguised = secret * 5;
3 sink(disguised); // Security violation!

After executing the program, it is enough for an attacker to divide the resulting
value by 5 to read the secret information.
This kind of confidentiality violation occurs because an information generated by
a secret (H) source is explicitly transferred to a public (L) sink by means of data
dependencies, i.e., evaluation of expressions, reading and writing of variables, and
more; for this reason, these information transfers are called explicit flows.
The most practical monitoring strategy that captures explicit flows is taint track-
ing. The concept behind this technique is that security labels represent the taint-
edness of values, which propagates through the execution of operations. In par-
ticular, a secret (H) value is said to be tainted, while a public (L) value is also
called untainted ; furthermore, a variable or object property is said to be tainted

7

if the value it stores is tainted. The thumb rule for taint propagation is that, if a
value is tainted, then the result of an operation that depends on it is tainted as
well. Concretely, the security label of a value is the least upper bound between the
security labels of all the values that influence it.
Taint tracking enforces a security property for programs called explicit secrecy [27]:
the execution of a program which types this condition cannot leak any secret (H,
tainted) information through explicit flows.
Due to its practicality, taint tracking finds great popularity in many real-world
applications, including security analysis [28, 2]. Some programming languages,
like Perl1, include a built-in taint checking mechanism, while for Ruby2 it has
recently been removed.
Let us go back to the previous program and discuss how taint tracking ensures
confidentiality. At line 1, the secret variable is tainted. Then, at line 2, the
value of disguised depends on the tainted value of secret, thus the taint
of the latter propagates to the former. Finally, when the tainted value reaches
the sink at line 3, a security error is raised and the secret is not disclosed to the
attacker. The transfer of information from source() to sink() is an explicit
flow that violates the security policy.
The above is an example of application in which taint tracking is effective in order
to avoid a confidentiality violation. However, there exist some programs that does
not hold explicit secrecy, and thus are stopped, but are safe in practice, like the
following example:

1 var secret = source();
2 var disguised = secret - secret;
3 sink(disguised); // Security violation!

This program does not pose a threat, because the value of disguised at line 2 is
always equal to zero, but a simple taint tracking monitor still reports the danger
due to the data dependency of disguised on secret.

2.3.2 Implicit flows

In general, tracking explicit flows is not sufficient to guarantee language-based
confidentiality. As an example, look at the following program:

1 var secret = source();
2 var disguised = 0;
3 if (secret < 50) {
4 disguised = 1;
5 }
6 sink(disguised);

Obviously, the above program does not allow the attacker to directly disclose the
secret, since this time there is no explicit data dependency between secret and
disguised. Despite this, the execution of this program provides a valuable
information about the value of secret: if the output is 1, then secret is lesser
than 50, otherwise it is greater or equal to 50. By smartly changing the number to
compare in the conditional at line 3, it is therefore possible to exfiltrate the whole

1https://perldoc.perl.org/perlsec
2https://www.ruby-lang.org/it/

8

https://perldoc.perl.org/perlsec
https://www.ruby-lang.org/it/

value of secret in a number of executions that is logarithmic with respect to the
size of the secret.
The idea behind this kind of confidentiality attack is to manipulate the control flow
using secret (H) information, while setting public (L) variables that let the attacker
deduce some details of the secret from the execution path. These information flows
are known as implicit flows.
There exist many policy models which track implicit flows. Observable secrecy [3]
ensures that no information from a secret source reaches a public sink through both
explicit and implicit flows; nonetheless, an attacker is still able to leak the secret
among different executions of the program, distinguishing the runs where some-
thing is returned from those where a security error is raised. Non-interference [14]
prevents this kind of information leak by interrupting the execution whenever a
public (L) variable is updated in a secret (H) context; anyway, it is usually too
strict to be applied in practice. Hence, some models introduce “escape hatches”
that allow the declassification of secret information to public one [26]. In partic-
ular, the security policy establishes what, who, where, and when information can
be declassified in order to not violate confidentiality.
Implicit flows are just an instance of covert channels [20], i.e., information channels
whose main purpose is not information transfer. Attackers can use these channels
to deduce secret information by observing certain system behaviors that depend
on it - e.g., the termination or non-termination of the program, its execution time,
and more.

9

2.4 Jalangi

While living in its heyday for the undisputed popularity, the JavaScript language
is infamous for many of its weird features, which often lead to unexpected issues.
This further justifies the need to develop techniques and tools to detect bugs and
vulnerabilities in web applications.
Static analysis of JavaScript is demanding, due to the large amount of dynamic
features of the language. Noteworthy examples of tools for this kind of analysis
are Tajs [18] and Actarus [15].
As for dynamic analysis, a popular approach for many tools is to modify a browser.
While this strategy has the advantage of being very efficient in terms of perfor-
mance, it is hard to keep up with the fast browser development. As if that were
not enough, JavaScript is now also used in other contexts outside of browsers,
such as servers (e.g., Node.js3), mobile applications (e.g., Apache Cordova4 apps),
and desktop applications (e.g., Electron5 apps), which limit the portability of the
approach.
Conversely, other solutions have been designed with browser independence in mind.
One of these is Jalangi [29], a dynamic analysis framework for JavaScript.
The first version of Jalangi is still available6, but no longer maintained. It supports
two basic mechanisms: selective record-replay and shadow values. The former
allows one to record the execution of a part of the program and replay it at a later
time; the latter is a boxing facility for storing information on any kind of value.
Jalangi27 is the current version of the Jalangi framework. It removes both selec-
tive record-replay and shadow values, while maintaining all the main features to
perform a generic analysis of JavaScript. Since we are using this version for our
project, in this thesis we specifically mean Jalangi2 when we refer to Jalangi.
Jalangi operates via a source-to-source transformation, in which all the main in-
structions of the source code are wrapped within specific callbacks: a process
known as code instrumentation. The so-called instrumented code preserves the
semantics of JavaScript, while allowing analysis developers to customize the call-
backs to passively track different information at runtime.
Let us make an example. Consider the JavaScript statement y = x + 2, that
applies the binary “+” operator to the value for the x variable and the number 2
and then assigns the result to the y variable. Note that we cannot say whether the
“+” operator computes the sum of two numbers or the concatenation of two strings,
because its semantics depends on the type of both the operands. A simplified
instrumentation of that code could be the following:
y = Write("y", Binary("+", Read("x", x), Literal(2))).
Here, executing the various operations with a regular JavaScript engine, first the
Read callback is invoked, passing the name and the value for the x variable,
followed by the call to the Literal callback for the literal number 2. Then, the
above values are passed as arguments to the invocation of the Binary callback,
that applies the “+” operator on them. Finally, the Write callback is invoked
when assigning the result of the operation to the y variable.
In the real instrumented code, each callback is invoked with an additional hard-

3https://nodejs.org/
4https://cordova.apache.org/
5https://www.electronjs.org/
6https://github.com/SRA-SiliconValley/jalangi
7https://github.com/Samsung/jalangi2

10

https://nodejs.org/
https://cordova.apache.org/
https://www.electronjs.org/
https://github.com/SRA-SiliconValley/jalangi
https://github.com/Samsung/jalangi2

JavaScript
and HTML

Code Instrumentation

Instrumented
Code

Source
Information

Runtime (JavaScript engine)

Output

User
Analysis

Output Visualization

Analysis
Output

1

2

3

Figure 2.1: Overview of the Jalangi2 process

coded number, called Instruction ID (IID), which uniquely identifies an instruction
within the script: in particular, Jalangi associates such identifiers to the location
of the corresponding operations in the original source code.
In addition, Jalangi treats in a special way the eval() function invocation and
the new Function() constructor, which evaluate a string as JavaScript code:
in these cases, such code is instrumented during the execution.
Another key feature of Jalangi is shadow memory. This mechanism maintains
shadow objects associated to runtime objects and activation frames on which it is
possible to store and retrieve context-dependent information. In particular, the ac-
cess to shadow objects respects the JavaScript rules of prototype-based inheritance
for runtime objects and lexical scoping for activation frames.
An overview of the Jalangi2 process is depicted in Figure 2.1. First of all, Jalangi
produces an instrumented version of HTML and JavaScript files and a source in-
formation database, which contains the mapping between IIDs and locations 1○.
Then, the instrumented code is executed with a regular JavaScript engine together
with a user-defined analysis, that defines the various Jalangi2 callbacks 2○. Fi-
nally, the runtime output and the source information can be combined in order to
visualize the final analysis output 3○.

11

Chapter 3

Dynamic Taint Tracking

We present the dynamic taint tracking engine that we developed to study the most
prominent uses of web storage in the wild. After reviewing the motivations and
high-level ideas of the proposed solution, we discuss the key technical details of
our implementation. Our approach is largely inspired by that of Ichnaea [19], a
state-of-the-art taint tracking tool based on Jalangi [29], but with some changes
in cases of inability to observe the running operations. Finally, we provide an
example of how our engine works on a simple JavaScript program.

