

 Master’s Degree

in Computer Science

Final Thesis

Virtualization and Containerization
a new concept for data center management

to optimize resources distribution

Supervisor
Dottor Fabrizio Romano

Graduand
Enrico Martin
Matriculation number
815635

Academic Year
2020 / 2021

Abstract

The role of cloud computing has led the way data center services are offered, uti-

lized and handled over the internet. Typically, applications run inside the virtual

machines in an isolated environment. Nevertheless, a considerable hardware virtu-

alization overhead seems to be inevitable. Recently, Docker containers have

gained noticeable attention because of their substantially lower overhead if com-

pared to virtual machines using operating system virtualization. This prominent

technology mainly provides isolation, portability, interoperability, scalability and

high availability. Hence that is being widely adopted and everybody is trying to

shift their software to Docker containers with the support of tools and frameworks.

Containers are revolutionizing the way software is delivered and deployed. Partic-

ularly with the use of cloud orchestration tools like Kubernetes, a new approach to

high availability and fault tolerance is emerging.

The thesis illustrates the evolution of virtualization technology and the switch to

containerization, to focus on the migration of data center processes in a container-

ized environment using Kubernetes as an orchestration tool. Two case examples

are discussed in order to evaluate the performance of a web server and a file

server. In addition to that, a cost/benefits analysis is introduced to estimate the ad-

vantages such a strategy could lead to.

1

Acknowledgements

I would first like to thank my thesis advisor Professor Fabrizio Romano who con-

stantly mentor me trough this research, by providing guidance and support.

Finally, I must express my very profound gratitude to my parents, my brother and

to all my friends and work colleagues for always expressing constant support and

continuous encouragement throughout my years of study and through the process

of researching and writing this thesis. This accomplishment would not have been

possible without them all.

Thank you.

2

Contents
Chapter 1. Virtualization...4

1.1 A brief history of virtualization..5
1.2 Hardware virtualization and the role of the hypervisor....................................10
1.3 Operating-system-level virtuaqlization..12
1.4 Open source impletations..12
1.5 Commercial applications...15
1.6 Security vulnerabilities in virtualized environments...17
1.7 High availability and fault tolerance...20
1.8 Virtualization benefits and drawbacks..21

Chapter 2. Containerization..24
2.1 Differences between virtualization and containerization..................................25
2.2 Where’s the hypervisor?..27
2.3 What happends in Windows? The hidden Linux VM..31
2.4 Docker architecture. Containers/Images/Repos/UnionFS.................................32
2.5 Other container engines..36
2.6 Security in containerized environments..38
2.7 High availability and fault tolerance issues...39

Chapter 3. Orchestration...41
3.1 Brief introduction..42
3.2 Kubernetes architecture..46

3.2.1 etcd..47
3.2.2 kube-scheduler...47
3.2.3 kube-controller-manager..47
3.2.4 kubelet...48
3.2.5 Container runtime..48
3.2.6 API Services...48
3.2.7 PODs..48
3.2.8 Configurations and secrets...50
3.2.9 Resource management...51

Chapter 4. From virtualized hosts to containerized applications.............52
4.1 Datacenter context..53
4.2 Tests and bechmarking...53

4.2.1 Apache webserver..53
4.2.2 Fileserver...54
4.2.3 OverLeaf...55
4.2.4 Voting webAPP...59

4.3 A cost/benefits analysis...62
4.4 From on-premise solutions to cloud platforms..65
4.5 Hybrid solutions..67

Chapter 5. Conclusions and future works...69

3

Chapter 1

Virtualization

In this chapter, a brief history of virtualization will be presented in order to under-

stand the evolution of computer architecture that led to the introduction of virtual-

ization, its benefits and drawbacks

4

1.1 A brief history of virtualization

Virtualization is a technique which traces its origins back to late 1960s / early

1970s when a single operating system and batch jobs were used to carry out IT

tasks using punched cards, processing only one operation at a time, resulting in

inefficient use of CPU time.1

Things branched out when the Boston Massachusetts Institute of Technology

(MIT) announced the MAC Project in 1963 for which a computer hardware capable

of more than one simultaneous user was needed. For this purpose the Compatible

Time-Sharing System (CTSS)2 was conceived using Defense Advanced Research

Projects Agency (DARPA) funds. CTSS was developed at the MIT Computation

Center and it was one of the first time-sharing operating systems.3 Among others,

the MAC Project aimed to develop the successor of CTSS, known as MULTICS,

meant to be the first high availability computer, developed as part of a consortium

of companies that included General Electric and Bell Laboratories.4

Time-sharing refers to the partitioning of computing resources among many users

through multiprogramming and multi-tasking at the same time allowing the CPU

to run different processes concurrently, giving them a slot of execution time and

stopping them when I/O access is required or the time slot ends.

On June 30th, 1970 IBM announced the System/370 as the successor generation of

mainframes to the System/360. As with the System/360 series, this new generation

of mainframes didn’t support virtual memory. However, in 1972, IBM changed di-

rection announcing that the option would have been made available on all

System/370 models.5 Those were the first steps into computer virtualization and

the introduction of a layer to virtualize machines, called hypervisor.

1 "History of Operating Systems", University of Washington. Retrieved Nov 21st, 2019
2 “An Experimental Time Sharing System” , Fernando J. Corbató, Marjorie Merwin Daggett, Robert C. Daley, Computa-

tion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts
3 CTSS used a modified IBM 7090 mainframe computer that had two 32,768 (32K) 36-bit-word banks of core memory in -

stead of the normal one. One bank was reserved for the time-sharing supervisory program, the other for user programs.
CTSS had a protected-mode kernel, the supervisor's functions in the A-core (memory bank A) could be called only by soft -
ware interrupts, like in the modern operating systems. Causing memory-protection interrupts were used for software in -
terrupts.

4 John McCarthy, “Reminiscences on the History of Time Sharing”, Archived 2007-10-20 at the Wayback Machine (Stan-
ford University 1983).

5 Pugh, E.W.; L.R. Johnson; John H. Palmer (1991). “IBM's 360 and early 370 systems.”, Cambridge: MIT Press.

5

Virtual memory is a memory management technique that maps memory addresses

used by a program, called virtual addresses, into physical addresses in computer

main memory. Virtual memory makes processes see main memory as a contiguous

address space. The mapping between virtual and real memory is managed by the

operating system and the Memory Management Unit (MMU), a hardware compo-

nent usually implemented as part of the central processing unit (CPU) that auto-

matically translates virtual addresses to physical addresses.

Moreover, virtual memory enables the operating system to provide a virtual ad-

dress space that can also be bigger than real memory so processes can reference

more memory than the size that is physically present. This technique is called pag-

ing.

Virtual memory first appeared in the 1960s, when main memory was very expen-

sive and very few. Virtual memory enabled software systems with large memory

demands to run on computers with less real memory and also eliminated the need

for coders to handle memory explicitly. Soon, because of the savings introduced by

this technique, many software systems started to turn on virtual memory by de-

fault.

The concept of virtual memory, or virtual storage as IBM used to refer to on main-

frame operating systems, was first developed by German physicist Fritz-Rudolf

Güntsch at the Technische Universität Berlin in 1956.6 Paging was first imple-

mented at the University of Manchester as a way to extend the Atlas Computer’s

working memory. The primary benefits of virtual memory included freeing applica-

tions from having to manage a shared memory space, increased security due to

memory isolation, and increased memory availability for processes by exploiting

the paging technique.

In addition to that, another memory management technique was introduced to

handle the retrieving of data from secondary storage to be used in main memory:

paging; which is a memory management scheme by which an operating system

stores and retrieves data from secondary storage (e.g., hard disks) for use in main

6 Bhattacharjee, Abhishek; Lustig, Daniel (2017). Architectural and Operating System Support for Virtual Memory. Mor-
gan & Claypool Publishers.

6

memory. The operating system retrieves data from secondary storage in same-size

blocks called pages, hence the name paging.7

Those two techniques; time-sharing and virtual memory, made possible the future

implementation of a software layer called hypervisor. In their 1974 article, "For-

mal Requirements for Virtualizable Third Generation Architectures" Gerald J.

Popek and Robert P. Goldberg classified two types of hypervisors8: Type-1; native

or bare-metal hypervisors and Type-2; or hosted hypervisors. The two types helped

distinguish between hypervisors that run on a physical machine and those that run

on top of an existing operating system. Type-1 hypervisors provide increased secu-

rity because of their location in the physical hardware, which eliminates the attack

surface often offered by an operating system. Type-2 hypervisors, on the other

hand, are closely related to the beginnings of x86 virtualization and are generally

used for client or end-user systems. This is because Type-2 hypervisors run on top

of the host operating system, which can lead to latency issues and security risks.

Virtualisation was dropped during the late 2000 when client-server software and

cheaper x86 servers and desktops open towards distributed computing. The suc-

cess of Windows and the appearance of Linux as server operating systems settle a

new de facto industry standard. Opposing to mainframes, x86 computers weren’t

intended to achieve full virtualisation.

In 1999 Vmware Virtual Platform for Intel architecture was launched, the first x86

hardware based on research at Stanford University9. Hardware-assisted virtualiza-

tion is a way that makes possible effective usage of the underlining hardware func-

tionalities. It emulates entirely the hardware components for the virtual machine,

where a guest operating system, using the same instruction set architecture as the

host machine, executes the instructions in complete isolation.10

A series of new techniques for hardware support were adopted during the defini-

tion of x86 standard which led to protected mode where the operating system is

7 Deitel, Harvey M. (1983). “An Introduction to Operating Systems.”, Addison-Wesley. pp. 181, 187. ISBN.
8 "Formal Requirements for Virtualizable Third Generation Architectures," Gerald J. Popek and Robert P. Goldberg, 1974
9 See https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
10 See https://en.wikipedia.org/wiki/X86_virtualization

7

executed in a privileged mode while the rest of operations are executed without

those privileges.11

Those techniques had the effect to worsen the performance of the host operating

systems so a first attempt used in x86 software-based virtualization to overcome

this limitation was ring deprivileging.12

Three techniques were adopted:

• binary translation13 operates when an unprivileged instruction is asked to be

executed by the host operating system without the necessary privileges, so

that a rewritten operation is passed to kernel thus avoiding the trap-and-em-

ulate phase14.

• a shadowing process must be apply to certain key data structures because

operating systems use paged virtual memory, so giving the guest operating

system direct access to memory will result in a uncontrolled access to the

main memory, causing possible conflict in the addressing mechanism by the

the hypervisor. A technique was introduced to avoid it, called shadow page

tables for which a local version of the page table is presented to the guest

operating system shares the actual page table and descriptor are managed

by the host operating system by trapping the access requests15.

