
Ph.D. Programme in
COMPUTER SCIENCE

33rd Cycle

Research Thesis

Using Contextual Information In Weakly
Supervised Learning

Toward the integration of contextual and deep learning
approaches, to address weakly supervised tasks

SSD: INF/01

Ph.D. Coordinator
Ch. Prof. Agostino Cortesi

Supervisor
Ch. Prof. Marcello Pelillo

Graduand
Alessandro Torcinovich
Matriculation Number 840284

Academic Year
2020-2021

Department of Environmental Sciences,
Informatics and Statistics
Ca' Foscari University of Venice

UNI
VE

Using Contextual
Information In Weakly
Supervised Learning
Toward the integration of contextual and deep learning
approaches, to address weakly supervised tasks.

Alessandro Torcinovich Supervisor
Ph.D. Thesis, Spring 2021 Prof. Marcello Pelillo

This Ph.D. thesis is submitted to conclude the Ph.D programme Computer Sci-
ence, in the field of Artificial Intelligence, at the Department of Environmental
Sciences, Informatics and Statistics, Ca’ Foscari University of Venice.

The front page depicts a detail of the mosaic built over the main entrance of
the Saint Mark’s Basilica at Venice. Courtesy of Luisella Golfetto.

Abstract (IT)

Come l’attento lettore avrà dedotto dal titolo, questa tesi pone alcune basi

empiriche, assieme ad altrettante considerazioni teoriche, verso la definizione

di una metodologia finalizzata a migliorare task di weakly supervised learning.

La metodologia genera supervisione addizionale sfruttando l’informazione

contestuale proveniente dal confronto delle osservazioni in un dataset sotto

molteplici ipotesi di etichettatura.

Il materiale di ricerca presentato, ruota principalmente attorno a due

algoritmi. Nella prima parte, l’attenzione è rivolta a Graph Transduction

Games (GTG), un algoritmo di label propagation basato su nozioni di Teoria

dei Giochi. In particolare, questo documento descrive le interazioni sperimentate

con GTG e dei deep feature extractor, per affrontare problemi di semi-supervised,

domain adaptation e deep metric learning. La seconda parte è incentrata su

Relaxation Labeling (ReLab), una famiglia di processi utilizzata per label

disambiguation, fortemente connessa a GTG, sebbene sia motivata da un

differente contesto teorico. Questo documento alcuni concetti preliminari di

teoria e degli esperimenti pensati per investigare future applicazioni di ReLab

nel contesto di semi-supervised semantic segmentation.

Il lavoro presentato di seguito può essere pensato come un punto iniziale

per costituire una teoria di contextual weakly supervised learning.

i

Abstract (EN)

As the dedicated reader can deduce from the title, this dissertation lays some

empirical bases, along with some theoretical considerations, toward the definition

of a methodology aimed to improve weakly supervised learning tasks. The

methodology generates additional supervision by exploiting the contextual

information coming from the comparison of observations in a dataset, under

multiple labeling hypotheses.

The presented research material mainly rotates around two algorithms. In

the first part, the attention is devoted to Graph Transduction Games (GTG), a

label propagation algorithm grounded on game theory notions. In particular, this

document describes the interactions experimented with GTG and deep feature

extractors to address semi-supervised, domain adaptation and deep metric

learning tasks. The second part is focused on Relaxation Labeling (ReLab), a

family of processes used for label disambiguation, tightly related with GTG,

despite being motivated by a different theoretical framework. This document

presents some preliminary theory and experiments aimed to investigate future

applications of ReLab in the context of semi-supervised semantic segmentation.

The work presented in the following can be thought a starting point for

constituting a theory of contextual weakly supervised learning.

ii

Preface

Suppose to have trained an object detector, that, upon given a specific image,

finds two objects placed one above the other: a sofa and an horse. Detecting

an horse and a sofa in the same image might be a rare event, detecting a horse

on top of a sofa might be even rarer. The motivation of this work comes from

the observation that this knowledge – often referred, in the following, with

the term contextual information – is as important as the knowledge coming

from the observations taken singularly. However, while the main focus on deep

learning research has been devoted to the search of a good feature space mapping

real world entities to meaningful feature embeddings, less consideration has

been given to the study of the relations among the observations themselves.

The purpose of this document consists of analyzing the use of the contextual

information in a variety of tasks, with the final aim of addressing weakly

supervised learning problems. Not all the works presented here deal with label

scarcity though; some of them operate with full supervision, but they are

equally discussed in this thesis because they constitute a starting point toward a

corresponding study in weakly supervised settings. In fact, as we will see in the

following chapters, one of the main advantages of the contextual information is

its generic nature and adaptability of application in different labeling regimes.

The main characters of the plot are two algorithms: Graph Transduction

Games (GTG) and Relaxation Labeling (ReLab). This document starts with

a thorough analysis of both, in order to provide the reader with some basic

iii

Contributions

understanding of their working and the motivations under their design choices.

A small introduction on deep neural models is provided too, for making this

work more self-contained, and for helping the casual reader to understand

the most common neural algorithms found in the literature. Following, are

presented the main publications related with the topic of this thesis, along with

some unpublished work, worth to be presented as well.

As a last word, this thesis has not the ambition to be a concluded work.

The author conceives it as a milestone on his path of research. A path that has

not yet come to an end.

Contributions

The main contributions of this thesis are the following:

• We propose a new approach to automatically augment the supervision

provided by a partially labeled dataset. The approach is based on a graph

transductive algorithm, motivated by game theoretic results.

• We adapt the previous methodology to address the more challenging task

of domain adaptation.

• We devise a new post-processing step to include, in a end-to-end fashion,

the contextual information for addressing metric learning tasks.

• We propose another end-to-end procedure that exploits both the

observation and class similarities, showing some preliminary theory and

experiments to address semantic segmentation tasks.

Research covered by this thesis

In the following, the author lists all the works constituting the core of this

thesis that led to publications over the course of his Ph.D. program, and the

currently open lines of research that are still under investigation:

iv

Research covered by this thesis

• (Elezi et al. 2018) is a first attempt to address the supervised data

hunger problem of Deep Neural Networks by automatically disambiguating

unlabeled observations with a limited amount of labeled information

available. This task is performed by using an label disambiguation

algorithm called Graph Transduction Games (GTG)1. The author

implemented a consistent part of the code, wrote a section of the paper and

helped in writing the other ones. Finally, he entirely rewrote the framework

for publication (https://github.com/aretor/labaug), and implemented part

of the code for the extension of the work.

• (Vascon et al. 2019) tackles a problem similar to the previous one, where

the unlabeled observations are sampled from a different distribution. GTG

is adapted and performed in this setting, showing that this algorithm

can advance the state-of-the-art also in more general weakly supervised

settings. The author participated in the decision making of the pipeline

and the experimental setting, wrote a consistent part of the code,

performed some experiment, wrote the theory section of the paper, while

helping in writing other ones.

• (Elezi et al. 2020) takes inspiration by the previous two works and devises

an end-to-end procedure to generate metric embeddings which are then

disambiguated based on the contextual information provided by each

other. Though the work is conducted in the fully supervised regime, the

article has constituted a fundamental point for the research in weakly

supervised regimes, which is currently under study by the author. The

author participated in the decision making of the pipeline, wrote part of

the paper and developed part of the code.

• Relaxation Labeling Processes for Semantic Image Segmenta-

tion (unpublished): casts the Relaxation Labeling (ReLab) processes
1Sometimes referred as Graph Transductive Game

v

https://github.com/aretor/labaug

Other works by the author

into a different, more structured perspective, in the attempt to devise

an algorithm to address Semantic Segmentation tasks, in an end-to-end

manner. As in the previous case, the work has laid some bases to address

weakly supervised variants on this field. The author developed the code,

performed most of the experiments and has written the paper.

Other works by the author

For the sake of completeness, hereafter, the author lists all the works that do

not directly pertain or are loosely related to the topic of this thesis, but that

have nonetheless been brought on over the course of his Ph.D. program, and

therefore reserve a mention:

• (Torcinovich et al. 2017) describes a work performed in collaboration

with Prosa s.r.l. where the author developed a computer vision system to

monitor commercial ice-cream freezers.

• (Fiorucci et al. 2017) discusses the Szemerédi regularity lemma as a

tool to preserve the metric information in large graphs. The author

entirely developed the code and helped in the conception of the theoretical

decisions.

• (Cinà, Torcinovich and Pelillo 2020) (Pattern Recognition Journal,

submitted and reviewed) proposes a novel adversarial learning attack

strategy in black-box gradient-free unsupervised settings. The author

developed the theoretical formulation and proved theoretical results (e.g.

global convergence of the algorithm).

• An Analysis of Stationary Points arising from the Maximum

Clique Problem (unpublished) analyses, as the name says, the stationary

points arising from non-strict maximal cliques, in unweighted undirected

graphs. This work is related to a certain degree to the topic of our thesis

vi

Other works by the author

since it investigate the same maximization problem of (Elezi et al. 2018;

Vascon et al. 2019) and (Elezi et al. 2020).

vii

Contents

Abstract (IT) i

Abstract (EN) ii

Preface iii

Contributions . iv

Research covered by this thesis . iv

Other works by the author . vi

Contents viii

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Deep Learning Basics . 1

1.2 Contextual Information Basics 12

1.3 Conclusions . 22

2 Transductive Label Augmentation for Improved Deep

Network Learning 23

2.1 Introduction . 24

2.2 Graph Transduction Game . 27

viii

Contents

2.3 Label Generation . 29

2.4 Experiments . 30

2.5 Conclusions and Future Work 35

3 Unsupervised Domain Adaptation Using Graph Transduc-

tion Games 37

3.1 Introduction . 37

3.2 Domain Adaptation with GTG 41

3.3 Experimental Setting . 44

3.4 Results . 48

3.5 Conclusions . 53

4 The Group Loss for Deep Metric Embedding 54

4.1 Introduction . 55

4.2 Related Work . 57

4.3 Group Loss . 60

4.4 Experiments . 66

4.5 Conclusions and Future Work 81

5 Relaxation Labeling Processes for Semantic Segmentation 82

5.1 Introduction . 83

5.2 Simplifying the compatibility matrix 84

5.3 Heteroassociative learning framework 86

5.4 Autoassociative learning framework 88

5.5 Experimental Results . 90

5.6 Conclusions and Future Work 95

Conclusions 96

ix

Bibliography 98

List of Figures

1.1 The Linear Threshold Unit, by McCulloch and Pitts. 2

1.2 The Perceptron, by Rosenblatt. 3

1.3 An example of the convolution operator, assuming the kernel

weights wij = 1 ∀i, j, meaning that the sum of the values is computed. 6

1.4 An example of the max-pooling operator. 7

1.5 The schematization of a CNN. Taken from Aphex34 2015. “Fully

connected” refers to the MLP at the end of the network. 8

1.6 The triangle problem (taken from (Rosenfeld, Hummel and Zucker

1976)). 13

2.1 The pipeline of our method. The dataset consists of labeled and

unlabeled images. First, we extract features from the images, and

then we feed the features (and the labels of the labeled images)

to graph transduction games. For the unlabeled images, we use a

uniform probability distribution as ’soft-labeling’. The final result

is that the unlabeled points get labeled, thus the entire dataset can

be used to train a convolutional neural network. 26

2.2 The dynamics of the GTG. The algorithm takes in input similarities

between objects and hard/soft labelings of the object themselves.

After three iterations, the algorithm has converged, generating a

pseudo-label with 100% confidence. 28

x

List of Figures

2.3 Results obtained on different datasets and CNNs. Here the relative

improvements with respect to the CNN accuracy is reported. As

can be seen, the biggest advantage of our method compared to

the other two approaches, is when the number of labeled points is

extremely small (2%). When the number of labeled points increases,

the difference on accuracy becomes smaller, but nevertheless our

approach continues being significantly better than CNN, and in

most cases, it gives better results than the alternative approach. . 31

3.1 From left to right the starting point of the dynamical system and the

point of convergence. Evolution of the mixed strategy associated

to an observation during the GTG process. As the dynamic is

iterated, the entropy progressively decreases and the distribution

peaks toward the correct class. 40

3.2 From left to right the starting point of the dynamical system and

the point of convergence. In this example the dynamics start from

three different classes, while in the end, thanks to the refinement

of the neighboring mixed strategies the correct class is chosen. . . 40

3.3 Pipeline of the proposed method. 41

xi

List of Figures

4.1 A comparison between a neural model trained with the Group Loss

(left) and the triplet loss (right). Given a mini-batch of images

belonging to different classes, their embeddings are computed

through a convolutional neural network. Such embeddings are

then used to generate a similarity matrix that is fed to the Group

Loss along with prior distributions of the images on the possible

classes. The green contours around some mini-batch images refer

to anchors. It is worth noting that, differently from the triplet

loss, the Group Loss considers multiple classes and the pairwise

relations between all the samples. Numbers from 1O to 3O refer to

the Group Loss steps, see Sec 4.3 for the details. 57

4.2 A toy example of the refinement procedure, where the goal is to

classify sample C based on the similarity with samples A and B.

From left to right: (1) The Affinity matrix used to update the

soft assignments. (2) The initial labeling of the matrix. (3-4)

The process iteratively refines the soft assignment of the unlabeled

sample C. (5) At the end of the process, sample C gets the same

label of A, (A, C) being more similar than (B, C). 65

4.3 Retrieval results on a set of images from the CUB-200-2011 (left),

Cars 196 (middle), and Stanford Online Products (right) datasets

using our Group Loss model. The left column contains query images.

The results are ranked by distance. The green square indicates that

the retrieved image is from the same class as the query image, while

the red box indicates that the retrieved image is from a different

class. 68

4.4 t-SNE (Maaten and Hinton 2012) visualization of our embedding

on the CUB-200-2011 dataset, with some clusters highlighted. Best

viewed on a monitor when zoomed in. 73

xii

List of Figures

4.5 The effect of the number of anchors and the number of samples per

class, for the CUB-200-2011 (left) and CARS (right) datasets . . . 74

4.6 The effect of the number of classes per mini-batch. 75

4.7 Recall@1 as a function of training epochs on Cars196 dataset.

Figure adapted from (Movshovitz-Attias et al. 2017). 75

4.8 Training vs testing Recall@1 curves on Cars 196 dataset. 76

4.9 Training vs testing Recall@1 curves on Stanford Online Products

dataset. 76

5.1 ReLab can be thought as a convolutional layer, where the input

p(t) is convolved by R, to obtain q(t), and then the update rule is

applied to obtain p(t+1). 85

5.2 Visual results of the best FCN + ReLab model. For each example,

we present the ground truth (top rows, second and third image)

and the refined predictions (bottom rows second and third image)

of the FCN + ReLab model. 92

5.3 Some visualizations of the ReLab refinement with the compatibilit-

ies learned with the Eremin method. The left column represents

the ground truth, the middle one represents the DeepLabv3 predic-

tions, the right one represents the ReLab refinements with dilation

set to 1. The refinement is able to recover the monitor stands,

the motorbike pedal and light, and the people, in the three cases,

showing that ReLab is effectively able to correct the assignment

errors introduced by DeepLabv3. 93

xiii

5.4 Some visualizations of the ReLab refinement with the compatibilit-

ies learned with the Eremin method. The first and second images

show the ground truth and the DeepLabv3 predictions, while the

last two images show the refinements with dilation respectively set

to 1 and to 9. The airplane is better refined when the dilation

parameter is larger. 94

List of Tables

1.1 Payoff matrix of the rock-paper-scissors game. 18

2.1 The results of our algorithm, compared with the results of Label

Spreading (LS), Harmonic Function (HF), Label Propagation (LP)

and CNN, when only 2% of the dataset is labeled. We see that in

all three datasets and two different neural networks, our approach

gives significantly better results than the competing approaches . . 32

2.2 The results of our algorithm, compared with the results of Label

Spreading (LS), Harmonic Function (HF), Label Propagation (LP)

and CNN, when only 5% of the dataset is labeled. We see that in

all three datasets and two different neural networks, our approach

gives significantly better results than the competing approaches . . 32

xiv

List of Tables

2.3 The results of our algorithm, compared with the results of Label

Spreading (LS), Harmonic Function (HF), Label Propagation (LP)

and CNN, when only 10% of the dataset is labeled. We see that in

all three datasets and two different neural networks, our approach

gives significantly better results than the competing approaches . . 33

2.4 The results of our method, tested on the CIFAR-10 dataset,

compared with the results of other deep semisupervised learning

methods and replacements of GTG with other transductive methods. 34

2.5 The results of our method, tested on the CIFAR-10 dataset,

compared with the results of other deep semisupervised learning

methods, and replacements of GTG with other transductive

methods. All the neural models were pretrained on a selected

subset of the ImageNet dataset. 35

3.1 Comparative analysis on Office-31 dataset (ResNet-50 features) . . 48

3.2 Comparative analysis on Office-31 dataset (ResNet-50 features) . . 48

3.3 Comparative analysis on Office-Caltech dataset (SURF features) . 50

3.4 Comparative analysis on Office-Caltech dataset (ResNet-50 features) 51

4.1 Retrieval and Clustering performance on CUB-200-2011, CARS

196 and Stanford Online Products datasets. Bold indicates best

results. 70

4.2 Retrieval and Clustering performance of our ensemble compared

with other ensemble and sampling methods. Bold indicates best

results. 71

4.3 The results of Group Loss in Densenet backbones and comparisons

with SoftTriple loss (Qian et al. 2019) 79

5.1 The derivatives of the ReLab process. Φ represents the indicator

function. 88

xv

List of Tables

5.2 Average results over the different images and hyperparameter

configurations. As expected, with the increment of one of

the two perturbation parameters the accuracy decreases as the

reconstruction is more difficult. 91

5.3 Results and configuration on Pascal VOC 2012. The first column

represents the baseline configuration – FCN8s at once without

ReLab – while the other columns show the top five results of the

FCN + ReLab architecture. The best configuration is highlighted

in bold. 92

5.4 Results and configuration on Pascal VOC 2012, with the compatib-

ilities learned with the Eremin method. The third column displays

the Intersection over Union averaged over the dataset. The fourth

column displays the mIOU weighted by the class size, to mitigate

class imbalancing. The DeepLabv3 mIOU and w. mIOU are respect-

ively 0.8034 and 0.8537. While our refinement procedure does not

provide any substantial improvement, the results are comparable

with those of DeepLabv3. Furthermore, the qualitative comparison

attests that our method can indeed improve the refinement of the

segmentations. 94

xvi

CHAPTER 1

Introduction

This chapter presents the main theoretical concepts at the base of the work

presented in this thesis. Without any ambition of exhaustiveness, the following

explanations will be concise, with the only aim of self-contentedness. The reader

is encouraged to check the references for more detailed and specific dissertations

on these subjects.

1.1 Deep Learning Basics

Deep Learning is nowadays a fundamental brick to build ML/CV architectures.

Its ubiquitousness in virtually every possible automated learning task speaks for

itself, and the works presented in this thesis make no exception. The purpose

of this section is the revision of the basic concepts of Fully Connected and

Convolutional Neural Networks (FCNs and CNNs), two of the most critical

learning models devised in the context of this field.

Fully Connected Networks

The first attempt to model the neuronal connections of the brain, is usually

attributed to the cybernetician Warren McCulloch and the logician Walter

Pitts who, in 1943, published “A Logical Calculus of the Ideas Immanent in

Nervous Activity” (McCulloch and Pitts 1990). In this seminal paper, it was

presented for the first time the Linear Threshold Unit (LTU), a simple

1

1.1. Deep Learning Basics

∑
x1

x2

x3

db

Figure 1.1: The Linear Threshold Unit, by McCulloch and Pitts.

schematization of the behavior of a neuron. Such model, shown in Figure 1.1,

takes different inputs and consists in two elementary operations. First, an

aggregation function – usually a sum – is used to combine the inputs into

one scalar only, then a step function is applied to binarize the output. The

only parameter of the model is represented by the bias b, that determines the

thresholding point.

The LTU nicely summarizes the fundamental points of connectionist thinking.

The aggregation and thresholding operators are two characteristic traits present

in all neural models developed so far. As said above, the LTU was inspired by

the activity of the neurons in the brain. Thus the model is commonly known as

McCulloch and Pitts Neuron. The design of such a neuron, however, was

heavily simplified and loosely represents its biological counterpart.

Later, Frank Rosenblatt, improved this representation by introducing a

weighting of the inputs and an update rule to iteratively learn the weights,

Algorithm 1 Perceptron’s learning algorithm
Require: A dataset of observations D = {(xi, yi)}, the total number
of iterations/epochs E , a Perceptron f(x) with learnable weights w =
{w1, . . . , wd, b}, the learning rate η.
1: e = 0
2: while e < E do
3: for (xi, yi) ∈ D do
4: ŷi = f(xi)
5: for wj ∈ w do
6: wj = wj + η(yi − ŷi)xij
7: e = e+ 1

2

1.1. Deep Learning Basics

∑

x1

x2

x3

1

w1

w2

w3

b

d0

Figure 1.2: The Perceptron, by Rosenblatt.

bias included. The model, called Perceptron (Rosenblatt 1961), generates an

output (a binary label) and compare it with a ground truth. If the output is

wrong an error value is generated and propagated back to the weights which are

then updated accordingly, otherwise the model is left unmodified. Algorithm 1,

presents the pseudo-code of the Perceptron learning algorithm, while a schema

of the model is shown in Figure 1.2. Note that the bias becomes a learnable

weight too, with threshold function simply checking if its input is non-negative.

Perceptrons are known to solve only linear separable problems and fail when

addressing non-linear ones such the XOR problem (Minsky and Papert 1987).

This limitation can be addressed by grouping set of Perceptrons in layers and

connecting them together, to form a Multi-Layer Perceptron (MLP), also

known as Fully Connected Network (FCN). Each layer in an MLP can be

easily implemented through a matrix-vector multiplication for the aggregation

while the step function is applied element-wise to the output. According to

(Schmidhuber 2015), probably the first MLP network was that proposed by

(Ivakhnenko and Lapa 1966).

Backpropagation Linnainmaa 1970; Werbos 1982, the most popular

training procedure for MLPs, was popularized in the mid ’80s by (Rumelhart,

Hinton and Williams 1986), and settled another milestone in the history of

connectionst AI. With backpropagation, it is possible to virtually train arbitrarily

3

1.1. Deep Learning Basics

complex, almost everywhere differentiable functions, such as MLPs. In this

case, the step function is usually substituted with a non-linear activation

function, such as the sigmoid (Han and Moraga 1995), the hyperbolic tangent

(Weisstein n.d.), or, more recently, the Rectified Linear Unit (ReLU) (Hahnloser

et al. 2000).

With the resurgence of MLPs as powerful tools for addressing regression

and classification tasks, much work was devoted to defining the potentialities

of this model theoretically. This line of research culminated in the seminal

results enunciated in the universal approximation theorems (Lu et al. 2017;

Pinkus 1999). In essence, the theorems state that arbitrarily wide/deep MLPs

act as approximators of nearly any Lebesgue-integrable function. The theorems,

however, only provide existential statements without describing any procedure

for obtaining the MLP corresponding to a specific function of choice.

Convolutional Neural Networks

MLPs make relatively few assumptions on the nature of the inputs and sometimes

fail to exploit their structure entirely. In the case of image data, for example,

we assume that the input is structured as a lattice and that a pixel and its

neighborhood are correlated together. Such assumptions are called inductive

biases and are fundamental in the design of an ML algorithm. MLPs combine

the information of all the pixels together, regardless of their position, thus

ignoring the spatiality of the input.

In addition, MLPs with many layers, trained by backpropagation, incur in

the vanishing/exploding gradient problem (Bengio, Simard and Frasconi

1994; Hochreiter 1991). In particular, when propagating the error, its magnitude

tends to vanish/explode, producing insignificant or excessive weight updates in

the first layers of the model. This severe limitation prevents to apply MLPs for

the correct classification of more complex and structured data such as images.

4

1.1. Deep Learning Basics

The first works toward spatially correlated data was performed by (Hubel

and Wiesel 1959), identifying that the neurons in the visual cortex of monkeys

and cats were individually reacting to local regions of a visual field. Such

regions are called receptive fields and represent a capital concept in computer

vision theory nowadays. Later, (Fukushima and Miyake 1982), inspired by the

aforementioned work, devised the Neocognitron, a neural model specifically

tailored for image data, and, perhaps, the first “deep” neural architecture

Schmidhuber 2015. The Neocognitron structures alternates Simple and

Complex layers (S/C-layers). Each of them is composed respectively

inhibitory cells and excitatory S/C-cells (neurons), the latter organized in

matrices called S/C-planes. In S-layers, each S-cell fires according to a threshold

function, whose input is computed as a fraction of weighted sums between

excitatory and inhibitory inputs. The weights of the sums represent the learnable

parameters and provide the network with a sort of “neuro-plasticity” to adapt

to different patterns, like the MLP. Note that each S-cell is connected to only

a small subset of incoming inputs, corresponding to neighboring cells of the

previous layer, in the attempt to model the local connectivity structure described

by (Hubel and Wiesel 1959). C-layers behave similarly to the S-layers, except

that the sum is no more weighted and it does not span one plane instead of all

of them, (thus in an S/C-layer pair, the number of planes is the same).

In conclusion, S-layers can be seen as a specialized aggregation function

combining small, overlapping regions of the input (the aforementioned receptive

fields) into several outputs while keeping the spatiality of the data; the C-

layer, on the contrary, operates a signal downsampling that preserves the most

important activations of an S-layer, while discarding the least important ones,

to guarantee small-translation invariance in the classification of a concept.