12

3.1 Overview

Contrary to cookies, which are normally set via HTTP headers and then auto-
matically attached by the browser to specific network requests, web storage can
only be read and written via JavaScript. This means that one cannot monitor
the use of web storage just by inspecting network traffic, but has to deal with the
complexity of JavaScript to reconstruct valuable information.
This fundamental aspect of web storage led us to the decision of leveraging an
information flow control strategy in order to answer our questions. In particular,
we are interested in detecting information flows involving the Web Storage API,
i.e., data flows that (i) start by reading from or (ii) end by writing into web storage.
These flows are interesting from a security and privacy perspective, because flows
of the former type may violate the confidentiality of Web Storage content, carrying
out a data leak, while flows of the latter type may breach its integrity, with the
effect of tampering the stored data.
Among the various strategies of information flow control proposed in literature,
we leverage taint tracking for our study. As well as for practicality, this selection
is mainly supported by a recent research conducted by Staicu et al. [31], in which
they conclude that the majority of security-relevant information flows in real-world
JavaScript is composed by explicit flows; thus, taint tracking is sufficient to study
most of the security scenarios in the wild.
Furthermore, the detection is performed at runtime, because JavaScript is a chal-
lenging language for static analysis. In particular, we target a large-scale measure-
ment in this paper, hence we prefer a dynamic analysis which is naturally resilient
to obfuscated/minified code that may occur in the wild.
Our dynamic taint tracking engine is a complex yet relatively standard solution
based on existing technologies and the extensive research line on information flow
control [25]. In particular, the implementation of our engine follows the approach
proposed in Ichnaea [19], a state-of-the-art taint tracking tool for JavaScript.
The main reason behind the choice of this tool lies in the fact that is platform-
independent, as a natural consequence of being based on code instrumentation: in
fact, the instrumented code allows one to track the taint without the need to use
a modified version of the browser [7] or JavaScript engine [30].
The high-level idea behind Ichnaea is to use the instrumented code to generate
instructions for an abstract machine while executing the original code, so that the
state of the abstract machine reflects the taintedness of the concrete execution
state. Note that, since the abstract machine isolates abstract values from the con-
crete environment, this approach has also the advantage of keeping the semantics
of JavaScript unchanged. For example, this is not true for techniques that rely on
boxing to track the taintedness of primitive values [9].
Our engine, as well as Ichnaea, leverages the Jalangi framework [29] for JavaScript
instrumentation, which inserts callbacks for each of the main operations performed
by the JavaScript interpreter, aware of all the dynamic features of the language.
Furthermore, it makes use of shadow memory to associate activation frames and
objects with unique identifiers, so as to properly access variables and properties
in a given context, respecting the rules of prototype-based inheritance and lexical
scoping.
Figure 3.1 gives an informal idea of the approach. First of all, Jalangi instru-
ments the original JavaScript source code and appends the engine code and a
taint specification, that defines the list of sources and sinks of the analysis, to the

13

Original
Code

Taint
Specification

Code Instrumentation
(Jalangi)

Instrumented
Code

Application Runtime
(JavaScript Engine)

Application
Output

Abstract
Machine

InstructionsAbstract Machine
Execution

(JavaScript Engine)

Information
Flows

1 2

345

Figure 3.1: Overview of the approach

resulting instrumented code 1○. The execution of the instrumented code with an
unmodified JavaScript engine 2○ keeps the same behaviour as the original code 3○,
while emitting instructions for an abstract machine 4○. Finally, the execution of
such instructions with a JavaScript engine generates a list of information flows 5○,
according to the given taint specification.

14

3.2 Technical Details

As anticipated, Ichnaea employs code instrumentation to emit instructions for an
abstract machine, whose state expresses the taintedness of concrete values.

In this section, we provide the formal specification of Ichnaea’s abstract machine,
which is also the core of our taint tracking engine. Afterwards, we exhibit a variant
set of rules for generating abstract machine instructions, in order to solve problems
of the original rules in some particular cases. We refer readers to [19] for more
details about the original design of Ichnaea.

3.2.1 Core JavaScript

Figure 3.2 depicts the grammar for a core subset of non-strict ECMAScript 5.1 [11],
which we consider in the formal description of the taint tracking engine.

The proposed subset of JavaScript is subject to some simplifying assumptions and
excludes most of the control-flow constructs, syntactic sugars, and singular features
of the full, standard language.

First of all, the language supports all the literal primitive values, including num-
bers, strings, booleans, undefined and null.

Objects are dynamic dictionaries of key-value pairs, called properties. Generally,
there exist two types of properties: data properties and accessor properties. A
property of the former type is defined with a value, while a property of the latter
type specifies at least one of two functions, called getter and setter, that are invoked
automatically by the JavaScript engine when the property is accessed for reading
and writing respectively. In the core subset, objects can be constructed through
object literals by specifying the list of initial properties; moreover, we initially
consider only data properties.

Functions are special objects of the language, and consist of a list of formal argu-
ments, and a body of JavaScript code. Differently from the full language, in which
functions can be defined with a name, we assume that all functions are anonymous.

We support all ECMAScript 5.1 operators, but with some limitations: we accept
unary and binary operations involving objects, provided that their evaluation has
no side effects and does not require the implicit conversion to primitive values
(e.g., the evaluation of "obj:"+{} requires to convert the object into a string).

Variables can be declared with an initial value, read and written. Object properties
can be accessed for reading and writing as well, but only using the more generic
bracket notation (Expr[Expr]), in contrast to the full language that also support
the dot notation (Expr.Id). Furthermore, variable and property writes are simple
statements, while in the standard JavaScript they are side-effectful expressions.

The full JavaScript provides three different semantics of invocation: (i) function
call, (ii) method call, and (iii) constructor invocation. For simplicity, let us just
consider normal function calls to be the most generic form of invocation of the
three. In addition, we distinguish between function and procedure calls: in the first
case the evaluation produces a value that can be used in an expression, while in the
other case any potential returned value is discarded. Finally, for ease of exposition,
we assume that functions must be invoked with a number of actual arguments equal
to the number of formal arguments and that invocations must terminate with a
return statement, differently from the standard language in which functions can
be invoked with a number of actual arguments lesser or greater than the number

15

Id ::= ... (identifier)
Num ::= NaN | Infinity | ... (numeric literal)

Str ::= "" | ... (string literal)
Bool ::= true | false (boolean literal)

Prim ::= Num | Str | Bool | undefined | null (primitive literal)
Obj ::= { Id : Expr , · · · , Id : Expr } (object literal)
Fun ::= function (Id , · · · , Id) { Stmt } (function literal)
uop ::= ! | typeof | ... (unary operator)
bop ::= + | * | ... (binary operator)

Expr ::= Prim (primitive literal expression)
| Obj (object literal expression)
| Fun (function expression)
| uop Expr (unary operation)
| Expr bop Expr (binary operation)
| Id (variable read)
| Expr [Expr] (property read)
| Expr (Expr , · · · , Expr) (function call)

Stmt ::= var Id = Expr (variable declaration)
| Id = Expr (variable assignment)
| Expr [Expr] = Expr (property write)
| Expr (Expr , · · · , Expr) (procedure call)
| return Expr (return statement)
| Stmt ; Stmt (sequence)

Figure 3.2: Syntax for a core subset of JavaScript

16

τ ::= {· · · } | false (taint, abstract value)
V ::= Id (variable name)
O ::= Id (object identifier)
P ::= Id (property name)

Inst ::= push(τ) (push constant value onto stack)
| pop (pop value from stack)
| unaryop(uop) (pop value, apply unary operator, push result)
| binaryop(bop) (pop two values, apply binary operator, push result)
| initvar(V) (pop value, initialize variable with it)
| readvar(V) (push current value of variable)
| writevar(V) (write value at top of stack into variable)
| initproperty(O,P) (pop value, initialize object property with it)
| readproperty(O,P) (push current value of object property)
| writeproperty(O,P) (write value at top of stack into object property)
| join (pop two values, join, push result)

Figure 3.3: Instruction set of the abstract machine

of formal arguments and an invocation may exit without executing a return
statement.

3.2.2 Taint model

The simplest way to represent the taintedness of values is through a binary state:
tainted or not tainted. However, this pair of abstract values does not provide any
information about the operations that introduced the taint. This is a problem for
our project, because we need to distinguish a value influenced by web storage from
one influenced by another type of source.

In order to overcome this limitation, we represent operations as labels. A label is
a triple (t, l, e) where t ∈ Str is the type of label, which identifies a specific type of
operation, l ∈ Str represents the code location where the operation was executed,
and e ∈ Str ∗ is a sequence of extra information about that operation.

For example, ("localStorage.getItem","https://foo.com/index.js
:15:48", 〈"theme","dark"〉) is a label representing the call to the getItem
method of localStorage, located at position 15:48 (row and column, respec-
tively) of https://foo.com/index.js, with extra information about the key
of the item being accessed - "theme" - and its value - "dark".

At this point, we model the taints of values with sets of labels, which we arrange in
a lattice by means of the inclusion relation ⊆. As a consequence, a subset of these
abstract values joins through the set union operator ∪ and meets through the set
intersection operator ∩. The infimum value of the lattice, or bottom ⊥, coincides
with the empty set ∅ and annotates a non-tainted concrete value. Conversely, a
non-empty set of labels annotates a concrete value which is tainted by those labels.

Labels represent both sources and sinks of the taint analysis. When a source
generates a value, we put a new label representing that operation into the set which
annotates such value; afterwards, when a tainted value, i.e., a value annotated with
a non-empty set of labels τ , reaches a sink, we record the information flow as a
pair (τ, s), where s is a label representing the sink.

17

https://foo.com/index.js

3.2.3 Abstract machine

The abstract machine manipulates a stack of abstract values (τ) that reflect the
taints of values in the runtime stack of the original JavaScript program, while also
maintaining maps that associate taints with local variables and object properties.
Within the abstract machine, the empty set of labels is represented with false.
Moreover, variables (V), objects (O), and properties (P) are uniformly distin-
guished by unique identifiers (Id).
Figure 3.3 shows the list of abstract machine instructions. The stack-based ar-
chitecture of the abstract machine implies the natural definition of two basic
instructions: push(τ), that inserts the abstract value τ onto the stack, and
pop, that discards the topmost value of the stack. The unaryop(uop) and
binaryop(bop) instructions pop one or two values from the stack respectively,
apply to these a specific function for the given operator and push the resulting
value onto the stack. The initvar(v), readvar(v), and writevar(v) instruc-
tions handle the taint for the variable v using the map associated to the acti-
vation frame in which v has been defined. Similarly, the initproperty(o, p),
readproperty(o, p), and writeproperty(o, p) instructions control the taint
for the property p using the map associated to the object identified by o. In particu-
lar: initvar(v) and initproperty(o, p) pop a value from the stack and initial-
ize a new entry in the corresponding map with the popped value; readvar(v) and
readproperty(o, p) push the value currently bound to the variable v or prop-
erty p onto the stack; finally, writevar(v) and writeproperty(o, p) stores the
top value of the stack in the map entry for the variable v or property p, without
extracting it from the stack.
In addition to the original instructions listed above, our abstract machine defines
the join instruction, which extracts two abstract values from the top of the
stack and then pushes their least upper bound, computed by applying the join
operator on them. We need this instruction to model taint propagation for a
generic operation, where the actual one is unknown - specifically, in the case of
non-instrumented code.

