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Abstract

The climate of the earth has been changing with time, over millions
of years and mostly in the previous two centuries with the involvement of
greenhouse effect, which has put the climate at stake in an unprecedented
level. Extreme values in precipitation are amongst the most critical and fa-
mous subject in the field of climate sciences. To analyse our data, we have
used the extreme value analysis for our results, since our data contains
annual maximum value of precipitation, therefore we have adopted the
block maxima approach to check the positive/negative trends, maximum
values. To check the results, the model adopted is Generalized Extreme
Value (GEV) estimated with the Maximum Likelihood Estimation (MLE)
method.

The results of our analysis have been obtained from our data of pre-
cipitation recorded at 28 different stations in Pakistan from the year 1985
to 2016. From the model results, Gilgit station, which is at the north of
Pakistan, has the least maximum value of precipitation, i.e. 64.5 same
as Panjgur in the period shows the best model fit results amongst all the
station. The stations that represent worst model fits are: Sialkot, Jhelum,
Lahore, Khanpur, Badin, Jiwani, Chhor, Jacobabad and Karachi, com-
pared to the other stations that show better model fit.

The stations with high variations do not give us the better model fit
results. The quantiles plot shows that, for high values the model fit is
uncertain for almost all the stations, and the residuals are drifting at
higher upper-end tail distribution; apart from that almost all the quantile
plots show us the normal distribution with better model fits. The return
level for the maximum extreme lies between 20 to 50 years except for few
stations which include Zhob, Khuzdar and other.
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1 Introduction

The climate of the earth has been changing with time, over millions of years
and mostly in the previous two centuries with the involvement of the green-
house effect, which has put the climate at stake at an unprecedented level.
Change of solar cycle patterns, atmospheric changes, impacts of El-Nino south-
ern oscillation (ENSO), sea ice extent changes, natural biosphere variability are
the reasons that show the evidence of both external and internal references to
change and variability. The different earth components are also subjected to
show variations in response to all these variabilities. The surface air temper-
ature has increased around 2.9°C in Boreal Asia over the last century. The
nations located in Asia subjected to the greenhouse and climate change effects
are expected to have more shift patterns of floods, storms, droughts, and the
increase in sea level rise. The historical evidences of these regions show that
they are more vulnerable to the variation in monsoons, tropical cyclones and
El-Nino southern oscillation (Farooqi et al., 2005).
Extreme values in precipitation are amongst the most critical and famous sub-
jects in the field of climate sciences. Its intensity and variability of extreme
values are evident in climate change. Many studies in these aspects and its
findings have proved that it varies significantly according to the location and
period. It also impact human lives, community, welfare and society, agricul-
tural activities and economies (Smadi and Zghoul, 2006), (Fowler et al., 2008),
(Nikhil Raj and Azeez, 2012). It has become a priority of the researchers to
understand the variation of extreme values in precipitation over long term tem-
poral scales, and many researchers have evaluated the variation in extremes of
precipitation in different regions of the world (Brunetti et al., 2001), ( Lupikasza
et al., 2011), (Park, 2011), (Burauskaite-Harju et al., 2012), (Iwasaki, 2012),
(Gillies et al., 2012), (Li et al., 2012) and various studies has shown the trends
in increasing heavy precipitation (Nastos and Zerefos, 2008), (Burt and Ferranti,
2012), (Iwasaki, 2012), (Deshpande et al., 2012).
Regional analysis in extreme precipitation indicates non-uniform and complex
spatial patterns (Aleem-ul Hassan et al., 2010), (Raziei et al., 2012). Many
researchers have found the significant trends of extremes in precipitation in
different regions around the world (Dravitzki and McGregor, 2011), (Naumann
et al., 2012). Similarly, numerous studies of seasonal variability in extreme
precipitation have also illustrated decreasing trend (Schmidli and Frei, 2005),
(Zolina et al., 2008), (Lupikasza, 2010). Although, extremes of precipitation
and its impacts have created significant interest in the community of scientists.
Many scientist have explained that heavy precipitation is the major reason to
cause severe floods all over the world (Frei and Schär, 2001), (Svensson and
Jakob, 2002), (Kunkel, 2003), (Park, 2011), which is also obvious in Pakistan,
where there are many damages caused in the recent years (Afzal and ul Zaman,
2010), (Aleem-ul Hassan et al., 2010), (Aziz and Tanaka, 2011).
Recently, with an increase in the concern over the climate change impacts, sci-
entists have implemented various statistical tools and techniques to highlight
the concerning trends within the time and space of precipitation and its ex-
treme events (Hussain and Lee, 2013). The non-parametric approach has been
implemented mostly to assure the results of previous techniques, which includes
shifting averages and regression (Hussain and Lee, 2013). In this context, most
of the studies in a variation on the precipitation have been done recently, which
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provided a great knowledge into the significancy and the direction of the precipi-
tation trends in certain regions (Smadi and Zghoul, 2006), (Samba and Nganga,
2012).
Changes in the extreme precipitation patterns and their impacts on water re-
sources are one of the main climatic concerns these days. The prediction of
these changes is ultimately significant for regions which are already facing some
concerns and are under stress, for instance: the regions where there is water
shortage because of the dry climatic properties and where the season precipita-
tion is very high regardless of its dry conditions (Hussain and Lee, 2013). The
trends of precipitation extreme are highly dependent on the period of study and
seasonality; therefore, a specific approach that could evaluate the high variabil-
ity in precipitation over space and time is required. However, the results of the
trends are strongly dependent on the values at the beginning and at the end
of the time series (Lupikasza, 2010). An overlook of the trends in indices of
precipitation extremes moving trends for a period of 30 years was observed to
identify the changes in the trends to analyse significant extreme precipitation.
(Hussain and Lee, 2013).

1.1 Country Profile

Pakistan has a long extent of latitude extending from Himalayan mountains
situated in the north and the Arabian Sea in the south, located in the sub-
tropic and temperate region. It has a population of about 216.6 million people,
which are mostly at stake and vulnerable because of climate change. A large
portion of the people in Pakistan live in river deltas or low coastal areas, where
flooding and sea-level rise are one of the devastating impacts of the increase in
global temperature and climate change. Many regions of Pakistan, climatically,
are from semi-arid to arid, where temporal and spatial variability is significantly
variable in climate parameters. Annual rainfall is mostly in the monsoon season,
which consists of 59 %, and it plays an important part in the recharging of the
Himalayan region. In winter, in the regions beyond 35°N, the precipitation is
in the form of ice and snow, which let the rivers to flow throughout the year
(Farooqi et al., 2005). The north consists of the mountains where the climate
is from humid to arid, and the south along the coast is limited to a narrow
strip. Between north and south, the climate is mostly tropical and continental
(Farooqi et al., 2005).
Pakistan’s geography extends over 796,095 KM2 areas with a huge diversity
in precipitation and temperature. In the southern half, eastern areas receive
precipitation mainly from the western part of the region in the monsoon season
from June to September, whereas the western and the northern areas mainly
receive precipitation from the western disturbance in weather from December
to March. In summer, monsoon precipitation is accounted for 60% of total
precipitation. Annually, 3/4 of the country receives less than 250 millimetres of
rainfall except in the southern Himalayan slopes and sub mountainous region in
the north, where it receives annual rainfall over 760 to 2000 mm. The northern
region is very high above sea level with some gigantic peaks like K2 (8611
meters), and also the region is rich in glacial resources consisting of one of the
worlds largest glaciers such as Siachen, which is 70 km long and Biafo which
is 63 km long, which helps in feeding the Indus river and connected tributaries
(on Dams, 2000). The temperature in the northern regions goes lower as –50°C
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during winter and remains around 15°C during summer. The southern and
western regions of Pakistan are consisted of the Indus river plains and plateaus
of Balochistan. The boundaries around the Indus river is extended to 520,000
km2 and cover 65% of the total area which flows through all the provinces of
Pakistan. Pakistan has one of the most extensive contiguous irrigation systems,
mainly dependent on the Indus River basin, which covers 95% of the irrigation
system (Chaudhry, 2017).
Indus plain receives 230 mm of average rainfall, the temperature variation be-
tween the lower and upper basin plains is quite dominant, where mean temper-
ature in winter is from 14 to 20 ◦C in the lower plain, while in the upper plain
regions, its from 2 to 23 ◦C. The summer average temperature is 42 to 44 ◦C in
the lower plain and 23 to 49 ◦C in the upper plains. Baluchistan is the wildest
province of the country and has variant mountain ranges with an altitude of 600
meters on average, and most of the parts are consisted of deserts with the least
water resources and rivers flowing through the region. The country also contains
deserts in Sindh and Punjab, namely Thar and Cholistan, where rainfall is less
than 210 mm over the year (Chaudhry, 2017).
Pakistan’s economy is totally dependent on agriculture, and IPCC’s fifth as-
sessment report highlights the climate change impacts and its severity. The
threats are evident due to its significant geographic placement, demographic
trends, least adaptive capacity, also including the socio-economic factors (Hi-
jioka et al., 2014). The projections of the climate change described in the AR5
report for South Asia represents that the global temperature rise will be higher
than the mean global temperature increase, which will impact the glaciers loss
at a high rate and affect the regional climate and also the precipitation pat-
terns. The monsoon cycle will also be affected due to certain changes which will
affect the timescale of rainfall and its capacity, efficiency and the productivity
of agriculture (Chaudhry, 2017).

