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Abstract

Dense depth maps are important and have many applications in different computer
vision tasks. To mention some of them, in autonomous driving, LIDAR sensors
acquire a depth information to understand the environment around. Stereo vi-
sion, semantics segmentation, and optical flow are other tasks that uses a depth
information. Depth completion aims to recover a dense depth map given sparse
depth samples and optional additional data as input. While some methods take
only sparse data as input, Others consider the corresponding RGB image as guid-
ance to get a better dense depth representation. With the rise of data driven neural
networks, most computer vision researchers moved away from classical methods
and exploited the power of Convolutional Neural Network (CNN) for recovering
accurate and dense depths. Some classical handcrafted methods also provide a
commensurate result as that of modern deep neural network methods with a small
computational time and computing resource requirement.

In this paper we have designed a depth completion algorithm that mixes a clas-
sical method with a modern learning-based method. The proposed method com-
bines the two approaches to take advantage of the two methods by giving a more
dense depth and can be trained from end-to-end. We evaluate our algorithm on
the challenging KITTI depth completion benchmark dataset. Finally, we make
a comparative analysis with some existing state of the art classical and modern
depth completion approaches.
Keywords:

Depth Completion, Convolutional Neural Network, Sparsity Invariant CNN, depth
up-sampling and down-sampling, Multi-scale Encoder-Decoder Network
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Chapter 1

INTRODUCTION

1.1 Introduction

Depth Completion has become an important problem in recent years with the
rapid growth of Computer Vision Application, such as autonomous driving, opti-
cal flow, stereo vision, and un-manned aerial vehicle control. To obtain a reliable
depth completion, information from different sensors are used. e.g, Light De-
tection and Ranging (LiDAR) sensors and RGB cameras. Depth sensors such
as LiDAR sensors, produce accurate depth measurements with high frequency.
However, the depth data obtained is very sparse because of several reasons, for
example because of hardware limitations. To solve such problems, there have
been a lot of works to get a dense depth data given a sparse information. This
process of getting a dense depth map from a sparse depth map is called Depth
Completion. Early depth completion problems[1] were based on basic image pro-
cessing operations that does not rely on large data and high computing power.

Modern depth completion algorithms are neural network based[2][3] , and highly
dependant on large amount of data and usually requires high computing resources.
Different kinds of neural network based methods have been proposed in the liter-
ature for depth completion problems. They range from approaches taking sparse
depth input only to guided approaches which uses an additional RGB image.

This paper aims to show mixing some classical and learning based methods could
give a better result. In particular, we have used a learning-based Sparsity Invariant
Convolutional Neural Network (CNN)[3], and HMS-Net[2] to mix with classical
approach which uses IDW. We showed that mixing the two approaches would
allow us to take advantage of the two methods.

1
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1.1.1 Depth Completion

Depth completion starts from a sparse set of known depth values and estimates
the unknown depths for the remaining image pixels. The given sparse depth input
is acquired/captured by different sensors, such as a LiDAR (laser scanner) sensor,
and RGB camera.

Depth completion can refer to a range of related problems with different input
modalities. e.g. exemplar-based depth inpainting, object-aware interpolation, and
Nearest Neighbour Interpolation with CNN. However, depth completion can also
refer to the problem of generating dense depth information from a scene when
only a sparse representation of the scene depth is available. In this way we learn
the structural composition of the scene.

Depth completion has got a particular interest in many applications, including
stereo vision, optical flow, autonomous vehicles, and 3D reconstruction from
sparse LiDAR data.
Depth completion can be categorized into different groups based on the principles
they used. Based on input modalities they can be grouped into guided[2] and non-
guided[3][1]. Guided depth completion problems are those that use RGB image as
a guidance, together with the sparse input depth, where as non-guided approaches
takes the sparse input only. Based on whether they require training or not, they can
also be divided as trainable[2][3][4] and non-trainable[1][5]. Non-trainable meth-
ods generate dense depth maps from sparse inputs based on hand-crafted rules,
but trainable methods are mainly based on deep neural networks. In this paper
we combine a non-guided trainable methods called sparsity invariant CNN, and
HMS-Net with a non-trainable method called IDW.

1.1.1.1 Formulation of Depth Completion from a mathematical perspective

The problem of Depth Completion can be described as follows:
Given an image I ∈ RM×N and a sparse depth map Dsparse ∈ RM×N find f̂
that approximates a true function f : ∈ RM×N × ∈ RM×N → ∈ RM×N where
f(I,Dsparse) = Ddense. the problem can be formulated as:

‖ f̂(I,Dsparse)− f(I,Dsparse) ‖2= 0 (1.1)

Here Ddense is the output dense depth map , and has the same size as I and Dsparse

with empty values replaced by their depth estimate. In the case of non-guided
depth completion, the above formulation becomes independent of the image I as
shown in figure 1.1.
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Figure 1.1: A toy example summarizing the problem formulation described in 1.1.
Empty values are coloured in red, and filled by applying the function f to Dsparse

1.1.2 Classical Depth Completion Approaches

With the rise of data driven neural networks, as a realization of universal function
approximators, most research in computer vision has moved away from classical
image processing that uses a hand crafted kernels to a learning based methods.
Classical depth completions are Non-learning-based approaches that does not re-
quire training. Non-learning-based approaches generate dense depth maps from
sparse inputs based on hand-crafted rules. Therefore, the outputs of these algo-
rithms are generated based on assumed prior by humans. As a result, they are not
robust enough to sensor noises and are usually specifically designed for certain
datasets. But, with a well designed algorithm, some classical methods [1] [6] are
capable of outperforming neural network based methods on the task of depth com-
pletion. In[1], a sequence of morphological operation are applied to get a dense
depth map from a given sparse input.

An other classical method to apply for depth completion is to use a method of in-
terpolation that estimates cell values by averaging the values of sample data points
in the neighborhood of each processing cell, called IDW. The closer a point is to
the center of the cell being estimated, the more influence, or weight, it has in the
averaging process. Although all these classical methods are getting depreciated
because of the rise of deep neural networks, they can be still used by mixing them
with a modern depth completion problem. In this paper we have shown that by
mixing IDW with a learnable neural network based methods, such as HMS-Net
and Sparsity Invariant CNN, a better result can be gained.
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1.1.3 Learning-based Depth Completion Approaches

For learning-based approaches, state-of-the-art methods are mainly based on deep
neural networks. Various methods mainly utilize deep CNN [3] [7] [2], for gener-
ating dense depth maps from sparse inputs. Ma and Karaman [7] simply filled 0s
to locations without depth inputs to create dense input maps, which might intro-
duce ambiguity to very small depth values. Chodosh et al. [4] proposed to extract
multi-level sparse codes from the inputs and used a 3-layer CNN for depth com-
pletion. However, those two methods used conventional convolution operations
designed for dense inputs. Uhrig et al. [3] proposed sparsity-invariant convolu-
tion, which is specifically designed to process sparse maps and enables processing
sparse inputs more effectively with CNN. However, the sparsity-invariant convo-
lution in [3] only mimics the behavior of convolution operations in conventional
dense CNNs. Its feature maps of later stages lose much spatial information and
therefore cannot effectively integrate both low-level and high-level features for
accurate depth completion. In this paper, in addition to Sparsity Invariant CNN,
a multi-scale encoder-decoder network, HMS-Net[2], which adopts a series of
sparsity-invariant convolutions with downsampling and upsampling to generate
multi-scale feature maps and shortcut paths for effectively fusing multi-scale fea-
tures has been adopted to overcome the problems mentioned above.

