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Abstract 

 

This thesis has the aim to evaluate the profitability of an investment in a photovoltaic 

system when considering uncertain energy prices and costs. We determine the optimal 

investment timing using a standard Grid Parity model and then compare it with the optimal 

timing determined using a stochastic Grid Parity model taking into account the presence of 

an option value to invest. This model required the calibration of two Geometric Brownian 

Motions (GBM) that have been used to express the future paths of prices and costs. The 

GBM’s drift and volatility of the prices have been calibrated through an analysis of the 

trend and the volatility of the time series Prezzo Unico Nazionale, that is the price formed 

in the Italian Power Exchange (IPEX). On the other hand, the estimation of the parameters 

related to the costs of the PV plant has been performed applying the learning curve 

approach to the evolution of the PV sector and considering the stocks’ volatility of the main 

companies producing PV modules. The two GBM processes calibrated in this way then have 

been included in the stochastic Grid Parity model with the aim to forecast the timing at 

which the investment in a PV plant becomes profitable, involving in the evaluation also the 

uncertainty surrounding the future paths of prices and costs. In the end of the thesis, we 

will show that the stochastic Grid Parity leads to considerable differences with respect to 

the standard version about the optimal time that a rational agent should choose to invest 

in the PV plant. 
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I. Introduction 

In the last decade, the potential of the photovoltaic (PV) energy production in Italy has 

undergone significant changes as shown by the variation of the total Installed Capacity 

(IC) over time. 

Until 2007 the total Installed Capacity (IC) of the PV sector in Italy was relatively low 

since it was equal to only 87 MW. It started growing considerably only in 2008 when it 

reached 483 MW, that is, an increase equal to more than 450% with respect to the 

previous year1. The growth continued to be very high in the two following years (with 

an average increase around 170%) but the main relevant year for the sector was 2011 

with the addition of 9000 MW of installed PV capacity reaching a total IC equal to 12780 

MW. Thanks to this rapid development, Italy has become one of the leaders in the PV 

energy production among the developed countries with the second largest PV installed 

capacity in Europe after Germany2. In 2012 the growth started to slow down but it was 

still relatively high with an increase rate equal to 30% and a total IC equal to 16480 MW. 

In Figure 1, we can see that the growth rate of the total capacity has dropped 

dramatically after 2013. In the period between 2014 and 2018 the additional capacity 

installed was about 400 MW per year (corresponding to a steady annual increase rate 

around 2%), very far from the growth experienced in the previous years. In 2019 the 

additional capacity was higher with respect to 2018 and equal to 757 MW, determining 

a small increase in the yearly growth rate (3.8%) which led to a total IC of 20860 MW. 

The peculiar growth path of the PV sector in Italy is directly related to the public 

incentives aimed to support the investment in this type of source of energy. 

In particular, the feed-in-tariff denominated Conto Energia, articulated in 5 different 

schemes between 2005 and 2013, had a relevant impact in the expansion of the sector 

through a mechanism of payments financed by the Government on the basis of the cost 

of the PV technology.  

 

 
1 All the data about the Italian PV installed capacity in this Section are available on the website of 
Gestore dei Servizi Energetici (GSE). The data presented here are the most updated and may show small 
differences with data shown in past reports by GSE 
2 See “Rapporto Statistico 2011”, GSE, p. 38 
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The end of Conto Energia in 2013 had a negative effect on the growth rates of the 

installed capacity in the following years showing the dependence of the expansion of 

the PV market on public incentives3.  

What have been said until now may call for an evaluation of the actual profitability of 

the investment in a PV plant. 

One of the most used methodologies applied in the evaluation of PV investment is the 

Grid Parity. The Grid Parity represents a sort of break-even point in that it is defined as 

the point in time where the price of energy purchased on the market equals the unit 

cost of energy produced through a PV plant. The starting scenario is usually 

characterized by a unit cost of energy higher than the price of energy and by the 

following future prospects: (i) a price increase against a cost reduction, (ii) price 

increasing faster than costs or (iii) price diminishing slower than costs. Given the starting 

scenario, in all these three situations at a certain time point in the future price is 

expected to equal and then exceed the cost. By comparing the price that a consumer 

pays for one unit of energy purchased from a provider and the cost of producing one 

unit of energy through its own plant, the Grid Parity determines which one it’s the 

cheapest way for obtaining that unit. Using the Grid Parity, it is possible to estimate the 

 
3 The relationship between the end of Conto Energia and the Total Installed Capacity growth rates is 
recognized also in “Rapporto Statistico GSE 2019” p. 44 

  

Figure 1:  Italian PV Sector Installed Capacity (elaboration on GSE data) 
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optimal time for investing in a PV plant in the light of the evolution of energy prices and 

project costs. 

As shown by Biondi and Moretto (2013), the limit of the standard approach is that it is 

not able to include in the analysis two important factors characterising the investment 

in a PV plant, i.e., (i) the high initial investment cost which is largely irreversible and (ii) 

the uncertainty surrounding the future paths of both electricity prices and costs related 

to the PV plant’s installation. The irreversibility of the investment is important because, 

according to the standard Grid Parity, once that the price of energy is higher than the 

costs of the PV technology it is already optimal to invest in the plant. Therefore, the 

model does not consider that if a subsequent fall in price or rise in cost should occur, 

pushing again costs above price, the investment would no more be profitable. This 

makes the second shortcoming relevant since a correct interpretation of the uncertainty 

characterising the variables considered gives the possibility to include the evaluation of 

this risk in the investment decision, presumably requiring a deeper “in-the-money” 

situation (using a parallelism with option theory) with a higher margin between price 

and cost needed to trigger the decision, which implies a delay in the timing of the 

investment. 

To overcome these shortcomings, in this thesis we use the “stochastic Grid Parity” 

proposed by Biondi and Moretto (2013). This model, developed under a Real Options 

approach4, allows including in the evaluation the cost-opportunity of investing at a 

specific time point giving up the information about the future realization of prices and 

costs which can potentially affect the expected payoff of the investment. By so doing, 

the Grid Parity is determined taking into account the value of the option to defer the 

investment. 

The application of the model in this thesis required the calibration of the two Geometric 

Brownian Motions assumed in order to describe the stochastic evolution of prices and 

costs. 

The parameters related to prices, namely trend and volatility, have been estimated 

considering the time series of the Prezzo Unico Nazionale (PUN) which is the price that 

is formed in the Italian Power Exchange (IPEX) taken as a reference for the energy prices 

 
4 See Dixit and Pindyck (1994) 
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in Italy. This time series has been subjected to a step-by-step data treatment to correctly 

estimate the necessary parameters: first of all, we reduced the observations keeping the 

prices in the daily interval between 8:00 and 19:00 (that is approximately the time 

interval with an adequate solar exposition for a PV plant), then the series has been 

corrected removing the effect of the inflation with the actualization of the prices to 

December 2019 and after that the data has been expressed in logarithmic form. At this 

point we performed the deseasonalization procedure necessary to remove eventual 

seasonal autocorrelation that could characterize prices related to the consumption of 

energy. 

The logarithmic returns of the time series built in this way were tested for independence 

with the correlogram resulting in the absence of autocorrelation for several lags (also 

because of the deseasonalization treatment) and they were also tested for normality 

with the QQ-Plot which indicated an empirical distribution close to the normal one. 

These two results suggested the plausibility for the PUN series to be modelled as a 

Geometric Brownian Motion (GBM). Furthermore, we performed the Augmented Dickey 

Fuller test on the logarithmic returns to test the stationarity of the time series and the 

test did not reject the null hypothesis of non-stationarity which is an indication for the 

plausibility of the assumed GBM model. 

At the end of the treatment of the data just described, it has been possible to estimate 

the historical trend and volatility exploiting the properties of the logarithmic returns 

related to the two parameters of the GBM. 

On the other side, we performed a parallel analysis on the costs related to a PV plant in 

order to estimate the parameters of trend and volatility necessary for the stochastic Grid 

Parity model. We considered as a reference for the unitary cost of the investment in a 

PV plant the Levelized Cost of Energy which is an indicator that expresses in a single 

number all the different expenses that this type of investment involves all along its 

economic lifetime, starting from installation costs to the maintenance ones, actualizing 

them at a specific moment and dividing for the expected output produced by the plant.  

To estimate the trend determining the evolution in time of this indicator, we followed 

the Learning Curve approach. The idea behind this approach is that the cost related to 

the production of something in a given market is conditioned by the technological 

progress reached in that sector and the experience that the agents in that market have 
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developed as it becomes more mature: in a relatively young sector like the photovoltaic 

one we can expect to have still a considerable margin for cost reduction whose trend 

can be estimated with the Learning Curve approach. 

The other parameter necessary for our model, i.e., the volatility characterising the 

future evolution of the cost, was more complex to estimate directly because of the 

various different expenses composing the total cost of the plant. To overcome this 

difficulty, we took as a proxy for the volatility of the cost of the PV plant the average of 

the volatilities of the market shares of the biggest companies producing PV modules 

(data that are readily available) considering that the cost of the modules is the most 

important factor affecting the overall cost of the PV plant. 

Finally, using the estimated parameters, we compared the results obtained using a 

standard Grid Parity model with those obtained using the stochastic Grid Parity. We 

show that using the latter approach leads to a significant postponement of the optimal 

timing choice as a consequence of the inclusion in the investment evaluation of the 

option value associated with the PV investment project. 

 

The thesis includes 6 chapters. Once introduced the problem in Chapter 1, in Chapter 2 

we briefly present the theory behind a Geometric Brownian Motion (GBM), that is, the 

process that we will use to model the random evolution of both prices and costs over 

time. Chapter 3 presents the development of the Italian energy market from which the 

data about the prices of electricity have been collected. This chapter contains the 

analysis that has been performed on the time series of the prices and the estimation of 

the relevant parameters characterizing its dynamic. In Chapter 4 we discuss the recent 

trend of the Levelized Cost of Energy (LCOE) for the PV sector. We then determine the 

parameters characterizing the dynamic of the LCOE. In Chapter 5 we present the models 

used in our numerical exercise, that is, i) the standard Grid Parity model and ii) the 

stochastic Grid Parity model. We calibrate both models using the parameters estimated 

in the previous Chapters and calculate the expected investment time considering 2019 

as starting point. Chapter 6 concludes. At the end of the thesis there is an Appendix 

where we provide tables and figure concerning the data analysis and the proofs related 

to the models presented. 
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II. Theoretical Background 

II.1 Stochastic Models 

A fundamental assumption in this thesis is that electricity prices in the Italian market 

and costs related to a PV plant evolve over time following a Geometric Brownian Motion. 

In the next Sections, we present the main properties of the GBM starting from the 

simpler processes needed for its comprehension, i.e., White Noise, Random Walk and 

Brownian Motion. 

A Brownian Motion is a stochastic process and as such it satisfies the general propriety 

of any stochastic process, that is: 

 “A stochastic process is a collection of random variables that takes values 

in a set S, the state space, and that is indexed by another set T, the index 

set5”. 

This simply means that the random variables of a stochastic process must be ordered in 

time. 

The Brownian Motion can be conceptualized starting from the Symmetric Random Walk 

(SRW)6, a process based on its closest past realization and a White Noise. 

II.1.1 White Noise 

A White Noise is the simplest example of a stationary stochastic process. A time series 

at is a White Noise if the sequence is composed by independent and identically 

distributed random variables with constant mean, constant variance and correlation 

equal to 0 for all lags: 

 
𝑎𝑡 ~ 𝑊𝑁(𝜇, 𝜎

2) 
(1) 

where7 

• 𝐸(𝑎𝑡) = 𝜇      for any  time period 𝑡 

 
5 See Olofsson and Andersson (2011), p. 455  
6 See Shreve (2004) p. 83-84 
7 See Ruppert (2011), p.205 
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• 𝑉𝑎𝑟(𝐴𝑡) = 𝜎2      (a constant) for any 𝑡 

• 𝐶𝑜𝑟𝑟(𝐴𝑡 , 𝐴𝑡+𝑗) = 0    for any 𝑗 ≠ 0 

Note that since mean and variance are constant over time, a White Noise is a stationary 

process. 

Note that as 𝐶𝑜𝑟𝑟(𝐴𝑡 , 𝐴𝑡+𝑗) = 0, in order to determine if a time series could be 

modelled as a white noise, the coefficients of its Auto Correlation Function (ACF) must 

be not significantly different from 0. 

A relevant property of the White Noise comes from the absence of autocorrelation. 

Indeed, it is possible to prove that the past realizations of the process have no impact 

on the capacity to predict the future realizations of the process itself8: 

 
𝐸(𝐴𝑡+𝑗|𝐴1, … , 𝐴𝑡) = 𝜇     for all j ≥ 1 

(2) 

One of the most used versions of White Noise is the Gaussian White Noise which is often 

included into more complex models: its particularity arises from the fact that the 

random variables of this process are normally distributed with mean 0 and variance 𝜎2. 

II.1.2 Symmetric Random Walk (SRW) 

The previous properties of a White Noise are essential for the following considerations 

about the Random Walk. 

A Random Walk is a process yt which takes the following form: 

 
𝑦𝑡 = 𝑦𝑡−1 + 𝑎𝑡, where 𝑎𝑡~ 𝑊𝑁(0, 𝜎

2) 
(3) 

with 𝑦0 ∈ R as starting value and where at is a white noise process.9 

Being the starting value y0 known, we can say that at each point in time t, yt is equal to 

y0 plus the sum of all the past realizations of at: 

 𝑦𝑡 = 𝑦0 +∑𝑎𝑖

𝑡

𝑖=1

  

(4) 

 
8 See Tsay (2013), p. 86-87 
9 See Tsay (2013), p. 87 
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The expected value of the process is simply coincident with its known starting point. 

 𝐸(𝑦𝑡) = 𝐸 (𝑦0 +∑𝑎𝑖

𝑡

𝑖=1

) = y0 
 

(5) 

A Random Walk is a non-stationary process since its variance increases over time10. Note 

in fact that: 

 
𝑉𝑎𝑟(𝑦𝑡) = 𝐸(∑∑𝑎𝑖𝑎𝑗) =  𝑡𝜎2 

(6) 

The Autocovariance of a Random Walk is also dependent on the time lag: 

 𝛾𝑠,𝑡 = {
𝜎2𝑡                      𝑡 = 𝑠
𝜎2min(𝑠, 𝑡)      𝑡 ≠ 𝑠

  

From the discussion above it is important to underline that the Random Walk 

comprehends White Noise as one of its elements but it does not maintain the property 

of a stationary time series. In a Random Walk it is straightforward to recover the 

stationarity through an operation of first difference that implies the isolation of the 

White Noise: 

 
Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝑎𝑡 

(7) 

The Symmetric Random Walk SRW is a particular type of Random Walk which can be 

distinguished from the general process mainly because of the characteristics of its 

probability distribution. 

The construction of a SRW is ideally based on the formalization of a time series 

composed by random variables characterized by two possible outcomes, A and B, each 

with probability ½. 

 
10 See Appendix A.1 for a proof. 
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We define 𝜔𝑛 the outcome of the n-th trial and let: 

 

Finally, we define 𝑀0 = 0 and: 

 𝑀𝑘 =∑𝑋𝑗

𝑘

𝑗=1

      𝑘 = 1,2, …. (9) 

The process 𝑀𝑘 is a symmetric random walk, at each step this process has two 

possibilities: either going up by one unit or going down by one unit. 

Looking forward to what we are going to discuss later about the Brownian Motion, it is 

important to go in depth about three aspects of the SRW: its increments, its Martingale 

Property and its Quadratic Variation. 

The increments of a random walk are independent. For integer values 

0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 

the random variables  

𝑀𝑘1 = (𝑀𝑘1 −𝑀𝑘0), (𝑀𝑘2 −𝑀𝑘1), … , (𝑀𝑘𝑚 −𝑀𝑘𝑚−1) 

 

 

Figure 2:  Steps of a Symmetric Random Walk (Shreve 2004) 

 𝑋𝑗 = {
1           𝑖𝑓 𝜔𝑗 = 𝐴

−1         𝑖𝑓 𝜔𝑗 = 𝐵
 (8) 
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are expected to be independent and the increment can be defined as follows: 

 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡:                  𝑀𝑘𝑖+1
−𝑀𝑘𝑖

= ∑ 𝑋𝑗

𝑘𝑖+1

𝑗=𝑘𝑖+1

 
(10) 

The increment measures the change of the position of the random walk, as graphically 

represented in Figure 2, between time ki and ki+1. If increments of non-overlapping 

periods are considered, independence still holds because the events occurring at each 

period are, by assumption, independent. 

