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Abstract

In the last decades, control charts have proven to be an effective tool to improve
the quality of production processes. In recent years, as the Industry 4.0 revolution
is progressing, also the interest in Statistical Process Control (SPC) and control
charts is growing.

Distribution-free control charts are an interesting family of control charts that
has recently been receiving increasing attention from both industry and science.
The defining characteristic of distribution-free control charts is that their in-control
performances are not affected by the underlying process distribution, so no knowl-
edge regarding the process distribution is required for their practical implementa-
tion. This feature makes distribution-free control particularly useful in the early
stages of the SPC monitoring phase.

Several Shewhart-type distribution-free control charts for different kinds of mon-
itoring problems have been proposed in the last two decades. The majority of these
charts are based on linear rank statistics. In this thesis, we explore a new scheme
for devising distribution-free control charts which is based on the Nonparamet-
ric Combination of Dependent Tests framework (NPC), borrowed from hypothesis
testing and permutation testing theory. The NPC combination idea is very flexible
and has already been used for designing multivariate control charts. In this work,
we analyze the application of NPC to combine several tests in order to address
different aspects of the problem or viewpoints of the data. Studying these multi-
aspect NPC charts, we have discovered that combining only linear rank tests leads
to a distribution-free NPC chart, whereas combining at least one non linear rank
test may lead to a non distribution-free NPC chart.

From a practical perspective, we also propose and evaluate several distribution-
free multi-aspect NPC charts for the univariate location and joint location-scale
monitoring problems in the standards unknown case. To provide calibration and
evaluation routines for multi-aspect NPC charts, a high-performance R package
has been developed. Using the implemented algorithms a simulation study has
been conducted to compare the proposed charts with the competitors. One of the
most interesting results has been obtained with the NPC Wilcoxon-Klotz chart
for the location-scale problem. This chart takes full advantage of the flexibility
of the NPC framework and has really good performance under a wide variety of
interesting distributions.

Keywords Statistical Process Control, SPC, Control charts, Nonparametric Com-
bination of Dependent Tests, NPC, NPC control charts, multi-aspect control
charts, multi-aspect NPC control charts
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Chapter 1

Introduction

In the last decades, control charts have proven to be an effective tool to improve
the quality of production processes [26, p. 189]. In recent years, as the Industry
4.0 revolution is progressing, also the interest in Statistical Process Control (SPC)
and control charts is growing. Contributing to the spread of SPC methods, there is
also the discovery of several new possible applications like health care monitoring
[1], financial fraud detection [33] and service quality monitoring [25].

Distribution-free control charts are an interesting family of control charts that
has recently been receiving increasing attention from both industry and science.
The defining characteristic of distribution-free control charts is that their in-control
performances are not affected by the underlying process distribution, so no knowl-
edge regarding the process distribution is required for their practical implementa-
tion [6] [4, p. 34]. This feature makes distribution-free control particularly useful
in the early stages of the SPC monitoring phase.

Several distribution-free control charts for different kinds of monitoring prob-
lems have been proposed in the last two decades. The majority of these charts are
based on linear rank statistics. In this thesis, we explore a new scheme for devis-
ing distribution-free control charts which is based on the Nonparametric Combi-
nation of Dependent Tests framework (NPC), borrowed from hypothesis testing
and permutation testing theory. The NPC combination idea is very flexible and
has already been used for designing multivariate control charts [11]. In this work,
we analyze the application of NPC method to combine several tests in order to
address different aspects of the problem or viewpoints of the data.

1.1 Reading guidelines

Chapter 2 and 3 of this Thesis covers the theoretical background required to un-
derstand the methods and results presented later on. In particular:

• Chapter 2 forms a short introduction to the principles of statistical hypoth-
esis testing, linear rank statistics, the permutation testing approach and the
NPC framework. This Chapter presents also some statistics that will be then
experimented in the context of Statistical Process Control.

• Chapter 3 covers the theoretical background of Statistical Process Control
and control charts.

After the introductory part of this Thesis, Chapter 4 is entirely dedicated to the
proposed multi-aspect NPC scheme for control charts. Starting by introducing
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the general concept of multi-aspect NPC charts, we will then describe our soft-
ware implementation that helped us answer some important research questions
concerning these charts. We end up with the presentation and a comparative sim-
ulation study of some interesting multi-aspect NPC charts for the location and
joint location-scale monitoring problems.
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Chapter 2

Theory: Hypothesis testing and
the permutation testing approach

This Chapter forms a short introduction to the principles of statistical hypothesis
testing, the permutation testing approach and the NPC framework. The notions
and algorithms discussed here are useful to understand the key ideas behind the
multi-aspect NPC control charts presented in Chapter 4.

2.1 Brief introduction to hypothesis testing

In many scientific studies, a fundamental problem is testing theories in presence
of uncertainty [3]. In the field of Statistics, this problem has been a central topic
of study for a long time. Statisticians, over the last two centuries, have developed
several mathematical-based methods and frameworks that address the hypothesis
testing problem. The most popular and widely accepted approach is significance-
based hypothesis testing, which, given its importance, is commonly referred to as
statistical hypothesis testing.

In statistical hypothesis testing, a null hypothesis H0 is tested against an alterna-
tive hypothesis HA and there are two possible outcomes for a test: rejecting or not
the null hypothesis. The fundamental problem addressed by the significance-based
approach is the maximization of the probability of rejecting a false null1 (type 2
error rate) subject to a bound for the probability of rejecting a true null (type 1
error rate) [20, p.56]. This bound to the type 1 error rate, denoted with α, is
called significance level and is an arbitrary parameter of statistical tests. Instead,
the probability of rejecting a false null, which takes the name of power of a test,
is an intrinsic characteristic of a statistical test and depends on several factors:

• The adopted statistical test procedure

• The degree of falseness of the null

• The adopted significance level α

• The number of observations

Designing a statistical test for a given null and alternative requires three ingredi-
ents: a test statistic, the specification of the null distribution and, optionally, a set

1For the sake of brevity, from this point on the null hypothesis and the alternative hypothesis
may simply be called the null and alternative

3



of additional assumptions. The test statistic T is a function of the observed data
X and should be designed to be “sensible” to deviations from the null towards the
alternative. The null reference distribution is the distribution that the test statis-
tic would assume if the null was true and provided that the assumptions of the test
are satisfied. This distribution can be deducted analytically independently from
the data or, as explained later in Section 2.5, can be obtained using computational
methods using the observed data.

When a statistical test is conducted, two equivalent and closely related methods
can be used in order to decide whether reject or not the null.

The first method consists in calculating the p-value, i.e. the probability, under
the null hypothesis, of obtaining a test statistic value at least as extreme as the
value actually observed. The notion of extreme value is tightly connected to the
specification of the alternative: A value that provides stronger support in favor of
the alternative is considered more extreme. After the p-value has been obtained,
if it is below the significance level of the test, then the null hypothesis is rejected,
otherwise it is not.

The second method consists in dividing the sample space associated to the test
statistic T into a rejection rejection and a complementary region. These two sub-
sets are constructed such that:

• The values in the rejection region provide stronger support to the alternative
than the values in the complementary region.

• Under the null, the test statistic will fall inside the rejection region with
probability α and inside the complementary region with probability 1− α.

After observing the data, if the observed value of the test static falls inside the
rejection region then the null is rejected, otherwise it is not.

An hypothesis (null or alternative) is called simple if the statement completely
specifies the populations of interests, otherwise it is called composite [17, p.18].
When a true null hypothesis is composite, then the type 1 error rate can vary
depending on the actual populations. A fundamental requirement of all statistical
tests is that the least upper bound (or supremum) of the probability of rejecting
a true null, i.e. the size of the test, doesn’t exceed the significance level α. If this
condition is satisfied, then the test is said conservative at level α. For a composite
or simple null, a test is said exact if the size of the test is equal to α for any possible
instance of the null and for any α.

An important qualitative criterion used to choose between statistical tests is
consistency. A test is said consistent for an alternative hypothesis if, when any
instance of the alternative is true, the power of the test approaches 1 as the number
of observations approaches infinity. Being a qualitative property of statistical
tests, consistency does not provide a rule for selecting the best test. However, the
consistency criterion is often useful for eliminating some options from the pool of
available tests.

Let Ta and Tb be two tests of a null hypothesis H0 : θ = θ0 and alternative
hypothesis HA : θ > θ0, where θ is a real population parameter. Assume that Ta
and Tb are conservative for any significance level α. We denote with NT (x, α, β)
the sample size necessary for the test T in order to attain the power β under
significance level α and with underlying parameter θ = x. The relative efficiency
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of Ta relative to Tb is defined as:

RETa,Tb(x, α, β) =
NTb(x, α, β)

NTa(x, α, β)

The asymptotic relative efficiency (ARE) of Ta relative to Tb is the limit ofRETa,Tb(x, α, β)
as x→ θ0 and while α and β are held fixed. In some cases, the ARE doesn’t depend
on α or β and can be derived using analytical tools.

2.2 Two-sample problems

Two-sample problems play a central role in hypothesis testing. Within the well-
known population model, this type of statistical problem is concerned with finding
distributional differences between two populations of interest. Based on this gen-
eral notion, there are many different concrete formulations that focus on specific
kinds of distributional differences and use different sets of assumptions. Among
these formulations, the two-sample location and scale problems are two of the most
popular.

Assuming an univariate setting, let X1 = (X11, ..., X1n1) be a random sample
drawn from population X1 with cumulative distribution function (CDF) F1 and
X2 = (X21, ..., X2n2) be a random sample drawn, independently from X1, from
population X2 with CDF F2. The symbols X1 and X2 will also be used inter-
changeably to denote arbitrary observations from the first and second sample re-
spectively, and N = n1 + n2 will be used to denote the size of the pooled sample
X = (X1,X2).

Usually, the null hypothesis being tested in two sample problems is that X1 and
X2 are drawn from identical populations [17, p.227]:

H0 : F1(x) = F2(x) ∀x ∈ R (2.1)

Which means that X1 and X2 have identical distributions. The alternative hy-
pothesis in two sample problems depends on the possible distributional differences
between the two populations about which the experimenter is uncertain.

Two-sample location problem When uncertainty is only about a location
difference, a common assumption is that the CDFs of X1 and X2 may differ only
through a location shift of an unknown amount θ:

F2(x) = F1(x− θ) θ ∈ R ∀x ∈ R

Which means that X2 has the same distribution of X1 + θ. Under this location
model (or shift model), the one-sided and two-sided alternatives hypothesis of the
location problem can be formulated as follows:

HA : θ < 0 the distribution of X2 is shifted to the left (one-sided)

HA : θ > 0 the distribution of X2 is shifted to the right (one-sided)

HA : θ 6= 0 two-sided alternative

Also, the null hypothesis 2.1 can be equivalently stated as:

H0 : θ = 0

Under the location model assumption, the difference between the population means,
E[X2] − E[X1], and between population quantiles of the same order, F−12 (p) −
F−11 (p), must be equal to θ [17, p.228].
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Two-sample scale problem When uncertainty is only about a scale difference,
the scale model can be adopted:

F2(x) = F1

(x
δ

)
δ ∈ R ∀x ∈ R

Which means that X2 is distributed as δX1. Under this model, it assumed that
the two populations are identical in all aspects with the exception that the scale of
X2 may be enlarged or compressed according as δ > 1 or δ < 1, respectively. The
one-sided and two-sided alternatives hypothesis of the two-sample scale problem
can be formulated as follows:

HA : δ > 1 scale enlargement of X2 (one-sided)

HA : δ < 1 scale compression of X2 (one-sided)

HA : δ 6= 1 two-sided alternative

And the null hypothesis 2.1 can be equivalently stated as:

H0 : δ = 1

It is important to consider both the location model and scale models do not use
distributional assumptions concerning the shape of the populations.

2.3 Parametric and non-parametric tests

Statistical tests can be distiguished in two broad classes: parametric and non-
parametric tests.

Parametric tests typically assume that the data comes from a specific family of
parametric distributions and use mathematical analysis (or simulation) to derive
the null reference distribution of the test statistic. The assumption of a parametric
model allows for very interesting theoretical results. Indeed, under a parametric
model, it is often possible to use the Neyman-Pearson framework in order to find
the optimal tests and to derive their performance [17, p.227]. For example, when
the populations are normal, it is well known that the Student’s t test is the best
test for location differences.

A fundamental practical problem of parametric tests is that any conclusion
reached using a parametric model may be baseless if the adopted statistical pro-
cedure relies on a distributional assumption that is not satisfied in reality. Fur-
thermore, even when large sample approximations are used, the accuracy of these
approximations is often difficult to assess [31, p.1].

Non-parametric tests overcome these problems by avoiding assumptions on the
distribution of the data. This means that the type 1 error rate of non-parametric
tests is kept at the desired (nominal) significance level no matter the underlying
distribution. A central consequence of this property is that non-parametric tests
can be applied even when there is lack or incomplete knowledge of the underlying
distribution [24]. Typically, non-parametric tests require that the null hypothesis is
of identical populations (see 2.1), which is sometimes called strong null hypothesis.

2.4 Linear rank statistics

Many popular non-parametric tests for two-sample problems are based on linear
rank statistics. Linear rank statistics are a family of statistics given by a linear
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function of the indicator random variables Zi (i = 1...N), where Zi = 1 if the ith
random variable in the pooled ordered sample is from the first sample and Zi = 0
otherwise. In mathematical language, linear rank statistics have the following
expression:

T (X) =
N∑
i

ciZi (2.2)

Where the ci are given constants called weights or scores.
Linear rank statistics are addressed extensively in the book [17], which provides

the proofs for a series of important general properties for their distribution. For
instance, the book gives general formulas for the expectation, variance and covari-
ance of these statistics.

Nonparametric tests are not necessarily bound to linear-rank statistics, indeed
a nonparametric test can be developed starting from an arbitrary statistic using
the so-called permutation testing framework. The permutation framework is more
general of tests based on linear rank statistics in the sense that linear rank tests can
be thought of as a subclass of permutation tests. An important feature of linear
rank statistics is that their null distribution depends only on the sample sizes n1

and n2. As we will see soon, this is not true in general within the permutation
testing framework.

2.5 Permutation testing framework

Permutation testing is a non-parametric approach to hypothesis testing which
is commonly used in the context of two-sample hypothesis testing problems and
works with both the population and randomization models. The permutation
testing concept dates back to the 1930’s, the earliest contributions were Fisher’s
statistical methods for research workers (1934) [14] and The design of experiments
(1935) [15].

Permutation inference is based on the key assumption that observations from
different groups are exchangeable under the null hypothesis [3, p.7-8]. A set of
observations is said to be exchangeable if their joint distribution is invariant under
permutations of the observations. Random sampling is a sufficient but not a
necessary condition for exchangeability [3, p.7] [31, p.36].

Provided that response variables are exchangeable under the null, the permuta-
tion testing approach compares the test statistic against its permutation distribu-
tion in order to quantify how extreme the observed sample would be if the null was
true. The permutation distribution of a test statistic, which takes the role of the
null reference distribution, is obtained by considering observed data permutations
as equally likely outcomes. This distribution is, in the general case, dependent on
the observed data, therefore it can only be calculated after the data have been
collected.

2.5.1 Theory of univariate permutation tests

Formally, permutation tests can be derived from the notion of conditioning on a
set of sufficient statistics in H0 for the underlying distribution which is typically
unknown [31, pg. 33] [30]. Assume that the pooled sample X = (X1,X2) =

7



(X0, ..., XN) has an associated N -dimensional probability space (X ,A, P ). Fur-
thermore, let u∗ = (u∗1, ..., u

∗
n) denote an arbitrary permutation of unit labels

(1, ..., N), then X∗ = (X∗0 , ..., X
∗
N) = (Xu∗0

, ..., Xu∗N
) is the corresponding permuta-

tion of X. Statistical inference within the permutation framework is based on the
conditioning on the event X/X, which is the set containing all permutations of X
and taking the name of permutation sample space.

It follows from the exchangeability assumption that each permutation X∗ ∈ X/X
of X is a set of sufficient statistic for the underlying distribution of the data,
therefore, for any event A ∈ A :

Pr(A;P |X/X) = Pr(A|X/X) (2.3)

Which means that the conditional distribution of X (and of any of its permutation
X∗), given X/X, is independent of the underlying distribution.

Another fundamental consequence of excheangeability is that the probability of
any event A ∈ A conditional to X/X has the following expression:

P (A|X/X) =

∑
X∗∈X/X

I(X∗ ∈ A)

|X/X|
(2.4)

Where |X/X| denotes the cardinality of the permutation sample space and I(c)
denotes the indicator function which is equal to 1 when the condition c is true and
is equal to 0 otherwise. Consider now a test statistic T : X n → R. From 2.3 it
follows that the conditional distribution of T given X/X is also independent of P .
Then, from 2.4 we may write:

P (T ≤ y|X/X) = F ∗T (y) =

∑
X∗∈X/X

I(T (X∗) ≤ y)

|X/X|
(2.5)

F ∗T (y) is known as the permutation CDF of T and, as anticipated before, takes
the role of the null reference distribution in permutation tests. For a left tail
alternative, the permutation p-value λLT associated with the statistic T is given by:

λLT = F ∗T (t) =

∑
X∗∈X/X

I(T (X∗) ≤ t)

|X/X|
(2.6)

Where t denotes the observed value of the test statistic, i.e. t = T (X). The right
tail permutation p-value instead is given by:

λRT =

∑
X∗∈X/X

I(T (X∗) ≥ t)

|X/X|
(2.7)

Obtaining and interpreting the two-sided permutation pvalue λRLT requires some
additional considerations. The typical definition of λRLT is the following:

λRLT =

∑
X∗∈X/X

I(|T (X∗)| ≥ |t|)
|X/X|

(2.8)

=

∑
X∗∈X/X

I(T (X∗) ≥ |t|)
|X/X|

+

∑
X∗∈X/X

I(T (X∗) ≤ −|t|)
|X/X|

(2.9)

It is very important to consider that the two terms in 2.9 coincide only if the
permutation distribution of T is symmetric about 0. When a two-sided alternative
is used, it is generally required that the permutation distribution is symmetric
about 0. In [10] it has been shown that an asymmetric permutation distribution
may lead to a two-sided permutation test with power equal to 0, which means that
the test is also not consistent.
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2.5.2 Permutationally equivalent statistics

The notion of permutational equivalence is useful to discover groups of statistics
which yields the same permutation inference for any given dataset. If permutation
equivalence relation is found between two statistic, then the statistic which is less
expensive to compute can be used to optimize the permutation testing procedure.

Proposition 2.5.1. If two statistics T1 and T2 are one-to-one increasingly re-
lated given X/X for every possible X, then they always induce the same one sided
permutation p-values on the same data, symbolically :

λLT1 = λLT2 , λ
R
T1

= λRT2 ∀ X

Proof. Let T1 and T2 be two statistics that are one-to-one increasingly related
given X/X for every possible X by a function gX/X

. Then, given X/X and for every
possible X, it holds that T1 = gX/X

(T2) and, since gX/X
is one-to-one increasing,

that:

T1(X
∗) ≤ T1(X)⇔ T2(X

∗) ≤ T2(X)

T1(X
∗) ≥ T1(X)⇔ T2(X

∗) ≥ T2(X)

Which proves that λLT1 = λLT2 and that λRT1 = λRT2 since the cardinality of the
permutation sample space |X/X| doesn’t depend on the test statistic.

Proposition 2.5.2. If two statistics T1 and T2 are one-to-one decreasingly related
given X/X for every possible X, then they always induce the same one sided per-
mutation p-values on the same data when alternatives are inverted, symbolically:

λLT1 = λRT2 , λ
R
T1

= λLT2 ∀ X

Proof. The proof follows the same reasoning of that given for Proposition 2.5.1

If statistics T1 and T2 are one-to-one increasingly or decreasingly related uncon-
ditionally, then the same relation holds also when we condition on the event X/X.
If two statistics are one-to-one increasingly or decreasingly related given X/X for
every possible X, then they are said permutationally equivalent.

Proposition 2.5.3. If, given X/X and for every possible X, two statistics T1
and T2 are one-to-one related by a function gX/X

(z) = cX/X
z where cX/X

is a
constant that may depend only on X/X, then they always induce the same two-
sided permutation p-value on the same data, symbolically:

λLRT1 = λLRT2 ∀ X

Proof. Let T1 and T2 be two statistics that, given X/X for every possible X, are
related by a function gX/X

(z) = cX/X
z, then:

λRLT1 =

∑
X∗∈X/X

I(|T1(X∗)| ≥ |t1|)
|X/X|

=

∑
X∗∈X/X

I(|cX/X
T2(X

∗)| ≥ |cX/X
t2|)

|X/X|

=

∑
X∗∈X/X

I(|cX/X
||T2(X∗)| ≥ |cX/X

||t2|)
|X/X|

=

∑
X∗∈X/X

I(|T2(X∗)| ≥ |t2|)
|X/X|

= λRLT2
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Example 2.5.4. Consider the following statistics:

TDM =
1

n1

n1∑
i=1

X1i −
1

n2

n2∑
i=1

X2i

TDS =

n1∑
i=1

X1i −
n2∑
i=1

X2i

TM =
1

n1

n1∑
i=1

X1i

TS =

n1∑
i=1

X1i

It can be shown that, in a one-sided permutation test, they always yield the same
inference. First, we let kX/X

=
∑n1

i=1X
∗
1i +

∑n2

i=1X
∗
2i, i.e. the sample sum of an

arbitrary X∗ ∈ X/X which is constant given X/X. Thus, given X/X:

TDS = TS − (kX/X
− TS) = 2TS − kX/X

TM =
1

n1

TS

TDM =
1

n1

TS −
1

n2

(kX/X
− TS) =

N

n1n2

TS −
kX/X

n2

For every possible X, which proves that TDM , TDS, TM and TS are one-to-one
increasingly related. Therefore, by Proposition 2.5.1 we know that the one-sided
permutation p-values will be the same for all these statistics. Moreover, by Propo-
sition 2.5.3 we have that TM and TS yield also the same two-sided permutation
p-values.