1.1.4 Classical Versus Modern Depth Completion Approaches

Many different approaches have been proposed for depth completion. These ap-
proaches range from handcrafted image processing methods[1] to end to end train-
able ones [2][3]. The latter are very interesting as they do not require too much hu-
man involvement because of their data driven nature. However using deep learn-
ing approaches results in multiple consequences. First , learning based methods
are mostly run on GPU power, and GPU power is always finite. GPUs are very
power hungry, and deploying a GPU for each module to run is prohibitive. Sec-
ond using deep neural network models require deep understanding of the model.
lack of understanding of deep neural network models results in a poor design and
sub-optimal result.
On certain problems, deep learning based approaches can still be outperformed by
well designed classical image processing based algorithms[1]. These algorithms
are non-learnable and usually can be run on CPU without requiring too much
computation power. They relies on image processing operations, and do not have
a problem of over-fitting which is a sensitive issue in learning based approaches.
Especially in situation where there is no enough training data, it is wise to use this
methods.
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1.1.5 Application of Depth Completion

• Autonomous driving

• 3D object detection

• Optical flow estimation

• Semantic segmentation

• Stereo vision

• Security surveillance,

• 3D reconstruction from sparse LIDAR data.

1.2 Motivation

Modern learning-based Depth Completion problems such as [2][3] have been
widely used to obtain a dense depth map from a sparse depth information. Al-
though they require large amount of training data and high computing power,
several state of the art algorithms outperformed classical approaches. The per-
formance of most state of the art learning based methods depends on the sparsity
level of the input depth. The depth maps are acquired through sensor devices such
as RGB camera, and LiDAR which gives a sparse input. Some problems use RGB
image as a guidance in addition to the sparse input to get a better result.
In this paper we have designed a problem that allows us to tackle the problem of
sparse input by mixing a learning based depth completion method with a classical
method. We have showed that mixing the results of the two approaches would
give a better dense depth information.

1.3 Challenges

To complete the task of depth completion various depth sensors such as LiDAR
have been invented to acquire depth information. However, current depth sensors
are not able to obtain dense maps for outdoor scenes, which are essential in vari-
ous applications, especially autonomous driving. Besides the depth map obtained
by such sensors is highly sparse and irregularly spaced, and as a result depth com-
pletion from sparse depth maps and RGB images has attracted intensive attention.
For example, in the KITTI dataset [8], there are only 5.9% pixels with depth in-
formation obtained by the Velodyne HDL-64e (64 layers) LiDAR in the whole
image space.
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Recent studies such as [3] [8], have demonstrated great advantages of deep Con-
volutional Neural Networks (CNNs) on depth completion. By extending the con-
volutional operation with sparsity-invariant, these deep methods can achieve way
better performance than traditional methods. One of the challenges of depth com-
pletion problem in this paper was the sparsity of the input data. A properly de-
signed algorithm is required to handle several levels of sparsity. The other chal-
lenge was there was no common methods to visualize the output depth maps.

1.4 Problem Definition

Depth completion aims to recover a dense depth map from the sparse depth data
and an optional RGB image. The observed pixels provide a significant guidance
for the recovery of the unobserved pixels’ depth. Additional input mask is also
used to keep track of the visibility state and make it available to the next layers
of the network. In this paper we have designed a depth completion problem by
mixing a learning-based method, such as HMS-Net and Sparsity Invariant CNN
with a classical method, IDW. The mixing is performed by taking a pre-trained
network in[2][3], and mixing it with IDW. The mixed result is then further passed
through other convolutions layers.

1.5 Objectives

The objective of this paper is to investigate some learning-based and classical
depth completion problems and to design a problem that mixes the two approaches.
In particular we have adopted HMS-Net [2] and Sparsity Invariant CNN[3] to
mix with IDW[5], and designed two depth completion problems , one is mixing
HMS-Net with IDW, and the other is mixing Sparsity Invariant CNN with IDW.

1.6 Outline of the Thesis

The remaining part of the document is organized as follows,

Chapter 2 describes the classical depth completion approach used in this paper to
design our depth completion problem. We have used a handcraft image processing
method called Inverse Distance Weighted. The IDW is mixed with HMS-Net, and
Sparsity Invariant CNN to design two kind of depth completion problems.
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Chapter 3 is one of the main topic of this paper which gives a brief and detailed
explanation about HMS-Net and Sparsity Invariant CNN. HMS-Net and Sparsity
Invariant CNN are learning based depth completion methods.

Chapter 4 gives a brief overview of our depth completion problem design. We
have designed two models. one is the mixture of Sparsity Invariant and IDW, and
the other is designed by mixing HMS-Net and IDW. The two designs follow the
same procedure except that their internal network is different.

Chapter 5 describes the experiment and results of the models. In this section we
mentioned the parameters in the experimental setups , dataset, metrics, and the
experimental results. The result of different algorithms are also analysed and their
performance is compared using different metrics.

Chapter 6 is conclusion which summarizes the basic works done so far and the
main talking points from the result we saw. It also includes personal recommen-
dation for further work.



Chapter 2

Classical Depth Completion

2.1 Two-dimensional interpolation Functions

In many fields using empirical areal data, there arises a need for interpolating from
irregularly-spaced data to produce a continuous surface. These irregularly spaced
locations, hence referred to as “data points”, may have diverse meanings: in me-
teorology, weather observation stations; in geography, surveyed locations; in city
and regional planning, centers of data-collection zones; in biology, observation
locations; in computer vision, depth information or values. It is assumed that a
single unique number is assigned to each data point such as rain fall in meteorol-
ogy, depth values in computer vision.

In order to display these data in some type of contour map or perspective view,
to compare them with data for the same region based on other data points, or to
analyze them for extremes, gradients, or other purposes, it is extremely useful, if
not essential, to define a continuous function fitting the given values exactly. In-
terpolated values over a fine grid may then be evaluated.
In essence, it is desired to find a function that finds the value for interpolated point
from from the given irregularly-spaced data points. It is assumed that a finite num-
ber N of triplets (xi, yi, zi) are given, where, xi and yi are Cartesian coordinates
of the corresponding data values. An interpolation function z = f(x, y) to assign
a value to any location P (x, y) in the plane is sought.

8
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2.2 Existing Approaches for Two-dimensional Inter-
polation

Although many solutions to related problems in two dimensional interpolation
have been in long use, interpolation functions making an exact fit for irregularly
spaced data are rare. When the data points already form a regular lattice, many
solutions are possible. Among the most significant solutions for a rectangular grid
are fitting a hyperbolic paraboloid to each four data points by double linear inter-
polation [9], or employing bi-cubic spline interpolation[10]. For a triangular lat-
tice, fitting a plane to each three points is easy and effective. Downing, has devel-
oped a computer contouring program which interpolates intervening points from
a square lattice, making possible planar interpolation over a triangular grid[11].
An other approach, easier to use and very elegant, would be to fit a polynomial
or trigonometric function in two variables with enough coefficients so that it as-
sumes exactly all the data values. Berezin, suggests a general formula for fitting
a polynomial of degree N − 1 in x and y to N data points[12]. Though it meets
all the criteria, the computations became exceedingly long with large numbers of
data points. To find an interpolated value given 1000 data points, for example,
would require evaluating and multiplying 999 scalar products of two-dimensional
vectors.

2.3 Inverse Distance Weighted Interpolation

IDW is a spatial interpolation approach that is used commonly to estimate an un-
sampled or unmeasured variable at any location in a study area [5]. IDW is a
deterministic interpolation approach which considers the distance of an unsam-
pled point towards a set of surrounding sampling points in weights determination
stage. An initial inverse distance function was tested; in it the value at any point
P in the plane was a weighted average of the values at the data points Di.