The increments have variance equal to 𝑘𝑖+1 − 𝑘𝑖 as we can see in Eq. 13: 

 
𝑉𝑎𝑟(𝑋𝑗) = E(Xj

2) = 1 
(11) 

 
𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖) = 0                  𝑗 ≠ 𝑖 

(12) 

 𝑉𝑎𝑟(𝑀𝑘𝑖+1
−𝑀𝑘𝑖

) = ∑ 𝑉𝑎𝑟(𝑋𝑗)

𝑘𝑖+1

𝑗=𝑘𝑖+1

= ∑ 1 = 𝑘𝑖+1 − 𝑘𝑖

𝑘𝑖+1

𝑗=𝑘𝑖+1

 
(13) 

Knowing that the variance of the SRW increases by 1 for each time t, the variance of the 

increment over an interval from k to l is l-k. 

After that, it is possible to demonstrate that the SRW is a martingale11.  

The quadratic variation of the SRW is defined as: 

 [𝑀,𝑀]𝑘 =∑(𝑀𝑗 −𝑀𝑗−1)
2
= 𝑘 

𝑘

𝑗=1

 
(14) 

In the case of SRW, the quadratic variation takes the same value of the variance but its 

calculation is different: if the random variables were not symmetric with different 

probabilities for the upward and downward movements, the variance would be affected 

by this fact. Furthermore, while the variance is a theoretical concept, the quadratic 

variation is calculated considering the actual path that the process has taken. 

 
11 See Appendix A for the proof of the Martingale Property for the SRW 
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II.1.3 Scaled Symmetric Random Walk 

In order to recreate the instantaneous change of the Brownian Motion, the Symmetric 

Random Walk is scaled infinitely. Both time and the size of the movement are subdued 

to a scale factor. 

The scaled symmetric random walk is written as: 

 𝑊(𝑛)(𝑡) =
1

√𝑛
𝑀𝑛𝑡 (15) 

with nt integer. In the points where nt is not an integer, 𝑊(𝑛)(𝑡) is defined through the 

linear interpolation of the two closest points: 

 
𝑊(𝑛)(𝑡) =

{
 

 
1

√𝑛
𝑀𝑛𝑡                 𝑤ℎ𝑒𝑛 𝑡 =

𝑚

𝑛
∈ 𝑁

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛           𝑡 ∈ (
𝑚

𝑛
,
𝑚 + 1

𝑛
)

 

(16) 

II.1.4 Brownian Motion 

From Eq. 16 it is possible to obtain the Brownian Motion by taking the limit 𝑛 → ∞. 

With 𝑡 > 0, as 𝑛 → ∞, the distribution of the scaled random walk 𝑊(𝑛)(𝑡) evaluated at 

time t converges to the normal distribution with mean zero and variance t because of 

the Central Limit Theorem. 

The Central Limit Theorem12 states that: let 𝑋1, … , 𝑋𝑛, … be independent, identically 

distributed, real valued random variables with 

 
𝐸(𝑋𝑖) = 𝑚                𝑉(𝑋𝑖) = 𝜎2 > 0 

 

for 𝑖 = 1,… set 

 
𝑆𝑛 ≔ 𝑋1 +⋯+ 𝑋𝑛 

 

 

 
12 See Evans (2014), p. 26 
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Then for all −∞ < 𝑎 < 𝑏 < +∞ 

 lim
𝑛→∞

𝑃 (𝑎 ≤
𝑆𝑛 − 𝑛𝑚

√𝑛𝜎
≤ 𝑏) =

1

√2𝜋 ∫ 𝑒−
𝑥2

2
𝑑𝑥𝑏

𝑎

 (17) 

Finally, we can define the Brownian Motion using the limit of the Scaled SRW: 

 
𝑊(𝑡) = 𝑑 − lim

𝑛→+∞
𝑊(𝑛)(𝑡) 

(18) 

where “d” underlines the fact that this is a limit in distribution because the distribution 

of the scaled random walk 𝑊(𝑛) converges to the distribution of the process 𝑊(𝑡). 

Considering a probability space with sample space Ω, event space 𝔽 and probability 

function ℙ, we address a continuous function 𝑊(𝑡) in 𝑡 ≥ 0 for 𝜔 ∈ Ω that takes value 

0 in time 0 (𝑊(0) = 0). This function is a Brownian Motion if for 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 

the increments: 

 
𝑊(𝑡1) = 𝑊(𝑡1) −𝑊(𝑡0),𝑊(𝑡2) −𝑊(𝑡1),… ,𝑊(𝑡𝑚) −𝑊(𝑡𝑚−1) 

 

are independent and each of them has a normal distribution with zero mean and 

variance dependent only on the time lag: 

 
𝐸[𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)] = 0 

(19) 

 
𝑉𝑎𝑟[𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)] = 𝑡𝑖+1 − 𝑡𝑖 

(20) 

For considerations similar to those of the symmetric random walk, we can also state that 

the Brownian motion is a martingale13. 

In the case of a martingale the information about the past realization can be ignored 

until the closest one in time to the one we want to predict. This means that any 

information concerning the past is fully embodied in the last observation. 

 
13 See Appendix A for a sketch of the proof of the Martingale property for the Brownian Motion 
increments. 
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In general terms the quadratic variation of a function 𝑓(𝑡) defined for 0 ≤ 𝑡 ≤ 𝑇 up to 

time T is defined: 

 [𝑓, 𝑓](𝑇) = lim
||Π||→0

∑[𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗)]
2

𝑛−1

𝑗=0

 (21) 

As for the martingale property, the quadratic variation of the Brownian motion presents 

similar results to those of the Symmetric Random Walk even if the path to arrive to them 

is different because BM does not present natural step size as in the case of SRW. 

Brownian Motion’ quadratic variation increases by 1 per unit of time, fixing Π =

{t0, 𝑡1, … , 𝑡𝑛} as a partition of [0, 𝑇] (meaning that 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇) we have: 

 lim
||Π||→0

∑(𝑊(𝑡𝑗+1) −𝑊(𝑡𝑗))
2

= 𝑇

n−1

j=0

 (22) 

It is worth stressing that [𝑊,𝑊](𝑇) = 𝑇 with probability tending to 1. This implies that 

there exist paths of the Brownian motion where the quadratic variation is not equal to 

t but their probability to occur is equal to 0. 

The vast majority of functions have continuous derivatives, therefore, they are 

characterised by quadratic variation equal to 0. Brownian motion is non differentiable 

w.r.t to time which makes it not subjected to ordinary calculus that does not deal with 

quadratic variation. On the other hand, stochastic calculus considers also the quadratic 

variation as can be seen in the expression of the Ito-Doeblin Formula (which contains an 

extra term coming from the nonzero quadratic variation of the Brownian Motion) that 

is necessary for the mathematical derivation of the solution formula of the Geometric 

Brownian Motion that is presented later in the text. 
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II.1.5 Geometric Brownian Motion 

A Geometric Brownian Motion (GBM)14 can be illustrated through the following 

stochastic differential equation (SDE): 

 {
𝑑𝑋(𝑡) = αX(t)dt + σX(t)𝑑𝑊(𝑡)              𝑡 ≥ 0
𝑋(0) = 𝑥0                                                               

 

𝜇(𝑡, 𝑋) = 𝛼𝑋             𝑑𝑟𝑖𝑓𝑡 

𝜎(𝑡, 𝑋) = 𝜎𝑋              𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

(23) 

Note that that if the diffusion term is equal to 0, Equation 23 becomes an ordinary 

differential equation. Therefore, the diffusion term is the one which makes the GBM 

stochastic. 

In general, a stochastic process P(t) is a diffusion if its local dynamics is representable 

with a SDE of this type: 

 
𝑋(𝑡 + Δ𝑡) − 𝑋(𝑡) = 𝜇(𝑡, 𝑋(𝑡))Δ𝑡 + 𝜎(𝑡, 𝑋(𝑡))𝑍(𝑡) 

(24) 

where Z(t) is a random variable with a given distribution acting as disturbance term, not 

affected by the information until time t while 𝜇 and 𝜎 are deterministic functions. 

The solution of Equation 23 requires the use of Ito’s stochastic calculus. This is because, 

as well known, a Brownian motion is nowhere differentiable according to ordinary 

calculus. 

An Ito Process is a stochastic process that has the integral form: 

 𝐼(𝑡) = 𝐼(0) + ∫ Δ(𝑢)𝑑𝑊(𝑢)
t

0

+∫ Θ(u)du
𝑡

0

 

𝑊(𝑡)~𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 

𝑋(0) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Δ(𝑢), Θ(𝑢) 𝑎𝑑𝑎𝑝𝑡𝑒𝑑 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 

(25) 

 

 
14 The Geometric Brownian Motion is a widely used process in Finance. See Le Gall (2016) 
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or the equivalent differential form 

 {
𝑑𝑋(𝑡) = Δ(𝑡)𝑑𝑊(𝑡) + Θ(𝑡)𝑑𝑡              𝑡 ≥ 0
𝑋(0) = 𝑥0                                                             

 (26) 

From this definition we can see that the Geometric Brownian Motion is an Ito Process 

and consequently we can use the rules of differentiation for this class of processes, in 

our case the Ito-Doeblin formula. The Ito-Doeblin formula comes from unified 

considerations about the implications of the non-zero quadratic variations of the 

Brownian motion 𝐵𝑀[𝑊,𝑊](𝑡) = 𝑡 and the second order Taylor expansion. 

On the basis of the considerations above, it is now possible to derive the solution15 

formula of the GBM: 

 𝑋(𝑡) = 𝑥0𝑒
(𝛼−

𝜎2

2
)𝑡+𝜎𝑊(𝑡)

 (27) 

Once found the solution, it is also possible to express the expected value16 of the GBM: 

 𝐸(𝑋(𝑡)) = 𝑥0𝑒
(𝛼−

𝜎2

2
)𝑡
∙ 𝑒

𝜎2

2
𝑡 = 𝑥0𝑒

𝛼𝑡 (28) 

 

 

 

 

 

 

 

 
15 The complete derivation is presented in Appendix A.2 
16 Proof in Appendix A.3 
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II.2 Augmented Dickey Fuller Test17 

This test will be used in Chapter 3 in order to assess the hypothesis of stationarity of the 

time series of the electricity prices. 

The Augmented Dickey Fuller (ADF) Test is one of the most common tests together with 

Phillips-Perron test and KPSS test which are used to check the stationarity of a time 

series. 

We start with a process similar to an Auto Regressive of order 1: 

 
𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑋𝑡             𝑓𝑜𝑟 𝑡 = 1,2… 

(29) 

where 𝑋𝑡 is a stationary process. 

We know that at these conditions 𝑌𝑡 is stationary if |𝛼| is strictly minor than one and it 

is nonstationary if it is equal to 1. 

For this reason, we set 𝛼 = 1 as the null hypothesis. 

𝑋𝑡 is supposed to be an Auto Regressive of order 𝑘 of the type: 

 
𝑋𝑡 = 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑘𝑋𝑡−𝑘 + 𝑒𝑡 

(30) 

𝑌𝑡 can be rewritten as follows: 

 
𝑌𝑡 − 𝑌𝑡−1 = 𝛼𝑌𝑡−1 + 𝑋𝑡 − 𝑌𝑡−1 = (𝛼 − 1)𝑌𝑡−1 + 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑘𝑋𝑡−𝑘 + 𝑒𝑡

= δ𝑌𝑡−1 + 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑘𝑋𝑡−𝑘 + 𝑒𝑡 

(31) 

In the equation above we can see that 𝛼 − 1 has been replaced with 𝛿, which means 

that 𝛼 − 1 = 𝛿. Now because the null hypothesis provides 𝛼 = 1 → 𝛿 = 0, it follows 

that 𝑋𝑡 = 𝑌𝑡 − 𝑌𝑡−1 → 𝑋𝑡−1 = 𝑌𝑡−1 − 𝑌𝑡−2 and so: 

 
𝑌𝑡 − 𝑌𝑡−1 = δ𝑌𝑡−1 + 𝜙(𝑌𝑡−1 − 𝑌𝑡−2) + ⋯+ 𝜙𝑘(𝑌𝑡−𝑘 − 𝑌𝑡−𝑘−1) + 𝑒𝑡 

(32) 

 
17 See Cryer and Chan (2008) p. 219 and Tsay (2013) p. 91-96. 
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The test is performed through the regression of the observations in first difference18 

(𝑌𝑡 − 𝑌𝑡−1) against the data itself non-differenced at time t-1 (𝑌𝑡−1) and the k lags before 

in first difference. From this regression it is possible to estimate the 𝛿 coefficient. 

If 𝛿 results significantly different from 0 (which means 𝛼 ≠ 1), the null hypothesis of 

non-stationarity can be rejected. This can be recognized through the test statistics of the 

coefficient estimated with the least squares’ procedure. 

The appropriate critical values for the different levels of significance are particular 

because the ADF test statistics is not distributed according to a t-distribution under the 

null hypothesis. The values to which the distribution of this statistic tends have been 

estimated by Fuller and must be used through the specific tables in order to verify 

whether the null hypothesis should be rejected or not. 

The Augmented Dickey-Fuller test can be expressed in three different versions, 

according to three models that take into account the possibility to have a trend or a 

constant shift in the process. The decision about which of these tests is the more adapt 

for the time series analysed has an influence on the relative critical values. Model 1 can 

be considered the classical Augmented Dickey Fuller test, model 2 corrects the standard 

equation for the existence of a constant and model 3 introduces terms that embody the 

possibility that the series is not stationary around a fixed mean but it is stationary around 

a trend. 

 

  

 
18 That is, Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 
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III. Prices 

This chapter contains the presentation of the time series of the energy prices that has 

been used for the calibration of the parameters of the Geometric Brownian Motion. We 

start presenting the source of the data (the Italian electric exchange) with its legal 

framework and then we go through the various steps of the treatment of the time series 

needed for the parameters’ estimation. 

III.1 Development of the European Electric Markets and the IPEX 

The development of the Italian Power Exchange (IPEX) is strictly related to the evolution 

of the different electric markets in the European Union, as we will see in this section. 

The legal framework of the IPEX is based on several normative references, in particular: 

• Law n. 481 of 14/11/1995 establishing the Authority for Electric Energy and Gas 

(Autorità per l’Energia Elettrica e il Gas, AEEG); 

• EU Directive 96/92/CE establishing communitarian rules for the internal electric 

market; 

• Legislative Decree n. 79/99 implementing the EU Directive in the national body 

of law and entrusting “Gestore del Mercato (GME)” for the regulation of the 

Italian electric exchange; 

• EU Directive 2003/54/CE3 repealing the previous Directive and implementing 

new norms for the generation and distribution of energy. This Directive defines 

the rules for the access to the market and the procedures that need to be applied 

in the public notices through which the market participants to the market are 

selected. The obligations to which the entities involved in the construction of 

new generating capacity must comply with are the following19: 

o the safety and security of the electricity system, installations and 

associated equipment; 

o protection of public health and safety; 

o protection of the environment; 

 
19 These are taken directly form the text of the EU Directive: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A32003L0054&qid=1620843123560 
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o land use and siting; 

o use of public ground; 

o energy efficiency; 

o the nature of the primary sources; 

o applicant specific characteristics particular to the applicant, such as 

technical, economic and financial capabilities. 

• Regulation 1228/2003 of the European Parliament and Council regulating the 

exchange of energy across the national borders; 

• Technical Guidelines regulating the Energy Market (“Testo Integrato della 

Disciplina del mercato elettrico”) which contain the standards to be applied and 

the procedures implementing the Decree 16/3/1999 n.79; 

• Law n. 239/2004 for the Rearrangement of the Energy Sector establishing the 

general objectives of the national energy policies. 

 

The development of the Italian Energy Market was a direct consequence of the impulse 

given by the European Union in the form of the Directive 96/92/CE aiming at the 

harmonization of the European energy markets on a communitarian level. The 

transposition of the Directive by each member State led to the design of different 

platforms for the exchange of energy. 

The first structured European electric market was the UK Pool activated in 1990. In 2001, 

this market was then replaced by the New Electricity Trading Arrangements (NETA) 

which was characterised by a model of decentralized bilateral exchanges. 

The Nord Pool represents instead the first energy market working on a regional level. It 

was institutionalised in Norway in 1993 and since then it became the promotor of a 

process that resulted in the involvement of Sweden in 1996, Finland in 1998 and 

Denmark in 2000, thus being able to bring together all the energy exchanges in 

Scandinavia. In Spain, the energy market was activated in 1999 and was named 

Operador del Mercado Electrico (OMEL), while in the Netherlands, in the same year, a 

platform for the exchange of energy named Amsterdam Power Exchange (APX) was 

activated. In 2000, Germany introduced at the same time two energy exchanges: the 

first one in Frankfurt based on continuous bilateral trading and the second located in 

Leipzig based on an auction system. In 2002, the two systems merged into the European 
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Energy Exchange (EEX) based in Leipzig. In 2001, France activated its electric market 

named Powernext which was based on an auction mechanism. Finally, in 2002, Austria 

initiated the Energy Exchange Austria (EXAA) located in Graz. 

The Italian Power Exchange (IPEX) was activated through the legislative decree 79/99 (d. 

lgs. n. 79/99) 20. In accordance with the Directive (96/92/CE), the IPEX has developed 

following the prescriptions characterising all the markets in the European context21. 