• I/O emulation for hardware which is not directly supported by the host oper-

ating system.16 17

A distinct path was chosen by other systems called paravirtualization demanding a

software porting of the entire operating systems to be executed on the virtual ma-

11 “A Comparison of Software and Hardware Techniques for x86 Virtualization”, Keith Adams and Ole Agesen, VMware,
ASPLOS’ 06 October 21–25, 2006, San Jose, California, USA

12 "Intel Virtualization Technology Processor Virtualization Extensions and Intel Trusted execution Technology", Intel 2007
13 See https://en.wikipedia.org/wiki/X86_virtualization
14 Trap-and-emulate is a technique used by the virtual machine to emulate privileged instructions and registers and pretend

to the operating system that it is still in kernel mode.
15 In memory addressing for Intel x86 computer architectures, segment descriptors are a part of the segmentation unit, used

for translating a logical address to a linear address. Segment descriptors describe the memory segment referred to in the
logical address.

16 "VMware and Hardware Assist Technology", Archived from the original on 2011-07-17. Retrieved 2010-09-08
17 “A comparison of software and hardware techniques for x86 virtualization”, Keith Adams and Ole Agesen, Vmware -

ACM SIGOPS Operating Systems Review, Volume 40, Issue 5 December 2006

8

chine so that doesn’t implement the x86 ISA resulting in a significant I/O perfor-

mance gaining.

Those limitations opened the way to full virtualization and paravirtualization.18

Both mimic the physical underlining hardware to accomplish the operating system

abstraction from the physical hardware, displaying some loss in performance and

increased complexity.

1. Full virtualization also known as Native virtualization was introduced in

first generation x86 to run unmodified guest operating systems to take ad-

vantage of direct accessible instruction set. In this scenario, a guest operat-

ing system uses the same instruction set, interrupts and memory access as

the host one, as result most of the instructions can be directly executed on

the bare physical system without performance loss. VirtualBox, VMware

Workstation, and Microsoft Virtual PC, are well-known commercial imple-

mentations of full virtualization.

2. Paravirtualization19 is a different approach to virtualization that opt for a

partial modification of the kernel operating system to boost the performance

of some specific operations. The way such performance are achieved is using

hypervisor’s APIs, thus the need to modify the kernel, giving the guest oper-

ating system direct access to the hypervisor so that the execution id done

without the intervention of the guest virtual machine, avoiding calling the

virtualization layer, where performance are much worse if compared to a

non virtualized environment.

A naif hardware-assisted virtualization concept is possible at a cost of using virtual

machine APIs or triggers which reduce CPU performance, thus reducing efficiency

and scalability. Even though no modifications have to be implemented on the ker-

18 Chris Barclay, New approach to virtualizing x86s, Network World, 20 October 2006
19 "VMware Introduces Support for Cross-Platform Paravirtualization – VMware". VMware. 16 May 2008. Archived from

the original on 13 April 2011.

9

nel side, the performance lacks could be soothed adopting a so-called hybrid-virtu-

alization.20 21

Nowadays those techniques paved the way to containerization, which will be thor-

oughly discussed in the next chapter.

1.2 Hardware virtualization and the

role of the hypervisor

Virtualization technology involves the abstraction of computer hardware like CPU,

HHD, network interfaces, RAM, software stack, and so on. Virtualization mimic the

hardware components behavior running a virtual version of them.

20 "Hybrid Virtualization: The Next Generation of XenLinux", Archived March 20, 2009, at the Wayback Machine
21 Jun Nakajima and Asit K. Mallick, "Hybrid-Virtualization—Enhanced Virtualization for Linux", Archived 2009-01-07 at

the Wayback Machine, in Proceedings of the Linux Symposium, Ottawa, June 2007.

10

Hardware Level Virtualization has extensively been adopted over the last twenty

years using an hypervisor to abstract the interface layer between software and the

underlying hardware. Hypervisor is a piece of software that makes the illusion of a

virtual component directly running on the hardware, isolated from the underlying

host operating system. Two types of hypervisors exist:

• Type-1 - Native or Bare-metal Hypervisor is executed without external

intervention to the host hardware, without any operating system in between

as shown in figure 2.1, handling the hardware requests from the guest oper-

ating system so that playing the role of the intermediary;

• Type-2 - Hosted Hypervisor is part of the underlining operating system

providing an access to the hardware as shown in figure 2.2, so that it assures

full isolation that guarantees abstraction from the host computer hardware.

That kind of virtualization is as well acknowledged as full-virtualization.

The importance of having an isolated environment where numerous virtual ma-

chines are able to run independently at the same time is obvious if one consider

the case a virtual machine try and trigger a privileged command to shut down it-

11

self. If there isn’t an isolated environment there will be a chance the instruction

will turn the entire system down and not only that very virtual machine.22

1.3 Operating-system-level virtualization

The wide adoption of virtualized computers has welcomed a variety of beneficial

outcomes on computing systems and cloud computing as well. The major and out-

standing improvement of the adoption of virtualized environments is that the in-

vestments in infrastructure have been lowered.

The necessity of CPU virtualization is caused by the requirement of a dedicated

processor for each of the virtual machines running and, as physical hosts typically

have one or two central processing units, the abstraction of the CPU is mandatory.

Operating system level virtualization, otherwise called lightweight virtualization, is

a technique where a kernel of an operating system grants the copresence of more

than one isolated userspaces rather than just one. Those isolated userspaces are

also referred to as containers or jail or chroot jails in BSD environments. That kind

of resource segmentation often comes free of costs of with irrelevant overhead as

containers benefit from the underlying operating system calls so avoiding any form

of emulation.23

1.4 Open source implementations

• Xen Project

Is an open-source virtualization project focused on pushing virtualization in

both commercial and open source applications, not to mention server virtual-

ization with Linux or Windows operating system. Its free and open source hy-

pervisor is considered to be one of the best for paravirtualization and it is of-
22 Smith, Jim; Nair, Ravi (2005). Virtual Machines. Morgan Kaufmann. Performance Enhancement of System Virtual Ma-

chines.
23 Gerardus Blokdyk, Operating System Level Virtualization – A complete guide, 2020

12

ten judged the default standard in Linux. Xen offers a reliable, flexible and

secure setting with a particular attention to security issues, both on-premise

and in cloud giving the flexibility to run different operating systems.24

• VirtualBox25

VirtualBox from Oracle is a performing x86/AMD64 open source software

running on Linux, Windows and many other operating systems, providing full

virtualization for a variety of host operating systems. It takes advantage of

hardware virtualization (Intel VT-x and AMD-V) to execute code natively thus

abstracting from the underneath OS.

It furthermore can run without hardware virtualization, thus effectively run-

ning on any system without Intel VT-x or AMD-V technology and is possible

to demote among VMs or cloud transparently.

• KVM

Kernel-based Virtual Machine, also known as KVM is a solution running both

on Intel64 and AMD64 architecture. The project was first released in 2006

as part of the Linux ecosystem. KVM components incorporate among others,

automatic NUMA (Non-Uniform Memory Access) balancing, Virtual CPU,

and capping disk I/O bandwidth between host and guest machines. KVM

keeps a high degree of integration with the operating system, and as is part

of Linux OS it offers great performance ensuring near-bare-metal perfor-

mance. It is scalable and secure, due to its coupling with the operating sys-

tem and benefits from a worldwide support open source community.

• oVirt

A community project initially founded by RHAT, oVirt is a free and open-

source virtualization management platform alternative that implements a

centralized integration between host machine, storage infrastructure and

24 See https://xenproject.org/
25 See https://www.virtualbox.org/

13

virtual/physical network. Based upon KVM and the library libvirt, oVirt in-

cludes support for virtualized networks and storage and Red Hat, Canonical,

Cisco, IBM, Intel, NetApp and SUSE are involved in this project, giving to it

a wide open source and commercial support.

Like it commercial concurrent ESXi, oVirt also has paravirtualized drivers

for VMs called VirtIOs. These drivers are able to improve the performance of

guest operating systems, making their performance comparable to a bare-

metal system. VirtIO drivers are available for virtualizing network cards,

hard drives, video cards, and optimizing memory usage. When these drivers

are used, the guest OS then becomes aware that it is virtualized on a hyper-

visor and uses VirtIO as a front-end for the virtualized peripherals using

QEMU. Where these drivers are not available, emulated peripherals are

used, with obviously lower performance.26

• ProxMox

ProxMox is a virtualization environment open source, reliable, flexible and

easy to use by implementing most of the features of an Enterprise solution.

Is a bare metal hypervisor based on a GNU Linux distribution and melting to-

gether KVM and LXC technologies. Its capability to handle both Kernel-

based Virtual Machine (KVM) and LXC for containers using an integrated in-

terface is ideal to operate an entire stack of a virtual data center.

By natively integrating support for high availability (HA) and thanks to the

multi-master design, an additional management server is not required, sav-

ing resources and allowing high availability without a single point of failures

(SPOF). Using the integrated live/online migration feature, it is possible to

move running virtual machines from one Proxmox Virtual Environment clus-

ter node to another without downtime or noticeable effects on the end user

side.27

26 See https://www.ovirt.org/
27 See https://www.proxmox.com

14

1.5 Commercial applications

• Red Hat Enterprise Virtualization (RHEV)

Red Hat Enterprise Virtualization (RHEV) is a commercial implementation of

the KVM Type-1 hypervisor. Red Hat Enterprise Virtualization uses SPICE28

protocol and VDSM (Virtual Desktop Server Manager) with a RHEL-based

centralized management server. RHEV offers support the following advanced

features:

Network bonding, VLAN, and 10GB;

Live migration, policy-based workload balancing, high availability, power

saving, cluster maintenance, image management, templating, thin-provision-

ing, and event monitoring;

Hosts support up to 160 cores and 2 TB of RAM. Guests support up to 64 vC-

PUs and 512 GB of RAM;

Reporting and monitoring, detailed historical reporting capabilities, monitor

historical usage, trending, quality of service.

• Microsoft Windows Server 2008 Hyper-V

Afterwords implementing in Windows Server 2012 and now available on Win-

dows Server 2022, along with XenServer and vSphere, Hyper-V is one of the

top 3 Tier-1 hypervisors. First released with Windows Server 2008, Hyper-V

has now been greatly enhanced with Windows Server 2022 Hyper-V which

offers:

Live migration;

Storage migration;

VM Replication;

Dynamic memory;

Extensible virtual switch;

High availability;

28 SPICE (the Simple Protocol for Independent Computing Environments) is a remote-display system built for virtual envi-
ronments which allows users to view a computing "desktop" environment – not only on its computer-server machine, but
also from anywhere on the Internet – using a wide variety of machine architectures.

15

Scale up to 320 logical processors, 4TB of memory, 2,048 virtual CPUs per

host, 64 vCPUs per VM, 1TB of memory per VM, and 64 nodes / 8000 VMs

per cluster.