1.2 Pakistan Meteorology Department

The Pakistan Meteorological Department (PMD) is the prime authority respon-
sible for monitoring climate activities and weather forecasting in the country. It
provides meteorological services across Pakistan to various users. In addition to
routine meteorological services such as daily weather recording, processing, stor-
age and forecasting and distribution, the department is also responsible for the
areas connected with meteorology such as; agriculture, hydrology, flood forecast-
ing, astronomy and astrophysics, seismology, geomagnetism, ozone monitoring,
weather change, drought monitoring etc. All kinds of meteorology related disas-
ters, i.e. storms, cyclones, torrential rains, tornadoes, etc., hydro-meteorological
related disasters such as floods, droughts etc. In geophysics, earthquakes, ozone
depletion, ionospheric disturbances, etc., are also monitored. The normal cli-
mate conditions of Pakistan for the period of 30-years, i.e., 1931-60, 1961-90
and 1971-2000, can be easily accessed and are also available and published in
the department. The department also has the monthly data of all-weather sta-
tions in digitized form. However, daily and hourly daily data have not yet been
digitized but can be obtained from its archives (Sheikh et al., 2009).
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2 Literature Review

From the period of 1951 to 2000, 10 to 15 % of the summer and winter rainfall
was observed to be decreased in coastal and arid plain areas while 18 to 32 %
was observed to be increased in the summer monsoon season, and relative hu-
midity was decreased by 5 % in Balochistan (Chaudhry, 2017). However, 17 to
64 percent of the decrease in rainfall was observed over the last 100 years events
during the El-Nino strong events. Storms, cyclones and depressions in the Ara-
bian sea and bay of Bengal have been increased in the last years of the 20th

century, which has affected some countries, including Pakistan (Farooqi et al.,

2005). In the 20th century and 7 years of 21st century which includes the data
from 18 stations and 5 stations from the year 1914 onwards, represents the long
term precipitation, where 10 years moving average in the time series analysis
proved that rainfall has been decreased until 400 millimetres from 600 millime-
tres up to the year 1940 and an increase of 133 millimetres was observed after
that period. Overall, 61 mm of the annual precipitation increase was observed
at the national level, 22.6 millimetres of monsoon rainfall was increased, and
20.8 millimetres of the winter precipitation was increased (Chaudhry, 2017).
The annual mean precipitation has been significantly increasing apart from
coastal areas also, the monsoon rainfall represents a similar trend. However,
the winter precipitation represents the complex pattern with the decrease in
the trend in highlands of West in Kirthar Ranges in Sindh and Suleman ranges
in Baluchistan. In the Himalayas, it shows an increase in the precipitation
trend during the period of monsoon from June to September, and precipitation
slightly decreases in the winter period from December to March (Chaudhry,
2017). According to Iqbal et al. (2014), the yearly precipitation and tempera-
ture for the future trends for 2050 and 2080 under different emission scenarios,
the temperature increase in 2080 by using the GCM model will increase by
4.38°C in Pakistan, and this increase will be higher in northern areas in winter
and summer. Also, the temperature increase will be higher comparatively in
winter in both south and north. The precipitation did not show any significant
changes, but there is a slight increase in summer precipitation while it decreases
in the winter.
The other significant studies under Pakistan meteorological department, which
computed precipitation and temperature change for Pakistan in the years from
2011 to 2050 through different climate models, show that: the temperature
increase is to be expected in northern areas, southern and northern Punjab,
and some low regions of Khyber Pakhtunkhwa (KPK). Mixed patterns were
observed for precipitation in the various regions (Chaudhry et al., 2009), and
the uniform variation in the distribution of rainfall was predicted in a study
conducted over the whole regions of Indus Basin (Rajbhandari et al., 2015). At
the sub-level regions of the upper and lower Indus basin, the models indicated
an increase in the trend of rainfall at an upper level and a decreasing trend in
the lower level and slight changes were seen on the border zone. The study also
predicts the increase in the number of days for rainfall and also the intensity of
rainfall over the border zone (Rajbhandari et al., 2015).
In May 2015, PMD presented daily gridded down-scaled temperature and pre-
cipitation from 2010 to 2099 in time series for 4 different GCM models of climate
change scenarios which shows the 3 to 5 degrees of temperature rise under 4.5
emission scenario. The rainfall has high variation according to the time and
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intensity, and some peaks represent the risk of extreme events while there are
also some extreme events for low precipitation indicating droughts (Chaudhry,
2017). Another model presents that by 2050, rainfall in summers will be shifted
to August and that of winter to March. This trend will be continued till the end
of this century. The representative concentration pathway (RCP) 4.5 indicate
the increase of mm/day in mean yearly precipitation along with maxima shift
to the northeast part of Pakistan by mid-century. After the mid-century, the
pattern shifts of precipitation are towards the northeast part of the country.
Similar behaviour is observed under RCP 8.5 scenario with lower magnitude,
i.e. 2 mm/day with an increase in temporal scale (Chaudhry, 2017).
Over 70 to 50 % of the precipitation in Pakistan is linked with the monsoon
in summer, while in winter, most of the precipitation is caused by the western
disturbance (Hussain and Lee, 2009). Pakistan climate is characterised by irreg-
ular patterns of precipitation that is highly variable with respect to space, time,
intensity, and duration, which has not been discussed much (Hussain and Lee,
2013). The period in which mostly, the precipitation, i.e. 56% in a year, falls
from June to September, from which 41.3% occurs in July and August com-
bined. Lower values are observed in winters from November to December, and
from January to April, the rainfall is mainly uniform (Hussain and Lee, 2009).
In the research carried by Hussain and Lee (2009), in which he has classified six
regions of Pakistan according to the precipitation and weighted by a number of
weather stations, where region 1 receive the least precipitation, which is 45.6%
in summer and autumn is mainly dry. Region 2 receives high precipitation
during the spring season, while region 3 receives most of the precipitation in
winter, where summer precipitation is comparatively low. Region 4 is classified
according to the high precipitation that occurs in winter and spring. Region 5
is mostly wet, which receives high precipitation in summer and also in all other
seasons, which is less than summer and comparatively region 6 receives more
amount of precipitation in summer only (Hussain and Lee, 2009).
Annual trends of different indices for a long term of extreme precipitation high-
lighted over most of Pakistan from the period of 1950 to 2010, in which positive
values were prominent in spatial perspective (Hussain and Lee, 2013). The val-
ues differ with the index used however, the increase in days are significant with
respect to the extreme precipitation. Initial 30 years from 1950 highlighted the
increase in the trend while other 30 years from 1971 and 1981 presented down-
ward trends (Hussain and Lee, 2013). However, in the extent of territories, both
trends of positive and negative are varied and showed both upward and down-
ward directions. The Kendall tau based results showed some variations with an
increase in the number of days for heavy precipitation and its totals, however,
the slope pattern with the results are similar to linear trend (Hussain and Lee,
2013). The results of daily precipitation and its extremes from the 15 weather
stations across the country were analysed, which presents the spatial variabil-
ity in 61 years (Hussain and Lee, 2013). However, the analysis for long-term
changes is complex in precipitation extremes due to the lack of availability of
long-term data. The variability in extreme precipitation has significant conse-
quences, such as the risk of flooding, river flow, and direction that could affect
engineering structures such as dams, bridges and urban drains (Hussain and
Lee, 2013).
Annual mean precipitation dominates to follow the variation in a distinct lat-
itudinal way from the south to the north. In the humid northern region, the
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mean annual precipitation is less than 30 to less than 150 millimetres. This
region is situated at the border of the Himalayan region and is supposed to
be the core monsoon region. This region is also evident to receive a certain
amount of precipitation from the westerlies system, which presents the seasonal
trends. However, the higher northern parts, where a local hydro-logical cy-
cle is extremely dependent on westerlies, presented about 0.1 to 30-millimetre
decrease in the precipitation because of its geographical location (Waqas and
Athar, 2019). Identically, the southern parts having arid and semi-arid climatic
conditions are characterised by minimal precipitation. The southern regions
have a tropical and coastal climate which has a low or minimum influence of
westerlies system and monsoon (Ullah et al., 2019). The precipitation can be
divided into two modes, i.e. summer and winter. Winter precipitation which is
also known as pre-monsoon precipitation, is mainly because of the westerlies cli-
mate, and summer is mainly due to the monsoon. All these modes support the
hydro-logical cycle across the country and the perennial flow of the Indus river
basin. These two modes are the main sources of local water supply throughout
the country. The variability in latitudinal trends has the benefit of creating
most of the precipitation inside the country, and the increase and decrease of
these two modes of precipitation can adversely affect the region (Ullah et al.,
2018), (Abbas et al., 2018).
Rainy days have been increased by 0.40 days in a long-term period from 1980-
2016, and the increase is more prominent in the north and eastern parts. How-
ever, the arid lands of the south and humid regions of the centre show a decrease
of 0.39 days (Bhatti et al., 2020). However, the heavy precipitation days has
been decreased by 0.25 for a 10 mm magnitude in north, humid and semi-arid
regions of Pakistan. 0.2 days of increase was found in the east and central re-
gions and vice versa in the south and southwest. The heavy precipitation of
20 mm follows an asymmetric pattern where it has been decreased/increased
in the north-south and central parts with a rate of 0.2 days. Severe precipita-
tion with a magnitude of 50 mm apart from a few humid region’s stations, the
country overall showed a declined trend. The annual total precipitation can be
concluded to have an increasing trend at 0.1mm in the east and the north of
the country (Bhatti et al., 2020). Only some of the stations in the core mon-
soon semi-arid and humid region presented a decrease of 9.9 mm during the
1980-2016 period. The mean precipitation has been increased by 0.14 mm in
the monsoon regions, and the decrease of 0.1 has been observed in southern arid
and northern regions (Bhatti et al., 2020). The regions with high altitude and

humidity in the north exhibited a decrease in precipitation by 0.17 mm with 95th

percentile, and the increase of about 0.015 mm has been observed in the east
and south-eastern parts. The 99th percentile showed to be decreased by 0.08
mm in the coastal regions of the southwest, and the north and an increase of
0.06mm was observed in the west and central parts of the country (Bhatti et al.,
2020). The indices show an increase in the trends of monsoon precipitation, and
it is also suggested that it could increase its time span along with the westerlies,
which has also presented some evidence of an increase in the precipitation (Zhan
et al., 2017), (Bhatti et al., 2020). The Sequential Mann-Kendall test statistics
based on the period of 1980 to 2016 over the regions of Pakistan referred for
precipitation indices resulted that rainy days were decreased in the early 1980
period, and later increased in early 1990 years and again decreased in the early