2.5.3 Computational considerations and p-value estima-
tion

Linear rank statistics (Section 2.4) are an interesting subclass of permutation tests
because their null distribution, which corresponds to their permutation distribu-
tion, doesn’t depend on the observed data. To see this, we note that the observed
value of linear rank statistics depends only on the order of the observations, there-
fore the permutation distribution is completely determined by the set of all possible
orderings, which is independent of X. The main consequence of this property of
linear rank statistics is that their null/permutation distribution can be calculated
(using analytical tools or computers) just one time for each relevant combination
of n1 and n2.

When the permutation distribution of a test statistic depends on the observed
data not only through the ranks, the computational cost for obtaining the null
reference distribution and the p-value has to be paid each time a new experiment
is conducted. For this reason, before the advent of computers, linear rank statistics
were the only permutation tests that could be applied easily in practice. Nowadays,
with modern computers, this limitation has been partially overcome in the sense
that, for sample sizes of practical interest, the permutation distribution can be
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computed very quickly. The total number of permutations of unit labels (1, ..., N)
for a pooled sample of size N is N !. If the test statistic doesn’t depend on the
order within group samples, then group labels permutations can be considered
instead of unit labels permutations. The total number of possible group label
rearrangements for a two-sample experiment is

(
N
n1

)
= N !

n1!n2!
.

Both with group labels and unit labels, the computational cost for evaluating
all possible permutations may become impractical when sample sizes are too large
or when a permutation test has to be repeatedly performed within a Monte Carlo
framework. To reduce the computational complexity of permutation tests, a com-
mon approach is to estimate the permutation p-values of the given statistic T by
taking a random sample of arbitrary size from its permutation distribution F ∗T . Al-
gorithm 1 shows a pseudo-code implementation to obtain such a random sample.
The algorithm used at line 6 must select permutations of X by assigning to each
possible permutation equal probability. There are several possible implementa-
tions of the permutation random sampling algorithm which has linear complexity
in the size of X, for instance, the C++ standard library offers the std::shuffle
procedure and the R base package offers the sample function.

Algorithm 1 Estimation of the permutation distribution of a given statistic T
Input
x1: the first observed sample
x2: the second observed sample
T : the statistic. Takes two numerical array arguments representing the first and
the second sample
B: the number of random permutations
Output
permutedV alues : a random sample of size nPerm from the permutation distri-
bution of T

1: permutedV alues← an uninitialized array of size B
2: x← concatenation of x1 with x2

3: n1 ← size(x1)
4: n2 ← size(x2)
5: for i = 0 to B − 1 do
6: x∗ ← A random permutation of x
7: x∗1 ← First n1 values of x∗

8: x∗2 ← Last n2 values of x∗

9: permutedV alues[i]← T (x∗1,x
∗
2)

10: return permutedV alues

After a random sample Q of size B has been obtained from the permutation
distribution of T , permutation p-values can be estimated. For a permutation test
with a left tail alternative, the estimator λ̂LT of λLT calculated using B random
permutations is given by:

λ̂LT = F̂ ∗T (t) =

∑
t∗∈Q I(t∗ ≤ t)

B
(2.10)

Where F̂ ∗T denotes the permutation empirical cumulative distribution function
(ECDF) which estimates the permutation CDF F ∗T . Similarly, the right tail and
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two-sided permutation p-value λRT and λLRT can be estimated as:

λ̂RT =

∑
t∗∈Q I(t∗ ≥ t)

B
(2.11)

λ̂LRT =

∑
t∗∈Q I(|t∗| ≥ |t|)

B
(2.12)

It follows from the Glivenko–Cantelli theorem, that the estimators λ̂LT , λ̂RT , λ̂
LR
T

and F̂ ∗T are strongly consistent [31, p.45].
Figure 2.1 shows the estimated permutation distributions and observed values

(vertical blue lines) of T = X1−X2 in two simulated two-sample location tests. For
both tests, the sample sizes are n1 = 25 and n2 = 9. In the first test, both samples
have been drawn from Exponential(λ = 1). In the second test, the distribution of
the second sample has been shifted to the left of one standard deviation unit. The
estimated right tail p-values (ratios between the light blue area and total area) are
approximately 0.44 for the first test and 0.002 for the second test. These values
suggest that the null should be rejected only in the second case. By simulation
design, we know that this is the right decision to take.
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Figure 2.1: Estimated permutation distributions and observed values (vertical blue
lines) of the difference of means statistic in two simulated two-sample location tests.
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2.5.4 NPC framework

In his The design of experiments (1935) [15] Fisher proposed the notion that “dif-
ferent tests of significance are appropriate to test different features of the same
null hypothesis”. This idea of using several statistical tests within a single statis-
tical problem is very powerful in practice and has many applications like testing
elaborate theories in social and medical studies [3].

In the literature can be found three main developments of the general idea of
using several tests for testing different “features of the same null hypothesis” pro-
posed by Fisher:

• Multivariate problems: In a multivariate hypothesis testing problem, a fea-
ture may be related to the study of a specific response variable or a subset
of response variables, see for example [31, p.117] or [23].

• Multiple aspects of a complex hypothesis: When a complex hypothesis can be
decomposed into several sub-hypothesis (i.e. a multi-aspect problem), each
of the sub-hypothesis can be thought of as a different feature (aspect) of the
global hypothesis. For example, the well-known location-scale problem can
be decomposed into a location aspect and a scale aspect, and each of these
aspects can be addressed by an appropriate statistical test. This is the case
of the Lepage test [21], which combines the Wilcoxon test for the location
with the Ansari-Bradley test for the scale. The decomposition approach for
testing a complex hypothesis is especially useful when a single test for the
global hypothesis is not directly available, or difficult to find and/or justify.

• Multiple viewpoints of the same data: A feature of a hypothesis may be also
be thought a viewpoint (or aspect) of the data that highlights information
useful for detecting shifts towards the alternative under specific classes of
distributions. If there is a lack of knowledge regarding the distribution of
the data, then it may be useful to combine different viewpoints together in
order to obtain a statistical test that exhibits a good power with a large
variety of distributions. For the two sample location problem, two concrete
applications of this idea will be described in Section 2.6.3 and Section 2.6.4.

The implementation of the idea of using several tests within a single hypothesis
testing problem requires a strategy for the combination of chosen tests which
takes into account their possible dependency. The Nonparametric Combination
of Dependent Tests (NPC) 2 is a framework based on permutation testing which
address this problem. NPC offers a template procedure for conducting tests that
combine several partial tests, each of which can address a different feature of the
same global hypothesis. Being based on permutation testing, NPC does not require
distributional assumptions or asymptotic justifications, but only that observations
are exchangeable under the null [3].

The NPC algorithm The high level abstract NPC algorithm to obtain the
combined test p-value with p partial subtests is the following:

1. Compute the p-dimensional vector of partial test statistics, each one related
to the corresponding partial test:

(t1, ..., tp)
2The NPC framework was originally proposed by Fortunato Pesarin in [29]
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2. Recompute each partial test statistic for each of the possible k = |X/X|
permutations of the data. The entries of the resulting p × k dimensional
matrix are denoted with t∗ij (i = 1...p, j = 1...k). In each column, the partial
test statistics values correspond to the same permutation.

3. Compute the observed value of the combined test as:

tNPC = ψ(λ1, ..., λp)

Where ψ is a suitable combining function and λi is the permutation p-value
associated with partial test i. Permutation p-values can be calculated using
the matrix of permuted values obtained from step 2 and the vector of ob-
served values from step 1. It should be noted that each λi may be a left,
right or two-sided p-value.

4. Compute the permuted values of the combined test as:

t∗NPCj = ψ(λ1(t
∗
1j), ..., λp(t

∗
pj)), j = 1...k

Where λi(t
∗
ij) denotes the permutation p-value of partial test i calculated as

if t∗ij was the observed value.

5. Using results from step 3 and 4, compute the combined test permutation
p-value λNPC as:

λNPC = F ∗NPC(tNPC) =

∑k
j=1 t

∗
NPCj ≤ tNPC

k

Similarly to the permutation testing with a single test statistic, also for NPC tests
the p-values can be estimated using an arbitrary number of random permutations.
These random permutations should be computed just one time in step 2 to obtain
the p × k dimensional matrix (when p-value estimation is used, in the algorithm
above, k becomes equal to the number of random permutations B used for the
estimation). Using the estimation procedure just described leads to a strongly
consistent estimate of the true combined p-value λNPC [31, p.127].

In order to obtain a combined statistical test that is consistent and unbiased with
respect to the global hypothesis, both the selected partial tests and the combining
function have to satisfy some reasonable properties. These properties will not
be discussed here because they are quite technical, if the reader is interested in
learning more, they can find them explained in [31]. Some frequently used combing
functions that satisfy the aforementioned properties are the following:

• Liptak’s normal combining function

ψL(λ1, ..., λp) =

p∑
i=1

φ(λi) (2.13)

• Tippet’s combination

ψT (λ1, ..., λp) = mini=1...p(λi) (2.14)

• Fisher’s combination

ψF (λ1, ..., λp) =

p∑
i=1

log(λi) (2.15)
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Where φ denotes the CDF of the standard normal distribution.
In multi-aspect problems, the Liptak combining function has the greatest relative

power when all sub-alternatives are jointly true. Instead, the Tippet’s combination
has the greatest relative power when only one of the sub-alternatives is true. The
Fisher combining function has an intermediate behavior and then it is useful when
nothing is expected about the partial alternative hypotheses.

2.6 Non-parametric tests for location

In this section are presented some permutation tests for the two-sample location
problem (Section 2.2) which have inspired the control charts discussed in Chapter
4.

2.6.1 Wilcoxon’s rank sum test

In order to address two sample location problem , in [35, p.80] (1945), Wilcoxon
proposed to use ranks of the observations instead of numerical data. Based on this
idea, the Wilcoxon’s rank sum statistic W is defined as the sum of the ranks of
the first sample X1. In mathematical language, W can be expressed as:

W =

n1∑
i=1

Ri

Where Ri is the rank of the ith observation in the pooled sample. Equivalently,
using its linear rank statistic representation, W is given by:

W =
N∑
i=1

iZi

Assuming no ties and that the null is true, the mean and variance of W are given
by:

E(W ) =
n1(N + 1)

2
Var(W ) =

n1n2(N + 1)

12
It can be shown that W (the sum of the ranks of X1) is permutationally equivalent
to the sum of ranks of X2, to the difference between the sum of ranks of X1 and
X2, and to the Mann-Whitney U statistic given by:

U = W − n1(n1 − 1)/2

2.6.2 Van der Waerden test

To increase the power with normally distributed data with the respect to the
Wilcoxon rank sum test, the van der Waerden test [34] (1953) applies the quantile
function of the standard normal distribution φ−1 to normalized ranks:

K =

n1∑
i=1

φ−1
(

Ri

N + 1

)
Equivalently, using the linear rank representation, the van der Warden test statistic
can be written as:

K =
N∑
i=1

φ−1
(

i

N + 1

)
Zi
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The van der Warden test is asymptotically optimal when the populations are both
normal distributions. Indeed, its ARE relative to the Student’s t test is 1 under
the normality assumption [17, p.302].

The null distribution of the van der Warden statistic is symmetric about 0.

2.6.3 Bi-aspect test

Marozzi in [22] proposed a bi-aspect permutation test for the two sample location
problem which, using the NPC approach with the Tippet combining function (Sec-
tion 2.5.4), combines the permutation test based on the sample total Ta with a
permutation test based on the comparison of sample observations with the pooled
median M̃ , Tb:

Ta =

n1∑
i=1

Xi Tb =

n1∑
i=1

I(Xi > M̃)

The main goal adressed by the author was to propose a test with good overall
performance that may be used without worrying about the distribution underlying
the data which is usually unknown. The choice of using the Tippet combining
function is important because the stand alone tests show different sensitiveness to
location differences under different types of underlying population distributions.

Marozzi in his paper presents also a study based on Monte Carlo simulations
which shows that the bi aspect Tab performs similarly to the traditional permu-
tation test based on sample total when the latter is a proper statistic to study
the location. Considering instead distributions for which the sample total is not
a good statistic for detecting location shifts, like heavy tailed distributions, the
author shows that the power of Tab is remarkably higher.

For the methods that will be proposed in Chapter 4, it is important to consider
that Tb is a linear rank statistics whereas Ta is not. The linear rank representation
of Tb is given by:

Tb =
N∑
i=1

I

(
i ≥

⌈
N

2

⌉)
Zi

2.6.4 Tri-aspect test

In [23], Marozzi proposed a new combined permutation test for the two sample
location problem which extends the idea of the bi-aspect test Tab by including a
third aspect in the test, the rank aspect Tc. The rationale for including also Tc in
the combined test is to improve the performance of the Tab test, similarly to how
Tb has been introduced in Tab in order to overcome the drawbacks of Ta. Using
a Monte Carlo simulations, Marozzi showed that the tri-aspect test Tabc is more
powerful than the bi-aspect test with a large variety of distributions including the
Normal, Cauchy and Exponential distributions.

The test statistic of the tri-aspect test can be thought of as a function of the orig-
inal dataset X and two additional datasets Z and W obtained with the following
data augmentation strategy:

Zi = I(Xi > M̃)

Ri =
n∑
j=1

I(Xi ≥ Xj)
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The three aspects (or data viewpoints) of the test can then be defined as follows:

Ta =

n1∑
i=1

Xi

Tb =

n1∑
i=1

Zi =

n1∑
i=1

I(Xi > M̃)

Tc =

n1∑
i=1

Ri =

n1∑
i=1

n∑
j=1

I(Xi ≥ Xj)

Tb is the number of observations in the first sample greater than the pooled median
while Tc is the sum of the ranks Wi of the first sample. In order to combine the
three aspects into a single tri-aspect test statistic Tabc, the Tippett combining
function is used.

2.6.5 Percentile modified rank tests

In [16] (1965) Gastwirth proposed percentile modified rank tests, a class of linear
rank statistics which provides a way to increase the ARE relative to popular non-
parametric tests under specific distributions without using complicated scoring
systems. The main idea is to select two number s and r, both between 0 and 1,
and then score only the data in the upper sth and lower rth percentiles of the
combined sample. We let R = bNrc and S = bNsc and we define:

Br =
R∑
i=1

(R− i+ 1)Zi

Tr =
N∑

i=N−S+1

[i− (N − S)]Zi

If N is odd, and:

Br =
R∑
i=1

[
R− i+

1

2

]
Zi

Tr =
N∑

i=N−S+1

[
i− (N − S)− 1

2

]
Zi

If N is even. Then, Ts − Br provides a test for location and Ts + Br provides a
test for scale [17, p. 305].

An interesting characteristic of percentile modified rank tests is that a good
choice of s and r may lead to a test with an higher power than more popular
alternatives. For example, the ARE of Ts−Br under a normal distribution reaches
its maximum value of 0.968 when s = r = 0.42, while, when s = r = 0.5, the ARE
is 0.955, as for the Wilcoxon rank-sum statistic. Clearly, under the assumption
of an unknown distribution, we usually cannot find the optimal s and r values.
Nevertheless, following the idea described in Section 2.6.3 and 2.6.4, a percentile
modified rank test can be thought of as a data viewpoint, and the NPC framework
can then be used to combine multiple viewpoints in order to obtain a test with a
good power under a wide variety of distributions.

18



2.7 Non-parametric tests for scale

In this section are presented some permutation tests for the two-sample scale
problem (Section 2.2) which have inspired control charts discussed in Chapter 4.

2.7.1 Klotz normal-scores test

The Klotz (1962) normal-scores test [18] for scale uses as test statistic:

K =

n1∑
i=1

[
φ−1

(
Ri

N + 1

)]2
where φ−1 denotes the quantile function of the standard normal distribution. In
its equivalent linear rank representation, the Klotz test statistic is given by:

K =
N∑
i=1

[
φ−1

(
i

N + 1

)]2
Zi

The ARE of the Klotz test relative to the F test equals 1 when both populations
are normal. Therefore, since the F test is an optimal test assuming a normal
distribution, the Klotz is an aymptotically optimal test for normal data.
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Chapter 3

Theory: Statistical Process
Control and Control Charts

This Chapter covers the theoretical background of Statistical Process Control and
control charts required to understand the notions and methods proposed in Chap-
ter 4.

3.1 Statistical Process Control

One fundamental aspect of the quality of a product is the conformance of the
product’s features to the specifications required by the design [26, p.6]. In other
words, the quality of products is negatively affected by variability in their charac-
teristics. Within any production process, regardless of how well the process was
designed, developed and maintained, a certain amount of natural variability will
always be present [26, p.181]. This variability, which is also called background
noise, is intrinsic in the design of the process and has chance causes that cannot
be controlled without performing significant changes to the process itself [36].

Besides chance causes, other sources of variation may affect the process output.
These sources of variation that are not part of the chance cause pattern are called
assignable causes of variation. Assignable causes are specific and controllable
causes and their effect is generally large when compared to the background noise.
Therefore, variation with assignable causes typically represents an unacceptable
level of process performance. Within manufacturing processes, some examples of
assignable causes are defective production materials, operator errors and malfunc-
tions of the machinery.

In the framework of statistical quality control (SPS), a process is considered in
a state of statistical control or in-control (IC) if it is operating with only chance
causes of variation. Conversely, if the output of the process is also affected by
assignable causes of variation, then the process is considered out-of-control (OOC).
A primary objective in statistical process control (SPC) is to quickly detect when
a process becomes out-of-control. By signaling rapidly assignable causes of vari-
ation, the responsible engineers and technicians can identify the causes and take
corrective actions before many non-conforming units are produced. Quick detec-
tion helps also analyze sources of variation and their effects. If the source has a
negative effect, measures should be taken to prevent the cause from reoccurring.
However, if the effect is considered positive, its source could be instead integrated
into the process [19, p.5].
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Figure 3.3 shows a visualization of chance and assignable causes of variation.
Until time t2, the process shown in the Figure is in-control. The chance causes
of variation are represented by a fixed PDF with mean equal to µ0 and standard
deviation equal to σ0. Note that, when the process is in-control, it is unlikely to
observe a product feature value falling outside the upper and lower specifications
limits (USL and LCL, respectively). At time t3, the distribution of the process
shifts to the right (µ > µ0). This means that an assignable cause of variation is
now present in the process and that it has become more likely to observe products
that do not conform to the specification. After returning in-control at time t4, the
process is affected by a new cause of variation at time t5. This time, however, we
observe not only a shift to the right (µ > µ0), but also an enlargement of the scale
(σ > σ0).

Figure 3.1: A visualization of chance and assignable causes of variation.

3.1.1 Phase I and Phase II

The application of SPC has two main phases: Phase I and Phase II.
The main goal of Phase I is to obtain a sufficiently large reference sample gath-

ered from the process while it is in-control. To obtain the reference sample,
data is collected from the process while it is actively monitored to ensure that
no assignable causes of variation are present. After gathering the data, Phase I
statistical methods can be used to analyze the sample to further ensure that the
process has been in-control over the period where the data was collected.

In Phase II, the available information about the IC distribution is used for online
monitoring of the process with the main goal of quickly detecting when it becomes
out-of-control. Knowledge about the IC distribution may take the form of a ref-
erence sample gathered in Phase I or/and may be the result of prior knowledge
in the application/domain of interest. An important classification for Phase II
scenarios depends on whether the parameters of the IC distribution1 are known,
i.e. the standards known case (case K), or unknown, i.e. the standards unknown
case (Case U) [5]. In case U, the distribution parameters required by the chosen
Phase II method are typically estimated from a Phase I sample [26, p. 228]. In

1Typically, the mean and standard deviation
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case K, Phase I is not needed if the known distribution parameters are all the
required process information.

3.1.2 Phase II statistical model

After Phase I, suppose that a random sample of size m, denoted with X1 =
(X11, ..., X1n1), has been drawn from the in-control CDF of the process F1(x).
When Phase II starts, a sequence of test samples is gathered from the process.
Assuming that test samples have all the same size n, let X2h = (X21h, ..., X2n2h)
denote the hth test random sample with underlying cdf F2h(x). The symbols X1

and X2h will be used to denote arbitrary observations of the reference sample and
the test sample at step h, respectively. In its most general form, the Phase II
problem consists then in finding distributional deviations between F1 and F2h.

It is important to consider that, under this general Phase II statistical model,
random sampling and independence between the samples are assumed, however,
no distributional assumptions are made for F1 and F2h.

3.1.3 Out-of-control patterns

In practical applications, some kinds of distributional deviations are more impor-
tant than others. Monitoring changes in the location and in the scale of the process
distribution F1 are typically the two main concerns in Phase II applications [27].
These distributional aspects can be characterized using a suitable distribution pa-
rameter, like the mean or median for the location and the standard deviation for
the scale. Changes in the process distribution parameters can then be categorized
into different common OOC patterns :

• Sustained shift : occurs when, at some point in time, the parameter being
monitored shifts to a new value and remains there.

• Trend : happens when the parameter continuously increases or decreases.

• Cyclic pattern: occurs when the process parameter changes following a pe-
riodic behavior like, for instance, a sinusoidal function.

Figure 3.2 provides some examples of the OOC patterns discussed so far: Figure
3.2a shows a positive sustained shifts of the scale, Figure 3.2b shows an increasing
trend in the location and Figure 3.2c displays a cyclic pattern in the location.

Phase II SPC methods usually focus on specific kinds of distributional aspects.
For example, some methods are designed to detect changes in location and others
in scale. Others more are designed to detect changes in location and scale jointly.
Moreover, Phase II methods may also focus on a specific OOC pattern or a group
of OOC patterns.
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(a)

(b)

(c)

Figure 3.2: (a) A positive sustained shift of the scale. (b) An increasing trend in
the location. (c) A cyclic pattern in the location.
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3.2 Control Charts

Control charts are an important SPC tool used both in Phase II and in Phase I
[26]). In Phase I they are used to verify if the process has been in control during
the time period in which the data were collected. In Phase II they are used as
monitoring devices with the primary goal of detecting as quickly as possible when
an assignable cause of variation occurs.

The basic building blocks of a control chart are the following:

• A monitoring statistic which is plotted versus the sample number or time.

• An upper and/or lower control limit (UCL and LCL) representing the bound-
ary inside which nearly all the points should fall between when the process
is in control. If a point is found outside of the control limits is interpreted
as evidence that the process is out of control.

• A center line representing the average of the monitoring statistic when the
process is in-control. This component, unlike the previous two, is not always
used.

