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Introduction 

 

Portfolio management and its optimization are one of the key topics of modern 

finance. The Modern Portfolio Theory introduce by Markowitz in 1952, 

revolutionized the theory and practices concerning the portfolio management at 

that time. Even though, in real-world scenarios, the model presents some important 

limitation that must be taken into consideration. As it will be explained in depth 

later, real-life portfolio selection is not easy as introduced by Markowitz for three 

main reasons. First, an appropriate measure of risk must be identified, and it has to 

be coherent with investors’ risk attitude. It will be shown why the use of variance as 

a measure of risk violate the coherence properties. Second, set of constraints must 

be considered dealing with the construction of a portfolio. This means that 

constraints like the budget or the maximum number of trading stock ones must be 

taken into consideration. Moreover, constraints unrelated to the investor’s choice, 

like transaction costs, can affect the final portfolio. So, dealing with coherent risk 

measures, financial market and investors rules and practiced lead to non-linear, 

non-convex and mixed-integer problems, also called NP-hard problems. In order 

to obtain solutions to these problems in a reasonable amount of time, researchers 

have developed different meta-heuristics algorithm, which are bio-inspired 

algorithms. This thesis will focus on the application on such algorithms introducing 

the implied volatility by vanilla options to prevent unexpected market crash. 

So, the remainder of this research is structured as follows: first, in Section 1 

provides an overview of the Modern Portfolio Theory, together with its main limits 

and some real-world improvements to be applied in order to render the model 

more realistic and effective in a real-world scenario. 

Then, in Section 2 undertake the metaheuristics algorithms which have been 

used in this research. This Chapter introduces heuristics and metaheuristics, 

providing explanations of their origin, topology breakdown and operation, and 

explaining how they work in practice. In addition, a dedicated focus for the two 

algorithms used is presented. 

In Section 3 the theory behind this work will be presented. An introduction of 

the Black-Scholes-Merton differential equation will be presented, and it will be 

important to understand the Black-Scholes-Merton pricing formula which a core 

argument when dealing with implied volatility. After the introduction of the implied 

volatility as a measure of future uncertainty the  

Lastly, in Section 4, after the introduction of the dataset considered, PSO 

algorithms will be applied to obtain the optimal portfolio. Then, results obtained 

by the application of every algorithm to the dataset will be compared, not only by 

measuring expected return and variance, but also by comparing different risk-

adjusted performance measures and the Maximum Drawdown in order to conduct 

a wider and deeper analysis. 
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Chapter 1 

 

Portfolio selection problem 

 
1.1 Markowitz model 

 

In this chapter, an overview of the Modern Portfolio Theory started by Harry 

Markowitz1 will be proposed: even if it presents some limits and it has been 

proposed almost 70 years ago, the model is still considered one of the keystones of 

the modern finance as it changed the approach to the investment world. Before its 

introduction investors’ strategy was developed around finding the assets providing 

the maximum return and marginally caring about risk as it was supposed to be 

managed through diversification, but Markowitz demonstrated that this is not true. 

The overview will present the basic assumptions, limits and issues of the model, 

together with alternative risk measures and some improvement to it. 

 

The portfolio selection process provided by Markowitz can be divided into three 

main stages: 

1. Identification of a statistical tool used to measure the uncertainty of a 

determined investment; 

2. Definition of a criterion used to select and divide, among all the possible 

investment, the efficient ones from the inefficient ones; 

3. Choice of the optimal portfolio investment given the investor’s risk 

aversion, maximizing her utility. 

 

1.1.1 Assumption of the model 

 

Even if, as just stated, the model is still considered one of the most revolutionary 

for the modern finance, it relies on strong assumption: investors will prefer higher 

returns than lower ones and the risk associated with these returns should be as less 

as possible. Stating this, given the main goal of the investor the maximization of the 

return of an investment, Markowitz is assuming that investors are rational, meaning 

that they will choose an asset which return will be higher than another one, or, 

alternatively, that will provide a lower risk given a target return.  

 
1 H. M. Markowitz (1952), "Portfolio Selection", Journal of Finance, Vol. 7 pp. 77-91. 
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Moreover, the market is considered frictionless, (e.g. no transaction costs, no 

taxes, no asymmetric information, etc.) and the single security can be divided 

indefinitely (meaning that an investor can buy whether quantity of any security she 

wants).   

 

1.1.2 Formalization of the theorem 

 

As just mentioned, the first stage aims to identify some tools useful in determining 

the risk-reward ratio: in its elaboration, Markowitz chose the expected value of the 

return as a proxy for the expected return of a security and the variance of the returns 

to measure uncertainty and risk. 

 

In a very simple and straightforward way, the formalization for a single asset 

can be transposed to the portfolio case since its returns is defined as a linear 

combination of individual securities. Defining 𝑅𝑃 as the random rate of return of a 

portfolio, 𝑟𝑖 the expected return of the 𝑖 − 𝑡ℎ asset, 𝜎𝑖
2 its variance and 𝑥𝑖 the 

percentage of available wealth invested in that 𝑖 − 𝑡ℎ asset: 

 

 E(𝑅𝑃) =∑  

𝑛

𝑖=1

𝑟𝑖𝑥𝑖 = 𝑟𝑃    2 (1.3) 

 

 

 𝑉𝑎𝑟(𝑅𝑃) =∑  

𝑛

𝑖=1

𝑥𝑖
2𝜎𝑖

2 +∑ 

𝑛

𝑖=1

∑  

𝑛

𝑗=𝑖+1

𝑥𝑖𝑥𝑗𝜎𝑖,𝑗 

 

         =∑  

𝑛

𝑖=1

𝑥𝑖
2𝜎𝑖

2 +∑ 

𝑛

𝑖=1

∑  

𝑛

𝑗=𝑖+1

𝑥𝑖𝑥𝑗𝜎𝑖𝜎𝑗𝜌𝑖,𝑗 = 𝜎𝑃
2     3 

 

(1.4) 

 

where 𝜎𝑖,𝑗 represents the covariance between the asset 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ and 𝜌𝑖,𝑗 is 

the Pearson correlation coefficient4. As the variance is not a linear operator, 

measuring this for a portfolio may be a function of the covariance between the assets 

 
2 The formula can be also written in matrix notation as 𝐸(𝑟𝑝) = 𝑥′𝑟 where 𝑥′ is the vector of assets’ weights and 𝑟 

is the vector of assets’ expected returns.  
3 In matrix notation the variance can be expressed as 𝜎𝑃

2 = 𝑥′𝑉𝑥 where 𝑥′ is the vector of assets’ weights and V is 

and N x N variance-covariance matrix. 
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and the correlation coefficient. Before this brilliant intuition by Markowitz, 

Williams in his “The Theory of Investment Value”, developing the Dividend 

Discount Model pointed out that an investor should focus on the returns of an 

investment only, as its variance can be reduced through diversification due to the 

Jacob Bernoulli’s law of large numbers5. But Markowitz demonstrated that the law 

of large numbers cannot be applied as assets are correlated each other’s. 

 

1.1.3 The Mean-Variance criterion 

 

Once an appropriate measure for measuring return and risk has been 

introduced, in the second stage of the process of portfolio selection, Markowitz 

outlined a set of “rules” to distinguish and to divide efficient portfolios from 

inefficient ones: the Mean-Variance criterion. The M-V criterion can be defined as 

follow:  

Definition. Given two random variables X and Y, with mean 𝜇𝑋 and 𝜇𝑦 

and variance 𝜎𝑥
2 and 𝜎𝑦

2 respectively, X dominates Y in Mean-Variance 

if and only if the following conditions are met together: 

• 𝜇𝑋 ≥ 𝜇𝑦;  

• 𝜎𝑥
2 ≤ 𝜎𝑦

2; 

• At least one of the prior inequalities is satisfied in a strong form. 

Alternatively, the definition states that a portfolio dominates another one in M-

V sense if it is impossible to obtain a greater return without increasing the variance 

or, as opposite, to lower the variance without giving up a certain return. Going 

further, plotting a curve passing through all the possible combination of assets 

forming the efficient portfolios, an efficient frontier will be created, describing the 

relationship between the expected return of a portfolio and its riskiness (variance 

or standard deviation). All the portfolios lying on it must be considered desirable 

for a rational investor. Across all the just mentioned portfolios, Markowitz’ solution 

consists on finding the minimum variance one given a target return 𝜋 set by the 

investor, which will depend on her risk aversion. Formalizing, Markowitz 

introduced the following problem:  

 
5 Bernoulli J., Ars Conjectandi, (Thurnisorium, Basil) 
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𝑚𝑖𝑛
𝑥
  𝜎𝑃
2

 subject to {

𝑟𝑃 = 𝜋

∑  

𝑖

𝑥𝑖 = 1

 

 

 

        

 

(1.5) 

or, in matrix formulation: 

where: 

•  𝑥 is an N – column vector of portfolio weights 𝑥1, . . . , 𝑥𝑛; 

• V is the N x N variance-covariance matrix; 

• 𝑟 is an N – column vector of means returns for 𝑟1, . . . , 𝑟𝑁; 

• e is a column vector of ones.  

 

The minimization of the variance of the portfolio is subject to two constraints: 

the expected returns must be equal to a specific one chose by the investor and the 

capital available must be invested entirely. Another restriction is that 0 ≥ 𝑥𝑖 ≥ 1 for 

𝑖 = 𝑖1, 𝑖2, … , 𝑖𝑛, avoiding the short-sales.  

 

From a mathematical point of view, this is a programming problem with a 

quadratic objective function and linear constraints. To solve it, three assumption 

need to be taken: the variance-covariance matrix V needs to be nonsingular6 and 

positive7, and there must be at least two different returns across all the assets8. 

Following these conditions and assumptions the problem minimizes a convex 

function subject to a convex set of constraints. One of the classical approaches to 

 
6
 An n × n matrix A is called nonsingular or invertible if there exists an n × n matrix B such that AB = BA = I, where 

I is the n × n identity matrix. 
7 An n × n matrix is said to be positive definite if the scalar  𝑧′𝑀𝑧 is strictly positive for every non-zero column vector 

i of real numbers. 
8
 If all the assets would have the same returns, the problem will be trivially solved investing the entire available wealth 

in the asset with the lowest variance. 

𝑚𝑖𝑛
𝑥
  𝑥′𝑉𝑥

 subject to {
𝑥′𝑟 = 𝜋
𝑥′𝑒 = 1

 

 

 

        

 

(1.6) 
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solve linear programming problem is the Lagrange multipliers (see Markowitz, 

1956), providing the following solution:  

 

 

 
𝑥 =

(𝛾𝑉−1𝑟 − 𝛽𝑉−1𝑒)𝜋 + (𝛼𝑉−1𝑒 − 𝛽𝑉−1𝑟)

𝛼𝛾 − 𝛽2
 

 

(1.7) 

 

where: 

• 𝛼 = 𝑟𝑇𝑉−1𝑟 

• 𝛽 = 𝑟𝑇𝑉−1𝑒 = 𝑒𝑇𝑉−1𝑟 

• 𝛾 = 𝑒𝑇𝑉−1𝑒 

 

From the graphical point of view, the efficient frontier shape depends on the 

number of assets taken into consideration: as an example, for 𝑁 ≥  2, the frontier 

is represented by a parabola in the M-V plane (while it is an hyperbola in the M-

SD plane). Moreover, the presence of a risk-free asset modifies the shape of the 

frontier, moving the minimum variance portfolio on the vertical axis of the plane9. 

This condition will not occur in case of boundary constraints as it will be explained 

later in this section. 

 

Figure 1 and 2 in Appendix A show the combination of different risk indicators 

and the presence of a risk-free asset frontiers. 

 

1.1.4 Utility function 

 

Given that it is possible to divide efficient portfolios from inefficient ones, real 

world investors have different risk propension, which lead to the third and last stage 

of the process: the maximization of the utility function10 of a specific investor.  

 

It can be proved that the expected utility framework is coherent with the Mean-

Variance criterion in only one of the following mutually exclusive circumstances11: 

 
9 A risk-free asset is defined as an asset with a certain future return, so with  𝜎2 = 0. As stated in the previous 

reference, the portfolio on the vertical axis corresponds to the one with   𝜎𝑃
2 = 0 and a certain return.  

10 The utility function U is a function on real numbers ℝ defining potential wealth level, given real values. Using this 

function, it is possible to rank all the random wealth level given respective expected utility values associated. So, as 

an example, wealth 𝑥 is preferred to wealth 𝑦 if 𝐸[𝑈(𝑥)] > 𝐸[𝑈(𝑦)]. 
11

 See Tobin (1958). 
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• the investor’s utility function is a quadratic one; 

• the joint probability distribution function of 𝑅 1. . . , 𝑅 𝑁 is a multivariate 

elliptical one12. 

 

A particularly used function is the Quadratic utility one, defined as: 

 

 𝑈(𝑅𝑝) = 𝑅𝑝 −
𝑎

2
𝑅𝑝
2 

 

(1.8) 

where: 

• 𝑅𝑝 is a random variable describing the return of the portfolio; 

• 𝑎 is a positive coefficient13 that reflects the risk aversion of the investor.  

 

Moreover, the quadratic utility function presents a good approximation of other 

utility functions14 

So, as introduced before, the portfolio maximizing the expectation of the investor’s 

utility function will be chosen as investment. Stating this means, mathematically: 

 

 𝑚𝑎𝑥 
𝑥
 𝐸[𝑈(𝑅𝑝)] 

 subject to    𝜎𝑝
2 = 𝑓(𝑅𝑝) 

 

 

(1.9) 

 

Graphically, the optimal portfolio corresponds to the tangency point between 

the efficient frontier and the indifference curve. 

 

1.2 Limits of Modern Portfolio Theory 
 

One of the main reasons behind the success of the Modern Portfolio Theory is 

that it provides an intuitive and not-so-complex procedure for portfolio selection. 

However, the model is not so used in practice by professionals, due to several 

limitation that investors encounter in real world investment like transaction costs15. 

In this section of the chapter an analysis of the fallacies of the model will be 

provided. The focus can be brought on three main topics: 

 
12

 An elliptical distribution is a probability distribution characterized by the property that its equi-density surfaces 

are ellipsoids. 
13 By definition it must be strictly positive and the greater the coefficient, the higher the risk aversion. 
14

 See Kroll et al. (1984), Brandt and Santa-Clara (2006), Levy and Levy (2014), Markowitz (2014) 
15 See, as example, Pogue (1970), Davis et al. (1990). 
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1. the operative choice of the target return; 

2. the estimation risk related to the model’s parameter; 

3. the instability of mean-variance solutions. 

 But besides the just cited topics other issues will be introduced and discussed 

together with some possible solution to avoid or solve them. 

 

 

1.2.1 The operative choice of the target return 

 

As introduced, one of the key features of the MV theorem is the choice of the 

target return by the investor, by which it can be found the specific optimal portfolio 

across the efficient frontier. This characteristic can be seen from two point of view: 

it grants a great flexibility to the model but, on the other hand, it may be difficult 

for an investor to identity its “coherent” risk aversion coefficient leading to the 

wrong decision of choosing a too risky portfolio (with a higher variance) or to “leave 

money on the table”.   

 

To deal with such a problem three main procedures can be followed: 

1. To select the tangency portfolio; 

2. To maximize the investor’s utility function; 

3. To choose the maximum between 𝑟1/𝑁 and 𝑟𝑚𝑖𝑛 

 

The first solution aims to make the selection process much easier with respect to 

ignoring the investor’s estimated target return and referring to one of the core 

concepts of the CAPM, the fund separation theorem16. 