9



2000 and from 2011 showed a slight increase. The heavy precipitation for total
annual precipitation observed to follow the same pattern of increase/decrease
in 1980/1990 (Bhatti et al., 2020).
The trend appears to increase steadily after 2005, suggesting higher frequencies
of extreme cases in precipitation events in Pakistan. The magnitudinal increase
or decrease of extreme precipitation is in agreement with the wet or dry events
perceived in the regions of interest in the respective study (Ullah et al., 2018),
where it has been possibly influenced by a large-scale abnormality in the circu-
lation of ocean indices and require more exploration (Xie et al., 2013).
The increase of the events in the latter part of the respective study also indicates
that the climatic footprints variability generated by the change in the water-
cycle is evident at the regional level and therefore may increase floods observed
in recent time (Gadiwala and Burke, 2019). The mean precipitation on rainy
days showed little variability until 2000, and a significant gradual decrease was
observed in early 2000, and a significant increasing trend was followed in the rest
of the period. The 95th percentile of precipitation showed a downward trend
that was significant during the last ten years around 2012 and was the same
afterwards. The precipitation events at the 99th percentile showed to be varying
in a small range for the duration of the study. However, a more pronounced
decline can be observed at the end of the duration of the study, which suggests a
decrease in extreme precipitation events. In general, it can be summarized that
the precipitation indices have shown strong growth in trend, especially in recent
years. The inflection points indicated that some changes (increase/decrease) in
the P indices occurred during the study period. Extreme precipitation events of
(95th) percentile seemed to have decreased in recent years, while severe events

(99th) percentile decreased slightly in recent years (Bhatti et al., 2020). Study
results for precipitation based on size and frequency are consistent with those
within the context of the world’s climate change. The last two indices indicate
that the decreased lag is due to the regional-based average, and therefore some
regions have experienced an upward/downward trend. However, the average
area in the statistics has suppressed the highlighted signal (Ullah et al., 2018).
These responses of the precipitation events are possibly associated with the
monsoons and western winds that are resulted in the summer and winter seasons,
respectively (Bhatti et al., 2020).
Some of the recent studies have strong evidence for an increase in the precipita-
tion regime (Ashiq et al., 2010), (Bhatti et al., 2020), (Ullah et al., 2018). The
observed increase is generally linked to the frequency and intensity increases of
extreme precipitation events, which are generally responsible for severe flood-
ing in the study area (Khan et al., 2011). Similar events have been observed
over a long time in Pakistan, which has caused severe damages to agriculture,
civil and hydro-logical cycles, as well as living beings (You et al., 2017). An-
other limitation is the uncertainty of the data since the station data are usually
subjected to the application of the synoptic-scale and recording capabilities are
currently related to deviations and therefore could be identified in some other
studies (Ullah et al., 2019), (Iqbal and Athar, 2018). Therefore, detailed find-
ings with recent methods, simulations and projections must be adopted as an
alternative approach to the better understanding of the precipitation nature at
the regional level (Iqbal and Athar, 2018), (Ahmed et al., 2019). The linear
regression of the various precipitation indices applied in the study shows that
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rainy days are subjected to the general trend, increasing with slope and regres-
sion coefficient equal to 0.059. There was also a great variability throughout the
study period, which is dominant with peaks and troughs indicating wet or dry
events in the area (Bhatti et al., 2020). The heavy, very heavy, and extremely
heavy rain events seemed to follow similar patterns to those observed for daily
precipitation, where an increase in the trend and sizes of regression are of 0.017,
0.027 and 0.005, respectively. This increase in trend can be concluded by fo-
cusing on agriculture, where it can increase the yield of crops and vegetation
in the study region, which consists mainly of arid and semi-arid regions with
scarce vegetation. However, intense, very intense, and extreme intense events
can affect the livelihoods of the community, already threatened by the dangers
of flooding. The indirect effects of these events also occur in areas downstream
of the Indus basin with some direct or indirect losses due to water stagnation,
soil degradation and the deposition of carried sediments (Hassan and Ansari,
2015), (Khan et al., 2011).
The time-scale variability in precipitation indices peaked in the early 1990s,
followed by decreasing in 2000-2005 and then increasing steadily in subsequent
years. The total annual precipitation and the mean precipitation wet days
have also been increased along with the coefficients of regression for about 0.62
and 0.054, respectively (Bhatti et al., 2020). However, the increase in total
precipitation over the mean precipitation was more significant on rainy days,
suggesting a higher precipitation value on the annual scale is linked to extreme
events. The precipitation extremes percentiles showed an increasing trend with
the coefficients of regression equal to 0.046 and 0.019 for the precipitation events
of the 95th and 99th percentiles, respectively (Bhatti et al., 2020). The droughts
of the late 1990s and early 2000s are also evident across all precipitation indices,
particularly at the extremes of 95th and 99th percentiles. From these results,
we can deduce that the total frequency and the amount of extreme rainfall
continually increased during the period of 1980 to 2016 (Bhatti et al., 2020).
The most significant increase has been observed for average annual precipitation
on rainy days. The linear regression results were seen different than the SqMK
test, which showed a decrease on some indices. On the other hand, increase
at extreme rates, particularly after 2000, concluded that extreme events could
occur more in Pakistan (Bhatti et al., 2020).
The increase has been noted in recent years and, therefore, must be considered
for decisions at a regional level that related to a disaster, floods, food security,
risk and vulnerability. The associated changes with the underlying dynamics
in extreme events of precipitation could be due to the large-scale oceanic and
atmospheric factors that have been examined in similar studies for the region
(Gadiwala and Burke, 2019), (Galarneau et al., 2012), (Rasmussen et al., 2015).
The results are associated with the latest trend prompted by climate change,
as shown in the IPCC assessment reports (Stocker et al., 2013). The estimated
linear trend of the extreme precipitation indices at an altitude of the study
region highlighted there is a large variation in precipitation across the region of
interest having altitude, it can therefore also be called a variation of latitude.
The results suggest that humid days increases slightly with altitude, suggesting
an increase in precipitation from the south heading to the north (Bhatti et al.,
2020).
Typically, there are two dominants of winter precipitation in the central and
eastern part of the study region, associated with western shocks and South-Asian
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monsoon precipitation (Ullah et al., 2019). This is indicated by a tendency to
increase precipitation at the latitude/altitude in the northern and western parts
of the region, which become relatively wet than the rest of the region (Ashiq
et al., 2010) which may be associated with an increase in westerly winds and
monsoon.
For severe and very severe precipitation events, a slight decrease in amplitude
through elevation is evident, indicating severe precipitation events in flat valleys
and the decline in wet/dry high-altitude areas. Severe p events are observed
to be in decreases with height. However, there are some seasons in the mid-
altitude of the monsoon regions, where stations indicate an increasing trend.
This suggests that the central regions are prone to these changes are faster in
other parts of the region, such as the east and south-east regions that typically
receive more, or less than 60% rainfall in the monsoon seasons. Overall, severe
events tend to decrease from arid and semi-arid regions in the south up to the
northern parts. The daily mean precipitation and the total annual precipitation
slightly decreased, and with the mid altitude, it is slightly increased and then a
decline in the high altitude. The precipitation extremes for percentiles of 95th