3.2.4 Generating instructions

The general principle for taint tracking is the following: when evaluating an ex-
pression, the taint of the operands must propagate to the result. In practice, we
assume that the last values pushed onto the stack represent the taint of the previ-
ously calculated sub-expressions. Hence, we generate instructions that involves a
number of abstract values on top of the stack equal to the number of operands of
the expression. Eventually, at the top of the stack there will be the value reflecting
the taintedness of the whole operation.
Primitive, object, and function literals are constant values in the source code,
which generally do not represent sensitive information; accordingly, a push(false)
instruction is issued for the abstract machine, indicating that such values are not
tainted. However, object literals define a number of initial properties, let us say
n, whose values have been pushed onto the stack just before evaluating the lit-
eral expression; those n properties must be initialized in reverse order using the n
topmost values of the stack, therefore we emit n initproperty instructions.
The taint propagation of unary and binary operations is performed by the ad-hoc
unaryop and binaryop instructions, respectively.

18

Variables and object properties are both considered containers of data, so their
taint is associated to the value they carry. A variable v is declared in the abstract
machine as a result of generating an initvar(v) instruction. Afterwards, it can
be accessed by issuing readvar(v) for reading and writevar(v) for writing. The
v parameter includes both the variable name and the identifier of the activation
frame where the variable has been declared. Analogously, the access to the prop-
erty p of an object o is possible by emitting a readproperty(oid(o), offset(p))
to get the assigned value and writeproperty(oid(o), offset(p)) to put another
one. In this case, oid is a mapping from a JavaScript object to the correspond-
ing unique identifier (O) in the abstract machine, while offset maps a JavaScript
expression to a property identifier (P). It is also worth to notice that writevar
and writeproperty do not extract from the stack the value they store, thus
those instructions must be followed by a pop; moreover, readproperty and
writeproperty do not pull out of the stack the taints for the object and the
property name, so once again a pop instruction must be issued twice.
The last basic operation that we discuss is user-defined function (procedure) calls.
User-defined functions have the significant characteristic of being instrumented,
which enables to accurately observe how the taint propagates through the vari-
ous operations. We assume that, when the function is called, the stack contains
the taints of n actual arguments as the n topmost values. Hence, first of all the
formal arguments must be initialized in reverse order by generating n initvar
instructions. Then, upon reaching a return e statement, the taint for the value
of e on top of the stack is stored in a special variable, called ret , with the
writevar(" ret ") instruction, and is subsequently pulled out of the stack with
pop. After the call, the top value of the stack is the taint for the called function,
so it is discarded with pop, and finally the value associated to the special ret
variable is read by emitting a readvar(" ret ") instruction, in order to com-
municate the returned value to the caller - in the case of a procedure call, which
does not involve returning a result, this last step is skipped.
Figure 3.4 exhibits the comprehensive list of abstract machine instructions for each
type of operation in the core subset of JavaScript.
In the next steps, we will further develop the design of our taint tracking engine,
in order to support most of the non-trivial features of the full ECMAScript 5.1
language. For many of these, our approach will differ from that employed in
Ichnaea.

Generic function invocation

In addition to function calls in the strict sense, intended as the explicit application
of a function by the user, there exist numerous situations in which a function is
implicitly executed by the JavaScript engine. We mention some of these cases:

• object-to-primitive conversions: some operators and native functions
require their parameters to accept primitive values, but if an object is used
as a parameter where a primitive is expected (e.g., the 5+{} expression),
the JavaScript engine invokes the object’s valueOf or toString method
to convert it to a primitive;

• getters and setters: these functions are invoked automatically when an
accessor property of an object is read and written;

19

Operation Generated instructions Justification

Expressions (Expr)

l ∈ Prim push(false) Primitive literals are never
tainted.

o ∈ Obj
o ≡ {p1:e1,· · ·,pn:en}

initproperty(oid(o), pn)
· · ·
initproperty(oid(o), p1)
push(false)

Initialize properties using
the n topmost values of the
stack. The object literal it-
self is not tainted.

f ∈ Fun push(false) Function literals are never
tainted.

uop e unaryop(uop) Apply unary operator to
the top value of the stack.

e1 bop e2 binaryop(bop) Apply binary operator to
the two topmost values of
the stack.

v ∈ Id readvar(v) Push the value for the vari-
able v.

this push(false) this always points to an
object; objects are never
tainted.

o[p]
pop ×2
readproperty(oid(o), offset(p))

Extract the property name
and the object; then, push
the value for the property p
of o.

e(e1,· · ·,en)
pop
readvar(" ret ")

Discard the called function;
then, read the special ret
variable to load the value
returned by the callee.

Statements (Stmt)
var v = e initvar(v) Initialize v with the value

on top of the stack.

v = e
writevar(v)
pop

Assign the value on top of
the stack to v; then, discard
the assigned value.

o[p] = e
writeproperty(oid(o), offset(p))
pop ×3

Assign the value on top of
the stack to the property p
of o; then, discard the as-
signed value, the property
name, and the object.

e(e1,· · ·,en) pop Discard the called function;
do not load any value re-
turned by the procedure.

f(v1,· · ·,vn)
initvar(vn)
· · ·
initvar(v1)

Initialize the formal argu-
ments using the n topmost
values of the stack.

return e
writevar(" ret ")
pop

Assign the value on top
of the stack to the special
ret variable for commu-

nicating the return value to
the caller; then, discard the
assigned value.

Figure 3.4: Rules for generating abstract machine instructions; we assume that
instructions for gray-colored expressions have already been issued

20

• asyncronous callbacks: users can register callback functions that the
JavaScript engine invokes whenever a certain event occurs on the page.

We identify both explicit and implicit function calls with the term “invocation”.
Moreover, the JavaScript specification defines a significant amount of standard
functions, which are most often built into the browser; as a consequence, the code
for these functions is not available directly. This is problematic, because such code
is not instrumented, therefore we cannot track the taint when it is executed. We
refer to these as native functions.
Further complexity is given by higher-order native functions, i.e., that accept
another function as an argument or return a function. It is a typical pattern in
JavaScript applications to apply common native methods to user-defined callbacks,
that let users define part of their behavior. During execution, the native function
could invoke the callback multiple times and with different parameters, whose taint
depends on its hidden operations. An example is the Array.prototype.map
native function, that progressively applies the callback to all the elements of an
array and then creates a new array with the corresponding results.
Ichnaea bridges the lack of information on data dependencies with the help of
manually crafted models for specific native functions, which generate the necessary
instructions for the abstract machine. However, this strategy is only effective for
the supported functions, thus it cannot be easily scaled to the whole JavaScript
standard library.
We design a different solution, based on standard concepts, that does not perform
precise taint tracking like Ichnaea’s models, but works for any invocation of both
user-defined and native functions. This solution considers all the cases described
above, especially the possible alternation between user-defined and native function
invocations, and also does not override any of the previously defined rules.
Essentially, since operations performed within a native function are unknown, in
such a case we determine an over-approximation of the taint for the returned value.
In particular, during the execution of a native function, we hold the invariant that
the topmost value of the stack represents the taint for the result of the invocation.
Along with the existing assumptions, we suppose that the instrumented code allows
us to intercept the entry into and exit from a function invocation, be it user-defined
or native, except for the invocation of a native function by another native function,
because this kind of operation is performed inside the black box of the latter and
therefore is not observable. With this in mind, let us examine all the possible cases
in which a function of one type invokes another function of the other type.
The simplest instance is the one in which a user-defined function invokes
another user-defined function: in this case, no further abstract machine in-
struction is generated, in addition to those already issued.
In the remaining cases, we have to generate instructions to pass arguments before
the execution of the function begins, and to receive the value returned by the callee
upon the termination.
When a user-defined function invokes a native function, the taints for n
actual arguments combine into a single value as a result of generating n− 1 join
instructions; the obtained value on top of the stack is the over-approximated taint
for the result of the invocation. If no argument has been passed, we push false
onto the stack. Such taint is then recursively joined with the taints associated
to the properties of objects passed as an argument, because the values of these
properties may influence the result too. The recursion must take into account

21

the possibility of cyclic references between objects - in the simplest case, when
an object refers to itself; thus, we apply recursion on an object if it has not been
visited yet in the current traversal. At the end, the taint for the result is stored
into the special ret variable if the returned value is primitive, otherwise we
recursively propagate it to the properties of the returned object and replace the
taint associated to the ret variable with false, thus preserving the assumption
that objects are never tainted.
Finally, we discuss the instance in which a native function invokes a user-
defined function. Note that we can observe this kind of invocation because we
are able to detect when the execution enters a user-defined function, knowing that
the last observed operation is a native function call. In this case, we duplicate the
topmost value of the stack, i.e., the resulting taint of the native function, for each
primitive value passed as an argument, while issuing push(false) for each passed
object. This means that the taints for the arguments may depend on each of the
arguments passed to the native caller. Duplication is achieved using an auxiliary
arg variable, that is written once and read as many times as necessary. On

the return, we load the taint for the ret variable and perform a weak update
of the native function’s resulting taint by joining these two values: in fact, the
user-defined callback may have returned a value annotated with a new label, that
we have to consider for the final result of the native function call or the arguments
of another invocation of the callback.
Our approach is formalized in Figure 3.5: we define a collection of macros, i.e.,
procedures that expand to instructions for the abstract machine whenever the
execution enters and leaves a user-defined or native function, with respect to the
above rules. The behavior of macros depends on an abstract call stack, which
summarizes an activation frame in terms of the type of the invoked function that
led to its creation: "USER" or "NATIVE", standing for user-defined and native
function, respectively. The primitives for the abstract call stack are Push-Frame,
Pop-Frame, and Top-Frame, with the expected semantics.