Later, the NeoCognitron “evolved” in a new kind of neural architecture: the

Convolutional Neural Network (CNN) (LeCun et al. 1989a). In a CNN,

the standard matrix multiplication of the fully connected layer is replaced with

5

1.1. Deep Learning Basics

1

3

6

7

2

4

8

9

5

13

15

26

20

Figure 1.3: An example of the convolution operator, assuming the kernel weights
wij = 1 ∀i, j, meaning that the sum of the values is computed.

a convolution operator (Goodfellow, Bengio and Courville 2016):

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (1.1)

While the operator refers to a 2d input, it can be easily extended to 3d inputs,

like RGB images:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

∑
c

I(i−m, j − n, c)K(m,n, c) (1.2)

Figure 1.3 shows an example of convolution on a one-channel image. In case of

multiple channels, the window has three dimensions and convolves the channel

inputs all together. A convolutional layer implements many of these multi-

channel convolutions stacked together to generate multi-channel outputs.

The convolution operator is commutative, that is (I∗K)(i, j) = (K∗I)(i, j),

∀i, j. Moreover, the convolution operator can be performed as a matrix-vector

multiplication with additional rules on the weight matrix. Indeed, (LeCun et al.

1989a) describes a CNN as a network whose parameter space is constrained

through the use of infinitely strong priors (Goodfellow, Bengio and Courville

2016) that constraint neurons of the input layer to share parameters and to be

connected with only a small portion of neurons of the output layer. According

to (Goodfellow, Bengio and Courville 2016) the key properties that motivate

the success of this operator in dealing with image data are:

6

1.1. Deep Learning Basics

1

3

6

7

2

4

8

9

5

7

6

9

9

Figure 1.4: An example of the max-pooling operator.

• Sparse interactions: kernels are usually far smaller than the image

where they are applied. This allows detecting small, meaningful features

such as edges or corners in a computationally efficient way.

• Parameter sharing: the kernels are small blocks of weights that are

“slided” over the image covering it all. For this reason, the number of

weights is far smaller than those used in MLPs. A CNN can have multiple

convolutional layers without increasing too much in space.

• equivariant representations: the convolution is equivariant with

respect to the translation of its input, that means that if I ′ = g(I)

consists of a translation transformation, and f is the convolution operator,

applying f(g(I)) or g(f(I)) results in the same identical output. This

means that no matter where an object is located in an image, it will

generate the same output in the corresponding location.

In some tasks, different from the image classification, it may be needed to

enforce other constraints. For this reason, the literature contains many variants

of the standard convolution presented here. In addition to the convolution,

another layer is added, the pooling layer, that operates a “summarization” of

the convolution outputs. In particular, the pooling operator considers groups

of spatially neighboring inputs and, for each of them, it generates a summary

statistic as output. In general, the computed statistics is the maximum among

the inputs, but (weighted) average and `2-norm have been used as well in the

7

1.1. Deep Learning Basics

Figure 1.5: The schematization of a CNN. Taken from Aphex34 2015. “Fully
connected” refers to the MLP at the end of the network.

past. Given a 3d input, the pooling operator is applied channel-wise, that is,

given a H ×W × C input, a small sliding window (usually of size 2 × 2) is

passed over each of the C channels and the statistic is computed. Note that, in

general, the pooling operator does not require any learning parameter.

The purpose of pooling consists in making the CNN invariant to small

translations of the input, under the rationale that the exact position of an object

is not important for its classification. Like the convolution, the pooling can be

seen as the addition of an infinitely strong prior that enforces this invariance.

Figure 1.4 shows an example of pooling. Through the use of multiple layers

of convolution + non-linear activation + pooling, it is possible to generate

meaningful features that can then be passed to a shallow MLP, being now able

to classify more complex inputs. Figure 1.5 shows a schematization of a CNN

model.

Graph Neural Networks

Graph Neural Networks (GNNs) have recently arisen as a major topic of interest

in the deep learning community. Among the other DNNs, these models deserve

a description in this work, for they ability to leverage the contextual information

coded in graphs.

These models substantially represent a way to relax the inductive biases

8

1.1. Deep Learning Basics

imposed in the CNN, in order to work with generic graph structures. Almost

all GNNs learn graph vertices representations, called states, that can be further

synthesized into a graph representation, when required by the task. These

representations are then used to solve typical graph-related tasks, such as graph

matching, retrieval, classification, and so on. (Bacciu et al. 2020) first divide

GNN into two approaches: recursive and feedforward. In the first case, the

model can be seen as a dynamical system process which progressively refine

the states by diffusing the information of each vertex to its neighbors. In the

latter case, instead, the model is divided in layer which perform a progressive

“composition” of the local context into the global one, in a CNN fashion. For this

motivation, such layers are also called graph convolutional layers. In both

cases, dealing with graphs requires to deal with variable size and shape inputs

which in turn requires to leverage the local structure information to propagate it

on a global level. Further, when working with variable topology graphs, we must

ensure that the output does not change if the order of the vertex representations

does. permutation invariant functions like sum, mean and product are

commonly adopted to address this requirement. A proved (Wagstaff et al. 2019)

general expression for a permutation invariant function Ψ : XM → Y, is:

Ψ(Z) = φ(
∑
z∈Z

ψ(z)) (1.3)

With φ : M → Y and φ : X → M are continuous functions such as neural

networks.

(Bacciu et al. 2020) attempt in giving a formulation a general local context

composition operator, called neighbor aggregation, as follows:

h(`+1)
v = φ(`+1)

(
h(`),Ψ({ψ(`+1)(h(`)

u)|u ∈ Nv})
)

(1.4)

with h(`)
u denoting the state of a vertex u at step/layer `, φ/ψ implementing

9

1.1. Deep Learning Basics

arbitrary transformations of the input data and Nv being the neighborhood set

of v.

When dealing with discrete graph edge information, the formulation becomes:

h(`+1) = φ(`+1)

(
h(`)
v ,

∑
ck∈A

Ψ({ψ(`+1)(h(`)
u)|u ∈ N ck

v }) ∗ wck

)
(1.5)

with wck being a learnable scalar parameter that weights the contribution of

arcs with label ck ∈ A, N (ck)
v being the neighborhood of node v connected by

an edge with label ck and ∗ multiplies every component of its first argument by

wck . For continuous graph edge information instead we have:

h(`+1) = φ(`+1)
(

h(`)
v ,Ψ({e(`+1)(auv)>ψ(`+1)(h(`)

u)|u ∈ Nv})
)

(1.6)

with e being any function.

Finally (Bacciu et al. 2020) formulate also a neighborhood aggregation in

terms of the attention mechanism (Vaswani et al. 2017), which assigns a score

to each part of the input of a neural layer. The convolution of Equation (1.4)

is extended as follows:

h(`+1)
v = φ(`+1)

(
h(`)
v ,Ψ({α(`+1)

uv ∗ ψ(`+1)(h(`)
u)|u ∈ Nv}))

)
(1.7)

with α
(`+1)
uv ∈ R is the attention score associated with u ∈ Nv. Note that

this score is unrelated to the edge information, which needs to be calculated

separately.

Similarly to CNNs, in some tasks, a sampling operator is required in order

to summarize information and remove noise. In GNNs pooling is achieved in

two different ways. Adaptive pooling is a parametric, learnable mechanism,

which consists usually in the training of a differentiable clustering layer based

on the vertices, or on the edges of the input. Topological pooling insead, is

non-adaptive and thus does not require to be differentiable, and their results

10

1.1. Deep Learning Basics

are not task-dependent (Bacciu et al. 2020). Differently from the neighbor

aggregation operator, it is more difficult to provide a general formulation of a

pooling operator. The reader can refer to (Bacciu et al. 2020) for a description

of different pooling techniques common in the related literature.

GNNs pose interesting opportunities toward the integration of the meth-

odologies described in this work, both in terms of new learnable frameworks

for generic graph structures, and for the improvement of the GNNs standard

operators described above. Future research will be devoted toward these two

directions.

Other Deep Neural Networks

Over the course of the years, many new models have been devised for other

tasks. For motivation of space, we cannot cover them all. However, among

the others, we shortly describe two models that make use of the contextual

information in the learning process.

Recurrent Neural Networks (RNNs) (Elman 1990; Jordan 1986) deserve

mention here. These architectures were specifically designed to deal with

sequential data, like sentences or time series. At each time step, an input of

the sequence is fed to the network and is then mapped to a hidden space. The

hidden output is used to generate a feature embedding to be used in the loss

computation, and it is also passed as an hidden input for the processing of

the next input in the sequence. Unfortunately, the architecture has been shown

to suffer the same vanishing gradient problem as MLPs. Thus the supervision

generated by the first time steps becomes accidentally not important as the

recent ones, failing to learn long term relations (Hochreiter et al. 2001). In

the attempt to address this limitation, (Hochreiter and Schmidhuber 1997)

introduced the Long Short-Term Memory (LSTM) architecture, which modifies

the hidden layer computation by introducing a series of operators meant to

11

1.2. Contextual Information Basics

provide a “memory” capability to the network.

Siamese Neural Networks (SNNs) (Bromley et al. 1994) are models thought

to address metric learning problems. Formally, the architecture consists of two

DNNs with shared weights that are fed with two inputs at a time. The aim

of the learning is the generation of feature embeddings that can be efficiently

used for comparison. In other words, similar observations correspond to similar

feature embeddings in the learned feature space. The Siamese networks are

important in the context of this work because they were used in (Elezi et al.

2020).

1.2 Contextual Information Basics

With the term contextual information, we refer to all the information

deduced by the interpretation of an entity in relation to other entities. Examples

of contextual information include the recognition of an object in the foreground

thanks to the background surrounding it, or the meaning of a word thanks to

its position in a sentence.

Contextual information arises in the presence of more entities sharing the

same structure (pixels in an image, words in a sentence), which are usually

grouped in a context (the image, sentence respectively). If the data can be

organized in this way, then we can exploit contextual information for our tasks.

Due to its rather generic definition, every machine learning model exploits a

certain level of contextual information, in that each observation benefit from the

supervision generated by the previous ones seen by the model during the learning

(in particular, cf. 1.1). However, some effort has been put into devising specific

models or modules aimed to perform a direct disambiguation of observations

based on their context. In this section, we present the main algorithms used as

part of the work presented in this thesis. Again, the following discussion is not

exhaustive and is aimed to provide the reader with the basic knowledge of such

12

1.2. Contextual Information Basics

Figure 1.6: The triangle problem (taken from (Rosenfeld, Hummel and Zucker
1976)).

methods.

Relaxation Labeling

One of the first attempts to model the contextual information consists of the

wide variety of models reunited under the name of Relaxation Labeling. Such

models first arose in the seminal work of (Rosenfeld, Hummel and Zucker 1976).

In this paper, the authors address the problem of label disambiguation:

given a set of objects B = {b1, . . . , bn}, a set of labels Λ = {λ1, . . . , λm}, the

task consists in assigning the label the object according to a set of constraints

13

1.2. Contextual Information Basics

on the assignments. Four different models, with a varying level of constraint

strictness and stochasticity, are devised. Probably, the most well-known example

in this field is the so-called “triangle problem” (Rosenfeld, Hummel and Zucker

1976). Suppose to have observed a scene containing a set of objects bi, . . . , bn,

for example individual line segments forming a triangle, as shown in Figure 1.6,

but these objects have not been identified unambiguously yet. For example,

each segment, can be interpreted as a convex/concave dihedral angle, with both

faces visible, or a dihedral angle with just one face visible. In this latter case,

the line is an occluding edge and the visible face can be on either side of the

line, so in total we have four possible cases and 43 = 64 possible line settings.

However, many of them generate “impossible objects”, thus a disambiguation

can be done by considering that when segments meet at a vertex not all possible

combinations of these interpretations will be consistent, and the ambiguity can

be solved (partially or entirely). For example, in this problem, the possible

settings are only 8.

In the discrete, deterministic model each object bi is related to a set of

compatible labels Λi ⊆ Λ and each pair of objects (bi, bj) gives rise to a set

Λij ⊆ Λi×Λj of compatible pairs of labels. If (λ, µ) ∈ Λij then it is possible for

bi to have label λ and bj to have label µ. Λii = {(λ, λ) | λ ∈ Λi} by definition.

A labeling L = (Li, . . . , Ln) is an assignment of a set of labels Li ⊆ Λ to each

bi ∈ B. A labeling is called consistent if ∀i, j, ∀λ ∈ Li, ({λ} × Lj) ∩ Λij 6= ∅,

meaning that for i 6= j each pair of objects (bi, bj) and each label λ in Li there

exists a label µ in Lj that is compatible with λ, i.e. (λ, µ). The disambiguation

process starts from λ(0) = {Λ1, . . . ,Λn} and iteratively prunes L(t)
i discarding

any label λ such that ({λ} × L(t)
j) ∩ Λij = ∅ for some j. It is possible to prove

that L(∞) is consistent.

The discrete model is paired with a deterministic algorithm to reach

consistent labeling, which is, however, inapplicable in many real cases. In

practice, such strong assumptions on the compatibility of labels cannot be made.

14

1.2. Contextual Information Basics

Rather, it is preferable to define different degrees of compatibility, computed,

for example, by mean of a real-valued function. For this reason, the authors

investigate different non-deterministic model, finally proposing a non-linear

probabilistic setting. Each object bi is assigned to a vector of probabilities

pi = (pi1, . . . , pim), representing the confidences of labeling object bi with

each of its possible labels. The vectors are collected in a labeling matrix

(simply, labeling) p = (p1, . . . ,pn)>. In addition, assignments between objects

– also known as hypotheses – are weighted by a compatibility factor rij(λ, µ)

representing the degree of agreeableness between the hypotheses “bi is labeled

with λ” and “bj is labeled with µ”.

Intuitively, the main desideratum of a label disambiguation process is to

(a) increase the confidence of those assignments that are highly compatible

with other high confidence assignments (b) decrease the confidence of those

assignments that are highly incompatible with other high confidence assignments.

The authors propose to use the correlation coefficient as a compatibility measure

and the following update rule for the disambiguation:

p
(t+1)
iλ =

p
(t)
iλ)[1 + q

(t)
iλ]∑

µ p
(t)
iµ [1 + q

(t)
iµ]

(1.8)

q
(t)
iλ is called support for the assignment (i, λ) and is computed as follows:

q
(t)
iλ =

∑
j

dij
∑
µ

rij(λ, µ)p(t)
jµ (1.9)

with dij being coefficients such that
∑
j dij = 11.

The success of Relaxation Labeling in addressing a variety of classification

tasks was followed by the need of formally justifying its performance. (Hummel

and Zucker 1983) devised an optimization scheme, that, under some restrictions,

can be paired with an explicit functional, called Average Local Consistency
1In other publications the coefficients dij are not used. The work presented in this thesis

follow this convention as well.

15

1.2. Contextual Information Basics

(ALC):

A(p) =
n∑
i=1

m∑
λ=1

piλqiλ (1.10)

A new, principled notion of consistency is formulated such that the ALC can

be maximized to obtain consistent labelings. In particular, let K be the space

of all labelings, then a labeling p is said to be consistent if:

m∑
λ=1

piλqiλ ≥
m∑
λ=1

viλqiλ ∀i ∈ {1, . . . , n} (1.11)

for all v ∈ K. If the inequality is strict then the labeling is said to be strictly

consistent. The new optimization framework is used to obtain a new ReLab

scheme, with local convergence properties. In particular:

p(t+1) = p(t) + Ψ(p(t),q(t)) (1.12)

With Ψ being a gradient projection operator that ensures that the updated

p(t+1) lies within the space K. It can be shown that the standard ReLab

operator presented in Equation 1.8 is an approximation of this scheme, thus

providing evidence of the success of the standard ReLab in many applications.

A further analysis has been performed by (Pelillo 1997) where the

convergence properties of the standard ReLab operator are theoretically proven

using results drawn from the consistency theory developed in (Hummel and

Zucker 1983) and the dynamical system theory. The paper adopt a slightly

different version of the update rule, which does not compromise the general

nature of the stated theoretical results:

p
(t+1)
iλ =

p
(t)
iλ q

(t)
iλ∑m

µ=1 piµqiµ
(1.13)

Assuming non-negative compatibilities. In the next sections, we will refer

specifically to this form when speaking about ReLab. The process is shown to be

16

1.2. Contextual Information Basics

well-defined if the compatibility matrix is zero-symmetric (bij = 0 =⇒ bji = 0).

In addition, it is proved that a labeling p ∈ K is consistent if and only if the

following conditions holds: (a) qi(λ) = ci, whenever pi(λ) > 0, (b) qi(λ) ≤ ci,

whenever pi(λ) = 0, for some non-negative constants c1, . . . , cn, and if p is

consistent then it is a fixed point for the ReLab process. Perhaps, the most

important result is of the paper characterizes the strictly consistent labeling as

asymptotically stable equilibrium points, under the condition of non-negativity

and symmetry of the compatibilities, while the ReLab operator is a growth

transformation (Baum and Sell 1968) that effectively maximizes the ALC.

Graph Transduction Games

Graph Transduction Games (GTG) is a popular algorithm for semi-supervised

learning tasks developed by (Erdem and Pelillo 2012), which can be ultimately

seen as a particular instance of Relaxation Labeling. The general idea, indeed,

is to propagate the information of labeled instances to classify the unlabeled

ones in a consistent way.

Like the name suggests, GTG belongs to the Graph Transduction (GT)

(Zhu and Ghahramani 2002) subfamily of semi-supervised learning, whose aim

consists in the classification of unlabeled objects starting from a small set

of labeled ones. In GT the dataset is modeled with a graph whose vertices

are the observations, while the edges represent the similarity between said

observations. In short, the provided label information is propagated over the

unlabeled observations according to the similarities.

More formally, let G = (V,E,w) be a graph, with V = L∪U being the vertex

set. L = {(f1, y1), ..., (fl, yl)} represents the labeled observations, where fi ∈ Rd

is a real-valued feature vector describing observation i, and yi ∈ {1, 2, . . . ,m}

is its associated label. U = {fl+1, ..., fn} is the set of unlabeled observations.

E ⊆ V × V is the set of edges connecting the vertices and w : E → R≥0 is a

17

1.2. Contextual Information Basics

rock paper scissors
rock 0, 0 -1, 1 1, -1
paper 1, -1 0, 0 -1, 1
scissors -1, 1 1, -1 0, 0

Table 1.1: Payoff matrix of the rock-paper-scissors game.

similarity measure that assigns a non-negative value to each edge (u, v) ∈ E,

and can be summarized by a weight matrix W .

In (Zhu 2005), GT takes in input W along with a initial probability

distribution for each observation – one-hot labels for (fi, yi) ∈ L, soft labels

for fi ∈ U – and iteratively applies a function P : ∆m → ∆m where ∆m is

the standard simplex. At each iteration, if the distributions of labeled objects

have changed, they are reset. Once the algorithm reaches the convergence,

the resulting final probabilities give a labeling over the entire set of objects.

The reader is encouraged to refer to (Zhu 2005) for a detailed description of

algorithms and applications on graph transduction.

While, in general, label propagation methods theory is defined in terms

of a graph Laplacian regularization, GTG is, on the contrary, grounded on

non-cooperative game theory notions. In the following, we will give some basics

in order to clarify the rationale under the development of this algorithm.

A Game is a triple G = (I, S,π). I = {1, . . . , n} with n ≥ 2 is called

the set of players. Each player i can play a pure strategy chosen from a

set of strategies Si = {1, . . . ,mi}, collected in the strategy space S =×i∈I,Si .
π = (π1, . . . ,πn) : S → Rn is instead the combined payoff function, which

provides a “reward” to each player, considering each individual pure strategy in

relation with the others played by the other players. The common example is

the rock-paper-scissors game, a two-player game where each player can choose

among three possible strategies S1 = S2 = {rock, paper, scissors}. The payoff

matrix is given in Table 1.2.

In order to model uncertainty in the strategy decision process, we introduce

18

1.2. Contextual Information Basics

the concept of mixed strategy pi ∈ ∆i which is a probability distribution over

the set Si of pure strategies, for player i. ∆i is also called standard simplex

and is defined as follows:

∆i =
{

pi ∈ Rmi |
mi∑
h=1

pih = 1 ∧ xih ≥ 0, ∀h
}

(1.14)

The collection of all the mixed strategies p = (p1, . . . ,pn), called mixed

strategy profile, resides in the mixed strategy space Θ =×i∈I ∆i. It is

often common that all players share the same set of pure strategies. In such case,

the mixed strategy space is referred with the term standard multi-simplex

and denoted with ∆n×m. The expected payoff of a player can be represented

as:

ui(p) =
∑
s∈S

πi(s)x1,s1 · . . . · xn,sn (1.15)

With s = (s1, . . . , sn).

A player’s best replies against a mixed strategy profile p′ ∈ Θ, consists of

the set of mixed strategies that grant the highest payoff for said player:

βi(p′) = {pi ∈ ∆i | ui(pi,p′−i) ≥ u(p′′i ,p′−i), ∀p′′i ∈ ∆i} (1.16)

Best replies define the fundamental concept in non-cooperative game theory:

the Nash equilibrium. A mixed strategy profile p∗ is said to be a Nash

equilibrium, if it is the best reply to itself, that is:

ui(p∗i ,p∗−i) ≥ ui(pi,p∗−i) (1.17)

for all i ∈ I, xi ∈ ∆i, and xi 6= x∗i . This concept is motivated by the fact that

in a non-cooperative game, all the players should be motivated to maximize

their payoff, eventually reaching a Nash equilibrium.

GTG consists of a game where the players are the vertices of a graph,

19

1.2. Contextual Information Basics

representing the observations of a dataset D = Dl ∪ Du with Dl and Du being

respectively the labeled and unlabeled observations. The pure strategies are the

possible classes to be used for labeling, that is S1 = · · · = Sn = Λ = {1, . . . ,m}.

The game is a special class of multiplayer games, known as polymatrix games

(Miller and Zucker 1991), where multiple “rounds” of the game are played

between pair of players. The payoff function of each player is:

πi(s) =
n∑
j=1

Aij(si, sj) (1.18)

where aij is the partial payoff matrix between players i and j. The payoffs are

then computed as:

ui(ehi ,p−i) =
∑
j=Iu

(Aijpj)h +
m∑
k=1

∑
j∈ID|k

Aij(h, k) (1.19)

ui(p) =
∑
j∈Iu

p>i Aijpj +
m∑
k=1

∑
j∈ID|λ

p>i (Aij)λ (1.20)

Where ID|λ, is the set of labeled observations belonging to class λ.

The partial payoff matrix Aij is defined in terms of the similarity wij

between the two players/observations. In particular, Aij = wij · Im, with Im

being an identity matrix of size m. In other words, if two players share the

same label they receive a payoff equal to their similarity. A = (Aij) can be

written as the Kronecker product of A = Im
⊗

W, with W = (wij).

The core of GTG consists of an iterative procedure aimed to find the Nash

equilibrium of such game. In (Erdem and Pelillo 2012) a result from Evolutionary

Game Theory (Weibull 1997), named Replicator Dynamics (RD) (Maynard

Smith 1982) is used. The RD are a class of dynamical systems that perform a

natural selection process on a many different populations of individuals playing

pure strategies in different shares. The idea is to lead the fittest strategies

to survive while the others to go extinct. In particular, an initial matrix of

20

1.2. Contextual Information Basics

mixed strategy profiles p(0) is initialized such that labeled observations get

assigned to one-hot encodings, representing extreme mixed strategies, while

the unlabeled observations can be either initialized according to some prior

knowledge, or with a uniform distribution, if it is unavailable.

The GTG updates p(0) according to the following rule:

p
(t+1)
ih =

p
(t)
ih uih(e(h)

i ,p(t)
−i)

ui(p(t))
(1.21)

Note that the GTG process preserves the one-hot labelings, and modifies

the prior distributions of the unlabeled observations, as expected by a label

propagation algorithm.

A fundamental fact in our discussion is that A represents a special case of

the compatibility matrix R described in Section 1.2, and GTG can be effectively

seen as the standard Relaxation Labeling process described above. Indeed,

consider the following:

ui(ehi ,p−i) =
∑
j=Iu

(Aijpj)h +
m∑
k=1

∑
j∈ID|k

aij(h, k)

=
∑
j=Iu

m∑
k=1

aij(h, k)pjk +
∑

j∈ID|k

m∑
k=1

aij(h, k)pjk

=
n∑
j=1

m∑
k=1

aij(h, k)pjk = qih

ui(p) =
∑
j∈Iu

p>i Aijpj +
m∑
k=1

∑
j∈ID|k

p>i (Aij)k (1.22)

=
∑
j∈Iu

m∑
µ=1

m∑
µ′=1

piµaij(µ, µ′)pjµ′ +
∑

j∈ID|k

m∑
k=1

p>i (Aij)k

=
m∑
µ=1

piµ

n∑
j=1

m∑
µ′=1

aij(µ, µ′)pjµ′

=
m∑
µ=1

piµqiµ (1.23)

Thus Equation (1.21) is equivalent to the update rule of a standard Relaxation

21

1.3. Conclusions

Labeling operator.

The following result establishes a connection between the local maximizers

of the ALC/expected payoff, and the Nash equilibria of the game:

Theorem 1.2.1. Suppose A is symmetric, that is, Aij = Aji ∀i, j ∈ I. Then

any local maximum x∗ ∈ Θ of equation (1.20) is a Nash equilibrium point of

the polymatrix game (Miller and Zucker 1991).