The IPEX has been active since 31st March 2004 under the control of the “Gestore dei 

Mercati Energetici S.p.A.” (GME) that is an entity instituted ad-hoc, by the same Decree 

79/99, which acts as central counterpart in the transactions registered on the 

exchange22. 

GME is totally owned by Gestore dei Servizi Elettrici S.p.A. (GSE) which is participated by 

the Italian Ministry of Economics and Finance that owns 100% of its shares23. 

The GSE has also an exclusive and total participation in Acquirente Unico S.p.A. (AU) 

whose aim is to arrange supply contracts in order to guarantee availability of the 

productive capacity and the dispatchment of energy in condition of continuity and 

efficiency. 

The electric exchange is not only a digital market but also a physical market where the 

frame for the injection and extraction of energy in the grid is defined. Hence, the 

exchange becomes a fundamental tool for developing a competitive market providing 

the context needed to have efficient equilibrium prices24. The existence of a structured 

market like the one described above also permits to those interested in analysing the 

events occurring in the exchange (as in our case) to rely on the availability of data and 

time series useful to interpret the dynamics underlying the formation of energy prices. 

The IPEX includes a spot market (MPE Mercato Elettrico a Pronti) and a future market 

(MTE Mercato Elettrico a Termine). 

The spot market includes: daily exchanged products market (MPEG, Mercato dei 

Prodotti Giornalieri), day-ahead market (MGP, Mercato del Giorno Prima), Intra-day 

 
20www.camera.it/parlam/leggi/deleghe/99079dl.htm 
21 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0092 
22 https://www.mercatoelettrico.org/It/MenuBiblioteca/Documenti/20200101_Vademecum_PCE_IT.pdf 
23https://www.mercatoelettrico.org/It/MenuBiblioteca/Documenti/VademecumBorsaElettricaItaliana_d
ef.pdf 
24 
https://www.mercatoelettrico.org/It/MenuBiblioteca/Documenti/MercatiperAmbientedelGME_def.pdf 
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market (MI, Mercato Infragiornaliero) and the market for the service of dispatching 

(MSD Mercato del Servizio di Dispacciamento)25. The MGP is the most important 

exchange where the largest part of the transactions occurs. 

III.2 Time series of the Energy Prices 

The time series, composed by the electricity prices of the IPEX on which our analysis has 

been performed, have been retrieved from the web site of Gestore del Mercato Elettrico 

(GME). We consider prices from April 2004, that is, from when the exchange initiated its 

activity, until December 2019. We decided to consider prices until December 2019 in 

order to avoid including the effects of the pandemic crisis which strongly conditioned 

consumers’ behaviour all over the world with a direct impact on energy price. This 

impact would be reflected in the trend and volatility of our time series and, given that 

we do not expect a similar event to repeat within the horizon of our project, we want to 

exclude this effect from our analysis. 

The data available online published by Gestore del Mercato Elettrico are grouped in 

different Excel spreadsheets, one for each year. Each spreadsheet is composed by 4 

tabs: the first one explaining the abbreviations used in the file, the second containing 

the hourly prices, one with the purchases volume and the last one with the sales volume. 

We are only interested in the information about prices contained in the second tab: this 

is organized in such a way that on the first columns days and hours are ordered while on 

the first row there are the different areas where the IPEX have concurred to the price 

determination. These areas are: Italy (indicated as “PUN” Prezzo Unico Nazionale – 

Single National Price), Austria, Brindisi, Calabria, Central-Northern Italy, Corsica AC, 

Corsica, Central-Southern Italy, Neighbouring Country North-East, Neighbouring 

Country North-West, Neighbouring Country South, Neighbouring Country Corsica, 

Foggia, France, Greece, Monfalcone, Northern Italy, Piombino, Priolo G., Rossano, 

Sardegna, Sicilia, Slovenia, Southern Italy, Switzerland, Turbigo-Ronco. 

 
25 https://www.mercatoelettrico.org/It/MenuBiblioteca/Documenti/20200101_GuidaME.pdf 
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Figure 3: Extrapolation of the raw data in the table proposed by the GSE where it can be 

seen the zonal differentiations and the hourly format 

From here the first passage was to extrapolate only the columns that indicate time 

period and the PUN which is the price of interest of our analysis. 

GME dataset includes hourly price for each 0:00-23:00 hour interval but in our analysis 

we follow Castellini et al. (2020) and restrict the observations to the daily interval 

between 8:00 and 19:00. This is because this time interval is characterized by solar 

exposition, a crucial input for the production of energy through a photovoltaic system26.  

In Figure 4, we can see the plot of the raw data of the hourly PUN from April 2004 to 

December 2019. 

Figure 4: Raw data of the PUN between 2004 and 2019 

 
26 The data resulting from these elaborations can be seen in Appendix B.1 
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In Figure 5, we plot the average monthly prices that have been calculated on this new 

dataset modified as described before. This plot provides a much clearer view of the data 

than the hourly price in Figure 4. 

Figure 5: Monthly Average of the PUN between 2004 and 2019 

 

III.3 Inflation Adjustment 

A general decreasing tendency of the energy prices seems to be shown by the data and 

this trend becomes even more evident once prices are corrected for inflation. 

The time series of monthly prices has been adjusted to inflation revaluating each price 

to its value of December 2019. The inflation rates have been retrieved from inflation.eu 

in yearly format27. 

The yearly data have been converted to monthly equivalent through this procedure: 

 𝑖𝑚 = √1 + 𝑖𝑦

1
12

− 1     (33) 

𝑖𝑚 = 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒               𝑖𝑦 = 𝑦𝑒𝑎𝑟𝑙𝑦 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

 
27 See Appendix B.2 for the Inflation Rates 
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An inflation-corrective coefficient equal to 1 (where 1 means no inflation) has been 

applied to the price of December 2019, that is the date to which all the prices have been 

actualized. This coefficient has been multiplied by the monthly rate of inflation going 

backward to the month of November obtaining a compounded rate to be multiplied to 

the price of the relative month.  

The process is repeated until 2004 in order to have an actualization coefficient for each 

month as can be seen in Figure 6. 

The actualization of the prices has made more evident the overall reduction in the prices 

over time in real terms respect to nominal terms given the positive inflation occurred in 

the period considered. In Figure 7, we plot the PUN adjusted for inflation. 

Figure 7: Inflation-Adjusted Monthly Averaged PUN between 2004 and 2019 

Figure 6: partial extrapolation of the process of actualization of the prices 
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III.4 Log Transformation 

The data corrected for the inflation in the way described above are then subjected to a 

logarithmic transformation needed for the next steps of the analysis. 

As it was expected, the log transformation reduced the fluctuations of the time series as 

we can see in Figure 8. 

The correlogram of the log-returns in Figure 9 shows a significant autocorrelation only 

at lag 12 which is a signal of the presence of yearly seasonality in the data as might be 

expected in a time series of energy prices. 

Figure 8: Logarithmic Inflation-Adjusted Monthly PUN between 2004 and 2019 

Figure 9: Correlogram of the Logarithmic Returns of the PUN 2004-2019 
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III.5 Deseasonalization 

Because of the signal in the correlogram, the data has been deseasonalized in order to 

remove the effect of climate variations during the year that can alter both demand and 

supply along with other types of cyclical factors. 

The process of deseasonalization has been performed using a decomposition with an 

additive model of the type: 

 
𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡 

(34) 

𝑇 = 𝑡𝑟𝑒𝑛𝑑      𝑆 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦       𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 

Using software R, it has been possible to extrapolate these factors and display them 

through the function “decompose()” which individuates the trend component through 

moving average model and excludes it from the time series, after that seasonality is 

extracted and centred leaving the error term that is determined with the removal of  

the trend and the seasonal factors from the time series. The use of a moving average 

model leads to a loss of a starting and an ending part of the time series: in our case the 

Figure 10: Output of R showing the decomposition of the PUN using the additive method 
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window of 12 periods for the yearly seasonality involved the loss of the first 6 and the 

last 6 observations. 

The additive model has been preferred to the multiplicative one because through a 

visual inspection of the plot of the data observed, the magnitude of seasonality does not 

seem to be proportional to the trend and also because the data were already subjected 

to a logarithmic transformation. In Figure 11 and 12 the deseasonalized log-data and the 

log returns are presented.  

 

Figure 11: Deseasonalized Logarithmic Inflation-Adjusted PUN 2004-2019 

 

Figure 12: Logarithmic Returns PUN 2004-2019 
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III.6 Independence and Normality 

The next step was to assess the independence assumption needed to validate the 

hypothesis by which the PUN can be modelled using a Geometric Brownian Motion.  

We notice that the plot of the correlogram in Figure 13 exposes an absence of 

autocorrelation at all lags. We can compare this correlogram in Figure 13 with the one 

in Figure 10 to see the effect of the deseasonalization. 

 

Figure 13: Correlogram of the deseasonalized Logarithmic Returns PUN 2004-2019 

 

With the function “qqplot()” and “qqline()” in software R it has also been possible to 

visually check for the normality of the data obtaining a superimposition of the sample 

to the theoretical line representing the normal distribution. The result of this procedure 

can be seen in Figure 14. 

Normality was checked because if we assume that 𝑝𝑡 (PUN) follows a Geometric 

Brownian Motion then log (
𝑝𝑡

𝑝𝑡−1
) should be normally distributed. 
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Figure 14: Q-Q Plot of the Logarithmic Returns PUN 2004-2019 

III.7 Non-stationarity 

The last step for the validation of the use of the GBM is the test for non-stationarity for 

which it has been used the Augmented Dickey Fuller ADF test. As it was explained in 

Chapter 2, this test is structured in such a way that the null hypothesis coincides with 

the presence of a unit root in the process, that means non stationarity, while the 

alternative hypothesis suggests stationarity. For our purpose we expect our time series 

to be non-stationary, so the ADF should not reject the null hypothesis. 

The test has been performed using software R through the function ur.df() which is 

composed by different arguments. The first argument requires the specification of the 

time series that has to be considered. The second is used to specify the type of ADF that 

has to be performed which can be chosen among “none”, “drift” and “trend”: “none” 

uses the standard ADF, “drift” corrects in order to account for the presence of a constant 

drift (that is represented as c in Equation 35) and “trend” is used to consider both the 

presence of a constant drift and the presence of a deterministic time trend that can be 

represented as 𝛿𝑡 in Equation 36: 
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𝑑𝑟𝑖𝑓𝑡: 𝑦𝑡 = 𝑐 + 𝜙𝑦𝑡−1 + 𝜖𝑡 
(35) 

𝑡𝑟𝑒𝑛𝑑: 𝑦𝑡 = 𝑐 + 𝛿𝑡 + 𝜙𝑦𝑡−1 + 𝜖𝑡 
(36) 

The argument “lags” specifies the maximum number of lags that have to be included in 

the formula of the ADF while the argument “selectlags” allows to choose the criteria 

through which the optimal number of lags has to be selected giving the possibility of 

using either the Akaike criterion AIC, Bayes criterion BIC or, alternatively, to use exactly 

the number of lags expressed by the argument “lags” typing “fixed”28. 

We decided to use the basic model with a maximum number of lags equal to 10 and 

using the Akaike criterion for the selection of optimal numbers of lags. In figure 15 we 

can see the output produced by R: 

 

Figure 15: Output of R for the Adjusted Dickey Fuller test 

 
28 https://www.rdocumentation.org/packages/urca/versions/1.3-0/topics/ur.df 
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As we can see in the output presented, the value of the test statistic is -0.6569. We can 

find in the table in Appendix B.3 the appropriate critical value to which the test statistic 

has to be compared to assess if the null hypothesis of non-stationarity should be 

rejected. 

We focus on the critical values indicated for model 0, that is the one we used, and check 

that at this point our sample, after the deseasonalization, contains 177 observations so 

we consider the row for N=100 (noticing that the difference is not relevant with row 

N=250 for our comparison). The critical value for level 0.1 is -1.614 which means that 

our test statistic, equal to -0.6569, suggests that the null hypothesis of non-stationarity 

cannot be rejected. 

III.8 Parameters Estimation29 

After having completed the analysis to assess if the PUN time series had the 

characteristics to be modelled as a Geometric Brownian Motion, we proceed to the 

estimation of the parameters needed for the model that are drift 𝛼𝑃 and volatility 𝜎𝑃. 

Recall Geometric Brownian Motion equation equal to: 

 
𝑑𝑋𝑡 = 𝛼𝑃𝑋𝑡𝑑𝑡 + 𝜎𝑃𝑋𝑡𝑑𝑊(𝑡) 

(37) 

As explained in Chapter 2, by means of Ito’s Lemma we know that: 

 𝑦𝑡 = ln(𝑋𝑡)                                  𝑑𝑦𝑡 = (αP −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑃𝑑𝑊(𝑡) (38) 

Given our dataset of log returns, it’s useful to express the following discrete time 

version: 

 𝑦𝑡𝑛+1 − 𝑦𝑡𝑛 = (αP −
1

2
𝜎𝑃
2) (𝑡𝑛+1 − 𝑡𝑛) + 𝜎𝑃(𝑊(𝑡 + 1) −𝑊(𝑡)) (39) 

 
29 See Insley (2002) p. 471-492, Bonest and Jun (2006) and Yoshimoto and Kato (2004)  
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(𝑦𝑡𝑛+1 − 𝑦𝑡𝑛) follows a normal distribution, because of the properties of the Geometric 

Brownian Motion, with mean: 

 𝐸(𝑦𝑡𝑛+1 − 𝑦𝑡𝑛) = (αP −
1

2
𝜎𝑃
2) (𝑡𝑛+1 − 𝑡𝑛) (40) 

and variance: 

 
𝑉𝑎𝑟(𝑦𝑡𝑛+1 − 𝑦𝑡𝑛) = 𝜎𝑃

2(𝑡𝑛+1 − 𝑡𝑛) 
(41) 

It can be noticed that 𝑡𝑛+1 − 𝑡𝑛 = 1. 

Knowing this, it can be proved that the maximum likelihood estimates for 𝛼𝑃 and 𝜎𝑃 

parameters of the GBM are: 

 
𝜎𝑃 = 𝑠 

(42) 

 𝛼𝑃 = 𝑚 +
1

2
𝑠2 (43) 

where s refers to the standard deviation of the sample of the log returns that we have 

analysed and m refers to the mean of the same sample. The values of m and s have been 

computed with R through the functions mean() and sd(). They are reported in Table 1 in 

monthly and annual terms. 

 

 

 

 

 

 

Finally, in Table 2 there are the yearly parameters that have been used in our model 

estimated following the procedure exposed before. 

 

MONTHLY ANNUALISED 

m s m s 

-0.186% 10.688% -2.230% 37.025% 

Table 1: monthly and annualised estimates for m and s 
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YEARLY GBM PARAMETERS 

𝛼𝑃 𝜎𝑃 

4.624% 37.025% 

Table 2: estimates for the GBM parameters 

III.9 Final Consumer Price  

The price represented by the PUN is the price determined in the IPEX market but it is 

not equal to the actual price that is paid by a final consumer, mainly because of the costs 

related to the dispatchment of energy. The analysis performed on the PUN was needed 

in order to estimate the drift (𝛼𝑃) and the volatility (𝜎𝑃) of the prices of energy given 

that we assume the PUN as the only stochastic factor in the final consumer price. For 

this reason, as a matter of tractability, PUN can be considered as a good proxy of the 

whole price’s stochastic characteristics and, therefore, its dynamic has been used to 

interpret the behaviour of final consumer price in the future. 

In the final part of the thesis, we will perform the estimate of the expected time required 

to reach the Grid Parity. In order to this, we need starting values for both price and cost 

of energy. Given what we have said before, it would not be correct to use the PUN as 

starting point for the evaluation in Chapter 5. This is why we refer to the final consumer 

prices for 2019 published by Autorità per Energia Reti ed Ambiente (ARERA) in order to 

individuate correctly the starting points to be used in the Grid Parity taking the average 

of the net prices for the consumption ranges considered30. In Table 3 there is an 

extrapolation of the information in the Appendix with the data on which we are 

interested divided for residential and commercial consumers. 

 

 

 

 

 
30 The complete table with the data can be seen in Appendix B.4 
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 Residential 

Yearly Consumption 
(KWh) 

1.000-2.500 2.500-5.000 5.000-15.000 > 15.000   Average 

Net Price (€/kWh) 0.174 0.143 0.127 0.115   0.140 

 Commercial 

Yearly Consumption 
(MWh) 

20-500 
500-

2.000 
2.000-
20.000 

20.000-
70.000 

70.000-
150.000 

  Average 

Net Price (€/kWh) 0.109 0.094 0.090 0.083 0.079   0.091 

 Table 3: ARERA End Users 2019 Net Prices 

 

As a conclusion of this chapter, in Table 4 we can see all the values estimated in the 

pages before. These are all the parameters related to price that will be used in the Real 

Option Grid Parity at the end of the thesis. 