Error handling

We now provide the core language with the ability to raise exceptions using the
throw statement and handle them with the try, catch, and finally con-
struct. When a function invocation throws an error, the JavaScript engine inter-
rupts the execution of such function and passes the control to the first catch
block in the call stack, or terminates the script execution whether it does not ex-
ist. In addition, it removes from the runtime stack all and only the values of the
interrupted invocations.
Ichnaea communicates the taint of a thrown error via the special throw vari-
able, in a way similar to returning the result of an invocation with the return
statement. However, it does not keep information about which taints in the stack
are associated to values of a given activation frame. As such, the insufficient or
excessive removal of elements from the stack causes the abstract machine state to
be misaligned from the concrete state.
While following the same approach for communicating the taint of the error, we
evolve the strategy described in the previous argumentation to overcome the latter
problem. In particular, we extend abstract activation frames with an additional
information, that we call frame pointer - borrowing the name from the world of
binary programs. In our sense of the term, the frame pointer of an abstract frame

22

Input: a1, · · · , an Actual arguments
procedure Enter-User-Function(a1, · · · , an)

if Top-Frame() = "NATIVE" then
Emit(writevar(" arg "))
for i← 1..n do

if ai is primitive then
Emit(readvar(" arg "))

else if ai is object then
Emit(push(false))

end if
end for

end if
Push-Frame("USER")

end procedure

Input: r Return value
procedure Leave-User-Function(r)

Pop-Frame()
if Top-Frame() = "NATIVE" then

Emit(readvar(" ret "))
Emit(join)

end if
end procedure

Input: a1, · · · , an Actual arguments
procedure Enter-Native-Function(a1, · · · , an)

if n = 0 then
Emit(push(false))

else
for n− 1 times do

Emit(join)
end for

end if
for i← 1..n do

if ai is object then
Obj-Taint(ai)
Emit(join)

end if
end for
Push-Frame("NATIVE")

end procedure

Input: r Return value
procedure Leave-Native-Function(r)

Pop-Frame()
Emit(writevar(" ret "))
Emit(pop)
if r is object then

Obj-Propagate(r)
Emit(push(false))
Emit(writevar(" ret "))
Emit(pop)

end if
end procedure

Input: o The object to get the taint from
procedure Obj-Taint(o)

Emit(push(false))
if o has not been visited yet then

Let o ≡ {p1 : v1, · · · , pn : vn}
for i← 1..n do

if vi is primitive then
Emit(readproperty(oid(o), offset(pi))

else if vi is object then
Obj-Taint(vi)

end if
Emit(join)

end for
end if

end procedure

Input: o The object to which to propagate the taint
(from the special ret variable)
procedure Obj-Propagate(o)

if o has not been visited yet then
Let o ≡ {p1 : v1, · · · , pn : vn}
for i← 1..n do

if vi is primitive then
Emit(readproperty(oid(o), offset(pi))
Emit(readvar(" ret "))
Emit(join)
Emit(writeproperty(oid(o), offset(pi))
Emit(pop)

else if vi is object then
Obj-Propagate(vi)

end if
end for

end if
end procedure

Figure 3.5: Macros for generic function invocations

23

indicates the height of the abstract value stack from which the taints of the values
produced in that frame are pushed.
The frame pointer acts as a logical barrier between abstract values of different
frames. When a user-defined is invoked, the frame pointer in the pushed abstract
frame is equal to the taint stack height, minus the number of actual arguments; on
the invocation of a native function, such number is equal to the taint stack height,
minus the taint of the resulting value.
Whenever a function invocation exits due to an error, an ad-hoc macro emits a
succession of pop instructions until the taint stack height and the frame pointer
of the top abstract frame are equal, in order to discard all the values produced in
that frame. The macro also takes action on the function that catches the error,
because the control flow has changed. At the end, the abstract frame is popped
from the abstract call stack.
In this way, the right number of abstract values is always removed from the stack
in case of error, and the state of the abstract machine persists in being aligned
with the concrete execution state.

Other JavaScript features

The JavaScript standard specification includes a lot of additional constructs and
semantics that we have not covered in the formal discussion. We briefly explain
how we handle some of them. Unless otherwise indicated, we follow the approach
proposed in Ichnaea.
In JavaScript, arrays are a special type of objects, where indexes are properties;
like Ichnaea, we issue the same instructions to access their elements as we generate
for objects.
When an accessor property of an object is read or written, the JavaScript engine
invokes the associated getter or setter function, respectively. In such a case, we
emit instructions for a function invocation, rather than treating the operation as
a normal property read/write access.
In function calls, one can pass a number of actual arguments different from the
number of formal arguments. If fewer actual arguments than formal ones are spec-
ified, the JavaScript engine fills the missing formal arguments with undefined,
and consequently we generate push(false). Otherwise, if there are more ac-
tual arguments than expected, they can be accessed through an array-like object,
called arguments. In particular, a key characteristic of such object is that the
values of formal arguments always reflect the values of the corresponding elements
of arguments. Thus, we store the taints for the properties of arguments and
access them uniformly every time we access a formal argument.
Finally, there exist some JavaScript objects that interact directly with the JavaScript
engine and exhibit a bundle of interface methods to control them. Among oth-
ers, Document Object Model (DOM) objects represent and manipulate the HTML
elements in the page, while XMLHttpRequest (XHR) objects enable to perform
on-the-fly HTTP requests to the server. Differently from Ichnaea, which indiscrim-
inately treats all objects as containers of data, we associate each of these objects to
a single, field-insensitive taint and generate instructions for the abstract machine
as if they were primitive values.

24

3.3 Example

In the last section of this chapter, we help the reader understand how our taint
tracking engine works.

For our demonstration, we consider the following JavaScript program, which has
no particular purpose, other than the expository one:

1 var s = secret();
2 var v = [31];
3 v[1] = v[0] * s;
4 var r = v.reduce(function (acc, cur) { return acc + cur; }, 0);
5 disclose(r);

Both of them are native functions. At line 1, the call to the native secret
function returns a confidential number, which is assigned to the s variable. At
line 2, a literal array with a single element 31 is stored into the v variable. At line
3, we write at index 1 of the array in v the multiplication between the element
at index 0 of the same object and the value of s. At line 4, we invoke the native
reduce function to the array in v and store the result in r. Finally, at line 5, we
tell the world the value of r by calling the disclose function.

For each line of the toy script, we explain which instructions are generated for
the abstract machine. Here, we assume that the secret function is an hypo-
thetical source of the analysis, and the disclose function is a sink. Due to the
JavaScript’s behavior to move all declarations to the top of the function code,
better known as hoisting, we assume that the instructions to initialize the local
variables have been already issued.

Let us start with instructions for line 1. Since we call a native function, we
expand the Enter-Native-Function and Leave-Native-Function macros
on function entry and exit, respectively. The former just emits a push(false)
instruction, because there are no arguments, while the latter generates the instruc-
tions to communicate such taint to the caller. Between the two macro expansions,
the resulting taint on top of the stack, which was initially untainted (false),
becomes tainted (for sake of simplicity, true), due to the fact that the invoked
secret function is a source of the analysis. At the end, we emit instructions to
read the resulting taint and store it into the s variable.

1 readvar("frame1:secret") // push taint (false) for variable "secret"
2 // -- begin Enter-Native-Function macro expansion --
3 push(false)
4 // -- end Enter-Native-Function macro expansion --
5 // taint the top of the stack
6 // -- begin Leave-Native-Function macro expansion --
7 writevar("_ret_") // store taint (true) for return value
8 pop // discard taint (true) of return value
9 // -- end Leave-Native-Function macro expansion --

10 pop // discard taint (false) of function
11 readvar("_ret_") // push taint (true) for return value
12 writevar("frame1:s") // store taint (true) for variable "s"
13 pop // discard taint (true) of assigned value

At line 2, we treat an array literal as an object literal, so we initialize the single
0 property of the object by generating an initproperty instruction, and then
store the taint of the array itself in the v variable as before. We identify the array
instance with "obj4" and represent it with <obj4>.

25

1 push(false) // push taint (false) for literal 31
2 initproperty("obj4", "0") // init property "0" of <obj4>
3 push(false) // push taint (false) for array literal
4 writevar("frame1:v") // store taint (false) for variable "v"
5 pop // discard taint (false) of assigned value

The instructions issued for line 3 reflect the taints for a property read, a variable
read, a binary operation, and a property write statement. In particular, the *
binary operation joins an untainted value with a tainted one, and therefore prop-
agates the true taint to the result value.