1.3 Conclusions

This introductive chapter has given a panoramic view of the main concepts

treated in the following chapters. We are now ready to delve into the specific

applications of GTG and ReLab.

22

CHAPTER 2

Transductive Label Augmentation

for Improved Deep Network

Learning

Abstract A major impediment to the application of deep learning to real-

world problems is the scarcity of labeled data. Small training sets are in fact of

no use to deep networks as, due to the large number of trainable parameters,

they will very likely be subject to overfitting phenomena. On the other hand,

the increment of the training set size through further manual or semi-automatic

labelings can be costly, if not possible at times. Thus, the standard techniques

to address this issue are transfer learning and data augmentation, which consists

of applying some sort of “transformation” to existing labeled instances to let

the training set grow in size. Although this approach works well in applications

such as image classification, where it is relatively simple to design suitable

transformation operators, it is not obvious how to apply it in more structured

scenarios. Motivated by the observation that in virtually all application domains

it is easy to obtain unlabeled data, in this chapter we take a different perspective

and propose a label augmentation approach. We start from a small, curated

labeled dataset and let the labels propagate through a larger set of unlabeled

data using graph transduction techniques. This allows us to naturally use

23

2.1. Introduction

(second-order) similarity information which resides in the data, a source of

information which is typically neglected by standard augmentation techniques.

In particular, we show that by using the game theoretic transductive process

described in Section 1.2 we can create larger and accurate enough labeled

datasets which use results in better trained neural networks. Preliminary

experiments are reported which demonstrate a consistent improvement over

standard image classification datasets.

2.1 Introduction

Deep neural networks (DNNs) have met with success multiple tasks, and testified

a constantly increasing popularity, being able to deal with the vast heterogeneity

of data and to provide state-of-the-art results across many fields and domains

(LeCun, Bengio and Hinton 2015; Schmidhuber 2015). Convolutional Neural

Networks (CNNs) (Fukushima and Miyake 1982; LeCun et al. 1989b) are one of

the protagonists of this success. Starting from AlexNet (Krizhevsky, Sutskever

and Hinton 2012), until the most recent convolutional-based architectures (He

et al. 2016; Huang et al. 2017; Szegedy et al. 2015) CNNs have proved to be

especially useful in the field of computer vision, improving the classification

accuracy in many datasets (Alex Krizhevsky 2009; Deng et al. 2009).

However, a common caveat of large CNNs is that they require a lot of training

data in order to work well. In the presence of classification tasks on small

datasets, typically those networks are pre-trained in a very large dataset like

ImageNet (Deng et al. 2009), and then finetuned on the dataset the problem

is set on. The idea is that the pre-trained network has stored a decent amount

of information regarding features which are common to the majority of images,

and in many cases this knowledge can be transferred to different datasets or

to solve different problems (image segmentation, localization, detection, etc.).

This technique is referred as transfer learning (Yosinski et al. 2014) and

24

2.1. Introduction

has been an important ingredient in the success and popularization of CNNs.

Another important technique – very often paired with the previous one – is

data augmentation, through which small transformations are directly applied

on the images. A nice characteristic of data augmentation is that it is agnostic

toward algorithms and datasets. (Ciresan, Meier and Schmidhuber 2012) used

this technique to achieve state-of-the-art results in the MNIST dataset (LeCun

and Cortes 2010), while (Krizhevsky, Sutskever and Hinton 2012) used the

method almost without any changes to improve the accuracy of their CNN in

the ImageNet dataset. Since then, data augmentation has been used in virtually

every implementation of CNNs in the field of computer vision.

Despite the practicality of the above-mentioned techniques, when the number

of images per class is extremely small, the performances of CNNs rapidly degrade

and leave much to be desired. The high availability of unlabeled data only solves

half of the problem, since the manual labeling process is usually costly, tedious

and prone to human error. Under these assumptions, we propose a new method

to perform an automatic labeling, called transductive label augmentation.

Starting from a very small labeled dataset, we set an automatic label propagation

procedure, that relies on graph transduction techniques (GTG), to label a large

unlabeled set of data. This method takes advantage of second-order similarity

information among the data objects, a source of information which is not directly

exploited by traditional techniques. To assess our statements, we perform a

series of experiments with different CNN architectures and datasets, comparing

the results with a first-order “label propagator”.

In summary, the contributions presented in this chapter are as follows: a) by

using graph transductive approaches, we propose and develop the aforementioned

label augmentation method and use it to improve the accuracy of state-of-the-

art CNNs in datasets where the number of labels is limited; b) by gradually

increasing the number of labeled objects, we give detailed results in three

standard computer vision datasets and compare the results with the results of

25

2.1. Introduction

Figure 2.1: The pipeline of our method. The dataset consists of labeled and
unlabeled images. First, we extract features from the images, and then we
feed the features (and the labels of the labeled images) to graph transduction
games. For the unlabeled images, we use a uniform probability distribution as
’soft-labeling’. The final result is that the unlabeled points get labeled, thus the
entire dataset can be used to train a convolutional neural network.

CNNs; c) we perform a comparison of the results by replacing our transductive

algorithm with linear support vector machines (SVM) (Cortes and Vapnik 1995),

and later with other transductive algorithms (Label Spreading (Zhou et al. 2004)

and Harmonic Function (HF) (Zhu, Ghahramani and Lafferty 2003)); d) we give

directions for future work and how the method can be used on other domains.

Related Work

Semi-supervised label propagation has a long history of usage in the field

of machine learning (Vapnik 1998). Starting from an initial large dataset,

with a small portion of labeled observations the traditional way of using semi-

supervised learning is to train a classifier only in the labeled part, and then use

the classifier to predict labels for the unlabeled part. The labels predicted in

this way are called pseudo-labels. The classifier is then trained in the entire

dataset, considering the pseudo-labels as if they were real labels.

Different methods with the same intent have been previously proposed. In

26

2.2. Graph Transduction Game

deep learning in particular, there have been devised algorithms to use data with

a small number of labeled observations. (Lee 2013) trained the network jointly

in both the labeled and unlabeled points. The final loss function is a weighted

loss of both labeled and unlabeled points, where in the case of the unlabeled

points, the pseudo-label is determined by the highest score proposed by the

model. (Häusser, Mordvintsev and Cremers 2017) optimized a CNN on such a

way as to produce embeddings that have high similarities for the observations

that belong to the same class. (Kingma et al. 2014) used a totally different

approach, developing a generative model that allows for effective generalization

from small labeled datasets to large unlabeled ones.

In all the mentioned methods, the way how the unlabeled data has been used

can be considered as an intrinsic property of their engineered neural networks.

Our choice of CNNs as the algorithm used for the experiments was motivated

because CNNs are state-of-the-art models in computer vision, but the approach

is more general than that. The method presented in this chapter does not even

require a neural network and in principle, non-feature based observations (i.e

graphs) can be considered, as long as a similarity measure can be derived for

them. At the same time, the method shows good results in relatively complex

image datasets, improving over the results of state-of-the-art CNNs.

2.2 Graph Transduction Game

The used methodology relies on the Graph Transduction Games algorithm,

previously described in Section 1.2. The similarity function between players

(objects) can be given or computed starting from the features. Given two objects

i, j and their features fi, fj , their similarity ω(i, j) is computed following the

method proposed by (Zelnik-Manor and Perona 2005):

ω(i, j) = exp

{
−||fi − fj ||2

σi σj

}
(2.1)

27

2.2. Graph Transduction Game

A

C

B

W A B C

A 0 0 0.9

B 0 0 0.2

C 0.9 0.2 0

A CB

1 2 3 4

X(0) 1 2 3 4

A 0 1 0 0

B 1 0 0 0

C 0.25 0.25 0.25 0.25

A CB

1 2 3 4

Similarity Graph Label association (t = 0)

X(2) 1 2 3 4

A 0 1 0 0

B 1 0 0 0

C 0.15 0.85 0 0

A CB

1 2 3 4

X(3) 1 2 3 4

A 0 1 0 0

B 1 0 0 0

C 0 1 0 0

A CB

1 2 3 4

X(1) 1 2 3 4

A 0 1 0 0

B 1 0 0 0

C 0.21 0.47 0.16 0.16

1st iteration 2nd iteration 3rd iteration

Figure 2.2: The dynamics of the GTG. The algorithm takes in input similarities
between objects and hard/soft labelings of the object themselves. After three
iterations, the algorithm has converged, generating a pseudo-label with 100%
confidence.

where σi corresponds to the distance between i and its 7-nearest-neighbors.

Similarity values are stored in matrix W .

GTG is iterated until convergence, this means either the distance between

two successive steps is sufficiently small (formally ||p(t+1) − p(t)||2 ≤ ε) or a

certain amount of iterations is reached (See (Pelillo 1997) for a detailed analysis).

In practical applications one could set the ε to a small number but typically

10-20 iterations are sufficient. A schematization of the GTG process is shown

in Figure 2.2

28

2.3. Label Generation

2.3 Label Generation

The framework can be applied to a dataset with many unlabeled objects to

perform an automatic labeling and thus increase the availability of training

objects. The pipeline of the process is presented in Figure 2.1. This chapter

presents experiments with datasets for image classification, but our approach

is rather general in its nature. Similar methodologies have been successfully

applied in other domains, e.g. bioinformatics (Vascon et al. 2018) and matrix

factorization (Tripodi, Vascon and Pelillo 2016), and the works presented in

the successive chapters of this thesis.

Preliminary step: both the labeled and unlabeled sets can be refined

to obtain more informative feature vectors. We used fc7 features of CNNs

trained on ImageNet, but in principle, any type of features can be considered.

Our particular choice was motivated because fc7 features work significantly

better than traditional computer vision features (SIFT (Lowe 2004) and its

variations). While this might seem counter-intuitive (using pre-trained CNNs

on ImageNet, while we are solving the problem of limited labeled data), we

need to consider that our datasets are different from ImageNet (they come

from different distributions), and by using some other datasets to pre-train our

networks, we are not going against the spirit of the idea of this work.

Step 1: the objects are assigned to initial probability distributions,

needed to start the GTG. The labeled ones use their respective one-hot label

representations, while the unlabeled ones can be set to a uniform distribution

among all the labels. In presence of previous possessed information, some labels

can be directly excluded in order to start from a multi-peaked distribution,

which if chosen wisely, can improve the final results.

Step 2: the extracted features are used to compute the similarity matrix

W . The literature (Zelnik-Manor and Perona 2005) presents multiple methods

to obtain a W matrix and extra care should be taken when performing this

29

2.4. Experiments

step, since an incorrect choice in its computation can determine a failure in the

transductive labeling.

Step 3: once W is computed, graph transduction games can be played

(up to convergence) among the objects to obtain the final probabilities which

determine the label for the unlabeled objects.

The resulting labeled dataset can then be used to train a classification model.

This is very convenient for several reasons: 1) CNNs are fully parametric models,

so we do not need to store the training set in memory like in the case of graph

transduction. In some aspect, the CNN is approximating in a parametric way the

GTG algorithm; 2) the inference stage on CNNs is extremely fast (real-time); 3)

CNN features can be used for other problems, like image segmentation, detection

and classification, something that we cannot do with graph-transduction or

with classical machine learning methods (like SVM). In the next section we

will report the results obtained from state-of-the-art CNNs, and compare those

results with the same CNNs trained only on the labeled part of the dataset.

2.4 Experiments

In order to assess the quality of the algorithm, we used it to automatically

label three known realistic datasets, namely Caltech-256 (Griffin, Holub and

Perona 2007), Indoor Scene Recognition (Quattoni and Torralba 2009)

and SceneNet-100 (Kadar and Ben-Shahar 2014). Caltech-256 contains

30607 images belonging to 256 different categories and it is used for object

recognition tasks. Indoor Scene Recognition is a dataset containing 15620

images of different common places (restaurants, bedrooms, etc.), divided in 67

categories and, as the name says, it is used for scene recognition. SceneNet-

100 database is a publicly available online ontology for scene understanding

that organizes scene categories according to their perceptual relationships. The

dataset contains 10000 real-world images, separated into 100 different classes.

30

2.4. Experiments

caltech resnet18

2% 5% 10%

% of labeled data

20

25

30

35

40

R
el

at
iv

e
im

pr
ov

em
en

t

GTG + CNN SVM + CNN

indoors resnet18

2% 5% 10%

% of labeled data

6

8

10

12

14

16

18

20

22

24

26

R
el

at
iv

e
im

pr
ov

em
en

t

GTG + CNN SVM + CNN

scenenet resnet18

2% 5% 10%

% of labeled data

10

15

20

25

30

R
el

at
iv

e
im

pr
ov

em
en

t

GTG + CNN SVM + CNN

caltech densenet121

2% 5% 10%

% of labeled data

30

35

40

45

50

55

60

R
el

at
iv

e
im

pr
ov

em
en

t

GTG + CNN SVM + CNN

indoors densenet121

2% 5% 10%

% of labeled data

15

20

25

30

35

R
el

at
iv

e
im

pr
ov

em
en

t

GTG + CNN SVM + CNN

scenenet densenet121

2% 5% 10%

% of labeled data

15

20

25

30

35

40

45

R
el

at
iv

e
im

pr
ov

em
en

t

GTG + CNN SVM + CNN

Figure 2.3: Results obtained on different datasets and CNNs. Here the relative
improvements with respect to the CNN accuracy is reported. As can be seen,
the biggest advantage of our method compared to the other two approaches, is
when the number of labeled points is extremely small (2%). When the number
of labeled points increases, the difference on accuracy becomes smaller, but
nevertheless our approach continues being significantly better than CNN, and
in most cases, it gives better results than the alternative approach.

Each dataset was split in a training (70%) and a testing (30%) set. In

addition, we further randomly split the training set in a small labeled part and a

large unlabeled one, according to three different percentages for labeled objects

(2%, 5%, 10%). For feature representation, we used two models belonging

to state-of-the-art CNN families of architectures, ResNet and DenseNet. In

particular, we used the smallest models offered in PyTorch library, the choice

motivated by the fact that our datasets are relatively small, and so models

with smaller number of parameters are expected to work better. The features

were combined to generate the similarity matrix W , as described in Eq. 2.1.

The matrix for GTG model was initialized as described in the previous section.

We ran the GTG algorithm up to convergence, with the pseudo-labels being

computed by doing an argmax over the final probability vectors. We then

trained ResNet18 (RN18) and DenseNet121 (DN121) in the entire dataset,

by not having a distinction between labels and pseudo-labels, using Adam

optimizer (Kingma and Ba 2014a) with 3 ∗ 10−4 learning rate. We think that

31

2.4. Experiments

accuracy
2% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.529 0.588 0.478 0.506 0.460 0.455
LS + CNN 0.459 0.517 0.434 0.486 0.359 0.435
HF + CNN 0.393 0.463 0.372 0.438 0.312 0.319
LP + CNN 0.397 0.462 0.373 0.425 0.293 0.357

CNN 0.193 0.216 0.315 0.302 0.08 0.18
F score

2% labeled
caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121
GTG + CNN 0.471 0.534 0.336 0.393 0.439 0.435
LS + CNN 0.392 0.462 0.352 0.403 0.342 0.417
HF + CNN 0.367 0.446 0.262 0.335 0.331 0.342
LP + CNN 0.321 0.381 0.29 0.111 0.278 0.344

CNN 0.091 0.108 0.151 0.131 0.076 0.18

Table 2.1: The results of our algorithm, compared with the results of Label
Spreading (LS), Harmonic Function (HF), Label Propagation (LP) and CNN,
when only 2% of the dataset is labeled. We see that in all three datasets and
two different neural networks, our approach gives significantly better results
than the competing approaches

accuracy
5% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.667 0.71 0.552 0.585 0.628 0.626
LS + CNN 0.589 0.647 0.496 0.561 0.523 0.456
HF + CNN 0.589 0.665 0.527 0.555 0.549 0.588
LP + CNN 0.532 0.600 0.454 0.502 0.442 0.513

CNN 0.440 0.526 0.425 0.438 0.381 0.456
F score

5% labeled
caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121
GTG + CNN 0.624 0.674 0.440 0.476 0.606 0.62
LS + CNN 0.544 0.601 0.428 0.503 0.511 0.557
HF + CNN 0.542 0.636 0.444 0.482 0.531 0.574
LP + CNN 0.477 0.551 0.394 0.432 0.430 0.506

CNN 0.370 0.467 0.279 0.291 0.376 0.448

Table 2.2: The results of our algorithm, compared with the results of Label
Spreading (LS), Harmonic Function (HF), Label Propagation (LP) and CNN,
when only 5% of the dataset is labeled. We see that in all three datasets and
two different neural networks, our approach gives significantly better results
than the competing approaches

the results reported in this section are conservative, and can be improved with

a more careful training of the networks, and by doing an exhaustive search over

the space of hyper-parameters.

For comparison, we performed an alternative approach, by replacing GTG

with a first-order information algorithm, namely linear SVM, in addition to

other well-known laabel propagation algorithms: Label Spreading (Zhou et al.

2004), Harmonic Function (HF) (Zhu, Ghahramani and Lafferty 2003) and

32

2.4. Experiments

accuracy
10% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.714 0.746 0.577 0.628 0.675 0.681
LS + CNN 0.636 0.702 0.541 0.592 0.631 0.608
HF + CNN 0.646 0.716 0.548 0.595 0.578 0.643
LP + CNN 0.594 0.672 0.490 0.553 0.499 0.565

CNN 0.599 0.655 0.527 0.563 0.544 0.599
F score

10% labeled
caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121
GTG + CNN 0.681 0.717 0.490 0.558 0.646 0.665
LS + CNN 0.601 0.675 0.465 0.549 0.620 0.601
HF + CNN 0.607 0.689 0.466 0.523 0.568 0.634
LP + CNN 0.545 0.635 0.411 0.480 0.488 0.554

CNN 0.554 0.615 0.414 0.466 0.538 0.589

Table 2.3: The results of our algorithm, compared with the results of Label
Spreading (LS), Harmonic Function (HF), Label Propagation (LP) and CNN,
when only 10% of the dataset is labeled. We see that in all three datasets and
two different neural networks, our approach gives significantly better results
than the competing approaches

Label Propagation (Zhu and Ghahramani 2002): LP performs hard clamping of

input labels which yields to avoiding change on the original label distribution at

every iteration. LS adopts soft clamping instead, where initial assignments are

changed by a fraction α at each iteration. Moreover, employing regularization,

the cost employed in LS differentiates from LP, which provides better robustness

to noise. HF tries instead to compute a function f by minimizing a corresponding

energy function E(f). The solution is harmonic and this property can be

exploited to propagate information according to the aforementioned smoothness

principle. While we experimented also with kernel SVM, we saw that its

results are significantly worse than those of linear SVM, most likely because

the features were generated from a CNN and so they are already quite good,

having transformed the feature space in order to solve the classification problem

linearly.

On Table 2.1 we give the results of the accuracy and F score on the testing

set, in all three datasets, while the number of labels is only 2% for each of the

datasets (400 observations for Caltech-256, 200 observations for Indoor, and 140

observations for Scenenet). In all three datasets, and both CNNs, our results are

33

2.4. Experiments

Method 10 50 100 250
Pi Model 0.1 0.1 0.362 0.741
Mean Teacher 0.1 0.1 0.266 0.734
Pseudo-Labels 0.13 0.335 0.603 0.778
VAT 0.119 0.227 0.321 0.705
Transfer Learning 0.289 0.518 0.605 0.711
LS + CNN 0.534 0.666 0.714 0.758
HF + CNN 0.113 0.232 0.352 0.659
GTG + CNN 0.575 0.733 0.764 0.791

Table 2.4: The results of our method, tested on the CIFAR-10 dataset, compared
with the results of other deep semisupervised learning methods and replacements
of GTG with other transductive methods.

significantly better than those of CNNs trained only in the labeled data, or the

results of the alternative approaches. Table 2.2 and Table 2.3 give the results of

the accuracy and F score while the number of labeled images is 5%, respectively

10%. It can be seen that with the number of labeled points increasing, the

performance boost of our model becomes smaller, but our performance still

gives better results to the alternative approach in all bar one case, and it gives

significantly better results than CNN in all cases.

Figure 2.3 shows the results of our approach compared with the linear SVM

and with the results of CNN. We plotted the relative improvement of our model

and the alternative approach over CNN. When the number of labels is very

small (2%), in all three datasets we have significantly better improvements

compared with the alternative approach. Increasing the number of labels to

5% and 10%, this trend persists. In all cases, our method gives significant

improvements compared to CNN trained on only the labeled part of the dataset,

with the most interesting case (only 2% of labeled observations), our model gives

36.24% relative improvement over CNN for ResNet18 and 50.29% relative

improvement for DenseNet121.

In addition, we compared the results with deep semisupervised models such

as Π-model (Laine and Aila 2017), Mean-Teacher (Tarvainen and Valpola 2017),

Pseudo-Label (Lee 2013) and VAT (Miyato et al. 2019). For a comprehensive

34

2.5. Conclusions and Future Work

Method 10 50 100 250
Pi Model 0.1 0.1 0.11 0.681
Mean Teacher 0.1 0.1 0.12 0.695
Pseudo-Labels 0.132 0.236 0.498 0.764
VAT 0.118 0.193 0.323 0.641
Transfer Learning 0.271 0.506 0.589 0.689
LS + CNN 0.484 0.621 0.684 0.703
HF + CNN 0.113 0.309 0.556 0.642
GTG + CNN 0.514 0.56 0.713 0.719

Table 2.5: The results of our method, tested on the CIFAR-10 dataset, compared
with the results of other deep semisupervised learning methods, and replacements
of GTG with other transductive methods. All the neural models were pretrained
on a selected subset of the ImageNet dataset.

evaluation of these methods, the reader can refer to (Oliver et al. 2018). The

dataset used for the experiments was CIFAR-10 (Alex Krizhevsky 2009), using

the same preprocessing proposed in the paper. The results, presented in

Table 2.4, show that our method outperformed all the competitors, while the

performance gap decreases with the increment of the labeled instances.

We replicated also the experiment done in (Oliver et al. 2018), where the

network is pretrained on a subset of ImageNet not containing similar classes as

those of CIFAR-10. Table 2.4 shows the results. Again, it can be seen that our

method outperforms the others in very-low level regimes, with the exception

of the training with 250 labeled instances, where only Pseudo-Labels performs

better. In particular, apart Label Spreading, all the other methods perform

very poorly in presence of 10, 50, 100 labeled instances.

2.5 Conclusions and Future Work

In this chapter, we proposed and developed a game-theoretic model which can

be used as a semi-supervised learning algorithm in order to label the unlabeled

observations and so augment datasets. Different types of algorithms (including

state-of-the-art CNNs) can then be trained on the extended dataset, where the

“pseudo-labels” can be treated as normal labels.

35

2.5. Conclusions and Future Work

Our method is not the only semi-supervised learning model used to train deep

learning methods. However, to the best of our knowledge, the other methods are

directed towards deep learning and incorporated within the learning algorithm

itself. On the contrary, we offer a different perspective, developing a model

which is algorithm-agnostic, and which does not even need the data to be on

feature-based format.

We believe that the true potential of the model can be unleashed when

the data is in some non-traditional format. In particular, we plan to use our

model in the fields of bio-informatics and natural language processing, where

non-conventional learning algorithms need to be developed. A direct extension

of this work is to embed into the model the similarity between classes which

has been proven to significantly boost the performances of learning algorithms.

36

CHAPTER 3

Unsupervised Domain Adaptation

Using Graph Transduction Games

Abstract Unsupervised domain adaptation (UDA) amounts to assigning class

labels to the unlabeled instances of a dataset from a target domain, using

labeled instances of a dataset from a related source domain. In this paper we

propose to cast this problem in a game-theoretic setting as a non-cooperative

game and introduce a fully automatized iterative algorithm for UDA based on

graph transduction games (GTG). The main advantages of this approach are its

principled foundation, guaranteed termination of the iterative algorithms to a

Nash equilibrium and soft labels quantifying uncertainty of the label assignment

process. We also investigate the beneficial effect of using pseudo-labels from

linear classifiers to initialize the iterative process. The performance of the

resulting methods is assessed on publicly available object recognition benchmark

datasets involving both shallow and deep features. Results of experiments

demonstrate the suitability of the proposed game-theoretic approach for solving

UDA tasks.

3.1 Introduction

The success of deep learning in computer vision classification tasks relies on

the availability of a large amount of images annotated with their ground truths.

37

3.1. Introduction

However, manual label annotation is typically an expensive process and may

contain wrong annotations. In order to overcome these limitations, Semi-

Supervised Learning (SSL) approaches have been developed, usually involving

the training of a classifier from a large dataset with plenty of unlabeled data

and substantially less annotated data. In some cases, however, it is expensive

to obtain unlabeled data too, resorting instead on data coming from a different

source. This problem is best formulated in the Unsupervised Domain Adaptation

setting, where unlabeled data comes from a different related distribution than

that of the labeled data. Specifically, an annotated source dataset is exploited to

infer the labels of an unlabeled target dataset from a different, related domain.

Due to the tight relation between SSL and UDA problems, it is not uncommon

to approach them with similar techniques (cf. (Häusser, Mordvintsev and

Cremers 2017) and (Häusser et al. 2017) for example).

In this chapter we investigate the use of GTG, for domain adaptation,

which has been successfully applied in SSL tasks such as in (Elezi et al. 2018),

(Vascon et al. 2018), (Tripodi, Vascon and Pelillo 2016) and (Aslan, Vascon

and Pelillo 2018), and we show that this approach, paired with a preprocessing

step, provides overall improvements in three standard domain adaptation cases.