2.3.1 Methodology

To estimate an unsampled point using IDW method, a number of sampling points
are required. Based on the distance between an unsampled point to each sampling
point that involves in the calculation process, the weight will be determined with
Shepard’s rule [5] as in equation 2.1, where di is the Euclidean distance from
the unsampled to the sampling point which can be calculated using equation 2.2.
Lastly, P stands for power. The default value in shepard rule is 2.
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Let zi be the value at data point Di and d[P,Di] be the Cartesian distance between
P and D. Where the reference point P is understood, d[P,Di] will be shortened to
di. The interpolated value at P using this first interpolation function is:

f1(P ) =



N∑
i=1

d−ui zi

N∑
i=1

d−ui

, if di 6= 0 for all Di

0, if di = 0 for some Di

(2.1)

The distance di is computed using the following equation:

di =
√

(xi − xz)2 + (yi − yz)2 (2.2)

In equation 2.1, notice that as P approaches a data point Di, di → 0, and the ith

terms in the numerator and denominator exceed all bounds while the other terms
remain bounded. Therefore limP→Di

f1(P ) = zi as desired, and the
function f1(P ) is continuous

In this paper, we used IDW to compute a set of kernels for each power values
used. we have used seven power values between 2and4, and a kernel of size
31 × 31 is computed using equation 2.2. The given sparse depth map is used as
input, and seven feature depth maps are computed by applying conventional con-
volution using seven different kernels. A detailed description on how we mix the
outputs of IDW with HMS-Net and Sparsity Invariant CNN, will be given in 4
section.

2.3.2 Choice of Exponent

As mentioned above, weights are proportional to the inverse of the distance be-
tween the data point and the prediction location raised to the power value u. As a
result, as the distance increases, the weights decrease rapidly. The rate at which
the weights decrease is dependent on the value of u. If u = 0, there is no de-
crease with distance, and because each weight 1

dui
is the same, the prediction will

be the mean of all the data values in the search neighborhood. As u increases, the
weights for distant points decrease rapidly.
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If the u value is very high, only the immediate surrounding points will influence
the prediction. Figure 2.1 shows the relationship between distance and weight as
a function of power value.

Empirical tests showed that higher exponents (u > 0) tend to make the surface
relatively flat near all data points, with very steep gradients over small intervals
between data points. Lower exponents produce a surface relatively flat, with short
blips to attain the proper values at data points. An exponent of u = 2 not only
gives seemingly satisfactory empirical results for purposes of general surface map-
ping and description, but also presents the easiest calculation. In this paper we
have used a set of power values between 2 and 4, and we let the network to choose
based on some probability estimates.

Figure 2.1: Decrease of weight with distance illustration

2.3.3 The search neighborhood

There are two approaches that can be chosen in selecting sampling point around an
estimated point location [5]. The first approach is based on an arbitrary distance
criterion, all data points within some radius r of the point P, and the second one is
using an arbitrary number criterion, the nearest n data points, could be employed.
The former choice, though computationally easier, allowed the possibilities that
no data points, or an unmanageable large number of data points, might be found
within the radius r.
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The latter choice required a more detailed searching and ranking procedure for
data points, and presupposed that a single number of interpolating points was
best, regardless of the relative location and spacing of the points. In our paper, in
order that the interpolation work reasonably, the data points were gridded, a set of
data points was chosen in a square patch, and the value for the interpolated point
is computed using the conventional convolution operation.

2.3.4 Shortcomings of Pure Inverse-Distance Weighting

Though the above method is sufficiently simple, and effective for our depth com-
pletion problem design , it did have several shortcomings.

1. When the number of data points is large, the calculation of z = f1(P )
becomes proportionately longer. Eventually the method will become ineffi-
cient or impractical.

2. Only the distances to P from the data points Di, and not the direction, are
considered. Therefore the following two configurations of co-linear points,
for example, would yield identical interpolated value.

Figure 2.2: Different configuration of colinear points

3. Computational error becomes significant in the neighborhood of points Di,
as the predominant term results from the difference of two almost equal
numbers.
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2.3.5 Chapter Summary

In many fields using empirical areal data there arises a need for interpolating from
irregularly-spaced data to produce a continuous surface. These irregularly spaced
locations, are referred to as data points. There are different kinds of function that
finds the value for interpolated point from the given irregularly-spaced data points.
Among the most significant solutions are, double linear interpolation, bi cubic
spline interpolation, fitting a polynomial or trigonometric functions, and inverse
distance weighted (IDW) interpolation. In this paper we have adopted IDW[5] as
a classical methods of interpolating missing depth values, and this result will be
mixed with learning based depth completion methods, such as Sparsity Invariant
CNN and HMS-Net.

IDW is a deterministic interpolation approach which considers the distance of an
unsampled point towards a set of surrounding sampling points in weights determi-
nation stage. Based on the distance between an unsampled point to each sampling
point that involves in the calculation process, the weight will be determined with
Shepard’s rule. In IDW there are some parameters that has to be selected care-
fully, such as, power value, and the number of neighboring points considered in
the calculation of interpolated point value.



Chapter 3

Learning-based Depth Completion

3.1 Introduction

The popularity of using depth sensing devices for dense depth prediction is con-
stantly increasing in recent years. Though, some of these sensors give accurate
depth measurement, e.g. LiDAR sensors, they suffer from the deficiency in pro-
ducing a dense depth map. For example, in LiDAR sensors, only about 5% of
pixels in generated depth map are observable [13]. Such a sparse output is insuf-
ficient for real world applications such as 3D reconstruction and mapping. Thus,
it is of great value to research on the topic of sparse depth completion.

Currently, many methods have been proposed for this problem. These works can
be categorized into two groups: depth-only completion and image guided com-
pletion. The depth-only methods use sparse depth map as input and infer the
missing depth values to generate a full resolution depth map[2] [3]. However, as
the observable depth points are unevenly scattered on the depth map, it is difficult
to estimate the depth of non-observable area where the available measurements
are too sparse. Hence, the accuracy of the depth-only method is still insufficient
for practical usage. The image guided methods take sparse depth along with the
synchronized RGB image as input [2]. The rich semantic information from image
domain provides strong depth cues to assist the completion. Thus, these methods
achieves better performance than depth-only approaches. In general, the image
guided completion focuses on two topics: how to process sparse input and how to
fuse data from different modalities. As the Convolutional Neural Network (CNN)
is a powerful tool to perceive image data , the state-of-the-art depth completion
works are mainly based on CNN.

14
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Normally, the invalid pixels on a depth map are encoded by a default value, i.e.,
zero. This setting makes the traditional convolution operation difficult to distin-
guish between the valid and non-valid depth points. Besides, when the input to the
network is sparse and irregular (e.g., when only 10% of the pixels carry informa-
tion), it becomes less clear how the convolution operation should be defined as for
each filter location the number and placement of the inputs varies. To solve these
problems, different depth completion tasks that use a Sparsity Invariant Convolu-
tion [3] [2] are proposed, which utilizes an observation mask to instruct convo-
lution calculation and normalize output features. However, the sparsity-invariant
convolution in [3] only mimics the behavior of convolution operations in conven-
tional dense CNNs. Its feature maps of later stages lose much spatial information
and therefore cannot effectively integrate both low-level and high-level features
for accurate depth completion(see 3.1 for illustration).