• VMware vSphere / ESXi

The leader in the Tier-1 hypervisors is VMware with their vSphere/ESXi

product. VMware led the market in developing innovative features such as

memory overcommitment29, vMotion, Storage vMotion, Fault Tolerance, and

more. Previously, VMware called their free hypervisor “Free ESXi” as ESXi

Server is what is loaded directly on the physical server. However, VMware

calls the “suite” of features “vSphere”, available in various editions. Today,

even the free hypervisor is called “The VMware vSphere Hypervisor“. While

the free vSphere hypervisor does have a graphical interface (the vSphere

Client) and memory over-commitment, it doesn’t offer features like vMotion,

storage vMotion, high availability, or centralized management. The free ver-

sion also has the limitation of supporting up to 32GB of RAM per physical

server. The commercial versions of vSphere include features like:

Memory over commitment;

High availability (called vSphere HA);

vMotion;

Storage vMotion (svMotion);

vSphere Data Protection (for backup and recovery);

vSphere Replication;

vShield Endpoint protection (the option to use agentless anti-virus solutions);

Hot add of memory and hot plug for CPU;

Fault tolerance (FT) for availability;

Distributed resource scheduler (DRS) for VM “load balancing”;

Distributed virtual switch (dvSwitch);

29 Memory overcommitment is a concept in computing that covers the assignment of more memory to virtual computing de-
vices (or processes) than the physical machine they are hosted, or running on, actually has. This is possible because vir -
tual machines (or processes) do not necessarily use as much memory at any one point as they are assigned, creating a
buffer. If four virtual machines each have 1 GB of memory on a physical machine with 4 GB of memory, but those virtual
machines are only using 500 MB, it is possible to create additional virtual machines that take advantage of the 500 MB
each existing machine is leaving free. Memory swapping is then used to handle spikes in memory usage. The disadvantage
of this approach is that memory swap files are slower to read from than 'actual' memory, which can lead to performance
drops.

16

Storage I/O control (SIOC) and network I/O control (NIOC);

Host profiles;

Autodeploy;

Storage distributed resource scheduler (SDRS);

Single root I/O virtualization (SR-IOV);

vCenter Single Sign On (SSO);

Scale up to 512 VMs per host, up to 2048 vCPUs per host, up to 64 vCPUS

and 1TB of vRAM per VM;

1.6 Security vulnerabilities in

virtualized environments

The majority of safety flaw that can be found in a virtual machine are basically the

same as the security defects related with any actual framework or personal com-

puter. Truth be told, assuming a specific working framework or application config-

uration, if it is proven to be insecure when run on an actual equipment, it will un-

doubtedly will be weak while running in a virtualized climate. The utilization of vir-

tualized frameworks adds some security concerns, including:

• Guest operating system isolation: Isolation is one of the essential advan-

tages that virtualization brings along. Guest operating system isolation guar-

antees that software executing within a virtual machine may just access and

use the resources allocated to it, and not secretly interact with programs or

data either in other virtual machines or in the hypervisor. If not properly

configured and maintained, isolation can also represent a risk for the entire

virtual environment. The isolation level should be sufficiently strong to stop

potential break-ins into a compromised VM and to prevent it from gaining

access either to the other virtual machines in the same environment or to

the underlying host machine. For instance, while shared memory areas is a

useful feature that allows data to be transferred between VMs and the host,

17

it can also be exploited as a gateway for transferring data between cooperat-

ing mischievous program in VMs.30

Besides, there are virtualization technologies that do not achieve isolation

between the host and the VMs deliberately. Those are intended to support

applications specifically designed for one operating system to be executed

into another operating system. The absence of isolation can be very unsafe

to the host operating system since it potentially grant limitless access to the

host’s assets, just to mention, the filesystem and networking interfaces.

• VM Escape: The execution of a hypervisor might weaken the entire security

level of a virtualized environment if a vulnerability already exists, which an

offender can exploit. Those kind of vulnerabilities might give a software run-

ning in a guest operating system an entry point to the host machine or,

worse, to the hypervisor itself, allowing the execution of malicious code, and

even other guest operating system resources running on the very same phys-

ical machine. This is known as VM escape attack and is maybe one of the

most dangerous risk to VM security. In addition, considering that the host

machine is running with root privileges, the exploit which get access to the

host machine also gets the root privileges. This outcome in a total break

down for what security is concerned and a compromised system.

• Mobility: Virtual machines are intrinsically not physical, and that implies

their theft can occur without actual robbery of the host machine. What’s in-

side of the virtual disks of every virtual machine is saved as a file by the ma-

jority of hypervisors, which permits virtual machines to be replicated and ex-

ecuted in different physical computers. Whilst that is a advantageous factor,

on the other hand it can lead to a security risk.31 Attackers can steal the vir-

tual machine trough the network or copying to a portable storage media and

then revealed the data inside of it employing their own infrastructure with-

out physically stealing anything. Once hackers have fully control of the

stolen data, they have limitless chances to exploit all security restraints, for

example password crackers, offline intrusion, reverse software engineering,

30 William Stallings and Lawrie Brown. “Computer Security: Principles and Practice.” Pearson, 3rd edition, 2014.
31 T. Garfinkel, M. Rosenblum, “When Virtual is Harder than Real: Security Challenges in Virtual Machine Based Comput-

ing Environments,” USENIX Association, 2005

18

and considering the attacker has a compromised copy of the virtual machine

and not the original one, no records of intrusion will be logged.

• Virtual machine monitoring: The physical host machine is single point of

control for the entire virtualized environment, and there are implementa-

tions that give access the host in order to monitor the execution, to super-

vise the guest virtual machines and to communicate with the software run-

ning inside the VMs. When designing the virtual machine architecture, ex-

treme care should be taken so that the isolation level is sufficiently robust to

avoid the host from being an entry point for any intrusion in the virtual ma-

chines.

• Guest-to-Guest attack:32 In the event the hypervisor or the host machine

are attacked by an external intruder who gains root privileges, all other vir-

tual machines could be compromised. This kind of attack, also known as “hy-

perjacking” is extremely sneaky as traditional security measures aren’t effec-

tive as the guest operating system cannot be aware that the computer has

been compromised. In this case the hypervisor represents a single point of

failure when it comes to the security and protection of sensitive informa-

tion.33

• VM monitoring from another VM: It is considered as a danger when one

virtual machine with no difficulty might be permitted to monitor resources of

another virtual machine. At the point that comes to the network traffic, com-

plete isolation completely relies upon the network security of the virtualized

environment. Assuming the host machine is linked to the guest machine us-

ing exclusive network connections, then it is not likely that packets could be

sniffed by the guest machine to the host and viceversa. Anyway is to con-

sider that the vast majority of virtualized environments are connected to the

host machines and by means of a virtual hub or by a virtual switch. In that

case, a guest machines might be capable of sniffing packets over the net-

work or even worse redirect the packets going to and coming from another

guest as in a man-in-the-middle like attack.

32 "HYPERJACKING". Telelink. Archived from the original on 27 February 2015. Retrieved 27 February 2015.
33 Ryan, Sherstobitoff. "Virtualization Security". Virtualization Journal.

19

• Denial-of-Service: Since guest machines and the underlying host share the

physical resources such as CPU, memory disk, and network resource, it is at

a guest’s hands to unleash a Denial-of-Service (DoS) attack to other guests

settled in the same environment. DoS attacks consist of an threatening de-

vice that makes another machine or group of machine to run out all the

available resources, denying accessing the services to other users or pro-

cesses.

• Compromised VM snapshots: Virtualization software frequently offers

help for suspending an executing guest operating system in a snapshot, sav-

ing that image, and then restarting execution at a later time, possibly even

on another system. While this is helpful in distributed contexts, it can also be

extremely dangerous. If an attacker succeeds in inspecting or modifying the

snapshot image, it can also compromise the security of the guest operating

system, along with the data and softwares running on top of it.

1.7 High availability and fault tolerance

Fault tolerance is the property that allows a system to continue to function accu-

rately in case of an event of failure of one or more of its parts. If performance drop

off, the degradation is proportional to the gravity of the failure, in comparison to a

bad planned architecture, in which also the lowest failure could end in a whole

breakdown. Fault tolerant systems are requested while essential in high-available

environment or life-critical systems. The capacity of a system of keeping up its

functionalities despite portions are affected or non functional is called as graceful

degradation.34

A fault-tolerant paradigm make possible for a system to remain stable and to go on

with its expected operations, perhaps at a decreased degree, instead of failing en-

tirely, when some part of the system fails. The term is most commonly used to de-

scribe computer systems designed to continue more or less fully operational with a

34 Daniel P. Siewiorek; C. Gordon Bell; Allen Newell (1982). Computer Structures: Principles and Examples. McGraw-Hill.

20

reduction in throughput or an increase in response time in the event of some par-

tial failure. That is, the system as a whole is not stopped due to problems either in

the hardware or the software. Fault tolerance can be accomplished by anticipating

extraordinary events and engineer the system to adapt to them, and, generally

speaking, adapting for self-stabilization35 so that the system restores towards an

error-free state. Anyhow, if the outcomes of a system failure are irreversible, or

the cost of making it sufficiently reliable is very high, a better solution could be to

duplicate the resources or perform a roll-over task to fix up to a safe mode. This is

similar to an operating system roll-back recovery but it can be automatically imple-

mented or manually done, if a human intervention is required. 36

1.8 Virtualization benefits and drawbacks

Virtualization happens when a virtual version of a piece of hardware of software is

made-up in place of an actual one. With state-of-the-art virtualization, that can

comprehend storage devices, networks, operating systems, or even servers. Since

50 years ago, virtualization has extended into pretty much every type of digital set-

tings. Including virtual machines that behave like a real computer, to console emu-

lation, many IT tech, enterprises and organizations take advantage of what virtual-

ization can bring.

Like most technologies, there are benefits and drawback that must be taken into

consideration before implementing a virtualized framework.

• Cheapness: since virtualization doesn’t need real equipment components to

be utilized or installed, IT organizations consider it a less expensive system

to be implemented. Dedicated large areas of space and huge investments to

create an on-premise datacenter are no more needed. It is sufficient to buy

the license or the access from a third-party supplier and start working, ex-

actly as if the hardware was locally installed.

35 Dijkstra, Edsger W. (1974), "Self-stabilizing systems in spite of distributed control", Communications of the ACM, 17
(11): 643–644, doi:10.1145/361179.361202.

36 C. Bressoud and F. B. Schneider, “Hypervisor-based Fault Tolerance,” in 15th ACM Symposium on Operating Systems
Principles, Copper Mountain, Colorado, USA, Dec. 1995.

21

• Costs uniformity: because third-party providers typically equip with virtu-

alization options their offer, individuals and corporations can have pre-

dictable costs for their information technology infrastructures. Those options

typically come in form of monthly, annual or pay as you go subscriptions.

• Workload reduction: most virtualization providers automatically modernize

their hardware and software that will be leased. Instead of employing techni-

cians to do these updates locally, they are installed by the third-party compa-

nies. This allows local IT professionals to focus on other tasks and save

money for different tasks.

• Improved uptime: on accounts of virtualization technologies, uptime has

improved significantly. A few suppliers offer an uptime that is nearly 100%.