Following the model, the investment will be a mix between risk-free asset and 

portfolio of only risky assets, with the former investment to be a function of the 

investor’s risk aversion and the latter to maximize the so-called Sharpe ratio17 and 

to obtain a tangency portfolio between the efficient frontier and the Capital Market 

Line, as shown in Figure 3. The analytical expression of the tangency portfolio is 

the following: 

 

 
𝑥 =

𝑉−1(𝑟 − 𝑟𝑐𝑒)

𝑒′𝑉−1(𝑟 − 𝑟𝑐𝑒)
 

 

(1.10) 

 
16 See Tobin (1958) 
17 The Sharpe ratio, defined as 

𝑟𝑝−𝑟𝑓

𝜎𝑝
, is a measure of performance of an investment given its return 𝑟𝑝, its standard 

deviation 𝜎𝑝 and the market risk-free 𝑟𝑓 . See Sharpe (1966). 
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However, it has been proved18 that sample tangency portfolios perform poorly 

out-of-the sample, and they tend to present very high levels of turnover, leading to 

higher transaction costs. 

 

Another possible is to directly maximize the investor’s expected utility function, 

formally:  

 

 
𝑚𝑖𝑛
𝑥
  𝑥′𝑟 −

𝜆

2
𝑥′𝑉𝑥

 s.t. 𝑥′𝑒 = 1

 

 

 

(1.11) 

 

The solution of this problem can be achieved using the Lagrangian as explained 

before, so: 

 

 
𝑥 =

1

𝜆
𝑉−1 (𝑟 −

𝑒′𝑉−1𝑟 − 𝜆

𝑒′𝑉−1𝑒
) 

 

 

(1.12) 

 

The optimal portfolio will be an efficient one, which will also lie on the highest 

indifference curve. Graphically, this portfolio represents the tangency point 

between the mean-variance efficient frontier and the highest indifference curve as 

shown in Figure 4.  

 

 

The third way to achieve the same result is to fix the desired return to the 

maximum between the return expected from the equally weighted portfolio and the 

one expected from the global minimum variance one, as suggested by Kourtis19. 

Formally, this means:  

 

 𝜋 = 𝑚𝑎𝑥(𝑟1/𝑁; 𝑟𝐺𝑀𝑉) 

 

(1.13) 

 

Even if this strategy seems too superficial both the portfolios have interesting 

properties: the equally weighted portfolio has been proved to often outperform the 

sample-based mean-variance optimal portfolios20, and that it has similar out-of-

 
18 See, for example, DeMiguel et al. (2009) 
19 Kourtis, A. (2015), A Stability Approach to Mean‐Variance Optimization. Financial Review, 50, 301-330 
20 See Bloomfield et al. (1977). 
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sample performance to the minimum-variance and the tangency portfolios obtained 

with Bayesian shrinkage methods21. In addition, it has been proved that, among 14 

portfolio models based on seven empirical datasets, none of the models significantly 

outperformed the equally weighted portfolio in terms of Sharpe ratio, turnover or 

certain-equivalent return22. In a more recent publication, all the previous evidences 

have been confirmed as equal-weighted portfolio with monthly rebalancing 

outperforms the value- and price-weighted portfolios in terms of total mean return, 

certainty-equivalent return, four factor alpha and Sharpe ratio23. 

 

 On the other side, the global minimum variance portfolio cannot be affected 

by the estimation errors related to the expected returns of the assets and it has been 

proved to yields better out-of-sample results than the tangency portfolio24. Many 

recent studies highlight the suggestion to invest into the GMV portfolio rather than 

on the tangency one25. Mathematically, it can be expressed as: 

 

 𝑚𝑖𝑛
𝑥
  𝜎𝑃
2  

s.t.   ∑ 

i

𝑥𝑖 = 1 

 

 

(1.15) 

 

or, in matrix formulation:  

 

 𝑚𝑖𝑛
𝑤
𝑥′ 𝑉𝑥 

 s.t.    𝑥′𝑒 = 1 

 

 

(1.16) 

 

1.2.2 The estimation risk related to the model’s parameter 
 

As introduced, each security's return, variance and covariances are unknown and 

are usually estimated using historical data and their sample estimators: the sample 

mean and the sample covariance. However, mean-variance portfolios suffer the 

estimation errors of the parameters in a way in which the advantages of 

diversification are offsite. This in one of the reasons why the mean-variance 

 
21 See Jorion (1991). 
22 See DeMiguel et al. (2009) and DeMiguel, Nogales (2009). 
23 See Plyakha et al. (2016). 
24 See Chopra and Ziemba (1993). 
25 See, e.g., Ledoit and Wolf (2003), and Jagannathan and Ma (2003). 
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framework is not so used by practitioners and its attractiveness is mostly confined 

in the academic world. The solution of such a problem is brought by using, as 

before, the equally-weighted portfolio (1/N) or the global minimum variance one 

(GMV) and this can be seen as one of the reasons of their better performance 

already explained. More on this practical limitations will be explained in Chapter 3 

 

1.2.3 The instability of mean-variance solutions 

 

In the previous paragraph the estimation risk problem has been introduced. One 

of the consequences of such risk is that it might be necessary to manage portfolio 

weights in a frequently rates, making them unstable over time. It can happen that, 

took a neighborhood of the optimal portfolio lying on the efficient frontier, there 

are many "statistical equivalent portfolios" with similar expected returns and 

standard deviation (or variance), but having a large or even completely different 

asset weights. In addition, a simple and small change in the parameters may bring 

to a massive portfolio revision and modification. 

Such a problem is strictly linked to the transaction costs assumption: it has been 

proved that, even if mean-variance portfolios outperform equally-weighted in 

absence of transaction costs, the exact opposite happens if we consider the presence 

of these last ones26. 

 

In addition to the above criticisms, several others have been introduced and studied 

and a brief review of the literature will be presented. 

 

1.2.4 Real world limitations 

 

First, as introduced before, it has to be stated that the Modern Portfolio Theory is 

based on some practical unrealistic assumption: real world market is not 

frictionless, almost every transaction is associated with transaction costs and taxes 

must be paid. In addition, assets are not indivisible and often cannot event be 

bought at a number the investor want because of the presence of minimum or lot 

constraints. To cope with these issues mathematical constraints have been 

developed and they will be introduced later. 

 

1.2.5 Diversification issues 

 

The Markowitz theorem is strictly based on diversification, so adding different 

assets to the portfolio in order to reduce its variance, and so, the idiosyncratic risk.  

 
26 See DeMiguel et al. (2009) and Kourtis (2015) 
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Still, as the number of the assets included increases, the number of parameters to 

be estimated raise as well, leading to an always more complex variance-covariance 

matrix and increasing the estimation risk introduced before. 

 

1.2.6 Assumption of normality 

 

The model introduced by Markowitz describe the investor’s portfolio through 

the first two moment of a statistical distribution, the mean and the variance. 

However, this condition is satisfied only if the returns follow an elliptical 

distribution, but it has been demonstrated that this condition doesn’t hold for most 

securities. In particular, Cont (2001)27 has presented a list of empirical facts 

emerging from the statistical analysis of asset returns, identifying the properties that 

commonly characterize a wide variety of markets and instruments. From this 

analysis, among all, two main characteristics against normality assumption has 

emerged: positive or negative asymmetry and heavy tails. To explain the two 

characteristics just mentioned the third and the fourth moment of any statistical 

distribution need to be introduced.    

In an asymmetrical distribution, one tail can be longer than the other. The degree 

of asymmetry is measured by the third moment of the probability distribution, 

known as the skewness, and it can be computed as:  

 

 

Skewness (𝑋) =
∑  𝑁
𝑖=1

(𝑋𝑖 − 𝜇𝑋)
3

𝑁
𝜎𝑋
3  

 

 

(1.17) 

A Normal distribution presents a skewness equal to 028 but returns distributions 

have observed to be often positively skewed29. 

 

In addition to the degree of asymmetry, the other characteristics which defines a 

distribution is the kurtosis, the fourth moment of a distribution itself. Kurtosis gives 

a measure that significant deviations from the mean occur is greater than in the case 

of the Gaussian distribution. It can be computed as: 

 

 
27 Cont R., (2001), Empirical properties of asset returns: stylized facts and statistical issues, Quantitative Finance, 

Taylor & Francis Journals, 1(2), 223-236. 
28 In case of negative skewness, data said to be left-skewed, meaning that the left tail is longer than the right one while, 

as opposite, a positive skewness indicates a right-skewed data distribution, with right tail longer that the left one. 
29 Arditti, Fred D., (1971), Another Look at Mutual Fund Performance, Journal of Financial and Quantitative 

Analysis, 6(3), 909-912. 
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑋) =
∑  𝑁
𝑖=1

(𝑋𝑖 − 𝜇𝑋)
4

𝑁
𝜎𝑋
4  

 

 

(1.18) 

where 𝑋 is a random variable defined in ℝ, 𝜇𝑋 is the mean, 𝜎𝑋  is the standard 

deviation and 𝑁 is the number of observations. A Normal distribution presents a 

kurtosis equal to 030 and it has been observed that stock returns exhibit positive 

excess kurtosis31. 

 

1.2.7 Variance as a measure of risk 

 

In the Mean-Variance model, as the name suggests, the risk involved in an 

investment is measured by the variance. The problem arises as the variance as a 

statistical measure and not a financial risk one: as it is symmetric it measures the 

dispersion of a security’s return around its expected return, not distinguishing 

between positive or negative excess return. Moreover, it has been demonstrated32 

that investors treat positive and negative outcomes in a different manner33.  

 

Even if Markowitz introduced the variance as a measure of risk for its simplicity, 

he recognized its issues and proposed an alternative risk measure, the semi-

variance, defined as: 

 

 

𝑆𝑒𝑚𝑖 − 𝑉𝑎𝑟 (𝑅) =
1

𝑁
∑  

𝑁

𝑖=1; 𝑟𝑗<𝜇

(𝑟𝑗 − 𝜇)
2
 

 

 

(1.19) 

The fundamental characteristic of the semivariance, also called downside risk, is 

that it takes into account only returns below the expected return, solving the 

problem of the variance. However, as Markowitz underlined in his publication, due 

to the limited computational resources available at that time, he still chose to use 

the variance34. 

 

 

 
30 Distributions with positive excess kurtosis is called leptokurtic (heavy-tailed) while one with negative excess 

kurtosis is called platykurtic (light-tailed). 
31 See, for example, Rao et al. (1989). 
32 See Kahnemann and Tversky (1979) 

 
 
34 See Markowitz (1959) and (1991) 
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1.2.8 Quadratic Utility assumption 

 

As already mentioned, one basic assumption of the Modern Portfolio Theory is 

the assumption of the investor’s quadratic utility function and, as stated before, it is 

consistent with the Mean-Variance criterion describing investors’ preferences. 

However, as introduced in Borch (1963)35 the Mean-Variance criterion can be used 

as an approximation, but it should be integrated with a utility function polynomial 

of third degree, including also the third moment of the distribution, namely the 

skewness, in the process. Indeed, in Hanoch and Levy (1970)36 the authors 

confirmed what previously demonstrated about the quadratic utility, as the second 

order function requires bound to be implemented and it might not successfully 

explain the decision-making process of the investors. Moreover, the authors 

proposed the introduction of a cubic utility function which, by definition, is convex, 

monotonically increasing and takes into account decreasing degree of risk aversion. 

 

 

1.3 Real-world model improvements 
 

As discussed in the last section, the Modern Portfolio Theory is interesting and 

studied but it falls short in real-life investments as, in its original version, it includes 

only two constraints. To render the model more ductile and usable in real-world 

cases, more constraints, also mixed-integer constraints, can be added to the original, 

some of them used also in the application section of this research. The problem 

rising with the addition of further constraints is that the complexity of the problem 

generally increases, making the problem NP-complete37 and its solution NP-hard38 

and it becomes necessary to use inexact techniques that will be introduced later to 

solve them in a reasonable amount of time.  

 

1.3.1 Return constraint 

 

The first constraint in the Markowitz model is the return one. It consists into 

requires a minimum return 𝜋 to the investment. In the original theorem the 

 
35   Borch K., 1963. Communications to the Editor — A  Note  on  Utility  and  Attitudes  to Risk, Management 

Science, 9(4), 697-700 
36 Hanoch and Levy, (1970), Efficient Portfolio Selection with Quadratic and Cubic Utility, The Journal of 

Business, 43, issue 2, 181-89 
37 NP-complete problems are difficult to solve as they don’t admit polynomial algorithm (see Cook, 1971 and Levin, 

1973) 
38 NP-hard problems are optimization problems for which provably efficient algorithms do not exist, requiring 

exponential time to be solved using exact techniques. It can be said that they are as difficult to solve as the NP-

complete problems. 
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constraint requires the return to be equal to 𝜋 but, of course, it can be required to 

be at last equal to 𝜋. So, the return constraint can be expressed as: 

 

 

∑ 

𝑁

𝑖=1

𝑥𝑖𝑟𝑖 ≥ 𝜋 

 

 

(1.20) 

 

 

where 𝑥𝑖 denotes the share of capital invested in the 𝑖 − 𝑡ℎ security and 𝑟𝑖 is the 

expected return of that particular 𝑖 − 𝑡ℎ security. 

 

1.3.2 Budget constraint 

Another constraint that Markowitz introduced in his 1952’s model was the 

budget constraints, which requires to invest all the available wealth. Formerly, it can 

be expressed as: 

 

 

∑ 

𝑁

𝑖=1

𝑥𝑖 = 1. 

 

 

(1.21) 

1.3.3 Cardinality constraint 

 

A possible additional constraint taken into consideration is the cardinality one, 

which limits the number of assets for the investment. An indirect consequence of 

using the cardinality constraint is the easier transaction costs control as, given large 

dataset, the number on transaction will be so limited. The cardinality constraint can 

be expressed as:  

 

 

𝐾𝑑 ≤∑ 

𝑁

𝑖=1

𝑧𝑖 ≤ 𝐾𝑢

 

 

 

 

(1.22) 

 

where 

• 𝐾𝑑  is an integer representing the minimum number of securities to be hold; 

• 𝐾𝑢 is an integer representing the maximum number of securities to be 
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hold;  

• So 1 ≤ 𝐾𝑑 ≤ 𝐾𝑢 ≤ 𝑁 

• 𝑧𝑖 is a dummy variable which value can be: 

 

𝑧𝑖 = {
1     if the i-th f asset 𝑖(𝑖 = 1, . . . , 𝑁)  is to be hold, 

0     otherwise 
 

 

 

1.3.4 Boundary constraint 

 

As discussed previously, one of the requirements of the problem introduced by 

Markowitz was that at least two securities among all the selected ones have different 

returns. A boundary constraint forces the choice of percentage to invest in single 

security to be included in an interval which defines the minimum and the maximum 

investable. Alternatively, this means:  

 

 𝑧𝑖𝜀𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖𝛿𝑖      ∀𝑖
 

 

 

(1.23) 

 

where 𝜀𝑖 and 𝛿𝑖 are respectively the lower and the upper bounds, and so  

0 ≦ ε𝑖 ≦ 𝑥𝑖 ≦ δ𝑖 ≦ 1. 

 

 

1.3.5 Transaction costs 

  

Buying and selling security means incurring in transaction costs, which has been 

proved to make the MV model inefficient if not considered39. Transaction costs can 

be considered in two different ways, the fixed ones, meaning that they are paid 

irrespective of the amount of cash traded, or variable which, as opposite, are related 

to the traded amount. During the years several researches have been published 

discussing common assumption which will be briefly explained.  

One of the no-fixed transaction costs model is the V-shaped variable transaction 

cost function which introduced by Bertsimas and Pachamanova (2008). 

 

During the years several research have been published discussing the optimal 

number of securities in a portfolio in presence of minimum transaction slot40, fixed 

 
39 See Yoshimoto (1996) 
40 See Mansini and Speranza (1997) 
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costs of transaction41 or concave transaction costs42for example. However, as this 

kind of constraint is outside the reach of this research, it has not been implemented 

for the portfolio optimization algorithm. 