On the other hand, there exist effective multi-scale encoder-decoder network struc-
tures for dense pixel-wise classification tasks (see 3.2), such as [14], and Full
Resolution Residual Network [15]. Direct integration of the sparsity invariant
convolution[3] into the multi-scale structures is infeasible, as those structures also
require other operations for multi-scale feature fusion, such as sparsity-invariant
feature upsampling, average, and concatenation.In this paper we have adopted
both Sparsity Invariant CNN, and a multi-scale encoder-decoder network, HMS-Net,
which adopts a series of sparsity-invariant convolutions with downsampling and
upsampling to generate multi-scale feature maps and shortcut paths for effectively
fusing multi-scale features.

Figure 3.2: Sparsity Invariant Encoder-Decoder Network
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Figure 3.1: CNN-with Sparsity Invariant Convolution only

3.1.1 Depth Completion Related Tasks

(A) Depth Completion
Depth completion is an active research area with a large number of appli-
cations. According to the sparsity of the inputs, current methods could be
divided into two categories: sparse depth completion and depth enhance-
ment. The former methods as the name indicates, aim at recovering dense
depth map from a sparse depth input, while the later methods work on con-
ventional RGB-D depth data(RGB image and corresponding sparse depth
map ) and focus on filling irregular and relatively small holes in input dense
depth maps. In addition, if the input depth maps are regularly sampled, the
depth completion task could be regarded as a depth upsampling (also known
as depth super-resolution) task. In other words, depth upsampling is a spe-
cific task of depth completion. According to whether RGB information is
utilized, depth upsampling methods could be divided into two categories:
guided depth upsampling and depth upsampling without guidance.

(B) Sparse Depth Completion
In sparse depth completion, to handle sparse inputs and sparse intermediate
feature maps, Uhrig et al. [3] proposed sparsity-invariant convolution to re-
place the conventional convolution in convolution neural networks (CNN).
The converted sparsity-invariant CNN keeps track of sparsity masks at each



3.2. SPARSITY INVARIANT CONVOLUTION 17

layer and is able to estimate dense depth maps from sparse inputs. There
also exist works utilizing RGB images as additional information to achieve
better depth completion. Huang et al. [2] combined both an RGB image
and and a sparse depth map to get a dense depth maps. In this paper we
have adopted a similar algorithm, but it only uses a sparse depth input.

(C) Depth Enhancement
The inputs of depth enhancement or depth hole-filling methods are usually
dense depth maps with irregular and rare small holes. The input depth maps
are usually captured with RGB images. Matyunin et al. [16] used the depth
from the neighborhoods of the hole regions to fill the holes, according to the
similarity of RGB pixels.

(D) Guided Depth Upsampling
Depth upsampling methods take low-resolution depth maps as inputs and
output highresolution ones. As the guidance signals, the provided RGB im-
ages bring valuable information (e.g., edges) for upsampling. Li et al. [17]
proposed a CNN to extract features from the low-resolution depth map and
the guidance image to merge their information for estimating the upsampled
depth map.

(E) Depth Upsampling Without Guidance
Depth upsampling could also be achieved without the assistance of corre-
sponding RGB images. they are are closely related to those for single image
superresolution.

3.2 Sparsity Invariant Convolution

In this section we describe about one of the learning based depth completion prob-
lem that we adopted in our design of depth completion problem. Jonas Uhrig et.
al[3] proposed this algorithm to overcome the problem of traditional convolutional
networks when applied to sparse data. they propose a simple yet effective sparse
convolution layer which explicitly considers the location of missing data during
the convolution operation.
The naive approach to sparse depth completion problem is to assign a default value
to all non-informative sites[18] [19]. Unfortunately, this approach leads to sub-
optimal results as the learned filters must be invariant to all possible patterns of
activation whose number grows exponentially with the filter size. By introducing
a novel sparse convolutional layer which weighs the elements of the convolution
kernel according to the validity of the input , Sparsity Invariant CNN can handle
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large levels of sparsity without significantly compromising accuracy. In addition,
there is a second stream that carries information about the validity of pixels to
subsequent layers of the network.

3.2.1 Conventional Convolution

The output of a standard Convolutional layer in a CNN is computed as follow:
Let f denote a mapping from input domain X (e.g., intensity, depth) to output do-
main Y (e.g., depth, semantics), implemented via a Convolutional neural network.
Given an partially observed input(sparse input) x = xu,v ∈ X , and corresponding
binary mask mx(u, v), the convolution output is given by:

fu,v(x) =
k∑

i,j=−k

x(u+ i, v + j)w(i, j) + b (3.1)

with kernel size 2k + 1, weight w and bias b. If the input comprises multiple
features, xu,v and wi,j represent vectors whose length depends on the number of
input channels. As it can be shown from 3.1, conventional convolution does not
handle invalid inputs.

3.2.2 Naive Approach

There are two naive ways to deal with unobserved inputs. The first approach is
encoding invalid inputs xu,v using a default value, e.g., zero. This approach is
very difficult to apply as network must learn to distinguish between observed in-
puts and those being invalid. this causes the number of possible binary patterns
to grow exponentially with the kernel size. Alternatively, M can be used as an
additional input to the network in the hope that the network learns the correspon-
dence between the observation mask and the inputs. Unfortunately, both variants
struggle to learn robust representations from sparse inputs.

3.2.3 Sparse Convolution

Sparsity Invariant Convolution overcomes the above problems using binary ob-
servation mask by evaluating only observed pixels and normalizing the output
appropriately. The convolution output is given by:
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z(u, v) =

k∑
i,j=−k

mx(u+ i, v + j)x(u+ i, v + j)w(i, j)

k∑
i,j=−k

mx(u+ i, v + j) + ε

+ b (3.2)

Here a small value, ε is added to the denominator to avoid division by zero at
locations where x(u + i, v + j) is invalid. The sparse feature map x and the
observation mask mx have the same spatial size H ×W . For each location (u, v),
the convolution produces output z(u, v). At each spatial location (u, v), the binary
sparsity mask mx(u, v) records whether there are input features at this location,
i.e., 1 for existing features and 0 otherwise. The convolution kernel w is of size
(2k + 1)× (2k + 1), and b represents a learnable bias vector. Note that the kernel
weights w and bias vector b are learned via back-propagation, while the sparsity
mask mx is specified by the previous layer and is not trainable. The observation
mask at each layer is computed using a max pooling operation as follow:

mx(u, v) = maxi,j=−k,...,k(ou+i,v+j) (3.3)

which evaluates to 1 if at least one observed variable is visible to the filter and 0
otherwise.

The primary motivation behind sparse convolution operation is to render the fil-
ter output invariant to the actual number of observed inputs which varies signifi-
cantly between filter locations due to the sparse and irregular input. Note that in
contrast to other techniques [20] [21], which artificially upsample the input (e.g.,
via interpolation), This approach operates directly on the input and does’t intro-
duce additional distractors. The operation of a Sparse convolution is illustrated in
Fig.3.3. In the figure ,

⊙
denotes elementwise multiplication, ? convolution, 1/x

inversion and “max pool” the max pooling operation. The input feature can be
single channel or multi-channel.

3.2.4 Sparsity Invariant Convolution Architecture

The architecture of sparsity invariant network is shown in figure 3.4. The input to
the network is a sparse depth map (yellow) and a binary observation mask (red). It
passes through several sparse convolution layers (dashed) with decreasing kernel
sizes from 11× 11 to 3× 3. all the convolution layers produce a 16 channel depth
features.
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Figure 3.3: Sparse Convolution

Figure 3.4: Network Architecture
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3.3 Hierarchical Multi-scale Encoder Decoder Net-
work

Neural networks that utilize multi-scale feature maps for pixelwise prediction (e.g.
semantic segmentation) were widely investigated. Combining both low-level and
high-level features was proven to be crucial for making accurate pixelwise predic-
tion. However the Sparsity Invariant CNN proposed in [3] can not be used with
HMS-Net as the HMS-Net can not be converted to handle sparse inputs. This is
because there exist many operations that do not support sparse feature maps. By
adding some operations, called sparsity invariant operation, sparsity invariant con-
volution proposed in[3] can be adopted with HMS-Net. The HMS-Net network
structure consists of the three novel sparsity invariant operations, and two basic
building blocks called two scale block and three scale block (see figure 3.5 for
detail illustrations).