Specifically, we propose a fully automatized pipeline to perform UDA with

GTG, comparing our results with those of recent methods, trying also to include

prior information provided by a simple classifier, i.e. Logistic Regression. We

perform also a comparison of GTG with other three standard graph-transductive

algorithms. The picture that arises from the experimental results is promising

and suggests considering graph transduction as a key-module when addressing

UDA problems. The choice of using GTG as a transduction algorithm for

DA has been motivated by its theoretical properties which guarantee: i) a

consistent labeling of unknown samples at convergence, ii) the output of soft-

labelings (probability distribution over the classes) for further refinements, iii)

the possibility of injecting prior knowledge at the beginning of the transductive

38

3.1. Introduction

process.

The main contributions of this work are the following:

• We adopt the theory of label consistency of GTG to propose a principled

technique for UDA. This will offer a novel perspective on the UDA problem.

• We propose a parameter-free method for UDA based on game theory

which bypasses intensive training phase.

• We reach state-of-the-art performance results on publicly available object

recognition domain adaptation tasks.

Related work

The literature contains presents many methods for UDA. Here, we focus on the

recent approaches used in our comparative assessment.

A variety of DA models aligns the distributions of features from source

and target domains by reducing their discrepancy. For instance, CORrelation

ALignment (CORAL) (Sun, Feng and Saenko 2016) finds a linear transformation

that minimizes the distance between the covariance of source and target.

Subspace Alignment (SA) (Fernando et al. 2013) computes a linear map that

minimizes the Frobenius norm of the difference between the source and target

domains, which are represented by subspaces described by eigenvectors. Feature

Level Domain Adaptation (FLDA) (Kouw et al. 2016) models the dependence

between the two domains by means of a feature-level transfer model that is

trained to describe the transfer from source to target domain. FLDA assigns a

data-dependent weight to each feature representing how informative it is in the

target domain. To to do it uses information on differences in feature presence

between the source and the target domain.

Recently, end-to-end UDA methods based on deep neural networks have been

shown to perform better than the aforementioned approaches. However, they

39

3.1. Introduction

Figure 3.1: From left to right the starting point of the dynamical system and
the point of convergence. Evolution of the mixed strategy associated to an
observation during the GTG process. As the dynamic is iterated, the entropy
progressively decreases and the distribution peaks toward the correct class.

Figure 3.2: From left to right the starting point of the dynamical system and the
point of convergence. In this example the dynamics start from three different
classes, while in the end, thanks to the refinement of the neighboring mixed
strategies the correct class is chosen.

need large train data (Sener et al. 2016), use target labels to tune parameters

(Long, Wang and Jordan 2016b) and are sensitive to (hyper-)parameters of

the learning procedure (Ganin et al. 2016). Therefore, current state-of-the-art

based on this approach start from pre-trained network architectures. Various

state-of-the-art methods considered in our comparative analysis use the ResNet

pretrained network, like Deep Domain Confusion (DDC) (Tzeng et al. 2014),

Deep Adaptation Network (DAN) (Long et al. 2015), Residual Transfer Networks

(RTN) (Long, Wang and Jordan 2016b), Reverse Gradient (RevGrad) (Ganin

and Lempitsky 2015; Ganin et al. 2016), and Joint Adaptation Networks (JAN)

(Long, Wang and Jordan 2016a).

Game theoretic framework

We decided to follow the GTG approach proposed in (Erdem and Pelillo

2012) and explained in Section 1. As for the labeled observations, the initial

probabilities p(0)
i can be simply set to the extreme mixed strategy corresponding

40

3.2. Domain Adaptation with GTG

Source

Target

Joint feature
Normalization

Automatic
Affinity
matrix

Matrix
sparsification

Strategy
space

initialization

L

U

Prior
knowledge?

Domain Adaptation
with GTG

Figure 3.3: Pipeline of the proposed method.

to the labels yi, namely pih = 1(h = yi), where 1 is the indicator function,

while for the unlabeled ones they can be set either with some prior or a uniform

distribution, thus p(0)
ih = 1/m, ∀h ∈ S (we tried both cases in our experiments).

As in the previous chapter, the dynamics are run until two consecutive steps

do not differ significantly or a maximum number of iterations is reached. The

affinity matrix computation is explained in Section 3.2. In Figure 3.1 and Figure

3.2 we show two examples of the GTG algorithm in the case of absence of prior

knowledge and in its presence, respectively.

3.2 Domain Adaptation with GTG

In this section we present our method, GTDA. We will explain how to cast the

unsupervised domain adaptation problem in graph-transduction game setting.

We consider a labeled (L) and unlabeled (U) dataset from the source and target

domain, respectively. The source labels are propagated to the target instances

by playing a non-cooperative multiplayer game in which the players are the

observations of the dataset and the strategies are the labels.

The interaction between the observations are represented in terms of a

weighted undirected graph in which the edges are weighted by the similarity of

observation pairs, hence how much they will affect each others. In particular,

the process is illustrated in Fig. 3.3 and explained in the following steps:

41

3.2. Domain Adaptation with GTG

Joint feature standardization Given a dataset of featuresD and two domains

ds, dt ∈ D (source and target respectively), we normalize their features jointly

as a pre-processing step. We perform two types of normalization on the union

of the features: std features are scaled by their standard deviation or z-score

subtract the mean and scaled by their standard deviation. Depending whether

the sparsity of the features should be preserved or not, we pick the std or

z-score, respectively.

Initialization of the mixed strategy profile The initial mixed strategy profile

of the players, denoted as p(0) represents the starting point of the game. If

prior knowledge is available, we can leverage it for its initialization. In our

experimental settings, we explore two different initializations: i) in which no

prior information is exploited (no-prior in the following) and ii) where an

output from a logistic regression classifier is used (+LR). In the latter case,

the logistic regression classifier

has been trained for each pair of jointly normalized domains in a dataset.

The training has been performed considering only the features belonging to

the source, in a 2-fold cross validation setting, with an hyperparameter search

for the C variable in the following log-scale range C =
[
10−3, 104]. We end up

with a LR model Mi,j for each pair of domains di and dj in a dataset.

Given an unlabeled observation, the LR model outputs a probability

distribution over the classes which is later used as prior knowledge in the

strategy space.

The choice of having as prior a probability distribution for each unlabeled

object, instead of a one-hot vector, is mandatory since the one-hot vector cannot

be updated by the GTG algorithm hence the performance would have been the

same as the LR itself.

42

3.2. Domain Adaptation with GTG

Algorithm 2 GTDA algorithm
Require: source feature matrix FS ∈ R|S|×d, target feature matrix FT ∈
R|T |×d, one-hot source labels YS ∈ ∆|S|×m, minimum tolerance ε, maximum
number of iterations K.
Ensure: target soft predictions YT ∈ ∆|T |×m

1: N = |S|+ |T |
2: F̂S = normalize(FS)
3: F̂T = normalize(FT)
4: PT = LR(F̂S , YS , F̂T) . Get log. reg. priors for FT
5: x(0) =

[
YS
P̂T

]
. Init. Mixed Strategy Profile

6: W = [ω(i, j)]ij
7: Ŵ = sparsify(W)
8: tol = +∞, t = 0
9: while tol ≥ ε and t < K do
10: for i = 1, . . . , N do
11: p

(t+1)
i = p

(t)
i
�(Ŵp(t))i

p
(t)
i

(Ŵp(t))T
i

. Update rule

12: tol = ‖p(t+1) − p(t)‖2
13: t = t+ 1
14: YT = p(t−1)

|S|:N,1:m . Get the target predictions

Computation of the affinity matrix The core of the GTG is stored in

the affinity matrix W , so its computation requires particular care. In our

experimental setting, we decided to rely on the following standard similarity

kernel:

ω(i, j) =

exp

{
−d(fi,fj)2

σiσj

}
if i 6= j

0 else
(3.1)

where fi, fj are the features of observations i and j respectively, d(fi, fj) is the

cosine distance between features fi and fj . Here, motivated by (Zelnik-Manor

and Perona 2005) and (Tripodi, Vascon and Pelillo 2016), we set the scaling

parameter σi automatically, considering the local statistics of the neighborhood

of each point. Accordingly to (Zelnik-Manor and Perona 2005), the value of σi

is set to the distance of the 7-th nearest neighbour of observation i.

Affinity sparsification The sparsification of the graph plays an important

role in the performance of the algorithm. Indeed, filtering out the small noisy

43

3.3. Experimental Setting

similarities which may bias the utilities in the payoff computation, would prevent

incorrect class labelings.

Here, we follow a statistical connectivity principle in random graph, which

states that a graph is connected if each node has at least k = blog2(n)c + 1

nearest neighbours (Luxburg 2007). The rationale of this choice is that the

labels in GTG are propagated from the labeled elements to the unlabeled ones.

If the graph is not connected the propagation might get stuck at a certain point.

This sparsification ensures that the graph is connected, hence all the nodes are

reached at the equilibrium condition of the dynamical system. The sparsification

is performed for each node i independently considering the distance value of

the k-NN as a threshold for the other nodes in the graph. In order to obtain a

symmetric neighborhood, we include the node i in the neighborhood of j (and

viceversa) if one of the two is in the neighborhood of the other.

Execution of GTG Once the affinity matrix is computed and the mixed

strategy profile is initialized, GTG can be finally played up to convergence.

The final probabilities, which determine then the labels for the unlabeled

observations, correspond to the adaptation from sources to targets.

In algorithm 2 we present the pseudo-code of the entire method.

3.3 Experimental Setting

To validate our approach, we perform experiments on two publicly available

popular datasets for object recognition domain adaptation: the Office-Caltech

10 (Gong et al. 2012) and the Office-31 (Saenko et al. 2010).

Datasets

In the following we present a short description of each datasets used for our

experiments.

44

3.3. Experimental Setting

Office-31 Office-31 is a dataset containing 31 classes divided in 3 domains:

Amazon (A), DSLR (D) and Webcam (W). Office-31 has a total of 4110 images,

with a maximum of 2478 images per domain. In this dataset we use deep

features extracted from the ResNet-50 architecture (He et al. 2016) pretrained

on ImageNet.

Office-Caltech Office-Caltech consists in observations taken from the common

classes of Office 31 and Caltech256 (10 in total) and are divided in 4 image

domains, namely the ones of Office-Caltech and the additional Caltech (C). The

features we consider are of two kinds: 800 SURF features (Bay, Tuytelaars

and Van Gool 2006), which we preprocess by z-score standardization, and deep

features in the same fashion as the previous dataset.

Evaluation Criteria

We evaluated and reported the accuracy on the target domain for each

adaptation. Accuracy is computed as the fraction of the correctly labeled

target instances. Furthermore, we reported the average accuracy per methods

and the top-3 performing by different coloring (best performing, second and

third). Along the analysis of the results we highlighted also the number of hit

time that a method perform better than the competitors.

Comparing Methods

In order to assess our method in a broad context, the performance of GTDA has

been compared with both standard domain adaptation methods, recent deep-

learning based algorithm and baselines classifiers (SVM and LR). Furthermore,

we assessed the effectiveness of GTG, replacing it with other GT methods (Label

Propagation, Label Spreading and Gaussian Fields and Harmonic Functions).

In our experiments, since we are dealing with more than two classes, we

used one-vs-all linear SVM and multi-class logistic regression. More details on

45

3.3. Experimental Setting

the methods we experimented for comparative analysis are given below.

Shallow Domain Adaptation Methods

The most prevalent domain adaptation methods accomplish domain adaptation

task by reducing the discrepancy between source and target distributions

via computing a feature transformation. We chose CORrelation ALignment

(CORAL) (Sun, Feng and Saenko 2016) and Subspace Alignment (SA) (Fernando

et al. 2013) which are two popular methods following this approach. Reported

performance for both methods are appealing whereas their application to high

dimensional data might be problematic since they are not scalable to high

number of features. Another approach for domain adaptation is modeling the

dependence of source and target domain in feature level. We experimented by

a recent work, namely Feature Level Domain Adaptation (FLDA) (Kouw et al.

2016), that follows this approach. We use published source codes of the shallow

DA methods for all datasets.

DNN-based Domain Adaptation Methods

Motivated by their reported stunning performance in recent years, we compared

performance of GTDA with the performance of a number of Deep Neural

Networks-based domain adaptation methods reported on the Office-31 dataset

based on ResNet50 features. Specifically, we make comparison with Deep

Domain Confusion (DDC) (Tzeng et al. 2014) where an objective function

including an additional domain confusion term is proposed for learning domain-

invariant representations for classification, Deep Adaptation Network (DAN)

(Long et al. 2015) where more transferable features are learned by adapting

source and target distributions in multiple task-specific layers, Residual Transfer

Networks (RTN) (Long, Wang and Jordan 2016b) that achieves feature

adaptation and classifier adaptation simultaneously by deep residual learning

(He et al. 2016), Reverse Gradient (RevGrad) (Ganin and Lempitsky 2015; Ganin

46

3.3. Experimental Setting

et al. 2016) that improves domain adaptation by employing adversarial training

paradigm, and Joint Adaptation Networks (JAN) (Long, Wang and Jordan

2016a) that uses an adversarial learning strategy to maximize a joint maximum

mean discrepancy such that distributions of source and target domains be more

distinguishable. Despite of high performance accuracies, some disadvantages of

DNN-based methods to be taken into account are that they require abundant

training data for improvement in performance, they use target labels for

parameter tuning (Long, Wang and Jordan 2016b) and their sensitivity to

hyperparameters of the learning procedure is high (Ganin et al. 2016). We refer

to the performance results reported in (Long, Wang and Jordan 2016a) for the

aforementioned DNN-based techniques to make comparison with our technique,

hence we will add results for the Office-31 dataset only.

Graph Transduction Techniques for Domain Adaptation

Similarly as in the previous chapter, we compared our game-theoretic graph

transduction technique against three other transductive techniques, namely

Label Propagation (LP) (Zhu and Ghahramani 2002), Label Spreading (LS)

(Zhou et al. 2004) and Harmonic Function (HF) (Zhu, Ghahramani and Lafferty

2003) for the domain adaptation problem. Similar to our method, these

techniques exploit the so-called smoothness principle which states that closer

instances tend to belong to the same class.

To make a fair comparison with our approach, we provide to these algorithms

the same affinity matrix as ours, i.e. W , which is computed using the same

scheme of normalization, σ selection and sparsification. For the LS technique,

we experimented with a variety of values in the range of (0, 1) for the parameter

α. Since we got the best results when α = 0.2 which is also the suggested

default value we present the results of LS with α = 0.2.

47

3.4. Results

Table 3.1: Comparative analysis on Office-31 dataset (ResNet-50 features)
A→D A→W D→A D→W W→A W→D avg

Baselines
Source SVM 76.9 73.8 60.3 97.5 59.4 100.0 78.0
Source LR 74.7 70.8 60.6 97.5 60.2 100.0 77.3

Shallow models
SA 76.7 75.5 62.2 97.9 60.3 100.0 78.8
FLDA-Q 76.3 75.5 59.9 97.5 58.6 99.8 77.9
CORAL 78.9 76.9 59.7 98.2 59.9 100.0 78.9

Graph-transductive methods
Lab Prop 2.4 3.6 3.3 3.6 3.3 99.8 19.3
Lab Spread 77.3 79.2 63.1 98.6 60.8 99.8 79.8
Harmonic Function 73.7 80.3 62.3 98.1 46.8 99.8 76.8

Proposed method, GTDA
GTDA 80.5 78.0 66.2 98.9 62.9 99.8 81.1
GTDA + LR 82.5 84.2 67.1 97.9 69.1 99.8 83.4

Table 3.2: Comparative analysis on Office-31 dataset (ResNet-50 features)
A→D A→W D→A D→W W→A W→D avg

Deep Neural Networks (from Long, Wang and Jordan 2016a)
DDC 76.5 75.6 62.2 96.0 61.5 98.2 78.3
DAN 78.6 80.5 63.6 97.1 62.8 99.6 80.4
RTN 77.5 84.5 63.6 96.8 64.8 99.4 81.6
RevGrad 79.7 82.0 68.2 96.9 67.4 99.1 82.2
JAN-A 85.1 86.0 69.2 96.7 70.7 99.7 84.6

Proposed method, GTDA
GTDA 80.5 78.0 66.2 98.9 62.9 99.8 81.1
GTDA + LR 82.5 84.2 67.1 97.9 69.1 99.8 83.4

3.4 Results

We use the notation of A→ B to indicate the adaptation with A as source and

B as target dataset. While we discuss the performance of the techniques, (i) we

consider the averaged accuracy over all adaptation tasks and (ii) the number of

adaptation tasks that a method outperforms.

Office-31 dataset

We present performance on Office-31 for the shallow and graph transductive

methods in Table 3.1 while additional comparisons with deep-learning models

is outlined in Table 3.2 reporting results from (Long, Wang and Jordan 2016a).

Non DL methods The results on non-DL methods are reported in Table 3.1.

The GTDA outperforms CORAL, i.e. the best performed shallow DA method

48

3.4. Results

on this dataset, by around 2% and 4% in averaged accuracy with and without

prior, respectively. When we compare GTDA with other GT methods, i.e. LP.,

LS and HF, we see that GTDA without prior outperforms all of them with a

performance of 81.1%, while Label Spread follows GTDA with the performance

of 79.8 %. When the prior knowledge is used in GTDA the performance are

far better, being the top performing ones. Another point to highlight from this

experiment is that, in general, the transductive methods outperform the shallow

models. Without considering the average results, the GTDA+LR outperforms

5 over 6 times the shallow models. When prior is not used the GTDA is the

second best performing algorithm (still considering the GTDA+LR).

DL-based methods The results on DL-based methods are reported in Table

3.2. The GTDA outperforms DDC, DAN, RTN and RevGrad which are end-

to-end learned system for DA. This is surprising, considering that GTDA does

not require an extensive training phase and neither a parameter optimization

like in DNN. JAN-A achieves the best averaged accuracy, i.e. 84.6%, on this

dataset being for four times the best performing and just once as a second.

Among the other DL models no one is able to clearly outperform JAN-A. Our

GTDA without prior outperform JAN-A on two cases (D-W, W-D) while in the

remaining five it becomes the third best performing only once. When GTDA

benefits from prior (GTDA +LR) the performance approaches to JAN-A (83.4

% vs. 84.6 %) becoming the second best algorithm, even outperforming the

other DL approaches.

49

3.4. Results

Table 3.3: Comparative analysis on Office-Caltech dataset (SURF features)
A
→

C
A
→
D

A
→

W
C
→
A

C
→

D
C
→

W
D
→

A
D
→

C
D
→

W
W
→

A
W
→

C
W
→

D
avg

B
aselines

Source
SV

M
41.0

40.1
42.0

52.7
45.9

47.5
33.0

32.1
75.9

38.4
34.6

75.2
46.5

Source
LR

42.8
36.3

35.3
54.1

42.7
40.7

33.9
31.2

83.1
37.3

32.9
71.3

45.1

Shallow
M
odels

SA
37.4

36.3
39.0

44.9
39.5

41.0
32.9

34.3
65.1

34.4
31.0

62.4
41.5

FLD
A
-L

41.5
45.9

42.0
49.5

48.4
44.1

31.7
34.1

75.6
35.3

33.8
72.6

46.2

FLD
A
-Q

43.5
43.3

40.7
53.5

44.6
45.1

30.8
31.2

73.2
35.2

32.1
75.8

45.7

C
O
R
A
L

45.1
39.5

44.4
52.1

45.9
46.4

37.7
33.8

84.7
35.9

33.7
86.6

48.8

G
raph-transductive

m
ethods

Lab
Prop

13.4
7.6

9.8
9.6

45.9
9.8

9.6
13.4

9.8
9.6

13.4
89.8

20.2

Lab
Spread

41.3
36.3

32.5
53.3

47.8
41.4

36.1
34.2

90.2
36.0

34.2
88.5

47.7

H
arm

onic
Function

41.1
38.9

35.9
52.2

47.1
37.6

30.8
29.3

89.2
32.2

32.7
88.5

46.3

Proposed
m
ethod,G

T
D
A

G
T
D
A

40.2
37.6

32.9
53.8

46.5
35.9

41.3
39.9

92.2
34.6

38.5
89.2

48.5

G
T
D
A

+
LR

40.2
37.6

38.3
52.6

45.9
45.1

39.2
35.4

92.2
41.0

37.1
89.2

49.5

50

3.4. Results

Table 3.4: Comparative analysis on Office-Caltech dataset (ResNet-50 features)

A
→

C
A
→
D

A
→
W

C
→
A

C
→

D
C
→

W
D
→
A

D
→
C

D
→
W

W
→

A
W
→

C
W
→

D
avg

B
aselines

Source
SV

M
91.0

88.5
87.5

94.1
94.9

87.8
90.0

86.1
98.6

89.1
85.9

100.0
91.1

Source
LR

89.9
91.7

88.5
94.5

93.6
85.1

90.1
85.8

98.0
89.7

85.5
100.0

91.0

Shallow
m
odels

SA
89.7

93.0
90.8

94.6
91.1

93.2
89.8

84.1
99.0

88.9
84.3

100.0
91.5

FLD
A
-Q

91.1
93.6

92.2
94.5

94.3
89.5

90.3
86.3

97.6
90.3

83.7
100.0

91.9

C
O
R
A
L

85.9
91.1

89.8
94.3

93.0
93.2

92.8
86.8

98.6
90.9

85.5
100.0

91.8

G
raph-transductive

m
ethods

Lab
Prop

13.4
7.6

9.8
9.6

7.6
9.8

9.6
13.4

9.8
9.6

13.4
100.0

17.8

Lab
Spread

87.1
88.5

95.9
93.4

91.1
84.1

88.0
88.6

99.7
90.1

85.6
100.0

91.0

H
arm

onic
Function

88.6
80.9

85.4
93.5

94.9
89.2

88.1
83.2

99.7
57.4

69.2
100.0

85.8

Proposed
m
ethod,G

T
D
A

G
T
D
A

90.0
87.9

98.0
93.5

91.7
79.7

89.4
89.4

99.3
93.2

88.8
100.0

91.7

G
T
D
A

+
LR

91.5
98.7

94.2
95.4

98.7
89.8

95.2
89.0

99.3
95.2

90.4
100.0

94.8

51

3.4. Results

Office-Caltech 10 dataset

We present the performance on this dataset in Table 3.4 and 3.4 when SURF

and ResNet50 features are used, respectively. In Table 3.4 we see that CORAL

outperforms other shallow DA methods, i.e. FLDA and Source SVM, by

achieving the second best averaged accuracy over all the methods. While we

achieve almost the same performance as CORAL on average (48.8% for CORAL

and 48.5% for GTDA) when we do not use priors. When we get benefit of

the priors (GTDA+LR) we outperform CORAL by 1% in average accuracy

becoming the best one over all methods. We outperform other GT methods

both in averaged accuracy and at majority of the adaptation tasks. In particular,

our best competitor is CORAL, that reaches the top five results among the

shallow models while GTDA with prior outperform six times the shallow ones

becoming the more stable algorithm in this setting.

We see in Table 3.4 that when ResNet50 features are used, the performance

of all methods are improved significantly over the ones obtained when SURF

features were used, except for LP. All shallow DA methods and GTDA (when

not using prior) achieve very similar performance. In particular, while FLDA-Q

and CORAL outperforms GTDA in averaged accuracy when prior was not used

by 0.2% and 0.1%, we see that GTDA reaches the top-3 results while FLDA-Q

and CORAL stay at position 1 and 2, respectively. Following them, baseline

methods and LS achieve a similar performance in averaged accuracy. When we

get benefit from prior we outperform shallow DA methods at every adaptation

task (except C →W), i.e. we reach the best result at eight adaptation tasks,

the second best result at three adaptation tasks and the third best result at

only one adaptation task, and we are the best among both shallow DA and

other GT methods with 94.8% in averaged accuracy with GTDA +LR.

52

3.5. Conclusions

3.5 Conclusions

In this work we have proposed a new algorithm to tackle unsupervised domain

adaptation tasks. The methodology is based on GTG, offering a principled

perspective to the problem. GTDA proposed here has two main advantages:

i) it is completely parameter-free and ii) it allows the direct embedding of

prior knowledge on the target labels to be predicted. The results achieved on

publicly available benchmark datasets demonstrate the validity of the proposed

approach, whose performance is competitive with respect to state-of-the-art

DA techniques with shallow and deep features as well as to other standard

graph-based transductive methods. Furthermore, GTDA reaches comparable

performance as that of known deep-learning UDA methods. As a future work

we plan to extend the comparison with other recent DA techniques using more

real-life datasets. As for the methodology we are interested in investigating

other aspects, like semi-supervised domain adaptation.

Acknowledgement

This work has been partially funded by the Netherlands Organization for

Scientific Research (NWO) within the EW TOP Compartment 1 project

612.001.352.

53

CHAPTER 4

The Group Loss for Deep Metric

Embedding

Abstract Deep metric learning has yielded impressive results in tasks such as

clustering and image retrieval by leveraging neural networks to obtain highly

discriminative feature embeddings, which can be used to group samples into

different classes. Much research has been devoted to the design of smart loss

functions or data mining strategies for training such networks. Most methods

consider only pairs or triplets of samples within a mini-batch to compute the loss

function, which is commonly based on the distance between embeddings. We

proposeGroup Loss, a loss function based on a differentiable label-propagation

method that enforces embedding similarity across all samples of a group while

promoting, at the same time, low-density regions amongst data points belonging

to different groups. Guided by the smoothness assumption that “similar objects

should belong to the same group”, the proposed loss trains the neural network

for a classification task, enforcing a consistent labelling amongst samples within

a class. We show state-of-the-art results on clustering and image retrieval on

several datasets, and show the potential of our method when combined with

other techniques such as ensembles.