 

1.3.6 Round lot constraints 

 

Another constraint which has been developed to deal with real world trading 

rules is the round lot one, which force every asset investment in portfolio to be the 

exact multiple of a minimum lot. Let: 

 

𝑥𝑖 = 𝑦𝑖 ∗ 𝑙𝑖      𝑖 = 1,… ,𝑁 

 

with 𝑥𝑖 be the weights express in terms of of an investment, 𝑦𝑖  be an integer variable 

and 𝑙𝑖 the minimum lot. As it is beyond the scope of this research, this constraint 

has not been added to the original model. 

 

1.3.7 Asset class constraints 

 

In real world, investors face, in addition to the above problems, the exposure 

one. Exposure can be considered as the risk of losing part of the amount invested. 

Such a problem can be limited by investing in different asset classes like oil stocks, 

utility stocks, telco stocks, in other terms, by diversifying. Asset class constraints 

limit the proportion of the portfolio which can be invested in each class. As 

suggested by Cheng et al. (2000)43 let Γ𝑚, 𝑚 = 1,… ,𝑀, be 𝑀 sets of assets that are 

mutually exclusive, i.e. Γi ∩ Γj = ∅, ∀i ≠ j and  

 

 

𝐿𝑚 ≤ ∑ 𝑤𝑖 ≤

𝑖∈𝛤𝑚

𝑈𝑚,  𝑚 = 1,… ,𝑀 

 

 

with 𝐿𝑚 and 𝑈𝑚 be respectively the lower and the upper proportion limit.  

As the assets chosen for this research are already diversified by class, this kind of 

constraint will not be added to the model.  

In chapter 2 a complete and exhaustive presentation of the algorithm together with 

the implemented constraints will be presented. 

 
41 See Brennan (1975) 
42 See Konno and Wijayanayake (2001) 
43 T.-J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained portfolio 

optimisation, Computers & Operations Research, 2000, 27(13), 1271-1302 



  

18 
 

Chapter 2 

 

Metaheuristics algorithms  

 
In this chapter the metaheuristics for optimization Particle Swarm Optimization 

(PSO) and a Modified version of the Particle Swarm Optimization (MOPSO) are 

introduced and discussed: since they are both bio-inspired algorithm, a brief 

explanation of the theory behind them and an introduction to swarm intelligence 

will be provided. Then, the chapter will focus more in detail on the algorithms used 

and compared in this research. 

 

2.1 Introduction 

 

Optimization problems are useful in many fields, including finance: they consist 

into looking for the optimal value of a given set of variables or constraints. To solve 

them and to find optimal solution different exact solution technique has been 

developed and implemented44 but there exist complex real-world problems which 

tends to be too complex and require too much computational effort to be solved: 

this kind of complexity may derive from characteristics like the size of the dataset, 

the availability of limited computational time or, as introduced before, the problem 

may be classified as NP-hard. To address such problems, approximate algorithms, 

namely heuristics and metaheuristics, have received great attention both from 

academically and practical side and have been studied in the last decades because 

their use a trade-off between the optimal solution, as intended for exact algorithms, 

and computational time needed. More specifically, the heuristics and metaheuristic 

methods give up a certain degree of certainty of finding the real optimal solution in 

order to reduce the computational time up to a reasonable one. 

 

 

2.2  Heuristics and Metaheuristics 

 

Introduced by Polya in his book “How to solve it” in 1945, the word heuristics 

derives from the Greek verb heuriskein which means “to find, to discover”. In his 

 
44 See, for example, Aouni et al. (2005) and Peng et al. (2011). 
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book the author requires its students to construct an articulate though following a 

dictionary-like set of heuristics useful to deal with mathematical problems. As 

introduced before, heuristics refers to a group of algorithms implemented to solve, 

in a reasonable amount of time, complex optimization problems, approximating 

the final results in order to obtain a greater computational time. It can be clearly 

stated that their advantages are the easiness of implementation and their adaptability 

to the nature and the size of the problem. 

 

Heuristics methods have not found a common classification among the academic 

researchers; however, an adequate one can be presented as follow: 

• Constructive heuristics. These kind of techniques are used when the 

solution can be obtained selecting a subset of a given set of elements. The 

iterative cycle starts with an empty set, adding elements to the solution until 

the complete and final solution have been reached. This heuristics is 

composed by two different processes, the initialization, aiming to select 

the particle of the swarm to start from, and the selection which set the rules 

for the chose of the next element in the subset. Generally speaking, 

constructive heuristics are not time-consuming, but the complete solution 

might be too approximate and not good enough. 

• Improvement heuristics. Differently from the constructive ones, these 

heuristics start from an arbitrary complete solution and then try to improve 

it applying small changes. Formally, at each step of the iterative cycle, the 

algorithm moves from the current complete solution to one of the 

neighbors in the search space S, defined as the set of possible solution. If 

the movement lead to an improvement of the complete solution, that 

point in the search space will become the new starting point for the next 

cycle. The algorithm stops when it is impossible to achieve a better 

complete solution, or when a specified value of the object function is 

obtained or if the set maximum number of iterative cycle is reached. 

• Hyper-heuristics. These kind of algorithm have first been mentioned by 

Cowling and Soubeiga to try explaining the idea of “heuristics to chose 

heuristics”. In order to solve the problem of choosing a heuristics to solve 

a problem, an algorithm able to identify the most suitable one for that 

particular problem. The identification process can be split into two phases: 

heuristic selection and move acceptance. During the first phase the 

heuristics is selected and applied while the move acceptance decides 

whether to accept or reject the solution obtained.  
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Apart from the just introduced classification, a particular kind of approximate 

algorithms emerged in the last 20 years and proved to be really effective to solve the 

problems just introduced, metaheuristics algorithms. Introduced by Glover (1986), 

the word metaheuristic adds the word meta meaning “beyond, on another level” to 

the word heuristic introduced before.  

 

“A metaheuristic is formally defined as an iterative generation process 

which guides a subordinate heuristic by combining intelligently different 

concepts for exploring and exploiting the search space, learning strategies   

are used to structure information in efficiently near-optimal solutions.” 45 

 

Metaheuristics can be classified in many different ways, but the following 

ones can be considered interesting: 

• Nature inspired vs non-nature inspired: one of the most clarifying 

distinction is the original inspiration of the algorithm. Nature inspired 

metaheuristics, like the PSO, simulates behaviors observable in 

nature. On the other hand, algorithms like the tabu search does not 

simulate such natural behaviors. 

 

• Trajectory based vs population based: this classification concerns the 

number of solutions the algorithm can manage during its running 

cycle. The former is able to manage only one solution with a single 

agent tracking the path while the latter use a group of agents to find 

the best solution, the so-called global best, among all the solutions, 

namely local best. 

 

• Dynamic vs static object function: another classification regards the 

way in which the algorithm uses its object function. Some 

metaheuristic algorithms keep the same object function defined at the 

beginning of the first iterative cycle fixed for all the cycles until the end 

of the optimization process. However, this may cause the algorithm 

to incur in local minima solution. To try to solve this issue, dynamic 

algorithm modifies the object function incorporating information 

taken from the past iterative cycles. 

 

• One vs different neighborhood structure: most of the metaheuristic 

algorithms are structured to work on a unique neighborhood 

 
45 Osman and Laporte, 1996. Metaheuristics: A bibliography. Annals of Operational Research, 63, 513-628. 
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structure, so they do not modify the shape of the search space during 

the process. On the other hand, it exists algorithm like the Variable 

Neighborhood Search structured to varies and diversifies the search 

space. 

 

• Memory usage vs memory-less methods: another important 

classification can be constructed by the use of adaptive memory 

through the search history. While the memory-less algorithms are 

structured to carry out a Markov process, determining the next step 

on the current condition, memory usage ones use techniques based 

on the past interactions. In particular, short-term memory algorithms 

use past moves, solutions and decisions to perform the next steps, 

while long term memory ones combine different parameters giving 

information on the past. 

The focus of this research will be population-based algorithms, with a focus 

on a very promising branch of artificial intelligence, namely the swarm 

intelligence, which will be now introduced. 

 

2.3 Swarm intelligence and PSO 
 

Particle Swarm Optimization is a naturally inspired, population-based algorithm 

developed and presented by Eberhart and Kennedy (1995)46 which it is heavily 

inspired by Heppner and Grenander (1990)47 and Reynolds (1987)48 scientific 

researches about flocks and birds looking for food. While the latter’s goal was to 

produce a graphical simulation of the choreography created by the animals, 

Eberhart and Kennedy transformed it into a powerful optimization tool. One of the 

success of such metaheuristic algorithm was the always increasing number of NP-

hard in various research ares problem and the fact that the model is derivative-free, 

so it doesn’t need derivatives computation during the process.  

 

Practically, PSO algorithm is based on a swarm of particles, which moves into 

the search space looking for the optimal49 solution given the object function set at 

 
46 J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference 

on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4 
47 Heppner, F. and U. Grenander (1990).  A stochastic nonlinear model for coordinated bird flocks. In S. Krasner, 

Ed., The Ubiquity of Chaos. AAAS Publications, Washington, DC 
48 Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 2 1 

(4):25-34. 
49 It might be good to recall that the optimal solution of an approximate techniques might be different (and so worst) 

from the one from one exact technique. 
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the beginning of the optimization process. To be more precise, the process starts 

with the generation of a predefined number of swarm particles in a random location 

of the search space. Each particle explores its surrounding area and record its best 

position and the swarm best position at the end of the exploration.  

 

From a more technical and quantitative standpoint, a swarm can be defined as 

a group of N particles moving in the M-dimensional search space. Each agent of 

the swarm is characterized by three M-dimensional vectors: 

• 𝑥𝑗
𝑘, the vector representing current position of the 𝑗 − 𝑡ℎ particle at the 

𝑘 − 𝑡ℎ iteration. 

• 𝑣𝑗
𝑘, the vector representing current velocity of the 𝑗 − 𝑡ℎ particle at the 

𝑘 − 𝑡ℎ iteration. 

• 𝑝𝑗
𝑘, the vector recording the best position explored by the 𝑗 − 𝑡ℎ particle 

up to the 𝑘 − 𝑡ℎ iteration. The best value recorded for the whole swarm, 

and represented by the fitness value, is denoted by Pbest. 

 

The original PSO algorithm is quite simple, both from a conceptual and a 

practical point of view. Here it can be found the description of its main steps: 

 

1. Initialization of the particle swarm with random position in the search 

space and velocity 

2. Begin loop: 

a. Compute the value of the object function 𝑓(𝑥𝑗
𝑘) in the current 

position 𝑥𝑗
𝑘. The valuation is computed for each particle. 

b. Compare the value of the object function of the current position with 

the best position 𝑃𝑏𝑒𝑠𝑡. If 𝑓(𝑥𝑗
𝑘) > 𝑃𝑏𝑒𝑠𝑡, update the best position 

𝑝𝑗  with the current position 𝑥𝑗
𝑘, otherwise the cycle continues. 

c. Identify the particle with the best global object function value and 

define it as 𝐺𝑏𝑒𝑠𝑡 and its position 𝑝𝑔
3.  

d. Update the position and the velocity of the particles according to the 

following equation: 

 

      

 

            {
𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘 + 𝑈(0, 𝜙1) ⊗ (𝑝𝑗 − 𝑥𝑗
𝑘) + 𝑈(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗

𝑘)

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘+1

 (2.1) 
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e. If one of the criterions is met (i.e. satisfactory fitness value or limit 

of cycles reached), exit loop. 

3. End loop. 

 

With particular reference to equation (2.1) note that: 

• 𝑣𝑗
𝑘 is the current velocity of the particles; 

• 𝑈(0,𝜙𝑖) is a vector of random numbers uniformly distributed between 

[0, 𝜙𝑖]; 

• ⊗ is the component-wise multiplication; 

• 𝜙1 and 𝜙2 are the acceleration coefficient which are set by the author. The 

latter influences the behavior of the swarm through the magnitude of the 

force attracting every particle toward its personal best 𝑝𝑗 and the global best 

𝑝𝑔. 

• (𝑝𝑗 − 𝑥𝑗
𝑘) is the difference between the personal best position of the particle 

and its current position; 

• (𝑝𝑔 − 𝑥𝑗
𝑘) is the difference between the personal best position of the particle 

and its current position. 

 

From equation (2.1), it can be stated that position and velocity are the results of the 

influence of three main component: 

• 𝑣𝑗
𝑘 , the current velocity or “inertia component”. Its role is to maintain the 

direction of the particle as it was in the previous iteration, avoiding 

unexpected direction changes. 

• 𝑈(0, 𝜙1) ⊗ (𝑝𝑗 − 𝑥𝑗
𝑘) which is the cognitive component, can be considered 

as a part of the memory of the particle. It serves to attract the particles to the 

search space where they have obtained the best personal fitness function. As 

to increase the variability, this cognitive component is multiplied by a 

random number chose from a uniform distribution in the interval [0, 𝜙𝑖]. 

• 𝑈(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗
𝑘) which is the social component, can be considered as 

another part of the memory. As opposite to the previous element, it 

considers the whole swarm and make it move to the search region in which 

the best global position has been encountered. Again, as to increase the 

variability, also this component is multiplied by a random number chose 

from a uniform distribution in the interval [0, 𝜙𝑖]. 
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A simple graphical representation of the update of velocity and position is 

reported in figure 5.  

 

 

2.3.1 Parameter selection 

 

The basic PSO introduced in this chapter has just a few parameters to be set. 

The first parameter is the number of particles, i.e. the size of the swarm. From a 

superficial analysis it might appears that the greatest the swarm, the better the 

results. However, the choice of the population size strongly influences the trade-off 

between exploration and exploitation, concepts already introduced, as a greater 

swarm can be useful to maintain diversity in the first iterative cycles but may be 

counterproductive in late stages where exploitation around the best position is 

needed. Moreover, as the population size increases the computational time needed 

to perform the task will increase. Another variable influencing the choice is the 

dataset size. It can be stated that swarm size needs to be set empirically however, 

values in the range 20 – 50 are quite common50.  

 

Other parameters to be fixed are the acceleration coefficients, already defined 

in formula (2.1), 𝜙1 and 𝜙2. Specifically, 𝜙1 check the converges of each particle 

to its personal best 𝑝𝑗
𝑘, while 𝜙2 controls that each particle move to the global 

position 𝑝𝑔 . The wrong choice of these values could make the algorithm instable 

and lead to an uncontrolled increase of particles velocity: small values may limit the 

movements of the particles, while too large values can cause the divergency of the 

particles.  In fact, in the original paper, Eberhart and Kennedy suggested to fix the 

𝜙1 = 𝜙2 = 2 but this solution did not guarantee a satisfactory stability51. To solve 

this issue, it has been suggested to keep the parameter 𝑣𝑗
𝑡 within the range 

[−𝑉𝑚𝑎𝑥, +𝑉𝑚𝑎𝑥] . Most of the time the  value for +𝑉𝑚𝑎𝑥 have to be set empirically 

on a problem-to-problem basis as to fit it perfectly the specific characteristics. Not 

surprisingly, a too high value of this parameter may cause the particles to ignore a 

good solution. On the other hand, a too low value for −𝑉𝑚𝑎𝑥 limits the movement 

of each particle, and the optimal solution might not be even reached.  

Beyond the basic formulation just introduced, several modification and 

improvements to cope with velocity issues have been developed to try to figure out 

an empirically universal way to manage it.52 

 

 
50 R. Poli and J. Kennedy and T. Blackwell, Particle Swarm Optimization, 2007. 
51

 See, for example, R. Eberhart and Y. Shi (2001) and X. Hu, R. Eberhart, and Y. Shi (2004). 
52

 See, for a review, Sousa-Ferreira and Sousa (2016). 
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2.3.2 Modification of PSO 

 

Even if the original version of the PSO can converge fast, providing robust results 

given the time needed, it may fall into local minima, especially dealing with high-

dimensional optimization problems. The local minima trap practically consists into 

a premature convergence of the algorithm that may limit the swarm to explore other 

areas of the search space. To try to avoid this drawback, during the years some 

interesting and promising modification have been introduced to the original 

algorithm. 