• Warning limits complementary to the control limits. Warning limits are
used to establish fine granular thresholds associated with different levels of
evidence against the IC state. As the center line, also the warning limits are
optional.

Figure 3.3: A visualization of a control chart. The small dots displays the monitor-
ing statistics values changing over the test samples. The dashed lines correspond
to the upper and lower control limits and the straight line corresponds the center
line.
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Figure 3.3 shows an example control chart using a center line and no warning
limits. The plotted dots represents the monitoring statistic values at consecutive
time steps. The dashed lines correspond to the upper and lower control limits and
the solid line is the center line which represents the average value of the monitoring
statistic. The control chart shows that, from step 37 to 39, it is likely that the
process has gotten out of control.

Based on these building blocks discussed so far, several rules for generating OOC
signals can be devised. The base signaling rule used by all control charts is emitting
an OOC signal whenever the monitoring statistics exceed the control limits (i.e.
the monitoring statistic value is lower than LCL or is greater than UCL). This
general scheme is useful to detect all the OOC patterns discussed in Section 3.1.3.
Additionally to the base signaling rule, other more complex rules can be used to
detect faster specific kinds of OOC patterns and to improve the effectiveness of
the control chart. For example, the rule of emitting a signal when there is a high
number of points in a row steadily decreasing or increasing can be used to detect
trend patterns earlier.

In Phase II, when an OOC signal is issued, the process is typically stopped and
an investigation begins with the goal of detecting the possible assignable cause. If
an assignable cause is detected then measures should be taken in order to eliminate
the assignable cause or integrate it in the process if the effect is considered to be
positive. There may be situations in which after an OOC signal no assignable
causes are detected by operators and engineers. Such situations may arise as a
consequence of randomness and their frequency is typically controlled through
control chart parameters.

3.2.1 Types of Control Charts

An important classification for control charts is made according to the structure
of the monitoring statistic and the control limits design. Concerning this classifi-
cation, the three main groups are the following:

• Shewhart-type control charts, first introduced by W. A. Shewhart in [32]
(1926). In Shewhart-type control charts, the monitoring statistic uses the
information contained in just the last sample.

• Cumulative sum (CUSUM) control charts, introduced by E. S. Page in [28]
(1954). The monitoring statistic for this kind of control chart incorporates
information contained in both present and past samples using an autoregres-
sive formula.

• Exponentially weighted moving average (EWMA) control charts, introduced
by S. Roberts in 1959. Following similar principles of CUSUM control
charts, also EWMA charts exploit the information contained in both past
and present samples.

With respect to CUSUM and EWMA charts, Shewhart-type charts are typically
less effective in detecting small sustained shifts in the location and scale parameters
of the process distribution. On the other hand, the simplicity of Shewhart control
charts makes them easier to implement and interpret. Furthermore, starting from
a Shewhart-type is often possible to design its CUSUM or EWMA counterparts.

25



3.2.2 Performance evaluation

Phase II performance of control charts is often characterized using the average of
the run length distribution, i.e. the average run length (ARL). The run length is
the number of test samples that are collected before the first OOC signal is issued
[4, p.40]. Ideally, the ARL when the process is OOC (ARL1), should be as low as
possible to increase the probability of quickly identifying OOC conditions. Instead,
the ARL when the process is IC (ARL0), can be used as a calibration parameter
of the control chart which regulates the control limits. Using an analogy with the
hypothesis testing framework, the ARL0 has the same role of the significance level
while ARL1 has the same role of the test power.

The run length distribution and the ARL of control charts are typically evaluated
under a statistical model which extends the general Phase II model described in
Section 3.1.2. Two popular models used for evaluating performances under the
sustained shift OOC pattern (Section 3.1.3) are described below. These models
should not be seen as a set of additional Phase II assumptions. Instead, they should
just be considered as a mathematical description for typical OOC scenarios under
which the performances of control charts can be evaluated using mathematical
tools or computer simulations.

Location model This model assumes that the in-control distribution F1(x) and
the test sample distributions F2h(x) may differ only through a location shift θ.
This means that the true process distribution can be shifted to the left or to the
right with respect to the IC distribution, but its shape it’s assumed to be the same.
In mathematical terms, this assumption can be expressed as:

F2h(x) = F1(x− θ) θ ∈ R ∀h

Where θ is the unknown location shift parameter. Under the location model, the
process distribution F2h is considered fixed through time, thus the subscript h
can be omitted. Moreover, it can be seen that this model is very similar to the
hypothesis testing location model described in Section 2.2, the only difference is
that in the SPS Phase II location model we have a sequence of samples for the
second group. Equivalently, the Phase II location model can be written as:

F1(x) = F (x− µ1) µ1 ∈ R
F2(x) = F (x− µ2) µ2 ∈ R

Where F is a cdf with location equal to 0, µ1 is the location parameter of the IC
process and µ2 is the location parameter of the actual process distribution.

Location-scale model A generalization of the location model that considers
also a possible change in the scale is the so-called location-scale model. Under this
model, it is assumed that the actual process distribution may differ from the IC
distribution only through a location shift or a scale enlargement/compression. In
mathematical language, this can be written as:

F2(x) = F1

(
x− θ
δ

)
θ ∈ R δ ∈ R

Which means that X2 is distributed as (X1 · δ) + θ and that the process is IC if
and only if θ = 0 and δ = 1. An alternative parametrization for the same model
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is as follows:

F1(x) = F

(
x− µ1

σ1

)
µ1 ∈ R σ1 ∈ R

F2(x) = F

(
x− µ2

σ2

)
µ2 ∈ R σ2 ∈ R

Where F is a CDF with location equal to 0 and scale equal to 1, µ1 and σ1 are the
unknown location and scale parameters of the IC distribution and µ2 and σ2 are
the location and scale parameters of the actual process distribution.

Assuming the location-scale model, let Sh denote the monitoring statistic ran-
dom variable of a Shewhart-type chart at step h and let R denote its run length
random variable when just the base signaling rule is used. In the general case,
Sh h = 1, ... are not independent, however, given the reference sample X1, they
become independent [9]. Moreover, since under the location-scale model the actual
process distribution F2 is constant over time, Sh h = 1, ... becomes also identically
distributed and the symbol S can be used to denote any of these random variables.
From these observations we can conclude that, given X1, R follows a geometric
distribution with success probability equal to the conditional signal probability
p(X1) = P (S > UCL ∪ S < LCL|X1), hence:

P (R = r|X1) = [1− p(X1)]r−1p(X1) (3.1)

E(R|X1) =
1

p(X1)
(3.2)

Var(R|X1) =
1− p(X1)

p(X1)2
(3.3)

The distribution of R conditional to X1 is often referred to as the conditional run
length distribution and the conditional expectation of R given X1 is also known
as conditional average run length and will be denoted with CARL(X1).

In order to obtain the unconditional run length distribution, its average and
variance, the laws of total probability, total expectation and total variance can
be applied. If we assume that the in-control process admits a probability density
function2 f1(x), then:

2Using measure theory and in particular the Radon–Nikodym theorem, we know that a prob-
ability density function can be defined if and only if the underlying probability measure is abso-
lutely continuous with respect to the Lebesgue measure.
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PR(r) =

∫ +∞

−∞
...

∫ +∞

−∞
P (R = r|X1 = x1) f1(x11)dx11 ... f1(x1m)dx1m (3.4)

=

∫ +∞

−∞
...

∫ +∞

−∞
[1− p(x1)]r−1p(x1) f1(x11)dx11 ... f1(x1m)dx1m

E(R) =

∫ +∞

−∞
...

∫ +∞

−∞
E(R|X1 = x1) f1(x11)dx11 ... f1(x1m)dx1m (3.5)

=

∫ +∞

−∞
...

∫ +∞

−∞

1

p(x1)
f1(x11)dx11 ... f1(x1m)dx1m

Var(R) = E(Var(R|X1)) + Var(E(R|X1)) (3.6)

E(R) is the unconditional average run length3 (ARL) and
√

Var(R) is the un-
conditional run length standard deviation (SDRL).

Both the conditional and the unconditional run length distributions can be useful
in order to assess the performance of control charts. The conditional distribution
might be preferred from a practical point of view since users would most likely
assess the performance without “averaging” over all possible reference samples [6].
Instead, they typically want to judge a method based on its performance with the
particular reference sample in use. On the other hand, the unconditional distri-
bution is useful for comparing different charts under specific theoretical process
distributions (Normal, Laplace, Gamma...). In this kind of comparison, as will be
discussed in more detail later on, it is important to study also how the run length
distribution is affected by the variability within the reference sample.

Estimating run length distribution using Monte Carlo simulations

Equations 3.4 and 3.5 may be difficult to use in practice because of the m-
dimesional integrals involved. Therefore, in order to estimate the run length dis-
tribution, Monte Carlo simulations are often used instead. Algorithm 2 shows an
implementation of this idea. In each simulation, the reference sample of size m is
generated from the IC distribution F1. Then, a sequence of test samples of size n
is generated from the actual process distribution F2(x) = F1

(
x−θ
δ

)
, until the first

OOC signal occurs. The number of samples generated before the OOC signal is
the simulated run length. By averaging between a large number of simulated run
lengths the Monte Carlo estimate of the ARL is obtained.

3The adjective “unconditional” is typically omitted.
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Algorithm 2 Monte Carlo estimation of the run length for a Stewhart-type chart
Input
nSim: the number of simulations
F1: the in-control distribution of the process
T : the monitoring statistic. This function should take as input a reference and a
test sample and should produce a real number
UCL,LCL: the upper and lower control limits
n1, n2: the reference and test samples sizes
θ, δ: regulates together the location shift and scale enlargement/compression of
the actual process distribution. θ = 0 and δ = 1 corresponds to an IC process
runLengthCap: a maximum limit for the run length in each simulation
Output
runLengthArray : an array of length nSim containing the simulated run lengths

1: runLengthArray ← an uninitialized array of size nSim
2: for i = 0 to nSim− 1 do
3: x1 ← a random sample of size n1 from F1

4: runLength← 0
5: repeat
6: runLength← runLength+ 1
7: x2 ← a random sample of size n2 from F1

8: x2 ← (x2 · δ) + θ
9: stat← T (x1,x2)

10: until stat > UCL or stat < LCL or runLength = runLengthCap
11: runLengthArray[i]← runLength

12: return runLengthArray

3.2.3 Calibration

Control charts’ control limits are typically decided as a function of a desired (tar-
get) ARL0 [6]. The problem of searching the control limits corresponding to a given
ARL0 is also known as control chart calibration. In order to calibrate a Shewhart-
type control chart, one possible idea is solving Equation 3.5 for UCL and/or LCL
with a given ARL0, however, this strategy is not easy to follow in practice since
many integrals are involved [27]. Another possible approach is based on the com-
bination of Monte Carlo simulations with interpolation techniques. This idea is
simple to implement using the computational power of modern computers and
requires just a fast algorithm for the calculation of the monitoring statistic and
a reasonable interpolation strategy. Algorithm 3 and Algorithm 4 illustrates the
first and the second part respectively of a possible pseudo-code implementation.
This particular implementation assumes a single limit (LCL) and provides only a
point estimate for it:

1. Algorithm 3 (first part - simulation): takes as input the IC process distribu-
tion F1, the sample sizes n1 and n2, the monitoring statistic T and a sequence
of lower control limits lclSeq for which the run length should be recorded in
each simulation. This algorithm then simulates the IC process and produces
a matrix of run lengths of size nSim × length(lclSeq). lclSeq is a param-
eter that is difficult to adjust and typically requires some knowledge of the
monitoring statistic distribution or just some trial and error.
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2. Algorithm 4 (second part - interpolation): takes as input the result of Al-
gorithm 3, the same sequence of lower control limits lclSeq and a target
ARL0 value. Algorithm 4 then calculates the ARL associated to each con-
trol limit and use an interpolation strategy in order to find the control limit
corresponding to the target ARL0 value. Figure 3.4 shows an example of the
result of this second part of the calibration (note that a UCL is used instead
of a LCL).

Algorithm 3 First part of the unconditional calibration procedure for Stewhart-
type control charts using only a LCL
Input
nSim: the number of simulations
F1: the in-control distribution of the process
T : the monitoring statistic. This function should take as input a reference and a
test sample and should produce a single real number
n1, n2: the reference and test samples sizes
lclSeq: the sequence of lower control limits for which the run length should be
recorded in each simulation. Values should be sorted in decreasing order
runLengthCap: a maximum limit for the run length in each simulation
Output
resultMatrix a matrix of size nSim× length(lclSeq) with the run lengths associ-
ated to each limit in lclSeq obtained by simulation

1: resultMatrix← an uninitialized matrix of size nSim× length(lclSeq)
2: for simIdx = 0 to nSim− 1 do
3: x1 ← a random sample of size n1 from F1

4: runLength← 0
5: lclIdx← 0
6: while true do
7: runLength← runLength+ 1
8: x2 ← a random sample of size n2 from F1

9: stat← T (x1,x2)
10: while lclIdx < length(lclSeq) & stat ≤ lclSeq[lclIdx] do
11: resultMatrix[simIdx, lclIdx]← runLength
12: lclIdx← lclIdx+ 1

13: if lclIdx = length(lclSeq) then
14: break
15: if runLength = runLengthCap then
16: while lclIdx < length(lclSeq) do
17: resultMatrix[simIdx, lclIdx]← runLengthCap
18: lclIdx← lclIdx+ 1

19: break
20: return resultMatrix
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Algorithm 4 Second part of the unconditional calibration procedure for Stewhart-
type control charts using only a LCL
Input
runLengthMatrix the output of the first part of the procedure (Algorithm 3)
lclSeq: the sequence of lower control limits used in in the first part of the procedure
(Algorithm 3)
targetArl : the nominal ARL0

Output
LCL : the lower control limit

1: arls← rowMeans(runLengthMatrix) . ARL0 associated with each control
limit

2: LCL← interpolate(arls, lclSeq, targetArl)
3: return LCL

Figure 3.4: Scatter plot of the estimated ARL0 versus the corresponding UCL for
a X control chart and a standard normal distribution. The red curve corresponds
to a linear interpolation of the points. The horizontal line represents the UCL
value associated with ARL0 = 500 (vertical line).

Effect of the variability within the reference sample It is important to
observe that the proposed calibration problem is not conditional to a specific ref-
erence sample. A relevant consequence is that, after the calibration, the ARL0 can
vary substantially depending on the reference sample in use. In practical applica-
tions, this variability can constitute a problem since the actual ARL0 shouldn’t be
too distant from the nominal value. Therefore, when a control chart is analyzed,
it is important to study also the conditional run length distribution. This can be
done for instance using the approach described in [27], which will also be applied
in this Thesis to analyze the control charts presented in Chapter 4.
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Effect of the process distribution Another important aspect of the calibra-
tion problem is that the ARL0 can be affected by the shape of the underlying
distribution. Consider for example a control chart that has been calibrated for
ARL0 = 500 under the standard normal distribution. If the true IC process distri-
bution is not standard normal, then the true ARL0 may be very distant from the
target of 500. When there is limited or lack of knowledge about the underlying
process distribution, it is desirable to have control charts whose IC performance
does not depend on the shape of the distribution [6] [4, p. 34]. These control
charts are called distributon-free control charts [7, p.305] [8, p.445]. The con-
cept of distribution-free charts is very close to that of non-parametric tests: they
are both devised to get rid of questionable distributional assumptions but in two
different contexts.
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Chapter 4

Multi-aspect NPC control charts

In this Chapter, we describe the multi-aspect NPC scheme for control charts and
analyze some practical applications.

Starting by introducing the general concept of multi-aspect NPC charts, we will
then describe our software implementation that helped us answer some important
research questions concerning these charts. We end up with the presentation and
performance analysis of some multi-aspect NPC charts for the location and joint
location-scale monitoring problems.

4.1 General concept

This framework described in Section 2.5.4 suggests a Shewhart-type charting pro-
cedure where a sequence of dependent two-samples NPC tests is considered. The
adopted general statistical model and notation is described in Section 3.1.2. Then,
the monitoring statistic at step h for a NPC control chart is given by:

th = ψ(λ1h, ..., λph) (4.1)

Which is the same quantity computed at step 3 of the NPC algorithm described
in Section 2.5.4 applied to the samples X1 and X2h. For performance reasons, the
permutation p-value at step h for partial test i, denoted with λih, can be estimated
using only an arbitrary number of randomly selected permutations as described in
Section 2.5.3. When p-value estimation is used, the monitoring statistic becomes:

t̂h = ψ(λ̂1h, ..., λ̂ph) (4.2)

An important feature of NPC charts is that they use only a single control limit
regardless of the alternatives used for the partial tests. A relevant consequence is
that the calibration procedure described in Section 3.2.3 is generic enough to be
used with any NPC control chart.

Similarly to the NPC framework for statistical tests, also NPC control charts
are a very flexible tool. They were first introduced in [11] in order to address the
multivariate location monitoring problem, but they can be easily adapted to multi-
aspect problems, like the joint location-scale monitoring problem. Furthermore,
they can also be used to combine together multiple data aspects (viewpoints of the
data), each providing important insights under specific classes of distributions.

To clarify the terminology, in this Thesis, with multi-aspect NPC control charts,
we refer to control charts that use 4.1 or 4.2 in order to combine different tests
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each addressing a different aspect of the monitoring problem or a different data
viewpoint, so we do not differentiate between the two cases.

4.2 Implementation: the npcharts R package

An important obstacle to overcome in order to implement calibration and evalua-
tion routines for multi-aspect NPC control charts is that the monitoring statistic
for these charts is much more computationally intensive than other traditional
Shewhart-type charts. Indeed, to obtain 4.2, a sufficiently large number of permu-
tations of the data must be computed and then, for each of these permutations,
each partial statistic must be evaluated.

The npcharts R package has been designed with the specific goal of making
calibration and evaluation of multi-aspects NPC charts possible in practice. This
package leans on different tools, techniques and ideas which are explained below.

Complexity optimization for linear rank statistics For linear rank statis-
tics, the permuted values of the statistic can be precomputed, sorted and saved in
memory. At each time step of the calibration and evaluation routines (Algorithms
3 and 2), using this idea, the calculation of the p-value amounts to an upper bound
search1 in a sorted array (which is similar to a binary search). The upper bound
search can be implemented with a temporal complexity of O(log(B)) where B is
the number of the considered random permutation.

Support of a compiled language In computer science, it is well known that
compilers can be used to obtain a considerable speed advantage making the most
out of the underlying computer architecture. R is not a compiled language and
thus it may lead to important overheads when used to implement computationally
intensive tasks. Fortunately, there exists a well-known R package, Rcpp [13], which
makes the integration between R and C++ easy in practice. C++ is a compiled
language that can be used to produce a very efficient program. Rcpp allowed
us to write efficient C++ functions which can then be easily called from R. The
integration with R was very important in our software project design because R
is the most popular programming platform for statisticians, who are the main
audience of the methods we propose.

A fast PRNG which supports parallel streams In our software package,
we adopted Xoshiro256+ [2], a fast Pseudo Random Number Generator (PRNG)
which supports non-overlapping sequences of pseudo random numbers for parallel
computing applications. The Xoshiro256+ generator has a period of 2256 − 1 and
provides a constant-time function for jumps of size 2128 in the state cycle. The
jump function can be used to 2128 independent sequences each of which can be
consumed in a separate execution thread.

Parallelization of Monte Carlo simulations Parallel computing is an impor-
tant computer science technique that can be used to improve the performance of a
program by executing computations in parallel. The parallel computing approach

1Searching the upper bound means searching the first number in the sorted array which is
greater than the search argument (here the observed value of the test statistic).
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takes advantage of modern multi-core processors, GPUs and computer clusters.
Using the non-overlapping streams provided by Xoshiro256+, the simulations used
in the calibration and evaluation procedures for control charts can be executed in
parallel. This idea has been implemented in the npcharts package using the
multi-core strategy and the OpenMP software framework [12].

Application of the notion of permutational equivalence As described in
Section 2.5.2, studying permutational equivalence of statistics allows writing faster
algorithms by selecting the equivalent statistic which requires the minimum num-
ber of arithmetic operations.

Currently, we have decided to officially support only NCP combinations of linear
rank tests. Besides performance reasons, the rationale for this decision will be
addressed extensively in Section 4.3.