and 99th also exert concurrently an increase in latitude, with an increase in the
low-altitude coastal regions and then a decrease in the central dry valleys and
a slight decrease in the rest of the area (Bhatti et al., 2020).
The frequency of the precipitation from the south to north, have been decreased
in the south and increased in the northern regions of the country, which also have
presented in some studies (Ullah et al., 2018), (Iqbal and Athar, 2018). Increased
extreme events of precipitation can be observed from south to north, which
suggests that the region has experienced an increase in the north of the country.
The frequency is getting heavier in the same period, where precipitation has
been increased in the arid regions in the south of the country. The study results
are compatible with the recent global warming trends in the region, and related
changes have also been predicted in AR5 by the IPCC (Stocker et al., 2013),
(Ullah et al., 2019), (Ahmed et al., 2019).
The water cycle is also expected to change, which is required to be addressed in
future planning of the water resources in the region (Ullah et al., 2018), (Ullah
et al., 2019), (Mahmood and Jia, 2016). However, more depth studies can inves-
tigate models in a specific way. Extreme precipitation events have risen recently
and are expected to increase soon. Intense and frequent precipitation extremes
can enhance the risks connected and vulnerability to river or flash floods that
can exponentially expose vulnerable regions worldwide. Pakistan is among the
vulnerable regions due to the precipitation extremes caused by climate change
(Cheng et al., 2012), recently its local water cycle has been affected severely.
Furthermore, the seasonal diversity of precipitation along the latitude and lon-
gitude and the perennial flow pattern should have strongly influenced the local
and remote flora and fauna. The limitations and vulnerabilities in the present
study was designed to evaluate changes in extreme precipitation events based
on selected extreme indices in the target region between 1980 and 2016 (Bhatti
et al., 2020).
All the changes of the precipitation and water cycle in the areas might relate to
an increase in the temperature of the air, which increases the holding of water
capacity in the air generates more vapours. This holding capacity of water in
the atmosphere has been raised by 7% because of the variations in the total
temperature, as indicated by Trenberth and Fasullo (2012), that can explain
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the observed higher precipitation. Events of precipitation with a magnitude of
50 mm showed a small decline in some regions of Pakistan, but in general the
decline was not so evident, except in the north of the country. The sea surface
temperature increase could also influence the evidence for an increasing trend of
these indices (Bhatti et al., 2020). These mixed behaviours could be caused by
the variable geographic locations of the regions as Pakistan highlights the limit
of these influences (Ullah et al., 2019), (Iqbal and Athar, 2018). For the two
precipitation seasons, a clear model cannot be observed throughout the region.
For the remaining indices of precipitation, the core Indus basin increase, and
the decline was significant in the central-western and central monsoon distur-
bance zones, excluding for the 99th percentile. One possible reason could be
the two different aspects of the region that includes dryness of the region and
the moisture source precipitation. The drought in the region is predominantly
arid to semi-arid and extremely arid (Ullah et al., 2019), (Haider and Adnan,
2014). The appearance of precipitation mainly leads to higher infiltration and
lower runoff. With low runoff, evaporation and recycling amount of moisture
through evaporation, transpiration is less and therefore less water is recycled
(Galarneau et al., 2012). The second reason can be explained by the humid lo-
cations of the two precipitation modes that control the water cycle in the region.
The twist could be reversed, and there are disturbances about possible changes
in the track of the monsoons and the westerly winds (Dimri et al., 2015). The
source of humidity in the summer comes from the Indian Ocean, while for the
winter, it comes from the Mediterranean area. The variation in the path of the
humid pattern can change the maxima of precipitation and therefore shift the
precipitation (Bhatti et al., 2020).
Sarfaraz et al. (2014) showed the spatial distribution of normal annual and sea-
sonal rainfall all over Pakistan, where he attributed in his findings surprisingly
massive changes from north to south and presented that the sub-northern area
of Pakistan has the highest yearly rainfall, i.e. from 1485-1775 mm. It decreases
as it moves south, reaching its minimum range of approximately 37-327 mm in
Balochistan, Sindh, and southern Punjab. Obviously, the inter-regional vari-
ability of precipitation (1738 mm) in the spatial distribution of normal annual
precipitation indicates the steep climatic gradient over Pakistan. The distribu-
tion of rainfall during the summer monsoon in various sub-regions of Pakistan
has also been observed, where it can be concluded that most of the precipitation
concentration is in the sub-north areas of Pakistan (642-771 mm) surrounding
the areas of Islamabad, Sialkot, Kakul, Balakot and the suburbs. The follow-
ing elevated range, i.e. 514-642mm, cover the rest of the northeastern areas,
which includes the areas of Jhelum, Kotli, Garhi Dupatta and Kamra stations
(Sarfaraz et al., 2014). The upper third zone of 386-514 mm includes the area
extending from Lahore in the northwest, followed by precipitation decrease in
the south and southwest, to almost all of Balochistan (except some places in
the northeastern region), southwest of Punjab, and central and upper regions
of Sindh, where a minimum range of precipitation, i.e., 129 mm have been
observed. From this, we can conclude that most of the monsoons fell in the
sub-north regions of Pakistan. In terms of pattern, it is very similar to what
has been defined in the spatial distribution of annual rainfall (Sarfaraz et al.,
2014).
The spatial distribution of rainfall in Pakistan over a 30-year typical winter
shows a wide range and is considered to be the second-highest, accounting for
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30% of total rainfall. The largest precipitation range, 514-642 mm, is evident
near Dir district in the northwest, followed by the second-highest range, 386-514
mm, which covers the areas of Murree, Kakul, Balakot, Saidu Sharif, and Garhi
Dupatta. It’s worth noting that the highest precipitation happens in the same
geographic area (Sarfaraz et al., 2014). The minimal outreach is greater than
three-quarters of Pakistan, extending from southwest to northeast, culminating
around Mianwali and the perimeter, and reappearing on Gilgit-Baltistan from
east to northeast. This is in contrast to the lowest interval shown in the spatial
distribution of yearly rainfall; in fact, due to cyclones extending east to mid-
latitudes by western disturbance, the western and southwestern parts of the
country receive the majority of the rainfall during the winter season. Altitude,
mountain barriers, and land distribution all influence (Martyn, 1992). Precipi-
tation, which is the second most important climatic component (Walterscheid,
2011).
Pakistan is bordered by the high Himalayan-Karakoram-Hindukush (HKH) moun-
tains, which have a considerable impact on the climate of the region by altering
not only Pakistan’s rainfall and temperature but also worldwide air circula-
tion. In general, the wind-striking side of the mountainous region receives more
precipitation in the subcontinent, whereas the opposite side, which lacks this
benefit, has a parched appearance (Nasrullah, 1962). As a result, the great
variety of precipitation observed in the annual and seasonal spatial distribution
in Pakistan can undoubtedly be linked to the region’s varied altitudes, unusual
terrain, and mountain barriers. As a result, the large disparity in precipita-
tion and temperature between southern and northern Pakistan turns out to be
a crucial component in determining the many types of climates on Pakistan’s
mainland (Sarfaraz et al., 2014).
The diurnal climatological anomalies are the large-scale composite features of
the 100 events with the highest standardized precipitation index from June
to September. The combined average shows a southerly wind speed anomaly
ranging from 450 to 200 hPa. The presence of southerly winds across northern
Pakistan, which are part of a weak but spatially coherent wavy pattern that
spans from north-eastern Europe to Japan, is the most remarkable evidence.
This higher-level wind regime is very similar to what has been observed in
earlier flood compositions and case studies in this area (Houze et al., 2011).
In the overall composition of the column water anomaly, Pakistan and Northwest
India have a significant positive anomaly. This might be due to the northwestern
extension of the summer monsoon, providing a lot of moisture to an otherwise
dry area. Combining this with the region’s complicated orography and a typical
south winds, it’s possible to deduce that the precipitation is partly attributable
to the orography (Houze et al., 2011). Temperatures in the lower troposphere
(900-800 hPa) have been found to be an effective predictor of wet thermody-
namic activity in synoptic systems’ tropics. The cold anomaly is widespread
over Pakistan and neighbouring nations, with a magnitude of 22,000 in the cen-
tre. This deep cold anomaly is most likely the result of severe rainfall due to its
prominent position alongside the general column water anomaly. There is a con-
trasting hot anomaly on the Tibetan plateau’s east side, where the atmosphere
is dry, and there is some decline (Hunt et al., 2018).
The analysis demonstrates the composite anomaly of the meridian wind speed
at 450-200 hPa, in which a very evident wave pattern occurs after taking into
account the synoptic situation of heavy rains in summer. Winds from the south
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are three times stronger than in the summer over northern India, with relatively
weak north winds over central China and the Gulf of Arabia. The wavelength
of this wave train is about 5000 kilometres, or a planetary wavenumber of 6,
which is out of phase with the Geo-potential anomaly concept. Because the
geo-potential ranges from 450 to 200 hPa, the anomaly across Pakistan and
Afghanistan is substantial. This depression is similar to that caused by a western
transitory disorder in terms of intensity and duration (Hunt et al., 2018).
During the northern winter, western faults are known to move into this re-
gion, delivering considerable rainfall. Because the maximum humidity anomaly
is towards the north-east of India, not far from the area of interest, there is
a clear contrast between summer and winter anomalies. However, there is a
positive humidity anomaly in northwestern India and Pakistan, where humid-
ity stretches. Deep southerly tropospheric winds are required for this, which
could be one cause for the excessive rainfall in the Himalayan foothills (Dimri,
2006). Finally, the temperature anomaly in the lower troposphere resembles its
summer counterpart. At the foot of the Hindukush, an about 24k more robust
cold anomaly has been discovered. On the east side of the Tibetan plateau,
there is still a minor warm anomaly throughout much of central China. The
closeness of summer and winter temperatures shows that these anomalies are
caused directly by precipitation (Hunt et al., 2018).
Extreme circumstances at all degrees of latitude, particularly at wind or precip-
itation, are frequently attributed to synoptic or mesoscale occurrences. South
Asia is divided into two seasons: in the winter, it is subjected to western distur-
bances (Dimri, 2006), and in the summer, it is subjected to low monsoon systems
(Hurley and Boos, 2015). Despite the fact that their seasonal cycles are signif-
icantly controlled, both can occur out of season, and in the latter event, they
are commonly referred to as tropical minima. In reality, Pakistan’s devastating
floods in 2010 were linked to a western disturbance and a monsoon depression
(Houze et al., 2011). Both Pakistan and northwestern India contain large desert
areas and upstream mountains that are prone to sudden heavy rain or high pre-
cipitation occurrences. The importance of mid and upper-troposphere dynamics
as antecedents of summer floods is true in every season and pertains to winter
floods. It has been established that in the case of extreme precipitation in the
winter, the disturbance in the west is also linked to heavy rains (Hunt et al.,
2018).
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Table 3.1.1: Data Summary