 

Constriction coefficient 

 

A modified version of the PSO has been introduced by Clerc and Kennedy 

(2002)53 and it is based on a modification of the velocity equation. A new parameter  

𝜒 called constriction factor is introduced and the formula is modified as follow 

 

 
{
𝑣𝑗
𝑘+1 = 𝜒[𝑣𝑗

𝑘 + 𝑈(0, 𝜙1) ⊗ (𝑝𝑗 − 𝑥𝑗
𝑘) + 𝑈(0,𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗

𝑘)]

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘+1

 

 

 

(2.2) 

 

with 

• 𝜒 =
2

𝜙−2+√𝜙2−4𝜙
; 

• 𝜙 = 𝜙1 + 𝜙2 with 𝜙 > 4. 

 

In the implementation of the constriction strategy, common value of 𝜙 is 4.1, 

given 𝜙1 = 𝜙2 and the constriction factor equal to 0.7298. 

 

As can be seen from Equation 2.2 compared to Equation 2.1, the constriction 

factor is applied to all the components of the velocity equation. So, the velocity of 

the previous iteration 𝑣𝑗
𝑘 is multiplied by 0.7298, while the cognitive component 

(𝑝𝑗 − 𝑥𝑗
𝑘) and the social one (𝑝𝑔 − 𝑥𝑗

𝑘) are multiplied by a uniformly generated 

random number limited by 1.49618. 

 

 

 

 
53 Clerc, M., & Kennedy, J. (2002). The particle swarm – Explosion, stability, and convergence in a 
multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6(1), 58–73. 
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Fully informed Particle Swarm 

 

The Fully Informed Particle Swarm (FIPS) is another alternative variant of the 

original PSO developed by Mendes et al. (2006). In the Kennedy and Eberhart 

version of the PSO, a particle with 𝑘 neighbors choose only one to be his source of 

influence, ignoring all the others. By doing this, all the information related to other 

neighbors remains unexploited. In the FIPS approach, every particle is fully 

informed by all neighbors’ best position and the velocity is updated considering all 

the information coming from all the neighbor agents. Mathematically it is 

represented by 

 

 

{
 
 

 
 
𝑣𝑗
𝑘+1 = 𝜒 [𝑣𝑗

𝑘 +
1

𝐾𝑗
∑ 

𝐾𝑗

𝑛=1

𝑈(0, 𝜙) ⊗ (𝑃
𝑛𝑏𝑟𝑛

𝑗 − 𝑥𝑗
𝑘)]

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘

 

 

(2.3) 

 

with  

• 𝐾𝑗 the number of the neighbors for particle 𝑗; 

• 𝑛𝑏𝑟𝑛
𝑗
 the 𝑗′𝑠 𝑛 − 𝑡ℎ neighbor. 

 

When 𝐾𝑗 is set equal to 2 the FIPS algorithm generates same results of the 

original one. However, the use of such a Fully Informed approach seems to make 

the algorithm less time-consuming by increasing the speed of convergence. On the 

other hand, is appears to be too sensitive to population topology, which is 

introduced in the next paragraph. 

 

2.4  Population topology 
 

As already discussed, PSO algorithms is based on social iterations among the 

particles, meaning that each particle is influenced by their neighbors. In fact, the 

number of iterations decreases when the neighborhood in the swarm is small and 

vice versa. In addition, in case of small neighborhood, the optimization process is 

characterized by a slower convergence, which increases the computational time 

needed, but it may provide better solutions. As opposite, if the neighborhood is 

large the convergence is faster, and the risk is that it happens too early.  

 

Hence, considering how important are the connection between particles in the 

swarm and the impact they may have on the algorithm performance, researchers 
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have developed different types of neighborhood structures. They can be divided 

into static and dynamic, where the first neighbors and neighborhoods remain the 

same for the entire optimization process: In depth, this first group includes: 

 

• Local best. This topology, introduced by Eberhart and Kennedy in 1995, 

is composed by a ring structure in which every single component of the 

swarm communicates with K other adjacent components in the array. 

The main advantage of the local best structure is the capability to create 

multiple populations able to cooperate and give the possibility to the 

swarm components, to try to converge into different areas of the search 

space. In the original version K was equal to 2.  

• Global best. In a different manner, this topology gives the possibility to 

all the swarm members to communicate each other’s, without creating 

subpopulations. The algorithm identifies the best particle in the swarm 

and that particle will influence other members. This much deeper 

integration between particles gives the opportunity to faster convergence 

leaving much more vulnerability for local optima. 

• Von Neumann. The last structure discussed in this research is that 

proposed by Kennedy and Mendes, which gives the possibility to each 

particle to interact with four of its neighbors in a rectangular lattice 

topology54. As the local best approach, the Von Neumann topology 

includes the parallel search when K is set equal to 4. In their work, the 

authors suggested that the Von Neumann topology outperforms the other 

topologies.  

A representation of the local topology is presented in Figure 6. 

 

As opposite, dynamic topologies constitute a much more integrated way of 

communication and influence between particles’ swarm, as they can dynamically 

change their iteration method.  

During the years, researchers proposed different implementation of dynamic 

topology structure. The main ones, chronologically, are: 

• Suganthan in (1999) introduced a modified PSO including the neighborhood 

operator. The search cycle begins with each particles operating without any 

other particle’s influence, and then, increasing the size of the neighborhood 

until all the particles are included. The idea behind this approach is to start 

with a local best strategy shifting to a fully connected network. 

 
54

 For example, for a population of 20 particles, the rectangular structure is a 5 × 4 matrix, and  

each particle is connected to 4 other particles: the one above, the below, and at each side of it. 
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• Peram et al. (2003) suggested to use a weighted Euclidean distance to define 

the iteration partner for each member of the swarm. In details, the particle 

selects its neighboorhood’s partner according to a so-called “fitness distance 

ratio” (FDR) so defined: 

 
𝐹𝐷𝑅 =

 Fitness (𝑥𝑗) −  Fitness (𝑝𝑖)

|𝑥𝑗 − 𝑝𝑖|
 

(2.4) 

 

with 𝑝𝑖 be the i-neighboor of j-th particle. 

This kind of interactive topology have been developed to decrease the possibility 

of iterations between swarm members located in distant areas of the search space. 

 

• Liang and Suganthan (2005) proposed a PSO algorithm where the 

population into sub-swarms of size n. As the swarms are randomly disjointed 

created, they tend to lead to an increased exploration of the search space. 

 

• Janson and Middendorf (2005) developed a hierarchical version of the PSO 

based on the fitness value of each particle. In particular, each component of 

the swarm is attracted by its own previous best position and by the best 

position of the other particles, if greater in terms of performance. Doing this, 

best performances’ particles achieve the top position of the ranking, 

influencing the lower positions’ ones. 

 

• Clerc (2006) introduced the TRIBES, a parameter-free PSO, where the 

neighborhood structure is updated based on an optimization process in 

response to performance feedbacks. The swarm is divided into sub-swarms 

with an independent structure and number of components. Then, the 

optimization algorithm will manage the particles of each tribe in order to 

improve its performance.  

 

 

2.5 Improved Particle Swarm Optimization 
 

In this section an alternative version of the Particle Swarm optimization algorithm 

will be proposed. Along with the PSO modification just cited, other authors tried 

to combine different formulation to obtain better results as Deng et al. (2012), 

which developed an improved version of the PSO algorithm. The authors’ aim was 

to provide an improved algorithm in order to reach better optimal solution in a 

limited iterations cycle.  
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The first modification by these authors concerned the position of the particles in 

the search space. Updating particles’ position may cause them to leave the search 

space during the iterative cycles and, as to correct this issue, the value of the new 

position can be set equal to the boundary value for the asset of the portfolio. 

However, this may cause a strong reduction in diversity characteristics and a rapid 

stagnation of the algorithm to the local optimum. As suggested by Paterlini and 

Krink (2006)55, in order to avoid such stagnation, a reflection strategy can be applied 

during the initial search phase: if the value of the new position is outside the 

boundaries, i.e., the particle leaves the search domain, it will be reflected into the 

search space by 

 

 𝑥𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 2(𝑥𝑗
𝑙 − 𝑥𝑖,𝑗

𝑡 ) if 𝑥𝑖,𝑗
𝑡 < 𝑥𝑗

𝑙 (2.2) 

 𝑥𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 − 2(𝑥𝑖,𝑗
𝑡 − 𝑥𝑗

𝑢) if 𝑥𝑖,𝑗
𝑡 > 𝑥𝑗

𝑢 (2.3) 

 

where 𝑥𝑗
𝑢 and 𝑥𝑗

𝑙 are the upper and the lower bounds of the domain space, 

respectively. This reflection strategy stops if no improvements is obtained after a 

certain number of iterations and then, the boundary values are set as by 

 

 

𝑥𝑖,𝑗
𝑡 = 𝑥𝑗

𝑙  if   𝑥𝑖,𝑗
𝑡 < 𝑥𝑗

𝑙 .                 𝑥𝑖,𝑗
𝑡 = 𝑥𝑗

𝑢  if   𝑥𝑖,𝑗
𝑡 > 𝑥𝑗

𝑢 

 

(2.4) 

The use of this modification has been proved to improves solution quality, 

allowing particles to explore a greater area escaping from the local minima at the 

same time.  

 

Then, a modified version of cardinality constraint seen in (1.22) has been 

implemented. Defined 𝐾 as the number of the desired assets to be own in the 

investor’s portfolio, and 𝑄 a set of 𝐾, let 𝐾𝑛𝑒𝑤 represent the number of assets after 

updating positions in portfolio. If 𝐾𝑛𝑒𝑤 < 𝐾 , then some assets must be added to 

𝑄 while, on the contrary, if 𝐾𝑛𝑒𝑤 >  𝐾, then some assets must be removed from 𝑄 

until 𝐾𝑛𝑒𝑤 = 𝐾.  

 

Considering the case 𝐾𝑛𝑒𝑤 >  𝐾, the methods proposed by the authors consists 

into delete the assets with the smallest weights in the portfolio, while in the opposite 

case, 𝐾𝑛𝑒𝑤 < 𝐾, it adds a new asset 𝑖 ∉ 𝑄 to the portfolio assigning it the minimum 

proportion 𝜀𝑖 set at the beginning. From the boundary constraint definition, it is 

 
55

 S. Paterlini, T. Krink, Differential evolution and particle swarm optimisation in partitional clustering, 

Computational Statistics & Data Analysis, Volume 50, Issue 5, 2006, Pages 1220-1247. 
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known that 𝑥𝑖 must satisfy 0 ≦ ε𝑖 ≦ 𝑥𝑖 ≦ δ𝑖 ≦ 1  for 𝑖 ∈ 𝑄. Adding the new asset 

causes a rebalancing of the portfolio weights as to respect the budget constraint as 

introduced in (1.21) and it may cause that an asset weight already in portfolio, 

defined 𝑠𝑖, exceeds the limits defined before. If 𝑠𝑖 < ε𝑖, the minimum proportional 

value of ε𝑖 replaces asset 𝑠𝑖. If 𝑠𝑖 > ε𝑖, the proportional share of the free portfolio 

is computed as   

 

 

 

𝑥𝑖 = 𝜀𝑖 +
𝑠𝑖

∑  𝑗∈𝑄,𝑠𝑖>𝜀𝑖
𝑠𝑖
(1 −∑  

𝜀𝑖

𝑗∈𝑄

) 

 

(2.5) 

 

By using this method, the algorithm minimizes the proportional value of ε𝑖 for the 

useless assets 𝑖 ∈ 𝑄 and particles converges faster to the optimal value, especially 

for low value of the risk aversion parameter 𝜆, which will be explained later on.  

 

Moving to the velocity parameter, the authors implemented the inertia weight 

approach, 𝑤, introduced by Shi and Eberhart (1998)56, 57 which controls how 

previous velocity affects present velocity. Low values of 𝑤 causes the swarm to 

concentrate on the local search around the current local area, while high value of 

𝑤 indicate the exploitation of global search for the optimal solution. As already 

explained, the swarm should concentrate in exploration during the first stages of the 

search, as the algorithm has almost no knowledge about the information in the 

search space. Instead, as the iterative process converges to the optimal solution, the 

focus should be brought to exploitation. In order to achieve this result, the 

proposed PSO implemented a time variant 𝑤 defined as 

  

𝑤(𝑡) = (𝑤(0) − 𝑤(𝑛𝑡))
(𝑛𝑡 − 𝑡)

𝑛𝑡
+𝑤(𝑛𝑡) 

 

(2.6) 

where 𝑤(𝑡) is the current inertia weight, 𝑤(0) is the initial inertia weight, 𝑤(𝑛𝑡) 

is the final inertia weight, 𝑛𝑡 is the maximum number of iterations the algorithm 

 
56

 Y. Shi and R. Eberhart, "A modified particle swarm optimizer," 1998 IEEE International Conference on 

Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. 

No.98TH8360), 1998, pp. 69-73 
57

 Y. Shi and R. C. Eberhart.  Empirical Study of Particle Swarm Optimization. In Proceedings of the 

Congress on Evolutionary Computation, pages 1945–1949, Washington D.C, USA, July 1999. IEEE 

Service Center, Piscataway, NJ.21, 33 
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needs to perform and 𝑡 is the current number of iterations. As suggested by Shi and 

Eberhart58, and implemented by authors, 𝑤(0) = 0.9 and 𝑤(𝑛𝑡) = 0.4. 

 

Then, other authors define the modification to the acceleration coefficients. The 

approach of their algorithm is to use time variant coefficients introduce by 

Ratnaweera et al. (2004)59, which has empirically proved to be more efficient than 

the fixed ones of the original definition. Mathematically, the time variant 

acceleration coefficients are defined as 

 

 
𝑐1(𝑡) = (𝑐1,𝑚𝑖𝑛 − 𝑐1,𝑚𝑎𝑥)

𝑡

𝑛𝑡
+ 𝑐1,𝑚𝑎𝑥 (2.7) 

 

 

where 𝑐1,𝑚𝑖𝑛 and 𝑐2,𝑚𝑖𝑛 are the minimum value for the acceleration coefficients, 

𝑐1,𝑚𝑎𝑥 and 𝑐2,𝑚𝑎𝑥 are the maximum ones, 𝑡 is the current number of iterations and 

𝑛𝑡 is the maximum number of iterations the algorithm needs to perform. In such 

representation of the acceleration coefficients, 𝑐1 linearly decreases and 𝑐2 linearly  

increases over time, encouraging convergence to a good optimum close to the end 

of the optimization process by trusting the best particle at that time. The values for 

the acceleration parameters, as suggested by Ratnaweera et al. (2004)60, were defined 

as 𝑐1,𝑚𝑖𝑛 = 𝑐2,𝑚𝑖𝑛 = 0.5 and 𝑐1,𝑚𝑎𝑥 = 𝑐2,𝑚𝑎𝑥 = 2.5. 