 

 

 

  

 𝛼𝑃 𝜎𝑃 𝑃2019 

Residential 4.624% 37.025% 0.140 

Commercial 
4.624% 37.025% 0.091 

 
Table 4: parameters related to price 
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IV. Costs 

In this chapter we will see how to express the costs related to the PV plant. In the first 

part, we present the indicators used in the following sections, then we discuss the recent 

trend of the costs characterising an investment in a PV plant and finally we estimate the 

parameters of the Geometric Brownian Motion driving, by assumption, the evolution of 

costs over time. 

IV.1 Measures of Cost 

Following the approach of the International Renewable Energy Agency (IRENA), we 

measure the evolution in time of costs associated to different kinds of sources of energy 

relying on the following indicators: Total Installed Cost (TIC), the capacity factor and the 

Levelized Cost of Energy (LCOE). The LCOE is the variable that we are going to use in our 

analysis together with the PUN, but its estimation depends on the total installed cost 

and the capacity factor so their comprehension is essential in the general framework. 

Generally speaking, the total installed cost is an estimation of the costs associated to 

the design, the acquisition of the components, the installation and the financing of a 

fixed asset (which in the case of Solar PV means mainly the module and inverter costs, 

cabling, grid connection, mechanical and electrical installation, inspection costs, margin 

of the company apt to the installation for other internal costs). If we consider that 

construction costs account for the largest part of the whole cost of the PV plant, it is 

straightforward to understand the close relation between the trend of the TIC and that 

of the LCOE. This relation is evident by comparing TIC and LCOE in Figure 16. It is also 

meaningful to underline that construction costs per unit of energy produced have an 

inverse correlation with the size of the PV plants because of economy of scale: this is the 

reason why in Figure 18 and Figure 20 we can notice that the costs for the commercial 

sector are lower than for the residential one. 
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The capacity factor on the other hand is the percentage that each power generating unit 

actually produces on average in a period of time respect to the maximum quantity that 

each unit can produce optimally. Its effect on costs is relevant because a rise in this 

indicator indicates the possibility of a reduction of the plant’s size keeping at the same 

time the energy output unaltered. 

The LCOE is a standard indicator used to compare the cost of electricity produced from 

different sources of energy and it is the one on which we are going to focus more. It can 

be defined as the price of electricity in a project satisfying the condition for which 

revenues equal the present value of all the costs expected in the economic lifetime of 

the plant, including a return on the capital invested equal to the discount rate. 

The LCOEs presented later have been calculated using the following formula: 

 
𝐿𝐶𝑂𝐸 =

∑
It +𝑀𝑡 + 𝐹𝑡
(1 + 𝑟)𝑡

𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

 

(44) 

where: 

𝐿𝐶𝑂𝐸 = 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑙𝑒𝑣𝑒𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝐼𝑡 = 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝑡 

𝑀𝑡 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝑡 

𝐹𝑡 = 𝑓𝑢𝑒𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝑡 

Figure 16: Global Total installed Cost, Capacity Factor and Levelised Cost of Electricity 
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𝐸𝑡 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝑡 

𝑟 = 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 

𝑛 = 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

 

The calculations for the LCOE data used in this paper are based on the total installed 

cost and the capacity factor plus the Operation and Maintenance expenses which 

include also insurance and asset management costs. 

Difficulties in the estimation of these measures of cost arise from the fast expansion of 

renewables markets implying an output of renewable energy not always well balanced. 

This is reflected in an overall volatility of the prices that can increase in period of short-

term supply shortage with respect to the demand alternated to periods of supply excess 

when prices can fall below production costs. This phenomenon makes cost analysis 

challenging for particular technologies in less stable markets or in periods of great 

uncertainty. 

IV.2 Global Trend of PV solar energy costs 

The costs associated to the production of renewable energy have been subjected to a 

significant reduction in the past years due to the constant expansion of the relative 

market and the increase of competition among the producers which led to a consistent 

improving of the technology involved in the production of these sources of power 

reaching today a situation in which renewable energy has become a valid cost-efficient 

choice in the majority of the developed countries31. The decrease in the costs have a 

direct effect on the choices of investment of the energy suppliers: this is supported, for 

example, by the fact that in 2019 72% of the new electric capacity installed globally was 

green oriented. 

The most interesting aspect of this cost dynamic is the comparison with the fossil fuel-

fired alternative: we can see that 56% of the new plants created in 2019 providing 

energy from renewable sources had lower generation costs than the least expensive 

carbon-based alternative.  

 
31 See IRENA (2019) 
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Among the renewable sources of energy, the photovoltaic industry has performed 

particularly well: in 2019, 40% of the photovoltaic capacity installed costed less than the 

cheapest fossil fuel-fired project available which is an important goal coming from a long 

positive trend of the PV sector given that in 2010 the energy from this source was 7.6 

times more expensive than the fossil alternative. 

At the global level the trend has been consolidating for a decade with the weighted 

average LCOE of utility photovoltaic systems falling by a dramatic 82% between 2010 

and 2019 and by 13% year-on-year only in 2019 hitting 68 USD/MWh at the end of this 

period. It has been one of the sectors that have experienced the most important cost 

efficiency improvement in 2010s decade, which is a direct effect of a reduction in the 

expense associated to PV modules of about 90% in the same period mostly because of 

their improved performance able to guarantee higher energy output with less surface 

area. The increasing efficiency of module performance is crucial in the overall cost 

reduction because reducing the surface needed for one unit of electricity produced has 

an effect on all the other voices of expenses related to the size of the plant like the 

racking and mounting structures or cabling. 

The global weighted average of total installed cost in 2019 went below the threshold of 

1000 $/kW for the first time reaching 995 $/kW with a decrease of 79% respect to 2010. 

This reduction is linked also to the improvement of manufacturing processes along with 

the development of firms specialized in this field with more experience and better 

organization in addition to the enhanced module efficiency stated before. 

Also, the global weighted-average capacity factor for new utility scale plants was 

characterised by a positive trend in the decade from 2010 to 2019 starting from 13.8% 

to 18% at the end of the period. This enhancement in performance measured by the 

capacity factor was mainly attributed to the expansion of solar energy markets in 

countries characterised by sunnier weather that have a comparative advantage in the 

production of solar energy. This kind of weather implies higher irradiation which is the 

prominent factor in the output per PV module. 
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IV.3 Italy’s PV solar energy costs data  

In Italy, the evolution over time of the PV total installed cost is aligned with the global 

trend in a very close way as shown by Figure 17. 

The weighted average TIC in Italy dropped by 84.3% between 2010 and 2019, a decrease 

similar to that of the global trend equal to 78.84%, reaching 830 USD/Kw at the end of 

the period going below the global TIC equal to 995 USD/Kw as we can see in Figure 17. 

In Figure 18 it is presented the differentiation between total installed costs relative to 

the residential and the commercial types of PV pants in Italy. 

The strong decrease of TIC directly affected the trend of the LCOE. In Figure 19 there’s 

the evidence that the Italian trend is almost identical to the global one, actually the 

percentage change of weighted average LCOE in the 2010s decade in Italy was equal to 

-82.12%, very similar to the -82.01% at the global level. In absolute terms, as reported 

in Table 5, in Italy, the weighted average LCOE reached 0.068 USD/KW coinciding with 

the global value. 

 

Figure 17: Total Installed Cost comparison 

between Italy and the World in the period 

2010-2019 

Figure 18: Residential and Commercial 

Total Installed Cost in Italy 
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Figure 19: Levelized Cost of Energy 

comparison between Italy and the World in 

the period 2010-2019 

Figure 20: Residential and Commercial 

Levelized Cost of Energy in Italy 

 

In table 5, we can see the estimates provided by IRENA for the LCOEs between 2010 and 

2019 at the global level and in Italy. The Italian data are specified both for the residential 

and the commercial types of consumers. 

Levelized Cost of Electricity LCOE 
       

Year 
 World  Italy 
 Utility Scale  Utility Scale Commercial Residential 

2010  0.378  0.3826 0.322 0.405 
2011  0.286  0.3641 0.279 0.36 
2012  0.223  0.1906 0.171 0.248 
2013  0.175  0.174 0.141 0.228 
2014  0.164  0.1482 0.139 0.162 
2015  0.126    0.115 0.137 
2016  0.114    0.108 0.128 
2017  0.092  0.0795 0.101 0.121 
2018  0.079  0.0718 0.094 0.113 
2019  0.068  0.0684 0.092 0.109 

            

% Change 
2010-2019 

  
-82.011% 

 
-82.122% -71.429% -73.086% 

 
 

Table 5: Levelized Cost of Energy comparison in the period 2010-2019 
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IV.4 Learning Curve 

For our analysis we used the learning curve method to express the drift of the costs for 

an estimate of the LCOE in the future. The learning curve methodology is based on the 

assumption that a market in a phase of development exhibits costs associated to the 

production characterized by a reduction at a constant rate for each fixed growth of the 

quantity produced by the industry in that market32. 

The main economic motivation supporting the choice of this method is that 

improvements in the production processes occur continuously in the industry of a 

market that is progressing and enlarging in size. It also considers that in markets that are 

becoming more mature there are agents that can use their experience and knowledge 

acquired on the field in order to contribute to improve general efficiency and find 

solutions to reduce costs. Another advantage of the learning curves methodology is that 

it is able to embody all this cycle of skills acquisition in one parameter expressing the 

speed at which the costs aforementioned have been reducing. 

Based on these premises we can express LCOE at future time t as: 

 
𝐿𝐶𝑂𝐸𝑡 = 𝐿𝐶𝑂𝐸2019 𝑒

𝛼𝐶 ∙ 𝑡 
(45) 

where: 

𝛼𝑐 = 𝐿𝑁 ∙ 𝐺𝑅 

𝐿𝑁 =
ln 𝑃𝑅

ln 2
 

𝑃𝑅 = 1 − 𝐿𝑅 

𝐺𝑅 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 

𝐿𝑁 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑃𝑅 = 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 

𝐿𝑅 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

 
32 See Nemet (2006) 
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The learning rate (LR) is generally defined as the percentage fall in costs measured each 

time the PV solar capacity doubles while the average growth rate in our case is 

calculated as the yearly percentage change in the PV capacity installed. 

According to the International Energy Agency (IEA), the learning rate at the global level 

since the 1970s to 2020 was equal to 24% even if they underline that taking in 

consideration a shorter period limited to more recent years may have an important 

impact on the indicator pushing it above 30%33. 

Similar results are shown by IRENA: in their report they specify that the learning rate 

estimated over the period between 2010 and 2019 is equal to 36%34. 

For the sake of completeness, we have presented the learning rates presented by both 

the Agencies: the historical rate presented by IEA of 24% has the advantage of a longer 

time series less subjected to random variations while the rate presented by IRENA of 

36% is based on more recent data. Considering that IEA in its report states that a learning 

rate above 30% would represent better the recent trend, we will stick to IRENA’s 

learning rate equal to 36% for the calculation of our learning coefficient. 

On the other hand, for the estimation of the growth factor, according to IEA Italy’s PV 

capacity is expected to expand from 20.9 GW in 2019 to 21.7 GW in 2020 equal to a 

growth of 3.83% year-on-year. This value is coherent with the growth of the previous 

years in the Italian market as can be seen in Table 6 reporting the installed capacity 

between 2013 and 2019 on which the growth factors have been autonomously 

computed (using GSE data)35. 

Nonetheless, the Italian National Energy and Climate Plan36 (prepared by the Italian 

Government) sets as a long term target a PV installed capacity of 52 GW by 2030 which 

implies a yearly growth rate of 9% based on a starting point of 20.9 GW in 2019. 

We can consider 3% as a conservative GR taken from the IEA approach and a 9% more 

optimistic GR based on the long run forecasts of the National Energy and Climate Plan. 

 
33 See “Energy Technology Perspectives 2020”, IEA (2020), p. 80 
34 See “Renewable Power Generation Costs in 2019”, IRENA (2020), p.39 
35 See "Rapporto Statistico 2019", GSE (March 2021), p.44 
36 See “Piano Nazionale Integrato per l’Energia e il Clima (PNIEC)” (2019), p. 58, Table 10 
The PNIEC contains the Italian national 2030 targets for energetic efficiency, renewable sources of 
energy and the reduction of pollution. “Piano Nazionale Integrato per l’Energia e il Clima (PNIEC)”, 
Ministero dello Sviluppo Economico (December 2019) 
https://ec.europa.eu/energy/sites/ener/files/documents/it_final_necp_main_it.pdf 
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In Tables 7 and 8 there are the LCOE37 estimates for 2040 according to the learning curve 

that we have calibrated divided using the different parameters considered in this 

chapter, acknowledging that each of their combinations produces a different value of 

𝛼𝐶. 

In order to illustrate the evolution of the LCOE in time we also need an estimation of the 

volatility term to consider possible fluctuations of our forecasts in the future. Defining 

volatility according to the different types of cost included in the LCOE would be very 

complicated and misleading, for this reason we decided to focus on the main driver of 

the LCOE’s variations in time, that is, the cost of the PV modules. In this way we are 

assuming that the volatility related to LCOE can be represented using the volatility of 

the PV modules cost. As a proxy of this volatility characterizing the modules, we 

considered some major PV modules producers and used a weighted average of their 

stocks’ prices volatilities that can be easily found given that we are considering listed 

companies. An estimate of this parameter is provided by Biondi and Moretto (2013) 

based on the volatility of the four biggest module producers: Yingli Solar, First Solar, 

Suntech and Trina Solar. On these premises the volatility of the LCOE has been estimated 

equal to 54%. 

 
37 The LCOE in 2019 are taken from “Renewable Power Generation Costs in 2019”, IRENA (2020), p. 73 
Table 3.3 

 Italy Installed PV Capacity (MW) % YoY Change 
   

2013 18185  

2014 18594 2.25% 

2015 18901 1.65% 

2016 19283 2.02% 

2017 19682 2.07% 

2018 20108 2.16% 

2019 20865 3.76% 

Source: GSE 
Table 6: Total Installed Capacity 2013-2019 
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IV.5 LCOE’s values for the stochastic Grid Parity model 

The 2019 LCOEs estimated by IRENA are not readily adapt to be used as inputs in our 

stochastic Grid Parity model because of 2 reasons: 

1. they are expressed in Dollars while the ARERA prices of electricity are expressed 

in Euros (see Tables 3 and 4) 

2. they have been calculated using a discount rate (r in Equation 44) equal to 5% 

that is different from the risk adjusted discount rate used in our analysis 

In order to produce LCOEs adapt to be compared with the prices in our model we 

recalculated the LCOEs in IRENA’s report using our risk-adjusted discount rate equal to 

 LCOE Forecasts 
 Conservative  GR 

 LRIRENA 

 Utility  Commercial Residential 

LCOE2019 0.068 0.092 0.109 

LCOE2040 0.046 0.061 0.073 

 
Table 7: Conservative LCOE forecasts 

 
Optimistic GR 

 LRIRENA 

 
Utility  Commercial Residential 

LCOE2019 0.068 0.092 0.109 

LCOE2040 0.020 0.027 0.032 

 
 
 
 
 
 
 

Table 8: Optimistic LCOE forecasts 
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6.891%38 and applying the USD/EUR exchange rate on 15/12/2019 equal to 0.899. The 

LCOEs produced through this method can be seen in the Column “LCOE” in the table 

below. As a conclusion of this chapter, in Table 9 we can see the parameters related to 

costs, estimated in the pages before, that will be used in the Real Option Grid Parity in 

Chapter 5. 

 

 

 
Optimistic Scenario Conservative Scenario 

 𝛼𝐶 𝜎𝐶 𝐿𝐶𝑂𝐸2019 𝛼𝐶 𝜎𝐶 𝐿𝐶𝑂𝐸2019 

Residential -5.795% 54.00% 0.117 -1.932% 54.00% 0.117 

Commercial -5.795% 54.00% 0.09 -1.932% 54.00% 0.09 

 Table 9: parameters related to LCOE 

 

 

  

 
38 The estimation of the risk-adjusted rate is explained in Chapter 5 
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V. Grid Parity 

The Grid Parity is the first time at which the price of electricity becomes equal to the 

LCOE associated with PV energy generation. This indicates at which time investing in PV 

energy generation reaches a break-even point with respect to the alternative, that is, 

purchasing energy from the National grid. We first determine the Grid Parity under the 

standard break-even approach and then, using the model provided by Biondi and 

Moretto (2013), the Grid Parity under a Real Options approach. This is done in order to 

show the impact of the value of information about future prices and costs on the 

investment decision. Once presented the models, we use the parameters estimated in 

the previous Chapters in order to run them in the model and calculate the expected 

timing of investment. 

V.1 Standard Grid Parity 

The solution to the standard Grid Parity problem can be determined by solving the 

following equation: 

 
𝐸𝑡(𝑃𝑡∗) = 𝐸𝑡(𝐿𝐶𝑂𝐸𝑡∗) 

(46) 

where 𝐸(Pt∗) is the expected value of the price of electricity and 𝐸(𝐿𝐶𝑂𝐸𝑡∗) is the 

expected LCOE at the initial time period t=0 (which coincides with 2019). This equation 

simply describes the fact that 𝑡∗ is the moment at which 𝑃 and 𝐿𝐶𝑂𝐸 are expected to 

be equal given the information we have at 𝑡. 

