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Abstract

Machine learning models are vulnerable to evasion attacks, where the attacker adds
almost imperceptible perturbation to a correctly classified instance so as to induce
misclassification. In the black-box setting where the attacker has no knowledge
of the target model and only has limited query access to it, traditional attack
strategies exploit the transferability property, i.e., the empirical observation that
evasion attacks often generalize across different models. The attacker can thus
rely on the following two-step attack strategy: (i) query the target model to learn
how to train a surrogate model approximating it; and (ii) craft evasion attacks
against the surrogate model and submit them to the target model, hoping that
they “transfer”. Since the two phases are assumed to be strictly separated, this
strategy under-approximates the possible actions that a real attacker might take
and it doesn’t allow the attacker to exploit at the best the limited budget of queries
to maximize the number of successful evasion attacks.
In this thesis we present AMEBA, the first adaptive approach to the black-box
evasion of machine learning models. In particular, AMEBA is built on a well-
known optimization problem, known as Multi-Armed Bandit (MAB). We describe
the reduction from the two-steps evasion problem to the MAB problem, that allows
one to exploit a MAB solving algorithm, the Thompson sampling algorithm, to
define the new attack strategy. As a result, AMEBA infers the best alternation of
actions for surrogate model training and evasion attack crafting. We choose both
binary and image classification datasets to test AMEBA. Moreover, the ML models
involved in the experiments vary between simple linear models, non-differentiable
models and convolutional neural networks. Our experiments show that AMEBA
outperforms the traditional two-steps attack strategy and is perfectly appropriate
for practical usage.

Keywords Adversarial ML, Evasion Attacks, Machine Learning, Security, Su-
pervised Learning
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Chapter 1

Introduction

Machine Learning (ML) has become phenomenally popular in recent years and it
has found a wide range of practical applications, many of which security sensitive
like in self-driving cars, intrusion detection systems and object detectors. The
more critical is the task for which the ML model is used, the more the ML model
has to be robust and reliable. Yet it is now acknowledged that the adoption of ML
in security-oriented applications should be done with care [6]. Indeed an attacker
may confound the attacked model for her malicious objectives. For this reason,
the adversarial machine learning field have gained more and more attention in the
last ten years. The literature is rich of studies about the security of supervised
learning algorithms and, in particular, their applications to classification tasks,
where ML models are trained to predict one out of a set of possible classes, e.g.,
spam vs. ham.

A prominent class of threats against ML is constituted by the evasion attacks,
that targets the integrity of the attacked model [6]. In an evasion attack, the
attacker starts from an instance which is classified correctly by a ML model and
perturbs it so as to induce a misclassification [7]. Indeed a slightly and intelligent
manipulation of a correctly classified instance, different from the standard noise
of data, may fool the machine learning classifier. There are plenty of examples:
the attacker may corrupt the image of a panda through tiny pixel perturbations,
which are imperceptible to humans, yet suffice to fool a ML model and to induce
it to predict a gibbon with high confidence [45, 20]; the attacker may misspell
words likely to appear in spam emails and add good words to make a spam email
predicted as legit; finally, a client may modify carefully some personal information
to obtain insurance coverage even if he doesn’t possess the requirements to obtain
it.

Depending on the information available to the attacker, evasion attacks are white-
box or black-box [6]. White-box attacks assume the attacker to know everything
about the model under attack, e.g., the learning algorithm, the complete feature
representation of data, the training set and the model hyper-parameters. Black-
box attacks, instead, only suppose a partial knowledge of the representation of
the information by the attacker and additional constraints on accessing the target
model make the attack difficult. For example, the attacker may have only query
access to the model under attack (i.e., she can only ask for predictions). Black-box
attacks are particularly important from a practical perspective, since this minimal
capability is inherent to the model functionality.

A traditional approach to the black-box generation of evasion attacks exploits a
subtle and surprising property known as transferability, i.e., the empirical observa-
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tion that evasion attacks often generalize across different models [34]. A practical
impact of this property is that it makes possible black-box attacks based on the use
of a surrogate model whose details are completely known by the attacker. Then
evasion attacks are crafted against the surrogate model and submitted to target
model to verify if they transfer, i.e. they evade also the target model, or not.
Hence, the attacker can adopt the following two-step attack strategy:

1. Surrogate Model Training : the attacker queries the target model to extract
information about its behavior and builds a surrogate model approximating
the target;

2. Evasion Attack Crafting : the attacker crafts successful evasion attacks against
the surrogate model and feeds them to the target model, hoping that they
“transfer” to it, i.e., lead to misclassification by the target.

This approach is appealing, because the attacker can use a surrogate model such
that crafting successful evasion attacks against it is feasible using known algorithms
for white-box attacks. For example, evasion attack crafting algorithms like the Fast
Gradient Sign Method (FGSM) [20] work for any differentiable model. Though
some prominent ML models are not differentiable, e.g., decision trees, the attacker
can train a differentiable surrogate model, attack it through FGSM and then evade
a non-differentiable target model via transferability.

1.1 Contributions

In this work, we question the effectiveness of the two-step attack strategy proposed
in previous work [34] and briefly reviewed above. In particular, we observe that
there is a tension between the two steps of the attack strategy. On the one hand,
the attacker needs to query the target model multiple times in order to disclose
its behavior and train a faithful surrogate model. On the other hand, the attacker
wants to query the target model with as many evasion attacks as possible to
maximize the number of misclassifications. This means that when the number of
queries to the target model is limited, e.g., because the attacker pays a price for
each query or wants to behave surreptitiously, the optimal attack strategy is far
from straightforward.
Here we propose to move away from the two-step attack strategy of previous work
and we present a new adaptive attack strategy, which dynamically learns whether
queries to the target model should be leveraged for surrogate model training (step
1) or for evasion attack crafting (step 2), thus making the two steps of the at-
tack intertwined. Our proposal subsumes the traditional two-step attack strategy
of prior work, making black-box evasion attacks more effective and practical by
automatically dealing with the delicate tension briefly described above.
To sum up, the contributions of this work are:

1. We propose the first adaptive approach to the black-box generation of eva-
sion attacks against ML models. Our technique builds on a connection be-
tween the black-box evasion problem and a traditional optimization problem,
known as Multi-Armed Bandit (MAB) [40]. In particular, we show how the
black-box evasion problem can be reduced to MAB, hence it can be solved us-
ing existing approaches like the Thompson sampling algorithm [39]. We call
the resulting attack strategy AMEBA (Adversarial Multi-armEd BAndit).
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2. We implement AMEBA and we show it at work on different datasets, con-
sidering multiple ML models and attackers. We experimentally show that,
at worst, AMEBA accurately approximates the behavior of the optimal two-
step attack strategy, where the attacker leverages an oracle to find the best
moment to switch from step 1 to step 2. At best, instead, AMEBA leads to
the creation of a large number of evasion attacks which cannot be crafted
even by the optimal two-step attack strategy. This shows that future research
on adversarial ML should take adaptive attack strategies into consideration.

The AMEBA attack strategy and almost all the experimental results discussed in
this thesis constitutes the work presented in [10] of which the author of this thesis
is co-author. This work was presented by the author of this thesis at the ACM
ASIA Conference on Computer and Communications Security (ACM ASIACCS)
2021 on 8th June 20211.

1.2 Thesis Structure

The presented work is organized as follows. In Chapter 2 we introduce the nec-
essary background related to supervised learning, the different machine learning
models used in this work, adversarial machine learning, evasion attacks and the
MAB problem. In Chapter 3 we provide a general overview about the most im-
portant categories of black-box attacks. In the first part we detail the black-box
setting and we describe some types of black-box attacks, while in the second part
we examine the black-box evasion problem and we provide a more detailed de-
scription of the two-step attack strategy through a prominent example from the
literature. Following it in Chapter 4, we present our contribution, AMEBA, an
adaptive attack strategy. In particular, we describe the threat model considered,
the reduction from the two-step evasion attack problem to the MAB problem and
the implementation of AMEBA. In Chapter 5, the experimental results are pre-
sented, among with the settings considered and the methodology adopted. Finally,
in Chapter 6 the thesis is concluded with a brief summary of the work, then we
provide a critical comparison with important work in the literature, in order to
highlight our contribution, and finally we describe a list of open issues and research
directions.

1https://dl.acm.org/doi/10.1145/3433210.3453114
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Chapter 2

Background

In this chapter we introduce the concepts and the methods necessary to appreciate
the rest of the work. The chapter is organized as follows. In Section 2.1 we
discuss general concepts about ML and classification. Then in Section 2.2 we
define the supervised learning algorithms and classifiers used in the experimental
evaluation to test AMEBA. In Section 2.3 we provide the definition of Adversarial
Machine Learning, the attack taxonomy and the definition of evasion attack along
with two examples. Finally, in Section 2.4 we present the Multi Armed Bandit
problem, a specific Reinforcement learning problem, and we describe one of its
solving algorithms.

2.1 Machine learning

Machine learning is the field of computer science in which are studied algorithms
that are able to learn from data [19]. The activity of learning follows the inductive
method: derive laws and rules by using particular observations to make predictions
about the future or unseen data. Every learning problem is classified by the type
of feedback available to algorithm involved: the two most representative cases
are unsupervised and supervised learning. The problem of unsupervised learning
involves learning useful properties of the input data when no specific output values
are supplied [38], for example learning the entire probability distribution that
generated a dataset. On the other side, the supervised learning problem consists in
learning a function from examples of its inputs and outputs [38], such as image and
labels in image recognition problem. Since all this work deals with the classification
task, the class of supervised learning problem will be deepened more formally.

2.1.1 Supervised Learning

Let {(~xi, yi)} ∈ X × Y be a set of couples built from the instances ~xi of the set of
instances X , entities of the domain of interest, and yi values from the set of labels
Y and associated to the instances. The mapping between the instances in X and
the labels in Y is defined by the unknown function f : X → Y . Y is very often a
set of strings or a set of real numbers, while the elements of X can be represented
in many different ways that determine the nature of the prediction task. In this
work it’s supposed that the instances are represented through the vector model, so
as a sequence of features, very often numerical. More precisely, the combination of
d features is represented as a d-dimensional column vector, called feature vector,
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defined in the d-dimensional space (Rd if the features are real numbers), then an

instance ~x is represented as


~x(1)

~x(2)

...
~x(d)

.

The inductive inference task associated to the supervised learning problem consists
in returning a function ĥ that approximates f by learning from a training set
D = {(~xi, yi)}ni=1 ⊆ X × Y [38]. The hypothesis h belongs to the hypothesis
space H, the set of hypothesis functions considered. The function ĥ is returned
by the learning algorithm L : (X × Y )n 7→ H that maps a set of instances to the
function ĥ in H such that ĥ(~x) ≈ y in a predictive way. The function ĥ that better
approximate f can be found by following the empirical risk minimization [48].
Given a non-negative real valued loss function ` : Y × Y → R+ that measures the
cost of the mispredictions by the function h ∈ H with respect to the ground truth,
ĥ is the function that minimizes the empirical error:

ĥ = arg min
h∈H

1

n

n∑
i=1

`(yi, h(~xi))

, where (~xi, yi) ∈ D.

An important property that has to be granted by the function learned ĥ is gener-
alization, i.e., it becomes possible to use the empirical error on D by ĥ as a mirror
of the expected error of ĥ on the entire set X ×Y , in order to detect whether the
function chosen is implicitly poor for the task. The choice of the hypotesis space
H has a fundamental role in guaranteeing generalization. For example, suppose
that the prediction task consists in finding a separating boundary of two classes of
instances in a d dimensional vector space. If the predictive function ĥ has the form
of a linear separator and data are not linearly separable, it could not be the best
assumption since it’s not possible to determine a boundary that split the space in
regions in which only instances of a certain class reside. More complex hypothesis
imply more complex predictive functions ĥ learned, that will be more tied to data
from which the functions are learned, implying more variability as the training set
D changes. In practice, it is common to allow complex predictive functions if the
amount of available training data is sufficiently large, while it’s more convenient
to use less complex predictive functions with few data available.

2.1.2 Classification

If Y is the a finite set of labels, then the function f performs classification. The
learning task becomes the classification task, that consists in finding the function
ĥ, called classifier, that best approximates f and allows to classify new instances.
The actual function used for classification can be directly ĥ or, in other cases,
k : X → Y , that has the form k(x) = g(ĥ(~x)), where h : X 7→ R is the principal
function learned that returns a value from ~x that, given to g : R 7→ Y , allows to
return the label of x ∈ X . The classifier ĥ partitions the space into class-labeled
decision regions.
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2.1.3 Performance Evaluation

There exist different performance metrics to evaluate a classifier ĥ in the task of
predicting the labels of a set of instances S ⊂ (X × Y), drawn from the same
distribution of the instances in D. Let St ⊂ S the set of instances correctly

classified by ĥ, the accuracy of ĥ on S is
|St|
|S|

[48]. The accuracy can be used

independently of the nature of the classification task, binary or multiclass.
A key aspect to consider is the nature of the set S. It’s not suggested to compute
a performance metric on the same training-set D on which the function ĥ was
learned, since it’s not possible to see how well the model generalizes on new data
if new data aren’t used. Then part of data available has to found a test set
T ⊂ (X × Y) such that T ∩ D = ∅: the performance of the learned function ĥ on
T = S it is a reasonable estimate of the performance on new data.
However, reserving part of the data available as test set could not be optimal,
since we don’t exploit all the information available for training and, then, we
risk to underestimate the performance of the classifier on new data. An overall
summary of the performance of h on new data can be obtained by using the cross
validation technique [48]. It consists in dividing the training set D into k subsets,
typically 5 or 10 apply the learning algorithm L on k − 1 subsets and test the
predictive function obtained on the held-out subset. The score of cross validation
is the mean of the result of the performance evaluation metric selected over all k
tests. The fact that the learning algorithm and the correspondent functions are
generated and evaluated on subsets of the training sets allows to avoid overfitting
and to reduce the variability in the estimation of the expected performance of ĥ.
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Figure 2.1: Decision tree and induced space regions, credits [36]

2.2 Classifiers

A great number of classifiers were developed since the born of AI. Nowadays,
although neural networks are widely adopted, each classifier continues to be used
at least in specific application domains. As consequence, they continue to be
studied from the point of view of robustness and security. This section introduces
classifiers that will be used in the experiments.

2.2.1 Decision Tree

A decision tree is a classification model that works by partitioning the input
space into regions, whose edges are aligned with the axes of the feature space,
and then assigns a prediction (for example, a label) to each region [8]. Given
an instance ~x ∈ X , the process of selecting the prediction can be described by a
sequential decision making process corresponding to the traversal of a tree [8].
Each internal node of the tree is annotated by a test on a feature (e.g. ~x(1) < 1
or x1 ∈ {green, blue}, where ~x(1) is an attribute of the instance ~x), each branch
represents the test result and each leaf bears the label of a class. The label assigned
to a leaf will be the prediction for every instance whose features values allow to
reach the leaf by following the outcomes of the tests. The thresholds used by the
different internal nodes induces a partitioning of the feature space, so a leaf of the
tree groups the instances of a region into a single class. This concept is represented
in Figure 2.1.
The instance ~x is classified by starting from the root of the tree and following a
path down to a specific leaf node, according to the outcomes of the tests of the
internal nodes on the value of the features of ~x.

Training

The classification trees are built using a top-down approach and a recursive, greedy
and divide-and-conquer algorithm [21]. The approach is top-down since it begins
from the root of the tree and the nodes are subsequently inserted. The algorithms
is greedy because the node inserted is labeled with the test representing the best
split of the partition of the training set considered at that particular step of the
building process. Initially, the entire training set D is examined at the root of the
tree and, if the instances don’t belong to the same class, the splitting criterion is
chosen. This criterion indicates which attribute and test determine the best way
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to partition the set of instances into partitions Dj. The quality of the splitting
is measured by a attribute selection measure, that indicates the pureness of the
splitting, i.e., if the sets of the partition contain only instances belonging to the
same class. The splitting criterion is chosen such that the resulting partitions
are as pure as possible, while the number of partitions created depends on both
the type of features used and the attribute selection measure. Then the algorithm
repeat the same process recursively to build the other branches and nodes from the
partitions, that are examined in the subsequent nodes, and removes the attribute
used in the previous splitting. In particular, if the attribute is numerical, the
algorithm removes the attribute from the candidates used in the following nodes,
otherwise it removes all the categorical values of the feature that was considered
in the splitting. The algorithm stops only if either all the instances of a partition
belong to a single class or the aren’t remaining features to select for a stopping
criterion or a stopping criterion is satisfied, like a maximum number of leaves of
the tree (max leaf nodes) is reached. Then a leaf is added and labeled with the
majority class in the considered partition of the training set.
The key parameter of the learning algorithm is the attribute selection measure.
It’s used for ranking in descending order the features that can be used to split
the partition of the training set considered at a given node and selecting the
best. Two criterion are used in this work: Entropy and Gini index. The Entropy
criterion tends to prefer unbalanced splits in which one partition is smaller than
the others [21], while the Gini index criterion enforces only binary splittings at
each node [21].