Places Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Barkhan 16 33.73 44.55 47.15 53.35 99
Jiwani 2 14.75 32 44.28 50.45 165
Khuzdar 15 30.1 38.1 43.33 45.35 223
Lasbella 8 28.73 38.6 48.23 48.4 269.6
Panjgur 6.1 15.25 23.6 27.25 36.25 64.5
Pasni 0 15.75 29.75 35.35 46 131.8
Zhob 10.1 28.25 35.3 37.7 41.62 120
Bunji 7.8 16.62 30.95 29.3 36.65 66.4
Cherat 35 41.75 49.5 63.92 73.5 257
Chillas 11.2 24.43 29.15 35.37 41.23 109.3
Chitral 23.4 35.7 41.5 51.43 57.52 161.2
DI Khan 21.1 45.15 52.85 59.09 66.7 150
Drosh 22 39.95 47.35 51.95 49.42 131
Gilgit 11 13.93 21.35 26.32 35.25 64.5
Lahore 29.4 58.75 78.8 87.61 113.47 189.7
Khanpur 4 17.77 35.6 48.39 63.25 173
Faisalabad 25 43.75 58.95 60.77 71 136
Sialkot 43 68.4 96.8 109.5 128.3 273.7
Jhelum 44 66.2 86.1 96.61 117.45 242.2
Badin 0 41.62 57.8 70.34 97.05 176.5
Chhor 2.3 41.17 60.5 71.28 90.85 214.6
Hyderabad 4 20.6 46.05 48.35 70.47 153
Jacobabad 3 15.8 41.6 58.83 57.08 323
Karachi 0 24.07 45.75 49.69 68.17 142.6
M-Daro 5 14.82 25.75 34.44 49.88 119.6
Nawabshah 0 19.38 29.6 42.95 65.65 143
Padidan 6 18.75 31.2 46.31 57.52 238
Rohri 5 18 37.5 46.76 63.3 173.7

3 Data & Methodology

3.1 Data

The data has been obtained from the Pakistan Meteorological Department,
which consists of the annual maximum rainfall data from 1985 to 2016. The data
has been recorded at 28 stations of different locations in Pakistan in millimetres
(mm), however, the 28 stations do not cover entire Pakistan. The data has
been divided into 4 different regions and contain 32 annual rainfall observations
except for Nawabshah, where two values are missing for the year 2015 and 2016.
The following table 3.1.1 will represent the important information of the data
of the respective weather stations.
Table 3.1.1.
All these locations are highlighted in the following figure 3.1.1 in a map of
Pakistan where the stations located are pointed by a black circle with a small
dot. Most of the stations are situated in the south-west, which comes under
the Province of Sindh. Balochistan is the largest province of Pakistan, which is
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Figure 3.1.1: Map of Pakistan where all the 28 stations are highlighted by a
black circle with a small dot

situated on southwest of the country, where most of the stations are scattered
and distant from each other. Some of the stations are located in Punjab, which
covers the central west of the country, while the northern most stations are
located in the province of Khyber Pakhtunkhwa, including with the northern
parts of Gilgit-Baltistan, which is an administrative territory.
The time series of each location is represented by the trend in the figures from
3.1.2 to 3.1.5 divided into four main regions where each station can be seen
individually to understand the data pattern.

3.2 Methodology

To analyse our data, we will use the extreme value analysis for our results
since our data contains the annual maximum value of precipitation therefore,
we will adopt the block maxima approach to check the positive/negative trends
maximum values. To check the above results, the model we are going to adopt
is the generalized extreme value distribution model, which is further elaborated
below. Furthermore, we will perform statistical tests to select the best fit model
for our data. To check the best fit model, we will consider the AIC, BIC, to
see the trend, we will calculate the tau (τ) and two-sided p-values through
Mann-Kendall statistical test. The results are compared with the results of the
Mann-Kendall test for monotonic trends.

3.3 Generalized Extreme Value

Suppose that X1, X2, ..., Xn is a sequence of independent and identically dis-
tributed (IID) random variables with common distributed function F. To char-
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Figure 3.1.2: Time series data representation of stations in Baluchistan

Figure 3.1.3: Time series data representation of stations in Sindh
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Figure 3.1.4: Time series data representation of stations in Punjab

Figure 3.1.5: Time series data representation of stations in Khyber
Pakhtunkhwa and North
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acterize one way of extremes considering the distribution of maximum order
statistic,

Mn = max{X1, X2, ..., Xn}

The extremal types of theorem which is a result for the maximum Mn is anal-
ogous to the central limit theorem for the mean µ says that, if there exist
sequences of constant an > 0 and bn such that, as n →∞,

Pr{(Mn − bn)/an ≤ x} → G(x)

For some non-degenerate distribution G, then G is of the same type as one of
the following distributions:

I : G(x) = exp− exp(−x) −∞ < x <∞;

II : G(x) =

{
0 x ≤ 0

exp(−x)−ξ x > 0, ξ > 0;

III : G(x) =

{
exp{−(−x)ξ x < 0, ξ > 0

1 x ≥ 0

The three types of distribution, i.e., I, II and III are commonly known as
Gumbel, Fréchet, and Weibull types, respectively and are also collectively known
as Extreme Value Distributions (EVD). For Gumbel and Fréchet distributions,
the limiting distribution G is unbound, which means the upper-endpoint tends
to ∞. From these distributions, the Fréchet distribution gives heavier tails.
However, for the Weibull distribution, the limiting distribution is bounded. In
EVDs, there also exists a parameterisation that encompasses all three types of
EVDs.
The Generalized extreme value distribution (GEV) often denoted G(µ, σ, ξ),
with CDF:

G(x;µ, σ, ξ) =

{
exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}}
, ξ 6= 0

where a+ = max(0, a). the situation where ξ = 0 is not defined in above
equation, but is taken as the limit as ξ → 0, given by

G(x;µ, σ) = exp

{
− exp

(
− [(x− µ)/σ]

)}
For the parameter estimation to fit the GEV on the set of block maxima Mn,i,
numerical maximum likelihood is the most common approach. By assuming
independence, we can form the likelihood in the usual way:

L(µ, σ, ξ) =

m∏
i=1

g(mn,i;µ, σ, ξ),

where g is the GEV probability density function and can be found after the
differentiation of the distribution function of G(x;µ, σ, ξ), used before for the
GEV. The probability density function g is therefore,
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g(x;µ, σ, ξ) =

{
1

σ

[
1 + ξ

(
z − µ
σ

)](−1/ξ)−1

+

exp
{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ

+

}}
, ξ 6= 0

Further, we will replace the parameters: µ, σ and ξ with their corresponding
estimators µ̂, σ̂ and ξ̂. Since there are no closed-form solutions for the GEV
for their estimated parameters, the (log) likelihood cannot be solved analytically.
Therefore, we can get this around by adopting a numerical method to obtain
an approximate solution to use this problem. We will use R where it uses
a Newton-Raphson type algorithm. As with all statistical models, there are
various goodness-of-fit properties that would be considered to check the overall
adequacy of the fitted GEV. Which includes probability plots, quantile-quantile
(Q-Q plots) and density plots. While return level plots will be used to estimate
the return level of estimated values.
Generalized extreme value distribution is normally fitted to time series on ex-
treme values often used for the environmental data that referred to annual
maxima of monthly or daily precipitation (Panagoulia et al., 2014). It was first
found by Von Mises (1936) and later also independently noticed by meteorologist
Jenkinson (1955).

3.4 Non-stationary Extremes

In the context of environmental processes, it is common to observe non-stationarity
for the reasons that it possesses different seasons with different climate factors
along with the long term trends evident in climate change. Allowing the GEV
location parameter µ to change with time is one way to capture the trends ob-
served. Simple linear trend in time seems plausible for the annual maximum
data Xt we have used so that we could use the model as

Xt ∼ GEV (µ(t), σ, ξ),

where,

µ(t) = β◦ + β1t

where t is an indicator of year.
We can simply replace µ in the above expression with previous equation, giving
the log-likelihood,

l(β◦, β1, σ, ξ;x, t) = −m log σ − (1 + 1/ξ)

m∑
i=1

log

[
1 + ξ

(
xi − (β0 + β1ti)

σ

)]

−
m∑
i=1

[
1 + ξ

(
xi − (β0 + β1ti)

σ

)]−1/ξ

+

when, [
1 + ξ

{
xi − (β0 + β1ti)

σ

}]
> 0, for i = 1, ...,m
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With the usual replacement when ξ = 0. We have used the R package (extRemes)
for maximizing the log-likelihood which is discussed also in the appendices sec-
tion.
For more details on the subject discussed in the above two sections, refer to the
textbooks on Extreme Value Analysis: An Introduction to Statistical Modelling
of Extreme Values by Coles (2001) which provides an accessible introduction to
the topic for most audiences. For a more detailed explanation on the topic, see
Statistics of Extremes: Theory and Applications by Beirlant et al. (2004).

3.5 Mann-Kendall Test

A Mann-Kendall trend test is adopted to determine the trend in the data set.
It is a non-parametric test, where no underlying assumptions are made about
the normality of the data. The null hypotheses (ho) if there is no trend in the
data, and the alternative hypothesis can be defined as if there is a trend in the
data. The trend can be either positive or negative, which totally depends on
the p-value, and if the p-value of the test is below a certain level of significance
which proves that there is statistically significant evidence, then it suggests that
there is a trend in the data. The test was first suggested by Mann (1945), which
has been widely used in environmental time series data.
The values in data are analysed as an orderly time series, where each value
is compared to all the subsequent values. If we have multiple values of x,
then x1, x2, . . . , xn in the data where j in xj represent the time, Mann-Kendall
statistic can be calculated as:

S =

n−1∑
k=1

n∑
j=k+1

sign(xj − xk)

The positive value of S indicates the positive trend where the negative value of
S indicates the negative trend.
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Table 4.0.1: Results Summary of Model fit 1(Stationary)

Places Location
SE (µ̂)

scale
SE (σ̂)

Shape
SE (ξ̂)