𝑃 and 𝐿𝐶𝑂𝐸 are modelled in the future as GBMs. Here we recall that in Chapter 2 we 

have seen a useful result that is demonstrated in Appendix A.3, i.e., that the expected 

value at future time 𝑡 of 𝑋 modelled as GBM is: 

𝐸0(𝑋(𝑡)) = 𝑥0𝑒
𝛼𝑡 

We can use this result to find 𝑡 in Equation 46: 

𝐸𝑡(𝑃(𝑡∗)) = 𝑃0𝑒
𝛼𝑃𝑡

∗
                   𝐸𝑡(𝐿𝐶𝑂𝐸(𝑡∗)) = 𝐿𝐶𝑂𝐸0𝑒

𝛼𝐶𝑡
∗
 

𝑃0𝑒
𝛼𝑃𝑡

∗
= 𝐿𝐶𝑂𝐸0𝑒

𝛼𝐶𝑡
∗
→ 𝑒(𝛼𝑃−𝛼𝐶)𝑡

∗
=

𝑃0
𝐿𝐶𝑂𝐸0

→ (𝛼𝑃 − 𝛼𝐶)𝑡
∗ = ln

𝑃0
𝐿𝐶𝑂𝐸0
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Therefore, the optimal time 𝑡∗ at which Equation 46 is satisfied is: 

 
𝑡∗ = max(

ln (
𝐿𝐶𝑂𝐸0
𝑃0

)

𝛼𝑃 − 𝛼𝐶
, 0) 

(47) 

where 𝛼𝑝 and 𝛼𝐶  represent the drifts calibrated using the PUN series and the learning 

curve method while 𝐿𝐶𝑂𝐸0 and 𝑃0 refer to the values of price and cost in 2019 that are 

set as starting 𝑡 = 0 (𝑃0 = 𝑃2019 can be seen in Table 4 and 𝐿𝐶𝑂𝐸0 = 𝐿𝐶𝑂𝐸2019 can be 

seen in Table 9). 

In our case where 𝑃0 is larger than 𝐿𝐶𝑂𝐸0, the information provided by the standard 

Grid Parity is telling us that under a Net Present Value approach the investment should 

be done as soon as possible: in fact, trying to plug our values in Equation 47, we can see 

that the time 𝑡∗ is negative indicating that the standard Grid Parity has been achieved 

before time 0 (which coincides with 2019). This means that, according to the standard 

Grid Parity, the choice to invest is already optimal. 

V.2 Dynamic Programming and Contingent Claim Approaches39 

Before introducing the stochastic Grid Parity model, in this Section we present the 

theoretical framework to be used for its set-up. 

The problem that we are facing in the analysis conducted in this thesis is particularly 

complex in its mathematical interpretation because it requires to determine the value 

of the possibility to invest compared to the possibility to defer the investment not only 

in the present but at each given time in the future until the decision is made. This means 

that the problem is composed by a virtually infinite set of possible future choices whose 

value has to be embodied in the decision to be taken at the evaluation time point. The 

issue is furtherly complicated by the fact that the expected payoff of this decision 

depends on two variables that are both stochastic.  

The dynamic programming approach is a valid tool for handling this kind of problems. 

This approach breaks the whole sequence of decisions into just two components: the 

 
39 This Section is based on the Chapters 3-4-5-6 of Dixit Pyndick 
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immediate decision and a valuation function that encapsulates the consequences of all 

subsequent decisions starting with the position that results from the immediate 

decision. Basically, if the problem is structured in a finite time horizon, we can determine 

the payoff of the decision at the last moment available T and use that as “continuation 

value” (that means the value of deferring the investment) in the value function at time 

T-1 (that because if you are in T-1 and decide to defer the investment, you end up by 

being forced to accept the payoff at T when the time horizon finishes). In this way it is 

possible to proceed backward and find the value functions at each time point until the 

initial one. On the other hand, if the time horizon is infinite (as it is in our case), the 

problem can be structured in a recursive manner where each decision leads to another 

problem identical to the previous one. 

To illustrate this approach, it may be useful to consider a practical example that can 

effectively represent the idea of the dynamic programming. Let consider a situation 

where we must decide whether investing in a project or not. The investment cost is 

equal to I. At period 0 the project pays a return equal to P0 while in period 1 and for the 

later periods it will produce a return equal to (1+u)P0 with probability q and (1-d)P0 with 

probability (1-q). If we denote by V0 the value of choosing to invest we have: 

𝑉0 = 𝑃0 + [𝑞(1 + 𝑢)𝑃0 + (1 − 𝑞)(1 − 𝑑)𝑃0] [
1

1 + 𝑟
+

1

(1 + 𝑟)2
+⋯] 

where r is the discount rate. Note that the first term is the payoff cashed at period 0 

while the second represents the expected present value of the future revenue flow. 

If the investment decision was available only in period 0, we would have that the payoff 

Ω of the decision at time 0 would be the maximum between the difference (𝑉0 − 𝐼) and 

0: 

Ω0 = max[𝑉0 − 𝐼, 0] 

Differently, if we consider the possibility that the investment could be deferred to period 

1 with an investment cost still equal to I, we have a net profit 𝐹1 in period 1 equal to: 

𝐹1 = max[𝑉1 − 𝐼, 0] 

where 𝑉1 is the expected present value of the revenue flow starting at period 1, that is: 

𝑉1 = [𝑃0(1 + 𝑢)𝑞 + 𝑃0(1 − 𝑑)(1 − 𝑞)] [1 +
1

1 + 𝑟
+

1

(1 + 𝑟)2
+⋯] 
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Now if we go back to the investment decision to be taken at the beginning of period 0, 

we have two alternatives: either investing in period 0 cashing (𝑉0 − 𝐼) or wait and invest 

in period 1 obtaining the expected present value 𝐸0(𝐹1)/(1 + 𝑟), that is, in algebra: 

 𝐹0 = max [𝑉0 − 𝐼,
1

1 + 𝑟
𝐸0(𝐹1)] (48) 

In this equation we can see the basic idea of the dynamic programming that is reducing 

the sequence of decisions to a comparison between the payoff of the immediate choice 

and the continuation value alternative to the immediate choice which embodies the 

value of the future decisions. We can notice the difference between Ω0 and 𝐹0: in the 

first case there is no possibility to defer the investment (a now-or-never decision) while 

in the second there is the possibility to defer the investment to the next period (with 

value 𝐹1). 

We can extend what have been said to cases characterised by more than two periods or 

where time is continuous. 

We define 𝜋𝑡(𝑥𝑡, 𝑢𝑡) the immediate profit flow depending on the characteristics of the 

investments described by 𝑥𝑡 (we can imagine 𝜋𝑡(𝑥𝑡, 𝑢𝑡) as a more general 

representation of 𝑉𝑡 − 𝐼 that we have seen before). At time 𝑡, 𝑥𝑡 is known but the future 

values 𝑥𝑡+1, 𝑥𝑡+2… are random variables with a given probability distribution. As a set 

of random variables ordered in time, they represent a stochastic process. On the other 

hand, 𝑢𝑡 represents the choices that are available in moment 𝑡 that affect the 

investment (in the simplest case, the one in which we are interested, 𝑢𝑡 can have, for 

example, value 0 if we choose waiting while having value 1 if we choose investing). Both 

𝑥𝑡 and 𝑢𝑡 affect the immediate cash flow 𝜋𝑡(𝑥𝑡, 𝑢𝑡). Similar as before, the discount 

factor between each period is 
1

1+𝑟
 where 𝑟 is equal to the discount rate. Furthermore, 

we define the termination payoff function at time T (when the investment decision 

ends) as Ω𝑇(𝑥𝑇). 

With this new set of definitions, we can better define the outcome of the investment, 

that is, the expected net present value of all the related cash flows 𝐹𝑡(𝑥𝑡). We apply the 

idea of the dynamic programming that we have expressed before by splitting the 

investment decision in a choice between the immediate profit and the continuation 

value as we did before: in Equation 48 the optimal choice 𝑢𝑡 is exclusive, i.e., either 
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taking the immediate profit flow 𝜋𝑡 (that is 𝑉 − 𝐼) or the continuation value. But if we 

want to think about it in a more general way, the choice 𝑢𝑡 may not exclude totally one 

of the two values, instead it may result in different combinations of the two. The optimal 

choice 𝑢𝑡 is the one producing the better combination. 

𝐹𝑡(𝑥𝑡) is the sum of the immediate profit and the continuation value when we evaluate 

them according to the optimal choice 𝑢𝑡, on which they depend, that maximizes the 

value of this sum: 

 𝐹𝑡(𝑥𝑡) = max
𝑢𝑡

[𝜋𝑡(𝑥𝑡, 𝑢𝑡) +
1

1 + 𝑟
𝐸(𝐹𝑡+1(𝑥𝑡+1))] (49) 

In Eq. 49 𝜋 is the immediate profit while the continuation value is the expected value 

(because 𝑥𝑡+1 is a random variable) of the outcome in the next period 𝐹𝑡+1 discounted 

back to 𝑡 by the factor 
1

1+𝑟
. 

We can say that Eq. 48 is a special case of the more general Eq. 49 where the choice 𝑢𝑡 

imposes to take just one between the immediate profit and the continuation value. For 

this reason, to replicate the logic of Eq. 48 in the sum of Eq. 49, one of them must take 

value equal to 0 because of the choice 𝑢𝑡. 

Equation 49 is called the Bellman equation because it is structured according to the basic 

idea of the dynamic programming and it satisfies the Bellman Principle of Optimality, 

that is: 

“An optimal policy has the property that, whatever the initial action, the 

remaining choices constitutes an optimal policy with respect to the 

subproblem starting at the state that results from the initial action”40 

This means that the future choices 𝑢𝑡+1, 𝑢𝑡+2, … are already considered optimal inside 

the continuation value and that 𝑢𝑡 is the only choice that has to be made optimally. We 

can see that the problem has been reduced to a decision in period 𝑡. 

To give another form to this equation, we can consider the case in which we have a finite 

time horizon 𝑇 with a termination payoff Ω𝑇(𝑥𝑇) (our continuation value in this case).   

 

 
40 See Dixit and Pyndick pag. 100 
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It implies that in the period before T we have 𝐹𝑇−1: 

𝐹𝑇−1(𝑥𝑇−1) = max
𝑢𝑇−1

[𝜋(𝑥𝑇−1, 𝑢𝑇−1) +
1

1 + 𝜌
𝐸𝑇−1(Ω𝑇(𝑥𝑇))] 

From here we can go backwards until the present moment 𝑡 knowing that at each step 

until time 𝑇, 𝑢𝑡+𝑚 is chosen optimally. 

In the case of infinite horizon where there is no termination value, the problem is 

facilitated by the recursive nature of the decision, as we have already said, because at 

each moment 𝑡 we must solve the same optimization problem. This implies that the 𝑡 

itself has no effect in absolute sense which means that the value function is common to 

all periods and we can write it without time label, i.e. 𝐹(𝑥𝑡). The difference at this point 

is only in the state variables 𝑥𝑡 where the function 𝐹(𝑥𝑡) is evaluated in the different 

periods and the choice 𝑢𝑡. The Bellman equation becomes: 

𝐹(𝑥𝑡) = max
𝑢𝑡

[𝜋(𝑥𝑡, 𝑢𝑡) +
1

1 + 𝑟
𝐸[𝐹(𝑥𝑡+1)]] 

If we write in general form 𝑥𝑡 = 𝑥 and 𝑥𝑡+1 = 𝑥′: 

 𝐹(𝑥) = max
𝑢
[𝜋(𝑥, 𝑢) +

1

1 + 𝑟
𝐸[𝐹(𝑥′|𝑥, 𝑢)]] (50) 

This recursive Bellman equation represents a set composed by as many equations as the 

number of the possible values of 𝑥. The unknowns of these equations are all the values 

𝐹(𝑥). In this sense, Eq. 50 is a functional equation for the unknown 𝐹. 

The peculiarity of this functional equation is that we can find the true value function 

starting with any guess for 𝐹(𝑥): if we start guessing 𝐹(1)(𝑥), we proceed by finding the 

optimal choice 𝑢1 that in turn is substituted back to find 𝐹(2)(𝑥) and repeating the 

process. This procedure will converge to the true function because of the factor 
1

1+𝑟
 

which reduces the error of the guess at each step. 

Now if we want to express our problem in continuous time, we can take the limit Δ𝑡 to 

0 and change 𝜋 so that it expresses the rate of the profit flow and consequently 𝜋Δ𝑡 

expresses the actual profit flow.The Bellman equation now is: 

 

𝐹(𝑥, 𝑡) = max
𝑢
{𝜋(𝑥, 𝑢, 𝑡)Δ𝑡 + (1 + 𝑟Δ𝑡)−1𝐸[𝐹(𝑥′, 𝑡 + Δ𝑡)|𝑥, 𝑢]} 
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Now we can multiply by (1 + 𝑟Δ𝑡): 

𝑟Δ𝑡 𝐹(𝑥, 𝑡) = max
𝑢
{𝜋(𝑥, 𝑢, 𝑡)Δ𝑡 + (1 + 𝑟Δ𝑡)𝐸[𝐹(𝑥′, 𝑡 + Δ𝑡)|𝑥, 𝑢 − 𝐹(𝑥, 𝑡)]} 

𝑟Δ𝑡 𝐹(𝑥, 𝑡) =  max
𝑢
{𝜋(𝑥, 𝑢, 𝑡)Δ𝑡 + (1 + 𝑟Δ𝑡)𝐸[Δ𝐹]} 

Now divide by Δ𝑡 and take the limit to 0: 

 𝑟𝐹(𝑥, 𝑡) = max
𝑢
{𝜋(𝑥, 𝑢, 𝑡) +

1

𝑑𝑡
𝐸[𝑑𝐹]} (51) 

The left-hand side of this Bellman equation can be seen as the return per unit of time 

that would be required for holding the asset with a discount rate equal to 𝑟 while the 

right-hand side is composed by immediate payoff 𝜋 and the expected rate of capital 

gain. 

The case we are facing in this thesis is an optimal stopping problem where we should 

determine when it is the optimal time to invest in the PV plant and stop waiting. In this 

situation at each time 𝑡 we are facing the decision if to invest and gain Ω(𝑥) (the 

termination payoff that is the payoff from the investment) or to continue waiting and 

receive the continuation value plus the profit flow without investment 𝜋 (in our case 

𝜋 = 0 because there is no profit flow while we wait but we keep it in our notation for 

generality). In the next moment we face the same choice whose value is embodied in 

the continuation value that we can see as the term on the right inside the following 

Bellman equation that represents the optimal stopping problem situation: 

 𝐹(𝑥) = max {Ω(𝑥), 𝜋(𝑥) +
1

1 + 𝑟
𝐸[𝐹(𝑥′)|𝑥]} (52) 

One of the key features of a situation of this type is that there will be values larger than 

𝑥∗ where termination is optimal and values smaller than 𝑥∗ where continuation is 

optimal.  

This version of the Bellman equation can be expressed in a more precise way when we 

consider the case where 𝑥 is an Ito Process, that is particularly useful for our aim given 

that we model the PUN and the LCOE as Geometric Brownian Motions.  
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So, we have the following increment for 𝑥: 

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑧 

where 𝑧 is a Brownian motion. From the general Bellman Equation for optimal stopping 

problems in Eq. 52 we have: 

 𝐹(𝑥, 𝑡) = max {Ω(𝑥, 𝑡), 𝜋(𝑥, 𝑡) +
1

1 + 𝑟
𝐸[𝐹(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡)|𝑥]} (53) 

 

where we know that at each moment 𝑡 we must decide if stop and get the termination 

payoff Ω(𝑥, 𝑡) or continue and get the immediate profit flow 𝜋(𝑥, 𝑡) plus the value of 

the choice in the next period (the immediate profit flow 𝜋 can be 0 if the choice is simply 

waiting and defer the investment, as it is in our PV plant case, while the termination 

payoff is the expected present value of the investment minus the cost of the 

investment). In such a situation, as said before, we have a region upper or lower to 𝑥∗(𝑡) 

where continuation is optimal and another opposite region where termination is 

optimal, therefore 𝑥 = 𝑥∗(𝑡) represents a curve that divides the (𝑥, 𝑡) space into these 

two regions. Now we suppose that continuation is optimal for 𝑥 > 𝑥∗(𝑡) (but a similar 

reasoning can be done for the opposite): in this region we have that the second term of 

Eq. 53 is larger, therefore because of the max  operator: 

𝐹(𝑥, 𝑡) = 𝜋(𝑥, 𝑡) +
1

1 + 𝑟
𝐸[𝐹(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡)|𝑥] 

We perform the same procedure used for deriving Eq. 51, i.e., multiply by 1 + 𝑟Δ𝑡,  then 

divide by Δ𝑡 and take limit to 0: 

 𝑟𝐹(𝑥, 𝑡) = 𝜋(𝑥, 𝑡) +
1

𝑑𝑡
𝐸(𝑑𝐹) (54) 

 

Here we recall that, because of Ito’s Lemma, if 𝑥 is an Ito Process, then: 

𝐸[𝐹(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡)] = 𝐹(𝑥, 𝑡) + [𝐹𝑡𝑑𝑡 + 𝑎𝐹𝑥𝑑𝑥 + 𝑏
2
1

2
𝐹𝑥𝑥] 𝑑𝑡 + 𝑜(𝑑𝑡) 

 

where o(dt) represents the terms derived from the Ito’s Lemma that go to zero faster 

than Δ𝑡 which vanish in the limit. This can be used in Eq. 54 in that: 

 𝐸(𝑑𝐹) = 𝐸[𝐹(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡)] − 𝐹(𝑥, 𝑡) 
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Hence, from Eq. 54 we get (the arguments (x,t) are omitted): 

 
1

2
𝑏2𝐹𝑥𝑥 + 𝑎𝐹𝑥 + 𝐹𝑡 − 𝑟𝐹 + 𝜋 = 0 (55) 

 

We said before that we are considering the case where continuation is optimal for 𝑥 >

𝑥∗(𝑡) and we used this assumption to select the largest value in the max  operator in Eq. 