2.2.2 Forest of Decision Trees

An ensemble model is a model that combines n models (or base classifiers)
M1,M2, ...,Mn to make up a M∗ model [21]. The predictions given by M∗ are
dependent on the individual predictions of the classifiers that compose it. The
training set D is used to create n training sets D1, . . . ,Dn, where Di, 1 ≤ i ≤ n
is used to train the classifier Mi, that’s called base learner. Ensemble models
are extremely popular since combining some weak learners in order to create one
strong is easier than designing a very strong one.
There are different ensemble models based on decision trees. Their aim is to make
possible the use of decision trees in such way that the variance and the bias of
the resulting ensemble model are lower than the ones of a single decision tree.
The base learners must be the most different from each other, but also the more
accurate as possible.
The method used for building the ensemble characterizes the ensemble model itself.
The same learning algorithm for decision trees is used for every tree learned in the
ensemble and the ensemble method influences the accuracy of the base learners
and the independence between them. Since in reality it’s very difficult to achieve
the true independence between the base learners, the introduction of randomness
in the learning algorithm helps.

Random Forest

One of the most popular ensemble model based on trees is Random Forest. It
exploits the bagging algorithm [48] to learn the ensemble classifier. It works as
follows: from the training set D are built n training sets Di by bootstrapping
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(sampling with repetition) the samples from D. Then each decision tree is built
from each training set. This method allows to train the single decision trees on
slightly different datasets, improving the independence between the predictors.

Moreover, Random Forest introduces a difference about the decision tree learning
algorithm explain in 2.2.1: only a subset of the features is considered for selecting
the splitting criterion at each internal node. This subset of features is sampled
randomly and with the same probability distribution at each repetition of the
building algorithm. Normally, if d is the number of features of the instances,
log(d)+1 or

√
d features are sampled for each node construction. This random part

helps to obtain the independence between decision trees and better generalization
since a very important predictor will not surely be chosen as part of the splitting
criterion at the root of each tree [26].

The aggregation of the different base learners is obtained using the majority voting
criteria: the prediction of the ensemble model is the most predicted label by the
individual models. Random Forest is not prone to overfitting even if the number
of trees used is large, so a high number of trees is often used in order to obtain
a significant gain in accuracy [26]. Moreover, the training algorithm can be par-
allelized, since each subtree is trained over a different and independent training
set.

AdaBoost

Another extremely popular ensemble method is AdaBoost, based on the boost-
ing [48] ensemble method. The method starts by assigning weights to the different
tuples of the training set D. After the training of the i-th classifier, the weights of
the tuples are updated so that the next classifier Mi+1 can be trained more likely
on the tuples wrongly classified by Mi. The prediction of the overall model thus
obtained is the result of the combination of the weighted votes of each classifier
that composes it. The weight of each classifier in the prediction is a function of
its accuracy on the training set Di on which it was trained [21].

In AdaBoost, each training instance has initially a weight
1

n
, where n = |D|. The

generation of k base classifiers requires k rounds of the algorithm. At round i, the
dataset Di is sampled with replacement by using the weights of the instances as
sampling probabilities. Then the error of the classifier Mi is computed on Di and
if the classifier is too poor, it is discarded. The weights of the each instance in D is
incremented if is incorrectly classified by Mi, it’s descreased if correctly classified
and remains equal if the instance considered wasn’t in Di.
Boosting allows to reduce the model bias, as sub-models specialize in classifying
instances incorrectly classified by the previous model, during the training phase.
Normally a little number of short trees are used, since if each tree is too deep or too
many of them are used, the model can overfit easily the training data. Compared
to bagging, boosting tends to achieve higher accuracy [26].

2.2.3 Logistic Regression for Binary Classification Tasks

The logistic regression model [26, 27] is a generalized linear model that computes
the probability that an instance ~x ∈ X belongs to a particular category y ∈ Y by
using the linear combination of the values of the features of ~x. Let’s assume that
X has dimensionality d and the features of ~x can be modeled by a finite vector
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Figure 2.2: Logistic function, credits [1]

of real random variables X of size d + 1 (it contains 1 as first element). Given
the vector of real coefficients β of size d+ 1 learned by the training set, the linear
combination of the features values is z = XTβ. Since z ranges over all R, it’s
necessary to map the real value on the range [0, 1] to express the probability of the

1 outcome by using the logistic function ŷ = σ(x) =
ex

1 + ex
, x ∈ R, whose plot is

in Figure 2.2, one of the functions that gives values between 0 and 1 [26]. Then
the logistic model is expressed as follows:

p(X) =
eX

T β

1 + eXT β

Training

The coefficients in β are estimated using the conditional maximum likelihood esti-
mation. The objective is to maximize the log probability of the true yi labels in the
training data given the observations ~xi [27]. Typically, the parameters estimated
β̂ solve the following optimization problem:

β̂ = arg max
β

n∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi))− αR(β)

[27].
The objective is to find β that maximizes the log-likelihood function or, more
commonly, that minimizes the opposite of the log-likelihood function, that becomes
the objective loss function. The loss function ranges from 0, in the case in which
all the instances with label 1 the predicted probability is 1 and 0 for the others,
from infinity, in the opposite case. The global minimum of the loss function can
be found by using gradient descent method and exploiting the convexity of the
loss function, that guarantees that there exists only one minimum of the function
which is also global.
In order to avoid overfitting, the regularization term R(β) is added to the log-
likelihood function. This term has the effect of shrinking the values of the param-
eters in β̂ [27], thus reducing the variability of the estimate β̂ and regularizing the
model. The higher α, the higher the importance of the regularization term. For
example, if the value of α tends to infinity, all the parameters will tend to a value
near 0.

10



In this work the regularization term used is the L2 regularization, that uses the
square of the 2-norm of the weight values, e.g. R(β) =

∑d
i=0 β

2
i . Machine learning

frameworks that offers logistic regression as model, such as scikit-learn [35], allows

to set the regularization of the model through the parameter C =
1

α
, then the

higher C, the smaller the regularization of the model.

2.2.4 Linear SVM

Linear Support Vector Machine [8, 26] is a discriminative classifier that learns
the decision boundary that separates the instances ~x ∈ X in the training that
belong to two classes with labels y ∈ {−1, 1}. The separating hyperplane learned
has equation < w, x > +b, where w is the d dimensional vector of weights, b the
intercept and d is the dimension of the features space X .
In order to assign one class to a instance, Linear SVM uses the sign of the signed
distance of the instance from the separating hyperplane. More formally, given the
instance ~x ∈ X and the classes y ∈ {−1, 1}, the Linear SVM classification function
is defined as

ĥ(~x) = sign(wT~x+ b)

, where w and b are learned through the learning algorithm on the training set D.

Training

In order to undestrand the optimization problem solved to find the parameters w
and b of the best separating hyperplane, it’s necessary to discuss SVM from the
geometric point of view. The Linear SVM training algorithm finds the separating
hyperplane that maximize the geometric margin, the distance of the hyperplane to
the closest training points. Given an instance ~xi, the label yi and the hyperplane
< w, x > + b, the geometric margin is proportional to the perprendicular distance
of the point ~xi from the hyperplane. It’s defined as

γgeom, ~xi =
(w~xi + b)yi
||w||

[8]. For the closest points of the two classes to the hyperplane, called support
vectors, the two parameters w and β are chosen such that (w~xi+b)yi = 1. Then the

geometric margin for the support vectors becomes γgeom, ~xi =
1

||w||
, while (w~xi +

b)yi ≥ 1 for any other point. The euclidean distance between the closest points to
the hyperplane selected is 2

||w|| . In order to maximize the geometrical distance from
the closest points to the hyperplane and then maximize the margin, it’s necessary
to maximize the quantity above or, in other terms, minimize ||w||2.
Since data may be non linearly separable and the constraints on the margin may
make the hyperplane too sensible to individual observations, the constraints on the
margins are relaxed such that the hyperplane does not perfectly separate the two
classes and some training instance may violate the margin or also the hyperplane
side.
The optimization problem solved is then formulated as:

minimize
1

2
||w||2 + C

∑
i

ζi
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subject to yi(w · ~xi + b) ≥ 1− ζi ∧ ζi ≥ 0

[8].
Intuitively the margin is maximized, but every instance that’s inside the margin
or at the wrong side of the hyperplane induces a penalty. Indeed for every ~x ∈ D
should held yi(w · ~xi + b) ≥ 1 but this is not possible if the dataset is not linearly
separable. For this reason, a slack variable ζi is associated to every instance ~xi
and it has value greater than 0 if ~xi isn’t at the right side of the margin. C is
the regularization factor that controls how strictly the margins must be enforced.
The bigger C, the hardest the margin is imposed, the less errors in classifying the
training instances can be done and the narrower are the margins [8]. A low value
of C allows to find a separating hyperplane that produces more errors in classifying
points of the training set but the model generalizes data better.

Relation to Logistic Regression

Although the idea of finding the best hyperplane that separates the data of the
two classes, allowing also some violations, seemed innovative when SVM was intro-
duced, deep connections between SVM and other statistical methods have emerged
[26]. One of those is the connection with logistic regression.
Indeed both the objective functions of the minimization problems solved in order
to train the logistic regression and linear SVM model can be rewritten in the form

minimize
β

{L(D, β) + λP (β)}

, where L(D, β) is a loss function quantifying the quality of fitting the data D while
the term P (β) is the penalty function on the parameters of the model controlled
by the non negative constant λ. For linear SVM, β = (w, b). From this, it emerges
that the loss functions of the two models are very closely related [26]. While
the value of the loss function used by the learning algorithm of Linear SVM is
0 for instances that reside at the correct side of the margin, the loss function of
the logistic regression problem is non-zero everywhere but near to 0 for instances
classified with very high probability of belonging to one or the other class, i.e.
they are far from the decision boundary. Due to this similarities, the two models
performs similarly [26]. However, SVM is preferred when the two classes are well
separated, otherwise logistic regression is preferred [26].

2.2.5 Feedforward Neural Networks

A deep feedforward neural network [19, 2] is a ML model that consists in an
hierarchical composition of n different functions of the input ~x that depend on
some parameters learned in the training phase. Each function in the hierarchy
represents a layer of the neural network and the overall length of the chain is the
depth of the model. The final layer of the network is the output layer. Since the
neural network should approximate, through training, a function f(~x), the output
layer should return a label ŷ for the instance ~x such that ŷ = f(~x). The other
layers have not a specified behaviour and, for this reason, are called hidden layers.
The model is associated with a directed acyclic graph describing how the functions
are composed together [19].
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Figure 2.3: Deepforward neural network graph representation. Credits from [34]

The graph representation allows to explain the model as composition of layers of
nodes, called also neurons. The input layer contains d nodes, as the number of
features of the instance ~x ∈ X , that don’t perform any computation. Each node i
of the input layer passes the value of the feature ~x(i) to the node j of the subsequent
layer through the weighted edge with weight wij. Each neuron of the second layer
applies an activation function Φ : R→ R to the sum of the weighted features from
the input layer, with the optional addition of a bias term b, incorporated as the
weight of an edge by using a bias neuron with activation value 1. The returned
value is zi:

zi = Φ

(
d∑
i=1

wij ~xi + b

)

Then each neuron of the first hidden layer provides the value computed to each
neuron of the second hidden layer that will apply the activation function (the same
of the previous layer or another one) to the weighted sum of the incoming inputs
and so on, until the output layer is reached. In Figure 2.3 an example a graph
representation of a deepforward neural network is presented, which takes as input
an image and return a vector of proabilities, one for each class.

The dimensionality of the layer j is the number pj of the units in that layer and
the column vector representation of the outputs of layer j is indicated as h̄j, with
dimensionality pj. The weights of the connections between the input layer and
the first hidden layer are contained in a matrix W1 with size d× p1 , whereas the
weights between the rth hidden layer and the (r+1)th hidden layer are denoted by
the pr × pr+1 matrix W(r+ 1). If the output layer contains o nodes, then the final
matrix Wk+1 is of size pk × o. The d-dimensional input vector x is transformed
into the outputs using the following recursive equations:
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h̄1 = Φ(~xTW1)

h̄p+1 = Φ(h̄TpWp+1) ∀p ∈ {1 . . . k − 1}
ō = Φ(h̄TkWk+1)

[2].
The activation functions are applied in element-wise fashion to their vector ar-
guments and are supposed to be the same for each node in a layer. An ex-
tremely popular activation function is Rectified Linear Unit (ReLU), defined as
Φ(v) = max{v, 0}.
The choice and number of output nodes is also tied to the activation function,
which in turn depends on the application at hand [2]. In k−way classification,
k output nodes with a softmax activation function may be used as output layer,
defined as the following for the ith output zi:

g(zi) =
exp(zi)∑k
j=1 exp(zj)

∀i ∈ {1, . . . , o}

The outputs corresponds to the probabilities of the k classes associated with x.
Moreover, the choice of the activation function is critical and the most popular
activation function nowadays is the ReLU function, defined as g(v) = max{0, v},
applied by all the neurons of a layer.
The description of the neural network as a composition of layers of neurons justifies
the formalization of the model as an optimized composition of functions. Indeed,
supposing that at layer r the units compute the functions g1, . . . , gpr , while the
function f is applied by every node of the layer r + 1 to their input. Then the
node at the layer r+1 computes f(g1, . . . , gpr). All the functions computed in each
layer depend on the weights of the connection between neurons learned during the
learning phase, that optimize the weights jointly.

Training with the Backpropagation Algorithm

The standard training algorithm for deepforward neural network is the backprop-
agation algorithm [2], that allows to learn the weights of the model such that the
chosen loss function L is minimized.
The weights wij of each layer are typically initialized to random values. Then, at
every iteration of the algorithm, the weights have to be updated in order to min-
imize the loss function L on the training data. Let ŷ0, . . . , ŷC−1 the probabilites
of the C − 1 classes predicted for an instance ~x that belongs to one the classes.
The loss function typically adopted in the multiclass classification setting is the
cross-entropy loss, defined as L = −

∑C−1
i=0 yi log(ŷi), where yi = 1 if i = y, the

label associated with ~x, otherwise yi = 0. Since ŷi predicted by the NN is provided
by a composition function applied to ~x, also L becomes a complicated composition
of functions that depends on the weights learned. The backpropagation algorithm
allows to update the weights wij leveraging the multivariate chain rule of differ-
ential calculus that express the error gradients as summations of local-gradient
products over the various paths from a node to the output.
The backpropagation algorithm contains two main phases, the forward and back-
ward phases. An epoch of training is concluded when the backpropagation algo-
rithm is executed over the entire training set. The number of epochs is established
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before the training phase or by using a stopping criteria during the training phase,
such as the convergence of the weights. The two phases of the algorithm are the
following:

• Forward phase: the instance ~x is passed to the neural network, the input
neurons are feed and the features values are used to compute the post acti-
vation value for every node in each hidden layer based on the current weights.
The value of the output o is also computed.

• Backward phase: the main goal of the backward phase is to update the
weights wij using the gradient of the loss function with respect to the dif-
ferent weights. This phase is backward since the weights are updated in the
backward direction, starting from the output layer.

In particular, the weights are updated using gradient descent method, then
wij = wij − η ∂L

∂wij
. An important parameter of the method is the learning

rate η, with value typically between 0 and 1, that multiplies the update
component A good value of the learning rate is essential in order to find a
global minimum solution and not local.

In this work, mini-batch stochastic gradient descent is used. Firstly the training set
is divided into random batches of instances, then the weight updates are compute
over the batch of instances and finally the weights are updated at the end of
the batch iteration. This method allows firstly to not have all training data in
memory but only the batch required, reducing memory costs, and allows for a
faster convergence, avoiding local minimum [2]. However, the batch size is an
additional hyperparameter that must be tuned. The typical batch size are at the
power of 2, typically 32, 64, 128 or 256 instances.

2.2.6 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [2, 19] are designed to work with grid-
structured inputs, which have strong spatial dependencies in local regions of the
grid [2]. The most obvious example of grid-structured data is a 2-dimensional
image. Since in this work CNNs are used in a image classification task, CNNs
description will be contextualized to image classification. This architecture was
proposed for the first time by LeCun et al. [30].
Figure 2.4 shows an example of CNN architecture. In CNNs, each layer of the
network is 3-dimensional grid structure, which has a width, height and depth.
The depth represents the number of features maps in the hidden layer and the
number of color channels in the input layer. Three types of layers are normally
present in a CNN: convolutional, pooling and ReLU. This sequence of layers is
devoted to extract features from the input. Moreover, a final set of layers is often
fully connected, or dense, in order to use the features extracted from the previous
part of the network to provide a prediction through the output nodes.