-Log
Likelihood

AIC BIC

Barkhan 2.953 (38.63) 2.15 (14.763) 0.137 (-0.003) 136.665 279.331 283.728
Jiwani 4.362 (22.398) 3.9 (20.511) 0.205 (0.395) 154.265 314.53 318.927
Khuzdar 2.245 (32.144) 1.745 (11.627) 0.103 (0.215) 132.677 271.355 275.752
Lasbella 3.447 (30.884) 2.768 (17.612) 0.122 (0.252) 146.85 299.701 304.098
Panjgur 2.147 (20.156) 1.682 (10.226) 0.184 (0.11) 127.079 260.159 264.556
Pasni 3.384 (22.851) 2.629 (16.775) 0.148 (0.15) 143.509 293.019 297.416
Zhob 2.317 (29.859) 1.661 (12.005) 0.095 (0.073) 130.983 267.967 272.364
Bunji 2.322 (23.2) 1.707 (11.399) 0.151 (-0.05) 127.566 261.132 265.53
Cherat 2.458 (45.246) 2.553 (11.539) 0.229 (0.642) 140.162 286.324 290.721
Chillas 2.136 (26.069) 1.716 (10.805) 0.135 (0.226) 130.89 267.781 272.178
Chitral 2.406 (37.998) 2.127 (12.084) 0.153 (0.373) 137.185 280.371 284.768
DI Khan 3.604 (47.087) 2.641 (18.326) 0.119 (0.072) 144.821 295.643 300.04
Drosh 2.518 (43.047) 1.834 (13.016) 0.101 (0.094) 134.12 274.24 278.637
Gilgit 2.024 (17.197) 1.912 (7.753) 0.355 (0.536) 125.243 256.487 260.884
Lahore 5.676 (69.344) 4.294 (27.904) 0.154 (0.073) 158.472 322.944 327.341
Khanpur 4.792 (26.672) 4.207 (21.92) 0.223 (0.357) 155.717 317.435 321.832
Faisalabad 3.562 (49.027) 2.686 (17.631) 0.145 (0.083) 143.884 293.768 298.166
Sialkot 7.264 (82.041) 5.846 (34.757) 0.181 (0.195) 167.681 341.363 345.76
Jhelum 5.34 (74.732) 4.358 (25.946) 0.17 (0.232) 158.986 323.972 328.369
Badin 7.71 (50.645) 5.797 (36.065) 0.175 (0.013) 155.299 316.598 320.801
Chhor 6.852 (52.346) 5.049 (33.236) 0.139 (0.039) 153.195 312.39 316.593
Hyderabad 5.693 (31.439) 4.518 (25.169) 0.218 (0.094) 145.842 297.685 301.889
Jacobabad 4.77 (22.039) 5.189 (21.62) 0.247 (0.718) 151.421 308.842 313.045
Karachi 5.925 (32.224) 4.597 (27.037) 0.195 (0.08) 147.786 301.572 305.776
M-Daro 2.769 (19.334) 2.527 (12.919) 0.197 (0.416) 131.138 268.276 272.48
Nawabshah 4.813 (24.743) 3.91 (22.338) 0.187 (0.216) 144.292 294.584 298.788
Padidan 3.958 (20.988) 3.958 (17.403) 0.256 (0.598) 142.908 291.816 296.02
Rohri 4.846 (24.562) 4.283 (21.477) 0.23 (0.376) 145.665 297.331 301.535

4 Results

In this section, we will discuss in detail the results of our analysis for the data
of maximum value precipitation recorded in 28 different stations in Pakistan.
The model results for our data is given in the following tables 4.0.1 and 4.0.2.
Furthermore, from the two model results, the graphical presentation of the best
fit model with better results of one station will be included in this section while
the rest will be discussed verbally and graphical presentation of the remaining
27 stations for the same model are given in the section of Appendices at the end
of the report.
In order to see the trend of the data, we have performed a statistical analysis
of Mann-Kendall to check the positive or negative trend as discussed in the
methodology in the following table4.0.3. According to the results, Khanpur and
Karachi are the only two shares the high positive value, which shows the upward
trend with strong statistical significance.
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Table 4.0.2: Results Summary Model fit 2 (Non-stationary)

Places Location
β0, β1

Scale
(σ̂)

Shape
(ξ̂)

-Log
Likelihood

AIC BIC

Barkhan 37.818, 0.0004 14.81 -0.005 136.664 281.3291 287.192
Jiwani 23.224, -0.0004 20.503 0.395 154.265 316.53 322.393
Khuzdar 31.147, 0.0005 11.637 0.215 132.677 273.354 279.217
Lasbella 29.496, 0.0007 17.636 0.252 146.849 301.699 307.562
Panjgur -9.176, 0.014 10.237 0.111 126.947 261.895 267.758
Pasni 22.484, 0.0001 16.782 0.149 143.509 295.018 300.881
Zhob 22.404, 0.003 11.97 0.073 130.968 269.937 275.8
Bunji 23.116, 0.00005 11.416 -0.051 127.566 263.132 268.995
Cherat 46.067, -0.0004 11.522 0.643 140.158 288.316 294.179
Chillas 25.548, 0.0002 10.801 0.226 130.89 269.781 275.644
Chitral 41.002, -0.001 12.075 0.377 137.171 282.343 288.206
DI Khan 46.281, 0.0004 18.326 0.072 144.822 297.644 303.507
Drosh 42.42, 0.0003 13.017 0.094 134.121 276.242 282.105
Gilgit 18.726, -0.0007 7.787 0.530 125.256 258.512 264.375
Lahore 68.855, 0.0002 27.874 0.074 158.472 324.944 330.807
Khanpur 27.96, -0.0006 21.949 0.357 155.719 319.439 325.302
Faisalabad 48.929, 0.00006 17.647 0.083 143.884 295.768 301.631
Sialkot 82.406, -0.0002 34.723 0.196 167.681 343.362 349.225
Jhelum 74.807, -0.00007 25.902 0.233 158.985 325.971 331.834
Badin 49.805, 0.0003 35.980 0.015 155.298 318.597 324.202
Chhor 51.352, 0.0005 33.247 0.039 153.195 314.39 319.995
Hyderabad 32.424, -0.0004 25.17 0.094 145.843 299.686 305.291
Jacobabad 24.219, -0.001 21.602 0.719 151.418 310.837 316.442
Karachi 32.239, 0.00001 27.042 0.08 147.786 303.572 309.177
M-Daro 20.176, -0.0004 12.912 0.416 131.137 270.275 275.88
Nawabshah 24.978, -0.0001 22.349 0.215 144.292 296.585 302.19
Padidan 22.215, -0.0006 17.375 0.599 142.906 293.813 299.418
Rohri 25.501, -0.0004 21.473 0.376 145.665 299.331 304.935
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Table 4.0.3: Data Trend

Places Tau(τ) 2-sided p value

Barkhan 0.145 0.249
Jiwani -0.066 0.603
Khuzdar -0.006 0.974
Lasbella 0.101 0.426
Panjgur 0.182 0.148
Pasni 0.188 0.135
Zhob -0.01 0.948
Bunji 0.137 0.277
Cherat -0.016 0.909
Chillas -0.07 0.581
Chitral -0.036 0.782
DI Khan -0.02 0.883
Drosh 0.044 0.733
Gilgit 0.184 0.144
Lahore -0.042 0.745
Khanpur 0.274 0.028
Faisalabad 0.208 0.098
Sialkot -0.068 0.592
Jhelum -0.254 0.042
Badin -0.075 0.568
Chhor -0.094 0.475
Hyderabad 0.08 0.544
Jacobabad -0.011 0.943
Karachi 0.283 0.029
M-Daro 0.013 0.928
Nawabshah 0.048 0.721
padidan 0.013 0.928
Rohri -0.082 0.532
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4.1 Model Selection

In the GEV distribution model, we are focusing on the annual maxima, which in
our case is the annual extreme precipitation from the period of 1985 to 2016. The
two GEV models we have used, where model fit-1 is stationary and model fit-2
is non-stationary can be compared with the parameters criteria. By comparing
the two models, the best model fit results according to AIC, BIC, standard
error and log-likelihood values; model fit 1 (stationary) indicates the better
significance of the results, and the model fit-2 (non-stationary) indicates higher
uncertainty. Therefore, for the graphical representation, we will only consider
Model fit 1, where we have neglected the location (µ) parameter changes with
time and is considered as ∼ 1.

4.2 Stationary Model

The model plot from the stationary GEV distribution fir for the station of
Barkhan, also represented in figure 4.2.1, indicates the better goodness of fit
on the QQ plot. However, the estimated (ξ̂) value is negative, which suggest
the heavier tail distribution. Apart from Barkhan, Bunji is another station,
where the estimated shape (ξ̂) value is negative affirms similar distributional
significance.
Considering the data distribution of Barkhan, where the maximum value is
99, the estimated standard error values of Barkhan for all three parameters
do not give the best significance. However, these values do not present higher
uncertainty than some stations and lie almost on average. Thus, it could be
concluded that for lower values, the model provides a good approximation. The
value of AIC for Barkhan station is 279.331, which is the 8th lowest value
and lies amongst the station, where the model fit indicates better significancy
than most of the stations. The precipitation forecast is a bit of a challenge,
especially for the extremes, but the consequences of the extremes can be higher.
We cannot neglect the uncertainty at higher levels and for this station, as the
return level is between 20 to 50 years for the highest value, which could bring
alarming consequences, and the uncertainty could make it more severe than
expected. The modelled and empirical quantiles on the QQ plot at higher-end
distribution are drifting away from the goodness of fit at higher values that show
the uncertainty of the data, which is also one of the challenges to assess certain
data. The empirical density graph, too, is almost similar to model density and
is skewed to the right, where the values get higher, which also suggests the
uncertainty of the model only at higher values. Similar, description goes for the
return levels, where the lower values are more likely to return more frequently,
and the value, which is almost 100 mm, lies in between 20 to 50 years.
As far as the values presented in table 3.1.1, are concerned, Gilgit station, which
is located in the north of Pakistan, has the least maximum value of precipitation
of 64.5, which is similar to the Panjgur shows the best model fit amongst all
the stations. The QQ plot presents the normal distribution of the data along
with the density plot, where values estimated are close to the data distribution.
The smaller values present better results, and as the value gets higher and the
residual tends to get uncertain from the goodness of fit line. The density plot is
rightly skewed and shows similar observations of QQ smoothness. The return
level offers the accuracy where the extreme event is likely to occur between 20
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Figure 4.2.1: Model Plot for the station at Barkhan,Balochistan