Also low-budget providers offer uptime at 99.99% nowadays, and that’s

hardly comparable with the uptime a single company can attempt.

• Faster resources deployment: even the planning of physical machines

setup is no longer needed because provisioning is fast, simple and reliable

when virtualization is used. Also establishing local networks or installing

other technology components isn’t necessary anymore as long as there is at

least one entry point to the local virtual environment and that can be con-

nected to the rest of the organization.

• Digital businesship: before virtualization took hold on a large scale, digital

entrepreneurship was essentially beyond the realm of possibilities for aver-

age people. Thanks to the numerous platforms, servers, and storage devices

that are accessible today, nearly everybody can start their own business or

internet activity. This technology shift made possible new business otherwise

impossible.

• Energy savings: for most actors in the market, virtualization represents an

energy-efficient system, because there aren’t actual hardware being run-

ning, energy consumption rates can be lowered or set to zero. Instead of

paying for the air conditioning costs of a data center and the operational

costs of hardware keeping, money can be used for other operational financ-

ing over time, improving the business and at the end the return on invest-

ments.

22

• Implementation costs: the average cost for business when virtualization is

considered to be implemented on premises is quite considerable. For

providers of virtualization environment, however, the implementation costs,

even though extremely high at the beginning, are cut out among many

clients.

• Limitations: few out of all software or server will work inside a virtualized

environment. That implies an individual or organization might require a hy-

brid system to work appropriately. This actually saves time and cash in the

long term, however since few vendors support virtualization and some of

them might quit supporting it after a starting period of time, a grade of un-

certainty is always in the way when it comes to fully carry out this type of ar-

chitecture.

• Security threats: information is considered to be the most valuable cur-

rency nowadays. Who is able to control information and extract knowledge

from the data can make money out of it. Because business consider informa-

tion vital, it is often targeted. The average cost of a data security breach in

2021, according to IBM Security Group, was $ 4.24 million. A great effort

has been spent to secure IT infrastructures and much more will be spent in

the future, because chances of experiencing a data breach in virtualized en-

vironments is not negligible.37

• Availability concerns: one of the first consideration that might come to

mind when outsourcing to a third-party virtualized environment is the infor-

mation accessibility. On the off chance that an organization cannot get

trough an internet connection to their virtual machines, so their assets hap-

pens to be unavailable, resulting in a loss of money as the connection is not

on client’s hands.

The benefits and drawbacks of choosing to go virtualized we have seen so far

demonstrate that, when used properly, are worth it.

37 IBM Security Group, “Cost of a data breach report 2021”, July 2021

23

Chapter 2

Containerization

In this chapter we will focus on containerization, starting from the differences with

virtualization to then analyzing the techniques adopted to reach the goal of isola-

tion the environment where containers run. We will look into security, high avail-

ability and fault tolerance in containerized contexts.

24

2.1 Differences between virtualization and containerization

Containers are a lightweight, more rapid way of approaching virtualization as they

do not depend on a hypervisor, quicker resource provisioning and speedier acces-

sibility of new software can be achieved.

In place of turning on a whole virtual machine, containerization bundles together

everything expected to run a single application or a microservice (along with run-

time libraries they need to run). The container incorporates all the code, its depen-

dencies and even the operating system itself. That makes the applications able to

run roughly anywhere a desktop PC, a traditional IT infrastructure or the cloud.

Containers utilize a type of operating system virtualization. In simple words, they

benefit of features of the host operating system to isolate processes and control

the way CPUs, memory and disk space are accessed.

It has been roughly 20 years now that containers have been used, but it is com-

monly recognized that the modern container era began in 2013 with the introduc-

tion of Docker, an open source ecosystem for building, deploying and managing

containerized applications.38

In conventional virtualization, a hypervisor virtualizes actual equipment compo-

nents, resulting in virtual machines each containing a guest operating system, a

virtual copy of the hardware that the guest operating system requires to run, the

software and its related libraries and dependencies. Virtual machines with differ-

ent operating systems can be executed on the very same physical server. For ex-

ample, a VMware VM can run next to a Linux VM, which runs next to a Microsoft

VM, and so forth.

Rather than virtualizing the underlying hardware, a container virtualizes the oper-

ating system (normally Linux or Windows) so each single container only hold the

software and its libraries and dependencies. Containers are small, fast, and porta-

ble because, not alike a virtual machine, containers don’t have to incorporate a

guest operating system in every instance and can, alternatively, just pull the com-

ponents and features the host operating system offer.

38 See https://www.docker.com/

25

Like virtual machines, containers give developers the ability to boost CPU and

RAM utilization of physical computers. Thanks to containers, though, microservice

architecture can be pushed even further because they also enable such paradigm

where software components can be put in production and dimentioned in a more

precise size, making the process more appealing to coders and IT staff, instead of

having to rebuild a whole monolithic software just because of a tiny section of the

code has changed.

Providing an isolated environment, inside the hosting operating system, is com-

monly known as operating-system level virtualization and such an isolated environ-

ment can be named as container: “A container is a self contained execution envi-

ronment that shares the kernel of the host system and which is, optionally, isolated

from other containers in the same system”39. Virtual machines create a new in-

stance of an operating system for every virtual machine running and that gives

several benefits such as the ability to run entirely different guest operating sys-

tems. Compared to host it also comes with many drawbacks. The first aspect that

comes to mind is the virtual machine execution overhead, caused either by the vir-

tual machine monitor’s instruction patching and translation, the paravirtualization

drivers needed to virtualize the actual hardware or, in case of hardware assisted-

virtualization, the source of the overhead is the CPU context switching. In addition

to that, the virtual machines take much more disc space and are more demanding

to maintain.

If compared to virtual machines, the additional overhead introduced by the hyper-

visor and the operating system that containers take away. Containers only require

the application and its dependencies, while the kernel is shared among them. Con-

sidering that the operating system is already running on the host machine, starting

a container tends to be much quicker than spinning up a virtual machine. Shared

kernel may not always be a benefit though, as regarding as running Windows ap-

plications in containers on Linux is not possible.

39 “OS-level virtualization with Linux containers: process isolation mechanisms and performance analysis of last generation
container runtimes” , G. Minì and A. Giorgio, 2020

26

2.2 Where’s the hypervisor?

The concept of containerization was originally developed to isolate namespaces in

a Linux operating system for security purposes. LXC (Linux Containers) was the

first, most complete implementation of Linux container manager. LXC provides op-

erating system-level virtualization through a virtual environment that has its own

process and network space, instead of creating a fully fledged virtual machine.

LXC containers faced some security threats. At the platform service level, packag-

ing and application management is an additional requirement. Containers can

match these requirements, but a more in-depth elicitation of specific concerns is

needed.40

Container virtualization is done at the operating system level, rather than the

hardware level. Each container (as a guest operating system) shares the same ker-

nel of the base system.41 As each container is sitting on top of the same kernel, and

sharing most of the base operating system, containers are much smaller and light-

weight compared to a virtualized guest operating system. As they are lightweight,

an operating system can have many containers running ahead of it, compared to

the limited number of guest operating systems that could be run. Although the hy-
40 D. Bernstein. “Containers and Cloud: From LXC to Docker, to Kubernetes”, IEEE Cloud Computing, volume 1, no. 3,

pp. 81-84, 2014.
41 Carlos Arango, Remy Dernat, John Sanabria. “Performance Evaluation of Container-based Virtualization for High Per-

formance Computing Environments”, arXiv:1709.10140v1 [cs.os], 28 September 2017.

27

pervisor-based approach to virtualization does provide a complete isolation for the

applications, it has a huge overhead: overhead of resources allocation, the over-

head of managing the size of a virtual machine, just to mention a few. On the other

hand, sharing between guest operating systems in a virtualized environment,

which is very similar to sharing between independent systems, because virtualized

hosts are not aware of each other, and the only method of sharing is via shared file

system. The basic principle in container based virtualization is that, without virtual

hardware emulation, containers can provide a separated environment, similar to

virtualization, where every container can run their own operating system by shar-

ing the same kernel. Each container has its own network stack, file system, etc.42

So the shift to containerization has been made conceivable employing a technology

first launched around 2000 in Linux; cgroups and namespaces. Control groups (ab-

breviated cgroups) is a Linux kernel innovation that restraints, accounts for, and

isolates the resource utilization (CPU, memory, disk I/O, network, etc.) of a group

of processes.

Engineers at Google, above all Paul Menage and Rohit Seth, initiated the study on

this feature in 2006 under the name "process containers". It was only in 2007, the

naming convention turned into "control groups" to avoid confusion caused by mul-

tiple meanings of the term "container" in the Linux kernel context, and the control

groups functionality was merged into the Linux kernel mainline in kernel version

2.6.24, which was released in January 200843. Since then, developers have added

many new features and controllers, such as support for kernfs in 201444, fire-

walling, and unified hierarchy. cgroup version2 was merged in Linux kernel 4.5

with significant changes to the interface and internal functionality.45

Cgroups was originally written by Paul Menage and Rohit Seth, and mainlined into

the Linux kernel in 2007. Afterwards this is called cgroups version 1. Development

and maintenance of cgroups was then taken over by Tejun Heo who rewrote

cgroups. This rewrite is now called version 2 and first appeared in Linux kernel 4.5

released on 14 March 2016.

42 Pete Brey. “Containers vs. Virtual Machines (VM’s): What’s the Difference?”, NetApp Blog https://blog.NETapp.com/
blogs/containers-vs-VM’s/

43 For a complete review of the linux kernel version history, see https://en.wikipedia.org/wiki/Linux_kernel_version_history
44 "cgroup: convert to kernfs". Linux kernel mailing list. 28 January 2014.
45 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

28

Unlike version1, cgroup version2 has only a single process hierarchy and discrimi-

nates between processes, not threads. One of the design goals of cgroups is to pro-

vide a unified interface to many different use cases, from controlling single pro-

cesses (by using nice, for example) to full operating system-level virtualization (as

provided by OpenVZ, Linux-VServer or LXC, for example) providing:

• Resource limitation: it can be established that groups cannot top a prede-

termined memory threshold, just to mention a few the CPU % usage, the

filesystem cache size, the I/O access to and from block devices such as physi-

cal drives (hard disks, SSDs, USBs, and so on), the precedence of network

traffic for each network interface;

• Priority: a differentiation on CPU share/utilization or external memory I/O

throughput can be set considering different groups;

• Auditing: it takes into account a group’s resource utilization in order to

keep track of the resource amount used by a certain group. That information

can be used, for example, for payment schemas;

• Checkpoint: stopping the execution of particular groups of processes in

case of failure to be put off.46

A control group is a batch of processes grouped together by the same criteria and

restraint under certain limitations or policy. Those limitations are, just to mention

a couple of them, related to CPU % usage or RAM availability and are under the di-

rect control of the kernel that can group them together in a hierarchical way.47

Control groups can be:

• accessed using the cgroup virtual file system manually;

• modified using on the fly tools like cgcreate, cgexec, and cgclassify (from

libcgroup);

46 Bouteiller, B., Lemarinier, P., Krawezik, K., & Capello, F. (2003, December). Coordinated checkpoint versus message log
for fault tolerant MPI. In Cluster Computing, 2003. Proceedings. 2003 IEEE International Conference on (pp. 242-250).
IEEE.