Convolution

A convolutional layer consists in a set of 3D grids composed of neurons like the
feedforward neural network, whose connections to the previous layer are sparse but
carefully designed [2]. The parameters, weights of the connections, are arranged
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Figure 2.4: Example of architecture of a CNN with convolutional layers and final
fully connected layers. Credit [22]

into sets of 3D structural units called filters or kernels. A filter is usually a square
in terms of width and height, smaller than the dimensions of the input layer, while
its depth matches the one of the layer on which its applied. The filter is involved
in the convolution operation that defines the dimensionality of the next layer of
the network. Figure 2.5 shows an example of the convolution where the depth
of the filter is 1. Convolution imposes the filter at each possible position of the
input layer of neurons so that the filter fully overlaps with the layer. Each position
in which the filter can be placed defines a node with input value that’s the dot
product between the weigths of the filter and the region of the input layer covered.
Since the filter is repeatedly shifted along all the layer in order to compute the
feature map of the subsequent layer, the parameters of the filter remains the same
across all the convolution process. From the point of view of the nodes in the
grid structure, the same filter parameter is used as the weight of the connection
between the feature nodes in the subsequent layer and the nodes in the actual layer
that appear at the same position in the filter. The depth of the layer is established
by the number of the filters used in a certain layer.

The convolution operation is parametrized by a stride and a padding parameter.
These two parameters are used to control the size of the resulting feature maps with
respect to the size of the kernel and the input layer. The stride defines how many
steps we are moving in each step of the convolution. For example, stride 2 implies
that the filter is moved two positions at every step, resulting in a smaller feature
map produced. The padding parameter represent the number of columns/rows of
neurons that return input 0 that will be added symetrically at the borders of each
feature map of the input layer. These nodes don’t contribute to the input value
of the nodes to which are connected. Padding allows a filter to stick out from the
borders of a layer and increase the dimensionality of the resulting feature map.

The number of filters used in each layer control the number of weights of the CNN,
since the each parameter of the filters is trainable. Different layers can use different
number of filters. The idea about the usage of filters is that each filter tries to
identify a certain type of spatial pattern inside a certain region of the input mage,
such as an horizontal edge, and a large number of filters is necessary to capture a
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Figure 2.5: Convolution. Credits [42]

Figure 2.6: Maxpooling. Credits [42]

great variety of the possible patterns combinations. Each node, whose weights are
defined by a filter, is said to capture a feature through the filter. The filters in the
early layers are used to capture more primitive spatial shapes, while the filters in
the later layers tend to have smaller area but a wider depth, in order to capture
complex features [2].

Typically, at each layer, it is applied the ReLU activation function to the output
value of each node in the feature map after the computation of the weighted sum
of its input values.

Pooling

The pooling operation is applied to regions of each feature map of a layer and
produces another layer with the same depth as the layer on which is applied. It
consists in compacting the values of regions of each feature map by applying a
function to retrieve the maximum value (max pooling) or mean value (average
pooling) in that region. Pooling drastically reduces the spatial dimensions of each
activation map, above all if also the stride is used. In practice, max-pooling is
extremely popular and it’s very often interleaved with convolutional/ReLu layers.
An example of how max-pooling works is in Figure 2.6.
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Early Stopping

Training a neural network by optimizing the loss function up to convergence may
induce the overfitting of the training data, i.e., the neural network doesn’t general-
ize to test data since it becomes excessively adherent to the training data, learning
also the inherent noise.
Early stopping [19] the training procedure allows to mitigate this problem. A
part of the training data is used as validation data and backpropagation is applied
on the training data. Then the training procedure is stopped when parameters
updates no longer cause an improvement of the NN on the validation set. The
parameters of the NN are set to the value reached in the epoch in which the
network reached the best validation error.

Data Augmentation

NN typically requires an huge training set in order to achieve the desired perfor-
mance and not overfit the set provided. Data augmentation [19] allows to make
up for this requirement by increasing the number and diversity of instances in the
training set. It consists in generating new instances from the dataset by applying
such transformations on the original instances that allows to maintan the same
class. In the context of image processing, transformations like rotation, transla-
tion, zooming and reflection are used, since they do not fundamentally change the
properties of the object on the image. However the choice of the operations and
their paramaters should be done with care. For example the symmetric transfor-
mation with respect to the horizontal axis on a image containing a 6 results in a
image containing the digit 9 and completely change the class of the image.

Dropout

Dropout is a regularization technique for NN. It was introduced by Srivastava et.
al. [41] and it’s useful to prevent overfitting.
Dropout is typically used with a minibatch learning algorithm. Each time an
instance is submitted to the NN, each neuron of the NN or of a specific layer
(except the output layer) is dropped from the NN along with its connections with
probability p (normally p = 0.5). Then the forward and backward pass of the
backtracking algorithm are executed without considering the dropped nodes, i.e.
each involved layer of the NN has a different configuration. At test time, in
order to provide predictions, the weights going out of each unity are scaled by the
probability of sampling that unit.
Dropout present two important advantages. Firstly, dropout trains intuitively
an ensemble of subnetwork that can be obtained by removing nonoutput units
from the NN [19]. However dropout is efficient, since it doesn’t require to train
subnetworks separately and allows to provide a prediction with only a forward
pass of the input instance. Secondly, dropout introduces some noise in the training
process so that the units in a layer don’t fix up the mistakes of the previous layer,
situation also called layer co-adaption. This is one cause of overfitting, since the
co-adaption don’t generalize to unseen data [41]. Since under dropout the node
of a layer are randomly sampled, the network result reduced in the number of
parameters during training. For this reason, dropout should be used with wide
networks.
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2.3 Adversarial Machine Learning

Adversarial machine learning is the research field of computer science that deals
with the vulnerabilities and the robustness of machine learning algorithms in the
training and classification phase, under different threat models.

Even though the number of papers on adversarial machine learning have seen an
exponential growth in the last years, the first seminar works in the field, such as
Dalvi et al. [16], dates back to 2004. The few works at that time were in the context
of spam filtering and they showed that linear classifiers could be easily fooled
by manipulating carefully the emails without compromising their readability. In
the meantime, Barreno et al. [3, 4] proposed an overview of the vulnerabilities
of machine learning from a more general perspective, claiming for the need of
adversarial machine learning, i.e., to develop learning algorithm robust against
the attacks [6]. However, this field obtained considerable attention in 2014 after
the publication of the work by Szegedy et al. [45]. Their work showed that deep
neural networks misclassify adversarial examples, i.e., instances generated from
correct classified samples using very small perturbations, such that the perturbed
instances are nearly indistinguishable from the original ones. From this point,
the work published in this field started increasing exponentially year on year and
involved also the evaluation of other models, such as SVM, classifier that was also
attacked previously in [17], and forests of decision trees, for example in [12].

The evaluation of vulnerabilities of a machine learning based system by using a
proactive approach [6], i.e., before being attacked, is essential to anticipate the
attacker. In order to design an attack against supervised learning-based system,
is often exploited a popular framework based on the attack taxonomy [4, 23].
In particular, it’s provided a taxonomy about the possible attacker’s goals and
knowledge. Moreover, the optimal attack strategy is defined as an optimization
problem, whose solution provides the way in which perturb data in order to achieve
the attacker’s goal [6].

2.3.1 Attacker’s Goal

The description of the attacker’s goal completely determines the target of the
attack. Among all the aspects, the attacker’s goal is defined in terms of the
specific security aspect targeted [6]. In particular, an integrity violation aims to
evade the target model without compromise the machine learning system, while an
availability violation aims to compromise the normal functionalities of the system.
In case of integrity attack, the error specificity diffentiates further the objective
[6]. In a target attack, the attacker aims to evade a system and obtain a specific
(targeted) prediction, while a generic (untargeted) attack aims to only evade the
target system.

2.3.2 Attacker’s Knowledge

The attacker may have different level of knowledge of the attack system/supervised
learning algorithm used. Depending on this, three attack scenarios are devised by
Biggio et al. [6], different in the attacker’s knowledge and difficulties as detailed
below.
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White-box Setting

The attacker knows everything about the target system, then she knows the target
model, its parameters, the dataset on which it was trained and the features of the
instances considered by the model. This setting is the ideal for the worst-case
evaluation of security of learning algorithms.

Gray-box Setting

This scenario is based on the attacker’s limited knowledge of the components well
known in white-box attacks. Indeed the attacker is supposed to know, typically,
only the feature representation and in many cases the type of learning algorithm.
However, even if the attacker knows the kind of classifier to attack, it could be too
computationally expensive to craft the attack sample against it. In this scenario
the attacker is assumed to be able to gather a surrogate dataset from a similar
source as the target model training set, since it clearly knows the feature represen-
tation. Then the surrogate dataset may be used for training a surrogate model,
that enables the optimization of the attacks against it instead of forging an attack
directly against the target classifier.

Black-box Setting

On the other side, in the black-box setting the attacker doesn’t know the attacked
model, its parameters, the training set used and the representation of the instances
adopted. However, in order to make possible perform an attack, the attacker
has to know at least the task performed by the classifier attacked, which kind of
features are used by the model and the potential transformations to apply to cause
features changes. All this information is often inferred by reasoning: if a system
performs spam classification, it is very likely that it will exploit a bag of words
representation of the email in input, that’s the frequency of a vocabulary of terms
inside the email. The attacker also knows the nature of data used to train the
attacked model, even if in this case she may not know the exact representation.
In this scenario, the attacker has to retrieve information by submitting queries to
the classifier attacked. The feedback received can be a label or the probabilities of
belonging to a certain class. The attacker may also exploit the generation of the
attack based on the surrogate classifier, even if the features used to describe the
instances may be different from the ones used by the target model.
The black-box setting is particularly important from a practical prospective, be-
cause of the minimal capabilities of the attacker.

2.3.3 Evasion Attacks

Evasion attacks consist in manipulating input samples in order to cause misclassi-
fication by the attacked classifier. By definition, these attacks occur at test time.
For example, the attacker may want to manipulate carefully an image to fool an
object detection system or she may want to modify a malware in order to have
it recognized as a legitimate program [6]. Evasion attacks aim only to violate the
integrity of the attacked classifier, since the functionalities of the attacked system
are not compromised.
More formally, let X the feature vector space and Y a finite set of class labels.
The classifier h : X → Y is a function that assigns a label to every point ~x ∈ X .
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The classifier h tries to emulate the human understanding of the set of instances to
classify, represented as the function f : X → Y that assign the correct true label
(ground truth) to every instance. Suppose that the attacker can manipulate an
instance ~x ∈ X following a set of feasible perturbations and the resulting instance
~z ∈ X is classified with the same label of the original instance by f . We denote
the set of perturbed instances as Φ(~x) such that ∀z ∈ Φ(~x) : f(~x) = f(~z). Φ(~x)
contains all the instances that preserves the same label as ~x and that respect
specific application bounds on the features values.
Then, given the classifier h and an instance x ∈ X such that h(~x) = f(~x), an
evasion attack against the classifier h is any instance z ∈ Φ(~x) such that h(~x) 6=
h(~z).
In this work we use error generic or untargeted evasion attack, evasion attack that
aims to have ~z classified as belonging to any class except y, the class to which ~x
belongs to.

Error Generic Evasion Attack

Even if the attacker knows all about the attacked system, a concern is how perturb
an instance in a sensible way. Indeed, for the most of the attack strategy, is
infeasible in practice to enumerate all the possible instances perturbed in Φ(~x)
and an attacker may want to not perturb an instance in a way without a precise
reason. The most popular approach is to formulate the error generic evasion
attack as a maximization problem of a loss or objective function that incorporates
information about the target model. The formal definition of error-generic evasion
attack is given by Biggio et al. [17].
Let consider a loss function ` associated with the target classifier h. The objective
of the attacker is to maximize that function to pursue her goal, i.e., craft an
instance ~z ∈ Φ(~x) that evade h, also called adversarial example. The optimization
problem to solve in order to perform the evasion attack against h is:

max
~z
`(~z, y)

s.t. ||~z − ~x||p ≤ ε

xlb ≤ ~z ≤ xub

(2.1)

where ||v||p is the `p norm of v, ε a real value that constraints the norm value, xlb
and xub the lower and upper limit value of the features of the perturbed instance
~z and ε ∈ R+. The objective of the attacker is to find the instance ~z ∈ Φ(~x) such
that it maximizes the loss function with respect to the original label y so it will be
hopefully misclassified. The loss function ` may coincide with the function that
describes the loss incurred by h in classifying ~z as y. However, the loss function
of the target classifier may be not known, for example in gray box or black box
setting, then ` has to be designed by the attacker. In particular, the loss function `
is defined depending on the knowledge of the attacker and influence the formulation
of the optimization problem.

2.3.4 Adversarial Examples Crafting

Adversarial examples are defined as examples (instances) that are slightly different
from correctly classified instances drawn from the data distribution [20]. They have
the property to be very similar to instances correctly classified by the target model,
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White-box evasion attack

Target Model 
FGSM / FGV

Figure 2.7: Adversarial example crafting

but they are misclassified. The generation of adversarial example is the result of
the application of an evasion attack against a machine learning model. In practice,
it consists in solving the optimization problem stated in section 2.3.3, where the
loss function ` has to be carefully designed. In Figure 2.7 is described the general
workflow for crafting an adversarial example against a known target model.
Among the different strategies for crafting adversarial examples, one of the most
popular, simple and fast white-box alternatives is Fast Gradient Sign Method
(FGSM) [20] proposed by Goodfellow et al. against neural networks. In this work,
a slightly different attack methods is used, derived from FGS, called Fast Gradient
Value [37], to compute adversarial examples against a CNN and Linear SVM.

Fast Gradient Sign

The Fast Gradient Sign (FGS) method [20] was one of the first attacks for craft-
ing adversarial examples against neural networks. It becomes very popular for its
simplicity, efficiency and efficacy, though now are available white-box evasion at-
tacks more reliable, such as Carlini and Wagner attack (C&W) [11]. Since neural
networks are mostly exploited in computer vision, this attack was designed for
generating adversarial examples from images using neural networks.
Let’s suppose the attacker wants to generate an adversarial example ~z from the
instance ~x ∈ X classified as y ∈ Y . Moreover, suppose that the constraint on
the perturbation uses the ∞ norm, then ||~z − ~x||∞ ≤ ε. Since this attack was
presented against neural networks, the standard approach is to define the loss
function ` optimized in the evasion attack optimization problem 2.1 as the loss
function J optimized in the training phase of the neural network. The attack
strategy provide the linearization of the loss function and define the optimal max-
norm perturbation as:

η = sign(∇~xJ(~x, y))

Using η, the adversarial example z is generated as

z = ~x+ ε η = ~x+ ε sign(∇~xJ(~x, y))

The attack is said to be one-step gradient based, since the base instance x is
perturbed only once. This method produces an adversarial example in which
group of features are perturbed in the same way without taking into account the
magnitude of the gradient along different components, producing a sparse attack.
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In case of images, it produces an indistinguishable blurring effect if ε is accurately
chosen.

Fast Gradient Value

Fast Gradient Value (FGV), an extension of the FGS attack, was proposed by
Rozsa et al. [37] to fool neural networks. The idea is to consider the scaled version
of the raw gradient of the loss function optimized instead of the sign of the gradient.
Suppose that the distance constraint of the optimization problem 2.1 uses the
`2 norm, i.e. ||~z − ~x||2 ≤ ε. Then, if we linearize approximatively the function `
around ~x, for the parameters θ of the target model considered, then the attempt to
solve the optimization problem constitutes in generating the adversarial example
with the perturbation:

η =
∇~x`(~x, y)

||∇~x`(~x, y)||
, the adversarial example z is crafted by:

~z = ~x+ ε η = ~x+ ε
∇~x`(~x, y)

||∇~x`(~x, y)||

. This is an `2-norm attack where the instance ~x is moved along the direction of
the gradient of the loss function.
In this work, FGV is used to compute adversarial examples against CNNs and
Linear SVM. In the original formulation of FGV, the target model is a neural net-
work with loss function J(~x, y), so the optimization problem considered becomes
the problem 2.1 with ell2 norm constraint. Then the attack becomes:

~z = ~x+ ε
∇~xJ(~x, y)

||∇~xJ(~x, y)||

However, the same principle can be used to attack also other models, changing the
loss function considered. Against SVM, Papernot et al. [33] presented a simple
attack against multiclass SVM that exploits the same principle of FGV. Since in
this work a linear SVM for binary classification tasks is attacked, we consider the
adapted version of the attack that’s:

~z = ~x− yε ∇~x(w
T~x+ b)

||∇x(wT~x+ b)||
= ~x− yε w

||w||

where w is the gradient of the discriminative function of the linear SVM, i.e.
∇~x(wT~x+ b) = w, also called the weight vector.
The advantage of the FGV resides in the fact that the use of the raw gradient
allows to not ignore the differences in gradient magnitude between corresponding
features of the instances as FGS does, then the loss function optimized is effec-
tively increased with smaller perturbations [37]. Moreover FGV generates more
focused perturbations, since all components are perturbed depending on the gradi-
ent magnitude for that component, while FGS method perturbs group of features
depending on the sign of the corresponding components of the gradient. This
could be a very important for some tasks like image classification, in which local
perturbations of the image are preferred rather than perturbing uselessly also the
background.
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However, the formulations of the attacks above don’t consider that the adversarial
example ~z has to satisfy some constraints about the feature values. In order to take
in account them, consider the clipping operator ΠΦ(~x) that projects the instance ~x
in the feasible domain Φ(~x) where the features constraints are satisfied. Then the
FGV attack for the two classifiers considered becomes:

~z =ΠΦ

(
~x+ ε

∇~xJ(~x, y)

||∇~xJ(~x, y)||

)
against NN

~z =ΠΦ

(
~x− yε w

||w||

)
against SVM

2.4 The Multi-Armed Bandit problem

2.4.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm in which an agent interact
actively with an environment in order to achieve a goal despite the uncertrainty
of the environment [43]. The environment is described by its state, that’s sensed
by the agent and it’s influenced by the agent’s actions. At each state, the agent
has a set of possible actions available and she has to choose the most rewarding.
A policy defines a mapping between a state of the environment and the action
to be taken in that state. The goal of the agent is described in terms of the
maximization of a reward over the long run. At each time step, the agent receives
a reward signal by the environment in response to the action taken. The policy is
influenced by the rewards received over time to select actions, for each state, that
the environment state or the action selected to reach the goal. However, the value
function specifies the total reward that the agent may expect to cumulate over
the future, starting from a state [43]. Although the policy should guide the agent
towards states of higher value, values have to be estimated from the sequence of
actions and corresponding rewards observed, in order to allow to reach the goal of
maximizing the total reward.