1 readvar("frame1:v") // push taint (false) for variable "v"
2 push(false) // push taint (false) for literal 1
3 readvar("frame1:v") // push taint (false) for variable "v"
4 push(false) // push taint (false) for literal 0
5 pop // discard taint (false) of literal 0
6 pop // discard taint (false) of <obj4>
7 readproperty("obj4", "0") // push taint (false) for prop. "0" of <obj4>
8 readvar("frame1:s") // push taint (true) for variable "s"
9 binaryop("*") // apply "*" binary operator

10 writeproperty("obj4", "1") // store taint (true) for prop. "1" of <obj4>
11 pop // discard taint (true) of assigned value
12 pop // discard taint (false) of literal 1
13 pop // discard taint (false) of <obj4>

At line 4, we focus on instructions generated for the call to the reduce function.
array.reduce is an higher-order, native method of arrays, that is equivalent to
fold in functional programming: given an array, a callback, and an initial value, it
invokes the callback with the first element of the array and the initial value, then
uses its result as the initial value in the callback applied to the next element, and
so on; the returned value is the aggregate value of all elements in the array.
In the expansion of the Enter-Native-Function macro, the Obj-Taint macro
is expanded to push onto the stack the over-approximated taint for the properties
of the received array - that is, <obj4>. Since the taint for the second element of
the array is true, the resulting taint is also true.
Then, reduce invokes the user-defined callback with the initial value and the
first element of the array as actual arguments, that respectively initialize the acc
and cur variables in the activation frame with identifier "frame2". As an ef-
fect of expanding the Enter-User-Function macro, the taint for each of these
arguments is equal to the native caller’s resulting taint.
When the execution of the callback ends, the Leave-User-Function macro
expands to instructions that push the taint for the returned value onto the stack
and join it with the resulting taint of the native function.
The user-defined callback is invoked another time by the native function in order
to aggregate the second element of the array. The generated instructions are the
same, but now the local variables belongs to another activation frame, that we
identify with "frame3".
At the termination of the call, we expand the Leave-Native-Function macro,
that makes available the resulting taint to the caller.

1 readvar("frame1:v") // push taint (false) for variable "v"
2 push(false) // push taint (false) for literal "reduce"
3 pop // discard taint (false) of literal "reduce"
4 pop // discard taint (false) of <obj4>
5 readproperty("obj4", "reduce") // push taint (false) for method "reduce"
6 push(false) // push taint (false) for function literal
7 push(false) // push taint (false) for literal 0
8 // -- begin Enter-Native-Function macro expansion --
9 join // join taints of arguments

10 // expand Obj-Taint(<obj4>) // push taint (true) for props. of <obj4>

26

11 join // ... join with taints of arguments
12 // -- end Enter-Native-Function macro expansion --
13 // -- begin Enter-User-Function macro expansion --
14 writevar("_arg_") // store taint (true) for arguments
15 readvar("_arg_") // push taint (true) for first argument
16 readvar("_arg_") // push taint (true) for second argument
17 // -- end Enter-User-Function macro expansion --
18 initvar("frame2:cur") // init first formal argument
19 initvar("frame2:acc") // init second formal argument
20 readvar("frame2:acc") // push taint (true) for variable "acc"
21 readvar("frame2:cur") // push taint (true) for variable "cur"
22 binaryop("+") // apply "+" binary operator
23 writevar("_ret_") // store taint (true) for return value
24 pop // discard taint (true) for return value
25 // -- begin Leave-User-Function macro expansion --
26 readvar("_ret_") // push taint (true) for return value
27 join // ... join with taint of resulting value
28 // -- end Leave-User-Function macro expansion --
29 // repeat instructions at lines 13-28 using variables in "frame3"
30 // -- begin Leave-Native-Function macro expansion --
31 writevar("_ret_") // store taint (true) for return value
32 pop // discard taint (true) of return value
33 // -- end Leave-Native-Function macro expansion --
34 pop // discard taint (false) of function
35 readvar("_ret_") // push taint (true) for return value
36 writevar("frame1:r") // store taint (true) into variable "r"
37 pop // discard taint (true) of assigned value

Finally, at line 5, the tainted (true) value of the r variable, which is the result
of the native function call, is passed as an argument to the disclose function,
that is, a sink of the analysis. Hence, our engine logs the information flow.

1 readvar("frame1:disclose") // push taint (false) for variable "disclose"
2 readvar("frame1:r") // push taint (false) for variable "r"
3 // -- begin Enter-Native-Function macro expansion --
4 // -- end Enter-Native-Function macro expansion --
5 // log the information flow
6 // -- begin Leave-Native-Function macro expansion --
7 writevar("_ret_") // store taint (true) for return value
8 pop // discard taint (true) of return value
9 // -- end Leave-Native-Function macro expansion --

10 pop // discard taint (false) of function

3.3.1 Error handling

We also propose a simple example of how our engine handles errors.

Consider the following JavaScript program:

1 function g() {
2 throw new Error();
3 }
4

5 function f() {
6 return 7 + g();
7 }
8

9 var result;
10 try {
11 result = 5 + f();
12 } catch (e) {
13 result = -1;
14 }

27

Starting from line 11, a push(false) instruction is generated for the abstract
machine to indicate the taint for the literal 5, followed by issuing the instructions
for the call to the user-defined f function. The invocation causes the insertion of an
abstract frame in the abstract call stack, whose frame pointer is set to 2, because
the two elements further down the abstract stack are the taints associated to the
literal 5 and the f function. Similarly, inside the f function, another abstract
frame is pushed for the call to the g function, whose frame pointer is set to 4: in
fact, additionally to the previous elements, the taints for the literal 7 and the g
function have been pushed onto the stack, for a total of 4 elements.
The call to g raises an exception with the throw statement, which stores the taint
for the Error object into the special throw variable. Since the execution exits
g without leaving any pending expression, we just discard the abstract frame for
the call to g out of the abstract call stack. Instead, when exiting f, we generate
two pop instructions in order to bring the stack height (currently, 4) back to the
topmost frame pointer, i.e., 2: the two discarded elements were the taints for the
literal 7 and the g function. Then, we discard the abstract frame of the call to f.
Finally, the expression which invoked f is wrapped within a try..catch block,
thus the taints for 5 and f are discarded in a similar way as before, and the taint
for the throw variable is written to the e variable.
Below, we show the generated instructions for the abstract machine. Note that
we comment the stack height (H = n) and the occurrences in which the extended
abstract call stack is pushed (Push-Frame) and popped (Pop-Frame). For ease
of exposition, we also simulate the construction of the Error object with the
push(false) instruction.

1 push(false) // initial value for variable "result" (H = 1)
2 initvar("frame1:result") // init variable "result" (H = 0)
3 push(false) // push taint for literal 5 (H = 1)
4 readvar("frame1:f") // push taint for variable "f" (H = 2)
5 // -- begin Enter-User-Function macro expansion --
6 // Push-Frame("USER", 2) // push frame with frame pointer = 2 for call to f
7 // -- end Enter-User-Function macro expansion --
8 push(false) // push taint for literal 7 (H = 3)
9 readvar("frame2:g") // push taint for variable "g" (H = 4)

10 // -- begin Enter-User-Function macro expansion --
11 // Push-Frame("USER", 4) // push frame with frame pointer = 4 for call to g
12 // -- end Enter-User-Function macro expansion --
13 push(false) // simulate taint for Error object (H = 5)
14 writevar("_throw_") // store taint for raised error
15 pop // pop taint for raised error (H = 4)
16 // -- begin exceptional Leave-User-Function macro expansion --
17 // Pop-Frame() // discard frame of call to g
18 // -- end exceptional Leave-User-Function macro expansion --
19 // -- begin exceptional Leave-User-Function macro expansion --
20 pop // discard taint of function literal (H = 3)
21 pop // discard taint of literal 7 (H = 2)
22 // Pop-Frame() // discard frame of call to f
23 // -- end exceptional Leave-User-Function macro expansion --
24 // -- begin "catch" statement macro expansion --
25 pop // discard taint of function literal (H = 1)
26 pop // discard taint of literal 5 (H = 0)
27 // -- end "catch" statement macro expansion --
28 readvar("_throw_") // push taint for raised error (H = 1)
29 writevar("frame1:e") // store taint into catch variable "e"
30 pop // discard taint of assigned value (H = 0)
31 push(false) // push taint for literal -1 (H = 1)
32 writevar("frame1:result") // store taint into "result" variable
33 pop // discard taint of assigned value (H = 0)

28

Chapter 4

Web Measurement

We now explain how we performed our large-scale measurement in the wild and
we report on the most relevant findings of our study.
First, we show how we setup a web crawler to collect information flows involving
the Web Storage API.
Then, we analyze them along several axes to extract knowledge about the security
and privacy of using web storage in real-world web applications.

29

Table 4.1: List of sources and sinks used for taint tracking
Class Details

Sources

Cookies document.cookie
Current URL document.URL, location, window.location, document.location
Navigator navigator.geolocation, navigator.language, navigator.platform,

navigator.userAgent
Network XMLHttpRequest (input)
Web storage localStorage.getItem, sessionStorage.getItem

Sinks
Cookies document.cookie
Network XMLHttpRequest (output), navigator.sendBeacon, src attribute of HTML

element
Web storage localStorage.setItem, sessionStorage.setItem

4.1 Methodology

We exhibit the list of sources and sinks wherewith we configure our taint tracking
engine, which we use then with a web crawler to perform our analysis of the Web.
Afterwards, we present a strategy for the automated classification of the tracked
information flows.

4.1.1 Sources and sinks

In section 3.2.3, we define abstract values as sets of labels - combinations of type,
location, and extra information - which annotate runtime values with information
about data dependencies and, more generally, describe information flows.

Concretely, we represent a label with a JSON object which has the following fields:

• type: a string identifier for the kind of operation;

• scriptUrl: the URL of the script where the operation is located;

• iid: a number, assigned by Jalangi, that identifies the operation within a
script (Instruction ID) - in pair with scriptUrl, they universally identify
the operation;

• extra: an array of strings that provide further information about the oper-
ation, whose nature depends on the type field.

For the purposes of this project, we are interested in identifying information flows
involving the Web Storage API. More formally, an information flow involves the
Web Storage API if and only if: (i) it starts from a call to the getItem method
and ends into a sink, or (ii) it starts from a source and ends into a call to the
setItem method. We refer to the former as confidentiality flows and to the
latter as integrity flows.

Table 4.1 reports the different sources and sinks considered in our analysis, largely
inspired by previous web measurements based on information flow control [7, 30].
Note that the web storage was largely ignored as source or sink in previous work,
to the best of our knowledge.

Below, we present five classes of sources and sinks, based on their functionality,
and discuss the additional information for the labels of each class.