47 See https://en.wikipedia.org/wiki/Cgroups

29

• configured via the "rules engine daemon" that can automatically move pro-

cesses of certain users, groups, or commands to specific cgroups;

• managed by other software such as Docker, LXC, Fairjail, libvirt, systemd.

In this example of the cgroup definition, contained in /etc/cgcon-

fig.conf, the limitcpu limits the CPU share available to processes

in this cgroup to 400. cpu.shares specifies the cputime available

to the tasks in this group.

limitmem cgroup set a threshold of 512 MB of available memory.

In the browsers cgroup CPU shares is limited to 200 and available

memory to 128 MB.

Namespaces are a keen innovation introduced on the Linux kernel that split re-

sources among processes and that’s a major component for containerization.48

The Linux Namespaces began in 2002 in the 2.4.19 kernel with work on the mount

namespace kind. Additional namespaces were added beginning in 2006 and con-

48 See https://en.wikipedia.org/wiki/Linux_namespaces

30

tinuing into the future.49 Adequate containers support functionality was finished in

kernel version 3.8 with the introduction of User namespaces. 50

2.3 What happens in Windows?

The hidden Linux VM

Since a decade, Docker and containerization have been one of the most popular

subject among programmers and companies and Windows Server 2016 announce-

ment ignite even more the debate by revealing that containers will be added in

Windows.51 52

A couple of architectural concerns remains, one above all is the way system pro-

cesses will be handled, as in Linux, containers often just execute a unique process

that shares the resources with the operating system host and other containers. On

the other hand in Windows part of the code was relocated externally of the kernel

and executed in user mode and this poses a problem because of the need to update

every system call to instruct them how to behave when more than one container is

in execution. This result in a higher startup time when a new container instance is

launched.

Even though VirtualBox, which was executed in DockerToolBox, has been aban-

doned, Windows is nowadays running a hidden Linux virtual machine to launch

containers using Hyper-V to isolate the execution instead. That indicates that to-

day there is a minor usage of resources to run a container in Windows but remains

the fact that a virtual machine thus far needed to containerized applications.53 54

49 "Linux kernel source tree". kernel.org.
50 Heo, Tejun (2016-03-18). "[GIT PULL] cgroup namespace support for v4.6-rc1". lkml (Mailing list).
51 https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/april/containers-bringing-docker-to-windows-developers-

with-windows-server-containers
52 “Rethinking the Library OS from the Top Down” , Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,

Galen C. Hunt, 2016
53 Rzecki, Krzysztof & Niedźwiecki, Michał & Sośnicki, Tomasz & Andrzej, Martyna. (2014). Experimental Verification Of

Hyper-V Performance Isolation Level. Computer Science.
54 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012

31

2.4 Docker architecture

Containers / Images / Repos / UnionFS

Docker is a PC software that enables operating system-level virtualization other-

wise called containerization. It is maintained by Docker, Inc. and is principally de-

veloped for Linux, where it takes advantage of the resource isolation mechanisms

offered by the Linux kernel for example cgroups and kernel namespaces, and oth-

ers to permit self-sufficient ”containers” to be executed within a single Linux in-

stance, so that completely bypassing the overhead due to start phase and the cost

of running an entire virtual machine.

Docker makes it easy to deploy and port self-sufficient containers that can be exe-

cuted both on the cloud or on-premise. A schematization of virtual machines and

containers can be seen in the figure below, where is highlighted the absence of the

hypervisor layer in containerized environments, thus the execution result faster.

The usage of namespaces and cgroups to completely isolate an application from

the underlying operating environment, including process trees, user IDs, and file

systems is the key feature of containerization. Docker containers are layered using

basic images and non-writable updates. A Docker image can include just the oper-

32

ating system functions and dependencies or it can store and entire prebuilt soft-

ware stack ready for the execution. During the building phase of an image each

command execution, such as apt-get install <package>, is added as a new layer on

top of the previous ones. As shown below, the Docker architecture combine a vari-

ety of components.55

The Docker architecture makes it possible to achieve important performance gain

over virtual machines.56 and the automation obtainable in production environment

could be schematize as follow:57

55 Charles Anderson. Docker. THE IEEE COMPUTER SOCIETY, 2015 IEEE , 0740-7459/15/
56 Claus Pahl , Brian Lee. Containers and Clusters for Edge Cloud Architectures a Technology Review. 2014
57 D. Bernstein. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing, vol. 1, no. 3, pp. 81-

84, 2014.

33

VIRTUAL MACHINES CONTAINERS

Guest Operating
System

Each VM runs on top of hyper-
visor and kernel loaded into its
own memory region.

All guests share the same kernel.
Kernel image is loaded in its physi-
cal memory.

Performance
Efficiency

Suffers light overhead as the
machine instructions get trans-
lated from guest to host OS.

Almost native performance as com-
pared to the underlying host OS.

Security Complete Isolation. Isolation using namespaces.

Storage Takes more storage.
Take less storage as the base OS
is shared.

Isolation
Higher level of Isolation. Need
special techniques for file
sharing.

Subdirectories can be transparently
mounted and can be share.

Networking

Can be linked to virtual or
physical switches. Hypervisor
has its own buffers to improve
I/O performance.

Leverage standards like IPC mech-
anisms such as signals, pipes,
sockets, etc.
Advanced features like NIC are not
available.

Bootup Time Take a few minutes to boot. Boot up in a few seconds.

Using a client/server paradigm, the server only accepts data from a Unix socket,

isolating the execution from other processes and even from outside the network.

This is a security enhancement as if someone will take control of the daemon will

be able to control the host. A simple attack to a running container will result in a

breakthrough.

• CONTAINERS

A container is a lightweight package, portable and selfsufficient which can

be executed in cloud, public or private, or locally. Containers are, essen-

tially, a collection of data, structures and files an application need to be exe-

cuted: libraries, dependencies, more exec, filesystem portion, configuration

files, scripts and so on.

34

• IMAGES

Images are the building blocks of Docker. They are built layer by layer using

union file systems. Similarly to what happens in object-oriented program-

ming languages, an image is like a class object, while a container is an in-

stantiation of that image.

• DOCKER REGISTRY

This is a repository for Docker images. Figure illustrates a Docker registry

ecosystem. As shown, all the services are packed in a container. Application

containers are in a way similar to microservices where only the necessary

features are packed as one to deploy the feature, in this way every image

will result in a very light package if compared to an entire virtual machine.

35

• UNION FS

Once a container is executed, Docker mount a layered filesystems using

UnionFS to aggregate different mounting points and presenting them as

unique filesystem. When a docker image is built up it could run internally

different services. For example a voting application could be structured as

different layers: a database server to store the information, a web server to

give the users the interface and a PHP interpreter. Every layer came within

its own filesystem and the resulting one is a collection of various branches

all packed together.58

Data volumes do not follow those rules as they are mounted from the host

filesystem and, unlike images that are non-persistent, a volume is.59

2.5 Other container engines

Although Docker still made up 83% of containers in 2018, that number went down

from 99% in 2017, and different container runtime environments are on the raise,

such as CoreOS, Mesos, LXC just to cite a few and the availability of different op-

tions is growing.60

Docker is gaining a lot of consideration among developer’s community but it isn’t

the unique container option. Some options are illustrated here after just to exem-

plify the distinctive , discovering their differentiating features, advantages and

even weaknesses.

58 V. Jurenka, “Virtualization using Docker Platform”, 2015
59 R. Dhar, “Comparative evaluation of Virtual Environments: Virtual Machines and Containers”, 2016
60 https://sysdig.com/blog/2018-docker-usage-report/

36

• CoreOS rkt

Pronounced “Rocket”, it runs both Docker and appc images and it works out

of the box with Kubernetes. Even though it support Trusted Platform Mod-

ules (TPMs) compared to Docker, it doesn’t have much third-party develop-

ments. Unfortunately, major drawbacks including the absence of OCI61 stan-

dard adoption and the fact that it is still under development, doesn’t give rkt

much visibility.

• Mesos Containerizer

Developed by Apache in 2008, Mesos stands out for good performance and

for supporting both Docker and appc images.62

The integration with Spark and Flink frameworks for big data software

makes of Mesos a starting point for such environment, but the worst limita-

tion is that a user cannot execute containers independently but needs to run

the entire Mesos framework.

• LXC Linux Containers

While not that popular as Docker, Linux containers are gaining attention due

to the ease of use they offer and have now become an important part of IT

security. The LXC container platform is often used to isolate different pro-

cesses from each other and from the rest of the system.

A crucial disadvantage of LXC is related to the memory management be-

cause, although several memory backends are supported (Ivm, overlayfs, zfs

and btrfs) the storage method rely, by default, on the Rootfs, and other con-

tainer platforms offer a better and more flexible solution for both container

storage and image management.

61 Open Container Initiative - https://opencontainers.org/
62 See https://iamlinops.blogspot.com/2019/08/docker.html

37

• OpenVZ

OpenVZ has been available to users since July 2016 as a standalone Linux

distribution and expansion of the Linux kernel. The software itself is based

on a Red Hat Enterprise Linux 7 (RHEL) and allows guest operating systems

both like virtual machines or containers, needing a lower memory usage if

compared to other container frameworks.63

• containerd

Described as “an industry-standard container runtime with an emphasis on

simplicity, robustness and portability”,64 containerd is an early-stage project

of the Cloud Native Computing Foundation with supporting for OCI images65.

As previously part of Docker project, it then was unlinked from the container

runtime environment to give birth to this new project. This includes Docker

functionality for running containers, managing low-level storage and manag-

ing images.

2.6 Security in containerized environments

Root privileges are mandatory to execute Docker containers, for that reason, if a

container gets exposed, the entire host execution will be jeopardized. For what im-

ages are concerned, a cryptographic signature is calculated and added in order

the image to be verified before execution.

Another likely threat to container based virtualization rely on the implementation

of the Linux namespaces. As the host operating system uses namespaces to limit

the access to certain data structures, a bug on that could result in an unauthorized

access that could potentially give permissions to filesystem entries. Looking at the

various vulnerabilities detected in the last years, and even if it seems practicable

63 See https://openvz.org/
64 See https://containerd.io/
65 Open Container Initiative - https://opencontainers.org/

38

controlling privilege authorization, the chance of new unknown exploits is always

behind the corner.66

• Network Security: isolation is key to prevent network-based attacks, such

as Man-in-the-Middle (MitM) and ARP spoofing/poisoning. Docker image

repositories manages the distribution of image layers to Docker clients. The

link to the registry is secured using TLS and an hash key is generated to

check the image integrity. Each container expose its own IP address and has

IP routing tables, network devices, granting containers the permission to ex-

change data to each others via their network interfaces, and that is exactly

like connecting with external hosts. The interface is then associated to a

bridged network and Docker is responsible of the creation and management

of the virtual Ethernet bridge in the host machine that forwards packets be-

tween them. Giving that, usual best practice for network security should be

arranged even for a containerized environment.