2.4.2 Definition of the MAB problem

Definition of the Problem

The Multi-Armed Bandit (MAB) is a well-known optimization problem that uni-
fies different scenarios in which an algorithm makes decisions over time under
uncertainty [40].
The problem setting is the following: let K ≥ 2 the set of possible actions A, also
called arms, and T ≥ 1 rounds, at every round one needs to choose an arm and
collect a reward from this arm. In its most common formulation, known as MAB
with stochastic bandits, the problem relies on three assumptions:

1. The reward is observed only for the selected action and nothing else. The
rewards of the other actions that could have been selected at a a certain turn
are unknown.

2. For each action a ∈ A, there is a unknown distribution Da over reals, called
the reward distribution. Every time a is chosen, the reward r is indepen-
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dently sampled from Da. The distributions of the rewards of the arms are
independent from each other.

3. Per-round rewards are bounded: the standard range for rewards is the con-
tinuous interval [0, 1].

The reward distributions induce a mean reward vector µ ∈ [0, 1]K , where µ(a) =
E[Da] is the mean reward of the action a. The goal of a MAB solving algorithm
is thus finding the sequence of actions a1, . . . , aT ∈ A which maximizes the cumu-
lative reward

∑T
i=1 µ(ai).

It’s evident that any solving strategy has to deal with the exploration-exploitation
tradeoff. Indeed it’s necessary to explore the reward of the arms, in order to obtain
a certain level of confidence on their estimates. On the other hand too many turns
cannot be invested in exploring, since a proper number of turns has to be used
for the exploitation steps, that consist in choosing the arms with the maximum
expected reward, in order to maximize the cumulative reward.
A simpler variant of MAB with stochastic bandits assumes Bernoulli bandits, where
any action yields either a success or a failure and the reward distributions are
Bernoulli. In particular, the action a ∈ A produces a success and the reward 1 with
probability θa, while a failure and the reward 0 is produced with probability 1−θa.
Then the unknown mean reward vector µ thus coincides with the vector of the
probabilities of success of each action, i.e., µ = (θ1, ..., θK). A well-known solution
to this variant of the problem is given by the Thompson sampling algorithm [39]
that’s a greedy algorithm.

2.4.3 Thompson Sampling Algorithm

The key idea of Thompson sampling is to sequentially learn the mean reward
vector, during the exploration steps, and at the same time exploit the action with
the highest mean reward in order to exploit the information obtained to maximize
the total reward. The algorithm that’s choosing the actions, called also the agent,
has an independent prior belief over θa and this prior is beta distributed with
parameters α ∈ (α1, . . . , αK) and β ∈ (β1, . . . , βK). For each action a the prior
probability density function of θa is

p(θa) =
Γ(αa + βa)

Γ(αa)Γ(βa)
θαa−1
a (1− θa)βa−1

, where Γ is the gamma function, and the mean value is
αa

αa + βa
. At each turn,

the estimate θ̂a is sampled for each action a ∈ A and the action with the maximum
estimate is chosen. As the turns pass and the actions are taken, the distribution
of the mean reward of each action is updated accordingly to the reward obtained.
In particular, the posterior distribution of the mean reward rat of the action at
taken at round t is updated using a very simple rule:{

(αa, βa) if at 6= a

(αa, βa) + (rat , 1− rt) if at = a

The the posterior distribution of the mean reward of the arm a becomes the prior
distribution for the next round in which a is selected, since it will be updated
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Algorithm 1 Thompson sampling

1: for a in A do
2: (Sa, Fa)← (1, 1) . Initialization
3: end for
4: for t = 1, ..., T do
5: for a in A do
6: Sample θ̂a ∼ Beta(Sa, Fa)
7: end for
8: at ← arg maxa∈A θ̂a
9: rt ← Perform(at) . Get reward of at

10: (Sat , Fat)← (Sat + rt, Fat + (1− rt))
11: end for

by using the new reward. At the first round αa = βa = 1 ∀a ∈ A, so p(θa) is
uniform over [0, 1] [39]. The parameters (αa, βa) are often called pseudo-counts
and indicated as Sa and Fa, since whether the action a is successful then the former
is increased by one, otherwise the latter.
Thompson sampling uses the posterior distributions, that are also the prior beliefs,
to randomly sample the success probability estimates θ̂a. Indeed the posterior
distributions become more and more peaked around the effective estimated mean
rewards as more data is seen, so the high variability of the posterior distribution of
rarely took actions might lead to sample a value greater of the values sampled for
other more pulled actions, allowing the exploration of less used actions. However,
if the estimated mean reward of an action is greater than the others, in the average
that actions will be more chosen than the others since its sampled value will be in
the average greater than the others.
Algorithm 1 presents the pseudocode of Thompson sampling, where the Perform
function takes the chosen action and returns the corresponding reward (0 or 1).
At each round t, the action with the maximum sampled mean reward is chosen,
the action is performed and the pseudocounts are updated accordingly.
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Chapter 3

Black-box evasion attacks

The black-box attack scenario assumes the most limited knowledge of the target
system by the attacker. Although the attacker cannot perform white-box attacks
against the target model, machine learning can be threatened anyway. In this
section we provide a complete description of the assumptions about the attacker’s
knowledge in the black-box setting and we provide a classification of the black-box
attacks presented in literature. Moreover, we discuss the transfer-based two-step
attack strategy.
The chapter is organized as follows. In Section 3.1 we briefly discuss the definition
of attacker’s knowledge in the black-box setting. In Section 3.2 we examine the
different types of feedback/output provided by the target model in the black-box
setting. Then in Section 3.3 we present in general different types of black-box
attacks proposed in literature, in particular the transfer-based attacks. Finally, in
Section 3.4 we provide the definition of the traditional two-steps attack strategy
used to perform evasion attack in the black-box setting. We discuss its features,
limits and we examine the first work that proposed it.

3.1 Attacker’s Knowledge

We use the definition of attacker’s knowledge in the black-box setting provided by
Biggio et. al. [6].
In this setting, the attacker hasn’t any substantial knowledge about the threatened
ML model, the feature space used by the system, the learning algorithm and the
training data [6]. However, the access to the target model and a minimal knowledge
about the target system allow the attacker to carry out an attack anyway. Indeed
the attacker knows the task for which the target classifier is designed and can
exploit this knowledge to infer some useful information. Although she may not
know the exact feature representation used by the target, at least she knows the
kind of features used by the system and the potential perturbation that can be
applied to an instance in order to change them. In the same way, she may at least
know the kind of data used to train a classifier for a specific task, even though she
doesn’t know the exact training samples.

3.2 Feedback Available

In order to concretize the attack, the attacker must have the previlege to query the
target model. However the feasibility of the attack depends also on the feedback
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available to the attacker by the heterogenous target classifiers in the wild. Different
scenarios could be defined depending on the attacker’s query capabilities and the
response received.
In the worst-case scenario, defined by Chen et. al. [13], the attacker acts in a no-box
setting, where she is denied to query any information from the targeted classifier
for adversarial attacks. This is the most challenging scenario, since it limits the
assumptions on the black-box scenario further. It prevents all the attacks described
below that requires either a minimum knowledge of the target model or a feedback
for a given query. The only possible attacks feasible in the no-box setting are
based on transferability.
On the other hand, the best-case scenario considers an unlimited query access to
the target classifier [13]. The feedback received could consists in a wide range
of information, for example confidence scores, classification probabilities for all
the classes or ranking for classification. Due to the feasibility of attacking in this
setting, although the attacker has not access to the details of the targeted model,
this scenario has been called practical and is the typical scenario for prominent
work in the area [11, 32, 33, 34].
However, Ilyas et. al. [24] proposed more realistic variant of the black-box settings.
They include some limitations in the query access capabilities of the attacker and
the feedback available that are typical of real-world systems. In particular, they
distinguish three sub-scenarios:

• Query limited setting. In this setting, the attacker has a limited number of
queries to the classifier [24]. Then the attack algorithm should generate an
evasion attack in a efficient way, in terms of number of queries to the target.
The limit can be due to (i) a limitation of resources, like a time limit for the
inference time, (ii) a monetary limitation, if the attacker incurs in a cost for
each query sent, (iii) a defense mechanism, like an intrusion detection system
that limits the number of queries during an attack opportunity window.
Examples of this scenario are the services offered by Clarifai NSFW1, Google
Cloud Vision API2 and Amazon Machine Learning3, three platforms that
requires a per-query payment.

• Partial-information setting. In this setting, the attacker only has access to
the probabilities P (y|~x), where ~x is an instance and y one of the top k classes
predicted by the target classifier [24]. An online classifier that returns only
the top k scores (not probabilities) is the one offered by Google Cloud Vision
API or Clarifai NSFW.

• Label-only setting. In this setting, the adversary only has access to a list of
k inferred labels ordered by their predicted probabilities. When k = 1, the
attacker has only access to the top label predicted. As example, in [24] are
reported photo tagging apps like Google Photo4, that add labels to the user
images without assigning a confidence or probabilities score to them.

The three scenarios are not mutually exclusive. Real-world systems offers services
for automated classification than combine both the limitation in the number of

1https://www.clarifai.com/models/not-safe-for-work-image-recognition
2https://cloud.google.com/vision/pricing?hl=en
3https://aws.amazon.com/getting-started/projects/build-machine-learning-model/services-

costs/
4https://photos.google.com/
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queries and in the amount of information provided to the user through the predic-
tion. Thereby the attacker has not only to find a strategy to make up for the lack
of complete information about the target model used, but she should also take
into account other access limitations.
Two types of evasion attacks have been receiving a lot of interest in the last
years: the transferability-based and query-only attacks. Other strategies were also
proposed, like boundary search attacks and hybrid approaches that exploit the best
characteristics of the previous categories. In the next section these categories of
black-box evasion attacks will be discussed also in relation to the attack scenarios
described above.

3.3 Categories

3.3.1 Transfer-based

Transferability

Transferability-based evasion attacks are based on the transferability property of
adversarial examples, that’s the empirical observation that some adversarial ex-
amples produced to mislead a specific classifier ĥ also can mislead other models h,
even if the models greatly differs [33].
The transferability of adversarial examples crafted for a neural network to another
neural network was initially assessed by Goodfellow et al. [19] and Szegedy et
al. [45]. However, preliminary studies involved only neural networks, trained on
different subsets of the same training set, without extending the analysis to other
machine learning techniques.
Papernot et al. [33] presented the first study of transferability on a wide collection
of ML models. In their work, they partitioned transferability into two variants and
showed that both the variants affects ML models. The first is the intra-tecnique
transferability, defined for models trained with the same machine learning tecnique
but with different parametrizations or datasets (like two neural networks) [33],
while the second is the cross-tecnique transferability, defined for models trained
using different techniques [33] (like a Linear SVM and a forest of decision trees).
Their experimental evaluation comprises a collection of representative ML models
presented also in the background section 2.1 trained on the dataset of handwritten
digits MNIST. Their experimental evaluation shows clearly that machine learning
techniques are surprisingly vulnerable to both the types of transferability. How-
ever, the transferability property is not guaranteed for every adversarial example
against every target model. As shown by Papernot et. al. [33] and Liu et. al [32],
the transferability of adversarial examples may not reach 100% of the examples
tested, but it can be low. In particular, Liu et. al. [32] distinguished between
transferability of non-targeted adversarial examples that can assume any label ex-
cept the original one, and target adversarial examples that have to be classified
as belonging to a specific class different from the ground truth. They pointed
out that although transferable non-targeted adversarial examples are easy to find,
transferable targeted adversarial examples are more difficult to find.
As the transferability of adversarial examples was gaining popularity, an effort was
made to understand deeply the property and its limits. Demontis et. al. [17] shown
that the transferability deeply depends on three elements. Firstly, the complexity
of the target model, its inherent vulnerability [17], make a ML model more or
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less vulnerable. Then a more regularized model is more robust against evasion
attacks based on transferability. Secondly, the transferability is impacted by the
alignment between the two involved models, described as the alignment between
the gradients of the respective loss functions. Intuitively, the more similar are the
two models in terms of loss or prediction functions, the more effective is an attack
based on transferability. Finally, a ML model with a stabler loss function, with
lower variance, facilitates the generations of transferable adversarial examples.
For this reason, it’s better to use less complex and high regularized ML models as
surrogate model.

The First Transfer-based Attack Proposal

Transfer-based attacks are particulary suitable in the black-box scenario, since the
attacker doesn’t need to know the details of the target model in order to perform
the evasion.
The transfer-based evasion attack was firstly proposed by Biggio et al. [7], who
were the first to treat the problem of optimal evasion at test time in a gray-box
setting [6]. They provided the adaptation of their gradient descent attack [7] in
their limited knowledge (LK) setting, that’s more similar to the gray-box setting
than the black-box setting (see section 2.3.2). However, they pointed out the main
steps and some assumptions that a transferability-based evasion attack possesses:

• The attacker cannot directly evade the target ĥ;

• The attacker can collect a surrogate dataset S ′ = {(~xi, yi)}nqi=1, with nq =
|S ′|. They suppose that the samples are drawn from the same underlying
distribution of the training set of the target model.

• The attacker use S ′ to train a surrogate classifier ĥ that approximates the
target h. In order to closely approximate h, the attacker should learn ĥ using
the labels provided by h.

• The attacker crafts an adversarial example ~z against ĥ and uses it to evade
h.

They used their evasion attack algorithm to attack a malicious PDF classifier
in white-box and LK setting, where the objective is to modify PDFs containing
malware such that they were recognized as legitimate, or negative, by the target
classifier. In black-box setting, both surrogate and target classifiers are trained
on two different partitions of the same dataset, but the size of the training set
of the surrogate is only 20% of the cardinality of the target training set. Their
experimental results showed that in the black-box setting, the false negative rate
obtained attacking the target classifier using adversarial examples crafted against
the surrogate classifier is slightly lower than the one obtained in the white-box
setting, showing that only a small set of sample as surrogate training set may
be required to successfully attack the target classifier [7]. They were the first to
point out that transferability allows to realize evasion attack without a detailed
knowledge of the target model. However their work presents two limitation: they
don’t analyze how to retrieve the surrogate training set in practice and they don’t
test the attack against a wide range of state-of-the-art classifiers to show that it
works in a real scenario.
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Two aspect were not deepened in this work: how to retrieve the surrogate training
set and how to improve the transferability. They were object of subsequent work
and nowadays they consitutes open lines of research.

Collecting the Surrogate Training Set

In the black-box setting, the attacker isn’t supposed to know also the feature space
X in which the instances classified by target h. However, the surrogate training
set has to be collected.
The instances in the surrogate dataset haven’t to be represented with the same
features as the ones use in the training dataset of the target. However, the knowl-
edge about the task performed by the target classifier and the input that it accept
is very useful to infer the exact representation. For example, if the target classifier
accepts only gray-scaled images with 28× 28 pixels, then a convenient choice is to
gather a dataset of digits of the appropriate dimension.
The surrogate training set can be obtained either using the domain knowledge of
the classification task performed by the target [6] or by exploiting the query-access
to the target model and labelling instances using its predictions [34], in order to
improve the alignment between surrogate and target model. Moreover, it’s also
possible to use pre-trained models available online, especially in that case in which
a very large dataset would be necessary to train the surrogate model. Examples
are the pre-trained deep neural network architectures offered by machine and deep
learning APIs, like Keras5.
Retrieving a surrogate training set by asking the target model to predict the class
of some instances is suitable both in partial information setting and the label only
setting. In the partial information setting, is sufficient to consider as prediction
the class with the gratest score as the predicted label. In case a large set of
instances is not accessible, a small set of unlabeled instances can be used to build
a synthetic dataset that uses the predictions of the target model on selected queries,
as shown by Papernot. et. al. [34]. However, the limited number of queries could
be a huge constraint in designing this type of attack. With a limited number of
queries, the attacker should choose carefully how many queries will be spent in
the two steps. Different strategies were proposed in order to reduce the number of
queries needed for retrieving the training set of the surrogate model, for example by
exploiting active learning strategies and selecting the most informative instances
to be labelled [31].