Figure 3.5: Illustration of adopted multi-scale encoder-decoder network structure
for depth completion based on the sparsity-invariant operations
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3.3.1 Basic Building Blocks of HMS-Net

The two basic building blocks of HMS-Net, a two-scale block and a three-scale
block, consisting of a sequence of sparsity-invariant operations. The two-scale
block has an upper path that non-linearly transforms the full-resolution low-level
features by a K ×K sparsity-invariant convolution. The lower path takes down-
sampled low-level features as inputs for learning higher-level features with an-
other K ×K convolution. The value of K is set to 5. The resulting higher-level
features are then upsampled and added back to the full-resolution low level fea-
tures. Compared with the two-scale block, the three scale block fuses features
from two higher levels into the upper low-level feature path to utilize more aux-
iliary global information. In this way, the full-resolution low-level features are
effectively fused with higher-level information and are non-linearly transformed
multiple times to learn more complex prediction functions. All feature maps in
the network are of 16 channels regardless of scales.

3.3.2 Sparsity Invariant Operations In HMS-Net

The sparsity-invariant convolution successfully converts conventional convolution
to handle sparse input features and is able to stack multiple stages for learning
highly non-linear functions. However, only modifying convolution operations is
not enough if one tries to utilize state-of-the-art multi-scale encoder-decoder struc-
ture for pixelwise prediction. The multi-scale encoder-decoder networks cannot
be directly converted to handle sparse inputs.For this reason, Huang et.al [2] pro-
posed the three novel sparsity invariant operation.

The three novel Sparsity Invariant Operations, namely, Sparsity Invariant upsam-
pling, Sparsity Invariant Averaging, and Joint Sparsity Invariant Concatenation
and Convolution are adopted to allow effectively handling sparse feature maps
across the entire encoder-decoder network. As sparsity invariant convolution, a
single-channel sparsity masks to track the validity of feature map locations. The
sparsity masks could be used to guide and regularize the calculation of the opera-
tions.

3.3.2.1 Sparsity-Invariant Bilinear Upsampling

In multi-scale encoder-decoder network, Sparsity invariant upsampling is one of
the basic operations in the decoder part. Upsampling is an operation used to in-
crease the number of samples which are small in number or size by some factor.
There are different upsampling operations, such as, linear, bilinear, and cubic.
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Here we used the sparsity-invariant bilinear upsampling operation. Let x and mx

denote the input sparse feature map and the corresponding input sparsity mask
of size H ×W . The operation generates the output feature map z and its corre-
sponding sparsity mask mz of size 2H × 2W . Let F represents the conventional
bilinear upsampling operator, which bilinearly upsamples the input feature map
or mask by two times. The proposed sparsityinvariant bilinear upsampling can be
formulated as

z =
F (mx

⊙
x)

F (mx) + ε
, (3.4)

mz = 1[F (mx) 6= 0] (3.5)

Where · denotes the spatial elementwise multiplication, ε is a very small number
to avoid division by zero, and 1[·] denotes the indicator function, i.e. 1[ true ] = 1
and 1[ false ] = 0. The mask mz is computed using a max pooling operation given
in equation 3.3. The proposed sparsity-invariant bilinear upsampling operation is
illustrated in figure 3.4.

The sparsity invariant upsampling operation takes a single sparse depth x and
the corresponding mask mx. As shown in equation 3.4, first input x is element-
wise multiplied with its corresponding mask mx to give x

⊙
mx, then a bilinear

upsampling operator F is applied on both the resulting feature map, x
⊙

mx and
the binary mask mx. The upsampled sparse features F (mx

⊙
x) are then nor-

malized at each location according to the upsampled sparsity mask values F (mx).
The final sparsity mask mz is obtained by putting 1 on the non-zero locations of
the upsampled sparsity mask F (mx), otherwsie zero. practically this operation is
performed by applying max pooling operation on the upsampled mask.

An other operation used in the HMS-Net is called sparsity-invariant max-pooling
or downsampling. It is used to downsample the feature maps that we upsampled
using sparsity invariant upsampling operation. It could be calculated the same
as Eqs. 3.4 and 3.5 by replacing the upsampling function F with maxpooling or
downsampling operators.

3.3.2.2 Sparsity-Invariant Average or Summation

Pixelwise average of two feature maps of the same spatial sizes is needed for
fusing features from different levels without increasing the output channels. For
average of sparse input feature maps, however, specifically designed average oper-
ation is required. The sparsity-invariant average operation, takes two input sparse
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Figure 3.6: Illustration of the proposed sparsity-invariant upsampling operation.
F stands for Bilinear Upsampling

feature maps, x and y, with their corresponding sparsity masks, mx and my, as
inputs. sparsity-invariant average, which takes two input sparse feature maps, x
and y, with their corresponding sparsity masks, mx and my, as inputs. A sparse
feature map z, and corresponding mask mz is generated by fusing the two sparse
inputs. The main difference between sparsity invariant upsampling or downsam-
pling, and sparsity-Invariant Average is the number of sparse features taken as
input. The sparsity-invariant average can be computed as follow:

z =
(mx

⊙
x) + (my

⊙
y)

(mx) +myε
, (3.6)

mz = mx

∨
my (3.7)

where
∨

denotes elementwise alternation i.e., logical ’or’ function,
⊙

represents
elementwise multiplication, and ε is a very small number to avoid division by
zero.

Figure 3.7 illustrates the sparsity invariant average operation. On one side the two
sparse feature inputs, x and y are elementwise multiplied with their corresponding
masks, mx and my, and the output features are pixelwise added to generate a
feature, (mx

⊙
x) + (my

⊙
y). The output feature (mx

⊙
x) + (my

⊙
y) is

normalized by (mx+my), which is obtained by pixelwise addition the two masks.
On the other side, a logical ’or’ operation is performed on the masks mx, andmy

to generate the mask, mz of the output feature z. For the output sparsity mask mz,
at each location, if the location is valid for either of the input feature maps, the
mask is set to 1 for this location. At each location of the output feature map, the
output feature vector is the mean of two input feature vectors if both input maps
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are valid at this location. If only one input feature is valid at a location, the valid
single input feature vector is directly copied to the same location of the output
feature maps.

Figure 3.7: Illustration of the proposed sparsity-invariant average.

3.3.2.3 Joint Sparsity-Invariant Concatenation and Convolution

Another commonly used approach of fusing two feature maps with the same spa-
tial size is to concatenate features along the channel dimension. However, differ-
ent from aforementioned other operations, concatenation would introduce sparsity
in both the spatial dimension (H ×W ) and the feature dimension (C), and the
latter actually prevents us from simply extending the idea of sparsity-invariant
average in the previous subsection. If we have two feature maps with shape
C1 ×H ×W and C2 ×H ×W , concatenating them in to one results in a shape
of (C1 + C2) × H ×W as illustrated in figure 3.8. The concatenation is further
followed by 1 × 1 convolution layer. As we know convolution performs filtering
on a location by extracting one local feature vector with length C and summing
all entries up into a number with learnable weights. Then, the convolution kernels
iterate over the whole feature map, treating every location equally.