30

Web storage Web storage is the pivot of our analysis. This class comprises the
call to the getItem method as a source, and the call to the setItem method as
a sink. We also consider being able to access the content of web storage using the
bracket notation: we model this case as a call to the corresponding method. Other
than the specific instance of web storage (localStorage or sessionStorage),
labels related to web storage maintain the accessed key and the stored value.

Network We monitor the most important client-side features that involve a
network interaction, in order to investigate on the remote origin and destination
of web storage data. The standard object that allows one to perform on-the-fly
HTTP requests is XMLHttpRequest (XHR); we mainly focus on its methods and
properties, which we consider both as sources and sinks. Additionally, we observe
some less obvious ways to send network requests, that we treat as sinks of the
analysis: the call to the navigator.sendBeacon function, which is meant to be
used for sending analytics data, and setting the src attribute of HTML elements,
that causes the browser to contact a server for retrieving a remote resource (e.g.,
img elements for images). Network-related labels include the so-called network
URL, i.e., the remote URL from which data came or to which data was sent.

Cookies Despite web storage and cookies have the same underlying purpose,
they are semantically different from each other. In particular, cookies can be set
by the server and are transmitted together with requests to the server, while web
storage is more convenient to access from JavaScript. Web applications may use
these two technologies at the same time, in order to combine the advantages of
both. For this reason, we identify reads and writes to the document.cookie
property as sources and sinks, respectively. We also keep the value of such property
as an extra information in this class’s labels.

Current URL Other than cookies, there are some situations in which web ap-
plications may derive session information from the page’s URL. The Browser Ob-
ject Model (BOM) supports some special properties that enable to obtain the
current URL of the page: window.location, or equivalently location or
document.location, and document.URL. We observe how these properties
are made persistent through web storage by considering them as sources and keep-
ing additional information about their values in the corresponding labels. Con-
versely, we cannot detect when the location property is written, because such
operation causes the page to navigate to the assigned URL, thus preventing the
analysis code in the page from running. This is a limitation of our analysis, be-
cause the above observation would allow us to understand if data in web storage
are sent to the server as a result of browsing.

Navigator Finally, we consider some read-only properties of the navigator
object as sources. In particular, this object provides details about the browser’s
environment, which are often used for fingerprinting [30]: geolocation for the
geographic location of the device, language for the user’s language, platform
for the operating system, and userAgent for the web browser. In this way,
we observe the possible uses of web storage that are likely to be associated with
fingerprinting purposes.

31

Code Instrumentation

Dynamic Taint Analysis

Crawler

Browser

MITM Proxy Server

Tranco List
Information

Flows

1

2

3

4

5

7

9

6

8

Figure 4.1: Overview of the crawling process

4.1.2 Web crawling

At this point, we use the developed dynamic taint tracking engine to automatically
identify information flows involving the Web Storage API in the top 5k domains
of the Tranco list [23] generated on December 14th, 20211.
Our taint tracking engine is implemented as a Jalangi2 analysis and also incorpo-
rates the code for the abstract machine. In particular, the instrumented scripts
and the engine, both of which are written in JavaScript, are meant to run together
in a browser: the former provide the web application logic and invoke the analysis
callbacks of the latter, which generates the corresponding instructions that are
executed by the abstract machine.
Therefore, to make the engine work in real-world sites, we need their scripts to be
instrumented and inject the engine code into the browser page. For this purpose,
we implement a Man In The Middle (MITM) proxy server as a Node applica-
tion, that intercepts all the requests issued by the browser, fetches the required
resources from the Internet, and sends back an instrumented version of the HTML

1https://tranco-list.eu/list/NXVW

32

https://tranco-list.eu/list/NXVW

documents and scripts, while forwarding any other resources. The JavaScript in-
strumentation is performed by Jalangi, which also appends the engine code and
the taint specification to the instrumented HTML documents. Furthermore, since
Jalangi recognizes only ECMAScript 5.1 or below, we use Babel2 to transpile EC-
MAScript 6+ code into equivalent ECMAScript 5.1 code before instrumentation.
Next, we build a crawler with a focus on automating the analysis process and
making our results reproducible. The crawler, which is another Node application,
uses Puppeteer3 to drive a fresh instance of the Chromium browser to each domain
in the Tranco list, leaving 60 seconds to render the HTML content after connecting.
For each domain, we leverage taint tracking to collect all the information flows
involving the Web Storage API.
Figure 4.1 shows a complete overview of the crawling process. The crawler reads
from the Tranco list one domain at a time 1○ and drives the browser to navigate
to such domain 2○. Hence, the browser contacts the proxy server 3○, first spon-
taneously to retrieve the index page of the site, then at each other HTTP request
made by the page. After fetching the requested resource from the Internet 4○,
the proxy server instruments any HTML document or script 5○ and then returns
the instrumented resource to the browser 6○. While executing the analysis 7○,
the crawler waits 60 seconds, after which it terminates the analysis, collects the
information flows 8○ and stores them in the disk for further analysis 9○.
There are some cases in which the analysis may not detect any information flow
in a given domain with the above approach. Let us analyze the possible reasons,
assuming that the site is loaded properly: (i) the site does not actually use Web
Storage; (ii) the crawler does not give the site enough time to observe the use
of web storage, also considering that the instrumented code is slower than the
original one due to the analysis overhead; (iii) the use of web storage requires
some complex interactions within the site, which go beyond the simple loading
of the index page (e.g., authentication). We try to discriminate the first case
from the last two by looking in the original script for the keywords “getItem”
and “setItem”, which are very likely to be related to web storage. While this
solution works for most of the cases, it is ineffective in presence of obfuscated code.

4.1.3 Flow classification

To better understand the use of web storage, we then perform an automated
classification of the collected information flows. This is a challenging task, that
we dealt with after a preliminary manual investigation to understand the nature
of the collected data. In particular, we categorize the flows along different axes,
all fully amenable to automation, described below.

Confinement A first relevant aspect we investigate is related to the origins
involved in the flows. We say that a flow is internal if and only if it is confined
within a single origin. In other words, these flows do not include network sources or
sinks (cf. Table 4.1), unless network communication only involves the same origin
where the flow is detected. The other flows, which we call external, are more
interesting from a security and privacy perspective, because they involve third
parties. For example, a page at https://www.foo.com may include a script

2https://babeljs.io/
3https://pptr.dev/

33

https://www.foo.com
https://babeljs.io/
https://pptr.dev/

from https://www.bar.com, which reads the content of the local storage and
sends it to https://www.bar.com, thus potentially leaking sensitive information
from https://www.foo.com.

Tracking Tracking is one of the driving forces of the web ecosystem and it is
extremely common in the wild. We call a tracking flow any information flow
that starts from a source, or ends into a sink, located in a script served by a
known web tracker. To reconstruct this information, we leverage the fact that the
instrumentation performed by Jalangi keeps track of the URL from which each
script was downloaded. By matching this script URL against popular filter lists
like EasyList and EasyPrivacy [12], we can detect the involvement of known web
trackers in web storage accesses.

Persistence A last relevant aspect is the persistence of the information involved
in the flow. Though both local storage and session storage can store arbitrary
information, the content of local storage may persist indefinitely. Persistence may
have important implications on both security and privacy. For example, the local
storage may become a source of persistent XSS [32] and may enable perpetual
tracking of web users. For each flow, we thus track the type of the involved
web storage. Note that the same flow may involve both the local storage and
the session storage, e.g., because local storage and session storage information is
combined before network communication.

34

https://www.bar.com
https://www.bar.com
https://www.foo.com

Table 4.2: Sources and sinks involved in confidentiality and integrity flows
Class #flows #domains

Confid.
Cookies 202 66
Network 329 139

Integrity

Cookies 410 72
Current URL 1,582 353
Navigator 979 204
Network 913 238

Table 4.3: Classification of the detected information flows
Confid. Integrity Internal External Tracking Non-Tracking Local Session Both

Confid. - - 268 (50%) 263 (50%) 343 (65%) 188 (35%) 464 (88%) 55 (10%) 12 (2%)
Integrity - - 1,886 (70%) 790 (30%) 1,933 (72%) 743 (28%) 2,203 (76%) 653 (24%) 0 (0%)
Internal 268 (12%) 1,886 (88%) - - 1,452 (67%) 702 (33%) 1,564 (73%) 586 (27%) 4 (0%)
External 263 (25%) 790 (75%) - - 824 (78%) 229 (22%) 923 (88%) 122 (12%) 8 (0%)
Tracking 343 (15%) 1,933 (85%) 1,452 (64%) 824 (36%) - - 1,845 (81%) 422 (19%) 9 (0%)

Non-Tracking 188 (20%) 743 (80%) 702 (75%) 229 (25%) - - 642 (69%) 286 (31%) 3 (0%)
Local 464 (19%) 2,023 (81%) 1,564 (63%) 923 (37%) 1,845 (74%) 642 (26%) - - -

Session 55 (8%) 653 (92%) 586 (83%) 122 (17%) 422 (60%) 286 (40%) - - -
Both 12 (100%) 0 (0%) 4 (33%) 8 (67%) 9 (75%) 3 (25%) - - -

4.2 Measurement Results

Overall, our crawler successfully accessed and instrumented JavaScript code on
3,324 domains, detecting 5,187 information flows involving the Web Storage API
on 837 domains (25%). These include a significant number of flows where the
web storage acts as both source and sink, which we filter out because they are
confined to the Web Storage API and thus have limited security and privacy im-
plications. After filtering, we are left with 3,207 flows on 651 domains, including
531 confidentiality flows and 2,676 integrity flows.
Table 4.2 reports a first breakdown of the detected flows in terms of the involved
sources and sinks.4 As we can see, a significant number of flows involves network
sources or sinks: this happened for 329 confidentiality flows (62%) and 913 integrity
flows (34%).
We now focus on a more fine-grained classification of the detected flows, as we
described in the previous section. Overall, we found that 1,053 flows (33%) are
external, i.e., a significant amount of the flows related to the Web Storage API
also involve an origin different from the origin of the page where the flow was
detected. Moreover, 2,276 flows (71%) are related to tracking, i.e., the majority of
the detected flows can be attributed to known trackers included in popular filter
lists. Finally, 2,487 flows (78%) only make use of local storage, 708 flows (22%)
only make use of session storage and 12 flows make use of both. All this information
suggests that a common use case of web storage is persistent web tracking, possibly
performed by third parties.
To provide further insights on the use of web storage in the wild, we also investigate
potential correlations between the different axes considered in our classification.
The results of our analysis are shown in Table 4.3. The table supports the following
selected observations:

• Confidentiality flows are roughly equally split between internal and external
flows, while integrity flows are mostly internal (70%). This shows that it is

4The sum of the integrity flows exceeds 2,676, because a flow may involve multiple sources. In
that case, the same flow is counted on two different rows of the table, e.g., Cookies and Network.