54

4.1. Introduction

4.1 Introduction

Measuring object similarity is at the core of many important machine learning

problems like clustering and object retrieval. For visual tasks, this means

learning a distance function over images. With the rise of deep neural networks,

the focus has rather shifted towards learning a feature embedding that is easily

separable using a simple distance function, such as the Euclidean distance. In

essence, objects of the same class (similar) should be close by in the learned

manifold, while objects of a different class (dissimilar) should be far away.

Historically, the best performing approaches got deep feature embeddings

from the so-called siamese networks (Bromley et al. 1994), which are typically

trained using the contrastive loss (Bromley et al. 1994) or the triplet loss

(Schultz and Joachims 2003; Weinberger and Saul 2009). A clear drawback of

these losses is that they only consider pairs or triplets of data points, missing

key information about the relationships between all members of the mini-batch.

On a mini-batch of size n, despite that the number of pairwise relations between

samples is O(n2), contrastive loss uses only O(n/2) pairwise relations, while

triplet loss uses O(2n/3) relations. Additionally, these methods consider only

the relations between objects of the same class (positives) and objects of other

classes (negatives), without making any distinction that negatives belong to

different classes. This leads to not taking into consideration the global structure

of the embedding space, and consequently results in lower clustering and retrieval

performance. To compensate for that, researchers relied on other tricks to train

neural networks for deep metric learning: intelligent sampling (Manmatha et al.

2017), multi-task learning (Zhang et al. 2016) or hard-negative mining (Schroff,

Kalenichenko and Philbin 2015). Recently, researchers have been increasingly

working towards exploiting in a principled way the global structure of the

embedding space (Çakir et al. 2019; He et al. 2018; Revaud et al. 2019; Wang

et al. 2019a), typically by designing ranking loss functions instead of following

55

4.1. Introduction

the classic triplet formulations.

In a similar spirit, we propose Group Loss, a novel loss function for deep

metric learning that considers the similarity between all samples in a mini-batch.

To create the mini-batch, we sample from a fixed number of classes, with samples

coming from a class forming a group. Thus, each mini-batch consists of several

randomly chosen groups, and each group has a fixed number of samples. An

iterative, fully-differentiable label propagation algorithm is then used to build

feature embeddings which are similar for samples belonging to the same group,

and dissimilar otherwise.

At the core of our method lies the iterative process of GTG, called replicator

dynamics (Erdem and Pelillo 2012; Weibull 1997), that refines the local

information, given by the softmax layer of a neural network, with the global

information of the mini-batch given by the similarity between embeddings. The

driving rationale is that the more similar two samples are, the more they affect

each other in choosing their final label and tend to be grouped together in the

same group, while dissimilar samples do not affect each other on their choices.

Neural networks optimized with the Group Loss learn to provide similar features

for samples belonging to the same class, making clustering and image retrieval

easier.

The contributions presented in this chapter are four-fold:

• We propose a novel loss function to train neural networks for deep metric

embedding that takes into account the local information of the samples,

as well as their similarity.

• We propose a differentiable label-propagation iterative model to embed

the similarity computation within backpropagation, allowing end-to-end

training with our new loss function.

• We perform a comprehensive robustness analysis showing the stability of

our module with respect to the choice of hyperparameters.

56

4.2. Related Work

Embedding

Embedding

Embedding
. .

 .
S

um
m

er

Ta
ng

er
W

hi
te

P

el
ic

an
B

la
ck

 fo
ot

ed

A
lb

at
ro

ss
In

di
go

B

un
tin

g
CNN

CNN

CNN

CNN

Shared Weights

Classes
Prior

Group Loss

Similarity

Refinement
Procedure

C.E.
Loss

Shared Weights

Shared Weights

= Anchor

Anchor Positive Negative

CNN CNN CNN

Triplet
Loss

Shared

Weights

Shared

Weights

Embedding

Softmax

Softmax

Softmax

Softmax

2

3

1

CVPR 2020

Figure 4.1: A comparison between a neural model trained with the Group
Loss (left) and the triplet loss (right). Given a mini-batch of images belonging
to different classes, their embeddings are computed through a convolutional
neural network. Such embeddings are then used to generate a similarity matrix
that is fed to the Group Loss along with prior distributions of the images
on the possible classes. The green contours around some mini-batch images
refer to anchors. It is worth noting that, differently from the triplet loss, the
Group Loss considers multiple classes and the pairwise relations between all
the samples. Numbers from 1O to 3O refer to the Group Loss steps, see Sec 4.3
for the details.

• We show state-of-the-art qualitative and quantitative results in several

standard clustering and retrieval datasets.

Our PyTorch (Paszke et al. 2017) code, hyperparameters and the trained

models have been released1.

4.2 Related Work

Classical metric learning losses. The first attempt at using a neural

network for feature embedding was done in the seminal work of Siamese Networks

(Bromley et al. 1994). A cost function called contrastive loss was designed in

such a way as to minimize the distance between pairs of images belonging to

the same cluster, and maximize the distance between pairs of images coming

from different clusters. In (Chopra, Hadsell and LeCun 2005), researchers used

the principle to successfully address the problem of face verification.
1https://github.com/TheRevanchist/group_loss

57

https://github.com/TheRevanchist/group_loss

4.2. Related Work

Another line of research on convex approaches for metric learning led to

the triplet loss(Schultz and Joachims 2003; Weinberger and Saul 2009), which

was later combined with the expressive power of neural networks (Schroff,

Kalenichenko and Philbin 2015). The main difference from the original Siamese

network is that the loss is computed using triplets (an anchor, a positive and a

negative data point). The loss is defined to make the distance between features

of the anchor and the positive sample smaller than the distance between the

anchor and the negative sample. The approach was so successful in the field of

face recognition and clustering, that soon many works followed. The majority

of works on the Siamese architecture consist of finding better cost functions,

resulting in better performances on clustering and retrieval. In (Sohn 2016), the

authors generalized the concept of triplet by allowing a joint comparison among

N − 1 negative examples instead of just one. (Song et al. 2016) designed an

algorithm for taking advantage of the mini-batches during the training process

by lifting the vector of pairwise distances within the batch to the matrix of

pairwise distances, thus enabling the algorithm to learn feature embedding

by optimizing a novel structured prediction objective on the lifted problem.

The work was later extended in (Song et al. 2017), proposing a new metric

learning scheme based on structured prediction that is designed to optimize

a clustering quality metric, i.e., the normalized mutual information (McDaid,

Greene and Hurley 2011). Better results were achieved on (Wang et al. 2017),

where the authors proposed a novel angular loss, which takes angle relationship

into account. A very different problem formulation was given by (Law, Urtasun

and Zemel 2017), where the authors used a spectral clustering-inspired approach

to achieve deep embedding. A recent work presents several extensions of the

triplet loss that reduce the bias in triplet selection by adaptively correcting the

distribution shift on the selected triplets (Yu et al. 2018).

58

4.2. Related Work

Sampling and ensemble methods. Knowing that the number of possible

triplets is extremely large even for moderately-sized datasets, and having found

that the majority of triplets are not informative (Schroff, Kalenichenko and

Philbin 2015), researchers also investigated sampling. In the original triplet

loss paper (Schroff, Kalenichenko and Philbin 2015), it was found that using

semi-hard negative mining, the network can be trained to a good performance,

but the training is computationally inefficient. The work of (Manmatha et al.

2017) found out that while the majority of research is focused on designing

new loss functions, selecting training examples plays an equally important role.

The authors proposed a distance-weighted sampling procedure, which selects

more informative and stable examples than traditional approaches, achieving

excellent results in the process. A similar work was that of (Ge et al. 2018)

where the authors proposed a hierarchical version of triplet loss that learns

the sampling all-together with the feature embedding. The majority of recent

works has been focused on complementary research directions such as intelligent

sampling (Duan et al. 2019; Ge et al. 2018; Manmatha et al. 2017; Wang et al.

2019b; Xu et al. n.d.) or ensemble methods (Kim et al. 2018; Opitz et al. 2017;

Sanakoyeu et al. 2019; Xuan, Souvenir and Pless 2018; Yuan, Yang and Zhang

2017). As we will show in the experimental section, these can be combined with

our novel loss.

Other related problems. In order to have a focused and concise work, we

mostly discuss methods which tackle image ranking/clustering in standard

datasets. Nevertheless, we acknowledge related research on specific applications

such as person re-identification or landmark recognition, where researchers are

also gravitating towards considering the global structure of the mini-batch. In

(He et al. 2018) the authors propose a new hashing method for learning binary

embeddings of data by optimizing Average Precision metric. In (He, Lu and

Sclaroff 2018; Revaud et al. 2019) authors study novel metric learning functions

59

4.3. Group Loss

for local descriptor matching on landmark datasets. (Çakir et al. 2019) designs

a novel ranking loss function for the purpose of few-shot learning. Similar works

that focus on the global structure have shown impressive results in the field of

person re-identification (Alemu, Pelillo and Shah 2019; Zhao, Xu and Cheng

2019).

Classification-based losses. The authors of (Movshovitz-Attias et al. 2017)

proposed to optimize the triplet loss on a different space of triplets than the

original samples, consisting of an anchor data point and similar and dissimilar

learned proxy data points. These proxies approximate the original data points

so that a triplet loss over the proxies is a tight upper bound of the original

loss. The final formulation of the loss is shown to be similar to that of softmax

cross-entropy loss, challenging the long-hold belief that classification losses are

not suitable for the task of metric learning. Recently, the work of (Zhai and

Wu 2019) showed that a carefully tuned normalized softmax cross-entropy loss

function combined with a balanced sampling strategy can achieve competitive

results. A similar line of research is that of (Zheng et al. 2019), where the authors

use a combination of normalized-scale layers and Gram-Schmidt optimization to

achieve efficient usage of the softmax cross-entropy loss for metric learning. The

work of (Qian et al. 2019) goes a step further by taking into consideration the

similarity between classes. Furthermore, the authors use multiple centers for

class, allowing them to reach state-of-the-art results, at a cost of significantly

increasing the number of parameters of the model. In contrast, we propose a

novel loss that achieves state-of-the-art results without increasing the number

of parameters of the model.

4.3 Group Loss

Most loss functions used for deep metric learning (Ge et al. 2018; Law, Urtasun

and Zemel 2017; Manmatha et al. 2017; Schroff, Kalenichenko and Philbin

60

4.3. Group Loss

2015; Sohn 2016; Song et al. 2016; Song et al. 2017; Wang et al. 2017; Wang

et al. 2019a; Wang et al. 2019b) do not use a classification loss function, e.g.,

cross-entropy, but rather a loss function based on embedding distances. The

rationale behind it, is that what matters for a classification network is that

the output is correct, which does not necessarily mean that the embeddings of

samples belonging to the same class are similar. Since each sample is classified

independently, it is entirely possible that two images of the same class have two

distant embeddings that both allow for a correct classification. We argue that

a classification loss can still be used for deep metric learning if the decisions

do not happen independently for each sample, but rather jointly for a whole

group, i.e., the set of images of the same class in a mini-batch. In this way,

the method pushes for images belonging to the same class to have similar

embeddings. Towards this end, we propose Group Loss, an iterative procedure

that uses the global information of the mini-batch to refine the local information

provided by the softmax layer of a neural network. This iterative procedure

categorizes samples into different groups, and enforces consistent labelling among

the samples of a group. While softmax cross-entropy loss judges each sample

in isolation, the Group Loss allows us to judge the overall class separation

for all samples. In section 4.3, we show the differences between the softmax

cross-entropy loss and Group Loss, and highlight the mathematical properties

of our new loss.

Overview of Group Loss

Given a mini-batch B consisting of n images, consider the problem of assigning

a class label λ ∈ Λ = {1, . . . ,m} to each image in B. In the remainder of the

manuscript, X = (xiλ) represents a n × m (non-negative) matrix of image-

label soft assignments. In other words, each row of X represents a probability

distribution over the label set Λ (
∑
λ xiλ = 1 for all i = 1 . . . n).

61

4.3. Group Loss

The proposed model consists of the following steps (see also Fig. 4.1 and

Algorithm 3):

1. Initialization: InitializeX, the image-label assignment using the softmax

outputs of the neural network. Compute the n × n pairwise similarity

matrix W using the neural network embedding.

2. Refinement: Iteratively, refine X considering the similarities between

all the mini-batch images, as encoded in W , as well as their labeling

preferences.

3. Loss computation: Compute the cross-entropy loss of the refined

probabilities and update the weights of the neural network using

backpropagation.

We now provide a more detailed description of the three steps of our method.

Initialization

Image-label assignment matrix The initial assignment matrix denotedX(0),

comes from the softmax outputs of the neural network. We can replace some of

the initial assignments in matrix X with one-hot labelings of those samples. We

call these randomly chosen samples anchors, as their assignments do not change

during the iterative refine process and consequently do not directly affect the

loss function. However, by using their correct label instead of the predicted

label (coming from the softmax output of the NN), they guide the remaining

samples towards their correct label.

Similarity matrix A measure of similarity is computed among all pairs of

embeddings (computed via a CNN) in B to generate a similarity matrix

W ∈ Rn×n. In this work, we compute the similarity measure using the Pearson’s

62

4.3. Group Loss

correlation coefficient (Pearson 1895):

ω(i, j) = Cov[φ(Ii), φ(Ij)]√
Var[φ(Ii)]Var[φ(Ij)]

(4.1)

for i 6= j, and set ω(i, i) to 0. The choice of this measure over other options

such as cosine layer, Gaussian kernels, or learned similarities, is motivated

by the observation that the correlation coefficient uses data standardization,

thus providing invariance to scaling and translation – unlike the cosine

similarity, which is invariant to scaling only – and it does not require additional

hyperparameters, unlike Gaussian kernels (Elezi et al. 2018).

The fact that a measure of the linear relationship among features provides

a good similarity measure can be explained by the fact that the computed

features are actually a highly non-linear function of the inputs. Thus, the linear

correlation among the embeddings actually captures a non-linear relationship

among the original images.

Refinement

In this core step of the proposed algorithm, the initial assignment matrix P (0)

is refined in an iterative manner, taking into account the similarity information

provided by matrix W . P is updated in accordance with the smoothness

assumption, which prescribes that similar objects should share the same label.

To this end, let us define the support matrix Π = (πiλ) ∈ Rn×m as

Π = WP (4.2)

whose (i, λ)-component

πiλ =
n∑
j=1

wijpjλ (4.3)

represents the support that the current mini-batch gives to the hypothesis

that the i-th image in B belongs to class λ. Intuitively, in obedience to the

63

4.3. Group Loss

smoothness principle, πiλ is expected to be high if images similar to i are likely

to belong to class λ.

Given the initial assignment matrix P (0), our algorithm refines it using the

replicator dynamics update rule described in the Introduction:

p
(t+1)
iλ =

p
(t)
iλ π

(t)
iλ∑m

µ=1 p
(t)
iµ π

(t)
iµ

(4.4)

In matrix notation, the update rule (4.4) can be written as:

P (t+1) = [Q(t)]−1
[
P (t) �Π(t)

]
(4.5)

where

Q(t) = diag(
[
P (t) �Π(t)

]
e) (4.6)

and e is the all-one m-dimensional vector. Π(t) = WP (t) as defined in (4.2),

and � denotes the Hadamard (element-wise) matrix product. In other words,

the diagonal elements of Q(t) represent the normalization factors in (4.4), which

can also be interpreted as the average support that object i obtains from the

current mini-batch at iteration t. Figure 4.2 shows a schematization of the

refinement procedure.

Loss computation

Once the labeling assignments converge (or in practice, a maximum number

of iterations is reached), we apply the cross-entropy loss to quantify the

classification error and backpropagate the gradients. Recall, the refinement

procedure is optimized via replicator dynamics, as shown in the previous section.

By studying Equation (4.5), it is straightforward to see that it is composed of

fully differentiable operations (matrix-vector and scalar products), and so it can

be easily integrated within backpropagation. Although the refining procedure

has no parameters to be learned, its gradients can be backpropagated to the

64

4.3. Group Loss

Figure 4.2: A toy example of the refinement procedure, where the goal is to
classify sample C based on the similarity with samples A and B. From left to
right: (1) The Affinity matrix used to update the soft assignments. (2) The
initial labeling of the matrix. (3-4) The process iteratively refines the soft
assignment of the unlabeled sample C. (5) At the end of the process, sample C
gets the same label of A, (A, C) being more similar than (B, C).

previous layers of the neural network, producing, in turn, better embeddings

for similarity computation.

Summary of the Group Loss

In this section, we proposed the Group Loss function for deep metric learning.

During training, the Group Loss works by grouping together similar samples

based on both the similarity between the samples in the mini-batch and the local

information of the samples. The similarity between samples is computed by

the correlation between the embeddings obtained from a CNN, while the local

information is computed with a softmax layer on the same CNN embeddings.

Using an iterative procedure, we combine both sources of information and

effectively bring together embeddings of samples that belong to the same class.

During inference, we simply forward pass the images through the neural

network to compute their embeddings, which are directly used for image retrieval

within a nearest neighbor search scheme. The iterative procedure is not used

65

4.4. Experiments

Algorithm 3 The Group Loss
Require: Set of pre-processed images in the mini-batch B, set of labels y,
neural network φ with learnable parameters θ, similarity function ω, number of
iterations T
1: Compute feature embeddings φ(B, θ) via the forward pass
2: Compute the similarity matrix W = [ω(i, j)]ij
3: Initialize the matrix of priors X(0) from the softmax layer
4: for t = 0, . . . , T-1 do
5: Q(t) = diag(

[
P (t) �Π(t)] e)

6: P (t+1) = [Q(t)]−1 [P (t) �Π(t)]
7: Compute the cross-entropy J(P (T), y)
8: Compute the derivatives ∂J/∂θ via backpropagation, and update the

parameters θ

during inference, thus making the feature extraction as fast as that of any other

competing method.

4.4 Experiments

In this section, we compare the Group Loss with state-of-the-art deep metric

learning models on both image retrieval and clustering tasks. Our method

achieves state-of-the-art results in three public benchmark datasets.

Implementation details

We used the PyTorch (Paszke et al. 2017) library for the implementation

of the Group Loss. We chose GoogleNet (Szegedy et al. 2015) with batch-

normalization (Ioffe and Szegedy 2015) as the backbone feature extraction

network. We pretrain the network on ILSVRC 2012-CLS dataset (Russakovsky

et al. 2014). For pre-processing, in order to get a fair comparison, we followed

the implementation details of (Song et al. 2017). The inputs are resized to

256× 256 pixels, and then randomly cropped to 227× 227. Like other methods

except for (Sohn 2016), we used only a center crop during testing time. We

trained all networks in the classification task for 10 epochs. We then trained the

network in the Group Loss task for 60 epochs using Adam optimizer (Kingma

66

4.4. Experiments

and Ba 2014b). After 30 epochs, we lowered the learning rate by multiplying

it by 0.1. We found the hyperparameters using random search (Bergstra and

Bengio 2012). We used small mini-batches of size 30 − 100. As sampling

strategy, on each mini-batch, we first randomly sampled a fixed number of

classes, and then for each of the chosen classes, we sampled a fixed number

of samples. We first pre-trained all networks in the classification task for 10

epochs. We then trained our networks on all three datasets for 60 epochs.

During training, we used a simple learning rate scheduling in which we divided

the learning rate by 10 after the first 30 epochs. We found all hyperparameters

using random search (Bergstra and Bengio 2012). For the weight decay (L2-

regularization) parameter, we searched over the interval [0.1, 10−16], while for

the learning rate we searched over the interval [0.1, 10−5], choosing 0.0002 as

the learning rate for all networks and all datasets. We achieved the best results

with a regularization parameter set to 10−6 for CUB-200-2011, 10−7 for Cars

196 dataset, and 10−12 for Stanford Online Products dataset. This further

strengthens our intuition that the method is implicitly regularized and it does

not require strong regularization.

Benchmark datasets

We performed experiments on 3 publicly available datasets, evaluating our

algorithm on both clustering and retrieval metrics. For training and testing, we

followed the conventional splitting procedure (Song et al. 2016).

CUB-200-2011 (Wah et al. 2011) is a dataset containing 200 species of

birds with 11, 788 images, where the first 100 species (5, 864 images) are used

for training and the remaining 100 species (5, 924 images) are used for testing.

Cars 196 (Krause et al. 2013) dataset is composed of 16, 185 images

belonging to 196 classes. We used the first 98 classes (8, 054 images) for

training and the other 98 classes (8, 131 images) for testing.

67

4.4. Experiments

Query Rank 1 Rank 2 Rank 3 Rank 4Retrieval Query Rank 1 Rank 2 Rank 3 Rank 4Retrieval Query Retrieval

Figure 4.3: Retrieval results on a set of images from the CUB-200-2011 (left),
Cars 196 (middle), and Stanford Online Products (right) datasets using our
Group Loss model. The left column contains query images. The results are
ranked by distance. The green square indicates that the retrieved image is
from the same class as the query image, while the red box indicates that the
retrieved image is from a different class.

Stanford Online Products dataset, as introduced in (Song et al. 2016),

contains 22, 634 classes with 120, 053 product images in total, where 11, 318

classes (59, 551 images) are used for training and the remaining 11, 316 classes

(60, 502 images) are used for testing.

Evaluation metrics

Based on the experimental protocol detailed above, we evaluated retrieval

performance and clustering quality on data from unseen classes of the 3

aforementioned datasets. For the retrieval task, we calculated the percentage of

the testing examples whose K nearest neighbors contain at least one example

of the same class. This quantity is also known as Recall@K (Jégou, Douze and

Schmid 2011) and is the most used metric for image retrieval evaluation.

Similar to all other approaches, we performed clustering using the K-means

algorithm (MacQueen 1967) on the embedded features. Like in other works,

we evaluated the clustering quality using the Normalized Mutual Information

measure (NMI) (McDaid, Greene and Hurley 2011). The choice of NMI measure

is motivated by the fact that it is invariant to label permutation, a desirable

property for cluster evaluation.

68

4.4. Experiments

Results

We now show the results of our model and comparison to state-of-the-art

methods. Our main comparison is with other loss functions, e.g., triplet loss.

To compare with perpendicular research on intelligent sampling strategies or

ensembles, and show the power of the Group Loss, we propose a simple ensemble

version of our method. Our ensemble network is built by training l independent

neural networks with the same hyperparameter configuration. During inference,

their embeddings are concatenated. Note, that this type of ensemble is much

simpler than the works of (Kim et al. 2018; Opitz et al. 2018; Sanakoyeu et al.

2019; Xuan, Souvenir and Pless 2018; Yuan, Yang and Zhang 2017), and is

given only to show that, when optimized for performance, our method can

be extended to ensembles giving higher clustering and retrieval performance

than other methods in the literature. Finally, in the interest of space, we

only present results for Inception network (Szegedy et al. 2015), as this is

the most popular backbone for the metric learning task, which enables fair

comparison among methods. In supplementary material, we present results

for other backbones, and include a discussion about the methods that work

by increasing the number of parameters (capacity of the network) (Qian et al.

2019), or use more expressive network architectures.

Quantitative results

Loss comparison. In Table 4.1 we present the results of our method and

compare them with the results of other approaches. On the CUB-200-2011

dataset, we outperform the other approaches by a large margin, with the second-

best model (Classification (Zhai and Wu 2019)) having circa 5 percentage

points(pp) lower absolute accuracy in Recall@1 metric. On the NMI metric,

our method achieves a score of 67.9 which is 1.7pp higher than the second-

69

4.4. Experiments

CUB-200-2011 CARS 196 Stanford Online Products
Loss R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 NMI
Triplet (Schroff, Kalenichenko and Philbin 2015) 42.5 55 66.4 77.2 55.3 51.5 63.8 73.5 82.4 53.4 66.7 82.4 91.9 89.5
Lifted Structure (Song et al. 2016) 43.5 56.5 68.5 79.6 56.5 53.0 65.7 76.0 84.3 56.9 62.5 80.8 91.9 88.7
Npairs (Sohn 2016) 51.9 64.3 74.9 83.2 60.2 68.9 78.9 85.8 90.9 62.7 66.4 82.9 92.1 87.9
Facility Location (Song et al. 2017) 48.1 61.4 71.8 81.9 59.2 58.1 70.6 80.3 87.8 59.0 67.0 83.7 93.2 89.5
Angular Loss (Wang et al. 2017) 54.7 66.3 76 83.9 61.1 71.4 81.4 87.5 92.1 63.2 70.9 85.0 93.5 88.6
Proxy-NCA (Movshovitz-Attias et al. 2017) 49.2 61.9 67.9 72.4 59.5 73.2 82.4 86.4 88.7 64.9 73.7 - - 90.6
Deep Spectral (Law, Urtasun and Zemel 2017) 53.2 66.1 76.7 85.2 59.2 73.1 82.2 89.0 93.0 64.3 67.6 83.7 93.3 89.4
Classification (Zhai and Wu 2019) 59.6 72 81.2 88.4 66.2 81.7 88.9 93.4 96 70.5 73.8 88.1 95 89.8
Bias Triplet (Yu et al. 2018) 46.6 58.6 70.0 - - 79.2 86.7 91.4 - - 63.0 79.8 90.7 -
Ours 64.3 75.8 84.1 90.5 67.9 83.7 89.9 93.7 96.3 70.7 75.1 87.5 94.2 90.8

Table 4.1: Retrieval and Clustering performance on CUB-200-2011, CARS 196
and Stanford Online Products datasets. Bold indicates best results.

best method. Similarly, on Cars 196, our method achieves best results on

Recall@1, with Classification (Zhai and Wu 2019) coming second with a 2pp

lower score. On Stanford Online Products, our method reaches the best results

on the Recall@1 metric, around 1.5pp higher than Classification (Zhai and Wu

2019) and Proxy-NCA (Movshovitz-Attias et al. 2017). On the same dataset,

when evaluated on the NMI score, our loss outperforms any other method, be

those methods that exploit advanced sampling, or ensemble methods.