 

Lastly, authors define a mutation operator, based on Tripathi et al (2007)61 which 

has been introduced as to improve diversity in the search space.  Formally, the 

mutation operator is defined as 

  

𝑔𝑘
′ : {
𝑔𝑘 + Δ(𝑡, UB − 𝑔𝑘)     if 𝑓𝑙𝑖𝑝 = 0

𝑔𝑘 + Δ(𝑡, 𝑔𝑘 − LB)     if 𝑓𝑙𝑖𝑝 = 1
 

(2.9) 

 
58

 In their papers the authors argued that setting 𝑤(0) in the range [0.9,1.2] have less chances to fail finding 

the optimal solution but, among all the values in the interval, 𝑤(0) = 0.9 takes the least average number 

of iterations to find the global optimum solution. Moreover, they empirically proved that the approach 

performs in a satisfactory way decreasing 𝑤 from 0.9 to 0.4 during the iteration. 
59

 Ratnaweera, A., Halgamuge, S., & Watson, H. (2004). Self-organizing hierarchical particle swarm optimizer with 

time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255. 
60

 A. Ratnaweera, S. K. Halgamuge and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with 

time-varying acceleration coefficients," in IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240-

255, June 2004 
61

 P.K. Tripathi, S. Bandyopadhyay, S.K. Pal, Multi-Objective Particle Swarm Optimization with time variant inertia 

and acceleration coefficients, Information Sciences, 177(22), 2007, 5033-5049, 

 
𝑐2(𝑡) = (𝑐2,𝑚𝑎𝑥 − 𝑐2,𝑚𝑖𝑛)

𝑡

𝑛𝑡
+ 𝑐2,𝑚𝑖𝑛 (2.8) 
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where 𝑔𝑘 denotes a randomly chosen variable, 𝑓𝑙𝑖𝑝 represents a dummy variable 

taking, randomly, value 0 or 1, UB represents the upper limit of the function 𝑔𝑘  

while LB its lower limit. The function Δ is defined as  

 

 Δ(𝑡, 𝑥) = 𝑥 ∗ (1 − 𝑟
(1−

𝑡
𝑚𝑎𝑥_𝑡

)

𝑏

) (2.10) 

 

where 𝑟 is a random number generated in the interval [0,1], max_𝑡 is the 

maximum number of iterations, 𝑡 is the current iteration number and 𝑏 represents 

the dependence of the mutation on the iteration number. As suggested by Deb, 

(2001)62 𝑏 = 5. 

 

A brief overview of the modified PSO pseudo-code will now be presented, as to 

make it more understandable: 

1. Initialization of the particle swarm with random position in the search 

space and velocity 

2. Begin loop: 

a. Compute the value of the object function 𝑓(𝑥𝑗
𝑘) in the current 

position 𝑥𝑗
𝑘. The valuation is computed for each particle. 

b. Compare the value of the object function of the current position with 

the best position 𝑃𝑏𝑒𝑠𝑡. If 𝑓(𝑥𝑗
𝑘) > 𝑃𝑏𝑒𝑠𝑡, update the best position 

𝑝𝑗  with the current position 𝑥𝑗
𝑘, otherwise the cycle continues. 

c. Identify the particle with the best global object function value and 

define it as 𝐺𝑏𝑒𝑠𝑡 and its position 𝑝𝑔
3.  

d. Update the position and the velocity of the particles according to 

the following equation 

e. If one of the criterions is met (i.e. satisfactory fitness value or limit 

of cycles reached), exit loop. 

3. End loop. 

 

 

 
62 K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley and Sons, USA, 2001 
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This modified PSO has proved to perform better than the original one but, also, 

against PSO-DIV by Fourie and Groenwold (2002)63 and PSO-C by Clerc and 

Kennedy (2002)64. Moreover, it has demonstrated better performance against other 

kind of metaheuristics such as simulated annealing, tabu search and genetic 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

63

 Fourie, P.C. & Groenwold, Albert. (2002). The particle swarm optimization algorithm in size and shape 

optimization. Structural and Multidisciplinary Optimization. 23. 259-267 
64

 Clerc, M., & Kennedy, J. (2002). The particle swarm – Explosion, stability, and convergence in a multidimensional 

complex space, IEEE Transactions on Evolutionary Computation, 6(1), 58–73 
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Chapter 3 

 

 

Options and the forward-looking approach 

 
As introduced at the very beginning of this research, despite the seminal work by 

Markowitz, the optimal portfolio selection is a classical and challenging problem in 

finance because of the estimation errors from historical data. This section is 

composed by a brief explanation about option derivatives, Black-Scholes-Merton 

differential equation and pricing formula and two different approaches to the 

implementation of a forward-looking strategy. 

3.1 Options  

Options belong to the category of derivative instruments, i.e. financial 

instruments whose value depends on the value of a different type of asset called 

"underlying". Options can be defined as financial contracts that give to the 

purchaser, the right and not the obligation, to buy or to sell a specified underlying 

asset at a determined price, the strike price or exercise price, in a specified time in 

the future, the maturity. In depth, options can be distinguished into: 

• Call option: derivative that gives the owner the right to buy an underlying 

asset at a specified price in the future. 

• Put option: derivative that gives the owner the right to sell an underlying asset 

at a specified price in the future. 

Moreover, options can be either American or European, where the first can be 

exercise at any time up to the maturity date while the latter can be exercised only 

on the expiration date. Options are used by investors to speculate, through holding 

a leveraged position in an asset at a fraction of the cost of buying it, or to hedge or 

reduce the risk exposure of their portfolios. They can be written on stocks, 

currencies, indices or futures. 

 

Every option contract has two sided. In one side it can be found the investor who 

have a long position (i.e. has bought the option), while on the other there’s the 

investor having a short position (i.e. has sold the option). So, it there exists four 

different options position: 

• A long position in a call option; 

• A long position in a put option; 
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• A short position in a call option. 

• A short position in a put option. 

Since American options can be exercised at any time, their payoff is not so easy 

to demonstrate as the European one. Given K to be the strike price and 𝑆𝑇 the 

price of asset at maturity, the payoff for a long position in a European call options 

is  

 

 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0) (3.1) 

 

It can be easily noticed that the option will be exercised only if 𝑆𝑇 > 𝐾. On the contrary, 

the payoff of a short position in a European call option is 

 

 −𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0) = 𝑚𝑖𝑛(𝐾 − 𝑆𝑇 , 0) (3.2) 

 

The payoff to a holder of a long position in a put option is  

 

 𝑚𝑎𝑥(𝐾 − 𝑆𝑇 , 0) (3.3) 

 

While the payoff of a short position in a put option is 

 

 −𝑚𝑎𝑥(𝐾 − 𝑆𝑇 , 0) = 𝑚𝑖𝑛(𝑆𝑇 − 𝐾, 0) (3.4) 

 

A graphical representation of these payoffs can be found in Figure 7.  

 

Options prices on the market are determined by the results of demand and 

supply during the negotiation time coming from market makers65 and financial 

operators. The price of an option can be derived by using two methods, the 

binomial tree and the Black-Scholes-Merton model which will be introduced later. 

In the next paragraphs the variables affecting option prices will be briefly introduced 

as one of them will be needed for our purposes. These six factors are: 

• the current stock price; 

• the strike price; 

• the time of expiration; 

• the volatility of the stock price; 

• the risk-free rate; 

 
65 The market maker can be either a firm or an individual whose quotes two-sided markets in a 
particular security, providing bids and offers along with the market size of each. Hence, their presence 
is necessary to provide liquidity to the market and no delay during the operations. The market makers  
themselves make their profits from the bid–offer spread. 
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• the dividends expected to be paid. 

Stock price and strike price 

 

The mechanics of call and put option payoff has been introduced before. Starting 

from there, it can be easily understood the relationship between stock price, strike 

price and option price. In a call option, the payoff will be the amount by which the 

stock price exceeds the strike price. So, call options become more valuable as the 

stock price increases and less valuable as the strike price increase. On the contrary, 

for a put option the payoff on exercise is the amount by which the strike price 

exceeds the stock price. Hence,   they become less valuable as the stock price 

increases and more valuable as the strike price increases. 

 

Time to expiration 

 

Considering the time to expiration, both put and call American options become 

more valuable (or at least do not decrease in value) as the time to expiration 

increases. Instead, European put and call options usually become more valuable as 

the time to expiration increases66. 

 

Volatility 

 

As introduced before, volatility is a measure of uncertainty about the return 

provided by the stock (or the underlying in general). For the owner of the stock, the 

probability that the stock will perform very bad or very well offset each other. 

Instead, in stock options, the owner of a call option benefits from the price increase, 

while the downside risk of a decrease in price is limited by the presence of the 

option and the possibility to not exercise it (making the most the owner can lose the 

price of the option). On the contrary, the owner of a put option benefits from a 

price decrease, but the downside risk of a price increase is limited. Given these 

assumptions, the values of both calls and puts therefore increase as volatility 

increases.  

 

To estimate volatility of a stock price, it is usually observed at a fixed intervals of 

time. Given: 

• 𝑛 + 1 be number of observations; 

 
66 This is not always the case. Considering two European call options, one with expiration day in one 
month, the other with expiration day in three months. If a dividend is expected to be paid in two months, 
a fall in the stock price is expected, making the short-life option more valuable than the long-life one. 
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• 𝑆𝑖 be the stock price at the end of 𝑖𝑡ℎ time interval; 

• 𝜏 be the length of time interval in years; 

and define  

 

 
𝑢𝑖 = 𝑙𝑛 (

𝑆𝑖
𝑆𝑖−1

)  for 𝑖 = 1,2, … , 𝑛 
(3.5) 

 

The estimate 𝑠 of the standard deviation of 𝑢𝑖 is  

 

 

𝑠 = √
1

𝑛 − 1
∑  

𝑛

𝑖=1

(𝑢𝑖 − 𝑢̅)
2 

 

(3.6) 

or  

 

 

𝑠 = √
1

𝑛 − 1
∑  

𝑛

𝑖=1

𝑢𝑖
2 −

1

𝑛(𝑛 − 1)
(∑  

𝑛

𝑖=1

𝑢𝑖)

2

 

 

(3.7) 

 

with 𝑢̅ to be the mean of 𝑢𝑖. 

 

As it is known that the standard deviation of 𝑢𝑖 is 𝜎√𝑇, the variable 𝑠 is an 

estimate of 𝜎√𝑇 and so 𝜎 can be estimated as 𝜎̂, where  

 

 𝜎̂ =
𝑠

√𝜏
 (3.8) 

 

 

Risk-free interest rate 

 

Interest rates affect every aspect of market economy. In option market, as risk-

free interest rates increase, investors expect a rise of the expected return from the 

stocks. Moreover, the present value of any future cash flow to be received by the 

holder of the option decreases. Combining these two phenomena, bring to the 

conclusion that an increase of the interest rate is linked to an increase of the value 

of call options and to a decrease the value of put options. 
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Amount of future dividends 

 

The effects of dividends on stock price are well-known. In stock options, the 

reduction of stock price given the dividend payment is linked to a decrease of the 

value of a call option and an increase of the value of a put option. In addition, the 

size of the dividend influences the magnitude of this relationship. 

 

3.2 The Black-Scholes-Merton Model 

In the last paragraphs stock options have been briefly introduced together with 

an explanation of the factors affecting their prices. In this subchapter, one of the 

keystone of the modern finance will be presented as it will be needed later, for the 

main purpose of this research.  

 

The Black-Scholes-Merton Model67 represents one of the most important option 

pricing model. Even if it relies on not-so-realistic assumptions, it is widely used for 

its simplicity which is confirmed looking at the strong assumption it relies on: 

• The option is European, and it can be exercised only at maturity; 

• The short selling of securities is permitted; 

• No dividends are paid out during the life of the option; 

• There are no transaction costs or taxes; 

• Securities are perfectly divisible; 

• There are no riskless arbitrage opportunities; 

• Security trading is continuous; 

• The risk-free rate is constant and the same for all securities. 

 

3.2.1 The Black-Scholes-Merton differential equation 

 

Considering that the stock price, S, follows a geometric Brownian motion68, 

expressed as  

 

 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 (3.5) 

 

 
67

 F. Black and M. Scholes, ‘‘The Pricing of Options and Corporate Liabilities,’’Journal of Political 

Economy”, 81, 1973, 637–59; R.C. Merton, ‘‘Theory of Rational Option Pricing,’’ Bell Journal of Economics and 

Management Science, 4, 1973, 141–83. 
68

 This assumption is fundamental in order to avoid stock price to be negative. 
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Given 𝑓 to be the price of a call option or any other derivative contingent on S, 

it has to be some function of S and t. So, from the Ito’s lemma69 

 

 
𝑑𝑓 = (

∂𝑓

∂𝑆
𝜇𝑆 +

∂𝑓

∂𝑡
+
1

2

∂2𝑓

∂𝑆2
𝜎2𝑆2)𝑑𝑡 +

∂𝑓

∂𝑆
𝜎𝑆𝑑𝑧 

(3.6) 

 

The discrete versions of equations (3.5) and (3.6) are 

 

 Δ𝑆 = 𝜇𝑆Δ𝑡 + 𝜎𝑆Δ𝑧 (3.7) 

 and  

 
Δ𝑓 = (

∂𝑓

∂𝑆
𝜇𝑆 +

∂𝑓

∂𝑡
+
1

2

∂2𝑓

∂𝑆2
𝜎2𝑆2)Δ𝑡 +

∂𝑓

∂𝑆
𝜎𝑆Δ𝑧 

(3.8) 

 

where Δ𝑆 and Δ𝑓 are the changes in 𝑓 and 𝑆 in the interval of time Δ𝑡. It has been 

demonstrated that a portfolio of a stock and a derivative can be built so that the Wiener 

process is eliminated. The portfolio is constructed by 

 

-1: derivative 

Δ𝑓/ Δ𝑆: shares 

 

In this way the holder of the portfolio is long on the number of shares Δ𝑓/ Δ𝑆 

and, as opposite, short on the derivative. Let define Π as the value of such portfolio, 

it means that  

 
Π = −𝑓 +

∂𝑓

∂𝑆
𝑆 

(3.9) 

 

Changes in portfolio values, namely ΔΠ,  in the time interval Δ𝑡 are given by  

 
ΔΠ = −Δ𝑓 +

∂𝑓

∂𝑆
Δ𝑆 

(3.10) 

 

Substituting equations (3.7) and (3.8) in equation (3.9) leads to  

 

 
ΔΠ = (−

∂𝑓

∂𝑡
−
1

2

∂2𝑓

∂𝑆2
𝜎2𝑆2)Δ𝑡 

(3.11) 

 
69 K. Itoˆ, ‘‘On Stochastic Differential Equations,’’ Memoirs of the American Mathematical Society, 
4 (1951): 1–51. 
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Equation 3.11 implies that the portfolio is risk-free, as it does not involve Δ𝑧. 

This assumption leads to the conclusion that the portfolio must earn the same rate 

of return as other short term risk-free securities. If this condition is not satisfied, an 

arbitrage will be possible70. This means that 

 ΔΠ = 𝑟ΠΔ𝑡 (3.12) 

 

 where 𝑟 is the risk-free rate. Substituting equations (3.9) and (3.11) into (3.12) yields 

 

 
(
∂𝑓

∂𝑡
+
1

2

∂2𝑓

∂𝑆2
𝜎2𝑆2)Δ𝑡 = 𝑟 (𝑓 −

∂𝑓

∂𝑆
𝑆) Δ𝑡 

 

 

So that  

 

 ∂𝑓

∂𝑡
+ 𝑟𝑆

∂𝑓

∂𝑆
+
1

2
𝜎2𝑆2

∂2𝑓

∂𝑆2
= 𝑟𝑓 

(3.13) 

 

 

Equation 3.13 is the Black-Scholes-Merton differential equation. It can be solved 

in many ways, corresponding to the different derivative that can be defined as with 

S as the underlying variable. In the next paragraphs the most known method to 

solve the differential equation will be introduced. 