53, i.e., the continuation value. For this reason, the partial differential equation in Eq. 

55 holds for 𝑥 > 𝑥∗(𝑡). 

We can find the necessary boundary conditions of 𝐹(𝑥, 𝑡) and 𝐹′(𝑥, 𝑡) along 𝑥 = 𝑥∗(𝑡) 

(which is the bound of our region). These conditions are necessary to solve the partial 

differential equation.  

We imposed that where 𝑥 < 𝑥∗(𝑡), termination is optimal (and on the contrary where 

𝑥 > 𝑥∗(𝑡) waiting is optimal), which means that by continuity where 𝑥 = 𝑥∗(𝑡) we have: 

 
𝐹(𝑥∗(𝑡), 𝑡) = Ω(𝑥∗(𝑡), 𝑡)) 

(56) 
 

because Ω is the termination value obtained where termination is optimal. 

Equation 56 is called the value-matching condition because it finds a value for the 

unknown function F in the termination region. 

The other boundary condition is that the two functions 𝐹(𝑥, 𝑡) and Ω(𝑥, 𝑡) should meet 

tangentially in 𝑥∗(𝑡) which means that their first derivative is equal on the curve 𝑥 =

𝑥∗(𝑡): 

𝐹𝑥(𝑥
∗(𝑡), 𝑡) = Ω𝑥(𝑥

∗(𝑡), 𝑡) 

This is called the smooth pasting condition41. The key idea behind this condition is that 

if the two functions do not meet tangentially, then they must meet with a kink which is 

non-optimal as a behaviour for the value of the function an instant Δ𝑡 after the meeting 

point. If the kink was upward-pointing, for 𝑥 slightly greater than 𝑥∗(𝑡) within an interval 

𝑑𝑡, Ω would be larger than 𝐹, which is contrary to the definition of the curve 𝑥 = 𝑥∗(𝑡) 

(that states that 𝐹(𝑥∗) = Ω(𝑥∗), i.e., the curve is composed by points of indifference 

between the termination and the continuation choices). On the other hand, if the kink 

 
41 This condition arises from a rather technical motivation that we do not elaborate too much in detail 
here, we just go through the general reasons supporting this result keeping in mind that they can be 
proved more rigorously than what it is done here. See Dixit and Pyndick (1994) p.130 (Appendix C) 
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was downward-pointing, 𝑥∗(𝑡) could not be a point of indifference because in that case 

the continuation choice would always prevails: by waiting an instant longer we could 

choose the side of the kink on the basis of the next step of 𝑥 and the expected value (an 

average) in 𝑥∗(𝑡) for an instant later would be better than the point of the kink itself 

exactly because of the shape of the kink. 

 

V.2.1 The Approach applied to our model 

The analysis above has pointed out the boundary conditions necessary to solve the 

partial differential equation resulting from a general Bellman equation for an optimal 

stopping problem. In order to find the particular Bellman equation fitting our particular 

case, we now introduce the contingent claim approach which can be used to transform 

our problem into one solvable with the dynamic programming method seen before. 

The contingent claim approach is intended to recreate a riskless portfolio formed by the 

option to invest (we call it 𝐹(𝑃, 𝐶)), whose value represents the value of the possibility 

to choose to invest, and its underlying P and C. To do so we consider some assets (or 

combination of assets) able to exactly replicate the stochasticity of the cash inflows from 

the investment (our PUN whose replicating asset here is called P) and the outflows (our 

LCOE whose replicating asset here is called C). Both P and C dynamics are expressed with 

GBMs: 

𝑑𝑃

𝑃
= 𝛼𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑧𝑃          

𝑑𝐶

𝐶
= 𝛼𝐶𝑑𝑡 + 𝜎𝐶𝑑𝑧𝐶  

where: 

𝐸(𝑑𝑧𝑃
2) = 𝑑𝑡               𝐸(𝑑𝑧𝐶

2) = 𝑑𝑡 

and because we assumed that PUN and LCOE are uncorrelated we have: 

𝐸(𝑑𝑧𝑃𝑑𝑧𝐶) = 𝜌𝑃𝐶𝑑𝑡 = 0 

Conversely to the dynamic programming approach, here the risk adjusted discount value 

for the project 𝜇 is not chosen arbitrarily but it is computed through the well-known 

Capital Asset Pricing Model: 

 
𝜇 = 𝑟𝑓 + 𝐵 ∗ 𝑀𝑅𝑃 

(57) 
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where 𝜇 is the rate of return that an investor is expected to receive to own this asset, B 

is the “Beta”, that is, the common measure used to express the correlation of the asset 

with the movement of the market, and MRP is the Market Risk Premium. 

The portfolio that we want to create is long on one unit of the option and short on m 

units of P and n unit of C: 

𝐹(𝑃, 𝐶) − 𝑚𝑃 − 𝑛𝐶 

The differential of this portfolio can be defined using Ito’s Lemma: 

𝑑(𝐹 −𝑚𝑃 − 𝑛𝐶) = (𝐹𝑃 −𝑚)𝑑𝑃 + (𝐹𝐶 − 𝑛)𝑑𝐶 +
1

2
(𝐹𝑃𝑃𝜎𝑃

2𝑃2 + 2𝐹𝑃𝐶𝜌𝑃𝐶𝜎𝑃𝐶 + 𝐹𝐶𝐶𝜎𝐶
2𝐼2)𝑑𝑡 

Recall that 𝜌𝑃𝐶 = 0, therefore we can eliminate the term that includes it. 

This portfolio is risky only because dP and dC are stochastic but if we choose 𝑚 = 𝐹𝑃 

and 𝑛 = 𝐹𝐶  we can eliminate these terms and obtain a riskless portfolio which increases 

at each dt by: 

1

2
(𝐹𝑃𝑃𝜎𝑃

2𝑃2 + 𝐹𝐶𝐶𝜎𝐶
2𝐶2)𝑑𝑡 

The holder of the portfolio in order to keep the short position must pay to the holder of 

the long position an amount equal to the difference between the expected return on 

the assets P and C, call them 𝜇𝑃 and 𝜇𝐶, and their capital gain, 𝛼𝑃 and 𝛼𝐶. If we indicate 

these differences with 𝛿 (such that 𝛿𝑃 = 𝜇𝑃 − 𝛼𝑃 and 𝛿𝐶 = 𝜇𝐶 − 𝛼𝐶), the 

aforementioned payment will be equal to: (𝑚𝛿𝑃𝑃 + 𝑛𝛿𝐶𝐶). Therefore, the dynamics of 

our portfolio turns out to be: 

1

2
(𝐹𝑃𝑃𝜎𝑃

2𝑃2 + 𝐹𝐶𝐶𝜎𝐶
2𝐶2)𝑑𝑡 − (𝑚𝛿𝑃𝑃 + 𝑛𝛿𝐶𝐶)𝑑𝑡 

We set this portfolio exactly to be riskless, therefore, if we want to avoid the possibility 

of arbitrage, we know that its return must be equal to the risk-free rate of return. We 

express this equality: 

1

2
(𝐹𝑃𝑃𝜎𝑃

2𝑃2 + 𝐹𝐶𝐶𝜎𝐶
2𝐶2)𝑑𝑡 − (𝑚𝛿𝑃𝑃 + 𝑛𝛿𝐶𝐶)𝑑𝑡 = 𝑟𝑓(𝐹 − 𝑚𝑃 − 𝑛𝐶)𝑑𝑡 

Now recall that 𝑚 = 𝐹𝑝 and 𝑛 = 𝐹𝐶 , divide everything by 𝑑𝑡 and rearrange: 

 
1

2
(𝐹𝑃𝑃𝜎𝑃

2𝑃2 + 𝐹𝐶𝐶𝜎𝐶
2𝐶2) + (𝑟 − 𝛿𝑃)𝐹𝑃𝑃 + (𝑟 − 𝛿𝐶)𝐹𝐶𝐶 − 𝑟𝐹 = 0 (58) 

 

This is a partial differential equation for which we must find the adequate boundary 

conditions as we have explained for Eq. 55 with the dynamic programming approach.  
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Using the same reasoning that we adopted there, here we state the value of the choice 

in the region where it is optimal to invest, i.e, our value-matching condition: 

𝐹(𝑃, 𝐶) =
𝑃 − 𝐶

𝜇
 

given that, once the investment is made, the value of the project is assumed to be:  

Ω =
𝑃 − 𝐶

𝜇
 

where 𝜇 is the risk adjusted discount rate estimated with the Capital Asset Pricing Model 

expressed by Eq. 57. 

Considering that both P and C are unitary measure (both PUN and LCOE are expressed 

for a unit of energy), it is easier to consider our situation with the ratio between P and 

C, call it 𝑝 =
𝑃

𝐶
, which makes our problem one-dimensional. We can find the boundary 

conditions where the investment is optimal in term of this ratio rather than in term of 

the two separate variables, facilitating the path toward an analytical solution. The value 

of the option becomes: 

𝐹(𝑃, 𝐶) = 𝐶𝑓 (
𝑃

𝐶
) = 𝐶𝑓(𝑝) 

considering that: 

𝐹(𝑃, 𝐶) =
𝑃 − 𝐶

𝜇
− 𝐶 =

𝑝𝐶 − 𝐶

𝜇
− 𝐶 = 𝐶 (

𝑝 − 1

𝜇
) = 𝐶𝑓(𝑝) 

Now we can express the partial derivatives present in Eq. 58 in terms of 𝑓(𝑝): 

𝐹𝑃 = 𝑓
′(𝑝)           𝐹𝐶 = 𝑓(𝑝) − 𝑝𝑓′(𝑝)        𝐹𝑃𝑃 =

𝑓′′(𝑝)

𝐶
          𝐹𝐶𝐶 =

𝑝2𝑓′′(𝑝)

𝐶
  

and then substituting them in Eq. 58 gives: 

1

2
(𝜎𝑃

2 + 𝜎𝐶
2)𝑝2𝑓′′(𝑝) + (𝛿𝐶 − 𝛿𝑃)𝑝𝑓

′(𝑝) − 𝛿𝐶𝑓(𝑝) = 0 

Or alternatively writing 𝛿𝐶  and 𝛿𝑃 explicitly: 

 
1

2
(𝜎𝑃

2 + 𝜎𝐶
2)𝑝2𝑓′′(𝑝) + (𝛼𝑃 − 𝛼𝐶)𝑝𝑓

′(𝑝) − (𝜇 − 𝛼𝐶)𝑓(𝑝) = 0 (59) 
 

Also, the boundary conditions can be rewritten in terms of 𝑝 with the 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 

condition becoming: 

𝑓(𝑝) =
𝑝 − 1

𝜇
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and the two 𝑠𝑚𝑜𝑜𝑡ℎ − 𝑝𝑎𝑠𝑡𝑖𝑛𝑔  conditions becoming: 

𝐹𝑃(𝑃, 𝐶) = 𝑓
′(𝑝) =

1

𝜇
               𝐹𝐶(𝑃, 𝐶) = 𝑓(𝑝) − 𝑓′(𝑝) = −

1

𝜇
 

The result found in Eq. 59 has the form of a homogenous linear equation of the second 

order whose solution is a linear combination of two solutions linearly independent, that 

is: 

 
𝑓(𝑝) = 𝐴1𝑝

𝛽1 + 𝐴2𝑝
𝛽2 

(60) 
 

where 𝛽1 and 𝛽2 are the positive and negative roots of the following related quadratic 

equation: 

 
1

2
(𝜎𝑃

2 + 𝜎𝐶
2)𝛽(𝛽 − 1) + (𝛿𝐶 − 𝛿𝑃)𝛽 − 𝛿𝐶 = 0 (61) 

 

Now we have to consider more carefully the implications of Eq. 60: when 𝑝 tends to 0 

(more precisely as a consequence of 𝑃 going to 0), we want 𝑓(𝑝) to goes to 0 as well 

because when the price P of the underlying of the option is very small, the value of the 

option related to 𝑃 should be very near to 0 considering that the probability for the 

option to be exercised in the future is near 0 too. Contrarily to this reasoning, in Eq. 60 

when 𝑃 goes to 0 we see that 𝐴2𝑝
𝛽2 goes to infinity because 𝛽2 is the negative root of 

the aforementioned quadratic equation. Therefore, to avoid this behaviour, we must set 

𝐴2 = 0. 

We are left with: 

𝑓(𝑝) = 𝐴1𝑝
𝛽1         →                 𝑓′(𝑝) = 𝛽1𝐴1𝑝

𝛽1−1 

which can be used together with the boundary conditions stated before: 

{
 

 𝐴𝑝∗𝛽 =
𝑝∗ − 1

𝜇

𝛽𝐴𝑝∗𝛽−1 =
1

𝜇

 

𝐴 =
1

𝛽𝑝∗𝛽−1𝜇
   →   

𝑝∗𝛽

𝛽𝑝∗𝛽−1𝜇
=
𝑝∗ − 1

𝜇
 

 

 



64 
 

With this set of equations, we can find: 

 𝑝∗ =
𝛽

(𝛽 − 1)
 (62) 

 

where 𝛽 is the positive root of Eq. 61. 

Eq. 62 gives the value of 𝑝∗ that is the threshold 
𝑃∗

𝐶∗
 at which investing is preferred to 

waiting, given that the boundary condition defining 𝑝∗ was built exactly as the bound of 

the region where the Bellman equation is maximized by investing rather than waiting. 

V.3 Real Option Approach 

Now that we have gone through the theory behind our model and having specified the 

value of the threshold which triggers the investment, it is now possible to apply the 

stochastic model to our data.  

The standard Grid Parity model, seen in Section 5.1, evaluates when the unit price of 

energy produced by a PV plant will be equal to its unit cost, which is a straightforward 

way to evaluate the investment choice. Nonetheless, it fails in considering that the 

information acquired in the time passing during the deferral of the investment has a 

value that is ignored by the model. The involvement in the investment choice analysis 

of this value is the core of the Real Option approach which gives a mathematical 

definition of the information value and integrates it in the overall evaluation. Based on 

these premises, when considering the Grid Parity one must account for the opportunity 

cost of not deferring the investment in the same way that it is done with the costs 

associated with the investment, which is exactly what dynamic programming accounts 

for in the Bellman equation. This approach can be particularly useful for PV systems 

because they have very high initial costs associated with the construction of the plant 

which are usually irreversible.  
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Equation 63 expresses the value of the opportunity to invest as a function of P and 

LCOE42: 

 
𝐹(𝑃, 𝐿𝐶𝑂𝐸) = 𝐸0[𝑒

−𝜇𝑡∗∗(𝑃𝑡∗∗ − 𝐿𝐶𝑂𝐸𝑡∗∗)] 
(63) 

Where: 

𝜇 > 0         𝑟𝑖𝑠𝑘 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 

𝑡∗∗              𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝐺𝑟𝑖𝑑 𝑃𝑎𝑟𝑖𝑡𝑦 𝑡𝑖𝑚𝑒 

𝐸𝑡(∗)          𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

The condition of the stochastic Grid Parity (price = cost + option value) that must hold 

is: 

 
𝑃𝑡
∗∗ = 𝐿𝐶𝑂𝐸𝑡∗∗ + 𝐹(𝑃𝑡∗∗ , 𝐿𝐶𝑂𝐸𝑡∗∗) 

(64) 

As we have seen in Section 5.2, the threshold at which the investment is triggered is 

equal to: 

 𝑝∗ =
𝑃∗∗

𝐿𝐶𝑂𝐸∗∗
=

𝛽1
𝛽1 − 1

 (65) 

Where 𝛽 is the positive root of Equation 66: 

 

𝛽 =

1
2
(𝜎𝑃

2 + 𝜎𝐶
2) − (𝛼𝑃 − 𝛼𝐶) + √((𝛼𝑃 − 𝛼𝐶) −

1
2
(𝜎𝑃

2 + 𝜎𝐶
2))

2

− 2(𝜎𝑃
2 + 𝜎𝐶

2)(𝛼𝐶 − 𝜇)

𝜎𝑃
2 + 𝜎𝐶

2  

(66) 

The stochastic Grid Parity time, that is, the time at which the price is expected to equal 

the LCOE plus the option value, can be expressed considering the probability distribution 

of 𝑡∗∗ as follows: 

 𝐸(𝑡∗∗) = 𝑚−1 [ln (
𝛽1

𝛽1 − 1
) − ln (

𝑃0
𝐿𝐶𝑂𝐸0

)] (67) 

 
42 The solution of the problem is provided in Appendix C.1 
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where: 

 𝑚 = 𝜎𝐶
2 + (𝛼𝑃 − 𝛼𝐶) −

1

2
(𝜎𝑃

2 + 𝜎𝐶
2) (68) 

The parameters included in Equation 66 are available from the analysis performed in the 

previous chapters except for the risk adjusted discount rate 𝜇. 