Improving the Transferability

A different line of research focused on how to improve the transferability.
One of the factor that influence the transferability in a transfer-based evasion at-
tack is the choice of the surrogate model. The results of the experiments performed
in Demontis et. al. [17] and Papernot et. al. [33] shown that the choice of the
surrogate model could have an important impact on transferability, but the phe-
nomenon is partially unexplored and it’s impossible to drawn general rules. As
example, Papernot et. al. [33] shown that Deep Neural Networks results are more
vulnerable to adversarial examples transferred from a Deep Neural Networks than
from other models. However, SVM and decision trees don’t allow to craft evasion
attacks that transfer well against the same model even if the surrogate is trained

5https://keras.io/api/applications/
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on a different training set of the target, even if the two models are trained on two
subset of the same training set. Observations that emerges from both the two
papers are:

• The use of a regularized model allows to obtain a better transferability.

• It’s better to use a DNN as surrogate model against a target DNN.

• Every classifier can produce a satisfactory transferability against decision
trees.

The knowledge of the task perfomed by the target classifier can give useful hints
to choose an appropriate surrogate model.
Another attack method that improve the transferability was suggested by Liu
et. al. [32] and Dong et. al. [18]. Instead of using a single surrogate model to
generate an adversarial example, evasion attacks are crafted against an ensemble
of models. The intuition is that if an adversarial example is adversarial for multiple
models, then it may capture an intrinsic direction that always fools this models
and is more likely to transfer to other models at the same time [32], enabling
more powerful black-box attacks. Since evasion attack crafting is defined as an
optimization problem 2.3.3, is necessary to define a loss function. In both the
paper the loss function to optimize is defined as a loss function that combines the
output functions of the Deep Neural Networks considered in the ensemble.

The Two-steps Attack Strategy

From the description of the transfer-based attack appears evident that the attack
is articulated into two main steps: (i) the collection of a surrogate training set to
train a surrogate model, (ii) crafting evasion attacks against the surrogate model,
hoping that they transfer to the target model. The description of the strategy and
how making it practical, i.e., applicable in a real-world scenario, was described for
the time by Papernot et. al. [34]. Since this strategy consitute the building block
of the transfer-based attacks and it’s improved in this work, it will be deepened in
section 3.4.

3.3.2 Query-based

The success rate of the black-box attacks based on transferability depends on di-
mension and quality of the training set used for the surrogate model, the surrogate
model used and the white-box evasion attack used to generate adversarial exam-
ples. The limited success rate of the attacks led to the design of another type of
black-box attacks more similar in spirit to white-box attack, i.e. without the need
of a surrogate model. The query-only evasion attacks allow to compute an evasion
attack against the target by approximating the gradient of an objective function
defined on the gradient of the target model.
Evasion attacks based on zeroth-order optimization don’t require the computation
of a gradient directly on the model attacked. Firstly, they exploit the formulation
of a loss or objective function for the problem at hand, that need to be optimized for
crafting the adversarial example that depend on the output of the target classifier.
Then, the optimization problem of the evasion attack (Section 2.3.3) is carried
out by using classical algorithms like gradient descent with an estimated gradient,

32



obtained for example by using the symmetric difference quotient [13] that doesn’t
require the direct computation of the gradient, but uses two evaluations of the
target function. More formally, given the objective function g(~x), the instance

~x ∈ X and x(i) one of its components, the gradient
∂g

∂x(i)
(defined as ĝi) is computed

as:

ĝi =
∂g(~x)

∂x(i)
=
g(~x+ hei)− g(~x− hei)

2h

where h is a small constant (as h = 0.0001 in [13]) and ei is a canonical vector
containing 1 only at the i-th component. However, the evaluation of such gradient
could be impractical if the number of components is huge. As example, consider
the estimation of the gradient of the loss function of a CNN that accepts in input
a 299 × 299 pixels image. The number of components is p = 89401 and the total
number of queries to the target CNN to estimate the gradient is 2p = 178802,
too much queries for a single gradient estimation. Indeed a single query to the
target model may require tens of milliseconds or the machine learning system may
impose some limitations on the maximum number of queries.

Then literature on this type of attacks proposes different techniques to reduce the
number of queries needed to generate a successful adversarial example, evaluated
with respect to the average time required to complete an attack and on the average
number of queries to the target model needed. Chen et al. [13] proposed an
iterative method mainly based on stochastic coordinate descent that choses at
each iteration the most important component of the gradient such that along that
direction the objective function is minimized (maximized) the most. However, the
generation of a successful advexp on ImageNet6 requires a huge number of queries
against the Inception-V3 network [46]. Bhagoji et al. [5] proposed to group features
and optimize the objective function by estimating the partial derivates along the
directions determined by the groups of features, but their error generic single-
step attack requires on average 200 queries per sample on the MNIST dataset
and against a simple CNN. Illyas et al. [24] designed strategies based on zero
order optimization in different feedbacks scanrios, listed in section 3.2, and they
evaluated the strategies on ImageNet, showing that an advexp requires at least
hundreds of queries. Cheng et al. [14] proposed a framework for attacking machine
learning systems that return only the label of the query. This setting is described
as really challenging since the objective functions used by previous work become
discontinous and hard to optimize. However, they attack requires thousands of
queries to reduce the refine the distortion applied to the adversarial example.
Finally, Ilyas et al. [25] proposed to reduce the number of queries needed for the
gradient estimation by using priors of the distribution of the gradient, but their
approach requires on average more than one thousand queries to craft untargeted
adversarial examples on ImageNet.

Though this line of research is promising because of the higher success rates of the
attacks, similar to the ones obtained by white-box evasion attacks, the number of
queries required by query-only attacks are still orders of magnitude higher than
what can be achieved via surrogate model training.

Although transfer-based and query-only attacks constitutes the two major line of
research, other attack strategy have been explored.

6http://image-net.org/
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3.3.3 Hybrid Approaches

Attacks that try to combine the two main approaches presented above were pro-
posed in literature. Cheng et al. [15] proposed a query-only attack that exploits
the transfer-based prior for the estimation of the gradient of the target model.
This prior is the gradient of a surrogate model trained on the predictions of the
target model on carefully selected instances that helps to estimate the gradient of
the target model. The results are surprising: on average, only 650 queries are nec-
essary to forge an untargeted attack against Inception-V3 on ImageNet. Juuti et
al. [28] proposed a targeted attack similar to the previous one, where an ensemble
of models is used to estimate the gradient of the target model that returns only
the top-k scores or probabilities for each a query. Their approach can be consid-
ered adaptive, since their complete attack consists in the combination of different
attacks that are used depending on the number of queries needed for the evasion.
For example, initially a tansfer-based attack is attempt and, if it’s not effective,
their new attack is used. Finally, Suya et al. [44] designed a query-efficient attack
in which gradient estimation attack is used only for the non transferred adversarial
examples, reducing the query cost when useful local models are available.

3.3.4 Decision Based Attacks

Another line of research deals with the boundary attacks, designed for the black
box setting with minimum feedback from the target model (only the label of the
instance). Brendel et. al. [9] proposed an attack based only on the prediction of
the target model. In particular, the algorithm is initialized with an adversarial
instance (classified incorrectly) and the base instance of the advexps. The adver-
sarial instance is perturbed to perform a random walk along the boundary between
the adversarial and the non-adversarial region. The objective is to maintain the
adversarial instance in the adversarial region and reduce the distance to the base
instance [9]. This attack is still competitive against gradient based attacks with
respect to the minimal perturbation used to generate the adversarial example, with
the advantage of being designed for the hardest black-box setting.

3.4 The Transfer-based Two-step Attack Strat-

egy

As stated in the Background chapter, section 2.3.3, the goal of the attacker in an
evasion attack is to evade the target classifier h at test time by means of adversarial
examples. Many variations of the black-box setting were considered above. In one
of the worst scenario, the attacker has only hard-label access to the target model,
i.e. only the label of the query is returned, and the number of queries that the
attacker can perform is limited.
The maximum number of exploitable queries is designed as the budget B ∈ N of
the attacker. When the budget of the attacker is constrained to smaller values,
like 3000 instances, the query-only attacks could not allow to generate a satisfac-
tory number of evasion attacks, due to the average needed number of queries to
generate even a single attack with very high efficacy. Then the attack based on
transferability is more suitable, indeed the attacker may manually train or find a
pretrained differentiable surrogate model ĥ to generate attacks via transferability.
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Figure 3.1: Two-step attack strategy

Even though there are a lot of pretrained models available, mostly very deep and
memory expensive neural networks trained for perceptual tasks, it’s more general
to suppose that no pretrained model fit well the attack scenario.
As anticipated in section 3.3.1, the black-box evasion attack based on transferabil-
ity is carried out following two steps:

1. Surrogate Model Training : the attacker queries the target model to extract
information about its behavior and trains a surrogate model approximating
the target;

2. Evasion Attack Crafting : the attacker crafts successful evasion attacks against
the surrogate model and feeds them to the target model, hoping that they
“transfer” to it, i.e., lead to misclassification by the target.

The two-step attack strategy is also described in Figure 3.1. This approach is
appealing, because the attacker can train the surrogate model such that craft-
ing successful evasion attacks against it is feasible using known algorithms. For
example, evasion attack crafting algorithms like the Fast Gradient Sign Method
(FGSM) [20] work for any differentiable model. Though some prominent ML mod-
els are not differentiable, e.g., decision trees, the attacker can train a differentiable
surrogate model, attack it through FGSM and then evade a non-differentiable
target model via transferability.

35



Algorithm 2 Substitute DNN training

Input: Õ, maxρ, S0, λ

1: Define architecture F
2: for ρ ∈ 0 . . .maxρ − 1 do
3: D ← {(~x, Õ(~x)) : ~x ∈ Sρ } . Label the substitute training set
4: θF ← train(F,D) . Training F on D to evaluate parameters θF
5: Sρ+1 ← {~x+ λ · sgn(JF [Õ(~x)]) : ~x ∈ Sρ} ∪ Sρ . Perform Jacobian-based

dataset augmentation
6: end for
7: return θF

The objective of the attacker is typically to obtain the highest number of successful
evasion attack as possible and the highest transferability, given the small number
of queries available.
In literature the two-step attack strategy was explored by studying different ways
for minimizing the number of queries required in the training step, without study-
ing how to dynamically interleave the two actions.

3.4.1 Practical Black-Box Attack

The first two-step approach for evading machine learning models using transfer-
ability was proposed by Papernot et. al. [34]. The strong point of their work
consists in the two-step attack strategy in the label-only setting. They supposed
that the attacker hasn’t access to a large initial dataset. In this way, their attack
is applicable also in the real world scenario, for example against a classifier hosted
remotely by a third-party. They described both the general two-step attack strat-
egy and their implementation that uses a heuristic to limit the number of queries
used in the first step. We provide a brief description of their implemention in order
to point out some criticalities of their work.

Description of the Particular Strategy Proposed

The chosen target model is a multiclass DNN classifier, called as the oracle O
such that Õ(~x) is the label given to the instance ~x. The attack strategy consists
in training the surrogate model on a synthetic dataset generated by the attacker
and labeled by the oracle. Then the adversarial examples are crafted against the
surrogate model and transferred to the target model. The first objective is to
show that the generation technique of the synthetic training set allows to train
an approximation F of O. The second objective is to show that their attack
is pratical, in the sense that requires a small amount of instances as an initial
surrogate training set, since the rest of the dataset is synthetic.
Since the number of queries submitted to the oracle is limited in the wild, it’s not
possible to make an infinite number of queries to obtain the model output Õ(~x) for
any input ~x belonging to the input domain [34]. Even though this strategy should
allow to obtain a copy of the oracle, it makes the attack untractable. Thereby
they introduced a heuristic to limit the number of queries to the target model in
the first step of the two-step strategy, a data generation technique called Jacobian-
based Dataset Augmentation. The objective is to collect a dataset that allows to
approximate the oracle’s decision boundaries with a few queries. The intuition is
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that it’s necessary to look at the directions in which the model’s output is varying,
around the initial training points [34]. The surrogate architecture F will require
more predictions in these directions to approximate better the oracle O. These
directions are established using the Jacobian matrix JF of the surrogate model F ,
that’s the matrix of the first partial derivative of the loss function of the DNN
F . The matrix is evaluated at several points ~x. In particular, the sign of the JF
dimension that corresponds to the label Õ(~x) is evaluated and then ~x is perturbed
according to the sign [34].
The strategy proposed is articulated as follows. Firstly, the attacker has to collect
a very small set S0 of instances of the input domain, not necessary from the same
distribution from which the target model was trained [34]. Also, she has to choose
an appropriate surrogate model, as discusses in section 3.3.1. Then, the attacker
proceeds to the first step of the two-step attack strategy, that’s the substitute
training, describe by the Algorithm 2. λ is the step size that specifies the amount
of perturbation, while maxρ is the maximum number of substitute training epochs
decided at priori. Firstly, each instance in ~x in the surrogate training set is labeled
by O. Then F is trained on D and finally the initial substitute training set Sρ is
augmented, producing the next substitute training set Sρ+1. In order to improve
the quality of the surrogate model, they introduced also an alternation period τ
after which the step size is multiplied by -1, so the step size λ becomes:

λρ = λ · (−1)b
ρ
τ c

Moreover they decided to apply reservoir sampling to reduce the number of queries:
after the training epoch σ, only k instances are selected from the set Sρ to augment
the surrogate training set. Then, the total number of queries submitted to the
target is n · 2σ + k · (ρ− σ), where n is the number of samples in S0 [34].
After the maxρ training epochs, F is used to generate adversarial examples using
FGSM. Then the adversarial examples are submitted to the target model to test
if they transfer.
They tested their attack strategy against a classifier of Amazon Machine Learning7

and Google’s Cloud prediction API8 trained on the 50000 instances of the MNIST
training set (a dataset of handwritten digit that we also use in the experimental
evaluation, Chapter 5). They started the procedure with n = 100 and obtained
a misclassification rate of 96% and 91% with 6 training epochs, using only 2000
queries for collecting predictions for the training set of the surrogate model. They
produced adversarial examples by perturbing the 10000 instances of the test set
MNIST using FGSM with ε = 3, then the number of queries spent for the second
step is not included in the attacker’s budget B.

Criticalities

Although the two-step attack strategy presented, among with the optimization of
the training phase, shows great results, the approach presents some criticalities:

• The particular implementation of the strategy requires always to establish
a priori the number of training epochs maxρ. Even though the attacker
can use the Jacobian-based Dataset Augmentation to reduce the number of

7https://aws.amazon.com/machine-learning
8https://cloud.google.com/prediction/
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queries, she has to fix the value of the parameter before the attack. Papernot
et. al. [34] don’t show a heuristic for establishing the optimal value of the
parameter maxρ, i.e., when to switch from step 1 to step 2 of the strategy. It
was only noted that an high number of training epochs doesn’t necessarily
improve the transferability of the advexps crafted.

• They don’t consider the number of queries spent to submit adversarial ex-
amples as an part of the budget B spent.

The first problem of their proposal is also a criticality of the traditional two-step
attack strategy. In the next chapter, the drawbacks of the traditional two-step
attack strategy are treated in detail and a strategy to dynamically adapt the
number of queries of the first phase is presented.
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Chapter 4

Adaptive black-box evasion attack

Black-box evasion attacks against machine learning models are, in practice, diffi-
cult, because of the limited knowledge about the target model and the restricted
query access. Transferability allows to overcome the lack of information, but not
the limited number of queries.
In the previous chapter, we presented the traditional two-step attack strategy and
a particular implementation by Papernot et. al. [34]. In this chapter, we deepen
some criticalities of the traditional approach when deployed in the setting with a
limited number of queries available. Indeed, the attacker has to choose carefully
whether to exploit a query either to gather information about the target classifier
in order to improve the quality of the surrogate model or to attempt an evasion
attack. The tension between these two actions, due to the limited budget, induces a
trade-off in the usage of the queries. For this reason, we proposed a new transfer-
based two-step attack strategy for performing evasion attacks in the black-box
setting. The strategy presented is adaptive, in the sense that it alternates the two
possible actions depending on the actual knowledge of the attacker.
The chapter is structured as follows. In section 4.1, we describe some critical
aspect of the traditional two-step attack strategy, in particular the inherent tension
between the two steps. Then, in section 4.2 we focus on AMEBA, the first adaptive
approach to the black-box generation of evasion attacks against ML models.