 

 

3.2.2 The Black-Scholes-Merton pricing formula 

 

The most famous solution to the differential equation described in (3.13) are the 

ones for the pricing of a call or put European option. These formulas are 

 

 𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) (3.14) 

 

and 

 

 𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) (3.15) 

 

where 

 

 
70 The arbitrage is quite simple: if the portfolio earned more thatn  
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𝑑1 =

ln (𝑆0/𝐾) + (𝑟 + 𝜎
2/2)𝑇

𝜎√𝑇

𝑑2 =
ln (𝑆0/𝐾) + (𝑟 − 𝜎

2/2)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇

 

 

(3.16) 

 

The function 𝑁(𝑥) is the cumulative probability distribution function for a 

variable with a standard normal distribution meaning that it is the probability that a 

variable with a standard normal distribution will be less than 𝑥. The other variables 

are the ones introduced before. The most used approach of solving the equation is 

the risk-neutral valuation. Considering a European call option, its expected value 𝐸̂ 

at maturity in a risk-neutral world is  

 

 𝐸̂[𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0)] (3.17) 

 

 

From the risk-neutral world considerations, the European call price 𝑐 is the 

expected value discounted at the risk-free interest rate 

 

 𝑐 = 𝑒−𝑟𝑇𝐸̂[𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0)] (3.18) 

 

Then, under the assumption assumed in Black-Scholes-Merton, 𝑆𝑇 is lognormal 

and, from the lognormality of stock prices 𝐸̂(𝑆𝑇) = 𝑆0𝑒
𝑟𝑇 and the standard 

deviation of ln𝑆𝑇 is 𝜎√𝑇. Given these considerations, 

  

 𝑐 = 𝑒−𝑟𝑇[𝑆0𝑒
𝑟𝑇𝑁(𝑑1) − 𝐾𝑁(𝑑2)] = 𝑆0𝑁(𝑑1) − 𝐾𝑒

−𝑟𝑇𝑁(𝑑2) (3.19) 

 

where  

 
𝑑1 =

ln [𝐸̂(𝑆𝑇)/𝐾] + 𝜎
2𝑇/2

𝜎√𝑇
=
ln (𝑆0/𝐾) + (𝑟 + 𝜎

2/2)𝑇

𝜎√𝑇

𝑑2 =
ln [𝐸̂(𝑆𝑇)/𝐾] − 𝜎

2𝑇/2

𝜎√𝑇
=
ln (𝑆0/𝐾) + (𝑟 − 𝜎

2/2)𝑇

𝜎√𝑇

 

 

(3.20) 

 

Equation (3.17) proves the Black-Scholes-Merton pricing formulas.  

 

Since it has been proved that is it is never optimal to exercise an American call 

option on a non-paying-dividend stock, Equation (3.17) is used to price an 

American call option on a non-paying-dividend stock too. On the other hand, there 
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no exists exact analytic formulas to price an American put option on a non-paying-

dividend stock.  

 

3.3 Implied volatility 

Volatility has been introduced in 3.1 as one of the factor affecting option price. 

Regarding Black-Scholes-Merton pricing formula just introduced, the volatility of 

stock price is the only parameter that cannot be directly observed. In practice, 

analysts and traders work with implied volatilities which are volatilities implied by 

the option prices in the market. As it is a function of price of the underlying, the 

exercise price, the risk-free rate of return, the time to expiry and the price of the 

option, the simplest way to compute implied volatility is the iterative one: knowing 

all the factors of the Black-Scholes-Merton pricing formula, an initial estimate of 𝜎 

can be used to check the corresponding correct price of the call option. Because 𝑐 

is an increasing function of 𝜎, the iterative search will focus on lower or higher value 

of 𝜎 to look for the closet value of 𝑐. Other, more sophisticated methods, include 

the Brenner and Subrahmanyam (1988)71 or the Newton-Rahpson72. 

Implied volatility can be used as an indicator of the market's expectations of the 

remaining life of the option i.e. it can be used to ascertain the market's opinion of 

the expected volatility of a particular security.  

 

3.4 The forward-looking approach 
 

One of the main issues arising from the implementation of the mean-variance 

framework is the estimation error based on the historical sample moments73. 

Moreover, also expected returns are difficult to estimate74. In order to overcome 

these practical limitations, researchers focused the attention the Global Minimum 

Variance Portfolio (GMVP) since it does not depend on the expected returns and 

it has been proved often provide better out-of-sample performance than a mean-

variance optimized portfolio75. However, even considering only the GMVP, the 

covariance matrix estimation risk still remains, and several possible solutions have 

been presented, like the imposition of restriction on portfolio weights76 or on the 

 
71 Brenner, Menachem & Subrahmanyam, Marti. (1988). A Simple Formula to Compute the Implied 
Standard Deviation. Financial Analysts Journal 44. 80-83.  
72 Newton-Raphson method is used to find the zeros of a real valued function 𝑓(𝑥) = 0. 
73 See, for example, Best and Grauer (1991), Chopra and Ziemba (1993), and Michaud (1989) 
74 See Merton (1980) 
75 See, for example, Ledoit and Wolf (2003) and Jagannathan and Ma (2003) 
76 See DeMiguel, Garlappi, and Uppal (2009) for a review  
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covariance matrix77. But the main problem, the use of historical data which may be 

inconsistent, still remains. 

 

As to improve the performance of portfolios, some researchers concentrate their 

study on-the-so-defined “forward-looking approach”. This consists into deriving 

implied data extracted from option prices which should reflect the market 

participants’ expectations on the future performance of the underlying. Even if 

these information are not guaranteed, they can be used to make alternative 

assumption about investment and portfolio optimization and, as it will explained, 

allocation strategies from such approach typically outperforms historical ones. 

 

The following subchapters will discuss two different methods of deriving 

moments of the statistical distribution from option-implied data.  

 

3.4.1 Adapted Historical Covariance Model (AHCM) 

 

The first technique to be presented is an overview on the work by DeMiguel et 

al. (2012) which derive the options’ covariance matrix using a partially implied 

technique based on the research by Buss & Vilkov (2012). This kind of approach 

is referred to as Adapted Historical Covariance Model (AHCM). 

Firstly, as known, variance of a portfolio can be defined as  

 

 
𝜎𝑃,𝑡
2 =∑  

𝑁

𝑖=1

𝑤𝑖,𝑡
2 𝜎𝑖,𝑡

2 + 2∑  

𝑁−1

𝑖=1

∑ 

𝑁

𝑗≠𝑖

𝑤𝑖,𝑡𝑤𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡𝜌𝑖𝑗,𝑡 
 

(3.21) 

 

With 𝑤𝑖,𝑡 the weight of the asset in portfolio, 𝜎𝑖,𝑡 the volatility of the asset 𝑖 at time 

𝑡 and 𝜌𝑖𝑗,𝑡 the correlation between asset 𝑖 and 𝑗. Even if one knows the weights and 

the volatility of all the portfolio’s components, it still remains the correlation 

coefficients to be estimated which represents 𝑁 × (𝑁 − 1)/2 coefficients. To 

overcome this issue, Buss & Vilkov (2012) introduced a fixed proportion single 

state variable 𝛼𝑡, then DeMiguel et al. defined  

 

 𝜌𝑖𝑗,𝑡 − 𝑝̂𝑖𝑗,𝑡 = 𝛼𝑡(1 − 𝜌𝑖𝑗,𝑡) 

 

(3.22) 

 

 
77 Ledoit and Wolf (2004) 
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where 𝜌𝑖𝑗,𝑡 is the correlation coefficient and 𝑝̂𝑖𝑗,𝑡 is the expected correlation. 

 

Solving Equation (3.22) for 𝑝̂𝑖𝑗,𝑡 and substituting the results into (3.21), it leads 

to 

  

𝜎𝑃,𝑡
2 =∑  

𝑖=1

∑ 

𝑗

𝑤𝑖,𝑡𝑤𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡 (𝜌𝑖𝑗,𝑡 − 𝛼𝑡(1 − 𝜌𝑖𝑗,𝑡)) 

 

(3.23) 

 

 

Solving for 𝛼𝑡 and after some rearrangements  

 

 
𝛼𝑡 = −

𝜎𝑃,𝑡
2 − ∑  𝑖 ∑  𝑗 𝑤𝑖,𝑡𝑤𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡𝜌𝑖𝑗,𝑡

∑  𝑖 ∑  𝑗 𝑤𝑖,𝑡𝑤𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡(1 − 𝜌𝑖𝑗,𝑡)
 

 

 

(3.24) 

 

which describe the composition of the 𝛼𝑡 component. Then, substituting Equation 

(3.24) into (3.22) and rearranging the terms leads to the final equation of this 

approach 

 

 
𝑝̂𝑖𝑗,𝑡 =

𝜎𝑃,𝑡
2 − ∑  𝑖 ∑  𝑗 𝑤𝑖,𝑡𝑤𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡𝜌𝑖𝑗,𝑡

∑  𝑖 ∑  𝑗 𝑤𝑖,𝑡𝑤𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡(1 − 𝜌𝑖𝑗,𝑡)
(1 − 𝜌𝑖𝑗,𝑡) + 𝜌𝑖𝑗,𝑡 

 

 

(3.25) 

Equation (3.25) describes the correlation estimates computed from option-implied 

information which are mixed with the historical information. As the covariance 

matrix is defined as  

 

 Σ = 𝐷 Ω 𝐷 

 

(3.26) 

where 𝐷 is a diagonal matrix of standard deviation and Ω is the correlation matrix, 

the implied covariance can be estimated by combining the correlation matrix with 

the estimated volatility matrix. 

 

 

3.2 Beta Implied Covariance Model (BICM) 

 

Among all the possible applications of the forward-looking approach to 

improve sample estimations, this research will focus on a Beta Implied Covariance 

Model developed by Kempf, Korn & Sassning (2012). In their paper the authors 
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developed a complete family of fully implied covariance estimators from a cross-

section of vanilla options. In particular, among all the components of the family of 

estimators, this research will keep into consideration the second moments 

component. 

 

In order to develop the model, they made two strong assumptions. Firstly, the 

returns of the stocks in portfolio follows a generalized version of the Sharpe 

diagonal model78 with time-varying coefficients 

 

 𝑅𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝑅𝑚𝑡 + 𝜖𝑖𝑡    ∀𝑖 = 1,… ,𝑁 (3.27) 

 

where 𝑅𝑖𝑡 and 𝑅𝑚𝑡 describe the returns of the 𝑖 − 𝑡ℎ asset and the market, 

respectively. 𝛼𝑖𝑡 and 𝛽𝑖𝑡  are the time-varying model coefficients while 𝜖𝑖𝑡 is a zero 

mean idiosyncratic error term, independent of the market return. Moreover, 𝜖𝑖𝑡 and 

𝜖𝑗𝑡 are independent for all 𝑖 ≠ 𝑗.  

Equation (3.27) states that assets returns’ risk can be explained by two factors, 

the systematic risk component which is market related and undiversifiable, and the 

idiosyncratic component which, as opposite, is firm-specific.  

 

In the single index model such as the one introduced, covariances depend 

only on the betas and the variance of the market return 

 

 𝐶𝑜𝑣(𝑅𝑖𝑡 , 𝑅𝑗𝑡) = 𝛽𝑖𝑡𝛽𝑗𝑡 𝑉𝑎𝑟(𝑅𝑚𝑡)    ∀𝑖 ≠ 𝑗 (3.28) 

 

Following equation (3.28), authors argued that the variance of the market can 

be simply derived from traded index options, so it remains to identify stocks related 

betas. 

 

To solve the problem, the second assumption needs to be introduced. It is 

possible to derive the family of estimator by imposing a cross-sectional restriction 

either on the second, third, fourth, or any other higher moment, respectively. 

Estimators’ restrictions on the different moment will now be explained. 

 

 

Estimator based on second moments 

 

The first member of the family of estimators can be derived imposing a cross-

sectional restriction on the return variance. In their paper the authors introduced a 

 
78 W. Sharpe, A Simplified Model for Portfolio Analysis, 1963, Management Science, 9:2, 277-293 
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parameter 𝑐𝑡, with 0 ≤ 𝑐𝑡 < 1, which represents the proportion of systematic risk 

for all the assets in portfolio. In addition, it is stated that 𝑐𝑡 is time varying and it is 

the same for all the assets. According to the introduction of this parameter, then 

 

 𝛽𝑖𝑡
2Var (𝑅𝑚𝑡) = 𝑐𝑡Var (𝑅𝑖𝑡) (3.29) 

 

and  

 𝑉𝑎𝑟 (𝜖𝑖𝑡) = (1 − 𝑐𝑡)𝑉𝑎𝑟 (𝑅𝑖𝑡) (3.30) 

 

  

The cross-sectional restriction just introduced suggests a positive relationship 

between beta and idiosyncratic risk, coherently with the literature and empirical 

evidence79. Moreover, it implies that high-beta stocks will have high idiosyncratic 

risk. 

 

Solving the return variance of the 𝑖th assets 

 

 Var (𝑅𝑖𝑡) = 𝛽𝑖𝑡
2Var (𝑅𝑚𝑡) + (1 − 𝑐𝑡)Var (𝑅𝑖𝑡) (3.31) 

 

Solving for 𝛽𝑖𝑡  and rearranging 

 

 
𝛽𝑖𝑡 = 𝑐𝑡

1/2
(
Var(𝑅𝑖𝑡)

Var(𝑅𝑚𝑡)
)

1/2

 
 

(3.32) 

 

 

It is well known that the beta of the portfolio is the weighted sum of the weights 

of the components and the beta of the market equals one80. So, the parameter 𝑤𝑖𝑡𝑚 

where 𝑖 = 1,… , 𝑁 is introduced in the market portfolio as to derive 𝑐𝑡 

 

 
∑ 

𝑁

𝑖=1

𝑤𝑖𝑡𝑚𝛽𝑖𝑡 =∑  

𝑁

𝑖=1

𝑤𝑖𝑡𝑚𝑐𝑡
1/2
(
Var(𝑅𝑖𝑡)

Var(𝑅𝑚𝑡)
)

1/2

= 1 
 

(3.33) 

 

 

Rearranging for 𝑐𝑡 

 

 
𝑐𝑡 =

Var(𝑅𝑚𝑡)

(∑  𝑁
𝑖=1 𝑤𝑖𝑡𝑚Var (𝑅𝑖𝑡)

1/2)2
 

 

(3.34) 

 
79 See, for example, Fama and MacBeth (1973) or Malkiel and Xu (2002) 
80 See, for example, Fama and MacBeth (1973) 
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From equation (3.34) it can be observed that 𝑐𝑡 is positive and smaller than 

one given that not all assets in the index are perfectly correlated. Substituting 𝑐𝑡 

from (3.33) into (3.31) and substituting the resulting 𝛽𝑖𝑡 in (3.34) leads to the final 

result 

 

 
Cov(𝑅𝑖𝑡 , 𝑅𝑗𝑡) =

Var(𝑅𝑖𝑡)
1/2 Var(𝑅𝑗𝑡)

1/2

(∑  𝑁
𝑖=1 𝑤𝑖𝑡𝑚 Var(𝑅𝑖𝑡)

1/2)2
Var(𝑅𝑚𝑡)    ∀𝑖 ≠ 𝑗 

 

 

(3.35) 

Equation (3.35) demonstrate that covariances are functions of both individual 

assets and the variance of the market, but no cross-moments appear. Given this 

result, the implied volatility from plain vanilla options on every individual asset and 

on the market index can be used to derive a fully-implied covariance estimate. 

Other fundamental characteristics of the Kempf, Korn & Sassning (2012) approach 

is that the matrix is guaranteed to be positive definite by construction and even all 

the elements composing it are restricted to be positive. 

 

Kempf, Korn & Sassning (2012) also show that estimators can be derived from 

higher orders moments in a very similar way. In Appendix B the methodology used 

to derive such estimators is shown. 

 

Even it has been proved to be particularly efficient and grant the possibility to 

construct a fully implied covariance matrix, this model faces the risk of introducing 

structural deficiencies in the covariance estimation.  