We estimate this parameter with the classical method of the Capital Asset Pricing Model 

(CAPM): 

 
𝜇 = 𝑟 + 𝐵(𝑀𝑅𝑃) 

(69) 

where 

𝑟         𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 

𝐵         𝐶𝐴𝑃𝑀 𝐵𝑒𝑡𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑟𝑖𝑠𝑘 

𝑀𝑅𝑃    𝑀𝑎𝑟𝑘𝑒𝑡 𝑅𝑖𝑠𝑘 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 

 

The risk-free interest rate has been calculated taking the average of Italian Government 

Bonds coupon rates between September 2019 and March 2020 with maturities close to 

25 years. This calculation gives us a risk free rate of 3.3%43. B has been estimated by 

Damodaran and it is publicly available in its dataset44: the estimate proposed for “Green 

and Renewable Energy” in Western Europe is equal to 0.57 and it is referred to 

05/01/2020. The Market Risk Premium has been taken from Fernandez and al. in their 

work45 containing MRP for several countries around the world. The value estimated for 

Italy in 2019 is equal to 6.3%. Plugging these figures in Equation 54 gives us a risk-

adjusted discount rate equal to 6.891%. 

In Table 10, we present the stochastic grid parity time calculated plugging into Equation 

53 the parameters estimated in the earlier Chapters. In Table 10, we also find the 

expected time needed in order to reach the stochastic grid parity (expressed in years) 

considering December 2019 as a starting point and the dates at which the parity is 

 
43 See Bertolini et. al (2018) for a similar procedure 
44 http://www.stern.nyu.edu/~adamodar/New_Home_Page/data.html 
45 Fernandez et al., “Market Risk Premium and Risk-Free Rate used for 69 countries in 2019: a survey”, 
IESE Business School (2019) 
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expected to be reached. We present our results for both residential and commercial 

types of investors and according to the scenarios (conservative and optimistic) 

elaborated on the two Learning Coefficients presented in Chapter 4. 

 

 Optimistic Scenario Conservative Scenario 

 E(t**) in years Expected Date E(t**) in years Expected Date 

Residential 14.2 feb-34 17.3 mar-37 

Commercial 15.1 gen-35 18.4 mag-38 

 Table 10: Expected Time to Threshold and Expected Dates 

 

From the results presented, it follows that including the value of the option to defer the 

investment in the analysis leads to a significant postponement of the optimal time to 

invest with respect to the standard Grid Parity approach in Section 5.1 which suggested 

investing at once. This postponement is due to the uncertainty surrounding the future 

evolution of the prices of electricity and the costs associated to the investment in a PV 

plant, that are embodied in the parameters 𝜎𝑃 and 𝜎𝐶 , respectively. This gives value to 

the opportunity of waiting and acquiring the information provided by the realization of 

a part of the future paths of prices and costs. For this reason, we can state that the Real 

Option approach integrates the opportunity cost of investing in a specific moment, 

giving up the value of subsequent information, in the overall timing decision. 

Our findings in Table 10 related to the Optimistic scenario suggests that a residential 

investor will reach the threshold of the stochastic Grid Parity in 14.2 years while a 

commercial investor will reach the threshold in 15.1 years which means an expected 

date equal to February 2034 for the residential case and January 2035 for the 

commercial one. The difference in the expected dates associated to the two cases is 

explained by the different starting values 𝑃2019 and 𝐿𝐶𝑂𝐸2019 used in the model. They 

are reported in Table 11: 𝑃 is larger than 𝐿𝐶𝑂𝐸 in both situations but the difference 
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between them in the residential case is larger than the one in the commercial case. This 

implies that the residential investor is characterised by a starting situation more 

favourable to the investment than the commercial investor and the expected dates 

estimated by the model are conditioned by this fact. 

 𝑃2019 𝐿𝐶𝑂𝐸2019 𝑃 − 𝐿𝐶𝑂𝐸 

Residential                 0.140  0.117 0.023 

Commercial                 0.091  0.090 0.001 

 

Table 11: Differences between P and LCOE 

Moving to the Conservative scenario in Table 10, we can see that the expected time to 

the threshold increases by about three years: in the residential case it is equal to 17.3 

years while in the commercial case it is equal to 18.4 years corresponding to the 

expected dates March 2037 for the former and May 2038 for the latter (the difference 

between the two has the same motivation as in the previous scenario). 

The delay existing between the two scenarios is directly related to the lower drift 𝛼𝐶  

estimated in the Optimistic case with respect to the conservative one. A lower negative 

drift implies a faster decrease of the costs compared to a negative drift closer to 0 and 

with a faster fall of the costs the time required to the parity is shorter, all other things 

being equal. 

To underline the existing relationship between the Optimistic scenario and the 

Conservative scenario, in Figure 21 we can see a sensitivity analysis with the different 

expected dates associated to lower levels of 𝛼𝐶. We can notice that when the decrease 

in costs associated with the PV plant is expected to be faster (measured by a lower 

negative 𝛼𝐶), the optimal time to invest is nearer in time. The Optimistic scenario 

corresponds to the points on the two curves where 𝛼𝐶=-5.795%, while the Conservative 

scenario corresponds to the point where 𝛼𝐶=-1.932%. 
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Figure 21: Expected Dates for different levels of the PV plant costs drift 

 

Another important factor affecting the expected time of investment is the risk-adjusted 

discount rate 𝜇. We notice that 
𝜕𝛽

𝜕𝜇
> 0, therefore 𝛽 is increasing in 𝜇. Further, as it can 

be easily shown 
𝜕𝐸(𝑡)

𝜕𝛽
< 0, therefore the expected timing of investment is decreasing in 

in the risk-adjusted rate 𝜇. In figure 22 we can see the effect of the change in the 

discount rate on the expected time for the different cases analysed. 

Figure 22: Expected Dates for different levels of the Risk-Adjusted Discount Rate 
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VI. Conclusions 

In this thesis, starting from an analysis of the Italian energy market, we have seen that 

the uncertainty characterizing the temporal dynamic of electricity prices and costs 

associated with PV energy generation affects the decision of an investor about when 

investment should take place. A standard Grid Parity approach based on a break-even 

analysis between the energy prices and the Levelized Cost of Energy for the PV sector 

would suggest that in Italy exists a situation where an investor should invest at once in 

a PV plant given that the LCOE is lower than the prices of electricity both for commercial 

and residential consumers. 

One of the key points of the thesis is that the standard Grid Parity approach does not 

adequately represent the timing choice that an investor has to face because it does not 

consider adequately the irreversibility of the initial investment cost for setting up a PV 

plant and the uncertain dynamic of electricity prices and generation costs (focusing only 

on their expected trend). 

As shown by Biondi and Moretto (2013), the adoption of a Real Options approach 

addresses these shortcomings by integrating in the analysis the value of the option to 

defer the investment and acquiring more information about the evolution of both prices 

and costs that can relevantly affect the profitability of the project. Using their model, it 

is possible to determine when the ratio price/costs is expected to reach the threshold 

level triggering the investment decision. 

The results obtained using this model suggest that the uncertainty characterizing 

electricity prices and the cost of PV energy generation induces a significant delay in the 

achievement of the parity with respect to the standard approach. We find that the 

expected time for reaching the Grid Parity varies from 14.2 years for the residential case 

in the Optimistic scenario to 18.4 years for the commercial case in the Conservative 

scenario. 

In conclusion, the analysis performed in this thesis suggests that there may be still need 

of some form of incentives supporting the PV energy sector, at least until higher cost-

efficiency in the PV energy generation will be reached. The global trend in recent years 

seems to be favourable toward support by Governments to renewable energy 
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production and it seems plausible that the achievement of renewable energy generation 

goals will continue to be a priority for policy makers in Italy and in the world. 
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Appendix 

A. Proofs 

A.1 Variance of the Random Walk 

𝑉𝑎𝑟(𝑦𝑡) = 𝐸(𝑦𝑡
2) − 𝐸(𝑦𝑡)

2 = 𝐸((𝑦0 + ∑𝑎𝑖)(𝑦0 +∑𝑎𝑖)) − 𝑦0
2 

𝑉𝑎𝑟(𝑦𝑡) = 𝐸(𝑦0
2 + 2𝑦0∑𝑎𝑖 +∑𝑎𝑖𝑎𝑗) − 𝑦0

2 

𝑉𝑎𝑟(𝑦𝑡) = 𝑦0
2 + 2𝑦0𝐸(∑𝑎𝑖) + 𝐸(∑∑𝑎𝑖𝑎𝑗) − 𝑦0

2 

𝑎~𝑊𝑁(0, 𝜎2) →         𝐸(∑𝑎𝑖) = 0 

𝐸(𝑎𝑖𝑎𝑗) = {
𝐸(𝑎𝑖

2) = 𝜎2     𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑗

𝐸(𝑎𝑖
2) = 0       𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗

 

𝑉𝑎𝑟(𝑦𝑡) = 𝑦0
2 + 2𝑦0 ∗ 0 + ∑𝐸(𝑎𝑖

2) − 𝑦0
2
 

𝑉𝑎𝑟(𝑦𝑡) =∑𝜎2
𝑡

𝑖=1

= 𝜎(1)
2 +⋯+ 𝜎(𝑡)

2 = 𝑡𝜎2 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑦0 + ∑𝑎𝑖) = 0 + ∑𝑉𝑎𝑟(𝑎𝑖)               𝑎𝑖 ⊥ 𝑎𝑗   𝑖𝑓 𝑖 ≠ 𝑗 

𝑉𝑎𝑟(𝑦𝑡) =∑𝑉𝑎𝑟(𝑎𝑖) = 𝑡𝜎2
𝑡

𝑖=1

 

Alternatively: 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑦0 + ∑𝑎𝑖) = 0 + ∑𝑉𝑎𝑟(𝑎𝑖)               𝑎𝑖 ⊥ 𝑎𝑗   𝑖𝑓 𝑖 ≠ 𝑗 

𝑉𝑎𝑟(𝑦𝑡) =∑𝑉𝑎𝑟(𝑎𝑖) = 𝑡𝜎2
𝑡

𝑖=1

 

 

 

 

 



73 
 

A.2 Derivation of the GBM solution formula 

From BM[W,W](t)=t it can be proved that: 

(𝑑𝑊(𝑡))
2
= 𝑑𝑡         (𝑑𝑡)(𝑑𝑊(𝑡)) = 0            (𝑑𝑡)2 = 0                       𝑊~𝐵𝑀 

and Taylor’s 2nd order expansion of a function in f and x: 

𝑓(𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑥) − 𝑓(𝑡, 𝑥)

≈ 𝑓𝑡
′(𝑡, 𝑥)𝑑𝑡 + 𝑓𝑥

′(𝑡, 𝑥)𝑑𝑥 +
1

2
𝑓𝑡𝑡
′′(𝑡, 𝑥)(𝑑𝑡)2 +

1

2
𝑓𝑥𝑥
′′ (𝑥)(𝑑𝑥)2

+ 𝑓𝑡𝑥
′′(𝑡, 𝑥)(𝑑𝑡)(𝑑𝑥) 

Given these two premises the Ito-Doeblin formula for an Ito process 𝑋(𝑡), 𝑡 ≥ 0 (as 

defined before) follows (in integral from): 

𝑓(𝑇, 𝑋(𝑇)) = 𝑓(0, 𝑋(0)) + ∫ 𝑓𝑡(𝑡, 𝑋(𝑡))𝑑𝑡
T

0

+∫ 𝑓𝑥(𝑡, 𝑋(𝑡))dX(t)
𝑇

0

+
1

2
∫ 𝑓𝑥𝑥(𝑡, 𝑋((𝑡))𝑑[𝑋, 𝑋](𝑡)
𝑇

0

= 𝑓(0, 𝑋(0)) + ∫ 𝑓𝑡(𝑡, 𝑋(𝑡))𝑑𝑡
𝑇

0

+∫ 𝑓𝑥(𝑡, 𝑋(𝑡))Δ(𝑡)𝑑𝑊(𝑡)
𝑇

0

+∫ 𝑓𝑥(𝑡, 𝑋(𝑡))Θ(t)dt
𝑡

0

+
1

2
∫ 𝑓𝑥𝑥(𝑡, 𝑋(𝑡))Δ

2(𝑡)𝑑𝑡
𝑇

0

 

Or alternatively in differential form: 

𝑑𝑓(𝑡, 𝑋(𝑡)) = 𝑓𝑡(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑓𝑥(𝑡, 𝑋(𝑡))𝑑𝑋(𝑡) +
1

2
𝑓𝑥𝑥(𝑡, 𝑋(𝑡))𝑑𝑋(𝑡)𝑑𝑋(𝑡)

= 𝑓𝑡(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑓𝑥(𝑡, 𝑋(𝑡))Δ(𝑡)𝑑𝑊(𝑡) + 𝑓𝑥(𝑡, 𝑋(𝑡))Θ(𝑡)𝑑𝑡

+
1

2
𝑓𝑥𝑥(𝑡, 𝑋(𝑡))Δ

2𝑑𝑡 
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Therefore: 

{
𝑑𝑋(𝑡) = αX(t)dt + σX(t)𝑑𝑊(𝑡)              𝑡 ≥ 0
𝑋(0) = 𝑥0                                                               

 

𝑓(𝑡, 𝑋(𝑡)) = 𝑙𝑛𝑋(𝑡)              𝑓𝑡 = 0         𝑓𝑥 =
1

𝑋(𝑡)
                        

𝑓𝑥𝑥 =
1

𝑋(𝑡)2
 

Because of Ito’s Lemma 𝑑(ln(𝑋(𝑡)) becomes: 

𝑑(𝑙𝑛𝑋(𝑡)) =
1

𝑋(𝑡)
𝑑𝑋(𝑡) +

1

2
(−

1

𝑋(𝑡)2
) (𝑑𝑋(𝑡))

2
          (𝑑𝑋(𝑡))

2
= 𝜎2𝑥2𝑑𝑡 

=
1

𝑋(𝑡)
(𝛼𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊(𝑡)) +

1

2
(−

1

𝑋(𝑡)2
) 𝜎2𝑋(𝑡)2𝑑𝑡 

= (𝛼 −
𝜎2

2
) 𝑑𝑡 + 𝜎 𝑑𝑊(𝑡) 

Then we use the integration with the known starting point 𝑋(0) = 𝑥0 

ln(𝑋(𝑡)) − ln(𝑋(0)) = ∫ (𝛼 −
𝜎2

2
)𝑑𝑡 + 𝜎∫ 𝑑𝑊(𝑡)

𝑡

0

𝑡

0

 

ln (
𝑋(𝑡)

𝑋(0)
) = (𝛼 −

𝜎2

2
) 𝑡 + 𝜎𝑊(𝑡) 

 

 

 

 

 

 

 

𝑋(𝑡) = 𝑥0𝑒
(𝛼−

𝜎2

2
)𝑡+𝜎𝑊(𝑡)
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A.3 Expected Value of the GBM 

𝐸(𝑋(𝑡)) = 𝑥0𝑒
(𝛼−

𝜎2

2
)𝑡
∙ 𝐸(𝑒𝜎𝑊(𝑡)) 

The first term on the right is not stochastic, therefore its expected value is simply equal 

to itself. The stochastic part is the one which comprehends the Brownian Motion 𝑊(𝑡). 

We have to compute the expected value of this term 𝐸(𝑒𝜎𝑊(𝑡)). 

In order to do this, we have to use the Ito’s Lemma and then integrate (recalling that 

𝑊(0) = 0) in a way similar to what have been done in Appendix A.2. 