4.1 The Inherent Tension in the Two-steps Eva-

sion Attack

In the black-box setting with limited query budget, the attacker is supposed to
have a maximum number B of queries to the target model. In this setting, the
traditional two-step attack strategy should be deployed carefully.
We can observe that there is a tension between the two steps of the attack strategy.
On the one hand, the attacker needs to query the target model multiple times in
order to disclose its behavior and train a faithful surrogate model. On the other
hand, the attacker wants to query the target model with as many evasion attacks as
possible to maximize the number of misclassifications and transferred adversarial
examples. The traditional two-step attack strategy handles this tension using two
assumptions:

• The number of queries for the surrogate training step and the evasion step
are decided before the execution of the attack.
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• The two steps are independent and separated.

However, these two assumptions limit the actions of the attacker and they don’t
allow to exploit better the limited budget. Indeed the attacker may want to au-
tomatically adapt the use of queries using the information collected during the
execution of the attack. For example, she may want to switch from one step to
the other and vice versa. For this reason the strategy is sub-optimal. The optimal
transfer-based two-step strategy in the limited query setting is far from straight-
forward. Three research questions emerge:

• When shall the attack strategy switch from step 1 to step 2?

• Why should the attack strategy switch from step 1 to step 2 without the
chance of switching back and forth a certain number of times?

• Why should the attacker follow a fixed two-step strategy and not resort to
a more sophisticated approach which dynamically learns how to behave?

In this work, we propose to move away from the two-step attack strategy of previ-
ous work and we present a new adaptive attack strategy, which dynamically learns
whether queries to the target model should be leveraged for surrogate model train-
ing (step 1) or for evasion attack crafting (step 2). It makes black-box evasion
attacks more effective and practical by automatically dealing with the delicate
tension discussed above.

4.2 Adaptive Attack Strategy

In this section, AMEBA is described. In particular, we discuss the threat model
considered, we operate the reduction from the two-step evasion attack problem
to the MAB problem and we formulate the adaptive approach by exploiting the
Thompson sampling algorithm, used to solve the MAB problem. A detailed de-
scription of the AMEBA algorithm is provided among with the discussion of how
to treat certain implementation details.

4.2.1 Threat Model

Attack Setting

We consider an attacker whose goal is to craft successful evasion attacks against a
target model h. The attacker has only black-box access to it and she can perform
a limited number of queries asking for class predictions of chosen instances. The
attacker has a surrogate model ĥ that has to be trained, but it can be used to
craft evasion attacks. The objective of the attacker is to maximize the number of
successful evasion attacks against the target h given the limited number of queries
available.
We suppose that the attacker has access to three datasets and she can exploit two
possible actions. In Figure 4.1 we sum up these assumptions. The attacker has
access to the following datasets:

• Dtrn: a set of instances {(~xi, h(~xi))} labeled with the class predictions of the
target h, used for surrogate model training. For example, Dtrn might be a
collection of known spam and ham messages available to the attacker.
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Figure 4.1: Threat model description

• Datk: a set of instances {(~xi, f(~xi))} labeled with their true labels, used for
evasion attack crafting. For example, Datk might be a set of spam messages
that the attacker wants to evade a spam filter.

• Dun: a set of unlabeled instances {~xi}, used to collect additional class pre-
dictions from the target h. For example, Dun might include messages that
the attacker has written himself, whose class predictions would be unknown.

Initially are not made any assumption on the instances in these three datasets: they
can be equal, overlapping or disjoint. A convenient representation of these threee
datasets is the queue model, i.e., they have standard push and pop operations.

Two Steps Attack Strategy

In order to perform the evasion attack, the attacker has initally to train the sur-
rogate ĥ using Dtrn, then she has to exploit the budget available to both augment
Dtrn using the predictions of the target of unlabeled instances and to attempt
evasion attacks against the target model h using the transferability property of
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the crafted attacks against ĥ. More specifically, the attacker operates by choosing
between the two possible actions:

1. Train: the attacker pops an instance ~x ∈ Dun, queries h to learn the predic-
tion y = h(~x) and extends Dtrn with (~x, y). The attacker then updates the
surrogate ĥ by retraining it over the extended Dtrn.

2. Attack : the attacker pops an instance (~x, y) ∈ Datk. If ĥ(~x) = y, the attacker
uses ~x to craft an evasion attack ~z against ĥ by using an appropriate attack
strategy, e.g., FGV. If a successful evasion attack is found, i.e., if ĥ(~z) 6= y,
the attacker submits ~z to the target model h and verifies whether h(~z) 6= y.

The attacker stops when the maximum number of queries B to the target model
h has been performed. Note that each action requires only one query to be per-
formed. However, the Attack action might fail without querying h in two cases,
both due to the definition of evasion attack stated in section 2.3.3:

• ~x is misclassified by ĥ. Indeed, the definition of evasion attack assumes that
the base instance ~x is correctly classified by the surrogate model ĥ.

• It is impossible to turn ~x into a successful evasion attack against ĥ. The
perturbation constraint ||~z−~x||p ≤ ε of the evasion attack, where p indicates
the norm type, limit the extent at which the instance ~x can be perturbed.

In order to handle these two cases, two different choices are possible. The instance
~x might be discarded, losing an effective potential adversarial example and con-
suming instances without giving another chance. However, the continuous training
process of the surrogate ĥ could both improve the accuracy of the target model
and enable new attacks. Indeed the decision boundaries induced by the surrogate
ĥ on the feature space change as new instances are added to the training set,
making possible to obtain a valid adversarial example from an instance that was
previously unusable. Then, in both cases of failure, it’s assumed that (~x, y) is only
temporarily discarded and pushed back into Datk for later use.

The attacker may try to interleave dynamically the two actions Attack and Train in
order to minimize the number of queries used for augmenting Dtrn and to maximize
the number of generated evasion attacks against the target h. The outcomes of the
two actions are inevitably linked: if the use of the Train action allows to improve
the quality of surrogate model in terms of similarity to the target model, then
also the transferability of the evasion attacks and the number of successful evasion
attacks will improve.

Then a trade-off emerges between spending queries for one action or for the other
one, since the Train action has to be exploited to obtain a high quality surrogate
model and maximize the transferability, but it should not be performed too many
times. Indeed an abuse of the Train action is not justified by the empirical evidence,
since there exists a limit number of instances in Dtrn over that the alignment
between surrogate and target model doesn’t improve, as state by Papernot et.
al. [34].
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4.2.2 Reduction to MAB

The Reduction

The best attack strategy could be obtained by reducing the problem to the MAB
problem. The two available actions are A = {Train,Attack} and, supposing that
the attacker executes one query for each action, the number of rounds T of the
MAB problem coincides with the attacker’s budget B. Since the model adopted
is the Bernoulli MAB problem, the two actions are supposed to provide a binary
reward, i.e. success or failure. The definition of the reward of the two actions is
the key aspect in order the make the reduction coherent with the attacker’s goal,
so that the maximization of cumulative reward of MAB matches the maximization
of the number of successful attacks.
The Train action should give the success reward when the enrichment of the surro-
gate training set Dtrn has effectively improved the quality of the surrogate model,
so that the similarity between h and ĥ. However, the similarity between the two
models cannot be defined on the basis of the single query performed during the ac-
tion, for example using the matching of the predictions of the surrogate and target
model on the instance, because of the selection bias introduced by using the single
instance for the assessment. In the ideal case, the best choice would be to measure
the similarity using the accuracy of ĥ on another dataset labelled by h, but in
this setting it’s infeasible because of the limited budget B. Since Dtrn is built of
instances labelled by h, then the 10-fold cross validation accuracy score of ĥ on
Dtrn could be used as a proxy of the similarity between the two models. Indeed it
gives an overall summary of the test error of ĥ on a set of instances labelled by h.
Given that, the success of the Train actions is defined as an improvement of the
similarity between surrogate and target model computed on Dtrn before and after
the inclusion of the new labelled instance in Dtrn.
On the other hand, the definition of the notion of success for the Attack action
is straightforward, since it should be considered successful only when the crafted
adversarial examples on ĥ transfers to h. Then, more formally, the Attack action
is successful when the crafted evasion attack ~z against h from the instance ~x with
label y is so that ĥ(~z) 6= y.

Details about the Actions

In practice, the attacker may face extreme situations. The Train action always
lead to perform one query to the target model, since there aren’t constraints about
which instance should be submitted. However, the Attack action may not perform
any query to h when the evasion attack against the surrogate ĥ fails.
Two subtle problems arise from this consideration. Firstly, it’s not correct to con-
sider the failure in the adversarial example crafting as a failure, since the semantics
of the success and failure of the Attack action is strictly related to the transferabil-
ity of the crafted evasion attack. Secondly, the potential disconnection between
the total number of times in which the actions are performed and the number of
submitted queries make the reduction wrong, since the MAB problem supposes
that at each turn an action is performed and, in the reduction proposed, a turn
is carried out only when the budget B is decreased, i.e., a query is submitted. To
close this gap, it’s assumed that the failure does not discourage the attacker, who
just moves to the next instance of Datk until a successful evasion attack against ĥ
is found. The side-effect of this choice consists in giving some instances a second
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chance in a future round. This is reasonable, since the Train action is supposed to
increase the similarity between the surrogate ĥ and the target h, enabling new at-
tacks on instances in Datk previously misclassified or not suitable as starting point
for crafting an adversarial example. If the attacker cannot craft any successful
evasion attack against ĥ using the instances in Datk, we assume that the Train
action is taken instead. This is the only option available to the attacker given the
current surrogate model and at the same time this choice ensures the invariant
that each action consumes exactly one query to the target model h.

The Dependence between the Reward Distributions

MAB problems assumes that the reward distributions Da of the actions are per-
manent and independent. However, since the surrogate model ĥ is updated after
every Train action and its quality affects the probability of success of both ac-
tions, the two Bernoulli distributions of the rewards of the two actions cannot be
supposed independent. Yet, the experimental evaluation (Section 5) shows the
effectiveness of the Thompson sampling algorithm, which is due to the fact that
the reward distributions do not negatively interfere, but rather boost one another
as discussed.

The Justification

We have chosen to reduce the problem to the Bernoulli MAB since the trade-off
between the two different ways to spend the queries is similar to the exploration-
exploitation trade-off in the Reinforcement Learning problems (Section 2.4.1). On
the one hand, the attacker has to explore the outcome of the two possible actions
to investigate which is the most profitable. On the other hand, the attacker should
exploit the most convenient action using the knowledge gathered during the attack
in order to reach her goal. Moreover, the reduction to the Bernoulli MAB problem
allows to exploit one of its solving algorithm to automate the expected behaviour
of the attacker in the different scenarios she may face during the attack.
Secondly, we propose the reward scheme stated above because it’s effective. Indeed,
when the Attack success rate is low, it’s better to exploit the Train action in order
to improve the quality of the h model in terms of similarity to the ĥ. Iteration
after iteration, the success rate of the Train action decreases, since the similarity
between the two models reaches a plateau. Then the Attack action becomes the
most valuable choice.

4.2.3 AMEBA

Once the reduction from the two-step attack strategy problem and the MAB is
established, the Thompson sampling algorithm is one of the suitable choices to
provide a solution to the MAB problem and to implement the adaptive attack
strategy. The details of the resulting attack strategy, called AMEBA (Adversarial
Multi ArmEd BAndit), are formalized in Algorithm 3. Although the pseudocode
relies on FGV for evasion attack crafting, any other algorithm for the same task
could be used.
The algorithm starts by initializing the pseudo-counts of successes and failures
of the two actions (lines 1–2). Then, at each of the T rounds, so at each of the
B queries allowed, it selects the action with the highest estimate of success. In
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lines 8–25, the Attack action is implemented as discussed in the previous Section
4.2.2. First, the attacker iterates through Datk in search of an instance (~x, y) for
which it is possible to craft a successful evasion attack against the surrogate model
ĥ. If such an attack ~z is found (line 21), it is submitted to the target model gaining
a reward rt = 1(h(~z) 6= y), where 1(p) equals 1 if the predicate p is true and 0
otherwise. In other words, rt = 1 if h misclassifies the perturbed instance ~z and
rt = 0 otherwise.
If no evading instance is found, or if the estimated probability of attack success
θ̂Attack is not greater than train success θ̂Train, then the Train action is performed
(lines 26–35). In this case, a new instance ~x retrieved from Dun is submitted to
the target model h to get the corresponding prediction and then used to enrich
the training set Dtrn. A new surrogate model is finally trained and used in the
subsequent iterations. We set the reward to 1 if we observe an increase of the
cross-validation score of the surrogate, to 0 otherwise.
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Algorithm 3 The AMEBA attack strategy

1: for a in {Train,Attack} do
2: (Sa, Fa)← (1, 1) . Initialization
3: end for
4: for t = 1, ..., T do
5: Sample θ̂Train ∼ Beta(STrain, FTrain)
6: Sample θ̂Attack ∼ Beta(SAttack, FAttack)
7: evading ← ⊥ . Evasion attack yet not found
8: if θ̂Attack > θ̂Train then . Attack action
9: available← |Datk|

10: while evading = ⊥ ∧ available > 0 do
11: available← available− 1
12: (~x, y)← Pop(Datk)
13: ~z ← FGV((~x, y), ĥ) . Craft evasion attack
14: if ĥ(~x) = y ∧ ĥ(~z) 6= y then . Confirm evasion
15: evading ← (~z, y)
16: else
17: Datk ← Push(Datk, (~x, y))
18: end if
19: end while
20: end if
21: if evading 6= ⊥ then . Found evasion attack on ĥ
22: at ← Attack
23: (~z, y)← evading
24: rt ← 1(h(~z) 6= y) . Check transferability on h
25: (Sat , Fat)← (Sat + rt, Fat + (1− rt))
26: else . Train action
27: at ← Train
28: old cv score← CrossValScore(ĥ,Dtrn)
29: ~x← Pop(Dun)
30: y ← h(~x)
31: Dtrn ← Push(Dtrn, (~x, y))
32: ĥ← Train(Dtrn)
33: rt ← 1(CrossValScore(ĥ,Dtrn) > old cv score)
34: (Sat , Fat)← (Sat + rt, Fat + (1− rt))
35: end if
36: end for
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Chapter 5

Experimental evaluation

In this chapter we describe the setup and the results of the experimental evaluation
of AMEBA. We simulated different attack scenarios in order to show that AMEBA
is appropriate for pratical usage.
In section 5.1 the experimental setup is presented, i.e. the datasets, the surrogate
and target models and the perturbations used to craft adversarial examples. Next,
in section 5.2 the adopted methodology is explained, in particular how the sets
needed to the attack are built and how AMEBA is compared against the traditional
two-step attack strategy, our baseline. Section 5.3 presents the results of our
experimental evaluatuation, while in section 5.4 we present the time performance
of AMEBA, in order to undestrand if the complete evasion attack can be carried
out up to query budget exhaustion in a reasonable time. Finally in section 5.5 are
discussed the key points that allow AMEBA to be effective.

5.1 Experimental Setup

In this section we describe the two experimental settings adopted to experimentally
evaluate AMEBA. The two settings are mainly differentiated using the type of
classification task associated to the datasets used. In each setting, a range of
classifiers are used as surrogate and target models, in order to reproduce different
threats and application settings and show that AMEBA is effective in general.

5.1.1 Datasets

The experimental evaluation of AMEBA is performed on four public datasets.
The statistics of the datasets are summarized in Table 5.1, where we report the
number of instances, the number of features, the number of classes and the class
distributions, positive vs negative instances in the case of datasets with two label.
In particular, we use:

• Spambase1, a dataset of spam and no spam emails gathered by the Hewlett-
Packard Labs. This dataset is associated with a binary classification task,
the classification of spam emails. Legitimate emails are labeled as 0, while
spam emails are labeled as 1. Each email is described by 57 features: the first
48 are the percentage of appearance of particular words, 6 features represent
the percentage of appearance of particular characters, feature 55 represents

1https://archive.ics.uci.edu/ml/datasets/Spambase
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Table 5.1: Statistics of the datasets used for binary classification tasks

Spambase Wine CodRNA MNIST
n. of instances 4601 6495 488565 60000
n. of features 54 12 8 784
n. of classes 2 2 2 10
class distrib. 39 ÷ 61 25 ÷ 75 67 ÷ 33 10% for each class

the average length of uninterrupted sequences of capital letters, feature 56
represents the length of longest uninterrupted sequence of capital letters and
finally feature 57 represents total number of capital letters.

• Wine Quality2, dataset related to red and white variants of a Portuguese
wine. This dataset is associated to a binary classification task that consists in
discriminating the red (1) and white (0) wine colors. Each wine is described
by 11 physicochemical variables.

• CodRNA3, dataset that contains sequences of RNA described by 8 features.
The classification task associated with this dataset is binary since the se-
quences are labeled as negative (0) or positive (1).

• MNIST4, dataset of handwritten digits in 28x28 pixels grey scale images.
The classification task associated with this dataset is multiclass, since the
class labels are the 10 digits.