 

 

 

 

 

 

 

 

 



  

48 
 

Chapter 4 

 

Application and discussion 
 

This last chapter will focus the attention on the application of the portfolio 

selection model introduced in Chapter 1 and on the comparison between the 

different PSO algorithms based on the historical approach and the forward-looking 

one introduced in Chapter 3. Moreover, to better frame the application, a brief 

introduction to the financial market during the first months of 2020 will be 

presented. Lastly, the comparison between the results obtained will be analyzed. 

 

4.1 Financial background 

 

In March 2020, the World Health Organization (WHO) declared that a 

coronavirus outbreak (COVID-19) was a pandemic, however the impact of the 

disease had already heavily hit world’s financial markets. Figures 8, 9 and 10 show 

the movement of S&P500, Nasdaq and Dow Jones Industrial Average from 

01/01/2020 to 01/06/2020. It can be clearly observed the extreme downtrend 

caused by the raising number of cases and deaths, which are reported in Figure 11. 

 

 

 

  Figure 8 – S&P500 movement from 01/01/2020 to 01/06/2020 
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Figure 9 – NASDAQ movement from 01/01/2020 to 01/06/2020 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Dow Jones Industrial Average movement from 01/01/2020 to 01/06/2020 
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Figure 11 – Cumulative COVID positive cases and death from 01/01/2020 to 01/06/2020 (data in thousand) 
 

 

Looking in depth the DJIA case, Table 4.1 shows percentage change in stock 

price from 01/01/2020 to 01/06/2020 by company. In Figure 12, instead, a graph 

about the losses occurred to all the DJIA stocks is reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAPL 6% MCD -6%

AXP -32% MMM -13%

BA -127% MRK -13%

CAT -23% MSFT 13%

CSCO 0% NKE -3%

CVX -29% PFE 0%

DOW -35% PG -5%

DIS -26% TRV 6%

GS -18% UNH 4%

HD 12% UTX -117%

IBM -6% V 2%

INTC 4% VZ -4%

JNJ 3% WBA -35%

JPM -43% WMT 5%

KO -17% XOM -51%

Table 4.1 – Stocks performance in the analyzed period 
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Figure 12 – Price movement of the stocks composing the DJIA where it can be clearly observed the effect of the 
COVID19 pandemic starting at the end of February 
 

4.2 Preliminary information 

 

As to assess the capabilities and the possible improvement of the forward-looking 

approach the application has been performed using real data, building a portfolio 

of eight highly diversified stocks chosen by the algorithm from the Dow Jones 

Industrial (DJI), which will be considered as the market portfolio.  

 

Since the aim of this research is to try to improve portfolio performances in time 

of economic instability, the time window took into consideration is the one starting 

from 02/01/2020 to 29/05/2020 and divided into the two required subsets: 

• in-sample one from 01/01/2020 to 28/02/2020; 

• out-of-sample from 28/02/2020 to 30/05/2020. 

To perform a precise analysis, the composition of the DJIA at the last day of the 

in-sample period has been chosen. The assets composing the market portfolio is 

presented in Figure 13. Then, the implied volatility of the option written on the 

stocks have been computed through the Black-Scholes-Merton pricing formula and 

the variance-covariance matrix has been constructed using the BCIM and Equation 

3.35. It is necessary to construct such matrix because, as introduce in Equation 1.36, 

the aim is to minimize the variance of the portfolio through the minimization of the 

variance-covariance matrix. After the construction of the matrix, this has been 
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imported into the algorithm model and substituted to the standard variance-

covariance matrix. 

 

 

 4.2 Parameters setting 

 

Before applying the model to the data, it is fundamental to set the parameters 

related to the constraints which will remain fixed across all the simulations and apply 

to both the PSO and the modified version of the PSO taken into consideration. 

 

 

 

 

 

 

Figure 13 – List of stocks composing the DJIA in the time window taken into consideration 

 

4.3 Parameter settings 
 

Regarding the PSO and its implementation of the inertia weight approach, as 

suggested by the authors, the parameters engraving the velocity of the particles are 

set as follow: 

• inertia weight: 0.7289; 

• cognitive acceleration coefficient: 𝜙1 = 1.49681; 

• social acceleration coefficient: 𝜙2 = 1.49681; 

• number of iterations = 200081; 

 

MOPSO parameter specific settings 

 

As the Modified version of the PSO adds some tweaks to the original model, 

specific settings need to be introduced. 

Indeed, the reflection strategy have been implemented using: 

• Lower bound = 0.01; 

• Upper bound = 0.5. 

 
81 The number of iterations equal to 2000 has be chosen as a value  to ensures an adequate level of convergence, 

without making the process too much time consuming. 
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Regarding the inertia weight approach, as suggested by literature: 

• initial inertia weight: 𝑤(0)  = 0.9; 

• the final inertia weight: 𝑤(𝑛𝑡) = 0.4. 

Also, for the time variant acceleration coefficient the parameters have been set 

following the literature with: 

• 𝑐1,𝑚𝑖𝑛 = 0.5; 

• 𝑐1,𝑚𝑎𝑥 = 2.5; 

• 𝑐2,𝑚𝑖𝑛 = 0.5; 

• 𝑐2,𝑚𝑎𝑥 = 2.5. 

Lastly, the mutation operator had the following parameter settings: 

• Upper bound: UB = 0.01; 

• Lower bound: LB = 0.5; 

• dependence of the mutation on the iteration number: b = 5. 

 
Values of the lower bound and upper bound for both reflection strategy and 

mutation operator have been chosen after some preliminary run which gave the 

best results with such values. 

 

As to select values of the penalty parameter 𝜖, some preliminary tests have been 

performed. To determine the optimal value of the penalty parameter the algorithm 

has been run five time for every different value of 𝜖. Results are reported in Table 

4.2. 

 

     
Table 4.2 – Final value of the fitness function 

 

As regards of number of particles, Blackwell et al (2007)82 suggest using a value 

to be in range 20-50. However, in order to obtain better results in terms of fitness 

value the number of swarm particles have been set to 200. All the algorithms have 

been tested on a PC using an i5-6200u CPU with 8GB of RAM and Matlab R2020a. 

 

4.4 Performance indicators  

 
The analysis of the performance algorithm can be simply based on variance and 

 
82 Blackwell T., Kennedy J., Poli R., 2007. Particle Swarm Optimization: an overview, Swarm Intelligence, 1(1), 33–

57 

PSO PSO NO FWL MOPSO MOPSO FWL

1.00E-04 0.002143115 0.056755795 178.3276391 510.69539

1.00E-05 0.003768996 0.058989903 190.8943784 600.43907

1.00E-06 0.003789909 0.059573829 230.5827393 604.65748
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return. However, a portfolio may increase its total return just by increasing its 

variance. For this reason, risk-adjusted performance indicators have been 

developed, with the aim of adjust returns for the risk developed by that returns. 

Hence, in next paragraphs a the most used indicators will be presented, and they 

will be computed for each portfolio in the next chapter. In addition to the risk-

adjusted indictors, the Maximum Drawdown will be introduced.  

 

4.3.1 Sharpe ratio 
 

Developed by the Nobel prize William F. Sharpe, the Sharpe ratio represent the 

most used method to compute risk-adjusted comparison. It measures the average 

return earned in excess to the risk-free rate per unit of risk of volatility or total risk. 

Mathematically, it is formulated as: 

 

 
 Sharpe ratio =

𝔼(𝑟𝑝) − 𝑟𝑓
𝜎𝑝

 
 

(4.2) 

 

where: 

• 𝔼(𝑟𝑝) is the expected return of a portfolio; 

• 𝑟𝑓 is the risk-free rate; 

• 𝜎𝑝 is the standard deviation of the return of the portfolio. 

 

Firstly, the difference between of the risk-free component and the expected 

return of the portfolio (or an asset) let to estimate the over-performance associated 

to that risk-taking activity. Generally, high value of this ratios suggests satisfying 

returns with respect to the risk taken. 

Being so simple to be used and understood have been the success of the spread 

of the ratio across the financial world as it only need to know the expected return 

of the portfolio and its standard deviation, given that the risk-free return is always 

known. However, some important shortcomings should be taken into 

consideration. Firstly, Sharpe ratio measures the risk in terms of volatility, assuming 

that returns are normally distributed. Ingersoll et al. (2007), proved that this 

drawback can lead to wrong investment assumption if the distribution of the returns 

is not the Normal one, highlighting that, is this case, Sharpe ratio is not a measure 

to take into consideration. Secondly, it has been shown by Ingersoll et al. (2007) 

that a fund manager can easily manipulate the Sharpe ratio increasing its value 

without raising the value of the investment. This manipulation can be obtained 

through option-based strategies. 

 

4.3.2 Sortino ratio 
 

Introduced by Sortino and Van der Meer in 1991, the Sortino ratio have been 
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developed to overcome the drawbacks of the Sharpe ratio. In short, the aim of the 

authors was to not penalize volatility deriving from positive returns. According to 

this, the numerator of the Sortino ratio is the return in excess of a minimum 

acceptable return (MAR), while the denominator is the downside deviation, 

considering the MAR as the target return. So, the Sortino ratio can be expressed as 

 

 
Sortino ratio =

𝔼(𝑟𝑝) − 𝜏

𝛿
 

(4.3) 

where: 

• 𝜏 is the minimum acceptable return; 

• 𝛿 is the downside deviation. 

 

The downside deviation volatility, measuring only returns falling below the MAR, 

is represented as 

 

𝛿 = √∫  
𝜏

−∞

(𝜏 − 𝑟)2𝑓(𝑟)𝑑𝑟 

 

(4.4) 

 

where 𝑓(𝑟) is the continuous probability distribution of the returns. 

 

Given the mathematical formulation above, Sortino ratio can be considered as a 

modification of the Sharpe ratio, substituting the mean with the MAR and the 

standard deviation with the downside risk. It can be easily understood that, as a 

consequence, investors will be penalized only for the variability below the MAR. 

The comparison between Sharpe ratio and Sortino ratio could be useful to 

understand which portion of portfolio’s variability can be attributed to 

overperformance (variability above the MAR) or underperformance (variability 

below the MAR). 

 

4.4.3 Information ratio 
 

Information ratio have been proposed by William Sharpe in 1994 as a 

generalization of the Sharpe ratio substituting the riskless asset to a benchmark. 

This new ratio is defined as the ratio of the portfolio’s (or an asset) excess return 

over a benchmark, divided by the standard deviation of the excess return (the so-

called tracking error). Specifically, it is represented as:  

 

 
 Information ratio =

𝔼(𝑟𝑝 − 𝑟𝑏)

𝜎𝑝−𝑏
 

(4.5) 

where: 

• 𝑟𝑏 is the benchmark return; 

• 𝜎𝑝−𝑏 is the standard deviation of the excess return. 
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Hence, a high Information ratio can be translated as an investment portfolio 

offering greater expected return than the benchmark given a relatively low extra 

risk. As opposite, a low Information ratio means that an investment portfolio cannot 

provide enough extra return given the extra risk taken. 
 

4.4.4 Treynor ratio 
 

The Treynor ratio can be considered a derivation of the Sharpe ratio in which 

the total risk is substituted by the systematic83 risk. As demonstrated by the CAPM84, 

the systematic risk can be measured by the 𝛽 coefficient, representing the slope of 

the regression of the portfolio’s return against the returns of the market portfolio, 

considered as the weighted sum of every asset in a specified market85. 

Mathematically, it can be computed as 

 

 
𝛽 =

Cov(𝑅𝑃 , 𝑅𝐵)

Var(𝑅𝐵)
 

 

(4.6) 

 
where 𝑅𝑃 is the return of the portfolio and 𝑅𝐵 is the return of the market 

portfolio. Therefore, the Treynor ration can be defined as the portfolio’s return in 

excess over the risk-free rate of return per unit of systematic risk. It is given by 

 

 
 Treynor ratio =

𝔼(𝑟𝑝) − 𝑟𝑓

𝛽(𝑟𝑝, 𝑟𝑏)
 

(4.7) 

 

where: 

 

• 𝔼(𝑟𝑝) − 𝑟𝑓 is the excess return of the investment portfolio; 

• 𝛽(𝑟𝑝, 𝑟𝑏) is the beta of the portfolio’s return 𝑟𝑝 relative to the benchmark 

return 𝑟𝑏86. 

 

Evidently, the higher the ratio, the better performances on a risk-adjusted basis. 

 
83

 Systematic risk is considered as that portion of risk inherent to the entire market, industry or market segment. 

Hence, it is undiversifiable, affecting the overall market and not just a particular asset. 
84

 The Capital Asset Pricing Model (CAPM) developed independently by Treynor (1965), Sharpe (1964) and Linter 

(1965), describes the relationship between expected return and systematic risk. 
85

 A 𝛽 value equal to1 suggest that the performance of the individual investor is in line with the one of the market 

portfolio while a 𝛽 greater than 1 implies that the portfolio’s performance is more volatile than the benchmark. 

Instead, a 𝛽 lower than 1 shows that the portfolio’s performance is less volatile than the benchmark. 

 
86

 It measures the sensitivity of the portfolios to the market portfolio, meaning the change in portolio’s return given a 

change in market’s return. 
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4.4.5 Maximum Drawdown  

 

The Maximum Drawdown is an indicator of a downside risk over a specified time 

windows and it can be considered as the maximum observable loss from a peak to 

a trough of a portfolio. Mathematically, it is expressed as 

 

 
𝑀𝐷𝐷 =

 Trough Value - Peak Value 

 Peak Value 
 

(4.8) 

 

A low value of the MDD indicates slight fluctuations in the value of the 

investment and, therefore, a small degree of risk, and vice versa. It can also be used 

as an indicator of market performance if compared to stock market index, in order 

to evaluate stocks’ performance relative to the market.  

  

 

4.5 Application 

 
As already described, the aim of this dissertation is to understand if an option 

based forward looking approach applied to a metaheuristic’s algorithm is capable 

of avoid huge portfolio losses in case of an extraordinary and sudden event, like the 

COVID19 pandemic of 2020. In this last section the comparison between the four 

algorithms will be performed. In order to have a deeper analysis of the case, it will 

be studied from different points of view and section will be divided in two parts: the 

comparison of the best portfolio obtained by the algorithms in terms of fitness, and 

the application of the risk-adjusted performance metrics just introduced. To try to 

have a wider view on the case study, the algorithm has been run three times and the 

best results obtained by each algorithm has been selected for the comparison. 

 

4.5.1 Overall portfolio performance 

 

The first and most intuitive way to compare different results has been obtained 

measuring the overall raw performances of portfolios in terms of expected returns 

and standard deviation. Results are displayed in Table 4.3.  

 

 

 

 

 

 

PSO PSO FWL MOPSO NO FWL MOPSO FWL

Return -0.004682 -0.002048 0.000111 0.000259

Standard deviation 0.037631 0.032802 0.037787 0.030295

Overall portfolios performances

Table 4.3 – Overall portfolios performances in terms of return and standard deviation 
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From a simple analysis, data suggest that the FWL approach seems to perform 

better than the algorithms including historical approach both in terms of return and 

standard deviation, and so, dominating them in the mean-variance sense. 

 

Then, to simulate a real-world case the performance of the best results in terms 

of fitness of each algorithm has been implemented in a 10.000€ portfolio. As it can 

be observed from Figure 1, one of the first things to notice is the better performance 

in terms of the PSO with the FWL approach with respect of the PSO with the 

standard variance-covariance matrix, which is coherent with the aim of this 

dissertation. However, focusing on the MOPSO, it is interesting to notice how they 

seems to perform in a similar way, but it is clear that the algorithm with the 

integration of the FWL approach allowed for more stable results, avoiding the 

negative performance spikes. Figure 15 focuses of the analysis of the portfolio value 

in the period from 28/02/2020 to 10/04/2020, a time period which shows higher 

variability than others. Looking at this part of the graph, it confirms what stated 

before, with the algorithm including the FWL approach which tends to perform 

better than its competitor. 