Appendix A includes a snapshot of the current R Application Programming
Interface (API) of the npcharts R package. The included functions are:

• npcharts.setseed: should be used to set the seed of the internal PRNG
(Xoshiro256+)

• compute monitoring statistic: should be used to compute the ob-
served value of the monitoring statistic given a reference sample and a test
sample

• compute permutation distribution: should be used to precompute
the (estimated) permutation distribution of the linear rank statistics statis-
tics to be combined with NPC

• evaluation.unconditional: implements Algorithms 2

• calibration.unconditional: implements Algorithm 3

Below, we show an R script that, using the npcharts API, performs the cali-
bration and evaluation of the multi-aspect NPC Wilcoxon-Klotz chart, which will
be analyzed in detail in Section 4.5. The execution time of the entire script is
around 8 seconds on a system with a Ryzen 5600X 6-core processor and 16 GB of
DDR4 RAM.

l i b r a r y ( npcharts )
c a l i b . seed = 8989
npcharts . s e t s e ed ( c a l i b . seed )

# Ca l ib ra t i on parameters
c a l i b .m = 100
c a l i b . n = 5
c a l i b . mon i to r s ta t . type= ”npc”
c a l i b . mon i to r s ta t . params = l i s t (

” s t a t i s t i c s ”= l i s t (
” centered wi lcoxon rank sum ” ,
” k l o t z s t a t i s t i c ”

) ,
” p e rmuta t i on d i s t r i bu t i on s”= l i s t (

compute permutat ion d i s t r ibut ion (” centered wi lcoxon rank sum ” , c a l i b .m, c a l i b . n , 10000) ,
compute permutat ion d i s t r ibut ion (” k l o t z s t a t i s t i c ” , c a l i b .m, c a l i b . n , 10000)

) ,
” t a i l s ”= l i s t (

” two s ided ” ,
” r i gh t ”

) ,
” combin ing funct ion”=” f i s h e r ”

)
c a l i b . i s u p p e r l im i t = FALSE
ca l i b . l im i t s s e q = seq (−7 , −9.2 , −0.001)
c a l i b .ARL0. t a r g e t = 500
c a l i b . c ha r t i d=”npc w i l coxon k lo t z ”
c a l i b . d i s t = ”norm”
c a l i b . d i s t . params = l i s t (”mean” = 0 , ” sd” = 1)
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c a l i b . nsim = 10000
c a l i b . cap = 50000

s t a r t . time = proc . time ( )

# Ca l ib ra t i on
c a l i b . r l s = c a l i b r a t e . uncond i t i ona l (

m = ca l i b .m,
n = ca l i b . n ,
d i s t r i b u t i o n k e y = ca l i b . d i s t ,
d i s t r i bu t i on pa r ame t e r s = c a l i b . d i s t . params ,
mon i t o r i n g s t a t i s t i c t y p e = ca l i b . mon i to r s ta t . type ,
mon i t o r i n g s t a t i s t i c p a r ame t e r s = c a l i b . mon i to r s ta t . params ,
l im i t s s e q = ca l i b . l im i t s s e q ,
i s u p p e r l im i t = c a l i b . i s upp e r l im i t ,
nsim = ca l i b . nsim ,
run l ength cap = ca l i b . cap

)
c a l i b . a r l s = colMeans ( c a l i b . r l s )
p l o t ( c a l i b . l im i t s s e q ˜ c a l i b . a r l s , pch=20, cex =0.02 , xlab=”ARL” , ylab =”UCL”)
afn = approxfun ( c a l i b . a r l s , c a l i b . l im i t s s e q , t i e s = mean)
curve ( afn , add=TRUE, co l=”red ”)
c a l i b . l im i t = afn ( c a l i b .ARL0. t a rg e t )
ab l i n e (h = ca l i b . l im i t )
ab l i n e (v = ca l i b .ARL0. t a rg e t )

# Evaluat ion parameters
c a l i b . eva l . d i s t = ” l ap l a c e ”
c a l i b . eva l . d i s t . params = l i s t (” l o c a t i o n”= 0 , ” s c a l e”= 1)
c a l i b . eva l . nsim = ca l i b . nsim

# Evaluat ion
i f ( c a l i b . i s u p p e r l im i t ){

l im i t s = l i s t (” uc l”=c a l i b . l im i t )
} e l s e {

l im i t s = l i s t (” l c l ”=c a l i b . l im i t )
}
r e s = eva luate . uncond i t i ona l (

m = ca l i b .m,
n = ca l i b . n ,
l im i t s = l im i t s ,
l o c a t i o n s h i f t = 0 ,
s c a l e mu l t i p l i e r = 1 ,
d i s t r i b u t i o n k e y = ca l i b . eva l . d i s t ,
d i s t r i bu t i on pa r ame t e r s = c a l i b . eva l . d i s t . params ,
mon i t o r i n g s t a t i s t i c t y p e = ca l i b . mon i to r s ta t . type ,
mon i t o r i n g s t a t i s t i c p a r ame t e r s = c a l i b . mon i to r s ta t . params ,
nsim = ca l i b . eva l . nsim ,
run l ength cap = ca l i b . cap

)
p r in t (mean( r e s$ run l eng th s ) )

durat ion . time = proc . time ( ) − s t a r t . time
pr in t ( durat ion . time )

4.3 Research questions

Considering the practical importance of the distribution-free notion for control
charts presented in Section 3.2.3, two crucial research questions regarding multi-
aspect NPC control charts are the following:

1. Are multi-aspect NPC control charts distribution-free in general?

2. If they are not distribution-free in general, does combining only linear rank
tests lead to a distribution-free NPC chart?

The first question is motivated by the idea that, since multi-aspect NPC control
charts use only p-values, their IC performance could be unaffected by the under-
lying process distribution. As for the second question, it can be shown that the
answer is “yes”. Indeed, the distribution-free-ness proof given in [6] for the Mann-
Whitney chart can be extended also to any monitoring statistic whose conditional
distribution given X1 depends only on F2(x11), ..., F2(x1m). This condition is sat-
isfied by linear rank statistics and any deterministic function of them, like the ones
given in 4.1 and 4.2.

To answer the first question and check the correctness of our intuition for the
second question, we used the simulation approach for studying the IC performance
of multi-aspect NPC charts and how they are affected by the process distribution.
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For this experiment, we considered the multi-aspect NPC charts derived from the
Tri-aspect test presented in Section 2.6.4. By combining all the three data aspects
Ta, Tb and Tc, the Cabc chart is obtained, which uses as monitoring statistic:

hCabc = min(λTah, λTbh, λTch)

If only two aspects are used, then the control charts Cab, Cac and Cbc are obtained,
whose respective monitoring statistics are given by:

hCab = min(λTah, λTbh)

hCac = min(λTah, λTch)

hCbc = min(λTbh, λTch)

Note that Cbc combines only linear rank tests, whereas Cabc, Cab and Cac use
also a statistic which does not belong to the linear rank family (the difference of
means, Ta).

Table 4.1 shows the ARL0 of Cabc, Cab, Cac and Cbc under several process distri-
butions after being calibrated with the Normal(0, 1) distribution for ARL0 = 250.
The choice of using ARL0 = 250 instead of more common values like 370 or 500
is motivated by the fact that, for the charts that incorporates the Ta aspect, the
permutation distribution has to be recomputed in each monitoring step, thus the
required computational time for the simulations is very high. The sample sizes
used in the experiment are n1 = 100 and n2 = 10, the number of simulations
is 10000 and for the calculation of λTah, λTbh and λTch a positive-shift one-sided
alternative and 3500 permutations are used.

To have an additional comparison, Table 4.1 shows also the ARL0 of the single-
aspect charts X2, Tb and Tc which have been calibrated and evaluated using the
same parameters adopted for the multi-aspect charts. To ensure a fair comparison,
also for the single-aspect charts, the positive-shift one-sided version of the charts
is used.

Distribution X2 Tc Tb Cab Cac Cbc Cabc
Normal(0, 1) 250.7 246.6 281.7 253.2 253.7 254.4 238.6
Laplace(1, 1√

2
) 185.5 242.7 279.2 256.0 225.8 249.8 211.3

X1 = Z − 1, Z ∼Exp(1) 79.6 247.0 268.8 271.1 221.3 260.0 211.9
X1 = Z√

5
, Z ∼Student(2.5) 144.8 245.7 266.3 299.8 204.4 249.9 200.0

Cauchy(0, 1) 3.6 253.6 276.4 336.3 179.6 253.0 179.4

Table 4.1: ARL0 of the multi-aspect control charts Cabc, Cab, Cac and Cbc under
different process distributions after a calibration for ARL0 = 250 with the standard
normal distribution.

From the results, we observe that ARL0 is close to 250 for all control charts
under the Normal(0, 1) distribution, with Tb as an exception. This was expected
since control charts have been calibrated under Normal(0, 1) for ARL0 = 250. As
for Tb, it should be considered that, since the statistic assumes only min(n1, n2)+1
possible values, an accurate calibration is is very unlikely when the sample sizes are
fixed. Turning now our attention to the other distributions, we see that Cbc is the
only multi-aspect control chart whose performance seems to remain close to the
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calibration target. This is particularly visible with the Cauchy distribution. The
simulation results then suggest that NPC multi-aspect charts are not distribution-
free in general (the answer to research question 1 is “no”). However, for the
chart that combines exclusively linear rank tests (Cbc), the results show that the
distribution-free-ness property is maintained as expected.

4.4 Multi-aspect NPC control charts for location

monitoring

In this section we present and analyze some distribution-free multi-aspect NPC
control charts for the location monitoring problem in the standards unknown case.
All these charts can be easily implemented using the npcharts package.

4.4.1 Proposed control charts

The control chart based on the Mann-Whitney statistic [6] is currently the main
landmark of distribution-free charts for the location monitoring problem. Since
the Mann-Whitney statistic is one-to-one increasingly related to the Wilcoxon rank
sum statistic once fixed the sample sizes, the charts based on these two statistics
are equivalent in terms of performance. Besides the Mann-Whitney chart, not
many other distribution-free control charts have been proposed. In this thesis, we
propose three distribution-free control carts for the location monitoring problem:

• Van der Waerden chart: based on a single aspect, the van der Waerden
statistic. This statistic provides a test with a power higher than the Mann-
Whitney test when data are normally distributed, while the power may be
lower for any other distribution. Therefore, we expect the van der Waerden
chart to exhibit better OOC performance than the Wilcoxon chart when the
data distribution is normal and worse performance for other distributions.

• NPC Wilcoxon-Waerden chart: obtained from the NPC (Fisher) combination
of the Wilcoxon rank sum test with the van der Waerden test. With this
chart, we would like to achieve better performance than the Wilcoxon chart
when data are normally distributed and performance close to the Wilcoxon
chart when the distribution is different.

• NPC percentiles(42,46) chart: based on the NPC (Fisher) combination of
two different instances of the class of tests described in Section 2.6.5, one
with s1 = r1 = 0.42 and the other with s2 = r2 = 0.46. The rationale
for this combination is that the test corresponding to s1 = r1 = 0.42 has a
greater power than the Wilcoxon rank sum test under a normal distribution,
while the test corresponding to s2 = r2 = 0.46 is useful as an alternative
data viewpoint when the distribution is not normal.

Since all these charts are based exclusively on linear rank statistics and functions
of them, following the arguments of Section 4.3, we already know that they are
distribution-free.
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4.4.2 Unconditional IC/OOC performance analysis

In order to compare the proposed charts with the Mann Whitney/Wilcoxon chart,
we carried out a comparative simulation study under the location model described
in Section 3.2.2 with several distributions and different location shifts.

Methodology

First, we calibrate control charts for ARL0 = 370, n1 = 100 and n2 = 5 using
Algorithm 3 and Algorithm 4 under the standard normal distribution. For all
control charts, the two-sided version has been considered.

After the calibration, we use Algorithm 2 with 50000 simulations in order to
assess the uncoditional run length distribution with different values of the location
shift parameter θ, and under the following distributions (also shown in Figure 4.1):

• Standard normal: represents a thin-tailed and symmetric distribution.

• Laplace (0, 1/
√

2): represents a heavy-tailed and symmetric distribution.

• Gamma(shape = 4, scale = 2) shifted by −2 so that the mean is equal to
0. This distribution, also proposed in [19] for valve leakage monitoring, has
been considered to assess performance with asymmetric data. Because of
the asymmetry, performance may be different under positive and negative
location shifts of the same magnitude. Therefore, with this distribution,
both positive and negative location shifts are considered.

All these distributions have mean equal to 0 and standard deviation equal to
1. Having normalized distributions is important since it allows us to compare
performance in a fair manner also across different distributions.

For NPC charts, B = 10000 permutations are used to estimate the p-values.

Results

The results are shown in Table 4.2, Table 4.3, Table 4.4 and Table 4.5. The result
format for all the tables is the following: the first row of each of the cells shows
the ARL and [SDRL] values, while the second row shows the 5th, 50th and 95th
percentiles of the run length distribution (in this order).

Under the standard normal distribution (Table 4.2), the van der Waerden chart
outperforms the Wilcoxon chart as expected. The performance of the NPC Wilcoxon-
Waerden chart seems in the middle between the Wilcoxon and the van der Waerden
charts, but closer to the van der Waerden. With a location shift of 0.5 standard
deviations, the NPC Wilcoxon-Waerden is, on average, around 5.8% faster at de-
tecting the shift than the Wilcoxon chart. With a location shift of 1 standard
deviation units this speedup increases to around the 10.5%.

With the Laplace distribution (Table 4.3) the Wilcoxon chart seems to have
the best OOC performance. With a location shift of 0.5 standard deviations, the
Wilcoxon chart is, on average, around 16.5% faster at detecting the shift than
the NPC Wilcoxon-Waerden chart. With a location shift of 1 standard deviation
units this speedup decreases to around the 13.2%. In comparison, with the van
der Waerden chart, the speedups are 34.1% for θ = 0.5 and 36.8% for θ = 1.
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Under the Gamma distribution, for positive location shifts (Table 4.4), we note
that all charts seems to have some difficulties with small values of θ. In particular,
for θ = 0.1, the ARL of all charts increase instead of decreasing. For θ ≥ 0.2 the
Wilcoxon chart seems better than the NPC Wilcoxon-Waerden chart, however, for
larger location shifts, the speedup becomes smaller and smaller. With negative
location shifts (Table 4.5), it is the NPC Wilcoxon-Waerden that outperforms the
Wilcoxon chart. However, in contrast to the pattern seen for positive shifts, in
this case the speedup seems to remain constant even for larger shifts.

Finally, with all distributions, the performance NPC percentiles(42,46) chart
seems very close to those of the Wilcoxon chart if we consider the results of all
four charts together.

(a) (b)

(c)

Figure 4.1: PDF of the four distributions used for the performance evaluation. (a)
The standard normal distribution. (b) The Laplace(0, 1/

√
2) distribution. (c) The

Gamma(shape = 4, scale = 2) distribution shifted by −2.
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θ δ Wilcoxon Van der Waerden NPC percentiles(42,46) NPC Wilcoxon-Waerden
0 1 370.8 [495.8]

15, 214, 1231
367.3 [526.7]
14, 197, 1275

366.4 [484.1]
15, 210, 1223

368.4 [512.8]
14, 204, 1252

0.1 1 324.6 [453.2]
12, 183, 1096

323.6 [479.7]
11, 170, 1131

327.3 [449.1]
12, 182, 1113

326.1 [475.1]
12, 177, 1131

0.2 1 234.9 [346.1]
8, 123, 824

233.3 [388.4]
7, 113, 837

229.5 [338.6]
8, 121, 792

225.4 [339.7]
8, 116, 801

0.3 1 144.1 [216.3]
5, 75, 506

140.2 [242.4]
4, 66, 503

142.5 [223.9]
5, 73, 502

139 [218.7]
5, 70, 497

0.4 1 83.6 [125.8]
3, 44, 289

79.5 [133.5]
3, 39, 283

83 [132.4]
3, 43, 290

81.9 [131.4]
3, 42, 286

0.5 1 49.5 [70.1]
2, 28, 168

46.8 [78.1]
2, 24, 165

48.8 [69.4]
2, 27, 168

46.8 [72.6]
2, 25, 161

0.6 1 30.2 [46.1]
2, 17, 100

27.7 [42.6]
1, 15, 95

30.1 [44.1]
2, 17, 101

28.4 [41.2]
1, 16, 96

0.7 1 19.2 [24.6]
1, 11, 63

17.3 [24.8]
1, 10, 57

19 [24.7]
1, 11, 62

17.7 [23.3]
1, 10, 59

0.8 1 12.8 [15.7]
1, 8, 41

11.2 [14.6]
1, 7, 37

12.4 [15.4]
1, 7, 39

11.7 [15]
1, 7, 37

0.9 1 8.8 [10.3]
1, 6, 27

7.7 [9.3]
1, 5, 24

8.5 [10.1]
1, 5, 27

8 [9.3]
1, 5, 25

1 1 6.3 [6.8]
1, 4, 19

5.4 [6.1]
1, 3, 16

6.1 [6.6]
1, 4, 19

5.7 [6.2]
1, 4, 17

Table 4.2: Unconditional performance of the Wilcoxon, Van der Waerden,
NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts under the standard
normal distribution.

θ δ Wilcoxon Van der Waerden NPC percentiles(42,46) NPC Wilcoxon-Waerden
0 1 366.8 [485.9]

15, 212, 1217
364.1 [526.8]
14, 197, 1257

364.6 [485.3]
15, 209, 1233

368.7 [502.5]
14, 208, 1249

0.1 1 325.2 [451.3]
12, 179, 1123

329.7 [503.4]
11, 169, 1167

324.3 [441.6]
12, 178, 1112

325.4 [462.3]
12, 175, 1134

0.2 1 226.4 [363.1]
7, 112, 817

250 [427.7]
7, 116, 913

230.9 [363.6]
7, 114, 837

236.1 [373.9]
7, 116, 853

0.3 1 135.3 [235.3]
4, 63, 492

158.2 [302.4]
4, 68, 591

138.8 [242.3]
4, 63, 519

145.1 [268.1]
4, 65, 534

0.4 1 74.4 [134.5]
3, 34, 271

93.7 [184.9]
3, 40, 351

77.7 [145]
3, 35, 287

82.3 [162.9]
3, 36, 303

0.5 1 39.9 [82.6]
2, 18, 142

53.5 [108.7]
2, 23, 194

41.8 [77.6]
2, 19, 150

46.5 [93.1]
2, 21, 168

0.6 1 22.6 [41.1]
1, 11, 79

31.4 [67.4]
1, 14, 112

23.5 [41.2]
1, 11, 83

25.9 [50.9]
1, 12, 92

0.7 1 13.1 [22]
1, 7, 44

18.6 [35]
1, 9, 65

13.5 [22.4]
1, 7, 45

14.9 [24.9]
1, 8, 51

0.8 1 8.2 [12]
1, 5, 27

11.5 [20.2]
1, 6, 40

8.4 [13.5]
1, 5, 28

9.4 [15.1]
1, 5, 31

0.9 1 5.4 [7.1]
1, 3, 17

7.5 [11.9]
1, 4, 25

5.5 [7.3]
1, 3, 17

6.2 [9.1]
1, 4, 20

1 1 3.8 [4.3]
1, 2, 11

5.2 [7.9]
1, 3, 16

3.9 [4.6]
1, 2, 12

4.3 [5.6]
1, 3, 13

Table 4.3: Unconditional performance of the Wilcoxon, Van der Waerden,
NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts under the
Laplace(0, 1/

√
2) distribution.
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θ δ Wilcoxon Van der Waerden NPC percentiles(42,46) NPC Wilcoxon-Waerden
0 1 363.7 [476.7]

15, 211, 1208
365.9 [531.1]
13, 197, 1271

366.8 [488.5]
15, 209, 1233

367.3 [487.3]
14, 207, 1255

0.1 1 400.6 [562.2]
15, 217, 1381

441.4 [748.7]
13, 214, 1572

408 [587.5]
15, 219, 1419

429.3 [675.6]
14, 221, 1521

0.2 1 335.1 [589.6]
10, 161, 1199

368.4 [735.9]
10, 157, 1343

331 [544.2]
10, 161, 1201

351.9 [630.3]
10, 161, 1289

0.3 1 217.1 [397.4]
7, 101, 788

246.2 [524.2]
6, 99, 934

221.8 [403.2]
7, 102, 809

227.7 [436.7]
6, 99, 846

0.4 1 133.7 [253.9]
4, 62, 486

147.8 [322.7]
4, 61, 541

134.8 [246.5]
4, 62, 488

138.8 [261.1]
4, 61, 513

0.5 1 81.9 [149.5]
3, 39, 290

90.1 [182.4]
3, 38, 334

82.7 [154.8]
3, 39, 294

82.8 [154.8]
3, 38, 301

0.6 1 50 [87.7]
2, 24, 176

54.8 [105.8]
2, 24, 200

50.3 [85.6]
2, 24, 179

51.9 [90.2]
2, 24, 187

0.7 1 30.6 [48.3]
1, 16, 109

34.5 [66.6]
1, 16, 123

31.9 [54.9]
1, 16, 112

32.4 [56.4]
1, 16, 115

0.8 1 20.1 [31.5]
1, 10, 69

22.5 [50.4]
1, 11, 80

20.2 [31.2]
1, 10, 70

20.5 [33.1]
1, 10, 72

0.9 1 13.2 [19.4]
1, 7, 45

14.8 [25]
1, 7, 51

13.5 [22.1]
1, 7, 46

13.6 [21.5]
1, 7, 47

1 1 9 [13.1]
1, 5, 29

10.1 [17.2]
1, 5, 34

9.1 [13.4]
1, 5, 30

9.3 [14.6]
1, 5, 31

Table 4.4: Unconditional performance of the Wilcoxon, Van der Waerden,
NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts under the
Gamma(4, 1/2) distribution shifted by −2.

θ δ Wilcoxon Van der Waerden NPC percentiles(42,46) NPC Wilcoxon-Waerden
0 1 368.1 [485.6]

15, 213, 1227
368.1 [546]

13, 197, 1283
369.5 [497.9]
15, 210, 1238

369.8 [508.2]
14, 207, 1252

-0.1 1 241 [313.9]
10, 140, 813

210.6 [298]
8, 115, 726

238.8 [316.6]
10, 138, 803

223.7 [293.4]
9, 128, 754

-0.2 1 131.2 [170.5]
5, 76, 444

98.2 [131.2]
4, 55, 334

126.4 [166.5]
5, 72, 430

112 [148.6]
5, 64, 380

-0.3 1 67 [84.5]
3, 40, 220

45.3 [58.4]
2, 27, 150

63.4 [79.2]
3, 38, 210

54.2 [69.4]
3, 32, 181

-0.4 1 36 [43.2]
2, 22, 116

23 [27.3]
1, 14, 74

34.2 [41.4]
2, 21, 111

27.9 [33.1]
2, 17, 90

-0.5 1 21.2 [24.1]
1, 13, 67

12.9 [14.2]
1, 8, 40

19.3 [21.7]
1, 12, 61

16 [17.6]
1, 10, 50

-0.6 1 13.3 [14.3]
1, 9, 41

8.1 [8.4]
1, 5, 24

12.2 [13.1]
1, 8, 37

9.8 [10.4]
1, 7, 30

-0.7 1 9.1 [9.3]
1, 6, 27

5.5 [5.4]
1, 4, 16

8.2 [8.3]
1, 6, 24

6.7 [6.6]
1, 5, 20

-0.8 1 6.4 [6.3]
1, 4, 19

4 [3.6]
1, 3, 11

5.8 [5.7]
1, 4, 17

4.8 [4.5]
1, 3, 14

-0.9 1 4.8 [4.6]
1, 3, 14

3.1 [2.6]
1, 2, 8

4.4 [4.1]
1, 3, 12

3.6 [3.2]
1, 3, 10

-1 1 3.8 [3.4]
1, 3, 10

2.5 [2]
1, 2, 6

3.5 [3.1]
1, 2, 10

2.9 [2.4]
1, 2, 8

Table 4.5: Unconditional performance (negative shifts) of the Wilcoxon,
Van der Waerden, NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts
charts under the Gamma(4, 1/2) distribution shifted by −2.
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4.4.3 Conditional IC performance analysis

Besides evaluating the unconditional performance, we also studied the performance
conditional to specific categories of the reference samples.