to 50 years. Moreover, the trend is not much apparent, and it follows a similar
pattern presented in the data, which is almost the uniform distribution.
If we compare the model results for Panjgur, which has the same least maximum,
the model fit is not as good as Gilgit. It could be due to the reason that Panjgur
has the lower minimum; however, if we neglect the AIC value, the standard error
for scale and shape parameters has lower values for Panjgur, which is 1.682 and
0.184, respectively. For Gilgit, this figure is 1.912 and 0.355. While the negative
log-likelihood, AIC and BIC suggest the better model fit for Gilgit, the lower
bound tail of quantiles plot of Gilgit is better than Panjgur, and it shows a slight
non-uniform pattern. If we consider the residuals, they are almost close to the
smoothing line for Panjgur and not far, even for the higher values, indicating
better goodness of fit. The return level shows a slightly different pattern, and
the trend is somewhat increasing for 200 and 500 years.
The highest maximum value of precipitation, which is 323 mm, has been ob-
served in Jacobabad, located in the southwest of Pakistan in the province of
Sindh. The data also shows the high variation, and if we check the model value
for the station, the AIC values are amongst the highest, including the standard
error for the estimated parameter. The model density shows a higher peak than
empirical density and is skewed to the right, indicating better estimation for
smaller values. The return level for the highest value lies between 20 to 50
years, and it exceeds 500 mm after 100 years.
After Jacobabad: Khuzdar, Lasbella, Cherat, Jhelum, Sialkot and Padidan also
show a high variation of data distribution where the maximum values are far
greater than the mean value. As far as the model values among these regions,
Khuzdar shows the better model fit results, and the return value of a maximum
of 223 mm indicates that it lies between 20 to 50 years, yet it is far from the
smoothing line. This could be due to the high variation is possess, and if we
consider the 223 mm according to the model fit, the return level exceeds 1000
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years.
If we consider the values for our model fit from 4.0.1, the worst performers
according to the higher AIC values, the stations that represent worst model fit
results are Sialkot, Jhelum, Lahore, Khanpur, Badin, Jiwani, Chhor, Jacobabad
and Karachi, which are sorted respectively from highest to lower AIC values.
Sialkot shows the highest value of AIC, lowest log-likelihood, the second-highest
standard error value for a location and the highest for scale parameter; however,
the standard error for shape parameter is not relatively high as compared to the
other stations, which show a better model fit results. If we see the model graph,
the values of empirical and modelled quantiles are dissociated with the lower
end tail, and the dissociation goes up further on the higher end. The density for
Sialkot is rightly skewed, and the return level for the maximum lies between 20
to 50 years. Nevertheless, the model return level shows a slight upward trend,
and from 1 over 100 years, it could reach up to the maximum of an approximate
300 mm, and in 500 years, it could be even higher up to 500 mm.
The two biggest cities of Pakistan, i.e. Karachi and Lahore, are essential cities
in terms of high population, urban structure and economy located in Sindh and
Punjab provinces, respectively. If we compare these two cities, the standard
error for the parameters of Lahore is better than Karachi. Still, the negative
log-likelihood and AIC suggest a better model fit for Karachi. The quantile plot
is better fitted for Karachi than Lahore, which also shows a similar trend with
slightly higher values for Lahore; the density graph is rightly skewed for both
the stations and the return level of the maximum precipitation, i.e. 142.6 mm
and 189.7 mm is between 20 to 50 years for Karachi and Lahore, respectively.
However, the model indicates that return level results can exceed 200 mm for
Karachi and 300 mm for Lahore in 500 years.
A summary in table 4.0.1 of the estimates of the shape (ξ̂) parameters of a
GEV distribution for the series of the different stations. As you can see, most of
the estimates are concentrated around zero with two stations with two negative
values. The values are particularly interesting in relation to the station of
Cherat having the highest value estimation and Bunji having the lowest value,
while the standard error is 0.229 and 0.151, respectively. The tail distribution
is limited to heavy tail and upper-bound tail distribution for Cherat and Bunji,
respectively. Both of the stations are located in the north of Pakistan; hence it
shows the high uncertainty in the distribution of the data.
Another important information if we consider the lowest standard error for
shape parameter is Zhob which gives us the value as low as 0.095. The model
fit plot shows us uniformity for all values where residuals are not much far from
the fitted line except for the highest value of 120, which shows a significant
variation and lie at a far distance. The return level for this value is from 20 to
50 years, but if we look at the model fit and derive the modelled value at the
same return level, the value is less than 80. Similar behaviour has also been
observed at Khuzdar station.
The use of extreme value theory in studying the trend on extreme precipitation
represents a possible solution to the problems related to the GEV method. By
focusing only on the study of the maxima, it is possible to explain only the
functional form of the distribution’s tails and, therefore, to grasp here values
that would escape from traditional evaluations. Finally, it is always useful to
remember that the models shown here do not produce values to be considered
exact and faithful to what could happen.
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5 Conclusion

It is very important to study precipitation extreme and to keep in mind its great
consequences, which could result in a loss of human lives, urban infrastructure
and ecological changes through urban flooding and water storms. Generalized
extreme value is important to see the extreme considering high block maxima
and forecasting similar events in return levels. AIC plays an important role in
selecting the best model fit. Thus, it could be concluded that model fit 1, which
do not estimate the prior location parameter and its change according to the
time, shows better model fit results. The GEV and its distribution can also be
implemented if we consider the block minima to study the dry events, which
could also be implemented to understand and forecast harsh conditions.
The stations with high variations do not give us better model fit results. The
quantiles plot shows that for high values, the model fit is uncertain for almost all
the stations, and the residuals are drifting at higher upper-end tail distribution.
In addition, virtually all the quantile plots show us the normal distribution with
better model fits. The return level for the maximum extreme lies between 20 to
50 years except for a few, which include Zhob, Khuzdar and some other stations.
The use of extreme value theory in studying the trend on extreme precipitation
represents a possible solution to the problems related to the GEV method. By
focusing only on the study of the maxima, it is possible to explain only the
functional form of the distribution’s tails and, therefore, to grasp here values
that would escape from traditional evaluations. Finally, it is always helpful to
remember that the models shown here do not produce values to be considered
exact and faithful to what could happen in reality.
The annual maximum is only limited to a generalized extreme model with block
maxima for 32 years periods. More data could also give us other alternative
models, such as Generalized Pareto and maximum over the threshold. GEV
on extreme precipitation can provide us with better insights to consider hazard
and risk management control and deriving climate change policies.
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Appendices
In this section, we will explain the R package extRemes used for modelling our
data on extreme precipitation along with the work we have performed. Further,
we will explain how to perform statistical analysis for the model we have used,
and at the end of the section, we will include model plots for the remaining 27
stations, which have been discussed in the results section.

A extRemes

extRemes is a package we have used in R. It is a set of functions for performing
extreme value analysis of a process to interest, either maximizing blocks over
long blocks or overruns on a high threshold. The high threshold is another type
of extreme value model generally known as Generalized Pareto (GP), used for
large data sets containing monthly or daily information.

A.1 fevd

We have used the fevd function from the above package to fit our extreme
precipitation distribution. It is also used to fit different univariate extreme value
distribution functions such as Generalized extreme value (GEV), Generalized
Pareto (GP) etc.

A.1.1 Usage

fevd(x, data, threshold = NULL, threshold.fun = ~1, location.fun = ~1,

scale.fun = ~1, shape.fun = ~1, use.phi = FALSE,

type = c("GEV", "GP", "PP", "Gumbel", "Exponential"),

method = c("MLE", "GMLE", "Bayesian", "Lmoments"), initial = NULL,

span, units = NULL, time.units = "days",

period.basis = "year", na.action = na.fail,

optim.args = NULL, priorFun = NULL, priorParams = NULL,

proposalFun = NULL, proposalParams = NULL, iter = 9999, weights = 1,

blocks = NULL, verbose = FALSE)

A.2 Output

Plot Character describing what texture is desired. Default is “primary”, which
creates a 2 by 2 panel of plots containing: The QQ plot of the data quantiles
versus fitted model quantiles (type “qq”), here the excellent fit will create a
linear intercept of points on the line. Another QQ plot (“qq2”) similar to above
is the plot of the quantiles of the model-simulated data versus the data, which
also creates confidence bands and a regression line fitting the quantiles. Also,
here, the excellent fit will create a linear intercept of points on the line.
A density plot of the data with the model fitted density (Density type) and,
A return value frame (type “rl”) is done on the log-scale for the abscissa where
EVD can be understood by the shape, such as concave is for heavy tail, straight
for a light tail and convex for the bounded upper tail. 95 percent CIs are also
presented in grey dashed lines. In the case of non-stationary models, the data
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are plotted as a line, and the “effective” return levels of 20-period and 100
annual periods. In the stationary (fixed) model, the return level presented show
the return levels founded for the return periods specified by return.period, as
well as the associated CIs (computed with standard method arguments) based
on the estimation method used in the adjustment. For non-stationary models
that the data is plotted as a line with associated actual performance levels for
performance periods of 2, 20 and 100 years.
Other possible values for the type are “hist”, which is similar to ”density” but
shows the histogram of the data.
The “trace” track offers a panel of graphs showing negative logarithmic proba-
bility and negative logarithmic probability of gradient for each of the estimated
parameters; it also allows a parameter to vary by p range, while the others re-
main fixed at the estimated values. For the MLE method, probability traces are
displayed for each parameter of the model, all but one parameter is fixed on the
MLE values, and the negative log-likelihood is plotted for variable values of the
parameter of interest. The negative logarithmic probabilities of the gradient are
also given for each parameter. These are useful for diagnosing the adjustment
problems that occur in practice. To facilitate interpretation, the gradients are
displayed just below the probabilities of each parameter.