𝐸(𝑒𝜎𝑊(𝑡))  ∶ 

𝑑(𝑒𝜎𝑊(𝑡)) = 𝑒𝜎𝑊(𝑡) ∙ 𝜎 𝑑𝑊(𝑡) +
1

2
𝑒𝜎𝑊(𝑡) ∙ 𝜎2 𝑑𝑡 

𝑓(𝑥) = 𝑒𝜎𝑥       𝑓′(𝑥) = 𝑒𝜎𝑥 ∙ 𝜎       𝑓′′(𝑥) = 𝑒𝜎𝑥 ∙ 𝜎2 

𝑒𝜎𝑊(𝑡) − 𝑒𝜎𝑊(0) = ∫ 𝑒𝜎𝑊(𝑠)𝜎 𝑑𝑊(𝑠)
𝑡

0

+
𝜎2

2
∫ 𝑒𝜎𝑊(𝑠) 𝑑𝑠
𝑡

0

 

𝐸(𝑒𝜎𝑊(𝑡)) − 𝐸(1) = 𝐸 (∫ 𝑒𝜎𝑊(𝑠)𝜎 𝑑𝑊(𝑠)
𝑡

0

) +
𝜎2

2
𝐸 (∫ 𝑒𝜎𝑊(𝑠) 𝑑𝑠

𝑡

0

) 

𝐸(𝑒𝜎𝑊(𝑡)) = 1 + 0 +
𝜎2

2
(∫ 𝐸(𝑒𝜎𝑊(𝑠)) 𝑑𝑠

𝑡

0

) 

𝑚′(𝑡) = 𝐸(𝑒𝜎𝑊(𝑡)) − 1                                𝑚(𝑡) = ∫ 𝐸(𝑒𝜎𝑊(𝑠))𝑑𝑠
𝑡

0

 

{𝑚
′(𝑡) =

𝜎2

2
𝑚(𝑡)

𝑚(0) = 1           

 

𝑚(𝑡) = 𝑒
𝜎2

2
𝑡 ∙ 𝑚(0) 

𝐸(𝑒𝜎𝑊(𝑡)) = 𝑒
𝜎2

2
𝑡
 

 

 

 

𝐸(𝑋(𝑡)) = 𝑥0𝑒
(𝛼−

𝜎2

2
)𝑡
∙ 𝑒

𝜎2

2
𝑡 = 𝑥0𝑒

𝛼𝑡
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A.4 Proof of the Martingale Property for the Symmetric Random Walk 

In general, a stochastic process {St} is a martingale if: 

 
𝐸(𝑆𝑡+1|𝑆𝑡, … , 𝑆1) = St 

 

which means that the expectation of the future conditioned to all past realizations until 

time period t depends only on the status of the random variable in time t without 

considering what happened before. 

For the SRW we consider positive integers k<l and we define Fk the information until 

time k which mean that E(…|Fk) is the expected value conditioned on the knowledge 

about what happened until time k. 

 
𝐸(𝑀𝑙|𝐹𝑘) = 𝐸[(𝑀𝑙 −𝑀𝑘) + 𝑀|𝐹𝑘] 

= 𝐸[𝑀𝑙 −𝑀𝑘|𝐹𝑘] + 𝐸[𝑀𝑘|𝐹𝑘] 

= 𝐸[𝑀𝑙 −𝑀𝑘|𝐹𝑘] + 𝑀𝑘 

= 𝐸[𝑀𝑙 −𝑀𝑘] + 𝑀𝑘 = 𝑀𝑘 

 

 

 

A.5 Proof of the Martingale Property for the Brownian Motion Increments 

Given that the Brownian Motion is built on the assumption of the Symmetric Random 

Walk we can apply the same reasoning. 

Consider 0 ≤ 𝑠 ≤ 𝑡 and then: 

𝐸[𝑊(𝑡)|𝔽(s)] = E[(W(t) −W(s)) +W(s)|𝔽(s)] 

                            = 𝐸[𝑊(𝑡) −𝑊(𝑠)|𝔽(𝑠)] + 𝐸[𝑊(𝑠)|𝐹(𝑠)] 

                             = 𝐸[𝑊(𝑡) −𝑊(𝑠)] +𝑊(𝑠) 

                            = 𝑊(𝑠) 

Here we can recall that the conditional expectation of a random variable 𝑋 given a 𝜎 −

𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑈 is itself a random variable identified as 𝐸(𝑋|𝑈). Loosely speaking, this can 

be seen as the average of X over all the possible conditions in U. 
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B. Prices 

B.1 PUN Monthly Average Data46 

Month Price  03/2008 84.173942  03/2012 77.983206  03/2016 36.396654 

04/2004 57.806392  04/2008 94.714222  04/2012 71.831066  04/2016 31.877726 

05/2004 54.145112  05/2008 96.783975  05/2012 69.901533  05/2016 33.912011 

06/2004 81.140552  06/2008 104.01636  06/2012 78.716423  06/2016 36.700011 

07/2004 82.959628  07/2008 125.51165  07/2012 81.647639  07/2016 43.411951 

08/2004 60.445  08/2008 101.37181  08/2012 81.137907  08/2016 36.46365 

09/2004 68.345562  09/2008 116.34411  09/2012 77.059359  09/2016 44.481519 

10/2004 61.253018  10/2008 118.23606  10/2012 68.999924  10/2016 55.968136 

11/2004 58.701434  11/2008 106.10725  11/2012 72.345068  11/2016 63.919549 

12/2004 64.014848  12/2008 102.82426  12/2012 74.727494  12/2016 60.493971 

01/2005 78.392636  01/2009 95.648658  01/2013 71.41049  01/2017 79.222567 

02/2005 79.119089  02/2009 88.781515  02/2013 67.952094  02/2017 59.895209 

03/2005 71.46776  03/2009 82.587366  03/2013 65.170327  03/2017 45.438131 

04/2005 60.003719  04/2009 72.358014  04/2013 58.643801  04/2017 42.254057 

05/2005 58.157239  05/2009 74.234432  05/2013 53.250025  05/2017 42.971585 

06/2005 71.115722  06/2009 64.477288  06/2013 51.480065  06/2017 49.898524 

07/2005 89.69286  07/2009 76.243777  07/2013 65.329199  07/2017 51.25626 

08/2005 68.974671  08/2009 84.290927  08/2013 60.928401  08/2017 56.540054 

09/2005 79.462618  09/2009 81.547188  09/2013 63.35864  09/2017 49.520943 

10/2005 75.746015  10/2009 69.817485  10/2013 66.119309  10/2017 57.194111 

11/2005 80.308708  11/2009 65.247858  11/2013 68.309474  11/2017 73.624004 

12/2005 82.971406  12/2009 67.083252  12/2013 76.639222  12/2017 71.807838 

01/2006 90.166776  01/2010 75.421  01/2014 65.741652  01/2018 54.000954 

02/2006 99.619811  02/2010 71.288433  02/2014 55.802264  02/2018 61.386724 

03/2006 92.358021  03/2010 71.6602  03/2014 46.21911  03/2018 60.298105 

04/2006 82.048611  04/2010 67.337537  04/2014 45.360599  04/2018 48.711275 

05/2006 85.69485  05/2010 66.642102  05/2014 43.318322  05/2018 54.786551 

06/2006 94.765338  06/2010 69.980834  06/2014 46.791866  06/2018 57.625665 

07/2006 114.53069  07/2010 82.616711  07/2014 46.410429  07/2018 62.244352 

08/2006 88.937386  08/2010 76.655405  08/2014 44.461567  08/2018 66.962506 

09/2006 97.134579  09/2010 73.693469  09/2014 58.496176  09/2018 76.96703 

10/2006 90.963199  10/2010 73.130184  10/2014 64.865241  10/2018 77.096945 

11/2006 93.80617  11/2010 70.267476  11/2014 61.010023  11/2018 72.466335 

12/2006 94.717017  12/2010 72.787372  12/2014 66.644544  12/2018 70.170291 

01/2007 100.82651  01/2011 71.983367  01/2015 55.877862  01/2019 72.700133 

02/2007 92.062845  02/2011 74.222641  02/2015 58.439571  02/2019 59.690466 

03/2007 76.163577  03/2011 75.114873  03/2015 52.59586  03/2019 53.132821 

04/2007 67.037152  04/2011 70.326448  04/2015 46.64586  04/2019 54.086589 

05/2007 82.507644  05/2011 76.151925  05/2015 46.600907  05/2019 51.296066 

06/2007 89.309604  06/2011 73.179793  06/2015 49.058194  06/2019 48.66044 

07/2007 114.80471  07/2011 75.002598  07/2015 69.44892  07/2019 53.167704 

08/2007 76.824751  08/2011 75.799307  08/2015 51.016084  08/2019 47.65418 

09/2007 93.974596  09/2011 86.892375  09/2015 51.386184  09/2019 53.145551 

10/2007 89.162316  10/2011 82.89034  10/2015 50.922888  10/2019 56.264843 

11/2007 114.55163  11/2011 87.680491  11/2015 62.466389  11/2019 53.266817 

12/2007 97.996638  12/2011 89.143371  12/2015 61.3728  12/2019 48.133553 

01/2008 107.22914  01/2012 88.954537  01/2016 50.919933    

02/2008 96.846778  02/2012 101.77965  02/2016 39.486935    

 

 
46 Elaboration of GME data 
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B.2 Inflation Rates in Italy47 

 

 

 

 

 

 

 

 

 

B.3 Augmented Dickey Fuller tables48 

 

 

 

 

 
47 See www.inflation.eu 
48 https://www.real-statistics.com/statistics-tables/augmented-dickey-fuller-table/ 

YEAR INFLATION 

2004 2.21% 

2005 1.98% 

2006 2.09% 

2007 1.83% 

2008 3.35% 

2009 0.78% 

2010 1.52% 

2011 2.78% 

2012 3.04% 

2013 1.22% 

2014 0.24% 

2015 0.04% 

2016 -0.09% 

2017 1.23% 

2018 1.14% 

2019 0.61% 
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B.4 ARERA End User Prices for Energy49 

RESIDENTIAL cent€/KWh 

Yearly Consumption (kWh) 

< 1.000 1.000-2.500 2.500-5.000 5.000-15.000 > 15.000 

Net Gross Net Gross Net Gross Net Gross Net Gross 

32.1 51.19 17.37 24.76 14.3 23.21 12.72 23.07 11.54 22.48 

 

 

 

 

  

 
49 Source: “Relazione Annuale Stato dei Servizi, Volume 1”, p. 45 and p. 50, ARERA Autorità Regolazione 
per Energia Reti e Ambiente 

COMMERCIAL cent€/KWh 

Yearly Consumption (MWh) 

< 20 20-500 500-2.000 2.000-20.000 20.000-70.000 70.000-150.000 

Net Gross Net Gross Net Gross Net Gross Net Gross Net Gross 

18.24 37.48 10.91 22.25 9.41 18.83 8.95 15.81 8.31 12.57 7.85 10.27 
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C. Grid Parity 

C.1 Expected grid parity time50 

Here we present the solution of the Grid Parity problem under a Real Options approach. 

 

Equation (48) states that: 

𝐹(𝑃, 𝐶) = 𝐸0[𝑒
−𝜇𝑡∗∗(𝑃𝑡∗∗ − 𝐶𝑡∗∗)] 

where 𝐶𝑡 = 𝐿𝐶𝑂𝐸𝑡. 

According to standard dynamic programming, 𝐹(𝑃, 𝐶) is the solution of the following 

Bellman equation: 

𝜇𝐹(𝑃, 𝐶)𝑑𝑡 = 𝐸0[𝑑𝐹(𝑃, 𝐶)] 

Applying Ito’s Lemma, we can see that 𝑑𝐹(𝑃, 𝐶) can be expressed as: 

             
1

2
(𝜎𝑃

2𝑃2𝐹𝑃𝑃 + 𝜎𝐶
2𝐶2𝐹𝐶𝐶) + 𝑃𝛼𝑃𝐹𝑃 + 𝐶𝛼𝐶𝐹𝐶 − 𝜇𝐹 = 0                               (𝐶. 1) 

We can reduce 𝐹(𝑃, 𝐶) to one dimension since 𝐹(𝑃, 𝐶) is homogenous of degree 1 in 

(𝑃, 𝐶). This implies that the optimal choice depends only on the ratio 𝑝 = 𝑃/𝐶. Hence, 

we can write: 

𝐹(𝑃, 𝐶) = 𝐶 𝑓 (
𝑃

𝐶
) = 𝐶 𝑓(𝑝) 

The partial derivatives are as follows: 

𝐹𝑃 = 𝑓
′(𝑝)                𝐹𝐶 = 𝑓(𝑝) − 𝑓′(𝑝) 

𝐹𝑃𝑃 =
𝑓′′(𝑝)

𝐶
           𝐹𝑃𝐶 = −

𝑝𝑓′′(𝑝)

𝐶
             𝐹𝐶𝐶 =

𝑝2𝑓′′(𝑝)

𝐶
 

Equation C.1 can then be rewritten as follows: 

             
1

2
(𝜎𝑃

2 + 𝜎𝐶
2)𝑝2𝑓′′(𝑝) + (𝛼𝑃 − 𝛼𝐶)𝑝𝑓

′(𝑝) + (𝛼𝐶 − 𝜇)𝑓(𝑝) = 0                (𝐶. 2) 

The following boundary conditions must be taken into account: 

𝑓(𝑝) = 𝑝 − 1               𝑓′(𝑝) = 1                    𝑓(𝑝) − 𝑝𝑓′(𝑝) = −1 

 

The solution to C.2 takes the following form: 

𝑓(𝑝) = 𝐴𝑝𝛽 

 
50 For further details see Biondi and Moretto (2013) “Solar Grid Parity Dynamics in Italy: A Real Option 
Approach” – Nota di Lavoro FEEM pag. 21-22 
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where 𝛽 (> 1) is the positive root of the following equation: 

1

2
(𝜎𝑃

2 + 𝜎𝐶
2)𝛽(𝛽 − 1) + (𝛼𝑃 − 𝛼𝐶)𝛽 + (𝛼𝐶 − 𝜇) = 0 

that is, 

𝛽 =

1
2
(𝜎𝑃

2 + 𝜎𝐶
2) − (𝛼𝑃 − 𝛼𝐶) + √((𝛼𝑃 − 𝛼𝐶) −

1
2
(𝜎𝑃

2 + 𝜎𝐶
2))

2

− 2(𝜎𝑃
2 + 𝜎𝐶

2)(𝛼𝐶 − 𝜇)

𝜎𝑃
2 + 𝜎𝐶

2  

 

The optimal threshold to be reached for achieving the Grid Parity is: 

𝑝∗∗ =
𝑃∗∗

𝐶∗∗
=

𝛽

𝛽 − 1
 

The next step is to find the expected time that the process 𝑝𝑡 takes in order to reach 

𝑝∗∗. Using Ito’s Lemma we can write ln 𝑝𝑡 as: 

𝑑 ln 𝑝 = 𝑚𝑑𝑡 − 𝜎𝐶𝑑𝑧𝐶 + 𝜎𝑃𝑑𝑧𝑃 

where: 

𝑚 = 𝜎𝐶
2 + 𝛼𝑃 − 𝛼𝐶 −

1

2
(𝜎𝐶

2 + 𝜎𝑃
2) 

 

The expected time to the threshold is equal to: 

𝐸(𝑡∗∗) = 𝑚−1 (ln (
𝛽

𝛽 − 1
) − ln (

𝑃0
𝐶0
)) 
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C.2 Partial Derivative of E(t) with respect to 𝜇 

We rewrite 𝛽  as follows: 

𝛽 =
𝐶 + √𝐴 + 2𝐵

𝐵
 

where 

𝐴 =  ((𝛼𝑃 − 𝛼𝐶) −
1

2
(𝜎𝑃

2 + 𝜎𝐶
2))

2

− 2(𝜎𝑃
2 + 𝜎𝐶

2)(𝛼𝐶) 

𝐵 = 𝜎𝑃
2 + 𝜎𝐶

2 

𝐶 =
1

2
(𝜎𝑃

2 + 𝜎𝐶
2) − (𝛼𝑃 − 𝛼𝐶) 

Taking the derivative with respect to 𝜇: 

𝜕𝛽

𝜕𝜇
=
1

𝐵

𝜕[√(𝐴 + 2𝐵]

𝜕𝜇
=
1

𝐵

1

2√𝐴 + 2𝐵
(2𝐵)  =

1

√𝐴 + 2𝐵
> 0 

 

Taking the derivative of  

𝐸(𝑡) =
1

𝑚
(ln(

𝛽

𝛽 − 1 
− ln (

𝑃0
𝐿𝐶𝑂𝐸0

)) =
1

𝑚
(ln 𝛽 − ln(𝛽 − 1) − ln (

𝑃0
𝐿𝐶𝑂𝐸0

)) 

with respect to 𝛽 yields 

𝜕𝐸

𝜕𝛽
=
1

𝑚
(
𝜕

𝜕𝛽
[ln β] −

𝜕

𝜕𝛽
[ln(𝛽 − 1)] − 0 =

1

𝑚
(
1

𝛽
−

1

𝛽 − 1 
) =

1

𝑚
(−

1

𝛽(𝛽 − 1)
) < 0 

since 𝛽 > 1 and 𝑚 > 0.  
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