• Denial-of-Service (DoS): one of the attacks could exploit the lack of re-

source management ending in a DoS for which a process try and tackle the

system in order to drain all of the system resources. Preventing that is possi-

ble using resource limitation mechanism offered by cgroups.

2.7 High availability and fault tolerance issues

Despite the benefits of containerization, there are a couple of aspects relating to

high availability and fault tolerance that must be taken into consideration.

Instance redundancy: one of the benefits of deploying images like Docker is that a

user can specify a number of replicas to be executed and the container manage-

ment system will take care of it, without the user intervention, trying to match the

66 Bui, Thanh. (2015). Analysis of Docker Security.

39

desired number of instances the user asked.67 68 69 And that is true even for single

physical computers and for clusters.

Resource redundancy: as commonly different services have different resource re-

quirements, one of the strategies used to balance the load is automatic mixing ser-

vices that have different resource allocation profiles so that the system always try

to accomplish the best resources utilization degree.

67 W. Li and A. Kanso, “Comparing Containers versus Virtual Machines for Achieving High Availability,” in IEEE Interna-
tional Conference on Cloud Engineering, Tempe, AZ, Mar. 2015, pp. 353–358.

68 W. Li, A. Kanso, and A. Gherbi, “Leveraging Linux Containers to Achieve High Availability for Cloud Services,” in IEEE
International Conference on Cloud Engineering, Mar. 2015

69 W. Liu, “High Availability of Network Service on Docker Container,” in 5th International Conference on Measurement,
Instrumentation and Automation, Nov. 2016.

40

Chapter 3

Orchestration

In this chapter we will deal with Kubernetes which is an orchestration tool born to

help IT organizations managing containers. In fact after a period of explosion in

the use of containers, a need for a comprehensive management tool was felt.

That’s where Kubernetes come in handy.

We will look over the change occurred starting from classical devop infrastructure

(a single machine with a single operating system) to virtualization where more vir-

tual machines run over a single server to a containerized environment, for which

orchestration tools like Kubernetes are becoming essential.

41

3.1 Brief introduction

The CNCF (that stands for Cloud Native Computing Foundation) is a Linux Foun-

dation project that was born in early 2000 to help the improvement of container

technology and organize the technology and its evolution.70 CNCF as part of the

nonprofit Linux Foundation71.

Kubernetes was the first project of CNCF and the foundation part of the Kuber-

netes infrastructure. Kubernetes is a portable, extensible, open-source platform

for controlling containerized applications aimed to help managing container im-

ages like Docker but not limited to that.

Using a traditional deployment, applications are directly run on physical infra-

structure and one of the difficulties is to plan resource resources allocation other-

wise ending in performance issues.

In virtualized environments, various virtual machines can be executed on a single

physical machine where each of them is isolated from the rest and because of that

the security level of each application is incremented. Another fact to consider is as

those virtual machines are executed over the same hardware, better resource us-

age can be reached and also scalability is enhanced because when needed, is easy

to provide more virtual resources, and is indeed quite simple to vertically scaling a

virtual machine.

Containers are like virtual machines, with mild isolation properties permitting con-

tainers to be called lightweight and comparable to a virtual machine. As container

are not linked to the physical infrastructure, portability across different operating

system or cloud is achievable, and they come within other improvements: ease and

efficiency of container image creation compared to virtual machines, continuous

development, integration, and deployment, reliability, fast roll-backs, automatic

separation of concerns (SoC)72, decoupling applications from the underlying infra-

70 Cloud Native Computing Foundation. - https://www.cncf.io/
71 Linux Foundation. - https://www.linuxfoundation.org/
72 separation of concerns (SoC) is a design principle for separating a computer program into distinct sections. Each section

addresses a separate concern, a set of information that affects the code of a computer program. A concern can be as gen -
eral as "the details of the hardware for an application", or as specific as "the name of which class to instantiate". Modu -
larity, and hence separation of concerns, is achieved by encapsulating information inside a section of code that has a

42

structure, environmental stability across different platforms as the same behavior

is expected in different situations, avoiding the “it worked on my computer” prob-

lem, portability, distributed and flexible micro-services and resources isolation.73

Containers are a great solution to bundle and runs applications, considering a pro-

duction environment there are many other aspects that must be taken into consid-

eration, such as managing downtime for example, in such case if a container fails

another one replace it, using a deployment strategy such as green blue deploy, ca-

nary, etc. Kubernetes is a framework to run distributed systems and it takes care

of scaling and failover for applications providing deployment patterns.

Blue-green deployment is a software release pattern that gradually switch from an

older version of an application or microservice in production to a new one. The

first version is called the blue environment, while the new version is called the

green environment. After the migration has been completed, the old version is no

more accessible, but still in place for possible rollbacks.

well-defined interface. Encapsulation is a means of information hiding. Layered designs in information systems are an-
other embodiment of separation of concerns (e.g., presentation layer, business logic layer, data access layer, persistence
layer).

73 See https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

43

In software engineering, canary deployment offers a way of publishing periodic re-

leases. A software update is branched out to a narrow group of the customers at

the beginning, so they can evaluate it and give back a feedback. When the correc-

tions have been tested, the new software features are distributed to the remaining

users. Canary deployments can demonstrate the way users work with software in a

realistic environment. Compared to blue-green deployments, the canary approach

provide no-downtime to upgrade the software and easy rollbacks in case of need.

On the contrary, canary deployments are easier, and breakdowns are simpler to

handle. A canary release could be seen as a beta version off a specific software

function, giving the entire project a stable and non-stable versioning.

The main features provided by Kubernetes are:

• Load balancing and service discovery, Kubernetes can broadcast a con-

tainer using the DNS name or using its own IP address. If a container gener-

ates a huge amount of data, Kubernetes is capable of load balancing and

spread the network traffic so that the system as a whole result stable. Soft-

ware in a Kubernetes cluster are deployed by using pods, the building block

of this architecture, which is quite diverse compared to the traditional ap-

proach of deploying applications on target machines. Because during a POD

lifecycle its IP address changes continuously, that makes unfeasible to de-

ploy a software using a traditional approach. Software need to expose some-

how a way external users or other applications can reach it. For example via

API. For what PODs are concerned, as they could be spread in different net-

work segments, a way to overcome this limitation is Kubernetes service dis-

covery and load balancing which are provided as a builtin service.

• Storage orchestration, Kubernetes is able to use a storage system of

pretty any kind, for example local disks, public/private cloud storage, NAS or

SAN. Due to the fact that containers’ lifespan could be very limited, the in-

formation saved within are canceled after a while, creating many complica-

tions for the kind of application we are used to handle with. Though, Kuber-

netes offers a method to preserve data and overcome this issue using state-

ful storage in a containerized environment. All phases of a container, not to

44

mention creation, automation, load balancing, management and even I/O in-

terfaces. Kubernetes propose the idea of Persistent Volumes, those live au-

tonomously with respect of containers, and they will be operational even af-

ter a container is restarted or powered down.74

Volumes could be both persistent or non persistent, Kubernetes offers con-

tainers to ask for dynamically-created storage, adopting a trigger named

“volume claims”.

• Automated rollouts and rollbacks, adopting Kubernetes, a manifest of

whished services can be declared in order to be run and automatically man-

aged by Kubernetes itself without any external intervention. Kubernetes will

autonomously check the services and running components to guarantee the

required standards of execution are met. For example, if a 3 replica of a spe-

cific container is published in the manifest, Kubernetes will run a strategy to

maintain those 3 replicas in production even in case of a node fails.75

• Self-adapting containers, when Kubernetes cluster is created and nodes

have been set to use a capped amount of resources, the orchestration mech-

anism will manage the best way to distribute or redistribute the containers

among available PODs to maximize CPU usage.

• Auto-healing, in case a running container fails, Kubernetes re-executes it

without a manual intervention. Cases of failure can be when a container does

not respond to user-defined health check.76 A valuable improvement intro-

duced in Kubernetes is its auto-healing ability that meets the “desired state”

functionality according to which the architecture will try to fit the requested

standard of execution at its best, even if an entire node breaks or is no more

reachable.

In the event a software or functionality is properly containerized and the Pod

where the container is placed goes down, Kubernetes will reschedule it as

soon as possible, as long as there are sufficient available resources. A second

74 See https://cloud.netapp.com/blog/cvo-blg-kubernetes-storage-an-in-depth-look
75 See https://learnk8s.io/kubernetes-rollbacks
76 The Kubernetes Book, Nigel Poulton and Pushcar Joglekar, 2019

45

stage of auto-healing mechanism rise up when a Kubernetes component

fails. That includes kubelets, kube-proxies, and the container runtime. When

one of these components breaks, the POD might be non responding, so Ku-

bernetes will take care of the situation restarting the broke service. At last,

if a physical machine itself is not responding, Kubernetes can spin up by it-

self a completely new POD in a completely new machine, if any available in

the cluster, to restore the faulty situation.

3.2 Kubernetes architecture

When Kubernetes is deployed a cluster is fetched, a K8s (read Kubernetes) cluster

consists of a set of workers machines, called nodes, that run containerized applica-

tions and various services. The control plane manages the nodes and all the run-

ning container in the cluster, in a production ready environment usually the con-

trol plane is run on multiple nodes providing fault tolerance and high availability.77

77 See https://v1-20.docs.kubernetes.io/docs/concepts/overview/components/

46

3.2.1 etcd

It is an highly-available key-value storing method used by Kubernetes to backup

for every cluster information, etcd is an open-source, distributed and robust repos-

itory of key-value pairs used to handle distributed configurations, service discovery

for clustered applications. The etcd database assures a safe automatic updates.

Etcd stores an exact copy of the cluster state and for the sake of high availability

and redundancy. Even though it could seem that a key-value database is some-

thing simple, since etcd is a crucial component of a Kubernetes cluster and etcd is

a consensus-based distributed system, the cluster configuration can be quite com-

plex.78

3.2.2 kube-scheduler

It checks for new Pods without designated execution node, and selects it for the

Pod to be executed, according to the execution policy and resource needs.

3.2.3 kube-controller-manager

The Kubernetes controller manager has the entire control over Kubernetes that

balances the state of the system. It can control the replicas, the termination of an

execution. There are various type of controllers, like: Node controllers responsible

for checking health status of the nodes, Replication controllers that keep the re-

quested number of pods, Service Account and Token controllers, Node controller

when a node has been deleted in the cloud after it stops responding, Route con-

troller set up traffic routes on cloud infrastructure, Service controller for load bal-

ance.