35

Table 4.4: Additional breakdown of the external information flows
Same Site Cross Site

Confid. 22 (8%) 241 (92%)
Integrity 30 (4%) 760 (96%)
Tracking 15 (2%) 809 (98%)

Non-Tracking 37 (16%) 192 (84%)
Local 33 (4%) 890 (96%)

Session 19 (16%) 103 (84%)
Both 0 (0%) 8 (100%)

much more common to send web storage information to third parties, rather
than having third parties write information in the web storage.

• The majority of the confidentiality flows can be attributed to trackers (65%).
Remarkably, however, even a higher percentage of integrity flows can be at-
tributed to trackers (72%). Indeed, the table also shows that the majority of
tracking flows are integrity flows (85%). This suggests that trackers routinely
both read and write web storage information in the wild.

• External flows are more likely to be confidentiality flows than internal flows
(25% vs. 12%) and the very large majority of the external flows can be
attributed to trackers (78%). Moreover, tracking flows are more likely to be
external than non-tracking flows (36% vs. 25%). This suggests that trackers
normally send web storage information to third parties.

• Tracking flows operate on local storage more frequently than non-tracking
flows (81% vs. 69%). Moreover, flows involving the session storage are more
likely to be internal than flows involving the local storage (83% vs. 63%).
This suggests that local storage is the prime target of trackers and session
storage is largely dedicated to internal use within a single origin.

• Finally, we observe that confidentiality flows are more likely to operate on
local storage than integrity flows (88% vs. 76%), just like external flows
involve local storage more frequently than internal flows (88% vs. 73%).
This shows that the persistent information saved in the local storage is often
the target of information leaks, likely towards third parties.

To further shed light on the security and privacy implications of web storage in the
wild, we also perform an additional classification of the detected external informa-
tion flows, i.e., information flows involving two different origins. In particular, we
analyze how many such flows are still within the same site5 and how many are cross
site. This is an interesting information, because different domains under the same
site normally belong to the same owner, i.e., the entity who performed the domain
registration, hence same-site external flows are less significant from a security and
privacy perspective. The results of our analysis are shown in Table 4.4. They
highlight that the very large majority of the external flows are cross-site and this
is uniform across all classes of external flows. This further confirms the relevance
of our findings.

5A site is defined as an effective top-level domain (eTLD) + 1.

36

Table 4.5: Most popular libraries introducing information flows
Library #flows #domains Tracking?

https://static.chartbeat.com/js/chartbeat.js 132 66 3

https://mc.yandex.ru/metrika/tag.js 228 34 3

https://fast.wistia.com/assets/external/E-v1.js 106 26 7

https://pagead2.googlesyndication.com/pagead/managed/
js/adsense/m202112060101/show ads impl with ama.js

124 25 3

https://quantcast.mgr.consensu.org/tcfv2/cmp2.js 24 24 7

https://static.chartbeat.com/js/chartbeat video.js 42 20 3

https://az416426.vo.msecnd.net/scripts/a/ai.0.js 22 19 3

https://cdn.izooto.com/scripts/sdk/izooto.js 42 16 3

https://bat.bing.com/bat.js 34 15 3

https://cdn.pdst.fm/ping.min.js 17 15 3

The last analysis we carry out estimates how many information flows are intro-
duced by libraries. These flows are particularly interesting, because libraries are
normally used by multiple pages, hence the analysis of a single library may shed
light on the behavior of multiple pages. To identify libraries, we look for duplicate
flows within different domains and we aggregate them based on the script URL
information provided by Jalangi. Specifically, we use the script URL of the source
for the integrity flows and the script URL of the sink for the confidentiality flows.
Table 4.5 reports information on the top 10 most popular libraries, based on the
number of domains where an information flow was detected. As we can see, the
large majority of these libraries (8 out of 10) is related to web tracking and the
most popular library is used for tracking on 66 domains, i.e., roughly 10% of the
domains where we identified an information flow involving the Web Storage API.

37

https://static.chartbeat.com/js/chartbeat.js
https://mc.yandex.ru/metrika/tag.js
https://fast.wistia.com/assets/external/E-v1.js
https://pagead2.googlesyndication.com/pagead/managed/js/adsense/m202112060101/show_ads_impl_with_ama.js
https://pagead2.googlesyndication.com/pagead/managed/js/adsense/m202112060101/show_ads_impl_with_ama.js
https://quantcast.mgr.consensu.org/tcfv2/cmp2.js
https://static.chartbeat.com/js/chartbeat_video.js
https://az416426.vo.msecnd.net/scripts/a/ai.0.js
https://cdn.izooto.com/scripts/sdk/izooto.js
https://bat.bing.com/bat.js
https://cdn.pdst.fm/ping.min.js

Chapter 5

Related work

The findings and approaches from previous studies are summarized in this section,
which have significantly influenced our analysis approach.

Sjosten et al. proposed EssentialFP [30], a principled approach to the dynamic
detection of browser fingerprinting. EssentialFP is a fingerprinting detection ap-
proach which is based on observable tracking, set out sinks and sources and for-
mulate a metric which specify fingerprinting patterns via aggregated labels. To
capture the essence of fingerprinting, EssentialFP relies on an extensive list of
browser-specific sources and looks for information flows ending in known network
sinks. The efficacy of EssentialFP was illustrated through an empirical study
based on two classes of web pages: fingerprinting pages (authentication, bot detec-
tion and more) and non-fingerprinting pages (analytics, polyfills, advertisement).
EssentialFP is based on dynamic analysis and in particular on an extension of
JSFlow [16]. JSFlow is a security-enhanced JavaScript interpreter that allows
fine-grained information flow tracking. The authors demonstrate how to over-
come practical obstacles in implementing information-flow throughout the entire
JavaScript language, as well as tracking data in the presence of libraries using
browser APIs. The interpreter is written in JavaScript, allowing it to be installed
as a browser extension.

Chen and Kapravelos presented a taint tracking engine called Mystique [7] and
used it to track information leakage from browser extensions. Mystique, a novel
taint analysis tool that incorporates both dynamic and static taint tracking. Based
on methodologies that leverage information acquired from static data flow and
control-flow dependency analysis, the authors provide the first full implementation
of hybrid taint tracking for the V8 JavaScript engine. Mystique was applied to
a total of 181,683 browser extensions, detecting 3,686 extensions leaking private
information. In later work, Mystique was also used to investigate the leakage of
first-party cookies to third-party cookies for web tracking [8]. In particular, the
authors estimated that around 57% of the sites in the Alexa Top 10k include
at least one cookie containing a unique user identifier which is exchanged with
multiple third parties.

A novel dynamic taint tracking system TaintSNIFFER [21] has been built by
Miller and Sandhu for Microsoft’s research homogeneous C3 web browser. The
authors extended the C3 browser’s Javascript engine [5] and its DOM subsystem
to dynamically taint and track user-provided data and sensitive internal data of
certain DOM nodes. While it does specify a reasonable policy for propagating
taint, as well as providing a decent test suite, there is no policy or mechanism
given or implemented for using taint to do anything. One notable missing feature

38

is that their implementation requires the use of C3’s JavaScript interpreter, missing
out on its just-in-time (JIT) compiler’s performance benefits.
To enforce confidentiality and integrity policies, Jan et al. proposed a rewriting
based approach, called TSET [17], that define what information can flow into and
from untrusted third party JavaScript code in the Chrome browser. To invoke on
any JavaScript code, a rewriting function as a C++ method is implemented and
then sent into the V8 execution engine. The resource loader of Chrome is modified
in order to put the TSET library code into JavaScript program it retrieves.
Karim et al. implemented a platform-independent dynamic taint analysis tool for
JavaScript, called Ichnaea [19]. This approach can be used with nay JavaScript en-
gine and can track taint on primitive values without boxing. To associate a taint
value with each value stored in memory, the technique uses a shadow memory
model. They encoded the taint propagation logic as instructions for an abstract
machine, so as to leverage an existing JavaScript instrumentation framework called
Jalangi. Jalangi operates via a source-to-source transformation, aware of all the
dynamic features of JavaScript, which inserts callbacks for all the main opera-
tions performed by the JavaScript interpreter. In particular, the instrumented
JavaScript preserves the semantics of the original JavaScript, while running an
abstract machine to track information flows in parallel. The abstract machine
manipulates a stack of abstract values that reflect the taints of values on the run-
time. To evaluate Ichnaea, the authors applied it to a Tizen web application to
detect privacy leaks and identified flows of tainted input data to sensitive sinks
in Node.js modules, thus detecting both known and unknown vulnerabilities. Our
implementation follows the approach proposed in Ichnaea with few modifications,
yet it is targeted to a different application scenario.