 

 

 

Figure 14 – Portfolio value movement in period 02/01/2020 to 29/05/2020 
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Figure 15 – Portfolio value movement from 28/02/2020 to 10/04/2020 
 

Moving to the algorithm analysis, Table 4.4 reports the weights composing the 

best portfolio for each algorithm together with fitness values, constraints’ violation 

and final value of the portfolio. It is clearly observable a general worsening of the 

fitness obtained by the MOPSO algorithm, in particular in the one using the FWL 

approach. Moreover, with the same algorithm, we note an increase in the value of 

fitness using the FWL approach, a symptom that the code may need further 

changes and refinements. Focusing on the constraint’s violation, we can observe 

how the cardinality is always respected, while the return constraints always suffer a 
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PSO PSO FWL MOPSO MOPSO FWL

AAPL 0.00 0.00 0.00 0.01

AXP 0.00 0.00 0.00 0.00

BA 0.23 0.00 0.00 0.00

CAT 0.02 0.00 0.01 0.00

CSCO 0.00 0.00 0.00 0.38

CVX 0.00 0.04 0.06 0.00

DOW 0.00 0.06 0.00 0.02

DIS 0.04 0.09 0.00 0.00

GS 0.00 0.00 0.07 0.00

HD 0.00 0.00 0.05 0.00

IBM 0.03 0.00 0.00 0.00

INTC 0.00 0.06 0.00 0.00

JNJ 0.00 0.00 0.00 0.00

JPM 0.01 0.00 0.00 0.00

KO 0.00 0.03 0.00 0.19

MCD 0.00 0.00 0.00 0.06

MMM 0.00 0.12 0.04 0.03

MRK 0.00 0.04 0.00 0.00

MSFT 0.00 0.00 0.00 0.00

NKE 0.02 0.00 0.00 0.20

PFE 0.00 0.00 0.00 0.00

PG 0.25 0.19 0.00 0.03

TRV 0.00 0.00 0.17 0.00

UNH 0.30 0.30 0.01 0.02

UTX 0.00 0.00 0.41 0.00

V 0.03 0.06 0.03 0.00

VZ 0.07 0.00 0.00 0.00

WBA 0.00 0.00 0.00 0.05

WMT 0.00 0.00 0.00 0.00

XOM 0.00 0.00 0.15 0.00

Fitness value 0.002143 0.052865 178.315611 510.694503

Cardinality constraint 0.000000 0.000000 0.000000 0.000000

Return constraint -0.003291 -0.003247 -0.004579 -0.003255

Short-sell constraint 0.000000 0.000000 0.001564 0.006788

Portfolio final value 6718.19 8190.74 10115.88 10175.14

Table 4.4 – Portfolios weights and 

algorithms results in terms of constraints 

violation and fitness 
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violation, even if minimal. Nevertheless, considering the period of reference and 

the objective of the thesis, the result is not worrying. Lastly, the short-sell constraint 

sees violations only in the modified PSO algorithms, confirming what was reported 

just above. 
 

 

4.5.2 Time windows analysis 

 

This last part of the application will move the attention to the two different time 

windows that have been selected for the experiment, in order to give the idea of the 

behavior of the algorithms in the in-sample and out-of-sample period. As the aim 

of the dissertation is to test the usefulness of the application a FWL approach to a 

portfolio, the analysis of the out-of-sample will be deeply to test the effectiveness of 

the modification to the approach. 

 

In sample analysis 

 

The first part of the analysis takes into consideration the results obtained during 

the in-sample period. Results of return and standard deviation are reported in Table 

4.5, where the best results87 have been highlighted. 

  

 

 

 

 

 

 

Of course, given the particular and stressful analyzed period general 

performances are generally bad for all the cases and the algorithms. Nevertheless, 

it is interesting to point out the better performance obtained by the MOPSO 

algorithm with respect of the standard PSO. Looking at the result, the difference in 

performances is significant, and it is emphasized by the better results obtained even 

in terms of risk.  

 

Looking at the ratios results, shown in the Table 4.6, the MOPSO algorithm with 

the FWL approach performs almost always better by returning positive result while 

the other algorithms perform negatively. The only incoherent result can be 

observed looking at the Sortino ratio, which is slightly smaller in PSO. Another 

 
87

 As in case of expected return a higher value is preferable, the best value corresponds to the highest one across all 

the final portfolios obtained. Viceversa, dealing with standard deviation, the best result is the smaller across the 

proposed. 

Table 4.5 In sample period results in terms of return and standard deviation 

PSO PSO FWL MOPSO NO FWL MOPSO FWL

Return -0.374562 -0.397473 -0.037478 0.018478

Standard deviation 0.014638 0.014195 0.009016 0.013465

In sample analysis
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performance indicator, besides the risk-adjusted ones just introduced is the 

Maximum Drawdown.  

 

 

 

 

 

 

 

 

 

 

Out of sample analysis 

 

Focusing only on the out-of-sample period the results obtained in terms of return 

and variance are slightly different from the overall ones. Table 4.7 reports expected 

return and variance of the out-of-sample period. 

 

 

 

 

Here the results are the opposite of those held in the in-sample period analysis. 

In fact, the MOPSO algorithm using the historical approach obtained better 

performance in terms of return but at the expense of a significantly higher standard 

deviation. The introduction of the FWL approach seems to have mitigated this risk, 

at the expense of a, albeit slightly, lower return. 

 

The second part of the analysis focuses on the comparison between the financial 

performance indicators introduced before. In total return the MOPSO algorithm 

with FWL seems to be in line with the standard MOPSO, however, as already 

explained, it cannot be considered as a complete performance measure, given that 

it doesn’t consider the risk involved. Table 4.8 summarize the comparison between 

the performance indicators introduced earlier.  

 

Table 4.7 Return and standard deviation out-of-sample results 

PSO PSO FWL MOPSO NO FWL MOPSO FWL

Sharpe Ratio -0.255378 -0.277546 -0.038564 0.007484

Sortino -0.262470 -0.284800 -0.323367 -0.285312

Information ratio -0.035129 -0.050376 0.215070 0.247380

Treynor ratio -0.006059 -0.007549 -0.000627 0.000221

Maximum Drawdown 0.482853 0.389624 0.306403 0.169800

In sample analysis

Table 4.6 In-sample period results in terms of risk-adjusted indicators. 

PSO PSO FWL MOPSO NO FWL MOPSO FWL

Return -0.004602 -0.000762 0.000388 0.000363

Standard deviation 0.046159 0.039868 0.047141 0.036743

Out of sample analysis
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From a superficial point of view, the higher the results of these ratios correspond 

to a better risk-adjusted performance. However, it is interesting to point out that 

this could be misleading if they assume negative values88 and so, they will not be 

taken into consideration in the analysis.  

 

At a first glance, the results reported seem to confirm what already said in the 

previous section, with the FWL approaches performing better than the ones 

without this implementation. Moving closer and looking at the Sharpe ratio, it is 

clear the completely different performances between the standard PSO and the 

MOPSO algorithms, given that the former show negative values of such ratio. The 

comparison between the two MOPSO algorithms indicates a better risk-adjusted 

performance by the one including the FWL approach, coherently with the goal of 

this thesis. 

 

Moving to the Sortino ratio we can observe result partially different from the 

analysis of the Sharpe ratio, given by the use of the downside risk instead of the 

variance. Practically, the main advantage of the Sortino ratio of not penalize returns 

above the MAR significantly impact the results: the best performance is still 

obtained by the MOPSO with the FWL approach, but it is followed by the PSO 

with the same modification applied. Then, the two algorithm without the FWL 

approach obtained even negative results. After the analysis of the Sortino ratio it is 

clear that the FWL approach heavily affected the risk-adjusted performances of the 

portfolio, confirming that the use of a FWL approach can be useful to obtain better 

results with respect of the standard historical approach. 

The analysis of the Information ratio is particularly interesting, being the only 

risk-adjusted performance ratio which results is inconsistent with the others ratios 

and with the aim of the dissertation. As it is clearly observable, the best result is 

obtained by the MOPSO algorithm based on the historical approach. This is due 

to the better expected returns in out of sample as analyzed before. Anyway, the 

difference between the MOPSO algorithms with the historical approach and the 

 
88

 In general, risk-adjusted indicators assume negative values in periods in which the excess return (the numerator of 

the ratios) is negative. 

PSO PSO FWL MOPSO NO FWL MOPSO FWL

Sharpe Ratio -0.099702261 -0.019104692 0.008229819 0.009881282

Sortino -0.083483566 0.002246977 -0.160916498 0.005371901

Information ratio -0.063613542 0.117723005 0.172005035 0.170829564

Treynor ratio -0.0043496 -0.000833615 0.000717606 0.000788209

Maximum Drawdown 0.433633612 0.331264401 0.306402632 0.169799569

Out of sample analysis

Table 4.8 Out of sample analysis results in terms of risk-adjusted indicators 
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FWL one is not so important to justify a clear advantage of using the historical 

approach. 

 

Analyzing the Treynor ratio seems to generally confirm what stated in the analysis 

of the other risk indicators. In fact, the FWL approach applied to the MOPSO 

algorithm slightly outperform its competitor and the same can be stated for the 

standard PSO algorithm. 

 

The last analysis was conducted on the maximum drawdown and, once again, 

the results seem to confirm what was introduced by the study of the FWL approach 

applied to the variance-covariance matrix as the best results in terms of maximum 

drawdown is obtained by the FWL approach algorithms followed by the standard 

historical approach. 
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Conclusion 

 
The idea this dissertation was to bring evidence of the advantages given by the 

implementation of a forward-looking approach based on the implied volatility 

applied to two metaheuristics algorithm. Based only on past data, the algorithm 

would not have been able to predict the arrival of an unpredictable and 

economically devastating event causing huge losses to security portfolio holders. 

Therefore, the objective is to give the possibility to a risk-adverse investor to receive 

anticipatory signals from the market that allow to decrease the risk of the portfolio 

and, consequently, the resulting losses. For this reason, a forward-looking 

component, i.e. a modification in the variance-covariance matrix, has been 

introduced in the original algorithm. Moreover, also a modified version of the 

original PSO has been tested to evaluate its flexibility in a forward-looking approach 

give that it performed always better in a historical data scenario. After the 

experiment trial the results have been compared together in a simple real case 

portfolio. Then, main financial performance indicators have been used to access 

different and more complete information about the results obtained.  Although the 

modification is small, from the results of this work it seems to be able to offer partial 

improvements in the returns of the portfolio, through the orientation of the 

algorithm towards less risky assets. However, believing that the forward-looking 

approach is superior to one based only on historical data, further modifications to 

Markowitz's original work may be needed, such as introducing forward-looking 

estimators based on Skewness and Kurtosis such the ones introduced in the 

Appendix. Indeed, the use of such moments of the statistical distribution, may 

provide a better estimate of future behavior of the stock price and give the possibility 

to reach even better results in terms of variance and expected return. From the 

portfolio composition, further, given the results obtained a rebalancing of the assets 

detained in the portfolio should be accessed. Moreover, the introduction of changes 

to the PSO, in addition to the forward-looking approach, return more unstable 

results between runs and much higher fitness values Furthermore, from a 

computational point of view, the modification introduced in the PSO algorithms 

could be applied to different kind of metaheuristics such as Ant Colony 

Optimizations, Fireworks Algorithm or Genetic Algorithm and to more modern 

and advance machine learning algorithms.  

In conclusion, the introduction of a forward-looking approach to the variance-

covariance matrix in PSO algorithms could have had a positive impact in the 

performances of a portfolio during the COVID-19 financial crisis. However, the 

sample size, the testing period and the algorithm involved in the analysis might be 

too small and limited to be considered a conclusive experiment. Further research 
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involving a cleaner and tweaked code, together with the application of a model free 

approach for the derivation of the implied volatility might be useful to obtain better 

and more price results. 
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Appendix A – Figures 

 

 

Figure 1 – Comparison between frontiers with and without risk-free asset in mean-variance plane 

 
 

 

 

Figure 2 – Comparison between frontiers with and without risk-free asset in mean-standard deviation plane 
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Figure 4 Different expected utility curve. The tangency between the utility curve and the efficient 
frontier represents the efficient portfolio for that particular investor 

Figure 3 Tangency between the efficient frontier and the risk-free curve 
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Figure 4 - Velocity and position updates for a single particle during an iteration cycle 

 
 
 
 

 

 

Figure 6 – Metaheuristics population topology 
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Figure 7 – Payoff of option positions 
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Appendix B – BICM’s higher moments estimators 

 
In chapter 3, the derivation of the estimator based on the second moment have 

been presented. However, authors demonstrate the derivation of the estimator’s 

based on the third and fourth moments too. To obtain the further members of the 

family of fully implied estimators it is sufficient to replace the assumptions 

concerning about the proportion of systematic variance with a corresponding 

assumption about how systematic risk affects higher moments.  

 

Estimators based on third moments 

 

To derive the skewness-based estimator of covariance, authors assume that the 

proportion of systematic return skewness is equal for all the assets89. Then, denoting 

this proportion by 𝑐𝑡
𝑆𝑘𝑒𝑤, the return skewnsess of of the ith asset is developed as  

 

 𝑆𝑘𝑒𝑤 (𝑅𝑖𝑡) = 𝛽𝑖𝑡
3  Skew (𝑅𝑚𝑡) + (1 − 𝑐𝑡

Skew ) Skew (𝑅𝑖𝑡) (A.1) 

 

and, solving for 𝛽𝑖𝑡  

 

 
𝛽𝑖𝑡 = (𝑐𝑡

Skew )
1/3
(
 Skew (𝑅𝑖𝑡)

 Skew (𝑅𝑚𝑡)
)

1/3

 
 

(A.2) 

 

 

Here, again, the conditions that the market beta equals one delivers the 

proportion 𝑐𝑡
𝑆𝑘𝑒𝑤 . So, solving for 𝑐𝑡

𝑆𝑘𝑒𝑤 and substitute the result in Equation A.2 

provide the beta coefficient which leads to the covariance equation 

 

 

𝐶𝑜𝑣(𝑅𝑖𝑡 , 𝑅𝑗𝑡) =
𝑆𝑘𝑒𝑤(𝑅𝑖𝑡)

1
3 𝑆𝑘𝑒𝑤(𝑅𝑗𝑡)

1
3

(∑  𝑁
𝑖=1 𝑤𝑖𝑡𝑚 𝑆𝑘𝑒𝑤(𝑅𝑖𝑡)

1
3)
2 𝑉𝑎𝑟(𝑅𝑚𝑡) , ∀𝑖 ≠ 𝑗 

 

(A.3) 

 

Which represents the second member of the family of fully implied covariance 

estimator. 

 

 

 

 
89 Note that the assumption by Chang, Christoffersen, Jacobs, and Vainberg (2012) that the proportion of 

systematic skewness equals 100% is a special case. 
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Estimators based on fourth moments 

 

Finally, kurtosis-based covariance estimator is presented. To derive it as for the 

second and third moments, the assumption to be done is that the proportion of 

systematic kurtosis is equal for all N assets. Denoting this proportion as 

𝑐𝑡
Kurt , with 0 ≤ 𝑐𝑡

Kurt < 1, the fully implied covariance estimator can be derived as  

 

 

𝐶𝑜𝑣(𝑅𝑖𝑡 , 𝑅𝑗𝑡) =
𝐾𝑢𝑟𝑡(𝑅𝑖𝑡)

1
4𝐾𝑢𝑟𝑡(𝑅𝑗𝑡)

1
4

(∑  𝑁
𝑖=1 𝑤𝑖𝑡𝑚 𝐾𝑢𝑟𝑡(𝑅𝑖𝑡)

1
4)
2 𝑉𝑎𝑟(𝑅𝑚𝑡) , ∀𝑖 ≠ 𝑗 

 

(A.4) 
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