Methodology

After a calibration with ARL0 = 370, the methodology is the same proposed in
[27]. We use Algorithm 2 with 50000 run length simulations. Each run length
simulation is then classified according to two criteria, the value of the reference
sample mean and the value of the reference sample standard deviation. For both
of these two criteria, 7 percentile-based bins are used:

• 5th percentile or lower: very high downward bias

• between the 5th and the 25th percentiles: moderately high downward bias

• between the 25th and the 45th percentiles: low downward bias

• between the 45th and the 55th percentiles

• between the 55th and the 75th percentiles: low upward bias

• between the 75th and the 95th percentiles: moderately high upward bias

• beyond the 95th percentiles: high upward bias

Therefore, each of the 50000 run length simulations is categorized in a 7× 7 way
table depending on the value of the corresponding reference sample mean and SD.
For each of the 49 bins, we record the proportion of simulations as well as the
sample mean and sample SD of the simulated run lengths that belong to the bin.
These last two values are, respectively, an estimate of the conditional ARL0 and
SDRL0 given the specified percentiles intervals of the reference sample mean and
SD with respect to their distributions.

The process distributions and sample sizes adopted in this study are the same
used in the unconditional evaluation (Section 4.4.2).

Results

The results are shown in Table 4.6 (Normal), Table 4.7 (Laplace) and Table 4.8
(Gamma). For each cell, the top value (in italics) shows the proportion, the
bottom left value shows the conditional ARL0 and the bottom right value (within
the square brackets) shows the conditional SDRL0. For the colored cells, the
conditional ARL0 value is within the “safe” interval [250, 900] proposed in [9].

In general, for all control charts and distributions, we see the same patterns
described in [9]. Given a range of percentiles of the reference sample mean, the
larger the SD, the larger the conditional ARL0. By contrast, given a specific range
of percentiles of the SD of the reference sample, the conditional ARL0 initially
increases with an increase in the sample mean, reaches a peak around between the
45 and the 55 percentiles of the sample mean distribution and then decreases.

Comparing the conditional performance between different charts, it seems that,
with all distributions, the Wilcoxon chart is the least sensitive to reference samples
that have extreme mean or SD. This is a rather surprising result because we have
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seen how the Wilcoxon chart is also the most sensitive chart to location shifts under
the Laplace distribution. We could therefore have expected that this increased
OOC responsiveness under the Laplace distribution translates also to an increased
sensitivity to extreme references samples, however, simulation seems to indicate
that this is not the case.
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percentiles
Sample SD

Sample mean percentiles
Wilcoxon

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
82.4 [97.7]

0.0027
128.3 [137.7]

0.0096
170.5 [178.5]

0.0099
169.3 [181.7]

0.005
151.8 [142]

0.0101
146.2 [160.7]

0.0104
86 [77.7]
0.0024

5-25
120.4 [120.2]

0.0101
186.6 [192.7]

0.0404
230.4 [237.6]

0.0396
229.8 [243.4]

0.02
236.5 [246.5]

0.0399
188.9 [206.1]

0.0395
132.3 [147.3]

0.0105

25-45
142.4 [150.9]

0.0095
264.6 [287]

0.0405
310.5 [321.8]

0.0413
311.9 [317.3]

0.019
311.6 [334.8]

0.0401
262.2 [271.4]

0.0396
168.6 [184.5]

0.0099

45-55
174.4 [171.7]

0.0051
285.9 [310.1]

0.0194
359.3 [395.7]

0.0198
361.2 [367.4]

0.0109
373.5 [388]

0.0199
296.4 [313]

0.0202
166.8 [162.1]

0.0047

55-75
209.5 [236.9]

0.0099
378 [421.2]

0.0414
431 [457]
0.0394

431.9 [439.2]
0.0196

433.3 [470.8]
0.0405

358.9 [377.5]
0.0399

216.2 [247.3]
0.0093

75-95
312.9 [344.9]

0.0101
513.8 [551.7]

0.039
612.9 [684.6]

0.0401
682.8 [734.9]

0.02
628.9 [668.5]

0.0394
511.7 [550.3]

0.0411
317.6 [356]

0.0103

95-100
421.1 [511.7]

0.0027
798.9 [916]

0.0098
1122 [1227.8]

0.0099
1145.3 [1248.8]

0.0055
1154.7 [1216.2]

0.01
815.8 [874.5]

0.0093
536.7 [547]

0.0029

percentiles
Sample SD

Sample mean percentiles
van der Waerden

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
72.2 [68.1]

0.0022
101.4 [106.9]

0.0098
113.2 [109.3]

0.0104
120.9 [108.3]

0.0053
115.8 [114.4]

0.0093
93.8 [94.1]

0.0098
68 [71.9]
0.0032

5-25
111.2 [110.8]

0.0094
167.6 [166.3]

0.0411
186.3 [195.1]

0.0393
198.4 [210.7]

0.0199
184.8 [192.8]

0.039
158.7 [165.1]

0.0413
105.1 [123.1]

0.01

25-45
147.4 [167.7]

0.01
228.6 [246.8]

0.0403
278.3 [282.7]

0.0397
288.6 [291.5]

0.0196
280.9 [290.8]

0.0405
229.8 [238.1]

0.0404
146.8 [165.3]

0.0095

45-55
184.4 [188.8]

0.0054
284.9 [285]

0.0198
348.8 [354.6]

0.0199
340.5 [351.6]

0.0095
341.5 [337.3]

0.0198
280.6 [298.4]

0.0204
190.7 [204.7]

0.0054

55-75
231.4 [256.4]

0.0108
360.1 [379.8]

0.0393
433.2 [442.9]

0.0409
442.5 [424.8]

0.0202
425.4 [422.8]

0.0407
354.4 [368]

0.0388
212.2 [242.6]

0.0093

75-95
292.8 [309.1]

0.0099
538.2 [575.9]

0.04
643.6 [677.2]

0.0395
673.4 [708.8]

0.0209
697.6 [714.6]

0.0405
550 [597.8]

0.039
329.9 [387.7]

0.0101

95-100
581.4 [711.8]

0.0022
1043.8 [1072.3]

0.0096
1273.7 [1446.7]

0.0103
1351 [1477.4]

0.0046
1320.8 [1364.9]

0.0103
1000.1 [1554.4]

0.0104
688.9 [800.9]

0.0026

percentiles
Sample SD

Sample mean percentiles
NPC percentiles(42,46)

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
86.8 [83.1]

0.0023
122.7 [125.4]

0.0101
143.7 [141.8]

0.0096
129 [132.1]

0.0048
160.5 [172.4]

0.0104
126.5 [132.3]

0.0105
84 [72.1]
0.0023

5-25
130 [154.7]

0.01
193.4 [203]

0.0401
228.7 [246.6]

0.0394
244.9 [256.6]

0.0197
221.9 [222]

0.0417
193.6 [203.5]

0.0396
117.9 [140.1]

0.0096

25-45
163.5 [175.1]

0.0094
259.4 [270.3]

0.0392
314.3 [312.9]

0.0399
323.9 [324.2]

0.0201
317.1 [323.2]

0.0405
255 [257.3]

0.0407
172.4 [186.4]

0.0102

45-55
220.1 [236.6]

0.0059
301.2 [310.1]

0.0189
374.6 [387.8]

0.0205
358.6 [348.1]

0.0099
365.4 [382.1]

0.0201
312.4 [334.2]

0.02
195.3 [180.4]

0.0047

55-75
213 [220.1]

0.0097
363.9 [388.7]

0.0413
435.2 [462.7]

0.0405
441.3 [446.3]

0.0202
453.9 [471.9]

0.0377
366.2 [385.3]

0.0402
232.4 [253.6]

0.0105

75-95
303.5 [326]

0.0096
525.4 [572.3]

0.0404
634.9 [674.3]

0.04
632 [648.6]

0.0202
627.2 [697.9]

0.04
496.2 [513]

0.0392
301 [298.1]

0.0107

95-100
551.8 [582.3]

0.0031
901 [985]

0.01
1080.5 [1252.7]

0.0101
1135.4 [1422.1]

0.0052
1073.3 [1248.1]

0.0096
820.2 [945.7]

0.0098
587.2 [899.6]

0.002

percentiles
Sample SD

Sample mean percentiles
NPC Wilcoxon-Waerden

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
83.7 [77.1]

0.0022
104.5 [106.9]

0.0101
133.4 [131.5]

0.0095
120.6 [119.2]

0.005
143.3 [157]

0.0101
113.1 [122]

0.0106
69 [64.6]
0.0025

5-25
117.1 [130.3]

0.0097
182.9 [192.2]

0.0397
208.1 [207.5]

0.0395
221.1 [228.9]

0.0196
213.3 [221.8]

0.0409
179.6 [190]

0.0403
110.2 [120.8]

0.0104

25-45
162.3 [185.5]

0.0094
245.7 [255.8]

0.039
298.8 [299.5]

0.0405
315.6 [302.7]

0.0199
304.6 [308.7]

0.0404
245.6 [254]

0.0409
175.1 [179.3]

0.0099

45-55
204.8 [214.7]

0.0058
285.2 [290.2]

0.0193
367.8 [374.6]

0.0202
350.4 [335.4]

0.0101
363.5 [377.6]

0.0195
299.5 [305.3]

0.0203
191.3 [184.1]

0.0048

55-75
219.3 [238.4]

0.0103
361 [370.6]

0.0415
434.9 [450.3]

0.0407
434 [455.4]

0.02
428.2 [430.9]

0.0379
356.8 [371]

0.0392
227.5 [236.1]

0.0103

75-95
330.5 [364.6]

0.0096
533.9 [574.4]

0.0406
667.6 [666.4]

0.0396
642.3 [663]

0.0201
638.2 [636.4]

0.041
517.2 [536.1]

0.0388
333.3 [339.4]

0.0103

95-100
531.4 [572.5]

0.003
857.1 [930.1]

0.0099
1178.3 [1377.6]

0.0101
1337.5 [1575.7]

0.0053
1279.2 [1416.5]

0.01
925.1 [1235.4]

0.0099
646.4 [894.5]

0.0019

Table 4.6: In-control conditional performance of the Wilcoxon, Van der Waerden,
NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts under the standard
normal distribution.
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percentiles
Sample SD

Sample mean percentiles
Wilcoxon

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
80.1 [82.7]

0.0015
139.5 [148]

0.0094
195.3 [205.2]

0.0114
174.9 [186.1]

0.0056
157.7 [168.7]

0.0112
138.6 [136.6]

0.01
82.5 [81.8]

0.0009

5-25
126.1 [140.9]

0.0076
205.5 [225.9]

0.0394
251.6 [254.4]

0.0416
263.8 [291]

0.0212
258.3 [270.7]

0.0426
204.7 [211.8]

0.0391
124.9 [152.5]

0.0085

25-45
165.8 [179]

0.0088
272.5 [291.9]

0.0406
331.3 [354.1]

0.0408
326.3 [342.2]

0.0197
343.9 [366]

0.041
276.2 [292.7]

0.0402
167.8 [178]

0.0088

45-55
216.4 [233.7]

0.0051
324 [352.7]

0.0188
386.9 [398.2]

0.0211
418.1 [427.3]

0.0098
402.1 [450.3]

0.02
341.2 [349.3]

0.0197
180.6 [228]

0.0055

55-75
236.3 [257.8]

0.0105
380.6 [435.5]

0.0402
487.7 [551]

0.0382
486.9 [550.8]

0.0207
462 [516.5]

0.0384
368.1 [414]

0.0413
222.5 [240.7]

0.0107

75-95
298.1 [384.1]

0.0124
473.5 [547.9]

0.041
601.4 [682.6]

0.038
605.9 [675]

0.0186
577.5 [656.5]

0.0384
497.2 [597.1]

0.0394
310.3 [387.1]

0.0122

95-100
465.2 [637.5]

0.0041
708.2 [1109.6]

0.0106
838.7 [965]

0.0089
910.8 [936.4]

0.0043
844.1 [1072.6]

0.0083
758.3 [1134.8]

0.0103
620.4 [1106.2]

0.0035

percentiles
Sample SD

Sample mean percentiles
van der Waerden

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
76.4 [66.4]

0.0013
104.6 [111.8]

0.0091
127 [124.3]

0.0108
132.8 [125.4]

0.0061
118.5 [119.4]

0.0119
101.1 [100.4]

0.0095
64 [75.7]
0.0012

5-25
92.6 [97.1]

0.0077
154.7 [162.4]

0.0391
202.4 [205.2]

0.0426
212.9 [223.8]

0.021
201.9 [201.1]

0.0416
168 [181.9]

0.0397
100.7 [109.7]

0.0083

25-45
135 [146.5]

0.0092
235.4 [243.2]

0.0395
291.6 [303]

0.0411
307.9 [322.5]

0.0203
297 [304.7]

0.0407
236.4 [245.7]

0.0408
147.6 [147.9]

0.0084

45-55
190.4 [195.8]

0.0049
294.4 [308.8]

0.0199
338.7 [341.2]

0.0194
376.5 [366.3]

0.0101
349.6 [349.7]

0.0204
285.9 [303]

0.0199
157.9 [155.4]

0.0054

55-75
215.9 [238.4]

0.0108
355.8 [385.4]

0.0406
470.9 [476.7]

0.039
479.4 [488.5]

0.0195
462 [479.2]

0.0393
343.4 [360.4]

0.04
202 [221.1]

0.0108

75-95
273.3 [318.6]

0.0123
523.6 [567.7]

0.0412
671.3 [691.3]

0.0382
713.6 [796.3]

0.0189
658.1 [750.8]

0.0381
533.6 [598.6]

0.0395
286.8 [341.5]

0.0119

95-100
486 [514.5]

0.0039
991 [1315.8]

0.0105
1368.4 [1858.2]

0.0089
1431.9 [1892.2]

0.0041
1141.9 [1373.1]

0.008
901.9 [1026.2]

0.0107
516.1 [627.4]

0.004

percentiles
Sample SD

Sample mean percentiles
NPC percentiles(42,46)

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
90.2 [121.2]

0.0016
134.1 [136.8]

0.0094
178.6 [188.5]

0.0112
174.6 [187.4]

0.0057
159.9 [162.2]

0.0109
126.1 [120.5]

0.0101
77.7 [82.5]

0.001

5-25
115.5 [126.1]

0.0074
193.4 [205.2]

0.039
245.3 [250.2]

0.0418
267.6 [285]

0.0213
261 [278.5]

0.043
197.8 [205]

0.039
129.1 [153.9]

0.0085

25-45
159.2 [178.2]

0.0087
267.1 [276.8]

0.0406
326.5 [350.5]

0.0408
338.1 [361]

0.02
334.5 [361.4]

0.0408
264.5 [282.1]

0.0402
160.7 [171]

0.0088

45-55
208.3 [219.4]

0.0051
324.7 [349.4]

0.0194
384 [409.9]

0.0203
424.4 [436.4]

0.0099
395 [433.3]

0.0203
337.1 [348.5]

0.0197
195.2 [252.1]

0.0054

55-75
222.2 [213.7]

0.0106
376 [425]
0.0398

479.2 [509.7]
0.0387

492 [562.9]
0.0204

471.1 [530]
0.0387

364.9 [401.7]
0.041

231 [244.1]
0.0108

75-95
297.3 [352.9]

0.0124
477.2 [543.3]

0.0413
624.9 [698.7]

0.0384
638.6 [677.9]

0.0184
566 [636.6]

0.0379
492.8 [563.3]

0.0398
324.3 [428.6]

0.012

95-100
523.1 [796.2]

0.0043
725.9 [1034]

0.0104
849.7 [968.6]

0.0088
986.8 [1109.1]

0.0043
887.4 [1128.4]

0.0084
818.4 [1302.7]

0.0102
570.1 [1066.3]

0.0036

percentiles
Sample SD

Sample mean percentiles
NPC Wilcoxon-Waerden

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
78.6 [103.5]

0.0015
117.4 [122.5]

0.0091
155.4 [166.9]

0.0108
152.3 [159]

0.0062
129.5 [134.1]

0.0117
113.4 [106.7]

0.0097
59.9 [81.5]

0.0009

5-25
103.3 [118.1]

0.0078
173.6 [177.4]

0.0396
225.1 [229]

0.042
252.1 [279.4]

0.0211
227.5 [230.4]

0.0425
184.7 [196]

0.0384
111 [134.2]

0.0086

25-45
146.4 [151.4]

0.0089
249.5 [255.1]

0.0398
315.5 [334.1]

0.0415
313.5 [314.9]

0.0204
327.1 [331.1]

0.0401
249.8 [258.3]

0.0406
151.3 [167.6]

0.0087

45-55
196.5 [215.8]

0.0047
294.2 [304.4]

0.0196
375.2 [384.7]

0.0203
393.2 [385.4]

0.0099
380.5 [394]

0.02
314.7 [326]

0.0199
182.4 [203.2]

0.0055

55-75
221.9 [241.4]

0.0106
362.1 [391.8]

0.0396
488.7 [500.1]

0.0384
496.8 [524.1]

0.02
465.5 [508.1]

0.0392
355.3 [388.9]

0.0415
231.3 [254.7]

0.0107

75-95
290.7 [334.9]

0.0122
507.6 [563.8]

0.0419
655.6 [710.8]

0.0381
686.5 [764.4]

0.0181
615.3 [681.5]

0.0379
510.2 [585.6]

0.0397
321.7 [393.4]

0.012

95-100
511.1 [621.3]

0.0042
875.5 [1541.5]

0.0103
1073.7 [1424.8]

0.0089
1120 [1381.3]

0.0043
979.8 [1178.4]

0.0085
795.9 [1017.6]

0.0102
569 [1037.4]

0.0035

Table 4.7: In-control conditional performance of the Wilcoxon, Van der Waerden,
NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts under the
Laplace (0, 1/

√
2) distribution.
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percentiles
Sample SD

Sample mean percentiles
Wilcoxon

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
120.9 [124.3]

0.0133
164 [168.7]

0.0209
164.3 [166.5]

0.0091
178 [165.3]

0.0028
163.3 [173.7]

0.0029
102.6 [110.6]

0.001
-

≤0.00006

5-25
156.7 [167.7]

0.0217
236.6 [258.1]

0.0716
255.7 [291.1]

0.0479
249.4 [266.1]

0.0182
218.3 [226.1]

0.0265
157.7 [185.2]

0.0131
80.4 [104.3]

0.001

25-45
184.3 [191.7]

0.009
308.7 [329.2]

0.0489
332.8 [351.1]

0.0509
340.4 [358.7]

0.0229
296.2 [332.6]

0.0384
228.9 [255.3]

0.027
118.8 [112.1]

0.0029

45-55
220.5 [241.2]

0.0024
341.8 [381.9]

0.0189
395 [432.4]

0.0228
394.1 [403.6]

0.0118
346.1 [379.7]

0.0227
274.6 [325.9]

0.0189
136.7 [142]

0.0025

55-75
228.2 [249.3]

0.0028
377.1 [417.2]

0.0255
467.4 [494.1]

0.0402
510.8 [570.5]

0.0238
464 [529.9]

0.0503
336 [399.2]

0.0487
192.3 [245.2]

0.0086

75-95
274.8 [281.7]

0.0007
508 [614.5]

0.0131
572.2 [692.5]

0.0262
643.9 [783.3]

0.018
637.7 [747.4]

0.05
487.8 [589.5]

0.0701
273.2 [323.8]

0.0218

95-100
-

≤0.00006
364.4 [385.8]

0.0009
764 [910.3]

0.0028
807 [882.7]

0.0025
832.9 [950.6]

0.0092
824.8 [1209.5]

0.0214
477.4 [748.4]

0.0131

percentiles
Sample SD

Sample mean percentiles
van der Waerden

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
87.6 [94.5]

0.014
117.2 [114.5]

0.0206
128.7 [132.1]

0.0086
127.3 [129.6]

0.0028
123.3 [146.9]

0.003
91.3 [92.7]

0.0009
-

≤0.00006

5-25
134.2 [135]

0.0214
191.9 [197.7]

0.0715
207.9 [213]

0.0484
202.6 [227.1]

0.0186
181 [190.5]

0.026
143.5 [166.1]

0.0132
79.6 [71.2]

0.0009

25-45
198.6 [208.9]

0.0088
272.1 [286.2]

0.0511
293.8 [310.4]

0.0494
293.7 [298.6]

0.0229
271.5 [304.3]

0.0379
207.3 [245.7]

0.0272
116.8 [127.9]

0.0027

45-55
257.5 [315.2]

0.0025
352.2 [357.4]

0.0175
359.1 [373.6]

0.023
350.8 [356.4]

0.0119
321.6 [350.5]

0.0232
259.9 [276.8]

0.0192
161.8 [219.3]

0.0027

55-75
250.5 [216.6]

0.0024
432.6 [468.9]

0.0256
482.2 [505.5]

0.0399
477.8 [498.1]

0.0237
437 [472.4]

0.0502
332.7 [388.1]

0.0492
181.1 [215.1]

0.009

75-95
340 [362.5]

0.0008
642.5 [713.1]

0.0128
648.5 [696.3]

0.0273
700.8 [817.1]

0.0175
701 [840.3]

0.0507
522.9 [682.9]

0.0689
303.1 [431.2]

0.022

95-100
-

≤0.00006
1029.3 [1192.6]

0.0009
1170.6 [1265.4]

0.0035
1080.7 [1071.6]

0.0025
1171.7 [1366.7]

0.009
913.1 [1184.4]

0.0214
506.1 [720]

0.0126

percentiles
Sample SD

Sample mean percentiles
NPC percentiles(42,46)

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
111.9 [114.9]

0.0135
157.5 [163.9]

0.021
155.8 [152.7]

0.009
165.1 [162.8]

0.0027
152 [168.5]

0.0027
110.6 [107.4]

0.001
-

≤0.00006

5-25
155.5 [169.1]

0.0217
230.8 [245.8]

0.0707
249.8 [276.2]

0.0485
236.7 [253.9]

0.0188
216.2 [227.4]

0.0262
158.3 [188.4]

0.0132
65.6 [74.7]

0.0009

25-45
181.8 [184]

0.009
299.9 [320.3]

0.0493
331.8 [352.1]

0.0505
326.8 [329.9]

0.0226
285.7 [325]