5.1.2 Setup for Binary Classification Tasks

Classifiers used

For the datasets associated with a binary classification task, a Linear SVM model
is used as surrogate model to craft black-box evasion attacks against three different
target models available in the state-of-the-art scikit-learn library [35]:

1. a decision tree ensemble model learned using the Random Forest algorithm,
a non-differentiable model;

2. a decision tree ensemble model learned using the Adaboost algorithm, a
non-differentiable model;

3. a logistic regression classifier, a differentiable model that presents some sim-
ilarities with Linear SVM (see Section 2.2.4).

Training

All the models are trained after normalizing features in the interval [0, 1]. The
use of feature normalization is a standard technique used in many other works in
literature and it prevents the negative effect that different measurement scales of
the features have on non-robust classifiers like Linear SVM.

2https://archive.ics.uci.edu/ml/datasets/wine quality
3https://www.openml.org/d/351
4http://yann.lecun.com/exdb/mnist/
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The training procedure is preceded by the hyperparameter tuning of the models.
The hyperparameter tuning process consists in choosing the best set of hyperpa-
rameter values for each learning algorithm. In this work it’s conducted by using
the grid search strategy with the 10-fold cross validation accuracy on the training
set as performance measure. In particular, the training set is firstly partitioned
into 10 different subsets. Then the cross validation accuracy is computed as the
average of the 10 accuracies scores retrieved by training the classifier on all the
partitions except one, that’s used as validation set. The procedure is repeated for
every combination of hyperparameters value to detect the combination that allows
the classifier to provide the best accuracy.
The hyperparameters tested are:

• Random Forest: number of trees ({64, 128, 256, 512, 1024, 2048, 3072}) and
node splitting criterion (gini impurity and max entropy);

• AdaBoost: number of trees ({64, 128, 256, 512, 1024}), node splitting crite-
rion (gini impurity and entropy) and maximum number of leaves ({8, 16, 32, 64});

• logistic regression: regularization factor C (from 10−4 to 104).

Justification of Linear SVM as Surrogate Model

The choice of using Linear SVM as surrogate model is mainly motivated by pre-
vious work, which showed that such type of model allows to generate effective
black-box attacks with strong transferability [17]. Also our experiments confirm
that Linear SVM is a quite effective surrogate model. Moreover, it’s very simple to
craft evasion attacks against a Linear SVM using algorithms like the FGV variant
discusses in section 2.3.4.
The regularization factor of the SVM is C = 0.50, resulting in an highly regularized
model, choice motivated by the observation that highly regularized models typi-
cally provide better transferability [17]. Other surrogate models are not considered
since Demontis et. al. [17] shown that an highly regularized Linear SVM allows to
obtain transferabilities against a wide range of models that are on average almost
comparable to the ones obtained by using other surrogate models.

Evasion Attack Crafting Algorithm

Adversarial examples are crafted using the algorithm 4 called FGVminpert, that ex-
ploit the FGV attack. The strategy consists in finding the minimum perturbation
required for crafting a successful evasion attack against the targeted model (the
surrogate model) among a grid of increasing perturbation values, i.e., using line
search. For simplicity, the objective of the attack isn’t to evade a specific class,
i.e. the attack considered is the untargeted.
The algorithm iterates on the sequence of admitted perturbations (line 1). The
perturbation ε′ ranges from a user defined perturbation ε0 ∈ R to another user
defined maximum perturbation ε ∈ R, with step size s ∈ R. An evasion attack
~z is crafted against the target model (the surrogate model ĥ) and the instance
(~x, y) using perturbation ε′ (line 2). If ~z evades ĥ, then the crafting algorithm can
be stopped, since the adversarial example requiring the minimum perturbation is
found (line 4). In the other case, the algorithm continues to examine other possible
perturbations.
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Algorithm 4 FGVminpert

1: for ε′ = ε0, ε0 + s, ε0 + 2s, . . . , ε do
2: ~z ← FGV((~x, y), ĥ, ε′) . Craft the evasion attack
3: if ĥ(~z) 6= y then
4: break . Exit if a valid advexp has been found
5: end if
6: end for
7: return ~z

Attack Scenarios

In order to consider a wide range of attack scenarios, we decide to examine the
cases in which the attacker can perform at most T = 1000 and T = 2000 queries
to the target model. Testing two attacker’s budgets allows to show that the results
obtained are not biased by the chosen number of queries.
Moreover, to further differentiate the attack scenarios, the attacker uses different
maximum perturbation magnitudes that depend on the specific dataset from which
are taken instances to generate adversarial examples. In particular, ε = 0.10, 0.15
is used with Spambase and CodRNA and ε = 0.20, 0.25 for Wine, while s is set
as 0.01 for all the datasets.

5.1.3 Setup for the multiclass classification tasks

Since deep learning models are increasingly used for perceptual tasks like image
classification and are also primary target in the adversarial machine learning liter-
ature [6], we also carry out additional experiments with the MNIST dataset. The
results obtained allow to show that our proposal generalizes also to deep learning.

Classifiers used

We train four deep learning models from the literature as targets. The models are
taken from [44] and its shared code.5 Specifically, we train the following targets:

• a standard Convolutional Neural Network (CNN), which is a simple model
for image classification;

• the Model A and Model C networks, which are more sophisticated models
exhibiting near-perfect accuracy on MNIST;

• a variant of the Model A network where we remove the drop-out layers.
Since drop-out layers provide robustness against noise, we might expect this
network to be more vulnerable to evasion attacks than Model A.

The Caffe6 variant of a traditional LeNet [30] network is used as surrogate in all
cases. This model has roughly the same complexity of the target CNN in terms
of number of parameters to train, while being significantly smaller than the other
target models. In Table 5.2 are reported the architectures of all the networks.

5https://github.com/suyeecav/Hybrid-Attack
6https://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-

lenet.ipynb
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CNN Model A Model C LeNet
Conv(32, 3, 3) + Relu Conv(64, 5, 5) + Relu Conv(128, 3, 3) + Relu Conv(20, 5, 5) + Relu
Conv(64, 3, 3) + Relu Conv(64, 5, 5) + Relu Conv(64, 3, 3) + Relu MaxPool(2,2)

MaxPool(2,2) Dropout(0.25) Dropout(0.25) Conv(50, 5, 5) + Relu
Dropout(0.25) FC(128) + Relu FC(128) + Relu MaxPool(2,2)

FC(128) + Relu Dropout(0.5) Dropout(0.5) FC(500) + Relu
Dropout(0.5) FC(10) + Softmax FC(10) + Softmax FC(10) + Softmax

FC(10) + Softmax

Table 5.2: Neural network architectures used in this work.

Training

The target models are trained for a maximum number of 200 epochs with Adam
stochastic optimization [29], a learning rate of 10−3 and batch size 128. The ef-
fective number of epochs is selected by using early stopping: training process is
stopped after 50 epochs in which the error on the validation set of 10000 randomly
sampled instances has not improved. All target models achieve at least 99% ac-
curacy on a randomly sampled test set of 10000 instances. The surrogate model
is trained for 15 epochs with Adam optimizer, a learning rate of 10−3 and batch
size 32. In order to prevent overfitting, we train both the target models and the
surrogate using data augmentation, with a random rotation of ±20 degrees of the
digit at most, a random right and left shift of 0.2 of the total width of the image
at most and a random zoom in the range 0.8-1.2 (the value 1 leaves the instance
unmodified). The choice of using data augmentation also for the surrogate training
set is reasonable, since the attacker is allowed to use any method to expand the
training set of the surrogate model.

Evasion Attack Crafting Algorithm and Attack Scenarios

In this scenario, the standard FGV is used, as described in 2.3.4, with a fixed
perturbations ε = 2.0 and ε = 3.0. This choice allows to obtain reasonable trans-
ferability values and to create images which are still recognizable by humans, as
the examples of perturbed images in Figure 5.1 show. Moreover, the similarity
between the surrogate and the target model is computed using 5-fold cross vali-
dation instead of the 10-fold cross validation of the previous setting. Finally, we
assume the attacker can perform T = 3000 queries to the target model. We assign
a larger budget to the attacker in this experiment, because neural network models
are more complex and require more data to be trained.

Figure 5.1: Examples of perturbed images for = 3.0

5.2 Methodology

The methodology adopted in the experiments is set up as follows.
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Hyperparameters
Model Spambase Wine CodRNA

Random Forest
n estimators = 128,
criterion = ”entropy”

n estimators = 256,
criterion = ”gini”

n estimators = 3072,
criterion = ”entropy”

AdaBoost
n estimators = 64,
criterion = ”gini”,
max leaf nodes =32

n estimators = 512,
criterion = ”gini”,
max leaf nodes = 8

n estimators = 1024,
criterion = ”gini”,
max leaf nodes = 8

Logistic Regression C=100 C=100 C=1000

Table 5.3: Hyperparameter configuration of the target models for the binary clas-
sification tasks

Spambase Wine CodRNA
Random Forest 0.96 0.99 0.97

AdaBoost 0.97 0.99 0.97
Logistic Regression 0.93 0.99 0.95

Table 5.4: Accuracy scores of the target models for the binary classification tasks

Datasets splitting

Each dataset D is partitioned into two sets Dtgt and Dsur using stratified random
sampling, i.e. they are randomly partitioned maintaining the original class distri-
bution. The Dtgt set is used to train the target models. Due to the small number
of instances of Spambase and Wine, only 1600 instances of Spambase and 3000 in-
stances of Wine are reserved for it, while 100000 instances of the CodRNA dataset
and and 40000 instances of MNIST are reserved.

Actual classifiers used

The best value for the hyperparameters of the target models for the binary classi-
fication tasks are reported in Table 5.3. The regularization factor C of the Logistic
Regression classifier is 100 or 1000 across the different training sets, while the num-
ber of estimators of the ensemble models results to be greater with the CodRNA
dataset than with the Spambase dataset.
The amount of instances used in the training sets for the target models and the
hyperparameter values chosen allow to achieve high values of accuracy with all the
target models, as reported in Table 5.4. In particular, the 10-fold cross validation
accuracy values of the target models involved in the various datasets are shown.
All the models reaches at least 93% accuracy on Spambase, Wine and CodRNA,
then the choice of using small Dtgt from Spambase and Wine seems reasonable.
The classification of spam and bulk emails seems the most difficult task, since
the target models reach the lowest accuracy, while all the three models perform
very well on Wine, with an accuracy of 99%. About the target CNNs used for
the multiclass classification task, the hyperparameters like batch size and learning
rate where decided in advance. All the target CNNs reaches 99% of accuracy on
the sampled MNIST test set.

Sets available to the attacker

TheDsur set, instead, is used to train the surrogate model and craft evasion attacks.
In particular, it’s partitioned into the sets Dtrn, Datk and Dun again using stratified
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random sampling. More precisely, in the experiments with budget T = 1000, these
sets are constructed as follows:

• Dtrn includes 100 instances used to train the initial surrogate model. The
labels are provided by the target model, then 100 queries are spent. The ini-
tial training set is necessary in order to train the surrogate model in the first
stages of the AMEBA attack strategy. The choice of size 100 is reasonable
and suitable for obtaining a minimally meaningful surrogate model, as the
experimental results will demonstrate.

• Datk is made up of 900 instances correctly classified by the target models,
which are used to craft evasion attacks. Even if the correct classification
of the instances used to generate the attacks is not a prerequirement, an
instance classified uncorrectly represents a trivial adversarial example, so the
instances manipulated are considered to be correctly classified by the target
as in previous works. The size of Datk is motivated by the fact that the
maximum number of evasion attacks that the attacker can perform against
the target model is limited by the budget, 1000, and by the number of queries
used to label the initial Dtrn, 100.

• Dun includes the remaining (unlabeled) instances of Dsur, which are used to
augment Dtrn with the class predictions from the target model and improve
the quality of the surrogate. Specifically, Dun = {~x | ∃y : (~x, y) ∈ Dsur \
(Dtrn ∪Datk)}. The usage of unlabelled instances is coherent with respect to
a real scenario, in which labelling instances independently could be expensive
and requires using a service like Automated Data Labeling by Amazon7.

For budget T = 2000 and T = 3000, the size of Datk is 1900 and 2900 respectively.

Comparison against the baseline strategy

AMEBA is compared against a traditional two-step attack strategy, where the
separation between the training phase (step 1) and the attack phase (step 2) is
clear. Moreover, prior work assumed the usage of a reasonably accurate surrogate
model in phase 2, learned using the instances gathered in phase 1 through a fixed
number of training rounds [34]. However it doesn’t investigate how to fix the
number of training rounds. Yet this is a delicate point, given that the number of
available queries to the target model is limited.
The comparison is then realized by implementing the two steps attack strat-
egy using multiple baselines, in order to cover multiple possible choices for the
number of queries spent for surrogate model training. In particular, for each
i ∈ {0, 50, 100, . . . , 700} with T = 1000, i ∈ {0, 100, 200, . . . , 1700} with T = 2000
and i ∈ {0, 200, 400, . . . , 2600} with T = 3000, i instances are collected from Datk

using stratified random sampling and are added to Dtrn, generating datasets Ditrn
(of size i + 100). The remaining instances in Datk are used for evasion attack
crafting. Less than 200 instances are never used as Datk, otherwise the available
attack instances would be so few to significantly lower the attack opportunities.
In the worst comparison setting, a powerful clairvoyant attacker would choose in
advance the best training size for the surrogate model, and therefore perform as
the best of the considered baselines. Then the objective is to show that AMEBA

7https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
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approximates the best baseline or even improves over it without having to detect
at priori which is the best splitting.

Performance measures

The performance of the attack strategies is evaluated in terms of the following two
measures:

1. the absolute number of successful evasion attacks against the target model,
i.e., number of evasion attacks against the surrogate model that transfer;

2. transferability, i.e., the percentage of successful evasion attacks out of all the
attempted evasion attacks against the target model.

Since the objective of the attack is to maximize the number of successful evasion
attacks by using the smaller number of queries with the training purpose as pos-
sible, the first performance index is the most important for the attacker. Yet it’s
also important to take into account the second measure. Indeed, it firstly gives
an indication of the influence of the size of Dtrn on the similarity between the two
models considered and trained on the specific dataset, since the greater the trans-
ferability, the better the alignment, keeping fixed the perturbation of the instances;
secondly, this measure has been extensively studied in the literature [17, 33].
Finally, recall that AMEBA results to be an implementation of the Thompson
sampling algorithm for solving the MAB problem, that incorporates the proba-
bilistic sampling based on the Beta distribution in order to choose the best action
at each turn. Moreover, the specific partitioning of D into the three datasets may
introduce a bias in the results. Then the performance evaluation of the strategy
cannot be based on a single configuration of the parameters of the algorithm, that
consists in the three datasets, keeping the perturbation adopted by FGV fixed.
Then the performance measures obtained by both the baseline and AMEBA are
the average obtained in 10 different runs in which the partitions of D in the three
datasets differs.

5.3 Experimental Results

In this section, the experimental results are analysed and discussed. The experi-
mental results of the tests in the binary and multiclass classification task setting
are presented.

5.3.1 Binary classification task

Spambase

In Figure 5.2 are shown the results on the Spambase dataset. The outer - light
colored bars represent the number of evasion attacks successfully crafted against
the surrogate model, while the inner bars show those which turned out to be effec-
tive also on the target model; the lines, instead, show the value of transferability.
The results for Random Forest and AdaBoost are very similar and indicate that
AMEBA outperforms the best-performing baseline. For example, in the case of
Adaboost as target and perturbation ε = 0.1, AMEBA allows to craft 390 ef-
fective adversarial example against the 234 produced using the best performing
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baseline, that corresponds to an increment of 66% in the number of successful eva-
sion attacks. The gap between the number of successful evasion attacks obtained
using the two strategies decreases as the perturbation increases at ε = 0.15, since
becomes easier to generate adversarial examples. However AMEBA continues to
outperform the best performing baseline. Indeed the number of successful evasion
attacks produced by the best baseline is 433 and the one obtained by AMEBA is
536 (+ 24%).
The results for logistic regression confirms the trend seen for the other two target
models. More precisely, with perturbation ε = 0.10, the best performing baseline
generates only 186 successful evasion attacks, while AMEBA generates 326 suc-
cessful evasion attacks (+75%). Moreover, when the perturbation is increased at
ε = 0.15, the best performing baseline generates 351 successful evasion attacks,
while AMEBA generates 437 (+ 25%).
Looking at the transferability, it results evident that it improves as the number
of queries spent for the surrogate model training increases. However, using a too
large number of query instances for the training phase doesn’t allow to exploit
the high transferability obtained because of the small number of queries available
for performing evasion attacks. The plots in 5.2 clearly show that the amount
of queries that allows to maximize the number of successful evasion attacks could
change a lot across different attack scenario, so it’s hard to identify. The trade-
off between the two phases of the attack is automatically handled by AMEBA,
keeping the transferability very high even though not equal to the one obtained
by the best performing baseline. For AdaBoost, the transferability obtained by
AMEBA is 76% for ε = 0.1 and 80% for ε = 0.15, while from 85% to 87% when
considering the baseline that produces the largest number of successful evasion
attacks; if the target model is logistic regression, the transferability obtained by
the baseline is 65% with both the perturbations, while 70% for the baseline.
The results for Logistic Regression seems counter-intuitive, since Linear SVM and
logistic regression presents similarities, as shown in Section 2.2.4, but both the
transferability and the number of evasion attacks against the logistic model are
lower than the results obtained for the other two targets. However Demontis et.
al. [17] shown throuhg their experiments that the similarity between the two model
is not relevant in increasing the transferability.
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Figure 5.2: Experimental results on the Spambase dataset
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Wine

The results for the Wine dataset, shown in Figure 5.3, confirm that AMEBA
surpass the baseline strategy in terms of number of successful evasion attacks.
However, in this setting is more difficult to generate advexps than for the Spambase
dataset. Then the results on the three target models are very close.
For ε = 0.20, the most difficult model to attack is Adaboost, against which the best
performing baseline generates 212 successful evasion attacks while AMEBA allows
to generate 223 (+5%) and the transferability is near 60% for both the attackers.
Logistic regression results to be the easiest model to attack with the Wine dataset,
since the best performing baseline generates 250 successful evasion attacks while
AMEBA allows to generate 263 (+5%) and the transferability is 67% for the best
performing baseline and 64% for AMEBA. Even though the improvement in the
number of successful evasion attacks is not as great as for Spambase, the result
achieved by AMEBA is already positive, since the attacker doesn’t know which is
the best splitting of the queries.
When the perturbation increases to ε = 0.25, evading the target model becomes
easier and the difference in the number of generated advexps between the two
attackers becomes apparent. For example, for Adaboost the best performing base-
line produces 395 successful evasion attacks while AMEBA 471 (+20%) and the
transferability is near 70% for both the attackers. For logistic regression the gap is
smaller in terms of number of successful advexps, since the best performing base-
line produces 416 successful evasion attacks while AMEBA 478 (+15%). However
the gap in transferability is greater, since the transferability is 75% for the best
performing baseline and 70% for the AMEBA.