In sparsity-invariant convolution, the feature vector for a certain location only
have two possible sparsity patterns-the whole vector of length C is valid, or all
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the entries of this vector are zeros. Note that the contribution of the latter situa-
tion to the output as well as the gradient of kernels is zero, so it does not affect
the training. Therefore, it is enough for us to use one set of convolution kernels,
equally for every valid location.

However, when we are convolving on the feature maps after concatenation, we
have four different types of vectors or sparsity patterns for each location: the first
C1 feature channels of the vector is valid while the latter C2 feature channels are
not; or C2 is valid while C1 is not, or both of them are valid/invalid. Therefore, we
need three different sets of kernels to tackle these four different sparsity patterns.
In other words, to effectively handle different scenarios at different locations of
the concatenated feature maps, we propose to use an adaptive-kernel version con-
volution to solve the difficulty and combine it with concatenation together.

Another advantage of combining them is that all convolution kernels would gen-
erate outputs with the same spatial sparsity patterns. Therefore the output mask is
still of single channel, which is computationally efficient and reduces the model
complexity significantly. The joint sparsity-invariant concatenation and convolu-
tion is described and explained formally as following and illustrated in Fig.3.9.

Given the two input sparse feature maps x and y with their sparsity masks mx

and my, the proposed joint concatenation and convolution operation is formulated
as

z = [x; y] ? ka, (3.8)

mz = mx

∨
my (3.9)

where [; ] denotes the concatenation of two feature maps along the channel dimen-
sion, and ? denotes the conventional convolution operation. Note that the output
sparsity mask is calculated exactly the same as that in sparsity-invariant average.
The key of the proposed operation is a 1 × 1 convolution with an adaptive con-
volution kernel ka that handles three different scenarios of concatenating sparse
feature maps, which is formulated as

ka(u, v) =


k(1)a mx(u, v) = 1,my(u, v) = 0;

k(2)a mx(u, v) = 0,my(u, v) = 1;

k(3)a mx(u, v) = 1,my(u, v) = 1,

(3.10)

where ka(u, v) are the 1 × 1 adaptive convolution kernel at location (u, v) of the
concatenated feature maps [x; y]. k(1)a v k(2)a , and k(3)a ) are the three sets of learn-



3.3. HIERARCHICAL MULTI-SCALE ENCODER DECODER NETWORK 27

able convolution weights for the three different feature concatenation scenarios: at
each location (u, v), either both input feature vectors are valid (i.e., mx(u, v) = 1
and my(u, v) = 1), or only one of the input feature vectors is valid (i.e., either
mx(u, v) = 1 or my(u, v) = 1).The key reason for using different sets of kernel
weights instead of the same set of convolution weights, as we briefly introduced
before, is to avoid invalid input features in the concatenated feature maps into fea-
ture learning process. For example, if the current 1 × 1 convolution kernel is on
the location (u, v) and find that the first mask here mx(u, v) = 1 and the second
mask my(u, v) = 0), we choose kernel k(1)a . thus, this kernel is used both in for-
ward pass and backward propagation. In this case, we know the second chunk of
the feature vector, of which the length is fixed, is always zero. And because it’s
consistently processed by the first kernel, this kernel would naturally learn how to
adapt to this pattern.
In other words, by adopting the proposed adaptive convolution kernel ka, the three
sets of kernel weights k(1)a v k(2)a , and k(3)a ) are able to handle different sparse fea-
ture concatenation scenarios. With joint training, the different kernels are learned
to best adapt each other to generate appropriate feature representations for further
processing. In this way, the sparse feature maps could be effectively fused with
proposed concatenation.

Figure 3.8: Sparsity patterns vary from regions, thus we need several different
kernels to deal with out feature maps after concatenation.
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Figure 3.9: Illustration of the proposed joint sparsity-invariant concatenation and
convolution.
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3.4 Chapter Summary

Many deep learning based methods have been proposed for depth completion
problem in the literature. These problems can be grouped in different categories
based on some criteria. For example, based on input modalities, they can be cat-
egorized into two groups: depth-only completion and image guided completion.
The depth-only methods use sparse depth map as input and infer the missing depth
values to generate a full resolution depth map. The image guided methods take
sparse depth along with the synchronized RGB image as input.

In this chapter we have discussed the depth only learning based depth comple-
tion problems, including HMS-Net and Sparsity Invariant CNN. Sparsity Invariant
CNN handle different level of sparsity by using s a sparsity convolution layer. This
is achieved by incorporating an observation mask in each convolution operation.
The observation masks track the valid inputs along the convolution layers. At each
layer , they are updated using a soft max function. However, the sparsity-invariant
convolution only mimics the behavior of convolution operations in conventional
dense CNNs. Its feature maps of later stages lose much spatial information and
therefore cannot effectively integrate both low-level and high-level features for
accurate depth completion.

Neural networks that utilize multi-scale feature maps for pixelwise prediction
(e.g., semantic segmentation) were widely investigated. Combining both lowlevel
and high-level features was proven to be crucial for making accurate pixelwise
prediction. There exist effective multi-scale encoder-decoder network structures
for dense pixelwise prediction tasks. Hierarchical multi-scale network is differ-
ent from sparsity invariant CNN in that it can be used with multi-scale encoder-
decoder network. Using only sparsity-invariant convolution, the multi-scale encoder-
decoder networks cannot be directly converted to handle sparse inputs. This is
because there exist many operations that do not support sparse feature maps.
HMS-Net solve the problem by using three novel sparsity invariant operations
and allow encoder-decoder networks to be used for sparse data.



Chapter 4

Mixing Learning Based and
Classical Depth Completion
Problems

4.1 Introduction

As we explained in the previous chapters, there are different ways of categorizing
depth completion problems, based on the approach they adopted. These include
guided or unguided, and learning based or non-learning based depth completion
problems. While learning based methods require training to learn some parame-
ters, non-learning methods entirely depend on a hand crafted image processing,
which does not require training. In this paper we have covered two learning based
methods, HMS-Net and Sparsity Invariant CNN in chapter 3 and one classical
depth completion approach, IDW in chapter 2.

It is not customary to mix learning based approaches and non-learning classi-
cal approaches for depth completion task. In this paper we have designed a depth
completion model that combines learning based problems with classical one. We
demonstrate that by mixing the output depth features of a learning based method
with a classical depth completion method, a better dense depth map could be pro-
duced. The first model is designed by mixing HMS-Net and IDW, where as the
second one is obtained by mixing Sparsity Invariant CNN and IDW.

30
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4.2 Mixing Sparsity Invariant CNN and Inverse Dis-
tance Weighting

In this section we describe how to mix Sparsity Invariant CNN with IDW for depth
completion task. We adopted the network of Sparsity Invariant CNN in[3], and
IDW in[5] to design our depth completion problem.
IDW has no any learnable parameters, and used only to modify the output depth
feature of Sparsity Invariant CNN in the middle stages of the convolutional layers.
It can be used to create a more dense depth feature maps in the training process.
Our model of mixing Sparsity Invariant CNN and IDW is illustrated in figure 4.1.