A.3 Other outputs

Likelihoods are proportional to probability densities or mass functions. For the
probability probability densities or mass functions f {x, (µ, σ, ξ)}, we can form
the likelihood in a way that:

L(µ, σ, ξ|x1, .., xm) =

m∏
i=1

f(xi|µ, σ, ξ),

where, x is the variable and (µ, σ, ξ) are the parameters, Given x, MLEs try
to maximize the likelihood L(µ, σ, ξ) over all possible values of (µ, σ, ξ). We
can use log-likelihood because where it converts products into sums and the
natural logarithmic function is a monotone transformation. The above equation
becomes,

logL(µ, σ, ξ|x1, .., xm) = log

m∑
i=1

f(xi|µ, σ, ξ),

Where values closer to 0 indicate a better model fit pattern.

A.3.1 Estimated parameters

Estimated parameters are values of parameters for the distribution depending
on the fit to the data.

A.3.2 Standard error (SE) estimates

Estimate the standard deviations for all the parameters.
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A.3.3 Co-variance matrix of the estimated parameters

The variance of all the parameters on the diagonal; Co-variance between vari-
ables in other parts of the matrix. If the covariance values are significant, it
indicates there is a dependency between the model parameters.

A.3.4 AIC (Akaike Information Criterion)

The parameter measures the relative quality of a model in statistics which con-
sider the trade-off between model complexity and quality of goodness of fit.

AIC = 2p− 2 log(L)

Where p is the number of parameters, and L is the maximized value of the
likelihood function. Comparing two models, a model with a lower AIC value is
considered a “better” model.

A.3.5 BIC (Bayesian Information Criterion)

Similar to AIC, it is known to be,

BIC = p log n− 2 log(L)

Where n is the number of data points, p is the number of parameters, and L is
the maximized likelihood function value.

B Stationary model

In the stationary, we have selected all the parameters i.e., (µ, σ, ξ =∼ 1). There-
fore, the fevd function for our model fit is,

fevd(x, data, type="GEV", method="MLE", shape.fun=~1,

location.fun=~1, scale.fun=~1, units="mm", main="station")

S3 method for class fevd

plot(x, type = c("primary", "probprob", "qq", "qq2",

"Zplot", "hist", "density", "rl", "trace"),

rperiods = c(2, 5, 10, 20, 50, 80, 100, 120, 200, 250, 300, 500, 800),

a = 0, hist.args = NULL, density.args = NULL, d = NULL, ...)

Note that the plot fit for the function argument used for fevd is shown in the
title by default. If you assign the title as ”main” in the argument, it can give
the title individually for the graph presented in the plot.

B.1 Summary example

We have selected one station to present the summary results of the model here
as an example where it can be seen in the figure B.1.1; also, all the results for
the model fit are presented in table 4.0.1.
In the figure B.1.2, a panel of graphs showing negative logarithmic probabil-
ity and negative logarithmic probability of gradient for each of the estimated
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Figure B.1.1: Model summary for the station at Barkhan, Balochistan
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Figure B.1.2: Traces for the station at Barkhan, Balochistan

parameters which also have allowed a parameter to vary by p range, while the
others remain fixed at the estimated values.
Here we have used the MLE method, where probability traces are displayed
for each parameter of the model, where all but one parameter is fixed on the
MLE values, and the negative log-likelihood (i.e. 136.665) is plotted for variable
values of the parameter of interest. The the negative logarithmic probabilities
of the gradient are also given for each parameter, including with the gradients,
displayed just below the probabilities of each parameter where the adjustments
required are suggested.
The probability plot is given in figure B.1.3 to assess the goodness of fit of
probability distributions estimated. Here, the plot represents the significant
goodness of fit, including the exponential trend of empirical probabilities versus
the model probabilities.

B.2 Confidence Intervals and Return Level

In the table B.2.1, the values of the confidence interval and return level of 100
years are presented. CI is used to identify the uncertainty between the return
level, which comes from the statistical variations. Here we have used a 95 %
confidence interval which contains the lower and upper bound for the estimated
range for the return level. From the CI and its return level results extracted
from the stationary model, Jacobabad and Padidan, located in the province
of Sindh, indicates a very high uncertainty. Jacobabad also has the highest
extreme value for the 100 years return level, i.e. ( 811.626 mm ), while Bunji
has the lowest minimum value of 69.999 mm for extreme in a 100-year return
level.
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Table B.2.1: Confidence interval and return level

Places 95 % CI
lower, upper

100-year rl

Barkhan 66.771, 145.112 105.942
Jiwani -31.838, 612.128 290.145
Khuzdar 62.498, 184.790 123.664
Lasbella 67.236, 300.940 184.088
Panjgur 30.575, 132.383 81.480
Pasni 50.383, 217.704 134.044
Zhob 60.649, 95.531 130.411
Bunji 43.218, 96.779 69.999
Cherat -134.336, 879.400 372.532
Chillas 44.507, 182.784 113.646
Chitral 40.312, 331.455 185.884
DI Khan 87.108, 207.306 147.208
Drosh 75.345, 160.684 118.015
Gilgit -142.166, 488.365 173.100
Lahore 114.690, 329.334 222.012
Khanpur -32.238, 598.675 283.219
Faisalabad 80.547, 215.420 147.984
Sialkot 106.724, 575.548 341.136
Jhelum 94.490, 482.311 288.401
Badin 99.621, 343.985 221.803
Chhor 113.681, 326.320 220.001
Hyderabad 42.871, 309.937 176.404
Jacobabad -551.557, 2174.808 811.626
Karachi 56.604, 308.980 182.793
M-Daro -16.974, 414.625 198.825
Nawabshah 31.991, 369.429 200.710
padidan -254.045, 1149.688 447.821
Rohri -52.819, 632.390 289.786
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Figure B.1.3: Probability plot for the station at Barkhan, Balochistan

Figure C.0.1: Model summary for the station at Barkhan, Balochistan

C Non-stationary model

In this model, we have allowed the GEV location parameter µ to change with
the time to capture the trends observed. Therefore, the fevd function for this
model fit is,

fevd(x, data, type="GEV", method="MLE", shape.fun=~1,

location.fun=~year, scale.fun=~1, units="mm", main="station")

We have not discussed this model based on the parameters used as a criterion
to select a better model fit. However, the model information table has been
included in the result section in table 4.0.2. The model summary result using
one example is given in the figure C.0.1.
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Figure D.0.1: Model Plot for the station at Jiwani, Balochistan

D Plots

In this section, we will present the remaining model plots of the 27 remaining
stations from figure D.0.1 to D.0.27, as discussed in the methodology. The
description and information of interest have also been discussed in the results
section. However, the estimated shape value is (ξ̂ < 0) for the station of Barkhan
and Bunji, therefore, we can limit the distribution as Weibull or bounded upper
tail distribution. In comparison, the rest of the stations share the heavy tail
distribution. The bounded tail distribution can be observed in return level in
the model plots of the above-mentioned stations, which represent the slightly
convex shape can be seen in 4.2.1 and D.0.7.
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Figure D.0.2: Model Plot for the station at Khuzdar, Balochistan

Figure D.0.3: Model Plot for the station at Lasbella, Balochistan
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Figure D.0.4: Model Plot for the station at Panjgur, Balochistan

Figure D.0.5: Model Plot for the station at Pasni, Balochistan
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Figure D.0.6: Model Plot for the station at Zhob, Balochistan

Figure D.0.7: Model Plot for the station at Bunji, Khyber Paktunkhwa/North
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Figure D.0.8: Model Plot for the station at Cherat, Khyber Paktunkhwa/North

Figure D.0.9: Model Plot for the station at Chillas, Khyber Paktunkhwa/North
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Figure D.0.10: Model Plot for the station at Chitral, Khyber Pak-
tunkhwa/North

Figure D.0.11: Model Plot for the station at Dera Ismail Khan, Khyber Pak-
tunkhwa/North
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Figure D.0.12: Model Plot for the station at Drosh, Khyber Paktunkhwa/North

Figure D.0.13: Model Plot for the station at Gilgit, Khyber Paktunkhwa/North
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Figure D.0.14: Model Plot for the station at Lahore, Punjab

Figure D.0.15: Model Plot for the station at Khanpur, Punjab
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Figure D.0.16: Model Plot for the station at Faisalabad, Punjab

Figure D.0.17: Model Plot for the station at Sialkot, Punjab

45



Figure D.0.18: Model Plot for the station at Jhelum, Punjab

Figure D.0.19: Model Plot for the station at Badin, Sindh
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Figure D.0.20: Model Plot for the station at Chhor, Sindh

Figure D.0.21: Model Plot for the station at Hyderabad, Sindh
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Figure D.0.22: Model Plot for the station at Jacobabad, Sindh

Figure D.0.23: Model Plot for the station at Karachi, Sindh
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Figure D.0.24: Model Plot for the station at Mohenjo Daro, Sindh

Figure D.0.25: Model Plot for the station at Nawabshah, Sindh
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Figure D.0.26: Model Plot for the station at Padidan, Sindh

Figure D.0.27: Model Plot for the station at Rohri, Sindh
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