78 Lars Larsson, William Tärneberg, Cristian Klein, Erik Elmroth, Maria Kihl, “Impact of etcd de-
ployment on Kubernetes, Istio, and application performance”. 2020

47

3.2.4 kubelet

An agent based service that runs on each node in the cluster to ensure the specifi-

cation requirements in term of resource utilization, container replicas, memory us-

age are met. Those specifications are defined in YAML or JSON format.

3.2.5 Container runtime

The container runtime is the software responsible for containers execution. Kuber-

netes accept Docker, containerd, CRI-O any implementation that meets CRI (Con-

tainer Runtime Interface) criteria.

3.2.6 API Services

This service broadcasts the Kubernetes REST API permitting the nodes to connect

with the master and the users to manage the cluster.

3.2.7 PODs

Pod is the smallest runnable unit that Kubernetes can handle and it represents a

collection of containers having the same filesystem and networking resources in

common. That means having the same namespace, cgroups and the same isolation

context. A Pod in a Kubernetes cluster can:

• run a single container. The "one-container-per-Pod" schema is the most

used in Kubernetes and it can be tought as a wrapper for a single container;

• run multiple interconnect containers. A Pod can envelop a software split

in a collection of coordinated containers needing to access the same re-

sources. And if a Node fails, a controller get a warning so it can take mea-

sure to restore a previous working situation.

48

• deploy a StatefullSet: a StatefulSet is thee application program interface

adopted to handle stateful executions. These kind of pods are created the

same way as other Pods but instead of being equivalent, due to the fact that

there is a state to be maintained, every one has a unique identifier kept even

in an event of rescheduling.

• Jobs: A Job is responsible for the creation of Pods and also their termination

or rescheduling in case of failure. When a Pod end with a success exit state,

is the Job that keeps track of the conclusion and if the initially started Pods

have ended, the entire task is marked as completed.

• CronJob: are used to execute recurring tasks, as bulk email campaign or

automatic warning messages, even backups.

• Storage in Pods: a pod doesn’t have long-lasting storage so that if the pods

fails or is re-executed even the data saved until re-execution is lost.

• Networking in Pods: every Pod is given a unique network identifier and

each container within that Pod shares the network namespace. Containers

can communicate with each other but when a message must be sent outside

the Pod network, it needs to be addressed to the Services Kubernetes ab-

straction that manages all the network load among Pods.

Pods Lifecycle: like containers, Pods are meant to live for a limited period of time

and when built they are given a unique ID (UID) and scheduled to physical ma-

chines where they run until completion or deletion. Kubernetes uses a controller to

monitor the Pod’s status change. Pod states are:

• Pending: Kubernetes has approved the execution of the Pod in the cluster

but it is still waiting to be assigned to a targeted node.

• Running: The Pod has been assigned to the node and is in execution.

49

• Succeeded: Every container mapped into the Pod has successfully termi-

nated its execution.

• Terminated: Unfortunately one or more containers resulted in a failure

state. That could be a failure of one of the containers or an issue linked to

the communication between Pod and Kubernetes management, so that a suc-

cessful state cannot be presumed.

In addition to the Pod health status, Kubernetes records the state of each con-

tainer inside each Pod in order to reschedule in case of need.

3.2.8 Configuration And Secrets

Because accessing every Pod/container is not that easy as we do not normally

know where they will be scheduled, it is far complicated sharing sensitive informa-

tion. The solution adopted by Kubernetes is a shared secret infrastructure accessi-

ble by Pods/containers no matter where they are executed. Those kind of secrets

could be passwords, SSH keys, tokens, even specific configurations79.

79 https://kubernetes.io/docs/concepts/configuration/secret/

50

3.2.9 Resource Management

While a Pod is scheduled, resource usage limits can be set to reduce for example

CPU or RAM consumption and, according to that, Kubernetes can implement the

best allocation strategy and it can even be decided to temporarily assign at run-

time more resources to a specific container if the node is idle. All those operations

are in charge of Kubernetes resource manager.

51

Chapter 4

From virtualized hosts to
containerized applications

In this section we are going to explore two significant examples: a webserver and

a fileserver that are two of the typical scenarios in a datacenter.

Stress test have been performed to measure the performance in both cases: using

a virtual machine and a Docker container.

Afterwards a cost/benefit analysis has been performed over different situations:

on-premise, on cloud and hybrid.

52

4.1 Datacenter context

Everyday virtualization is all over the world, from small projects to large compa-

nies like Google, Facebook, Amazon or Microsoft, and a lot of people use it on their

personal computers as well. Also security is a field where is sometimes needed to

run software in a environment for which a container would do. The benefits of-

fered by the Docker and Kubernetes made virtualization technologies extremely

valuable in datacenter scenarios and many companies are adopting their own data-

center and cloud infrastructure. On the other hand a company having a large com-

putational capacity may decide to even outsourcing part of the workload externally

renting products from the cloud computing business available on the market. In

such scenarios, where a cost/benefit approach is particularly considered, an analy-

sis of the hardware requirement is key to save costs.

4.2 Tests and benchmarking

We focused our analysis on the comparison between a containerized environment

and a virtual machine. First using a simple web server, then a file server. The ex-

periments setup was done over a DL380 Gen8 server mounting 2 Intel Xeon E5-

2680 v2 @ 2.80GHz CPUs each having 10 physical cores and 2 threads per core,

128 GB RAM. Ubuntu 20.10 version (CODENAME: Impish) and Docker version

20.10.12, build e91ed57.

4.2.1 Apache webserver

To test the web server (Apache – version 2.4.0) performance “Apache Service ab

stress test” was used to generate concurrent multiple HTTP requests using:

ab [-k] -c 1000 -n 20000 http://192.168.1.5:8080

–k KeepAlive header for HTTP requests enabled/disabled – if active a

single TCP connection will be kept up to serve multiple HTTP requests.

53

-c 1000 concurrent sessions will be activated to mimic a 1000 user workloads

-n 20000 20000 HTTP requests will be generated for each of the 1000 sessions

 with KeepAlive activated KeepAlive disactivated

4.2.2 Fileserver

To test the fileserver (SAMBA – version 4.13.17) a file transfer over ethernet cable

of a single 3.1 GB file was performed multiple times.

54

A slight benefit can be seen when using Docker over a virtual machine. Even

though not extreme, a performance improvement is still visible and, thinking of

complex datacenters with hundreds of concurrent containers, this could translate

in a cost saving that must be taken into consideration.

4.2.3 OverLeaf

In order to experiment different solutions for datacenter scenarios, we tried to in-

stall and run a open-source online real-time collaborative LaTeX editor called

OverLeaf.

First we check if the prerequisites for installing the application: bash, docker and

docker-compose, then we clone the software repository (that will also download

and install mongodb and redis)

git clone https://github.com/overleaf/toolkit.git ./overleaf

55

Once the installation is completed, the database is ready to accept connections

56

first of all we are going to create an admin user-defined by connecting to http://
localhost/launchpad

57

We can create a new project as shown below

58

4.2.4 Voting webAPP

Another way containers could be used in a company is via webApp. Here a simple

voting web application will be containerized and installed in a cluster of 3 nodes.

The application is composed of a web frontend written in Python, a redis key-value

store that keep track of the votes, a worker application written in .NET that calcu-

lates the votes and the percentage, a PostgreSQL database and a backend web ap-

plication written in Node.JS needed to summarize all the votes.

First of all a cluster has been created using Play-With-Docker infrastructure.80 On

the first node the cluster has been initialized and the first node become the man-

ager of the cluster, then the two other node have been added to the cluster using

the token initially generated (note: sometimes the command will be split just to be

more easy to read)

docker swarm init --advertise-addr 192.168.0.13

docker swarm join –token

SWMTKN-1-4aaiz8h0adqjiceyha3qhd66k0xtzstxfiht3cohn5j3egt0cv-7bctbe

hex3fw7bvzrnh88ki4k 192.168.0.13:2377

80 See https://labs.play-with-docker.com

59

VOTING
APP

WORKER DATABASE

BACKEND

Then 2 separated networks will be created, one for the frontend and one for the

backend to isolate the communications. The worker, acting as an intermediator be-

tween the two parts of the application, will be in both networks.

docker network create -d overlay backend_network

docker network create -d overlay frontend_network

Now it is possible to download and install the component parts of the application

docker service create --name voting_app -p 80:80 --network frontend_network

--replicas 2 dockersamples/examplevotingapp_vote

60

In this example the fronted webapp has been installed in the cluster and two repli-

cas have been created.

docker service create --name redis --network frontend_network redis:3.2

docker service create --name worker --network frontend_network

--network backend_network dockersamples/worker

docker service create --name db --network backend_network

--mount type=volume,source=db-data,target=/var/lib/postgresql/data

-e POSTGRES_HOST_AUTH_METHOD=trust postgres:9.4

docker service create --name result --network backend_network

-p 5001:80 dockersamples/examplevotingapp_result

Now, if we want to check if all the requested services are running correctly, we

can execute “docker service ls” (note the 2 replicas of voting_app)

docker service ls

If we expose to internet the port 80 that is used by the voting app, we will get:

61

On the other hand, if we expose the port 5001 that is used by the backend

4.3 A cost/benefits analysis

Kubernetes and containers are spreading among the IT world and Docker actually

starts to take since Google, among other big companies, invested so much on the

project. Since then, both technologies have grown exponentially. An S&P Global

Market Intelligence81 research predicts that containerization will grow by 30%,

while a survey of over 500 IT professionals conducted by Portworx and Aqua Secu-

rity in 201982 showed that 87% used containers in production, in the meanwhile,

membership of the Cloud Native Computing Foundation have been continuously

growing since.

Most organizations have valid motivations to adopt containerization, and even if

the specific motivations of each organization are different, there are points in com-

mon like:

81 https://451research.com/451-research-says-application-containers-market-will-grow-to-reach-4-3bn-by-2022
82 https://portworx.com/wp-content/uploads/2019/05/2019-container-adoption-survey.pdf

62

• Costs reduction - Containers can be much more efficient compared to soft-

ware running on virtual machines and can be bundled more densely on the

same physical machine reducing the amount of resources needed to run the

same application, whether it is in a data center or in the cloud. As containers

uses the operating system as a common base, those are smaller compared to

a virtual machine and demand fewer memory and limited storage capacity,

less electric power. For an company the cost savings can be significant.

• Portability - Containers run exactly on various hardware, meaning there is

no need to worry about compatibility or library dependencies, helping the

productivity and, coincidentally, containers can also make it simpler to de-

mote a part or even all of the services to the public cloud, making cloud

strategies feasible.

• Transparent updates - As containers are built using different layer of inde-

pendent software, all the updates or even a complete substitution of a single

layer became much much easier and faster. In addition to that, is reasonable

to estimate a lesser error rate is likely to happen. And, due to segmentation

of layers and isolation, an issue regarding a single application is not ex-

pected to effect the entire application or software.

Kubernetes has emerged as the standard platform for orchestrating container, giv-

ing companies the tools they need to automate tasks such as scaling and recover-

ing from failure.