As it can be seen in the figure, the sparse input depth is passed through a pre-
trained Sparsity Invariant CNN adopted in[3], and the result is given to the first
layer of our new convolutional layer. on the other side, the sparse input depth is
modified in such a way that , the depth values of invalid pixels are replaced by
depth values obtained from the pre-trained model at the corresponding positions.
Then the modified sparse input depth is given as input to IDW. The invalid pixel
depth values are modified using equation4.2. Then the outputs from IDW and the
first layer of the newly added convolution layer, are mixed and passed to the next
convolutional layers.

inputIDW = output ∗ (1−mask) + input (4.1)

Where inputIDW is input to IDW, output is output of the pre-trained model, input
is the given sparse input depth, and mask is the mask of the sparse input depth.
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Figure 4.1: Mixing Sparsity Invariant CNN and IDW.
[?]denoteschannelwisemultiplication

Figure 4.2: Operation of Inverse Distance Weighted
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4.2.1 Methodology

The first step in our design of mixing Sparsity Invariant with IDW is to precom-
pute a 31 × 31 kernel for the IDW interpolation using the formula describe in
chapter 2 section 2.3. A kernel of size 31 × 31 will be computed for each power
value between 2 and 4, producing 7 channels kernel or 7 different kernels. In par-
ticular we have used power values 2, 2.5, 2.8, 3, 3.2, 3.5, and 4. The power values
are selected in such a way that their Root Mean Square Error (RMSE) is small.
We have computed a depth feature maps for each power values from 1000 sparse
depth inputs by convolving 31 × 31 kernel. Then the RMSE is computed from
groundtruth depth values and the depth feature maps computed through IDW.
The plotted RMSE graph is illustrated in figure 4.3.

Given a sparse depth input x and a corresponding mask mx, a convolution oper-
ation is applied through the pre-trained model. Then the outputs of pre-trained
model is used to modify the sparse input depth that will be used as input to IDW.
Using a 7 channel kernel, IDW nework produces a 7 channel depth feature map.
There are no learnable parameters in IDW, and the kernels are computed offline.
The IDW operation is showed in figure 4.2. In the figure

⊙
denotes channelwise

multiplication , and ~ denote a convolution operation.

In the second stream of our model, the outputs of the pre-trained model and it’s
corresponding mask will be given as input to the first layer of the new convolution
layer. The outputs of this layer and IDW are mixed ( channelwise multiplied) and
produce a 7 channel depth feature map. Then the mixed output depth is further
processed by the remaining convolutional layers. In each layer a ReLu activation
function is applied except the first newly added convolution layer. We aplied a
softmax function for the layer that is directly mixed with IDW.
The reason that we have used softmax function is to create some sort of probabil-
ity distributions for each pixel along the channel dimension. This lets the network
to choose the power values based on some probability. The operation of Sparsity
Invariant CNN is illustrated in chapter 3 section 3.2.3 figure 3.3.
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Figure 4.3: Illustration of RMSE error for output depth features computed by IDW
for different power values

4.3 Mixing Hierarchical Multi-Scale Network and
Inverse Distance Weighting

The second design of our work is made by mixing HMS-Net and IDW. The pro-
cedure is similar with the previous design, except that here we used HMS-Net
instead of Sparsity Invariant Convolution as a pre-trained model. The new convo-
lution layers added on top of the pre-trained model are similar with the one used
in our first mixed model.
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4.4 Chapter Summary

In this chapter we have described our new designs for depth completion problem.
The first model mixes IDW and Sparsity Invariant CNN, where as the second
model is obtained by mixing HMS-Net and IDW. We first trained Sparsity Invari-
ant CNN and HMS-Net, and the pre-trained models are used to mix with IDW.
after the mix is performed, the result is further convolved through some convo-
lutional layers. The extra convolutional layers added on top of the pretrained
network and IDW are simple sparsity invariant convolutions. Basically, we have
used the pretrained network as feature extractors.



Chapter 5

Experiment and Results

In the previous chapters, we have discussed the depth completion problems that
we have adopted to design our depth completion problem, and the proposed depth
completion problems. These are Inverse distance weighted interpolation (IDW),
Hierarchical multi-scale encoder-decoder network(HMS-Net), and Sparsity In-
variant CNN.
HMS-Net and Sparsity Invariant CNN are a learning based depth completion
methods that uses deep convolution neural network for extracting depth features
at different layers, where as, IDW is a simple interpolation technique that uses
distance metric to compute the weights. In this chapter we describe about the ex-
perimental setup, different evaluation metrics, and the dataset and experimental
results.

5.1 Experimental Setups

In this section we will look into the different parameters and hyper parameters
setting for our experiment. We have used the same network parameters and hyper-
parameters for each of our depth completion problem designs, in order for us to
compare them under the same setup. We first implemented HMS-Net and Spar-
sity Invariant CNN, and these pre-trained models were used to train our newly
designed network. ALL the models were trained with GPU.

5.2 Training Scheme

As we briefly explained in the previous chapters, our first design for depth com-
pletion problems is to mix Sparsity Invaiant CNN and IDW, and the second one
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is mixing HMS-Net and IDW. Both models are trained with the same network
setup. The models learns only the parameters of newly added convolution layers,
as Sparsity Invariant CNN, and HMS-Net are pre-trained and has no any learnable
parameters.
We adopt the mean squared error (MSE) loss function to train our proposed mod-
els. Since some datasets could only provide sparse ground-truth depth maps, the
loss function is only evaluated at locations with groundtruth annotations, which
could be formulated as

L(x, y) =
1

|V |
∑
u,v∈V

|o(u, v)− t(u, v)|2 (5.1)

where V is the set containing coordinates with ground-truth depth values, |V |
calculates the total number of valid points in V , and o and t are the predicted and
ground-truth depth maps.
For the newly added network training, all parameters are randomly initialized. We
adopt the learning rate, optimizer, learning rate decay factor of HMS-Net in[2].
We adopt the ADAM optimizer with an initial learning rate of 0.01. The networks
are trained for 50 epochs. To gradually decrease the learning rate, it is decayed
according to the following equation,

Learningrate = 0.01× (1− iter epoch

50
)0.9 (5.2)

where iter epoch denotes the current epoch iteration. As we mentioned in the
previous chapters, sparsity masks are generated for every input directly depending
on the network structure, without any learnable parameters.
In Inverse Distance Weighting, we have chosen a kernel size of 31 × 31, and
7 power values between 2 and 4 are used to produce a stack of 7 kernels. The
number of power values are chosen in such a way that they produce optimal result
for our experiment.
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5.3 Dataset and Evaluation Metrics

We evaluate our proposed approach and all the other adopted methods on the
KITTI depth completion benchmark [8]. Following the experimental setup , 33,200
depth maps are used for training, 1,000 for validation and 1,000 for test. The input
depth maps generally contains less than 10 % sparse points with depth values and
the top 1/3 of the input maps do not contain any depth measurements.
According to the benchmark, all algorithms are evaluated according to the follow-
ing metrics, root mean square error (RMSE in mm), mean absolute error (MAE
in mm), root mean squared error of the inverse depth (iRMSE in 1/km), and mean
absolute error of the inverse depth (iMAE in 1/km). The metrics are computed
using the following formulas.

RMSE == (
1

|V |
∑
u,v∈V

|o(u, v)− t(u, v)|2)0.5 (5.3)

MAE ==
1

|V |
∑
u,v∈V

|o(u, v)− t(u, v)| (5.4)

IRMSE == (
1

|V |
∑
u,v∈V

| 1

o(u, v)
− 1

t(u, v)
|2)0.5 (5.5)

IMAE ==
1

|V |
∑
u,v∈V

| 1

o(u, v)
− 1

t(u, v)
| (5.6)

where o and t represent output and ground-truth depth values.