39

Chapter 6

Conclusion

In this thesis, we performed a first empirical analysis of the use of web storage
in the wild, based on dynamic taint tracking and an automated classification of
the detected information flows. Our analysis showed that web storage is routinely
accessed by third parties, including known web trackers, who are particularly eager
to have both read and write access to persistent web storage information. This
motivates the need for further research on the security and privacy implications of
web storage content, that we plan to pursue as a follow-up work of this preliminary
investigation.
In particular, we plan to reuse known heuristics from the literature [8, 12] to detect
personally identifiable information and better investigate the real-world privacy
implications of the detected tracking flows. We also want to take a more in-depth
look into the most popular libraries introducing information flows involving the
Web Storage API, given the impact that libraries may have. Finally, we would
like to further refine our classification of information flows to account for common
use cases that we anticipate, e.g., web authentication and browser fingerprinting.
Digging into selected use cases may be helpful to provide additional insights of the
uses and abuses of web storage in the wild.

40

Bibliography

[1] Zubair Ahmad, Samuele Casarin, and Stefano Calzavara. What storage? An empirical
analysis of web storage in the wild. 2022.

[2] Abdullah Mujawib Alashjee, Salahaldeen Duraibi, and Jia Song. Dynamic taint analysis
tools: A review. International Journal of Computer Science and Security (IJCSS), 13(6):
231–244, 2019.

[3] Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld. We are family: Relating information-
flow trackers. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Computer
Security - ESORICS 2017 - 22nd European Symposium on Research in Computer Security,
Oslo, Norway, September 11-15, 2017, Proceedings, Part I, volume 10492 of Lecture Notes
in Computer Science, pages 124–145. Springer, 2017. doi: 10.1007/978-3-319-66402-6\ 9.
URL https://doi.org/10.1007/978-3-319-66402-6 9.

[4] Adam Barth. HTTP State Management Mechanism. RFC 6265, April 2011. URL https:
//rfc-editor.org/rfc/rfc6265.txt.

[5] Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wolfram
Schulte, Nikolai Tillmann, and Herman Venter. Spur: a trace-based jit compiler for cil.
In Proceedings of the ACM international conference on Object oriented programming sys-
tems languages and applications, pages 708–725, 2010.

[6] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta. Surviving
the web: A journey into web session security. ACM Comput. Surv., 50(1):13:1–13:34, 2017.
doi: 10.1145/3038923. URL https://doi.org/10.1145/3038923.

[7] Quan Chen and Alexandros Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1687–
1700. ACM, 2018. doi: 10.1145/3243734.3243823. URL https://doi.org/10.1145/
3243734.3243823.

[8] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and Alexandros Kapravelos. Cookie
swap party: Abusing first-party cookies for web tracking. In Jure Leskovec, Marko Gro-
belnik, Marc Najork, Jie Tang, and Leila Zia, editors, WWW ’21: The Web Conference
2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 2117–2129. ACM
/ IW3C2, 2021. doi: 10.1145/3442381.3449837. URL https://doi.org/10.1145/
3442381.3449837.

[9] Andrey Chudnov and David A. Naumann. Inlined information flow monitoring for
javascript. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, pages 629–643. ACM, 2015. doi: 10.1145/2810103.2813684.
URL https://doi.org/10.1145/2810103.2813684.

[10] Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM, 19
(5):236–243, 1976. doi: 10.1145/360051.360056. URL https://doi.org/10.1145/
360051.360056.

[11] ECMAScript 5.1, Jul 2011. URL https://262.ecma-international.org/5.1/.

41

https://doi.org/10.1007/978-3-319-66402-6_9
https://rfc-editor.org/rfc/rfc6265.txt
https://rfc-editor.org/rfc/rfc6265.txt
https://doi.org/10.1145/3038923
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3442381.3449837
https://doi.org/10.1145/3442381.3449837
https://doi.org/10.1145/2810103.2813684
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://262.ecma-international.org/5.1/

[12] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site measurement
and analysis. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016, pages 1388–
1401. ACM, 2016. doi: 10.1145/2976749.2978313. URL https://doi.org/10.1145/
2976749.2978313.

[13] Joint Task Force. Security and privacy controls for information systems and organizations.
Technical report, National Institute of Standards and Technology, 2017.

[14] Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20.
IEEE Computer Society, 1982. doi: 10.1109/SP.1982.10014. URL https://doi.org/
10.1109/SP.1982.10014.

[15] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and Ryan
Berg. Saving the world wide web from vulnerable javascript. In Matthew B. Dwyer
and Frank Tip, editors, Proceedings of the 20th International Symposium on Software
Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages 177–
187. ACM, 2011. doi: 10.1145/2001420.2001442. URL https://doi.org/10.1145/
2001420.2001442.

[16] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. Jsflow: tracking in-
formation flow in javascript and its apis. In Yookun Cho, Sung Y. Shin, Sang-Wook Kim,
Chih-Cheng Hung, and Jiman Hong, editors, Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1663–1671. ACM, 2014. doi:
10.1145/2554850.2554909. URL https://doi.org/10.1145/2554850.2554909.

[17] Dongseok Jang, Ranjit Jhala, and Sorin Lerner. Rewriting-based dynamic information flow
for javascript. 2012.

[18] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for javascript. In
Jens Palsberg and Zhendong Su, editors, Static Analysis, 16th International Symposium,
SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings, volume 5673 of Lecture
Notes in Computer Science, pages 238–255. Springer, 2009. doi: 10.1007/978-3-642-03237-
0\ 17. URL https://doi.org/10.1007/978-3-642-03237-0 17.

[19] Rezwana Karim, Frank Tip, Alena Sochurková, and Koushik Sen. Platform-independent
dynamic taint analysis for javascript. IEEE Trans. Software Eng., 46(12):1364–1379, 2020.
doi: 10.1109/TSE.2018.2878020. URL https://doi.org/10.1109/TSE.2018.2878020.

[20] Butler W. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613–615,
1973. doi: 10.1145/362375.362389. URL https://doi.org/10.1145/362375.362389.

[21] Aaron Miller and Paramjit Singh Sandhu. Taintsniffer : A robust dynamic taint tracking
system for a homogenous web browsing environment. 2010.

[22] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J.
Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June
1999. URL https://rfc-editor.org/rfc/rfc2616.txt.

[23] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczynski,
and Wouter Joosen. Tranco: A research-oriented top sites ranking hardened against
manipulation. In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019.
URL https://www.ndss-symposium.org/ndss-paper/tranco-a-research-
oriented-top-sites-ranking-hardened-against-manipulation/.

[24] Eric Rescorla. HTTP Over TLS. RFC 2818, May 2000. URL https://rfc-editor.org/
rfc/rfc2818.txt.

42

https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1145/362375.362389
https://rfc-editor.org/rfc/rfc2616.txt
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://rfc-editor.org/rfc/rfc2818.txt
https://rfc-editor.org/rfc/rfc2818.txt

[25] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
J. Sel. Areas Commun., 21(1):5–19, 2003. doi: 10.1109/JSAC.2002.806121. URL https:
//doi.org/10.1109/JSAC.2002.806121.

[26] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information release. In
Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki, editors, Software Security - The-
ories and Systems, Second Mext-NSF-JSPS International Symposium, ISSS 2003, Tokyo,
Japan, November 4-6, 2003, Revised Papers, volume 3233 of Lecture Notes in Com-
puter Science, pages 174–191. Springer, 2003. doi: 10.1007/978-3-540-37621-7\ 9. URL
https://doi.org/10.1007/978-3-540-37621-7 9.

[27] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. Explicit secrecy:
A policy for taint tracking. In IEEE European Symposium on Security and Privacy, Eu-
roS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 15–30. IEEE, 2016. doi:
10.1109/EuroSP.2016.14. URL https://doi.org/10.1109/EuroSP.2016.14.

[28] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but might have been
afraid to ask). In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA, pages 317–331. IEEE Computer Society, 2010.
doi: 10.1109/SP.2010.26. URL https://doi.org/10.1109/SP.2010.26.

[29] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: a se-
lective record-replay and dynamic analysis framework for javascript. In Bertrand Meyer,
Luciano Baresi, and Mira Mezini, editors, Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013,
pages 488–498. ACM, 2013. doi: 10.1145/2491411.2491447. URL https://doi.org/
10.1145/2491411.2491447.

[30] Alexander Sjösten, Daniel Hedin, and Andrei Sabelfeld. Essentialfp: Exposing the
essence of browser fingerprinting. In IEEE European Symposium on Security and Privacy
Workshops, EuroS&P 2021, Vienna, Austria, September 6-10, 2021, pages 32–48. IEEE,
2021. doi: 10.1109/EuroSPW54576.2021.00011. URL https://doi.org/10.1109/
EuroSPW54576.2021.00011.

[31] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and Andrei
Sabelfeld. An empirical study of information flows in real-world javascript. CoRR,
abs/1906.11507, 2019. URL http://arxiv.org/abs/1906.11507.

[32] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-site scripting in the
wild. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019. URL
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-
investigating-the-prevalence-of-persistent-client-side-cross-
site-scripting-in-the-wild/.

[33] Web Storage. Web storage, Jan 2022. URL https://html.spec.whatwg.org/
multipage/webstorage.html.

43

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1109/EuroSP.2016.14
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1109/EuroSPW54576.2021.00011
https://doi.org/10.1109/EuroSPW54576.2021.00011
http://arxiv.org/abs/1906.11507
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-scripting-in-the-wild/
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-scripting-in-the-wild/
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-scripting-in-the-wild/
https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/webstorage.html

	Introduction
	Background
	Basics of the Web
	Cookies
	JavaScript
	Same Origin Policy

	Web Storage
	Information Flow Control
	Explicit flows
	Implicit flows

	Jalangi

	Dynamic Taint Tracking
	Overview
	Technical Details
	Core JavaScript
	Taint model
	Abstract machine
	Generating instructions

	Example
	Error handling

	Web Measurement
	Methodology
	Sources and sinks
	Web crawling
	Flow classification

	Measurement Results

	Related work
	Conclusion