0.0385
224.9 [249.8]

0.0271
112.5 [111.8]

0.0029

45-55
227.9 [255.6]

0.0024
344.9 [376.2]

0.0186
394.8 [434.1]

0.0226
410.1 [414]

0.0121
345.7 [389.7]

0.023
264.1 [327.8]

0.0187
139.3 [155.6]

0.0025

55-75
212.9 [211]

0.0027
392.9 [446.5]

0.0256
468.2 [488.8]

0.0402
488.5 [524.1]

0.0234
461.3 [523.3]

0.0503
334.5 [384.8]

0.0489
191.8 [247.9]

0.0089

75-95
245 [237.5]

0.0005
519.2 [599.1]

0.0136
587.7 [694.4]

0.0262
670.4 [845.2]

0.0181
654.7 [773.5]

0.05
486.2 [578.2]

0.0699
288.3 [342.4]

0.0216

95-100
-

≤0.00006
418.8 [432.1]

0.001
791.9 [873.4]

0.003
853.3 [860.4]

0.0023
900.6 [1175.7]

0.0094
817.4 [1100]

0.0212
469.5 [586.4]

0.0131

percentiles
Sample SD

Sample mean percentiles
NPC Wilcoxon-Waerden

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
100.3 [101.9]

0.0135
135.2 [132.7]

0.0213
145.5 [147.3]

0.0087
159.7 [156.8]

0.0026
129.2 [137]

0.0029
89.7 [86]
0.0009

-
≤0.00006

5-25
148.6 [152.6]

0.0217
214.5 [219.5]

0.0711
232 [238.6]

0.0482
225.7 [243.5]

0.0186
207.7 [222.3]

0.0263
149.3 [172.5]

0.0131
84.5 [93.2]

0.0011

25-45
197.9 [204.3]

0.0092
281.6 [284.6]

0.0502
320.3 [337.9]

0.0505
303.8 [296.8]

0.0225
281.5 [322]

0.0381
210.5 [230.3]

0.0265
115.9 [126.9]

0.003

45-55
266.1 [302.6]

0.0024
344.3 [359]

0.0184
375.7 [389.3]

0.0229
386.2 [403.2]

0.0119
343.6 [384.6]

0.0232
263.8 [284.5]

0.0185
150.5 [153.6]

0.0028

55-75
220.4 [190.6]

0.0025
406.4 [434.3]

0.0251
484.7 [509.1]

0.0398
490.6 [520.2]

0.0235
461.9 [497]

0.0507
339.5 [419.4]

0.0496
178.6 [219.2]

0.0088

75-95
306.3 [337.2]

0.0007
568.8 [636.1]

0.0128
623.9 [673.3]

0.0266
690.3 [796.1]

0.0182
687.4 [818.8]

0.0499
481.5 [591]

0.0702
285.3 [354.1]

0.0216

95-100
-

≤0.00006
771 [836.8]

0.0011
1061.1 [1188.8]

0.0033
927.5 [913.1]

0.0026
1046.5 [1364.3]

0.0089
862.7 [1128.1]

0.0212
494 [639.2]

0.0128

Table 4.8: In-control conditional performance of the Wilcoxon, Van der Waerden,
NPC percentiles(42,46) and NPC Wilcoxon-Waerden charts under the
Gamma(4, 2) distribution shifted by −2.
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4.5 Multi-aspects NPC control charts for location-

scale monitoring

In this section, we present and analyze some distribution-free multi-aspect NPC
control charts for the joint location-scale monitoring problem in the standards
unknown case. All these charts can be easily implemented using the npcharts
package.

4.5.1 Proposed control charts

Turning now our attention to the joint location-scale monitoring problem, there
are two multi-aspect charts that we propose:

• NPC Lepage-Cucconi chart: obtained from the NPC (Fisher) combination
between the Lepage and the Cucconi tests/charts. The control chart based
on the Lepage statistic has been proposed in [27] and the control chart based
on the Cucconi statistic has been proposed in [9]. Whereas both charts are
distribution-free, their OOC performance can vary rather significantly under
different distributions. In [9] the authors also show an interesting compar-
ison between the two charts under the Normal and Laplace distributions.
The main result was that the Cucconi chart is more effective at detecting
scale changes and more effective at detecting location changes under the
Normal distribution. On the other hand, the Lepage chart performs better
when there is a pure location shift under the Laplace distribution. In order
to obtain a control chart that combines the strengths of the Cucconi and
Lepage charts, we propose the multi-aspect Cucconi-Lepage chart based on
the NPC method with the Fisher combing function. The follow-up strategy
after an OOC signal occurs discussed in [9], can still be applied with the
NPC Cucconi-Lepage chart.

• NPC Wilcoxon-Klotz chart: obtained from the NPC (Fisher) combination
of the Wilcoxon rank sum test with the Klotz test. With this chart, we
take advantage of the good performance of the Klotz test under a normal
distribution. Furthermore, considering that we are typically interested only
in detecting scale changes with δ > 1, a one-sided alternative can be used for
the scale test (Klotz test). In the comparison with the Lepage and Cucconi
charts, we consider the one-side strategy for the scale test to be “fair” because
also the other charts, as shown in Table 4.9, cannot reliably detect a scale
compression (δ < 1). Moreover, both Lepage and Cucconi charts cannot be
modified to use a single alternative for the scale test, thus the flexibility of
NPC here plays an important advantage.
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θ δ Cucconi Lepage
0 1 490.6 [834.6]

18, 238, 1718
506 [735.2]

19, 266, 1761
0 0.9 1607.5 [2917.2]

36, 690, 5972
1246.2 [1858.3]
41, 658, 4502

0 0.8 6460.6 [10322.4]
121, 2480, 29457

3136.6 [5001.6]
96, 1532, 10884

0 0.7 22599.8 [19627.9]
548, 15307, 50001

6148.9 [9215.8]
145, 2772, 25013

0 0.6 42572.2 [14941]
4996, 50001, 50001

7542.9 [11526.8]
118, 2762, 36463

0 0.5 49166.1 [5378.8]
50001, 50001, 50001

5164 [10005]
57, 1364, 28525

Table 4.9: Unconditional performance of the Cucconi and Lepage charts under a
compression of the scale for a standard normal process distribution. The first row
of each of the cells shows the ARL and [SDRL] values, while the second row shows
the 5th, 50th and 95th percentiles of the run length distribution (in this order).

4.5.2 Unconditional IC/OOC performance analysis

In order to investigate the performance of proposed multi-aspect charts, we com-
pared them with the Cucconi and Lepage charts under the location-scale model
described in Section 3.2.2 with several distributions and at different combinations
of θ and δ.

Before introducing the evaluation methodology, it is important to consider that
both the Lepage and Cucconi charts have only a single version that is equally
sensitive to positive and negative location shifts under symmetric distributions,
and, as mentioned earlier, cannot detect scale compressions. By contrast, the
NPC Wilcoxon-Klotz chart is more flexible and can be configured to use a one-
sided alternative for the location test and/or for the scale test. Using a two-sided
alternative for the scale test, however, makes little sense because, even with a
two-sided scale test, the NPC Wilcoxon-Klotz chart is not able to detect scale
compressions as the other charts.

Methodology

First, we calibrate control charts for ARL0 = 500, n1 = 100 and n2 = 5 using
Algorithm 3 and Algorithm 4 under the standard normal distribution. A two-
sided alternative is used in the location test of the NPC Wilcoxon-Klotz chart2.

After the calibration, we use Algorithm 2 with 50000 simulations in order to
assess the uncoditional IC/OOC performance with different combinations of θ and
δ, and under the following distributions (also shown in Figure 4.1):

• Standard normal: represents a thin-tailed and symmetric distribution.

• Laplace (0, 1/
√

2): represents a heavy-tailed and symmetric distribution.

2In order to use a two-sided alternative, the Wilcoxon statistic is normalized by subtracting
the mean
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• Gamma(shape = 4, scale = 2) shifted by −2 so that the mean is equal to
0. This distribution, also proposed in [19] for valve leakage monitoring, has
been considered to assess performance with asymmetric data. Because of
the asymmetry, performance may be different under positive and negative
location shifts of the same magnitude. Therefore, with this distribution,
both positive and negative location shifts are considered.

All these distributions have mean equal to 0 and standard deviation equal to 1.
This is important since it allows us to interpret θ as the location shift parameter
with respect to the IC distribution independently from the value of the scale en-
largement parameter δ. Moreover, having normalized distributions, allows us to
compare performance in a fair manner also across different distributions.

For NPC charts, B = 15000 permutations are used to estimate the p-values.

Results

The results are shown in Table 4.10, Table 4.11, Table 4.12 and Table 4.5. The
result format for all the tables is the following: the first row of each of the cells
shows the ARL and [SDRL] values, while the second row shows the 5th, 50th and
95th percentiles of the run length distribution (in this order).

Under the standard normal distribution (Table 4.10) the NPC Wilcoxon-Klotz
chart performs considerably better than all the other charts with no exceptions.
The performance of the NPC Cucconi-Lepage chart is in the middle between the
performance of the Cucconi and the Lepage charts, but closer to the best perform-
ing of the two, namely the Cucconi chart.

With the Laplace distribution (Table 4.11), the performance of the NPC Wilcoxon-
Klotz chart seems close to that of the Cucconi chart. For all values of δ, the
NPC Wilcoxon-Klotz seems slightly more performing than the Cucconi chart when
0 ≤ θ ≤ 0.5 (with just an exception when θ = 0 and δ = 1.25). When instead
1 ≤ θ ≤ 2, the Cucconi chart becomes slightly better than the Wilcoxon-Klotz
chart. The performance pattern of the NPC Cucconi-Lepage with the Laplace
distribution remains the same as seen with the normal distribution: the ARL is
closer to the minimum between Cucconi and the Lepage charts.

Under the Gamma distribution (Table 4.12 and Table 4.13), with both positive
and negative location shifts, the NPC Wilcoxon-Klotz charts outperform all the
other charts with just one exception: the Laplace chart seems the most sensible to
pure positive location shifts. The performance pattern of the NPC Cucconi-Lepage
chart is the same as seen with the previous distributions.

50



θ δ Cucconi Lepage NPC Cucconi-Lepage NPC Wilcoxon-Klotz
0 1 501.5 [821.3]

15, 245, 1800
504.6 [728.9]
18, 272, 1747

497.5 [759.3]
17, 254, 1749

504.9 [819.5]
16, 247, 1823

0.25 1 260.8 [466.4]
8, 119, 951

257.5 [415.3]
8, 126, 930

258.2 [446.2]
8, 122, 929

248.5 [451]
7, 110, 916

0.5 1 70.6 [121]
3, 35, 250

67.9 [111]
3, 35, 237

68.5 [119.9]
3, 34, 240

62.2 [109.5]
2, 30, 222

1 1 7.7 [9.3]
1, 5, 24

7.6 [8.8]
1, 5, 24

7.6 [9.3]
1, 5, 24

6.6 [8.2]
1, 4, 21

1.5 1 2.1 [1.7]
1, 2, 5

2.2 [1.8]
1, 2, 6

2.1 [1.7]
1, 2, 5

1.9 [1.5]
1, 1, 5

2 1 1.2 [0.5]
1, 1, 2

1.2 [0.5]
1, 1, 2

1.2 [0.5]
1, 1, 2

1.1 [0.4]
1, 1, 2

0 1.25 74.6 [96.4]
4, 43, 249

102.2 [124.8]
5, 62, 335

85.2 [106.1]
4, 51, 281

71.1 [93.8]
3, 40, 239

0.25 1.25 54 [69.7]
3, 31, 180

69.7 [88.9]
3, 41, 231

60.4 [77.7]
3, 35, 203

49.4 [66.8]
2, 28, 167

0.5 1.25 26.1 [32.9]
2, 15, 86

30.8 [38.6]
2, 18, 101

27.6 [34.8]
2, 17, 89

22.9 [30.4]
1, 13, 76

1 1.25 6.2 [6.6]
1, 4, 19

6.8 [7.1]
1, 4, 20

6.4 [6.7]
1, 4, 19

5.2 [5.4]
1, 3, 15

1.5 1.25 2.3 [1.9]
1, 2, 6

2.5 [2.1]
1, 2, 7

2.4 [1.9]
1, 2, 6

2 [1.6]
1, 1, 5

2 1.25 1.4 [0.7]
1, 1, 3

1.4 [0.8]
1, 1, 3

1.4 [0.7]
1, 1, 3

1.2 [0.6]
1, 1, 2

0 1.5 24.2 [27.3]
2, 15, 76

37.5 [42.1]
2, 24, 118

29.4 [33.5]
2, 19, 93

21 [24.7]
1, 13, 67

0.25 1.5 20.5 [23]
1, 13, 65

30.3 [34.1]
2, 19, 96

24.1 [27.2]
2, 15, 76

17.6 [20.7]
1, 11, 56

0.5 1.5 13.6 [15.2]
1, 9, 42

18 [20.2]
1, 12, 57

15.2 [16.8]
1, 10, 47

11.3 [12.7]
1, 7, 35

1 1.5 5.2 [5.1]
1, 4, 15

6 [6]
1, 4, 18

5.5 [5.5]
1, 4, 16

4.3 [4.2]
1, 3, 12

1.5 1.5 2.5 [2]
1, 2, 6

2.7 [2.2]
1, 2, 7

2.5 [2.1]
1, 2, 7

2.1 [1.6]
1, 2, 5

2 1.5 1.5 [0.9]
1, 1, 3

1.6 [1]
1, 1, 4

1.5 [0.9]
1, 1, 3

1.4 [0.7]
1, 1, 3

0 1.75 11.7 [12.4]
1, 8, 35

19.1 [20.3]
1, 13, 59

14.4 [15.1]
1, 10, 44

9.4 [10.1]
1, 6, 29

0.25 1.75 10.6 [11]
1, 7, 32

16.7 [17.6]
1, 11, 51

13 [13.6]
1, 9, 39

8.6 [9.1]
1, 6, 26

0.5 1.75 8.4 [8.6]
1, 6, 25

12 [12.6]
1, 8, 36

9.8 [10.2]
1, 7, 30

6.8 [6.9]
1, 5, 20

1 1.75 4.4 [4.1]
1, 3, 12

5.5 [5.3]
1, 4, 16

4.8 [4.6]
1, 3, 14

3.6 [3.3]
1, 3, 10

1.5 1.75 2.5 [2]
1, 2, 6

2.8 [2.3]
1, 2, 7

2.6 [2.1]
1, 2, 7

2.1 [1.6]
1, 2, 5

2 1.75 1.6 [1]
1, 1, 4

1.8 [1.2]
1, 1, 4

1.7 [1.1]
1, 1, 4

1.4 [0.8]
1, 1, 3

Table 4.10: Unconditional performance of the Cucconi, Lepage, NPC Cucconi-
Lepage and NPC Wilcoxon-Klotz charts under the standard normal distribution.
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θ δ Cucconi Lepage NPC Cucconi-Lepage NPC Wilcoxon-Klotz
0 1 499.1 [829.9]

15, 243, 1782
498.6 [695.1]
19, 271, 1740

502.7 [802.8]
16, 258, 1762

503.9 [847.1]
15, 248, 1799

0.25 1 292.1 [566.8]
8, 125, 1087

272.5 [455.8]
8, 123, 1024

278.5 [516.8]
7, 121, 1044

289.6 [590.2]
7, 120, 1092

0.5 1 82.5 [186.2]
2, 32, 310

66.5 [134.8]
2, 28, 247

72.1 [165.4]
2, 29, 272

79 [178.2]
2, 30, 297

1 1 6.1 [10.4]
1, 3, 20

5 [7]
1, 3, 16

5.4 [8.4]
1, 3, 17

6.3 [10]
1, 3, 21

1.5 1 1.6 [1.3]
1, 1, 4

1.6 [1.1]
1, 1, 4

1.6 [1.1]
1, 1, 4

1.7 [1.5]
1, 1, 4

2 1 1.1 [0.4]
1, 1, 2

1.1 [0.4]
1, 1, 2

1.1 [0.4]
1, 1, 2

1.1 [0.4]
1, 1, 2

0 1.25 121.3 [167.9]
5, 68, 412

151.2 [193.3]
7, 88, 507

131.7 [173]
5, 76, 439

123.5 [177.9]
5, 67, 430

0.25 1.25 84.3 [128.9]
3, 44, 295

98 [136.8]
4, 53, 343

88 [126.5]
4, 47, 305

82.1 [124.9]
3, 42, 290

0.5 1.25 34.8 [55.2]
2, 18, 124

35.4 [54.5]
2, 18, 123

34.7 [55.6]
2, 18, 121

33.6 [55.9]
2, 17, 117

1 1.25 5.2 [6.9]
1, 3, 16

4.9 [5.9]
1, 3, 15

5 [6.2]
1, 3, 15

5.3 [6.8]
1, 3, 17

1.5 1.25 1.7 [1.3]
1, 1, 4

1.8 [1.3]
1, 1, 4

1.7 [1.3]
1, 1, 4

1.8 [1.5]
1, 1, 4

2 1.25 1.2 [0.5]
1, 1, 2

1.2 [0.5]
1, 1, 2

1.2 [0.5]
1, 1, 2

1.2 [0.5]
1, 1, 2

0 1.5 47.1 [58.3]
2, 28, 154

66.1 [79.3]
3, 41, 214

54.5 [68]
3, 33, 177

46.8 [61.5]
2, 27, 158

0.25 1.5 37 [47.4]
2, 22, 122

47.7 [61.4]
2, 28, 158

40.7 [52.1]
2, 24, 135

36.1 [49.2]
2, 20, 123

0.5 1.5 19.4 [26.4]
1, 11, 66

22.7 [30.9]
1, 13, 76

20.6 [27.9]
1, 12, 68

18.9 [26]
1, 11, 63

1 1.5 4.6 [5.4]
1, 3, 14

4.8 [5.2]
1, 3, 14

4.6 [5.1]
1, 3, 14

4.7 [5.4]
1, 3, 14

1.5 1.5 1.8 [1.4]
1, 1, 5

1.9 [1.5]
1, 1, 5

1.9 [1.4]
1, 1, 5

1.9 [1.5]
1, 1, 5

2 1.5 1.2 [0.6]
1, 1, 2

1.3 [0.6]
1, 1, 3

1.3 [0.6]
1, 1, 2

1.3 [0.6]
1, 1, 2

0 1.75 24 [27.8]
2, 15, 77

36.4 [41.3]
2, 23, 115

28.3 [32.3]
2, 18, 90

23.1 [28.2]
1, 14, 75

0.25 1.75 20.1 [23.9]
1, 12, 65

28.7 [33.4]
2, 18, 92

23.2 [27]
1, 15, 74

19.4 [24.1]
1, 12, 64

0.5 1.75 12.7 [15.1]
1, 8, 40

16.2 [19.4]
1, 10, 52

14.1 [17]
1, 9, 45

12.1 [14.6]
1, 7, 39

1 1.75 4.2 [4.3]
1, 3, 12

4.6 [4.7]
1, 3, 14

4.3 [4.4]
1, 3, 12

4.2 [4.4]
1, 3, 12

1.5 1.75 1.9 [1.4]
1, 1, 5

2 [1.6]
1, 1, 5

1.9 [1.5]
1, 1, 5

2 [1.5]
1, 1, 5

2 1.75 1.3 [0.7]
1, 1, 3

1.4 [0.7]
1, 1, 3

1.3 [0.7]
1, 1, 3

1.3 [0.7]
1, 1, 3

Table 4.11: Unconditional performance of the Cucconi, Lepage, NPC Cucconi-
Lepage and NPC Wilcoxon-Klotz charts under the Laplace(0, 1/

√
2) distribution.
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θ δ Cucconi Lepage NPC Cucconi-Lepage NPC Wilcoxon-Klotz
0 1 494.1 [807.3]

16, 245, 1768
500.7 [717.2]
18, 272, 1732

501.4 [767.2]
17, 256, 1782

504.8 [852.7]
15, 244, 1811

0.25 1 508.9 [1116.4]
12, 201, 1918

425.4 [763.4]
11, 188, 1592

467.4 [959.1]
11, 193, 1742

476 [1038.7]
10, 182, 1804

0.5 1 160.9 [334.9]
4, 66, 598

132.7 [255.6]
4, 59, 482

142.4 [282.9]
4, 61, 530

139.7 [312.4]
4, 55, 518

1 1 16.3 [27.8]
1, 8, 57

13.9 [22.7]
1, 7, 47

14.8 [23.6]
1, 8, 51

14 [25]
1, 7, 49

1.5 1 2.9 [3.5]
1, 2, 8

2.6 [2.7]
1, 2, 7

2.7 [3.1]
1, 2, 8

2.7 [3.2]
1, 2, 8

2 1 1.2 [0.6]
1, 1, 2

1.1 [0.5]
1, 1, 2

1.2 [0.5]
1, 1, 2

1.2 [0.6]
1, 1, 2

0 1.25 54.8 [66.6]
3, 33, 176

78.1 [92]
4, 49, 251

64.5 [76.2]
3, 40, 209

45.3 [54.5]
2, 27, 147

0.25 1.25 92.2 [129.6]
4, 51, 316

114.7 [153.9]
5, 65, 387

100.6 [135.7]
4, 56, 340

84.2 [117.2]
3, 46, 289

0.5 1.25 61.7 [94.6]
3, 32, 215

65.1 [94]
3, 35, 224

61.1 [91.4]
3, 33, 209

54.3 [84.7]
2, 28, 193

1 1.25 13.2 [18.2]
1, 8, 43

12.8 [16.7]
1, 8, 42

12.5 [16.8]
1, 7, 41

10.8 [14.9]
1, 6, 35

1.5 1.25 3.4 [3.6]
1, 2, 10

3.3 [3.4]
1, 2, 9

3.3 [3.5]
1, 2, 10

3 [3]
1, 2, 8

2 1.25 1.4 [0.9]
1, 1, 3

1.4 [0.8]
1, 1, 3

1.4 [0.9]
1, 1, 3

1.4 [0.8]
1, 1, 3

0 1.5 17.1 [18.3]
1, 11, 53

26.9 [28.8]
2, 18, 82

20.7 [22.2]
1, 14, 64

12.9 [13.7]
1, 9, 40

0.25 1.5 26.6 [30.2]
2, 17, 84

40.3 [45.9]
2, 26, 127

31.8 [36.3]
2, 20, 101

21.6 [25.3]
1, 13, 69

0.5 1.5 27 [33.5]
2, 16, 88

34.8 [43.1]
2, 21, 115

30.2 [37.3]
2, 18, 98

23.1 [29.3]
1, 14, 76

1 1.5 10.9 [13.1]
1, 7, 35

11.6 [13.6]
1, 7, 36

10.9 [12.8]
1, 7, 34

9.2 [11]
1, 6, 29

1.5 1.5 3.8 [3.9]
1, 3, 11

3.9 [4]
1, 3, 11

3.8 [3.8]
1, 3, 11

3.2 [3.2]
1, 2, 9

2 1.5 1.7 [1.3]
1, 1, 4

1.8 [1.3]
1, 1, 4

1.7 [1.2]
1, 1, 4

1.6 [1.1]
1, 1, 4

0 1.75 8.7 [8.7]
1, 6, 26

13.8 [14.1]
1, 9, 42

10.6 [10.7]
1, 7, 32

6.3 [6.1]
1, 4, 18

0.25 1.75 11.7 [12.3]
1, 8, 36

19.1 [20.1]
1, 13, 59

14.7 [15.4]
1, 10, 45

8.8 [9.2]
1, 6, 27

0.5 1.75 13.2 [14.6]
1, 9, 41

20 [22]
1, 13, 62

15.9 [17.7]
1, 10, 50

10.4 [11.4]
1, 7, 32

1 1.75 8.8 [9.7]
1, 6, 27

10.3 [11.3]
1, 7, 32

9.2 [10]
1, 6, 28

7.3 [8]
1, 5, 22

1.5 1.75 4 [3.9]
1, 3, 12

4.3 [4.2]
1, 3, 12

4.1 [4]
1, 3, 12

3.4 [3.3]
1, 2, 10

2 1.75 2.1 [1.6]
1, 1, 5

2.1 [1.7]
1, 2, 5

2.1 [1.6]
1, 1, 5

1.8 [1.3]
1, 1, 4

Table 4.12: Unconditional performance of the Cucconi, Lepage, NPC Cucconi-
Lepage and NPC Wilcoxon-Klotz charts under the Gamma(4, 1/2) distribution
shifted by −2.
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θ δ Cucconi Lepage NPC Cucconi-Lepage NPC Wilcoxon-Klotz
0 1 505.7 [863.9]