Loss with ensembles. In Table 4.2 we present the results of our ensemble,

and compare them with the results of other ensemble and sampling approaches.

Our ensemble method (using 5 neural networks) is the highest performing

model in CUB-200-2011, outperforming the second-best method (Divide and

Conquer (Sanakoyeu et al. 2019)) by 1pp in Recall@1 and by 0.4pp in NMI. In

Cars 196 our method outperforms the second best method (ABE 8 (Kim et al.

2018)) by 2.8pp in Recall@1. The second best method in NMI metric is the

ensemble version of RLL (Wang et al. 2019a) which gets outperformed by 2.4pp

from the Group Loss. In Stanford Online Products, our ensemble reaches the

third-highest result on the Recall@1 metric (after RLL (Wang et al. 2019a) and

GPW (Wang et al. 2019b)) while increasing the gap with the other methods in

NMI metric.

Comparison with the SoftTriple loss The work of (Qian et al. 2019))

explores another type of classification loss for the problem of metric learning.

70

4.4. Experiments

CUB-200-2011 CARS 196 Stanford Online Products
Loss+Sampling R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 NMI
Samp. Matt. (Manmatha et al. 2017) 63.6 74.4 83.1 90.0 69.0 79.6 86.5 91.9 95.1 69.1 72.7 86.2 93.8 90.7
Hier. triplet (Ge et al. 2018) 57.1 68.8 78.7 86.5 - 81.4 88.0 92.7 95.7 - 74.8 88.3 94.8 -
DAMLRRM (Xu et al. n.d.) 55.1 66.5 76.8 85.3 61.7 73.5 82.6 89.1 93.5 64.2 69.7 85.2 93.2 88.2
DE-DSP (Duan et al. 2019) 53.6 65.5 76.9 61.7 - 72.9 81.6 88.8 - 64.4 68.9 84.0 92.6 89.2
RLL 1 (Wang et al. 2019a) 57.4 69.7 79.2 86.9 63.6 74 83.6 90.1 94.1 65.4 76.1 89.1 95.4 89.7
GPW (Wang et al. 2019b) 65.7 77.0 86.3 91.2 - 84.1 90.4 94.0 96.5 - 78.2 90.5 96.0 -
Teacher-Student
RKD (Park et al. 2019) 61.4 73.0 81.9 89.0 - 82.3 89.8 94.2 96.6 - 75.1 88.3 95.2 -
Loss+Ensembles
BIER 6 (Opitz et al. 2017) 55.3 67.2 76.9 85.1 - 75.0 83.9 90.3 94.3 - 72.7 86.5 94.0 -
HDC 3 (Yuan, Yang and Zhang 2017) 54.6 66.8 77.6 85.9 - 78.0 85.8 91.1 95.1 - 70.1 84.9 93.2 -
ABE 2 (Kim et al. 2018) 55.7 67.9 78.3 85.5 - 76.8 84.9 90.2 94.0 - 75.4 88.0 94.7 -
ABE 8 (Kim et al. 2018) 60.6 71.5 79.8 87.4 - 85.2 90.5 94.0 96.1 - 76.3 88.4 94.8 -
A-BIER 6 (Opitz et al. 2018) 57.5 68.7 78.3 86.2 - 82.0 89.0 93.2 96.1 - 74.2 86.9 94.0 -
D and C 8 (Sanakoyeu et al. 2019) 65.9 76.6 84.4 90.6 69.6 84.6 90.7 94.1 96.5 70.3 75.9 88.4 94.9 90.2
RLL 3 (Wang et al. 2019a) 61.3 72.7 82.7 89.4 66.1 82.1 89.3 93.7 96.7 71.8 79.8 91.3 96.3 90.4
Ours 2-ensemble 65.8 76.7 85.2 91.2 68.5 86.2 91.6 95.0 97.1 91.1 75.9 88.0 94.5 72.6
Ours 5-ensemble 66.9 77.1 85.4 91.5 70.0 88.0 92.5 95.7 97.5 74.2 76.3 88.3 94.6 91.1

Table 4.2: Retrieval and Clustering performance of our ensemble compared
with other ensemble and sampling methods. Bold indicates best results.

The main difference between our method and theirs is that our method checks

the similarity between samples, and then refines the predicted probabilities (via

a dynamical system) based on that information. SoftTriple loss instead deals

with the intra-class variability, but does not explicitly take into account the

similarity between the samples in the mini-batch. They propose to add a new

layer with 10 units per class.

We compared the results of (Qian et al. 2019) with our method in Tab. 4.3.

SoftTriple loss reaches a higher result than our method in all three datasets in

Recall@1 metric, and higher results than the Group Loss on the CUB-200-2011

and Stanford Online Products datasets in NMI metric. However, this comes at

a cost of significantly increasing the number of parameters. On the Stanford

Online Products dataset in particular, the number of parameters of SoftTriple

loss is 68.7 million. In comparison, we (and the other methods we compared

the results with) used only 16.6 million parameters. In effect, their increase in

performance comes at the cost of using a neural network which is four times

larger as ours, making results not directly comparable. Furthermore, using

multiple centres is crucial for the performance of SoftTriple loss. Fig. 4 in the

work of (Qian et al. 2019) shows that when only 1 centre per class is used, the

performance drops by 3pp, effectively making SoftTriple loss perform worse

than the Group Loss by 2pp.

71

4.4. Experiments

We further used the official code implementation to train their model using

only one center on the CARS 196 dataset, reaching 83.1 score in Recall@1, and

70.1 score in NMI metric, with each score being 0.6pp lower than the score of

The Group Loss. Essentially, when using the same backbone, SoftTriple loss

reaches lower results than our method.

As we have shown in the previous section, increasing the number of

parameters improves the performances of the network, but it is not a property

of the loss function. In fact, a similarly sized network to theirs (Densenet 169)

consistently outperforms SoftTriple loss, as can be seen in Tab. 4.3.

Qualitative results In Fig. 4.3 we present qualitative results on the retrieval

task in all three datasets. In all cases, the query image is given on the left,

with the four nearest neighbors given on the right. Green boxes indicate the

cases where the retrieved image is of the same class as the query image, and red

boxes indicate a different class. As we can see, our model is able to perform well

even in cases where the images suffer from occlusion and rotation. On the Cars

196 dataset, we see a successful retrieval even when the query image is taken

indoors and the retrieved image outdoors, and vice-versa. The first example

of Cars 196 dataset is of particular interest. Despite the fact that the query

image contains 2 cars, all four nearest neighbors which have been retrieved have

the same class as the query image, showing the robustness of the algorithm to

uncommon input image configurations.

Fig. 4.4 visualizes the t-distributed Stochastic Neighbor Embedding (t-SNE)

(Maaten and Hinton 2012) of the embedding vectors obtained by our method

on the CUB-200-2011 (Wah et al. 2011) dataset. The plot is best viewed on a

high-resolution monitor when zoomed in. We highlight several representative

groups by enlarging the corresponding regions in the corners. Despite the large

pose and appearance variation, our method efficiently generates a compact

feature mapping that preserves semantic similarity.

72

4.4. Experiments

Figure 4.4: t-SNE (Maaten and Hinton 2012) visualization of our embedding
on the CUB-200-2011 dataset, with some clusters highlighted. Best viewed on
a monitor when zoomed in.

73

4.4. Experiments

5 6 7 8 9 10
Elements per class

0

1

2

3

4

An
ch

or
s

-1.90 -2.00 -1.10 -1.20 -0.80 -0.90

-1.10 -1.50 -0.80 -0.10 0.00 -0.30

-1.20 -1.20 -1.40 -0.50 0.00 -0.10

-0.90 -1.30 -0.90 -0.80 -0.60 -0.40

-1.50 -0.70 -0.80 -0.20 -0.10 -0.20

Relative difference w.r.t. Best Recall@1

Figure 4.5: The effect of the number of anchors and the number of samples per
class, for the CUB-200-2011 (left) and CARS (right) datasets

Robustness analysis

Number of anchors. In Figure 4.5, we show the effect of the number of

anchors with respect to the number of samples per class, by performing a grid

search over the total number of elements per class versus the number of anchors.

We did the analysis on CUB-200-2011 and CARS datasets. The results reported

are the percentage point differences in terms of Recall@1 with respect to the

best performing set of parameters (see Recall@1 = 64.3 in Tab. 4.1). The

number of anchors ranges from 0 to 4, while the number of samples per class

varies from 5 to 10. It is worth noting that our best setting considers 1 or 2

anchors over 9 samples. Moreover, even when we do not use any anchor, the

difference in Recall@1 is no far than 2-2.1 percentage points far. Note that the

results decrease mainly when we do not have any labeled sample, i.e. when we

use zero anchors.

Number of classes per mini-batch. In Fig. 4.6, we present the change

in Recall@1 on the CUB-200-2011 dataset if we increase the number of classes

we sample at each iteration. The best results are reached when the number of

classes is not too large. This is a welcome property, as we are able to train on

small mini-batches, known to achieve better generalization performance (Keskar

et al. 2017).

74

4.4. Experiments

5 10 15 20 25
Number of classes per batch

65

70

75

80

85

90

Re
ca
ll

Effect of the number of classes per batch

Recall@1
Recall@2

Recall@4
Recall@8

Figure 4.6: The effect of the number of
classes per mini-batch.

Figure 4.7: Recall@1 as a function
of training epochs on Cars196 data-
set. Figure adapted from (Movshovitz-
Attias et al. 2017).

Convergence rate. In Fig. 4.7, we present the convergence rate of the

model on the Cars 196 dataset. Within the first 30 epochs, our model achieves

state-of-the-art results, making it significantly faster than other approaches.

Note, that other models, with the exception of Proxy-NCA (Movshovitz-Attias

et al. 2017), need hundreds of epochs to converge. Additionally, we compare

the training time with Proxy-NCA (Movshovitz-Attias et al. 2017). On a single

Volta V100 GPU, the average running time of our method per epoch is 23.59

seconds on CUB-200-2011 and 39.35 seconds on Cars 196, compared to 27.43

and 42.56 of Proxy-NCA (Movshovitz-Attias et al. 2017). Hence, our method

is faster than one of the fastest methods in the literature. Note, the inference

time of every method is the same because the network is used only for feature

embedding extraction during inference.

Implicit regularization and less overfitting. In Figures 4.8 and 4.9,

we compare the results of training vs. testing on Cars 196 and Stanford Online

Products datasets. We see that the difference between Recall@1 at train and test

time is small, especially on Stanford Online Products dataset. On Cars 196 the

best results we get for the training set are circa 93% in the Recall@1 measure,

only 9 percentage points (pp) better than what we reach in the testing set.

75

4.4. Experiments

0 10 20 30 40 50 60
Number of epochs

20

30

40

50

60

70

80

90

100
Re

ca
ll@

1
CARS 196

Train Group Loss
Test Group Loss
Train P-NCA
Test P-NCA
Train DSC
Test DSC

Figure 4.8: Training vs testing Re-
call@1 curves on Cars 196 dataset.

0 10 20 30 40 50 60
Number of epochs

50

60

70

80

90

Re
ca

ll@
1

Stanford Online Products

Train Group Loss
Test Group Loss
Train DSC
Test DSC

Figure 4.9: Training vs testing Re-
call@1 curves on Stanford Online
Products dataset.

From the works we compared the results with, the only one which reports the

results on the training set is Deep Spectral Clustering Learning (Law, Urtasun

and Zemel 2017). They reported results of over 90% in all metrics for all three

datasets (for the training sets), much above the test set accuracy which lies

at 73.1% on Cars 196 and 67.6% on Stanford Online Products dataset. This

clearly shows that our method is much less prone to overfitting.

We further implemented the P-NCA (Movshovitz-Attias et al. 2017) loss

function and performed a similar experiment, in order to be able to compare

training and test accuracies directly with our method. In Figure 4.8, we show

the training and testing curves of P-NCA on the Cars 196 dataset. We see

that while in the training set, P-NCA reaches results of 3pp higher than our

method, in the testing set, our method outperforms P-NCA by around 10pp.

Unfortunately, we were unable to reproduce the results of the paper on Stanford

Online Products dataset.

Furthermore, even when we turn off L2-regularization, the generalization

performance of our method does not drop at all. Our intuition is that by taking

into account the structure of the entire manifold of the dataset, our method

introduces a form of regularization. We can clearly see a smaller gap between

training and test results when compared to competing methods, indicating less

76

4.4. Experiments

overfitting. We plan to further investigate this phenomenon in future work.

Additional ablation studies

Temperature scaling We mentioned that as input to the Group Loss (step

3 of the algorithm) we initialize the matrix of priors X(0) from the softmax

layer of the neural network. Following the works of (Berthelot et al. 2019; Guo

et al. 2017; Zhai and Wu 2019), we applied a sharpening function to reduce

the entropy of the softmax distribution. We used the common approach of

adjusting the temperature of this categorical distribution, known as temperature

scaling. Intuitively, this procedure calibrates our network and in turn, provides

more informative prior to the dynamical system. Additionally, this calibration

allows the dynamical system to be more effective in adjusting the predictions,

i.e, it is easier to change the probability of a class if its initial value is 0.6 rather

than 0.95. The function is implemented using the following equation:

Tsoftmax(zi) = ezi/T∑
i e
zi/T

, (4.7)

which can be efficiently implemented by simply dividing the prediction logits

by a constant T .

Recent works in supervised learning (Guo et al. 2017) and semi-supervised

learning (Berthelot et al. 2019) have found that temperature calibration improves

the accuracy for the image classification task. We arrive at similar conclusions

for the task of metric learning, obtaining 2.5pp better Recall@1 scores on CUB-

200-2011 and 2pp better scores on Cars 196. Note, the methods of Table 4.1

that use a classification loss, use also temperature scaling.

Dealing with negative similarities Equation (4.2) assumes that the matrix

of similarity is non-negative. However, for similarity computation, we used a

correlation metric (see Equation (4.1)) which produces values in the range [−1, 1].

77

4.4. Experiments

In similar situations, different authors proposed different methods to deal with

the negative outputs. The most common approach is to shift the matrix of

similarity towards the positive regime by subtracting the biggest negative value

from every entry in the matrix (Erdem and Pelillo 2012). Nonetheless, this shift

has a side effect: If a sample of class k1 has very low similarities to the elements

of a large group of samples of class k2, these similarity values (which after being

shifted are all positive) will be summed up. If the cardinality of class k2 is

very large, then summing up all these small values lead to a large value, and

consequently affect the solution of the algorithm. What we want instead, is to

ignore these negative similarities, hence we proposed clamping. More concretely,

we used a ReLU activation function over the output of Equation (4.1).

We compared the results of shifting vs clamping. On the CARS 196 dataset,

we did not see a significant difference between the two approaches. However,

on the CUBS-200-2011 dataset, the Recall@1 metric is 51 with shifting, much

below the 64.3 obtained when using clamping. We investigated the matrix of

similarities for the two datasets, and we saw that the number of entries with

negative values for the CUBS-200-2011 dataset was higher than for the CARS

196 dataset. This explains the difference in behavior, and also verifies our

hypothesis that clamping is a better strategy to use within Group Loss.

Comparison with other backbones In the main paper, we performed all

experiments using a GoogleNet backbone with batch normalization. This

choice is motivated by the fact that most methods use this backbone, making

comparisons fair. In this section, we explore the performance of our method

for other backbone architectures, to show the generality of our proposed loss

formulation. We chose to train a few networks from Densenet family (Huang

et al. 2017). Densenets are a modern CNN architecture which show similar

classification accuracy to GoogleNet in most tasks (so they are a similarly strong

78

4.4. Experiments

Model CUB CARS SOP
Params R@1 NMI Params R@1 NMI Params R@1 NMI

GL Densenet121 7056356 65.5 69.4 7054306 88.1 74.2 18554806 78.2 91.5
GL Densenet161 26692900 64.7 68.7 26688482 88.7 74.6 51473462 80.3 92.3
GL Densenet169 12650980 65.4 69.5 12647650 88.4 75.2 31328950 79.4 92.0
GL Densenet201 18285028 63.7 68.4 18281186 88.6 75.8 39834806 79.8 92.1
GL Inception v2 10845216 64.3 67.9 10846240 83.7 70.7 16589856 75.1 90.8
SofTriple 10 11307040 65.4 69.3 11296800 84.5 70.1 68743200 78.3 92

Table 4.3: The results of Group Loss in Densenet backbones and comparisons
with SoftTriple loss (Qian et al. 2019)

classification baseline 2). Furthermore, by training multiple networks of the

same family, we can study the effect of the capacity of the network, i.e., how

much can we gain from using a larger network? Finally, we were interested in

studying if the choice of hyperparameters can be transferred from one backbone

to another.

We present the results of our method using Densenet backbones in Tab.

4.3. We used the same hyperparameters as the ones used for the GoogleNet

experiments, reaching state-of-the-art results on both CARS 196 and Stanford

Online Products datasets, even compared to ensemble and sampling methods.

The results in Stanford Online Products are particularly impressive considering

that this is the first time any method in the literature has broken the 80 point

barrier in Recall@1 metric. We also reach state-of-the-art results on the CUB-

200-2011 dataset when we consider only methods that do not use ensembles

(with the Group Loss ensemble reaching the highest results in this dataset).

We observe a clear trend when increasing the number of parameters (weights),

with the best results on both CARS 196 and Stanford Online Products datasets

being achieved by the largest network, Densenet161 (whom has a lower number

of convolutional layers than Densenet169 and Densenet201, but it has a higher

number of weights/parameters).

Finally, we studied the effects of hyperparameter optimization. Despite that
2The classification accuracy of different backbones can be found in the following link:

https://pytorch.org/docs/stable/torchvision/models.html. BN-Inception’s top 1/top 5 error is
7.8%/25.2%, very similar to those of Densenet121 (7.8%/25.4%).

79

https://pytorch.org/docs/stable/torchvision/models.html

4.4. Experiments

the networks reached state-of-the-art results even without any hyperparameter

tuning, we expected a minimum amount of hyperparameters tuning to help. To

this end, we used random search (Bergstra and Bengio 2012) to optimize the

hyperparameters of our best network on the CARS 196 dataset. We reach a

90.7 score (2pp higher score than the network with default hyperparameters)

in Recall@1, and 77.6 score (3pp higher score than the network with default

hyperparameters) in NMI metric, showing that individual hyperparameter

optimization can boost the performance. The score of 90.7 in Recall@1 is not

only by far the highest score ever achieved, but also the first time any method

has broken the 90 point barrier in Recall@1 metric when evaluated on the

CARS 196 dataset.

Alternative loss formulation We have formulated the loss as an iterative

dynamical system, followed by the cross-entropy loss function. In this way,

we encourage the network to predict the same label for samples coming from

the same class. One might argue that this is not necessarily the best loss for

metric learning, in the end, we are interested in bringing similar samples closer

together in the embedding space, without the need of having them classified

correctly. Even though several works have shown that a classification loss can

be used for metric learning (Movshovitz-Attias et al. 2017; Qian et al. 2019;

Zhai and Wu 2019), we tested whether this is also the best formulation for our

loss function.

We therefore experimented with a different loss function which encourages

the network to produce similar label distributions (soft labels) for the samples

coming from the same class. We first defined the Kullback-Leibler divergence

for two distributions P and Q as:

DKL(P ||Q) =
∑
x∈X

P (x)logP (x)
Q(x) . (4.8)

80

4.5. Conclusions and Future Work

We then minimized the divergence between the predicted probability (after

the iterative procedure) of samples coming from the same class. Unfortunately,

this loss formulation resulted in lower performances on both CUB-200-2011

(3pp) and Cars 196 (1.5pp).

4.5 Conclusions and Future Work

In this work, we proposed the Group Loss, a new loss function for deep metric

learning that goes beyond triplets. By considering the content of a mini-batch,

it promotes embedding similarity across all samples of the same class, while

enforcing dissimilarity for elements of different classes. This is achieved with a

fully-differentiable layer that is used to train a convolutional network in an end-

to-end fashion. We showed that our model outperforms state-of-the-art methods

on several datasets, and at the same time shows fast convergence. In our work,

we did not consider any advanced and intelligent sampling strategy. Instead,

we randomly sampled objects from a few classes at each iteration. Sampling

has shown to have a very important role in feature embedding (Manmatha

et al. 2017), therefore, we will explore in future work sampling techniques which

can be suitable for our module. Additionally, we are going to investigate the

applicability of Group Loss to other problems, such as person re-identification,

landmark matching and deep semi-supervised learning.

Acknowledgements. This research was partially funded by the Humboldt

Foundation through the Sofja Kovalevskaja Award. We thank Michele Fenzi, Maxim

Maximov and Guillem Braso Andilla for useful discussions.

81

CHAPTER 5

Relaxation Labeling Processes for

Semantic Segmentation

Abstract In the following, we address the problem of semantic segmentation, by

adapting two different but tightly related methodologies for learning the compatibilities

of a Relaxation Labeling process. First, we introduce the concepts of context and

neighborhood that make our learning framework simple and efficient. We then describe

the methodology presented in (Pelillo and Refice 1994) to learn the compatibilities

in a Relaxation Labeling process, showing that the learning algorithm is equivalent

to a constrained version of the backpropagation method. We later introduce the

second methodology, whose aim is to learn compatibilities consistent with the ground

truth provided by a dataset. The method involves the solving of a system of linear

inequalities, which is assessed through the Eremin method, explained below. Following

this, we propose a convolutional ReLab interpretation to efficiently work with image-

structured predictions, and exploit the inductive biases of such type of data. Finally,

we present some preliminary experiments and qualitative visualizations on noise

reduction and semantic segmentation tasks, adopting the two learning algorithms

with the convolutional form. The experimental results proposed in this chapter are

preliminary and represent a proof of concept of the validity of our method.

82

5.1. Introduction

5.1 Introduction

In Semantic Segmentation task, it is not uncommon to refine the final probabilities

coming from Deep Neural network architecture, with a refinement method, such as

the DenseCRF (Krähenbühl and Koltun 2011). Historically, Relaxation Labeling was

developed and applied to semantic segmentation problems (under different names, e.g.

pixel labeling, pixel classification and image labeling). The ReLab process has been

shown to be interpretable and this helps in understanding and tuning the process for

specific semantic segmentation tasks. Furthermore, differently, from the Conditional

Random Field, who aim to find a global minimum, ReLab searches for a local critical

point around the (hopefully) good initial label assignment matrix. Motivated by these

facts, in this chapter, we investigate the use of ReLab as a refiner of DNN for semantic

segmentation.

The standard ReLab formulation assumes to have access to a set of compatibilities,

or at least to a hand-crafted compatibility formula. Such solutions however may not be

available or make too simplistic assumptions on the nature of the observations and their

interactions. Furthermore, the compatibility matrix R contains n2m2 non-negative

elements. This can be a major drawback when dealing with current real-world datasets,

that typically have a large number of observations. In addition, due to the transductive

nature of ReLab, the change of testing observation requires the computation of R

again. This chapter propose to solve these problems in two ways: (a) through the

learning of a set of compatibilities, based on a dataset of observations, (b) through

the application of locality and parameter sharing approaches, already explained in the

context of the convolution operator (cf. Section 1). In the following we address the

need of such properties by introducing the concepts of context and neighborhood,

and then explain how to cast our framework in a convolutive way to apply ReLab

on image-like structures. Later we introduce two methodologies for automatically

learning compatibilities, and adapt them to work for semantic-segmentation tasks.

In particular, the first methodology describes a learning framework to learn

compatibilities in a heteroassociative way (Hertz, Krogh and Palmer 1991), from

the prior knowledge generated by a dataset of labeled observations, through a

loss minimization approach. We show that the learning method is analogous to

83

5.2. Simplifying the compatibility matrix

a constrained-backpropagation approach that can be applied in an end-to-end fashion

with the learning of a DNN model parameter set. The second method instead learns

compatibilities that are consistent according to the ground truth coming from a

dataset, in an autoassociative way (Pelillo and Fanelli 1997), thus not requiring the

input data. This approach directly enforces the consistency property by solving the

system of linear inequalities associated to its definition, with the help of solving

algorithm developed by (Eremin 1962).