The whole point of Kubernetes is that it makes containers possible. Without one

container orchestration platform, organizations would not be realistically able to

achieve the advantages of containers, because the trade-offs would be too high.

Kubernetes enables organizations to automate load balancing, self-healing, orches-

tration of archiving, configuration management, and implementation and the auto-

mated rollbacks, including advanced implementation strategies such as test imple-

mentations. Without this level of automation, containers would not be feasible in

production. The main challenges of adopting Kubernetes in the company are :

63

• Vendor lock-in - The simple adoption of Kubernetes is not realistic for ev-

ery company, and many of them prefer to rely on commercial distribution or

one Kubernetes platforms owned by a cloud provider. That could result in a

vendor lock-in, obliging companies to accept the conditions and limitations

imposed by others.

• Migration costs - Shifting all or a part of the services to Kubernetes needs

time and skills, and often organizations underestimate the total cost for the

conversion.

Kubernetes is still a rather new technology, is also very rich in functionali-

ties that even after a while, one can have the feeling of being in a continuous

learning phase. The framework also depends on an extensive ecosystem of

open source and proprietary tools and solutions. On the other hand, compa-

nies are facing two big challenges related to tools:

• Tool selection - just choosing the right selection of tools means accepting

numerous trade-offs. How well do the tools integrate with the rest of the

softwares? Deciding among flexibility of open source or a more costly propri-

etary tool?

• Tool management - it kind of normal for an enterprise to have a lot of dif-

ferent tools, which result in a steep learning curve and also creates further

complexity that must be properly handled.

So shifting to Kubernetes needs a company to rethink the way they manage

security, networking and storing. While containers and Kubernetes are not

inherently less secure than traditional virtual machines, they require a differ-

ent approach to security that relies more on configuration management and

perimeter security. Even proper load balancing setup can also be tricky and

it is essential to ensure that the application remains available and perform-

ing no matter the infrastructure had been chosen.

However, there are ways to solve these challenges, as well as other challenges

that might arise during production operations and that depends on the path a com-

pany wants to undertake.

64

4.4 From on-premise solutions to cloud platforms

As Kubernetes and containerized applications are gaining more and more popular-

ity among companies and institutions, because they offer many advantages in

terms of development, agility and cost-effectiveness, it’s true that they pose a se-

ries of new challenges. In the next two sections we are going to describe two sce-

narios the companies may face when adopting this technology. Even though there

are common aspects for every company to be taken into consideration, there isn’t

a unique approach to follow.

A pure, open source Kubernetes is always an option, and it is probably the first

type of Kubernetes that someone will be experiencing. Kubernetes plain installa-

tion is extremely flexible and extensible, but it also lacks enterprise-grade func-

tionality regarding monitoring, management status, availability, lifecycle opera-

tions, and more.

It is true that there are no costs of license for the use of Kubernetes, organizations

have almost infinite control over configurations and extensions and can be in-

stalled on site or on any cloud provider, on any operating system. On the other

hand, there are disadvantages like lack of skills as open source distribution is the

option most technically challenging, requiring a group of very expert technicians

to make it ready for the company’s needs.

The only organizations should take into consideration the use of pure open source

Kubernetes are highly techniques that consider to have the ability to build their

own tools and customized platform because they think that could be a competitive

advantage. Companies that predict to use open source Kubernetes should have a

team of experts already that is able to provide the support necessary to meet busi-

ness needs.

For those who are not able to access a pure Kubernetes option, other solution

could come in handy, for example Platform-as-a-Service or Kubernetes Enterprise

Platforms. Kubernetes Platform-as-a-Service (PAAS) offering products by a vendor

that creates ready-to-use Kubernetes packages. The platform usually includes pre-

65

configured Kubernetes and associated tools. The PAAS solutions generally include

security, networking and storage as part of the platform and it is usually much

easier for organizations to get going with a PAAS version of Kubernetes. PAAS cre-

ates a coherent organization achieved by reducing the configuration options avail-

able to users and by presetting tools and services, which means PAAS solutions

are significantly less flexible and sometimes difficult to update.

A great advantage is short learning curve as PAAS solutions help reduce the skills

deficit by lowering the barrier to entry for individuals end organizations to start

work with Kubernetes, also reducing the learning curve means the organizations

are capable of get services in production faster. The adoption of preconfigured Ku-

bernetes platforms gets better security standards above all because it is easier to

guarantee adherence to the security best practices. The price to pay involves high

licensing costs, plus additional costs for support service subscriptions or additional

features, moreover third-party PAAS vendors will make it difficult the passage in

the future to a different vendor, not to mention that it could be hard to migrate

from one environment to another, leading to further lock-in.

But for very big companies with complex implementations e multi-environments

and with sufficient technical skills to exploit the flexibility that Kubernetes plat-

forms offer, that could be a great option as managed Kubernetes has a short learn-

ing curve, and the IT engineers can start delivering valuable applications in Kuber-

netes without having to become experts in the administration of the cluster, and of

course will be a supplier’s duty to deals with day 2 operations, such as updates

and patches, simplifying things further more for the in-house engineering team.

For what security is concerned, the service provider takes care of patching secu-

rity, hiring one much greater responsibility for security with respect to suppliers of

cloud services compared to the cloud-hosted distribution. It is true that Kuber-

netes managed services are more expensive than distributions in cloud hosting,

but cheaper of PAAS offers. The organizations will not be able to choose tools or

features outside of what is provided by the managed service provider. This can re-

duce stress related to tool selection, but it can also mean that the organizations

may not be able to get all the functionality they need.

66

4.5 Hybrid solutions

Hybrid solution that mixed on-premise solutions with enterprise platforms offer a

Kubernetes infrastructure that help organizations managing the entire life cycle

applications, services and generally focus on providing a centralized platform for

controlling multiple clusters and multiple environments. These platforms make

easier for centralized teams to control configurations and manage access for the

entire organization. Particularly for those distributed around the world. Such Ku-

bernetes platforms offer considerably more flexibility than any other option.

Those platforms blend particularly well ease of use for dev-oriented teams, while

operations-focused platforms generally provide more control focused on ensuring

the reliability and availability for businesses need because they come with a suite

complete with tools so that the organizations must not lose time to select them. At

the same time, it is easier to integrate them with new tools, if necessary, rather

than with other options. The single and centralized control for the cluster manage-

ment allows the organizations to pursue an approach multi-cloud or hybrid, with-

out increasing drastically complexity and guaranteeing at the same time adher-

ence to the policies of organizational governance on all environments. Corporate

platforms make even workloads easy to move from one environment to another.

The Enterprise Kubernetes platforms are the most sensible for large companies

that manage multiple environments and hundreds of clusters and often make it

easier to move workloads between environments.

It is true that increased flexibility and control means that the organizations must

have a higher level of IT skills for successfully use the Enterprise Kubernetes plat-

forms. While only a small central team must learn about Kubernetes from inside

out, the organizations need at least some experience internally and depending on

the supplier, license fees and contracts assistance can be considerably expensive,

especially for smaller companies and/or for smaller use cases.

For large companies with complex implementations and multi-environment and

with sufficient technical skills to exploit the flexibility that Kubernetes platforms

67

offer are the most suitable for this option. This is often the best choice for organi-

zations that are further along on their Kubernetes journey.

When organizations rush to adopt Kubernetes they cannot ignore the real business

needs for security, availability and disaster recovery. Every organization must de-

cide what’s the right balance between ease of use, time-to-market and flexibility,

and if you prefer to pay more for the time for internal Kubernetes experts or for li-

censing. The point is, if the enterprises want to use Kubernetes for production

workloads, especially the mission-critical ones, cannot use Kubernetes out-of-the-

box. The right way to get Kubernetes depends on the priorities and capabilities of

each company.

68

Chapter 5

Conclusions and future
works
Virtualization has been an active field of research in computer science for decades.

Starting from the work of Gerald J. Popek and Robert P. Goldberg, hardware virtu-

alization and hypervisors became popular around the 1970s because of their abil-

ity to exploit hardware resources of mainframes.

Nowadays, type-2 hypervisors are still in use in computers for many scopes, e.g. to

overcome incompatibility problems and to create isolated environments for secu-

rity-critical applications. Type-1 hypervisors, on the other hand, are more gener-

ally used in data centers, where the broad hardware resources need to be split

into smaller chunks where isolation is a constraint.

In the late 1980s, a new lightweight virtualization approach, named operating-sys-

tem-level virtualization, marked the start of a new era. Today, the most popular

implementations of this new kind of virtualization are container technologies. De-

spite being often considered the successors of hypervisors, container technologies

are actually not meant to replace them. In fact, the virtual machine abstraction in-

troduced by hypervisors is based on the concept of virtual hardware, on top of

which an entire operating system is executed. Containers, on the other side, do not

involve virtual hardware and run the same kernel of the underlying host. More-

over, some container technologies, especially Docker, shifted the focus from virtu-

alizing an entire system to isolating a single piece of software. Application contain-

ers, in fact, are increasingly growing in popularity, especially among software de-

69

velopers, as a fast and easy way to pack and distribute software. Virtual machine

and containers also provide different levels of isolation, with containers being in-

trinsically less secure than virtual machines because of their architecture. In the

near future, containers might be able to guarantee even higher levels of isolation

thanks to the advancements in underlying containment features of the Linux ker-

nel that are being introduced at each release. With regards to performance, con-

tainers have proven to be really fast. Benchmarks actually showed that Docker in-

troduces very low overhead and thus containers are to be considered a good solu-

tion when dealing with high performance requirements. Because of all the afore-

mentioned reasons, the choice of using virtual machines or containers must be

made on a case-by-case basis, depending on the specific isolation and performance

needs.

With that in mind, many datacenter services are moving to containerization. This

work wants to quantify the advantages introduced by those technologies taking as

example two well known scenarios: a fileserver and a webserver. Expected results

have been supported by the tests that have been executed, which demonstrate that

a slight performance increase does exist, switching from a virtualized environment

to a containerized one. Those results suggest that in a datacenter environment,

the increment in terms of performance of a set of simultaneously running pro-

cesses, might be significative. In addition to that, a cost/benefit analysis have been

done for a cloud solution and an hybrid solution to study the iter for switching

from an on premise solution to a cloud or hybrid one.

Considering the attention that Docker and Kubernetes are gaining in the last few

years, a great effort will be dedicated to security topics. In fact, dealing with secu-

rity challenges is one of the greatest concerns of IT operation and Kubernetes is

not meant to enforce security policies, for example finding vulnerabilities in the

images. So companies using Kubernetes will be obliged to find a different way to

secure datacenter services. Just to cite an example, based on the default network

policy, Kubernetes pods can communicate with each other and external endpoints.

Due to application or infrastructure security issues, if one container or pod is

breached, all others can be attacked. As cybersecurity is a problem that every or-

ganization will be facing in their life, a future work could be focusing on the inte-

gration of those two aspects.

70