16, 249, 1798
504.6 [714.7]
18, 270, 1766

499.3 [784.8]
17, 255, 1775

503.8 [850.3]
16, 245, 1828

-0.25 1 88.5 [124.3]
4, 49, 302

104.2 [142.4]
4, 58, 355

94.4 [132.4]
4, 52, 320

73.2 [103.4]
3, 40, 253

-0.5 1 17.6 [20.4]
1, 11, 56

20.6 [24.1]
1, 13, 65

18.6 [21.4]
1, 12, 59

13.3 [14.9]
1, 9, 42

-1 1 3 [2.6]
1, 2, 8

3.3 [2.9]
1, 2, 9

3.1 [2.7]
1, 2, 8

2.4 [1.9]
1, 2, 6

-1.5 1 1.5 [0.8]
1, 1, 3

1.6 [1]
1, 1, 3

1.5 [0.9]
1, 1, 3

1.3 [0.6]
1, 1, 3

-2 1 1.1 [0.4]
1, 1, 2

1.2 [0.4]
1, 1, 2

1.1 [0.4]
1, 1, 2

1.1 [0.3]
1, 1, 2

0 1.25 54.9 [66.2]
3, 34, 177

78.3 [92.9]
4, 48, 251

64.3 [77.1]
3, 39, 208

45.3 [55.1]
2, 27, 148

-0.25 1.25 20.5 [22.7]
1, 13, 64

28 [30.6]
2, 18, 88

23.5 [26]
2, 15, 73

15.5 [16.8]
1, 10, 48

-0.5 1.25 8.7 [8.7]
1, 6, 26

10.9 [11.1]
1, 7, 33

9.5 [9.7]
1, 7, 28

6.4 [6.3]
1, 4, 19

-1 1.25 2.8 [2.3]
1, 2, 7

3.2 [2.7]
1, 2, 9

3 [2.5]
1, 2, 8

2.2 [1.7]
1, 2, 6

-1.5 1.25 1.6 [1]
1, 1, 3

1.7 [1.1]
1, 1, 4

1.6 [1]
1, 1, 4

1.4 [0.7]
1, 1, 3

-2 1.25 1.2 [0.5]
1, 1, 2

1.3 [0.6]
1, 1, 2

1.2 [0.5]
1, 1, 2

1.1 [0.3]
1, 1, 2

0 1.5 17 [18.1]
1, 11, 52

26.9 [28.9]
2, 18, 83

20.8 [22.1]
1, 14, 63

13 [13.8]
1, 9, 40

-0.25 1.5 9.5 [9.6]
1, 7, 28

13.8 [14.1]
1, 9, 41

11.5 [11.7]
1, 8, 34

7.1 [7]
1, 5, 21

-0.5 1.5 5.6 [5.2]
1, 4, 16

7.5 [7.3]
1, 5, 22

6.4 [6]
1, 4, 18

4.2 [3.8]
1, 3, 12

-1 1.5 2.6 [2.1]
1, 2, 7

3.1 [2.6]
1, 2, 8

2.8 [2.3]
1, 2, 7

2.1 [1.5]
1, 2, 5

-1.5 1.5 1.6 [1]
1, 1, 4

1.8 [1.2]
1, 1, 4

1.7 [1.1]
1, 1, 4

1.4 [0.7]
1, 1, 3

-2 1.5 1.3 [0.6]
1, 1, 2

1.4 [0.7]
1, 1, 3

1.3 [0.7]
1, 1, 3

1.2 [0.4]
1, 1, 2

0 1.75 8.6 [8.6]
1, 6, 25

13.8 [14]
1, 9, 41

10.6 [10.7]
1, 7, 32

6.3 [6.2]
1, 4, 19

-0.25 1.75 5.9 [5.6]
1, 4, 17

8.9 [8.7]
1, 6, 26

7.2 [6.9]
1, 5, 21

4.4 [4.1]
1, 3, 12

-0.5 1.75 4.2 [3.7]
1, 3, 12

5.8 [5.4]
1, 4, 16

4.9 [4.5]
1, 3, 14

3.1 [2.7]
1, 2, 8

-1 1.75 2.4 [1.8]
1, 2, 6

3 [2.5]
1, 2, 8

2.6 [2.1]
1, 2, 7

1.9 [1.3]
1, 1, 5

-1.5 1.75 1.6 [1]
1, 1, 4

1.9 [1.3]
1, 1, 5

1.8 [1.2]
1, 1, 4

1.4 [0.8]
1, 1, 3

-2 1.75 1.3 [0.7]
1, 1, 3

1.4 [0.8]
1, 1, 3

1.4 [0.7]
1, 1, 3

1.2 [0.5]
1, 1, 2

Table 4.13: Unconditional performance (negative shifts) of the Cucconi, Lepage,
NPC Cucconi-Lepage and NPC Wilcoxon-Klotz charts under the Gamma(4, 1/2)
distribution shifted by −2.
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4.5.3 Conditional IC performance analysis

Besides evaluating the uncoditional performance, we also studied the performance
conditional to specific categories of reference samples.

Methodology

After a calibration with ARL0 = 500, the methodology is the same proposed in
[27]. We use Algorithm 2 with 50000 run length simulations. Each run length
simulation is then classified according to two criteria, the value of the reference
sample mean and the value of the reference sample standard deviation. For both
of these two criteria, 7 percentile-based bins are used:

• 5th percentile or lower: very high downward bias

• between the 5th and the 25th percentiles: moderately high downward bias

• between the 25th and the 45th percentiles: low downward bias

• between the 45th and the 55th percentiles

• between the 55th and the 75th percentiles: low upward bias

• between the 75th and the 95th percentiles: moderately high upward bias

• beyond the 95th percentiles: high upward bias

Therefore, each of the 50000 run length simulations is categorized in a 7× 7 way
table depending on the value of the corresponding reference sample mean and SD.
For each of the 49 bins, we record the proportion of simulations as well as the
sample mean and sample SD of the simulated run lengths that belong to the bin.
These last two value are, respectively, an estimate of the conditional ARL0 and
SDRL0 given the specified percentiles intervals of the reference sample mean and
SD with respect to their distributions.

The process distributions and sample sizes adopted in this study are the same
used in the unconditional evaluation (Section 4.5.2).

Results

The results are shown in Table 4.14 (Normal), Table 4.15 (Laplace) and Table
4.16 (Gamma). For each cell, the top value (in italics) shows the proportion,
the bottom left value shows the conditional ARL0 and the bottom right value
(within the square brackets) shows the conditional SDRL0. For the colored cells,
the conditional ARL0 value is within the “safe” interval [250, 900] proposed in [9].

In general, for all control charts, we see the same patterns described in [9]. Given
a range of percentiles of the reference sample mean, the larger the SD, the larger
the conditional ARL0. By contrast, given a specific range of percentiles of the SD
of the reference sample, the conditional ARL0 initially increases with an increase
in the sample mean, reaches a peak around between the 45 and the 55 percentiles
of the sample mean distribution, and then decreases.

Comparing the conditional performance between different charts, the results
show that, for all distributions, the Lepage chart is the least sensitive to reference
samples that have extreme mean or SD. This is particularly visible if we look at
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the number of cells that lies in the safe interval. The NPC Wilcoxon-Klotz chart
is instead the most sensitive with all distributions and is closely followed by the
Cucconi chart. The conditional performance of the NPC Lepage-Cucconi chart
seems in between the Cucconi and Lepage charts.
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percentiles
Sample SD

Sample mean percentiles
Cucconi

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
72.8 [70.2]

0.0026
100 [103]
0.0102

114.9 [128.2]
0.0097

107.8 [107.8]
0.0045

118.5 [118.9]
0.0102

111.5 [119.3]
0.0104

80.2 [118.4]
0.0025

5-25
133 [143.8]

0.0099
181.3 [189.2]

0.0386
218.7 [223.4]

0.0401
210.2 [235.3]

0.0206
224.9 [231.2]

0.04
187.2 [194.6]

0.04
133.1 [150.5]

0.0107

25-45
176.8 [179.1]

0.0098
272.8 [297.6]

0.0401
317.1 [324.3]

0.04
326.1 [326.4]

0.02
335.7 [353.4]

0.0406
299.9 [324.6]

0.0394
186.4 [210.7]

0.01

45-55
240.7 [270.9]

0.0048
368 [392.7]

0.0196
421.8 [438.6]

0.0202
454.1 [431.9]

0.01
410.3 [426.4]

0.0205
357.9 [407.6]

0.0204
220.3 [227]

0.0045

55-75
302.2 [386.1]

0.0093
502.4 [525.1]

0.0412
562.1 [561.6]

0.0398
600.5 [621.5]

0.0207
551 [574]
0.0392

479 [501.3]
0.0401

331.7 [381.7]
0.0096

75-95
486.6 [514.6]

0.0107
786.6 [873.4]

0.0404
937.3 [1041.2]

0.04
970.7 [1023.4]

0.0192
911.4 [946.2]

0.0393
813.8 [922.5]

0.0404
503.1 [533.5]

0.0099

95-100
831.3 [1034.5]

0.0029
1610.1 [1863.4]

0.01
2060.6 [2576.1]

0.0101
2189.4 [2250.2]

0.0049
2093.9 [2201.2]

0.0102
1884.4 [2492.3]

0.0092
1070.5 [1449.9]

0.0027

percentiles
Sample SD

Sample mean percentiles
Lepage

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
95.9 [107.3]

0.0023
131.8 [146.5]

0.01
145.6 [150.9]

0.0096
149.3 [157.1]

0.005
157.3 [170.4]

0.0101
142.9 [150.9]

0.0104
89 [102]
0.0025

5-25
135.5 [149.7]

0.0102
216.6 [230.9]

0.0405
270.6 [276.5]

0.04
270.7 [281.3]

0.0199
280.1 [286.5]

0.0397
215.5 [223.8]

0.0394
155 [161.6]

0.0104

25-45
197.9 [199.7]

0.0096
309.9 [318.8]

0.0397
369 [392.2]

0.0411
394.8 [440.9]

0.0191
392.3 [399.4]

0.0404
328.3 [362.7]

0.0403
205 [217.4]

0.0099

45-55
255.2 [284]

0.0053
386.1 [425.9]

0.0193
467.6 [477.3]

0.0197
502.6 [513]

0.0107
474 [505.9]

0.0205
395.8 [427.5]

0.02
239.5 [253.2]

0.0045

55-75
300.5 [385]

0.0095
520.5 [533.2]

0.0414
609.1 [624]

0.0398
607.9 [642.9]

0.0203
599.7 [592.8]

0.0393
492.7 [533.7]

0.0397
359.4 [401.4]

0.0099

75-95
448 [485]

0.01
798.8 [835.2]

0.0389
888 [966]
0.0401

972.8 [1111.1]
0.02

886.1 [941.9]
0.0396

774.5 [886.1]
0.0413

462.5 [470.7]
0.01

95-100
715.5 [782.5]

0.003
1274.1 [1314.8]

0.0102
1747.7 [2228.5]

0.0097
1740.6 [1913.3]

0.0048
1674.2 [1924]

0.0105
1460.7 [1783.8]

0.0089
692.1 [709.6]

0.0028

percentiles
Sample SD

Sample mean percentiles
NPC Lepage-Cucconi

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
99.3 [96.2]

0.0026
112.3 [123.1]

0.0102
123.3 [125.8]

0.0099
123.6 [126.2]

0.0048
131.4 [135.3]

0.01
112 [117.1]

0.0103
78.8 [87.3]

0.0023

5-25
134.9 [137.9]

0.0103
205.4 [214.5]

0.0409
226.4 [226.3]

0.0401
239.9 [260.4]

0.019
222.5 [235.6]

0.0409
204.1 [207.2]

0.0395
131.7 [146.8]

0.0094

25-45
203.4 [203.5]

0.0101
292.2 [315.3]

0.0404
339.8 [361.1]

0.0402
360.6 [372.5]

0.0205
345 [370.1]

0.0383
284 [291.3]

0.0402
210.8 [220.3]

0.0104

45-55
236.4 [252.1]

0.0047
402.8 [420.5]

0.0198
422.8 [438.4]

0.0202
459.8 [478.2]

0.0099
429.7 [457.8]

0.0201
353.6 [376.5]

0.0207
254.1 [274.1]

0.0046

55-75
310.6 [309.8]

0.0097
478.8 [515.2]

0.0391
575.3 [585]

0.0395
587.3 [582.5]

0.0209
572.8 [625.7]

0.0404
471.6 [504.2]

0.0395
319.6 [344.7]

0.0109

75-95
471.9 [525.3]

0.0096
758.1 [827.8]

0.0396
901.6 [984.4]

0.0404
978.1 [1098.8]

0.0198
946.5 [1033.6]

0.0401
750.5 [855.2]

0.04
468.7 [498.2]

0.0105

95-100
770.3 [802.6]

0.0031
1587.3 [1741]

0.01
1862.1 [2217.2]

0.0097
1828.3 [2115.6]

0.0051
1887.1 [2340.4]

0.0103
1616.5 [1990.2]

0.0099
796.6 [860.1]

0.0019

percentiles
Sample SD

Sample mean percentiles
NPC Wilcoxon-Klotz

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
76.1 [78.9]

0.0024
100.9 [104.3]

0.0095
123.6 [131.1]

0.0109
112.8 [117.2]

0.0044
116.5 [138.4]

0.0102
95.6 [105.1]

0.0101
69 [69.9]
0.0025

5-25
123.4 [138.2]

0.0096
177.4 [186.9]

0.0408
209 [225]
0.0395

213.9 [226.6]
0.0198

218.7 [240]
0.0398

183.8 [200.5]
0.04

120.9 [134.1]
0.0105

25-45
182 [225.9]

0.0099
287.6 [289.6]

0.0402
326.3 [331.1]

0.0399
352.2 [360.3]

0.0192
337.5 [354.2]

0.0399
281.8 [295.5]

0.0409
172 [206.8]

0.01

45-55
234.1 [232.2]

0.0048
353.6 [345.7]

0.0201
428.8 [463.9]

0.0196
437 [467.4]

0.0103
426.8 [437.8]

0.0207
358.5 [372.5]

0.0198
231.6 [212.7]

0.0047

55-75
313.7 [362.5]

0.0108
487.4 [529.7]

0.0406
570.5 [603]

0.0386
595.2 [682.5]

0.0203
555.7 [562.5]

0.04
466.6 [495]

0.0401
305.6 [323.8]

0.0096

75-95
455.1 [513.7]

0.0097
800.1 [867.3]

0.0387
949.2 [1039.6]

0.0413
1008.4 [1162.6]

0.0215
910.5 [970.8]

0.0397
781.8 [854.4]

0.0392
478.5 [552.9]

0.0098

95-100
995.7 [1118.5]

0.0027
1728.5 [2580.3]

0.0101
2154.3 [2527.6]

0.0102
2226.5 [3112.8]

0.0045
2274.5 [2626.8]

0.0096
1570.5 [1954.7]

0.0099
981.2 [1146.1]

0.0029

Table 4.14: In-control conditional performance of the Cucconi, Lepage, NPC
Lepage-Cucconi and NPC Wilcoxon-Klotz charts under the standard normal dis-
tribution.
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percentiles
Sample SD

Sample mean percentiles
Cucconi

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
83.2 [93]
0.0016

103.9 [109.6]
0.0093

131 [146.6]
0.0119

116.3 [125.3]
0.0059

126.9 [142]
0.0107

106.6 [113.4]
0.0095

84.8 [84.4]
0.0013

5-25
128.5 [141.1]

0.0082
197.9 [232]

0.0392
232.3 [244.5]

0.0409
236.4 [258.6]

0.0223
231.9 [252.7]

0.0423
196.9 [219.9]

0.0391
134.3 [166.7]

0.0079

25-45
206.1 [218.6]

0.0088
293.5 [318.2]

0.0393
373.8 [398.2]

0.0425
389.5 [426.7]

0.0199
372.8 [413.2]

0.0408
313.7 [352.7]

0.0404
200.1 [233.3]

0.0082

45-55
265.6 [304.6]

0.005
406.3 [498.8]

0.0203
486.5 [554.9]

0.0201
481.4 [528.1]

0.0094
451.2 [509.4]

0.0199
399.1 [436.7]

0.0206
224.4 [232.5]

0.0047

55-75
280.1 [323.3]

0.0107
494.6 [561.3]

0.0407
619.3 [712.7]

0.0385
617.4 [658.1]

0.0198
601.2 [649.6]

0.0394
510.5 [579.9]

0.0397
305.5 [321.9]

0.0112

75-95
468.7 [583.5]

0.0121
765.8 [878.9]

0.041
933.4 [1089.9]

0.0372
947.8 [1143.9]

0.0188
965.2 [1188.4]

0.0376
750 [854.1]

0.0403
479.7 [551.8]

0.0129

95-100
715.7 [778.3]

0.0035
1459.3 [2155.3]

0.0101
1847 [2133]

0.0088
2057.9 [3088.9]

0.004
1773.6 [2219.2]

0.0093
1464.9 [1693.9]

0.0104
837.7 [1096.2]

0.0038

percentiles
Sample SD

Sample mean percentiles
Lepage

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
100.2 [110.2]

0.0015
142.5 [147]

0.0093
173.9 [181.9]

0.011
189.9 [232.5]

0.006
168.9 [180.9]

0.0111
143.9 [171.6]

0.0095
90.1 [85.3]

0.0015

5-25
131.1 [138.2]

0.0079
234.7 [250.3]

0.039
294.8 [313.8]

0.0416
297.2 [323.3]

0.0218
276.6 [293.4]

0.0428
237.1 [263.2]

0.0394
156.3 [179.7]

0.0076

25-45
224.2 [240.9]

0.0093
338.9 [374.7]

0.0395
434.7 [486.8]

0.0421
441 [470.9]

0.0204
427.8 [491.8]

0.0407
347.6 [379.2]

0.0398
213.7 [249.8]

0.0082

45-55
249.2 [303.4]

0.0049
437.9 [495.2]

0.0201
513.8 [592.1]

0.0203
608.1 [696.6]

0.0093
491.9 [542.9]

0.02
424.5 [465.3]

0.0207
240.3 [243.5]

0.0048

55-75
301.5 [346.6]

0.0107
520.1 [591.6]

0.0404
617.3 [688.5]

0.0393
654.2 [708.2]

0.0192
631.6 [698]

0.0394
521 [585.6]

0.0398
321.5 [387.4]

0.0112

75-95
444.2 [537.4]

0.012
713.3 [815.5]

0.0416
872.6 [988.3]

0.037
935 [1086.1]

0.0191
912.9 [1104.9]

0.0373
732.5 [904.7]

0.0405
466.9 [568.9]

0.0125

95-100
773.2 [863.7]

0.0037
1126.4 [1539.7]

0.0102
1442.2 [1797.1]

0.0088
1173.8 [1418]

0.0042
1449.2 [1764.3]

0.0087
1152 [1387.4]

0.0102
741.8 [824.9]

0.0042

percentiles
Sample SD

Sample mean percentiles
NPC Lepage-Cucconi

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
103.4 [116.2]

0.0015
127.4 [146.7]

0.0094
164.7 [179.2]

0.0109
154.3 [165.6]

0.0061
153.7 [171]

0.011
125.2 [132.7]

0.0097
84.1 [106]

0.0014

5-25
137.3 [135.3]

0.0074
216.2 [228.2]

0.039
254.9 [284]

0.0427
271.7 [307.5]

0.0212
273.5 [290]

0.0423
215.6 [227.3]

0.0395
146.8 [174.2]

0.0081

25-45
198.9 [242.6]

0.0089
317.5 [348.7]

0.0403
382.6 [403.2]

0.0422
417.4 [458.3]

0.0203
376.4 [409.7]

0.0408
318.9 [355.9]

0.0393
202.6 [206.2]

0.0084

45-55
211.5 [253.7]

0.0047
385.1 [406.1]

0.0198
480.6 [548.4]

0.0204
532 [609.1]