5.2 Simplifying the compatibility matrix

First of all, we start our discussion by simplifying the interactions among the

sets of objects involved in the ReLab process. Recall from the Introduction the

ReLab framework as presented in (Pelillo 1997): in short, we have a set of objects

B = {b1, . . . , bn}, a set of labels Λ = {1, . . . ,m}, an assignment matrix p ∈ ∆n×m,

and finally, a set of compatibility coefficients, called R ∈ Rnm×nm≥0 , is defined to

encode the pairwise compatibility between labeling hypotheses. (Pelillo and Refice

1994) assume a different setting, where the objects are grouped in subsets, that we

will call contexts. Only the objects within each context interact together. Consider,

for example, a dataset for NLP tasks, with sentences as contexts and single words as

objects, or a dataset for semantic segmentation tasks, with images as contexts and

pixels as objects. In such cases, we can further assume that each object in its context

interacts with a further, smaller subset of neighboring objects, such as “previous/next

words”, or “4/8-connected pixels”. We will call such subsets neighborhoods. Given

these two definitions, we can assume that different contexts behave in the same way

and share the same compatibilities among objects. The source of diversity is then

demanded to the neighborhood relations between objects, thus resulting in a set of

m×m submatrices, one for each neighborhood. The resulting compatibility matrix R

has now size |N | ×m×m, with N being the set of neighborhoods. The computation

of the support in Equation (1.9) can be simplified to:

q
(t)
iλ =

∑
ν∈N

m∑
µ=1

rνλµp
(t)
i+ν,µ (5.1)

84

5.2. Simplifying the compatibility matrix

0,0 0,1

1,11,0

h

w

-1,-1 -1,0

0,0

-1,1

0,-1 0,1

1,11,01,-1

h

w

-1,-1 -1,0

0,0

-1,1

0,-1 0,1

1,11,01,-1

h

w

-1,-1 -1,0

0,0

-1,1

0,-1 0,1

1,11,01,-1

h

w

p(t) q(t)i

j

i

j

λ

Figure 5.1: ReLab can be thought as a convolutional layer, where the input p(t)

is convolved by R, to obtain q(t), and then the update rule is applied to obtain
p(t+1).

Note that – from the previous discussion – the concept of neighborhood is somehow

related to that of context. In principle, one can think of a context as a neighborhood

where its objects are all interconnected between each other. The neighborhood,

introduces however the weight sharing property, allowing for the definition of more

general compatibilities and establishing a parallel with the convolution operator

properties, which will be exploited in the next section. The new setting has the

advantage to be learnable by training, as described in the Section 5.3 and 5.4.

Convolutional formulation

We now explain how to efficiently apply the relaxation labeling to image-like structures.

For the sake of simplicity, let us suppose to have a 1-channel image of size H ×W .

Each pixel xij has been assigned to a probability vector p(0)
ij to be refined, according

to the 8-connected neighbors of xij (other neighborhoods can be chosen as well). The

difference with the previous formulation consists in the double indexing needed to

select the pixels. Borrowing from the CNN theory, in the case of an image input, p(t)

can be thought as a set of m feature maps of size H ×W which has to be convolved

with R. As shown in Figure 5.1, R is shaped as a 3× 3×m×m convolutional kernel

in order to have m feature maps in output, representing q(t). The update rule can

then be applied as a non-linear activation function to obtain p(t+1). In our case,

85

5.3. Heteroassociative learning framework

8-connected pixel have fixed displacement, so:

q
(t)
ijλ =

∑
νh∈Nh

∑
νw∈Nw

m∑
µ=1

rνhνwλµpi+νh,j+νw,µ (5.2)

where Nh = Nw = {−1, 0, 1} and a padding of size 1 is applied to p(t). Note that this

formulation requires the additional constraint rνhνwλµ = 0 if νh = νw = 0 to nullify

the support coming from xij itself.

5.3 Heteroassociative learning framework

(Pelillo and Refice 1994) addressed the learning problem by proposing a loss

minimization framework, to efficiently learn compatibilities through the use of prior

knowledge coming from a dataset of observations. The following description, assumes

to work with a fully supervised dataset, and the extension to the semi-supervised case

is straightforward. Let L = {L1, , . . . , LΓ} a dataset of contexts, where each sample Lγ

is a set of labeled objects of the form Lγ = {(b(γ)
i , λ

(γ)
i) | 1 ≤ i ≤ n, b(γ)

i ∈ B, λ(γ)
i ∈ Λ}

(for ease of notation we assume contexts with the same size). For readability concerns,

in the following, the γ index will be omitted when not necessary. Each context is

related to an unambiguous assignment matrix y ∈ ∆n×m ∩ {0, 1}n×m, representing

the one-hot encodings of the object labels. The learning task consists in finding the

correct compatibility set to correctly update an initial assignment matrix until it

converges to y. The comparison between the predicted and the true assignment matrix

can be estimated through the cross-entropy function:

E(p,R) = −
n∑
i=1

m∑
λ=1

yiλ ln(p(F)
iλ) = −

n∑
i=1

ln(p(F)
iλi

) (5.3)

A further loss can be devised as the average of the previous loss computed on a batch

of multiple contexts, but this will not be considered in the discussion.

The learning algorithm is based on Rosen’s gradient projection method (Rosen

1960), in order to preserve the non-negativity constraints on the compatibilities. We

skip the derivation of the procedure, which can, however, be easily realized, and invite

the reader to refer to (Pelillo and Refice 1994) for the pseudo-code of the method.

86

5.3. Heteroassociative learning framework

Gradient computation: equivalence with backpropagation

In (Pelillo and Refice 1994), it is described the procedure to compute the derivative of

the cost function with respect to rταβ , ∀τ, α, β. This is accomplished in a bottom-up

approach, computing the values of the derivatives using the chain rule, starting from

p
(0)
iλ , ∀i, λ until reaching E(R). In the related literature, this approach is usually

referred with the term automatic differentiation (Baydin et al. 2017). Automatic

differentiation has progressively gained popularity as a derivative computation

technique, thanks to its large use in the deep learning community, and nowadays

has become a fundamental tool in the development of a deep learning framework.

Historically, the differentiation of long expressions has been performed in two ways:

1. Numerical differentiation: the computation is performed with the method

of finite difference approximations, ∂f(x)/∂x = (f(x + h) − f(x))/h. In

general, this method generates ill-conditioned and unstable derivatives.

2. Symbolic differentiation: the computation is performed by automatically

manipulating the mathematical formula of f(x), using the predefined differ-

entiation rules. For complex functions, the method generates exponentially

large symbolic expressions that are computationally intractable. In addition,

the automatic simplification of such expressions, in general, is known to be an

NP-hard problem, thus it does not solve the inherent inefficiency of this method

(Ruijl et al. 2014).

Automatic differentiation takes the best of both worlds: the derivative is developed

progressively by using the chain rule, taking small (atomic) steps. For each step, the

exact value of the derivative is computed and used as input for the next step. By

interleaving symbolic and numerical development of the derivative, the numerical

error is more controllable. Moreover, automatic differentiation can easily cope with

control flow commands, such as branching, loops, recursion, and procedure calls, an

important technical advantage in operative frameworks.

Autodifferentiation can be applied in two different modes. The most intuitive one

is called forward/linear tangent mode (Baydin et al. 2017). The computation

starts from the differentiation variables, in our case rταβ , and for each of them,

87

5.4. Autoassociative learning framework

f(x) D[f(x)]
E = −

∑n
i=1 ln(p(F)

iλi
) ∂E

∂pi,λi
= −1/p

iλ
(F)
i

p
(t+1)
iλ = h

(t)
iλ∑
µ
h

(t)
iµ

∂p
(t+1)
iλ

∂h
(t)
iη

= (Φ(λ = η)
∑
µ h

(t)
iµ − h

(t)
iη)/

(∑
µ h

(t)
iµ

)2

h
(t)
iλ = p

(t)
iλ q

(t)
iλ

∂h
(t)
iλ

∂p
(t)
iλ

= q
(t)
iλ

∂h
(t)
iλ

∂q
(t)
iλ

= p
(t)
iλ

q
(t)
iλ =

∑
νµj rνλµp

(t)
j+ν,µ

∂q
(t)
iλ

∂rταβ
= Φ(λ = α)pj+τ,β

∑
νµj rνλµ

∂p
(t)
j+ν,µ

∂rταβ

Table 5.1: The derivatives of the ReLab process. Φ represents the indicator
function.

their derivative tree is computed. This mode is inefficient for functions f : Rn → R.

Assuming that the derivative of f can be divided into the computation of d derivatives,

this method would have complexity O(nd). In fact, the forward mode is efficient when

dealing with functions f : Rn → Rm, with n� m.

On the contrary, the reverse/adjoint/cotangent linear mode takes a top-

down approach by computing the derivative starting from f (the cost function, in our

case) and going down to the differentiation variables. As said above, this method gained

popularity in deep learning, and it is also known with the term backpropagation.

We therefore argue that, given the equivalence of results with both modes, the

second approach is to be preferred. In Table 5.1, we report the derivatives of the

ReLab process to be used in the reverse mode.

5.4 Autoassociative learning framework

Aside from the method described above, (Pelillo and Fanelli 1997) proposed a different

approach to learn the compatibilities. The approach is guided directly by the ground

truth of a dataset, in such a way that the learned compatibilities satisfy the consistency

property of Equation (1.11). Recalling the definition, a labeling p is consistent if for

all patterns Lγ , all objects b(γ)
i labeled with λ(γ)

i satisfy:

qiλi ≤ qiλ =⇒
∑
j

rij(λ, λ(γ)
j)−

∑
j

rij(λ(γ)
i , λ

(γ)
j) < 0 (5.4)

88

5.4. Autoassociative learning framework

Algorithm 4 Eremin inequality system solver
Require:A coefficient matrix C, an initial starting point R0, a margin M
Ensure:The best solution RF

1: while not reaching convergence do
2: ∆(Rk) = maxγ,i,λ

{∑
ν rν(λ, λ(γ)

i+ν)−
∑
ν rν(λ(γ)

i , λ
(γ)
i+ν)−M

}
3: γk, ik, λk = arg maxγ,i,λ

{∑
ν rν(λ, λ(γ)

i+ν)−
∑
ν rν(λ(γ)

i , λ
(γ)
i+ν)−M

}
4: d(Rk) = max(0, d(R))
5: Rk+1 = Rk − λk+1d(R)C(γk, ik, λk; ·)>

For all λ 6= λ
(γ)
i . When restricting the interactions to small neighborhoods, this turns

to: ∑
ν

rν(λ, λ(γ)
i+ν)−

∑
ν

rν(λ(γ)
i , λ

(γ)
i+ν) ≤ 0 (5.5)

Which is a system of Γ ∗ n ∗ (m − 1) inequalities in the |N |m2 unknowns. Such a

system is computationally intractable when dealing with real world datasets, however

if the neighborhood chosen is small enough, one can expect that most inequalities are

coincident, and the duplicates can be discarded. This is the case in our experiments

with convolutional compatibility kernels.

The coefficient matrix C can be defined as follows (Pelillo and Fanelli 1997):

C(γ, i, λ; j, k, µ, η) =

+1 if j = i, µ = λ, η = λ

(γ)
k

−1 if j = i, µ = λ
(γ)
j , η = λ

(γ)
k

0 otherwise

(5.6)

Where for notational convenience, we have highlighted the γ indexing the context,

and we used a three-component index for the rows and a four-component index for

the columns. The system can then be restated in the following compact way:

CR ≤ 0 (5.7)

To ensure larger basins of attraction, one can also introduce a negative margin M and

set the system to be less or equal than 1M .

The Eremin algorithm (Eremin 1962) has been developed to solve system of

inequalities, and when the system is not solvable, it searches for the best approximation

89

5.5. Experimental Results

solution in the sense of Čebišev. Following (Pelillo and Fanelli 1997). In Algorithm 4,

we report the Eremin method, adapted for the inequality system of Equation (5.5).

C(The following theorem ensures the correctness of the algorithm:

Theorem 5.4.1 (Eremin, 1962). The sequence Rk defined in Algorithm 4 is solving for

the system (5.7).

The algorithm does not take into account for the non-negative constraint to

be imposed to the compatibilities, however this can be solved by adding additional

inequalities or translating the final solution, which does not alter the space of consistent

labelings.

5.5 Experimental Results

Noise Reduction

We first performed a simple experiment to assess the capability of ReLab as a noise

reduction method. To this end, we generated a synthetic dataset from MNIST

by thresholding each image to obtain a foreground mask representing the digit.

The masked image was then perturbed by redistributing the 0/1 probability to

the new values ε/1 − ε. First the compatibilities of ReLab were learned with the

heteroassociative method and then ReLab was run over the image to reconstruct the

original mask. The perturbed pixels were chosen randomly, in a percentage ruled

by a parameter ψ. The values for both parameters were chosen to be in the set

{0.2, 0.4, 0.5, 0.6, 0.8, 1.0}. We tried 9 different instances of ReLab, by changing the

kernel size and the number of iterations respectively with values in {3, 7, 13} and

{4, 16, 32}.

Table 5.2 shows the average accuracy for each pair of ε/ψ parameters. ReLab is

able to recover the original image discretely well with ε ≤ 0.8. In particular, when

ε = 0.8 and ψ ≥ 0.8, the accuracy decreases with respect to the other previous

configurations. With ε = 1 – the probabilities are totally inverted – the performance

decrease is even more evident until reaching the limit case of a total pixel inversion

corresponding to ε = ψ = 1.

90

5.5. Experimental Results

ε = 0.2
ψ acc.
0.2 1
0.4 1
0.5 1
0.6 1
0.8 1
1 1

ε = 0.4
ψ acc.
0.2 0.99
0.4 0.98
0.5 0.98
0.6 0.97
0.8 0.97
1 0.98

ε = 0.5
ψ acc.
0.2 0.98
0.4 0.96
0.5 0.96
0.6 0.95
0.8 0.91
1 0.79

ε = 0.6
ψ acc.
0.2 0.97
0.4 0.94
0.5 0.92
0.6 0.90
0.8 0.79
1 0.73

ε = 0.8
ψ acc.
0.2 0.96
0.4 0.90
0.5 0.85
0.6 0.84
0.8 0.78
1 0.72

ε = 1
ψ acc.
0.2 0.80
0.4 0.60
0.5 0.50
0.6 0.40
0.8 0.20
1 0

Table 5.2: Average results over the different images and hyperparameter
configurations. As expected, with the increment of one of the two perturbation
parameters the accuracy decreases as the reconstruction is more difficult.

Prediction refinement with the learning algorithms

Motivated by the previous experiments, we performed another series of experiments

on semantic segmentation tasks to assess the performances of our convolutional

heteroassociative method in the refinement of more complex pixel probability

distributions. We took into consideration a classical Fully Convolutional Network

(FCN), namely the FCN8s At Once architecture (Shelhamer, Long and Darrell 2017;

Wada n.d.), and we appended a ReLab module at the end of the softmax layer. The

architecture was then trained with and without our module to assess the differences

in the accuracy. The dataset used is a standard benchmark, the PASCAL VOC 2012

dataset (Everingham et al. n.d.), which contains 6900 images ca. of different sizes,

with approximately 1.3E09 pixels to be labeled. Table 5.5 shows the results of the

baseline (net only) against the best configurations found so far. The measure of

performance is the mean IOU (mIOU) computed as:

mIOU = TP

FP + FN + TP
(5.8)

With TP, FP, FN, being respectively the number of True Positive, False Positive, and

False Negative. During the training, pixel accuracy is used instead. The results are

91

5.5. Experimental Results

Figure 5.2: Visual results of the best FCN + ReLab model. For each example,
we present the ground truth (top rows, second and third image) and the refined
predictions (bottom rows second and third image) of the FCN + ReLab model.

mIoU 0.6401 0.6411 0.6418 0.6429 0.6464 0.6478
Iterations 1E5 2E6 1E5 1E5 2E6 2E6
FCN lr 1E-10 1E-05 6.5E-5 6E-5 1E-5 1E-5
Momentum 0.99 0.99 0.921 0.921 0.99 0.99
W. Decay 5E-4 5E-4 8.1E-4 8.1E-4 5E-4 5E-4
ReLab lr - 0.1 0.3 0.26 0.1 0.1
ReLab k. size - 11 5 5 5 5
ReLab iter. - 5 7 7 5 15

Table 5.3: Results and configuration on Pascal VOC 2012. The first column
represents the baseline configuration – FCN8s at once without ReLab – while
the other columns show the top five results of the FCN + ReLab architecture.
The best configuration is highlighted in bold.

promising, showing that the architecture learns, and a slight improvement is testified.

However, we expect to reach better results by changing the overall architecture FCN

+ ReLab, for example, taking into account two cost functions instead of only one at

the end of the ReLab module.

In addition to this, we assessed the performance of another refinement procedure

by learning offline the compatibilities with the autoassociative learning framework.

92

5.5. Experimental Results

Figure 5.3: Some visualizations of the ReLab refinement with the compatibilities
learned with the Eremin method. The left column represents the ground truth,
the middle one represents the DeepLabv3 predictions, the right one represents
the ReLab refinements with dilation set to 1. The refinement is able to recover
the monitor stands, the motorbike pedal and light, and the people, in the three
cases, showing that ReLab is effectively able to correct the assignment errors
introduced by DeepLabv3.

The experiment consisted in refining the predictions of a DNN model with ReLab,

and comparing the plain results against the refined ones. The compatibilities were

learned using the ground truth of PascalVOC. Note again, that this learning method

does not necessitate of the image input, differently from the heteroassociative learning

method previously described. The neighborhoods used, consisted in kernels of size 3

with an increasing dilation parameter, ranging from 1 to 10. The maximum number

of iterations was set to 1E6 and the tolerance to 1E − 3, since some preliminary

experiment showed a far slower convergence with higher tolerances. The initial

compatibilities were set to zero, and the margin was set to −1, to avoid the solver

to stop immediately. After the learning, a translation to avoid negative values was

93

5.5. Experimental Results

Figure 5.4: Some visualizations of the ReLab refinement with the compatibilities
learned with the Eremin method. The first and second images show the ground
truth and the DeepLabv3 predictions, while the last two images show the
refinements with dilation respectively set to 1 and to 9. The airplane is better
refined when the dilation parameter is larger.

kernel size dilation mIOU w. mIOU
3 1 0.7992 0.8469
3 2 0.8002 0.8492
3 3 0.8020 0.8516
3 4 0.7947 0.8446
3 5 0.8017 0.8517
3 6 0.7957 0.8466
3 7 0.7953 0.8455
3 8 0.7974 0.8475
3 9 0.7961 0.8465
3 10 0.7929 0.8447

Table 5.4: Results and configuration on Pascal VOC 2012, with the
compatibilities learned with the Eremin method. The third column displays
the Intersection over Union averaged over the dataset. The fourth column
displays the mIOU weighted by the class size, to mitigate class imbalancing.
The DeepLabv3 mIOU and w. mIOU are respectively 0.8034 and 0.8537. While
our refinement procedure does not provide any substantial improvement, the
results are comparable with those of DeepLabv3. Furthermore, the qualitative
comparison attests that our method can indeed improve the refinement of the
segmentations.

performed and the compatibilities between the background class and itself were set

to zero, to avoid the self-reinforcement of the background class, which is highly

imbalanced with respect to the others. The DNN tested was the DeepLabv3 model

(Chen et al. 2017), in particular the trained implementation of the PyTorch library.

Table 5.5 shows that, at this stage, the refined probabilities generate comparable

results with respect to the unrefined ones, but do not consistently improve the

performance of the model yet. A qualitative comparison of some examples, however,

highlights the benefits of such refinement. Figure 5.3, shows that ReLab effectively

94

5.6. Conclusions and Future Work

recovers the small probability assignment related to the correct class and “boost” them,

improving the overall quality of the segmentation. In particular, we testified that

different dilation values, have different recovery quality. For example, Figure 5.4 shows

that a kernel with dilation value of 9 can recover different images than a kernel with

dilation set to 1. This suggests that in the long term a holistic approach involving

refinements coming from different kernels, can bring overall to better performances.

5.6 Conclusions and Future Work

In this work, we proposed a convolutional way to perform ReLab and applied it to

two experimental cases, showing that ReLab can improve the accuracy of a simple

Semantic Segmentation model. We have described a learning framework for ReLab,

and we adapted it to work in an end-to-end fashion with DNNs, by devising the

derivatives for backpropagation. At the same time, we tried with a different learning

approach, to generate compatibilities consistent according to the ground truth of a

given dataset. Both the learning methods showed promising results and are worth to

be further explored.

The heteroassociative method of (Pelillo and Refice 1994) can be analysed in

the context of multiple ReLab processes that encode and the decode the matrix of

probabilities, by effectively proposing a convolutional framework for random fields.

The autoassociative method of (Pelillo and Fanelli 1997) can be improved by

increasing the kernel size (experiments have not been performed yet, because they

require a careful implementation for keeping the method efficient), and devising – as

said above – a holistic approach that summarizes more refinements together. Finally,

this work will be extended to the semi- and weakly supervised settings.

95

Conclusions

The work presented in this thesis is an attempt to study, under multiple viewpoints,

the use of the contextual information. We have shown that the contextual information,

thanks to its general nature, can help in improving the performance of neural models

in tasks such as semisupervised learning, domain adaptation, metric learning and

semantic segmentation. The potentiality of contextual information in the learning of a

model, does not stop with these tasks. As mentioned in the preface, we strongly believe

that the contextual information should be thought as an opportunity to move further

from the perspective of feature learning, which has been dominating the discussion in

the machine learning field over the last decade.

GTG has been already proved to be a powerful prediction refiner in the context of

semisupervised learning, under extreme label scarcity conditions (Elezi et al. 2018).

Its application has been proven to be advantageous in domain adpatation tasks too,

with only small changes to the core algorithm (Vascon et al. 2019). These results

assess the efficiency of GTG under different conditions of the input data, thus its

adaptability to a variety of different cases. The main drawback of this method is its

transductive nature that requires to compute a large affinity matrix, often intractable

in the case of real world datasets. A new direction has been proposed by devising

an end-to-end method for deep metric learning (Elezi et al. 2020) that exploits the

GTG update rule in the context of a mini-batch which is a representative of the

dataset in its entirety, according to the same assumption that motivates the use of

SGD in DNN parameter learning. This new perspective is worth to be applied in

the weakly-supervised context, as the author of this thesis is currently doing. At the

same time the end-to-end learning framework poses new challenges. Propagating the

96

information to very distant observations, can require more iterations of the process,

which, being an autonomous dynamical system, may suffer from vanishing gradient

problems (Bengio, Simard and Frasconi 1994). In addition, the similarity formula is

still dependent from an hand-crafted formula, along with the choice of a sparsification

technique. As a future work we would like to further exploits the learning capabilities

of the neural models, and make one more step toward the automatization of the

decision making process related to the similarity and sparsification methods.

This last concern has been partially addressed in the more general framework of

Relaxation Labeling. In the last chapter of this thesis, we showed different learning

techniques for compatibilities. While in one of them we were able to prove its (almost

total) equivalence with the backpropagation method, in the other one we were even able

to guide the learning process with the fundamental notion of consistency. This, paired

with a convolutional adpatation of the learning framework for image-like structures,

allowed us to apply ReLab in semantic segmentation tasks. As already noted, such

efficient ReLab frameworks represent an opportunity to devise Deep Neural models

in the context of random fields. Differently from the DNN feature extractors, that

have been historically guided more by experimental evaluations, ReLab has a strong,

theoretically motivated background with nice optimization properties under rather

simple conditions on the compatibility coefficients. We argue that this is the most

important feature of such algorithm, and a stronger comparison between DNNs and

ReLab, under a theoretical point of view, may open to new theoretical results in the

former case.

Aside from these aspects, considering, in its entirety, the contextual information

framework presented in this thesis, we propose two further lines of research. The first

one, already described in the Introduction, regards the application of such techniques

in contexts with more generic inductive biases, such as in graph neural networks. The

second one, represents the use of the average local consistency term for enforcing the

consistency properties of the output predictions of loss-based optimization algorithms.

97

Bibliography

Alemu, L. T., Pelillo, M. and Shah, M. (2019). ‘Deep Constrained Dominant

Sets for Person Re-identification’. In: CoRR vol. abs/1904.11397.

Alex Krizhevsky, G. H. (2009). Learning multiple layers of features from

tiny images. Tech. rep. University of Toronto.

Aphex34 (2015). A typical cnn.

Aslan, S., Vascon, S. and Pelillo, M. (2018). ‘Ancient Coin Classification

Using Graph Transduction Games’. In: The 4th IEEE International

Conference on Metrology and Archeology.

Bacciu, D. et al. (2020). ‘A gentle introduction to deep learning for graphs’. In:

Neural Networks vol. 129, pp. 203–221.

Baum, L. E. and Sell, G. (1968). ‘Growth transformations for functions on

manifolds’. In: Pacific Journal of Mathematics vol. 27, no. 2, pp. 211–

227.

Bay, H., Tuytelaars, T. and Van Gool, L. (2006). ‘SURF: Speeded Up Robust

Features’. In: Computer Vision – ECCV 2006. Ed. by Leonardis, A.,

Bischof, H. and Pinz, A. Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 404–417.

Baydin, A. G. et al. (2017). ‘Automatic differentiation in machine learning: a

survey’. In: The Journal of Machine Learning Research vol. 18, no. 1,

pp. 5595–5637.

98

Bibliography

Bengio, Y., Simard, P. Y. and Frasconi, P. (1994). ‘Learning long-term

dependencies with gradient descent is difficult’. In: IEEE Trans. Neural

Networks vol. 5, no. 2, pp. 157–166.

Bergstra, J. and Bengio, Y. (2012). ‘Random Search for Hyper-Parameter

Optimization’. In: Journal of Machine Learning Research vol. 13,

pp. 281–305.

Berthelot, D. et al. (2019). ‘MixMatch: A Holistic Approach to Semi-Supervised

Learning’. In: Advances in Neural Information Processing Systems,

NeurIPS, pp. 5050–5060.