For RMSE and MAE, RMSE is more sensitive to large errors compared. This
is because even a small number of large errors would be magnified by the square
operation and dominate the overall loss value. RMSE is therefore chosen as the
main metric for ranking different algorithms in the KITTI leaderboard. Since
large depth values usually have greater errors and might dominate the calculation
of RMSE and MAE, IRMSE and IMAE are also evaluated, which calculate the
mean of inverse of depth errors. In this way, large depth values’ errors would have
much lower weights on the two metrics.
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5.4 Evaluation and Experimental Results

In this section we will discuss the results of the experiments and the metrics values
computed. Based on the experimental setups that we discussed in the previous
section, we will demonstrate the training and validation losses, RMSE and MAE
error, and the predicted output depth.

5.4.1 Sparsity Invariant CNN with IDW

Now, let’s review the results of the first mixed model we mentioned for depth
completion problem. Figure 5.1 illustrates the training and validation loss for
sparsity invariant CNN and our mixed models of sparsity invariant CNN with
IDW. From the figure, it is shown that the mixed model of sparsity Invariant CNN
and IDW has a lower training and validation loss. Sparsity invariant CNN has a
smooth convergence for the validation loss compared to the mixed model. The
training loss has a smooth convergence in both models. Both models are trained
for 50 epochs, but sparsity invariant CNN found its best loss earlier than the mixed
model.

Figure 5.1: Sparsity Invariant CNN and Sparsity Invariant CNN mixed with IDW
Training/Validation Loss
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In Figure 5.2, we have plotted the histogram and kernel density estimation(KDE)
of the RMSE for 1000 testing set depth maps. This allows to figure out the RMSE
distribution of the two models for the whole test dataset. As you can see, the
distribution of errors follow the typical bell curve pattern of normal distributions,
except that there are some outliers. Sparsity Invariant CNN has an average RMSE
of 1358, and standard deviation of 516, while the mixed model has an average
RMSE of 1275 and standard deviation of 470. The standard deviation is computed
on the RMSE.

Figure 5.2: Histogram and Kernel Density estimation(KDE) of the RMSE for the
test dataset

The output depth maps of the two models are shown in Figure 5.3. From top to
down, the first row is the image, second row the raw-data, third row the ground-
truth, fourth row the output depth map of sparsity invariant CNN, and the fifth row
is the output depth map of our newly mixed model. It is very difficult to visually
identify the output depth maps of the two models. But, in the mixed model, the
depth maps are a little bit sharper, it recovered depth values for very far objects
from the camera plane. Besides, in the mixed model, some artifacts that we see
in the sparsity invariant CNN are removed. The zoomed output depth maps of the
second column in 5.3, is re-shown in Figure 5.4
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Figure 5.3: Predicted depth map of Sparsity Invariant CNN and Sparsity Invariant
CNN with IDW

Figure 5.4: Predicted depth map of Sparsity Invariant CNN(Top) and Sparsity
Invariant CNN with IDW(bottom)
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Finally, we have plotted the error, groundtruth and output depth as an image to
better visualize the errors at each pixel location. Though, it is possible to see
some color differences, it is generally difficult to visually identify the error maps
of the two models. Figure 5.6 shows the error maps shown in figure 5.5, second
column, widely zoomed.

Figure 5.5: The Errors, groundtruth and depth output of Sparsity Invariant
CNN(SparseConv) and SparseConv mixed with IDW as an image

Figure 5.6: The Errors, groundtruth and depth output of Sparsity Invariant
CNN(top) and SparseConv mixed with IDW(bottom) as an image
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5.4.2 HMS-Net with IDW

The second design of our model is HMS-Net mixed with IDW. In this section
we will look at the experimental results of the mixed model and make some com-
parative analysis with HMS-Net. Similar to the first mixed model, we have also
plotted the training / validation loss, the RMSE for 50 randomly selected output
depth maps, and the predicted results of HMS-Net mixed with IDW. The train-
ing / validation loss is illustrated in Figure 5.7. While HMS-Net has a smooth
training and validation loss curve, the mixed model has a very noisy curve for val-
idation loss. HMS-Net is started from a high training / validation loss and quickly
dropped at the beginning of the iteration, and not much improvement has seen in
the next iterations. On the other hand, the mixed model has started from a very
low training / validation loss, and it has seen a slow drop in loss in the subsequent
epochs.

Figure 5.7: HMS-Net and HMS-Net mixed with IDW Training/Validation Loss

Figure 5.8 below, illustrates the histogram and kernel density estimation(KDE)
of HMS-Net, and HMS-Net mixed with IDW. The two models have a very close
average RMSE and standard deviation values. Most errors are close to the average
error. As the previous models, The standard deviation is computed on the RMSE.
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Figure 5.8: Histogram and Kernel Density estimation(KDE) of the RMSE for the
test dataset

The below figure 5.9 shows the predicted depth maps for the given sparse depth
inputs. For better visualization, the zoomed output depth map of Figure 5.9, first
column, is redrawn in Figure 5.10.

Figure 5.9: Predicted depth map of HMS-Net and HMS-Net mixed with IDW
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Figure 5.10: Predicted depth map of HMS-Net(Top) and HMS-Net with
IDW(bottom)

5.4.3 Error Metrics

To evaluate the performance of our designed depth completion problems, and to
make some comparative analysis with other state of the art problems, we have
computed several error metrics. In addition to the error metrics that we described
in section 5.3, we have also used Standard Deviation (STD). The STD in this
table is computed using Mean Absolute Error (MAE). Among all the metrics
used, RMSE is chosen as the main metric for ranking different algorithms in the
KITTI leader-board. In the table, we have included the metrics for In Defense of
Classical Image Processing: Fast Depth Completion on the CPU[1](FastDepth),
Sparsity Invariant CNN[3](SparseConv), Hierachical multi-scale encoder-decoder
network[2](HMS-Net), and our two mixed models, Sparsity Invariant CNN mixed
with IDW and HMS-Net mixed with IDW.
Based on the experimental results, our mixed models have beaten both Sparsity
Invariant CNN[3], and HMS-Net[2]. Especially, we have improved the RMSE
value of Sparsity Invariant CNN[3] from 1359 to 1275 through our Sparsity In-
variant CNN mixed with IDW model. The second design of our mixed model has
also improved the RMSE value of HMS-Net[2] form 1171 to 1155.
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Table 5.1: DEPTH COMPLETION ERRORS BY DIFFERENT METHODS ON
THE TEST SET OF KITTI DEPTH COMPLETION BENCHMARK.

Methods RMSE(in mm) MAE(in mm) STD IRMSE(in m) IMAE(in m)
FastDepth[1] 1345 304 126.2 – –

SparseConvs[3] 1359 415 127.3 5.4 2.1

HMS-Net[2] 1171 347 107.7 4 1.5

SparseConvs w/ IDW 1275 373 118.3 – –

HMS-Net w/ IDW 1155 332 105.9 4.19 1.49



Chapter 6

Conclusion

In this paper, we have designed two depth completion problems, one is mixing
Sparsity Invariant CNN with IDW, and the other is mixing HMS-Net with IDW.
We were able to evaluate and compare our mixed models with other selected algo-
rithms. By using the KITTI depth completion benchmark [8] as our training and
evaluation dataset, We compare their performance using different metrics. And
we showed the quantitative results of the metrics.

We saw that our mixed model of Sparsity Invariant CNN and IDW have well per-
formed compared to the mixed model of HMS-Net and IDW. It has improved the
results obtained in Sparsity Invariant CNN[3] in wide range. The second model,
HMS-Net mixed with IDW has also improved the results in HMS-Net[2] in a
narrow range. The reason that the improvement seen in this model was not signif-
icant, could be because of the new CNN layers added after mixing it with IDW.
We have used the same CNN layers as that of the first mixed model.
The absence of common visualization method for the predicted depth maps makes
it difficult to visually compare very small details.
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