0.0097
432.3 [474.8]

0.0209
385.2 [441.1]

0.0193
230.3 [231.9]

0.0052

55-75
328.7 [371.4]

0.0105
503.1 [585.8]

0.0403
613.8 [686.6]

0.0391
633 [687.7]

0.0196
615.5 [695.3]

0.0394
506.9 [570.4]

0.0402
291.1 [349]

0.011

75-95
428.1 [567.3]

0.0129
746.5 [922.5]

0.0415
921.6 [1113.3]

0.0361
998.4 [1153.4]

0.0186
958.2 [1144.9]

0.0371
731.4 [841.8]

0.0417
457.3 [575.3]

0.0121

95-100
685.2 [809.7]

0.0041
1396 [1879.2]

0.0097
1717.7 [2116.4]

0.0087
1552.8 [1983.2]

0.0045
1693.1 [1993.8]

0.0087
1253.6 [1815.5]

0.0104
669.9 [856.3]

0.0039

percentiles
Sample SD

Sample mean percentiles
NPC Wilcoxon-Klotz

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
54.5 [68]
0.0017

88.1 [98.3]
0.0097

104.2 [109.4]
0.0108

113.3 [125.2]
0.0058

109.9 [107]
0.0111

99.7 [102.3]
0.0093

72.8 [85.5]
0.0016

5-25
112.3 [114]

0.0073
172.9 [179.7]

0.039
214.4 [223.8]

0.0423
213.8 [232.7]

0.0215
226.9 [236.1]

0.0425
170 [179.1]

0.04
107.9 [126.2]

0.0074

25-45
163.1 [159.8]

0.0094
265.7 [277.6]

0.0416
347.2 [350.3]

0.0407
368.5 [371.2]

0.0204
345.5 [373.1]

0.0398
287.2 [307.7]

0.0386
156.8 [163.6]

0.0094

45-55
191.3 [189.9]

0.0048
347 [364.6]

0.0197
458.9 [467]

0.0199
477.8 [487.3]

0.0098
461.4 [490.5]

0.0205
366.4 [372.9]

0.0203
215.3 [257.7]

0.0051

55-75
253.3 [285.6]

0.0109
465 [509.4]

0.0403
620.3 [660.2]

0.0392
614.7 [654.7]

0.0194
591.6 [629.8]

0.0391
474.5 [514.3]

0.041
279.8 [297.2]

0.0102

75-95
405 [476.4]

0.0125
755.2 [873.4]

0.04
980.1 [1084.6]

0.0383
1004.9 [1134.7]

0.0188
967.7 [1090]

0.0378
740.6 [812.5]

0.0403
375.6 [441.6]

0.0123

95-100
744.4 [1104]

0.0034
1509 [1763.9]

0.0096
2158.5 [2987.1]

0.0088
1923.5 [2318.5]

0.0044
1892.6 [2089]

0.0093
1655 [2344.7]

0.0105
735 [808]
0.0041

Table 4.15: In-control conditional performance of the Cucconi, Lepage,
NPC Lepage-Cucconi and NPC Wilcoxon-Klotz charts under the
Laplace (0, 1/

√
2) distribution.
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percentiles
Sample SD

Sample mean percentiles
Cucconi

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
96 [98.2]
0.0134

130.8 [142.4]
0.0218

118.1 [119.8]
0.0091

121.4 [117.1]
0.0022

129.9 [143.7]
0.0026

87.7 [129.8]
0.0009

-
≤0.00006

5-25
184.2 [206.1]

0.0213
236.3 [256.2]

0.0703
241.9 [252]

0.0478
230.6 [264.1]

0.0189
207 [242.1]

0.0273
156.5 [177.1]

0.0132
118.4 [134.9]

0.0012

25-45
302.2 [302]

0.0092
382.7 [407.9]

0.0493
368.7 [400]

0.0493
341 [376.9]

0.0232
333.5 [371.3]

0.0398
248.6 [302.6]

0.0263
144 [169.1]

0.0029

45-55
393.2 [417]

0.0029
474.2 [497.3]

0.018
488.1 [539.4]

0.0234
497.5 [620.3]

0.0116
486.7 [567.7]

0.0232
325.2 [364.3]

0.0183
163.5 [183]

0.0026

55-75
555.1 [670]

0.0025
619.3 [696.6]

0.0268
670.6 [745.7]

0.0397
632.1 [671]

0.0228
609.6 [706.2]

0.0495
436.3 [533.8]

0.0491
276.3 [322.9]

0.0097

75-95
513.5 [584.6]

0.0007
837.3 [939.4]

0.0126
965.2 [1188.1]

0.0276
1017.3 [1255.2]

0.0187
986 [1238.6]

0.0491
768.9 [1011.8]

0.0708
436.6 [638.6]

0.0206

95-100
-

≤0.00006
1744.6 [2242.5]

0.0013
1585.4 [2452.6]

0.0031
1787.5 [2302.9]

0.0026
1666.1 [2250]

0.0085
1346.9 [1844.3]

0.0214
876.7 [1528]

0.013

percentiles
Sample SD

Sample mean percentiles
Lepage

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
120.3 [134.1]

0.0134
160.8 [177.1]

0.021
158.5 [163.7]

0.0088
160.6 [168.4]

0.0027
145.5 [138]

0.0031
110.1 [111.6]

0.001
-

≤0.00006

5-25
202 [220.4]

0.0221
277.4 [291.9]

0.0707
290.9 [316.9]

0.0499
285.4 [310.4]

0.0179
250.4 [276.4]

0.025
185.4 [196.4]

0.0134
103.1 [118.3]

0.0011

25-45
286.1 [296.4]

0.0091
404.6 [430.5]

0.0498
436.7 [491.8]

0.0498
404.2 [432.3]

0.023
387.4 [421.8]

0.0397
266.5 [322]

0.0256
179.9 [214.4]

0.0032

45-55
324.5 [288.3]

0.0024
510 [584.9]

0.0184
530.4 [565.8]

0.023
509.9 [550.1]

0.0118
468.9 [555.4]

0.0231
360.5 [391.2]

0.0189
168.3 [184.5]

0.0024

55-75
364.2 [371.3]

0.0023
569.1 [608.2]

0.0263
635 [711.8]

0.038
680.4 [794.4]

0.0231
633.6 [799.6]

0.0502
457.2 [535.2]

0.051
270.3 [278.9]

0.009

75-95
465.1 [594.6]

0.0008
675.8 [827]

0.0128
944.5 [1068]

0.0274
901.7 [1030.9]

0.0185
951.9 [1152.5]

0.0502
746.8 [976.2]

0.0691
387.2 [479.5]

0.0212

95-100
-

≤0.00006
1112.1 [1512.9]

0.001
1470.8 [1883.5]

0.0031
1347.9 [1700.4]

0.003
1361 [1579.4]

0.0088
1147.4 [1432.6]

0.021
693.3 [974.8]

0.0131

percentiles
Sample SD

Sample mean percentiles
NPC Lepage-Cucconi

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
114.3 [120.2]

0.0129
142.5 [141.8]

0.0213
136.8 [135.8]

0.009
139.2 [148.5]

0.0027
121.8 [136.7]

0.0031
94.6 [90.1]

0.0009
-

≤0.00006

5-25
188.9 [200.7]

0.0221
250.3 [276.4]

0.0695
263.1 [278.9]

0.0483
263.2 [296.6]

0.0185
211.8 [249.6]

0.0265
180 [203.9]

0.014
77.3 [78.2]

0.0012

25-45
296.8 [345.5]

0.0092
368.2 [390.7]

0.0497
393.9 [427.6]

0.0502
383.4 [418.9]

0.0231
362.4 [401.7]

0.0391
242 [277.2]

0.026
151.7 [172.9]

0.0026

45-55
348.2 [361.1]

0.0024
464 [498.6]

0.0188
520.9 [552.4]

0.0241
469.3 [512]

0.0112
437 [506.7]

0.0225
356.6 [447.1]

0.0182
197.6 [223.7]

0.0027

55-75
428.5 [411.3]

0.0027
574.9 [627.6]

0.0266
653.2 [767.2]

0.0391
681.2 [760]

0.023
585.5 [728.7]

0.0501
462.1 [562.6]

0.0499
247.4 [278.2]

0.0087

75-95
453.5 [513.5]

0.0008
744 [880.8]

0.0132
936.1 [1136.9]

0.0262
908.1 [1176.7]

0.0186
954.7 [1165.6]

0.0494
715.9 [975]

0.0699
421 [588.4]

0.0219

95-100
-

≤0.00006
1094.5 [1377.5]

0.0009
1403.1 [1616.6]

0.003
1888.4 [2376.5]

0.0029
1588.3 [2032.4]

0.0092
1259 [1666.4]

0.021
719.7 [977.6]

0.0129

percentiles
Sample SD

Sample mean percentiles
NPC Wilcoxon-Klotz

0-5 5-25 25-45 45-55 55-75 75-95 95-100

0-5
91.5 [89.5]

0.0138
109.8 [111.5]

0.0207
114 [118.6]

0.0091
121.2 [122.3]

0.0026
100.1 [107]

0.0028
63.2 [75.2]

0.001
-

≤0.00006

5-25
170.6 [176.7]

0.0211
213.6 [228.7]

0.0712
233 [259.1]

0.0489
214.8 [219.7]

0.0179
202.3 [223.9]

0.0271
151.5 [164.7]

0.0131
94.7 [138.6]

0.0008

25-45
283.8 [302.3]

0.0092
341.7 [349.5]

0.0492
362.1 [375.8]

0.0488
342.2 [376.5]

0.0243
327.2 [375.5]

0.0395
240 [274.3]

0.0261
192.9 [263]

0.0029

45-55
361.8 [422.8]

0.0021
468.7 [508]

0.0181
483.3 [486.8]

0.0235
464.5 [505.4]

0.0115
438.6 [482.2]

0.023
334.8 [393.4]

0.0188
195.3 [262.1]

0.003

55-75
462.5 [529.6]

0.0025
609.9 [651.6]

0.0265
639.9 [666.4]

0.0403
608 [629.3]

0.0232
586.9 [689.7]

0.05
430.9 [540.4]

0.0487
253.5 [349.8]

0.0087

75-95
563.8 [712.4]

0.0012
950.6 [1032.5]

0.0135
1047.4 [1138.6]

0.0261
1123.4 [1386.5]

0.0179
967.9 [1171.4]

0.0492
756 [1075.9]

0.0711
409.8 [573.3]

0.021

95-100
-

≤0.00006
1412.5 [1917.4]

0.0009
1952.1 [2474.7]

0.0034
2037 [2230.9]

0.0026
1806.5 [2259.3]

0.0085
1393.6 [2020.1]

0.0211
684.2 [1100.9]

0.0135

Table 4.16: In-control conditional performance of the Cucconi, Lepage,
NPC Lepage-Cucconi and NPC Wilcoxon-Klotz charts under the Gamma(4, 2)
distribution shifted by −2.
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Chapter 5

Conclusions

In this Thesis, we have achieved several findings and practical results concern-
ing the proposed multi-aspect NPC scheme for Shewhart-type control charts.
From a theoretical perspective, we answered important questions regarding the
distribution-free-ness of multi-aspect NPC control charts: We have discovered that
multi-aspect NPC control charts are not distribution-free in general and that they
become distribution-free if they combine only linear rank tests.

From a practical perspective, we proposed and evaluated several distribution-
free multi-aspect NPC charts for the univariate location and joint location-scale
monitoring problems in case U. To provide calibration and evaluation routines for
multi-aspect NPC charts, a high-performance R packet has been developed. Using
the implemented algorithms, a comparative simulation study has been carried out
to compare the proposed charts with the competitors.

One of the most interesting results has been obtained with the NPC Wilcoxon-
Klotz chart for the location-scale problem. This chart takes full advantage of
the flexibility of the NPC framework and outperforms the Cucconi and Lepage
charts under a wide variety of interesting distributions. It is worth underlying
that the NPC Wilcoxon-Klotz chart, as well as the Cucconi and Lepage charts,
are not able to detect a compression of the scale of the process distribution. The
main disadvantage we found about the NPC Wilcoxon-Klotz chart is that, among
the charts we compared, it is the most sensitive to “extreme” reference samples,
although the results are fairly close with the Cucconi chart.

As for the location monitoring problem, the NPC Wilcoxon-Waerden chart
turned out to be a valid competitor of the popular Mann Whitney chart. The
NPC Wilcoxon-Waerden has better OOC performance than the Mann Whitney
chart with normal data. Unfortunately, it seems that this performance increase
with the normal distribution cannot be achieved without a relatively higher perfor-
mance degradation with more heavy-tailed distributions, like the Laplace. With
the asymmetric Gamma distribution, it seems that the best-performing chart de-
pends on the orientation of the location shift. Finally, the results of the IC con-
ditional performance analysis show that, among all the charts we compared, the
Wilcoxon chart is the least affected by “extreme” reference samples.

5.1 Future works

It would be interesting to study further the NPC scheme in the context of mul-
tivariate monitoring problems. From our experience, having fast calibration and
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evaluation algorithms is essential for this kind of exploration. Therefore, the high-
performance R packet that we have developed could be extended to support also
multivariate distributions and SPS statistical models.

Another interesting idea to explore is the development of the CUSUM and
EWMA versions of NPC charts. CUSUM and EWMA charts have only been
briefly discussed in this Thesis. A major advantage of these charts with respect to
Shewhart-type charts is that, at each time step, they exploit the information con-
tained both in present and past test samples. Combining the principles of CUSUM
and EWMA charts with the flexibility of the NPC framework could lead to the
discovery of powerful control charts.
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Appendix A

npcharts R package
documentation

npcharts package
January 30, 2022

npcharts.setseed Set the seed used by this R packet

Description

Set the seed used by this R packet

Usage

npcharts.setseed(seed)

Arguments

seed The seed. Either an integer scalar or an integer vector of length 2 representing a
64-bit seed.

compute_permutation_distribution

Compute permutation distribution

Description

Used for precomputing permutation distribution of linear rank statistics

Usage

compute_permutation_distribution(statistic, m, n, n_perm)

Arguments

statistic should be set to a valid statistic key. See details for consulting the available
statistics and corresponding keys

m The dimension used for the reference sample

n The dimension used for the test samples

nperm the number of random permutations

1
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2 compute_monitoring_statistic

Details

The supported statistics and the respective keys to be used are:

• Wilcoxon rank sum - "wilcoxon_rank_sum"

• Mann-Whitney - "mann_whitney"

• Mean-normalized wilcoxon rank sum - "centered_wilcoxon_rank_sum"

• Percentile modified rank test with s=r=0.42 - "percentiles_42_42"

• Percentile modified rank test with s=r=0.46 - "percentiles_46_46"

• Klotz - "klotz_statistic"

• Ansari Bradely - "ab_statistic"

• Lepage - "lepage"

• Cucconi - "cucconi"

compute_monitoring_statistic

Phase II monitoring

Description

Compute the observed value of the monitoring statistic

Usage

compute_monitoring_statistic(
x1,
x2,
monitoring_statistic_type,
monitoring_statistic_parameters

)

Arguments

x1 The reference sample

x2 The test sample
monitoring_statistic_type

Either "npc" or "simple_statistic"
monitoring_statistic_parameters

A list with type-specific parameters of the monitoring statistic. For the "sim-
ple_statistic" type the only parameter is "statistic" which should be set to a valid
statistic key. For the "npc" type the four (required) parameters are "statistics",
"permutation_distributions", "tails" and "combining_function". The "statistics",
"permutation_distributions" and "tails" parameters should be three lists of the
same length. The "combining_function" parameters should be a string. See de-
tails for consulting the available statistics and combining functions and the keys
to be used.
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evaluate.unconditional 3

Details

The supported statistics and the respective keys to be used are:

• Wilcoxon rank sum - "wilcoxon_rank_sum"

• Mann-Whitney - "mann_whitney"

• Mean-normalized wilcoxon rank sum - "centered_wilcoxon_rank_sum"

• Percentile modified rank test with s=r=0.42 - "percentiles_42_42"

• Percentile modified rank test with s=r=0.46 - "percentiles_46_46"

• Klotz - "klotz_statistic"

• Ansari Bradely - "ab_statistic"

• Lepage - "lepage"

• Cucconi - "cucconi"

The three options for the values of the "tails" list parameter of npc monitoring statistics are: "two_sided",
"left" and "right" The three options for the "combining_function" parameter of npc monitoring
statistics are: "fisher", "liptak" and "tippet"

Value

the monitoring statistic value

evaluate.unconditional

Unconditional evaluation

Description

Unconditional evaluation for Stehwart-type charts

Usage

evaluate.unconditional(
m,
n,
limits,
location_shift,
scale_multiplier,
distribution_key,
distribution_parameters,
monitoring_statistic_type,
monitoring_statistic_parameters,
nsim,
run_length_cap

)
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4 evaluate.unconditional

Arguments

m The dimension used for the reference sample

n The dimension used for the test samples
distribution_key

A string which identifies a distribution or a distribution family. Used in com-
bination with the "distribution_parameters" parameter in order to select the IC
distribution. See details for consulting the available distributions and the respec-
tive keys.

distribution_parameters

A list with the distribution parameters (an empty list should be supplied if the
distribution has not parameters)

monitoring_statistic_type

Either "npc" or "simple_statistic"
monitoring_statistic_parameters

A list with type-specific parameters of the monitoring statistic. For the "sim-
ple_statistic" type the only parameter is "statistic" which should be set to a valid
statistic key. For the "npc" type the four (required) parameters are "statistics",
"permutation_distributions", "tails" and "combining_function". The "statistics",
"permutation_distributions" and "tails" parameters should be three lists of the
same length. The "combining_function" parameters should be a string. See
details for consulting the available statistics and combining functions and the
keys to be used. the only parameter is "statistic" which should be set to a valid
statistic key. For the "npc" type the three (required) parameters are "statistics",
"permutation_distributions" and "tails"

nsim The number of simulations

run_length_cap A limit for the run length in the simulations used to guarantee convergence of
the algorithm

Details

The supported distributions and the respective parameters are:

• Normal - key:"norm", params:"mean" and "sd"

• Laplace - key:"laplace", params:"location" and "scale"

• Student’s T - key:"t", params:"df"

• Cauchy - key:"laplace", params:"location" and "scale"

• Chi squared - key:"chi_squared", params:"df"

• Exp(lambda=1) shifted by -1 - key:"normalized_rate_one_exponential"

• Gamma(scale=4,shape=2) shifted by -2 - key:"centered_gamma_with_shape_equal_four"

The supported statistics and the respective keys to be used are:

• Wilcoxon rank sum - "wilcoxon_rank_sum"

• Mann-Whitney - "mann_whitney"

• Mean-normalized wilcoxon rank sum - "centered_wilcoxon_rank_sum"

• Percentile modified rank test with s=r=0.42 - "percentiles_42_42"

• Percentile modified rank test with s=r=0.46 - "percentiles_46_46"

• Klotz - "klotz_statistic"
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calibrate.unconditional 5

• Ansari Bradely - "ab_statistic"

• Lepage - "lepage"

• Cucconi - "cucconi"

The three options for the values of the "tails" list parameter of npc monitoring statistics are: "two_sided",
"left" and "right". The three options for the "combining_function" parameter of npc monitoring
statistics are: "fisher", "liptak" and "tippet"

Value

A data frame whose columns are "run_lengths", "reference_sample_means" and "reference_sample_sds"

calibrate.unconditional

Unconditional calibration

Description

Unconditional calibration for the Stehwart-type charts implemented by this package

Usage

calibrate.unconditional(
m,
n,
distribution_key,
distribution_parameters,
monitoring_statistic_type,
monitoring_statistic_parameters,
limits_seq,
is_upper_limit,
nsim,
run_length_cap

)

Arguments

m The dimension used for the reference sample

n The dimension used for the test samples
distribution_key

A string which identifies a distribution or a distribution family. Used in com-
bination with the "distribution_parameters" parameter in order to select the IC
distribution. See details for consulting the available distributions and the respec-
tive keys.

distribution_parameters

A list with the distribution parameters (an empty list should be supplied if the
distribution has not parameters)

monitoring_statistic_type

Either "npc" or "simple_statistic"
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6 calibrate.unconditional

monitoring_statistic_parameters

A list with type-specific parameters of the monitoring statistic. For the "sim-
ple_statistic" type the only parameter is "statistic" which should be set to a valid
statistic key. For the "npc" type the four (required) parameters are "statistics",
"permutation_distributions", "tails" and "combining_function". The "statistics",
"permutation_distributions" and "tails" parameters should be three lists of the
same length. The "combining_function" parameters should be a string. See de-
tails for consulting the available statistics and combining functions and the keys
to be used.

limits_seq The numeric vector of limits for which the run length should be recorded at each
simulation

is_upper_limit A boolean parameter used to select whether the chart uses an upper limit or a
lower limit

nsim The number of simulations

run_length_cap A limit for the run length in the simulations used to guarantee convergence of
the algorithm

Details

The supported distributions and the respective parameters are:

• Normal - key:"norm", params:"mean" and "sd"

• Laplace - key:"laplace", params:"location" and "scale"

• Student’s T - key:"t", params:"df"

• Cauchy - key:"laplace", params:"location" and "scale"

• Chi squared - key:"chi_squared", params:"df"

• Exp(lambda=1) shifted by -1 - key:"normalized_rate_one_exponential"

• Gamma(scale=4,shape=2) shifted by -2 - key:"centered_gamma_with_shape_equal_four"

The supported statistics and the respective keys to be used are:

• Wilcoxon rank sum - "wilcoxon_rank_sum"

• Mann-Whitney - "mann_whitney"

• Mean-normalized wilcoxon rank sum - "centered_wilcoxon_rank_sum"

• Percentile modified rank test with s=r=0.42 - "percentiles_42_42"

• Percentile modified rank test with s=r=0.46 - "percentiles_46_46"

• Klotz - "klotz_statistic"

• Ansari Bradely - "ab_statistic"

• Lepage - "lepage"

• Cucconi - "cucconi"

The three options for the values of the "tails" list parameter of npc monitoring statistics are: "two_sided",
"left" and "right". The three options for the "combining_function" parameter of npc monitoring
statistics are: "fisher", "liptak" and "tippet"

Value

A numeric matrix of size nsim x length(limits_seq)
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