Bromley, J. et al. (1994). ‘Signature verification using a" siamese" time delay

neural network’. In: Advances in Neural Information Processing

Systems, NIPS, pp. 737–744.

Çakir, F. et al. (2019). ‘Deep Metric Learning to Rank’. In: IEEE Conference

on Computer Vision and Pattern Recognition, CVPR, pp. 1861–

1870.

Chen, L. et al. (2017). ‘Rethinking Atrous Convolution for Semantic Image

Segmentation’. In: CoRR vol. abs/1706.05587. arXiv: 1706.05587.

Chopra, S., Hadsell, R. and LeCun, Y. (2005). ‘Learning a Similarity

Metric Discriminatively, with Application to Face Verification’. In: IEEE

Computer Vision and Pattern Recognition, CVPR, pp. 539–546.

Cinà, A. E., Torcinovich, A. and Pelillo, M. (2020). ‘A Black-box Adversarial

Attack for Poisoning Clustering’. In: CoRR vol. abs/2009.05474.

Ciresan, D. C., Meier, U. and Schmidhuber, J. (2012). ‘Multi-column deep neural

networks for image classification’. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 3642–3649.

Cortes, C. and Vapnik, V. (1995). ‘Support-Vector Networks’. In: Machine

Learning vol. 20, pp. 273–297.

99

https://arxiv.org/abs/1706.05587

Bibliography

Deng, J. et al. (2009). ‘ImageNet: A large-scale hierarchical image database’. In:

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 248–255.

Duan, Y. et al. (2019). ‘Deep Embedding Learning with Discriminative Sampling

Policy’. In: IEEE Computer Vision and Pattern Recognition,

CVPR.

Elezi, I. et al. (2018). ‘Transductive Label Augmentation for Improved Deep

Network Learning’. In: 24th International Conference on Pattern

Recognition, ICPR 2018, Beijing, China, August 20-24, 2018. IEEE

Computer Society, pp. 1432–1437.

Elezi, I. et al. (2020). ‘The Group Loss for Deep Metric Learning’. In:Computer

Vision - ECCV 2020 - 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part VII. Vol. 12352. Lecture Notes

in Computer Science. Springer, pp. 277–294.

Elman, J. L. (1990). ‘Finding structure in time’. In: Cognitive science vol. 14,

no. 2, pp. 179–211.

Erdem, A. and Pelillo, M. (2012). ‘Graph Transduction as a Noncooperative

Game’. In: Neural Computation vol. 24, no. 3, pp. 700–723.

Eremin, I. I. (1962). ‘Iteration Method for Čebyšev Approximations For Sets

Of Incompatible Linear Inequalities’. In: Soviet Math. Doklady vol. 3,

pp. 570–572.

Everingham, M. et al. (n.d.). The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/

challenges/VOC/voc2012/workshop/index.html.

Fernando, B. et al. (2013). ‘Unsupervised Visual Domain Adaptation Using

Subspace Alignment’. In: Proceedings of the 2013 IEEE International

Conference on Computer Vision. ICCV ’13. Washington, DC, USA:

IEEE Computer Society, pp. 2960–2967.

100

Bibliography

Fiorucci, M. et al. (2017). ‘On the Interplay Between Strong Regularity

and Graph Densification’. In: Graph-Based Representations in Pat-

tern Recognition - 11th IAPR-TC-15 International Workshop,

GbRPR 2017, Anacapri, Italy, May 16-18, 2017, Proceedings. Ed.

by Foggia, P., Liu, C. and Vento, M. Vol. 10310. Lecture Notes in Computer

Science, pp. 165–174.

Fukushima, K. and Miyake, S. (1982). ‘Neocognitron: A new algorithm for

pattern recognition tolerant of deformations and shifts in position’. In:

Pattern Recognition vol. 15, no. 6, pp. 455–469.

Ganin, Y. and Lempitsky, V. (2015). ‘Unsupervised domain adaptation by

backpropagation’. In: International Conference on Machine Learning,

pp. 1180–1189.

Ganin, Y. et al. (2016). ‘Domain-adversarial training of neural networks’. In:

Journal of Machine Learning Research vol. 17, no. 59, pp. 1–35.

Ge, W. et al. (2018). ‘Deep Metric Learning with Hierarchical Triplet Loss’. In:

European Conference in Computer Vision, ECCV, pp. 272–288.

Gong, B. et al. (2012). ‘Geodesic flow kernel for unsupervised domain adaptation’.

In: Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on. IEEE, pp. 2066–2073.

Goodfellow, I. J., Bengio, Y. and Courville, A. C. (2016). Deep Learning.

Adaptive computation and machine learning. MIT Press.

Griffin, G., Holub, A. and Perona, P. (2007). Caltech-256 object category

dataset. Tech. rep. California Institute of Technology.

Guo, C. et al. (2017). ‘On Calibration of Modern Neural Networks’. In:

International Conference on Machine Learning, ICML. Ed. by

Precup, D. and Teh, Y. W.

Hahnloser, R. H. et al. (2000). ‘Digital selection and analogue amplification

coexist in a cortex-inspired silicon circuit’. In: Nature vol. 405, no. 6789,

pp. 947–951.

101

Bibliography

Han, J. and Moraga, C. (1995). ‘The Influence of the Sigmoid Function

Parameters on the Speed of Backpropagation Learning’. In: From Natural

to Artificial Neural Computation, International Workshop on

Artificial Neural Networks, IWANN ’95, Malaga-Torremolinos,

Spain, June 7-9, 1995, Proceedings. Ed. by Mira, J. and Hernández,

F. S. Vol. 930. Lecture Notes in Computer Science. Springer, pp. 195–201.

He, K. et al. (2016). ‘Deep residual learning for image recognition’. In:

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778.

He, K., Lu, Y. and Sclaroff, S. (2018). ‘Local Descriptors Optimized for Average

Precision’. In: IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 596–605.

He, K. et al. (2018). ‘Hashing as Tie-Aware Learning to Rank’. In: IEEE

Conference on Computer Vision and Pattern Recognition, CVPR,

pp. 4023–4032.

Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the theory

of neural computation. Redwood City.

Hochreiter, S. (1991). ‘Untersuchungen zu dynamischen neuronalen Netzen’. In:

Diploma, Technische Universität München vol. 91, no. 1.

Hochreiter, S. et al. (2001). Gradient flow in recurrent nets: the difficulty

of learning long-term dependencies.

Hochreiter, S. and Schmidhuber, J. (1997). ‘Long short-term memory’. In:

Neural computation vol. 9, no. 8, pp. 1735–1780.

Huang, G. et al. (2017). ‘Densely Connected Convolutional Networks’. In:

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 2261–2269.

Hubel, D. H. and Wiesel, T. N. (1959). ‘Receptive fields of single neurones in

the cat’s striate cortex’. In: The Journal of physiology vol. 148, no. 3,

p. 574.

102

Bibliography

Hummel, R. A. and Zucker, S. W. (1983). ‘On the Foundations of Relaxation

Labeling Processes’. In: IEEE Trans. Pattern Anal. Mach. Intell. vol. 5,

no. 3, pp. 267–287.

Häusser, P., Mordvintsev, A. and Cremers, D. (2017). ‘Learning by Association

- A Versatile Semi-Supervised Training Method for Neural Networks’. In:

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 626–635.

Häusser, P. et al. (2017). ‘Associative Domain Adaptation’. In: IEEE Interna-

tional Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pp. 2784–2792.

Ioffe, S. and Szegedy, C. (2015). ‘Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift’. In: International

Conference on Machine Learning, ICML, pp. 448–456.

Ivakhnenko, A. G. and Lapa, V. G. (1966). Cybernetic predicting devices.

Tech. rep. PURDUE UNIV LAFAYETTE IND SCHOOL OF ELECTRICAL

ENGINEERING.

Jégou, H., Douze, M. and Schmid, C. (2011). ‘Product Quantization for Nearest

Neighbor Search’. In: IEEE Trans. Pattern Anal. Mach. Intell. vol. 33,

no. 1, pp. 117–128.

Jordan, M. (1986). Serial order: a parallel distributed processing

approach. Technical report, June 1985-March 1986. Tech. rep.

California Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science.

Kadar, I. and Ben-Shahar, O. (2014). ‘SceneNet: A perceptual ontology for

scene understanding’. In: European Conference on Computer Vision

(ECCV). Springer, pp. 385–400.

Keskar, N. S. et al. (2017). ‘On Large-Batch Training for Deep Learning:

Generalization Gap and Sharp Minima’. In: International Conference

on Learning Representations, ICLR.

103

Bibliography

Kim, W. et al. (2018). ‘Attention-Based Ensemble for Deep Metric Learning’.

In: European Conference on Computer Vision, pp. 760–777.

Kingma, D. P. and Ba, J. (2014a). ‘Adam: A Method for Stochastic Optim-

ization’. In: International Conference on Learning Representations

(ICLR).

Kingma, D. P. et al. (2014). ‘Semi-supervised Learning with Deep Generative

Models’. In: Advances in Neural Information Processing Systems

(NIPS), pp. 3581–3589.

Kingma, D. and Ba, J. (2014b). ‘Adam: A Method for Stochastic Optimization’.

In: Proceedings of the 3rd International Conference on Learning

Representations ICLR.

Kouw, W. M. et al. (2016). ‘Feature-Level Domain Adaptation’. In: Journal

of Machine Learning Research vol. 17, no. 171, pp. 1–32.

Krause, J. et al. (2013). ‘3D Object Representations for Fine-Grained Categor-

ization’. In: International IEEE Workshop on 3D Representation

and Recognition (3dRR-13). Sydney, Australia.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). ‘ImageNet Classification

with Deep Convolutional Neural Networks’. In: Advances in Neural

Information Processing Systems, pp. 1106–1114.

Krähenbühl, P. and Koltun, V. (2011). ‘Efficient Inference in Fully Connected

CRFs with Gaussian Edge Potentials’. In: Advances in Neural Inform-

ation Processing Systems 24: 25th Annual Conference on Neural

Information Processing Systems 2011. Proceedings of a meeting

held 12-14 December 2011, Granada, Spain. Ed. by Shawe-Taylor, J.

et al., pp. 109–117.

Laine, S. and Aila, T. (2017). ‘Temporal Ensembling for Semi-Supervised Learn-

ing’. In: 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net.

104

Bibliography

Law, M. T., Urtasun, R. and Zemel, R. S. (2017). ‘Deep Spectral Clustering

Learning’. In: Proceedings of the 34th International Conference on

Machine Learning, ICML, pp. 1985–1994.

LeCun, Y. et al. (1989a). ‘Generalization and network design strategies’. In:

Connectionism in perspective vol. 19, pp. 143–155.

LeCun, Y., Bengio, Y. and Hinton, G. E. (2015). ‘Deep learning’. In: Nature

vol. 521, no. 7553, pp. 436–444.

LeCun, Y. and Cortes, C. (2010). ‘MNIST handwritten digit database’. In:

LeCun, Y. et al. (1989b). ‘Backpropagation Applied to Handwritten Zip Code

Recognition’. In: Neural Computation vol. 1, no. 4, pp. 541–551.

Lee, D.-h. (2013). ‘Pseudo-Label: The Simple and Efficient Semi-Supervised

Learning Method for Deep Neural Networks’. In: Workshop on Chal-

lenges in Representation Learning (ICML). Vol. 2, p. 3.

Linnainmaa, S. (1970). ‘The representation of the cumulative rounding error

of an algorithm as a Taylor expansion of the local rounding errors’. In:

Master’s Thesis (in Finnish), Univ. Helsinki, pp. 6–7.

Long, M., Wang, J. and Jordan, M. I. (2016a). ‘Deep transfer learning with

joint adaptation networks’. In: arXiv preprint arXiv:1605.06636.

— (2016b). ‘Unsupervised Domain Adaptation with Residual Transfer Net-

works’. In: arXiv preprint arXiv:1602.04433.

Long, M. et al. (2015). ‘Learning Transferable Features with Deep Adaptation

Networks’. In: Proceedings of The 32nd International Conference

on Machine Learning, pp. 97–105.

Lowe, D. G. (2004). ‘Distinctive image features from scale-invariant keypoints’.

In: International Journal of Computer Vision vol. 60, no. 2, pp. 91–

110.

Lu, Z. et al. (2017). ‘The expressive power of neural networks: A view from

the width’. In: Advances in neural information processing systems,

pp. 6231–6239.

105

Bibliography

Luxburg, U. von (2007). ‘A tutorial on spectral clustering’. In: Statistics and

Computing.

MacQueen, J. (1967). ‘Some methods for classification and analysis of

multivariate observations’. In: Proc. Fifth Berkeley Symp. on Math.

Statist. and Prob., Vol. 1, pp. 281–297.

Manmatha, R. et al. (2017). ‘Sampling Matters in Deep Embedding Learning’.

In: IEEE International Conference on Computer Vision, ICCV,

pp. 2859–2867.

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge

University Press.

McCulloch, W. S. and Pitts, W. H. (1990). ‘A Logical Calculus of the

Ideas Immanent in Nervous Activity’. In: The Philosophy of Artificial

Intelligence. Ed. by Boden, M. A. Oxford readings in philosophy. Oxford

University Press, pp. 22–39.

McDaid, A. F., Greene, D. and Hurley, N. J. (2011). ‘Normalized Mutual

Information to evaluate overlapping community finding algorithms’. In:

CoRR vol. abs/1110.2515.

Miller, D. A. and Zucker, S. W. (1991). ‘Copositive-plus Lemke algorithm

solves polymatrix games’. In: Operations Research Letters vol. 10, no. 5,

pp. 285–290.

Minsky, M. and Papert, S. (1987). Perceptrons - an introduction to

computational geometry. MIT Press.

Miyato, T. et al. (2019). ‘Virtual Adversarial Training: A Regularization Method

for Supervised and Semi-Supervised Learning’. In: IEEE Trans. Pattern

Anal. Mach. Intell. vol. 41, no. 8, pp. 1979–1993.

Movshovitz-Attias, Y. et al. (2017). ‘No Fuss Distance Metric Learning Using

Proxies’. In: IEEE International Conference on Computer Vision,

ICCV, pp. 360–368.

106

Bibliography

Maaten, L. van der and Hinton, G. E. (2012). ‘Visualizing non-metric similarities

in multiple maps’. In: Machine Learning vol. 87, no. 1, pp. 33–55.

Oliver, A. et al. (2018). ‘Realistic Evaluation of Semi-Supervised Learning

Algorithms’. In: 6th International Conference on Learning Repres-

entations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Workshop Track Proceedings. OpenReview.net.

Opitz, M. et al. (2017). ‘BIER - Boosting Independent Embeddings Robustly’.

In: IEEE International Conference on Computer Vision, ICCV,

pp. 5199–5208.

— (2018). ‘Deep Metric Learning with BIER: Boosting Independent Embed-

dings Robustly’. In: CoRR vol. abs/1801.04815.

Park, W. et al. (2019). ‘Relational Knowledge Distillation’. In: IEEE

Computer Vision and Pattern Recognition, CVPR.

Paszke, A. et al. (2017). ‘Automatic differentiation in pytorch’. In: NIPS

Workshops.

Pearson, K. (1895). ‘Notes on regression and inheritance in the case of two

parents’. In: Proceedings of the Royal Society of London vol. 58,

pp. 240–242.

Pelillo, M. (1997). ‘The Dynamics of Nonlinear Relaxation Labeling Processes’.

In: Journal of Mathematical Imaging and Vision vol. 7, no. 4, pp. 309–

323.

Pelillo, M. and Fanelli, A. M. (1997). ‘Autoassociative learning in relaxation

labeling networks’. In: Pattern Recognition Letters vol. 18, no. 1, pp. 3–

12.

Pelillo, M. and Refice, M. (1994). ‘Learning Compatibility Coefficients for

Relaxation Labeling Processes’. In: IEEE Trans. Pattern Anal. Mach.

Intell. vol. 16, no. 9, pp. 933–945.

Pinkus, A. (1999). ‘Approximation theory of the MLP model in neural networks’.

In: Acta numerica vol. 8, no. 1, pp. 143–195.

107

Bibliography

Qian, Q. et al. (2019). ‘SoftTriple Loss: Deep Metric Learning Without

Triplet Sampling’. In: 2019 IEEE/CVF International Conference on

Computer Vision, ICCV 2019, Seoul, Korea (South), October 27

- November 2, 2019. IEEE, pp. 6449–6457.

Quattoni, A. and Torralba, A. (2009). ‘Recognizing indoor scenes’. In:

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 413–420.

Revaud, J. et al. (2019). ‘Learning with Average Precision: Training Image

Retrieval with a Listwise Loss’. In: CoRR vol. abs/1906.07589.

Rosen, J. B. (1960). ‘The gradient projection method for nonlinear programming.

Part I. Linear constraints’. In: Journal of the society for industrial and

applied mathematics vol. 8, no. 1, pp. 181–217.

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and

the theory of brain mechanisms. Tech. rep. Cornell Aeronautical Lab

Inc Buffalo NY.

Rosenfeld, A., Hummel, R. A. and Zucker, S. W. (1976). ‘Scene Labeling by

Relaxation Operations’. In: IEEE Trans. Syst. Man Cybern. vol. 6,

no. 6, pp. 420–433.

Ruijl, B. et al. (2014). ‘Why local search excels in expression simplification’. In:

arXiv preprint arXiv:1409.5223.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). ‘Learning

representations by back-propagating errors’. In: nature vol. 323, no. 6088,

pp. 533–536.

Russakovsky, O. et al. (2014). ‘ImageNet Large Scale Visual Recognition

Challenge’. In: CoRR vol. abs/1409.0575.

Saenko, K. et al. (2010). ‘Adapting visual category models to new domains’. In:

European conference on computer vision. Springer, pp. 213–226.

108

Bibliography

Sanakoyeu, A. et al. (2019). ‘Divide and Conquer the Embedding Space for Met-

ric Learning’. In: IEEE Computer Vision and Pattern Recognition,

CVPR.

Schmidhuber, J. (2015). ‘Deep learning in neural networks: An overview’. In:

Neural Networks vol. 61, pp. 85–117.

Schroff, F., Kalenichenko, D. and Philbin, J. (2015). ‘FaceNet: A unified

embedding for face recognition and clustering’. In: IEEE Conference on

Computer Vision and Pattern Recognition, CVPR, pp. 815–823.

Schultz, M. and Joachims, T. (2003). ‘Learning a Distance Metric from Rel-

ative Comparisons’. In: Advances in Neural Information Processing

Systems, NIPS, pp. 41–48.

Sener, O. et al. (2016). ‘Learning transferrable representations for unsupervised

domain adaptation’. In: Advances in Neural Information Processing

Systems, pp. 2110–2118.

Shelhamer, E., Long, J. and Darrell, T. (2017). ‘Fully Convolutional Networks for

Semantic Segmentation’. In: IEEE Trans. Pattern Anal. Mach. Intell.

vol. 39, no. 4, pp. 640–651.

Sohn, K. (2016). ‘Improved Deep Metric Learning with Multi-class N-pair Loss

Objective’. In: Advances in Neural Information Processing Systems,

NIPS, pp. 1849–1857.

Song, H. O. et al. (2016). ‘Deep Metric Learning via Lifted Structured Feature

Embedding’. In: IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 4004–4012.

Song, H. O. et al. (2017). ‘Deep Metric Learning via Facility Location’. In:

IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, pp. 2206–2214.

Sun, B., Feng, J. and Saenko, K. (2016). ‘Return of Frustratingly Easy

Domain Adaptation’. In: Thirtieth AAAI Conference on Artificial

Intelligence.

109

Bibliography

Szegedy, C. et al. (2015). ‘Going deeper with convolutions’. In: IEEE

Conference on Computer Vision and Pattern Recognition, CVPR,

pp. 1–9.

Tarvainen, A. and Valpola, H. (2017). ‘Mean teachers are better role

models: Weight-averaged consistency targets improve semi-supervised

deep learning results’. In: 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Workshop Track Proceedings. OpenReview.net.

Torcinovich, A. et al. (2017). ‘A Computer Vision System for Monitoring Ice-

Cream Freezers’. In: Image Analysis and Processing - ICIAP 2017

- 19th International Conference, Catania, Italy, September 11-15,

2017, Proceedings, Part II. Ed. by Battiato, S. et al. Vol. 10485. Lecture

Notes in Computer Science. Springer, pp. 333–342.

Tripodi, R., Vascon, S. and Pelillo, M. (2016). ‘Context aware nonnegative matrix

factorization clustering’. In: International Conference on Pattern

Recognition, (ICPR), pp. 1719–1724.

Tzeng, E. et al. (2014). ‘Deep domain confusion: Maximizing for domain

invariance’. In: arXiv preprint arXiv:1412.3474.

Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.

Vascon, S. et al. (2018). ‘Protein function prediction as a graph-transduction

game’. In: Pattern Recognition Letters.

Vascon, S. et al. (2019). ‘Unsupervised Domain Adaptation using Graph

Transduction Games’. In: International Joint Conference on Neural

Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019.

IEEE, pp. 1–8.

Vaswani, A. et al. (2017). ‘Attention is All you Need’. In: Advances in Neural

Information Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9, 2017, Long

Beach, CA, USA. Ed. by Guyon, I. et al., pp. 5998–6008.

110

Bibliography

Wada, K. (n.d.). pytorch-fcn, PyTorch Implementation of Fully Convo-

lutional Networks. https://github.com/wkentaro/pytorch-fcn.

Wagstaff, E. et al. (2019). ‘On the Limitations of Representing Functions on Sets’.

In: Proceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, California,

USA. Ed. by Chaudhuri, K. and Salakhutdinov, R. Vol. 97. Proceedings of

Machine Learning Research. PMLR, pp. 6487–6494.

Wah, C. et al. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Tech.

rep. CNS-TR-2011-001. California Institute of Technology.

Wang, J. et al. (2017). ‘Deep Metric Learning with Angular Loss’. In: IEEE

International Conference on Computer Vision, ICCV, pp. 2612–

2620.

Wang, X. et al. (2019a). ‘Ranked List Loss for Deep Metric Learning’. In:

IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, pp. 5207–5216.

Wang, X. et al. (2019b). ‘Multi-Similarity Loss with General Pair Weighting

for Deep Metric Learning’. In: IEEE Computer Vision and Pattern

Recognition, CVPR.

Weibull, J. (1997). Evolutionary Game Theory. MIT Press.

Weinberger, K. Q. and Saul, L. K. (2009). ‘Distance Metric Learning for

Large Margin Nearest Neighbor Classification’. In: Journal of Machine

Learning Research vol. 10, pp. 207–244.

Weisstein, E. W. (n.d.). ‘Hyperbolic Tangent’. In: https://mathworld.

wolfram.com/HyperbolicTangent.html ().

Werbos, P. J. (1982). ‘Applications of advances in nonlinear sensitivity analysis’.

In: System modeling and optimization. Springer, pp. 762–770.

Xu, X. et al. (n.d.). ‘Deep Asymmetric Metric Learning via Rich Relationship

Mining’. In: IEEE Computer Vision and Pattern Recognition,

CVPR.

111

Bibliography

Xuan, H., Souvenir, R. and Pless, R. (2018). ‘Deep Randomized Ensembles for

Metric Learning’. In: European Conference Computer Vision, ECCV,

pp. 751–762.

Yosinski, J. et al. (2014). ‘How transferable are features in deep neural networks?’

In: Advances in Neural Information Processing Systems (NIPS),

pp. 3320–3328.

Yu, B. et al. (2018). ‘Correcting the Triplet Selection Bias for Triplet Loss’. In:

European Conference in Computer Vision, ECCV, pp. 71–86.

Yuan, Y., Yang, K. and Zhang, C. (2017). ‘Hard-Aware Deeply Cascaded Em-

bedding’. In: IEEE International Conference on Computer Vision,

CVPR, pp. 814–823.

Zelnik-Manor, L. and Perona, P. (2005). ‘Self-tuning spectral clustering’.

In: Advances in Neural Information Processing Systems (NIPS),

pp. 1601–1608.

Zhai, A. and Wu, H.-Y. (2019). ‘Classification is a Strong Baseline for Deep

Metric Learning’. In: CoRR vol. abs/1811.12649.

Zhang, X. et al. (2016). ‘Embedding Label Structures for Fine-Grained Feature

Representation’. In: IEEE Conference on Computer Vision and

Pattern Recognition, CVPR, pp. 1114–1123.

Zhao, K., Xu, J. and Cheng, M. (2019). ‘RegularFace: Deep Face Recognition via

Exclusive Regularization’. In: IEEE Conference on Computer Vision

and Pattern Recognition, CVPR, pp. 1136–1144.

Zheng, X. et al. (2019). ‘Towards Optimal Fine Grained Retrieval via

Decorrelated Centralized Loss with Normalize-Scale Layer’. In: Conference

on Artificial Intelligence, AAAI, pp. 9291–9298.

Zhou, D. et al. (2004). ‘Learning with local and global consistency’. In:

Advances in neural information processing systems, pp. 321–328.

Zhu, X., Ghahramani, Z. and Lafferty, J. D. (2003). ‘Semi-Supervised Learning

Using Gaussian Fields and Harmonic Functions’. In: Machine Learning,

112

Bibliography

Proceedings of the Twentieth International Conference (ICML

2003), August 21-24, 2003, Washington, DC, USA, pp. 912–919.

Zhu, X. (2005). ‘Semi-supervised Learning with Graphs’. PhD thesis. Pittsburgh,

PA, USA.

Zhu, X. and Ghahramani, Z. (2002). ‘Learning from labeled and unlabeled data

with label propagation’. In:

113