CodRNA

Finally, we report in Figure 5.4 the results for the CodRNA dataset. The results are
very positive, also better that the ones obtained with the other datasets. Indeed
AMEBA does not just generate a higher number of successful evasion attacks
than the best performing baseline, but also improves the transferability over most
baselines.
The results across the three different target models are very similar, so we take
as reference AdaBoost. With perturbation ε = 0.10, the best-performing baseline
produces 287 successful evasion attacks, while AMEBA can craft 419 successful
attacks (+46%). The evasion attacks crafted by AMEBA have a transferabil-
ity of 66%, which is very close to the transferability of the baseline producing
the largest number of successful attacks (67%). When moving to ε = 0.15, the
best-performing baseline identifies 468 successful evasion attacks, while AMEBA
produces 572 successful attacks (+22%). The evasion attacks crafted by AMEBA
have a transferability of 77%, a value which improves over most baselines and is
close to the transferability of the baseline producing the largest number of suc-
cessful attacks (77%).

57



Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Training instances

0

50

100

150

200

250

300

350

E
va

di
ng

in
st

an
ce

s

Wine AdaBoost, ε = 0.20

AMEBA - Surrogate

AMEBA - Target

Baseline - Surrogate

Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
fe

ra
bi

lit
y

AMEBA - Transferability

Baseline - Transferability

(a)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Training instances

0

100

200

300

400

500

600

700

E
va

di
ng

in
st

an
ce

s

Wine AdaBoost, ε = 0.25

AMEBA - Surrogate

AMEBA - Target

Baseline - Surrogate

Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
fe

ra
bi

lit
y

AMEBA - Transferability

Baseline - Transferability

(b)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Training instances

0

50

100

150

200

250

300

350

400

E
va

di
ng

in
st

an
ce

s

Wine Logistic Regression, ε = 0.20

AMEBA - Surrogate

AMEBA - Target

Baseline - Surrogate

Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
fe

ra
bi

lit
y

AMEBA - Transferability

Baseline - Transferability

(c)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Training instances

0

100

200

300

400

500

600

700
E

va
di

ng
in

st
an

ce
s

Wine Logistic Regression, ε = 0.25

AMEBA - Surrogate

AMEBA - Target

Baseline - Surrogate

Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
fe

ra
bi

lit
y

AMEBA - Transferability

Baseline - Transferability

(d)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Training instances

0

50

100

150

200

250

300

350

E
va

di
ng

in
st

an
ce

s

Wine RandomForest, ε = 0.20

AMEBA - Surrogate

AMEBA - Target

Baseline - Surrogate

Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
fe

ra
bi

lit
y

AMEBA - Transferability

Baseline - Transferability

(e)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Training instances

0

100

200

300

400

500

600

E
va

di
ng

in
st

an
ce

s

Wine RandomForest, ε = 0.25

AMEBA - Surrogate

AMEBA - Target

Baseline - Surrogate

Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
fe

ra
bi

lit
y

AMEBA - Transferability

Baseline - Transferability

(f)

Figure 5.3: Experimental results on the Wine Quality dataset
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Figure 5.4: Experimental results on the CodRNA dataset
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5.3.2 The Impact of Higher Number of Queries

In order to show that the experiments are not biased by the chosen number of
queries, which is an assumption on the attacker’s power, in Figure 5.6 are re-
ported additional experimental results under the assumption that the attacker
can perform T = 2000 queries to the target model, rather than just T = 1000,
with the smallest maximum perturbation ε for each dataset. The results shown in
the figures are similar to the ones shown with in the plots in Section 5.3.1. We
observe that increasing the number of queries used for training typically provides
a better transferability for the baseline: most cases show a monotonic increase
in transferability. However, a better transferability does not necessarily lead to a
larger number of successful evasion attacks: the best-performing baseline in terms
of successful evasion attacks typically uses a relatively low number of queries in
the training phase, so that more evasion attempts are possible. Our experiments
clearly show that the amount of successful evasion attacks generated by AMEBA
still outperforms the best-performing baseline, for all datasets and models. The
results obtained in the case of RandomForest and AdaBoost are quietly similar for
all the datasets. In the case of the Random Forest model trained over the Spam-
base dataset, the best-performing baseline crafts 644 successful evasion attacks,
while AMEBA can produce 902 successful attacks (+40%). With target logistic
regression, the results are slighly different, since AMEBA succeeds to produce only
800 successful evasion attacks, result different than the one obtained with budget
T = 1000 (cf figure 5.2), where against LogisticRegression AMEBA produces
more successful advexps than against RandomForest and AdaBoost. This result
shows that a bigger budget could lead to a different results, but AMEBA still
outperforms the best performing baseline.
At the same time, the transferability of the evasion attacks produced by AMEBA
stays in a very acceptable range, from 60% at worst to 78% at best across the
different settings. An interesting point comes from observing the results for target
LogisticRegression with dataset Wine and CodRNA. Following the trend of the
experiments with budget T = 1000, the transferability from LinearSVM to Lo-
gisticRegression on Wine increases as the surrogate training set size increases. In
the case of CodRNA dataset, with budget T = 1000 the transferability between
the two models involved doesn’t improve as the size of the training set increases,
while with budget T = 2000 the transferability starts to increase after size 1000,
a countertrend result compared with those obtained in case of RandomForest and
AdaBoost as target. This is probably due to the inherent similarity between the
Logistic Regression model and LinearSVM, as pointed out in section 2.2.4.
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Figure 5.6: Experimental results for T = 2000 queries
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5.3.3 Multiclass Image Classification Task

The results about the application of AMEBA in the context of a image classifica-
tion task with perturbation ε = 2.0 are shown in Figure 5.7. AMEBA outperforms
the best performing baseline in all the attack scenario. For example, in the case
of MODELC, the most vulnerable model, the best baseline produces only 1337
successful evasion attacks while AMEBA produces 2176 effective advexps (+62%)
and the transferability is not very distant, 77% for AMEBA and 82% for the
best performing baseline. For MODELA, that’s the toughest model to attack in
this setting, the transferability is very low, near 50%, for both the attackers, but
AMEBA still outperforms the best performing baseline in terms of the number of
successful advexps, 1111 vs 927 (+20%).
In figure 5.8 are reported the results with ε = 3.0. As expected, the number
of successful evasion attacks increases both for AMEBA and the baseline, but
AMEBA still improves the baseline results. For example, in the case of MODELC,
the best performing baseline succeeds to craft 1864 attacks and AMEBA 2402
attacks (+28%), while for MODELA without the dropout layer the best performing
baseline attacker succeeds to craft 1517 attacks and AMEBA 1852 attacks (+22%).
In general, the percentage increasing in the number of successful evasion attacks
against the targets ranges from +22% to +40%. The transferability of the evasion
attacks crafted by AMEBA is closely the same as the one achieved by the best
perfoming baseline or better, however it ranges from 70% against MODELA to
87% against MODELC.
There are two interesting observations to point out. Firstly, the transferability
doesn’t show the same increasing trend as seen for Spambase and Wine, probably
because the size of the architectures, the use data augmentation and early stopping
are three factors that reduce the impact of small Dtrn on the network generalization
capabilities. Indeed the augmentation applied on Dtrn allows to show the network
a lot of different instances also starting from a small pool, while a small deep ar-
chitecture doesn’t need a very large training set compared to deeper architectures.
Moreover, the use of early stopping allows to prevent overfitting. The second ob-
servation is that the results show surprisingly that MODELA is easier to evade
than its variant without drop-out layers. Our conjecture about this might come
from the observation that random noise is not necessarily a good approximation
of adversarial noise [6].
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Figure 5.7: Experimental results on the MNIST dataset for T = 3000 and ε = 2.0
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Figure 5.8: Experimental results on the MNIST dataset for T = 3000 and ε = 3.0
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Spambase Wine Quality
ε = 0.10 Total Time Average ε = 0.20 Total Time Average

Random Forest 607 1.53 Random Forest 392 1.63
AdaBoost 317 0.81 AdaBoost 214 0.96

Log. Regression 243 0.75 Log. Regression 241 0.92

ε = 0.15 Total Time Average ε = 0.25 Total Time Average
Random Forest 267 0.48 Random Forest 191 0.42

AdaBoost 150 0.28 AdaBoost 176 0.37
Log. Regression 99 0.23 Log. Regression 143 0.30

CodRNA
ε = 0.10 Total Time Average

Random Forest 312 0.76
AdaBoost 193 0.46

Log. Regression 103 0.24

ε = 0.15 Total Time Average
Random Forest 261 0.46

AdaBoost 133 0.23
Log. Regression 61 0.11

Table 5.5: Performance evaluation of AMEBA using Linear SVM as surrogate
model. The Total Time column reports the total running time of AMEBA, while
the Average column reports the average time to perform a successful evasion at-
tack. Times are expressed in seconds.

5.4 Performance Evaluation

An interesting point to be investigated is the time needed to run an attack using
AMEBA. Indeed the running time required by AMEBA could be larger than the
one needed for the traditional two step attack strategies proposed in prior work,
most notably because the number of Train and Attack actions is dynamically
chosen, hence the surrogate model can be trained many times, i.e., every time the
Train action is performed. The analysis is presented for both the experimental
settings considered. The performance metrics used are the total time spent to
carry out an adaptive attack through AMEBA (up to query budget exhaustion)
and the average time spent to craft a successful evasion attack. Each result is the
average over 10 different runs of AMEBA on a standard commercial machine over
the different attack settings considered.

Binary Classification Task

Our experiments in the binary classification task setting show that AMEBA is
perfectly appropriate for pratical usage. This is due to the efficiency of both
the attack strategy and the supervised learning algorithms for simple models like
Linear SVM.
The results about our experiments are shown in Table 5.5. With the lower pertur-
bation between the two used for each dataset, the total time required to complete
the attack on a budget of queries is in general higher than the times obtained with
the higher perturbation. This is due to the higher number of Train actions that are
performed in the setting with the lower perturbation and the number of times in
which the entire Datk is examined without finding a usable base instance. Indeed
the lower the perturbation, the more difficult is to craft valid evasion attacks and
the higher will be the number of Train actions performed. Moreover, the running
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MNIST
ε = 2.0 Total Time Average
CNN 1658 0.81

MODELC 1363 0.62
MODELA 17328 13.54

MODELAdropless 18676 16.81

ε = 3.0 Total Time Average
CNN 1107 0.47

MODELC 938 0.39
MODELA 1097 0.53

MODELAdropless 1528 0.82

Table 5.6: Performance evaluation of AMEBA using LeNet as surrogate model.
The Total Time column reports the total running time of AMEBA, while the
Average column reports the average time to perform a successful evasion attack.
Times are expressed in seconds.

time is also influenced by the classification time needed by the target model, that’s
higher for the decision tree model. In the worst case, so the setting with Random
Forest, perturbation ε = 0.1 and the Spambase dataset, AMEBA carries out 10
minutes (607 seconds) to perform an entire attack that exploits 1000 queries, while
only around 4 minutes if the perturbation is ε = 0.15. Also the average time reflect
this difference, since it switch from 1.53 successful evasion attack per second to
0.48. In the best case, with Logistic Regression and the CodRNA dataset, the
the attacker uses around 1 and half minutes (103 seconds) to perform an entire
attack that exploit 1000 queries, while only around 1 minute if the perturbation
is ε = 0.15.

In general, over the three datasets, AMEBA requires more time against Random-
Forest than the other two target model, but the time required is always reasonably
low. Also the average time required to craft a successful evasion attack is very low,
since it’s under 2 seconds in the worst case and less than 1 second in most cases.
These results confirm that the Thompson sampling algorithm is an effective choice
to implement the adaptive attack strategy.

Multiclass Classification Task

When the surrogate and target models are CNNs, the time required to carry out
an adaptive black-box attack through AMEBA increases with respect the results
obtained in the previous setting, but it remains appropriate for practical usage.

In table 5.6 the time results are presented for each different target model on the
dataset MNIST, with budget T = 3000 and the two perturbations. The different
budget makes not possible to compare the total times with the ones obtained in the
previous setting, but the average time to craft a successful evasion attack can be
compared. When the evasion attacks transfer well, as in the case for MODELC and
CNN, the average times to perform a successful evasion attack through AMEBA
are aligned to the ones obtained in the previous setting against simpler targets
(Section 5.4). When the evasion is more challenging, the average time required
increases. By observing the results with perturbation ε = 2, it’s evident the impact
of the training steps in the total and average time. For example, in the case of
MODELA, more training steps are performed, since the surrogate model needs
to be refined in order to craft valid evasion attacks. Moreover many instances
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don’t evade the surrogate model because of the low perturbation. Then, against
MODELA, AMEBA requires around 5 hours to complete the evasion attack using
the entire budget, while only 27 minutes are required for the attack against CNN.
When the perturbation raises to ε = 3, also the total time required for completing
the attack against MODELA drops, indeed it requires only 18 minutes. The
evasion is made easier thanks to the higher perturbation, so less training steps are
needed to be performed than in the setting with ε = 2.
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Figure 5.9: Actions and mean rewards on the Spambase dataset

5.5 Discussion

5.5.1 Why AMEBA Works?

In order to understand why AMEBA works, it is necessary to study the impact
of two key characteristics of the attack strategy: the dynamic alternation between
the two actions and the implementation of the Datk set as a queue. The former is a
consequence of the reduction of the problem to MAB, solved by using Thompson
sampling, while the latter is a consideration about the attacker’s behaviour in the
threat model considered.

Dynamic Alternation between the Two Actions

About the first key factor, in Figure 5.9 are shown 6 different runs of the AMEBA
algorithm against the three target models on the Spambase dataset, using the
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two perturbations considered in Section 5.3.1. The figure uses red and blue lines
to show the trend of the average reward for the Attack and the Train actions
respectively; the background of the plots shows instead which of the two actions
was taken at each round. When the perturbation is smaller, ε = 0.1 and the target
model is quite vulnerable to evasion attacks (the two decision tree ensemble),
AMEBA shows an expected trend: it firstly performs a small number of train
actions, then moves to Attack actions in order to exploit the good transferability
between surrogate and target model and, at the end, Train actions become popular
because of the impossibility of crafting adversarial examples with the remaining
instances in Datk. Against logistic regression, that’s more difficult to evade, the
choices are different: firstly AMEBA uses the Attack action, but at a certain point
encounters difficulties in the evasion. Then it recurs to the augmentation of Dtrn

through the Train action in order to improve the quality of the surrogate. Only
when the mean reward of the Attack action turns to exceed that of the Train action,
AMEBA switches back to evasion attack crafting. With perturbation ε = 0.15,
evading the target models becomes easier then AMEBA exploits more times the
Attack action, as shown by (d), (e) and (f) in Figure 5.9.

The Effect of organizing Datk as Queue

About the second key factor, Figure 5.10 shows the results obtained on the Spam-
base dataset if we did not organize Datk as a queue and rather discarded instances
which were used to generate an advexps that could not evade the surrogate model.
In case of tree ensembles, the adaptive strategy doesn’t suffice the improve signifi-
cantly the number of successful evasion attacks with respect to the baseline starting
from 100 instances, while it was used to outperform the baseline (Figure 5.2). For
example, in the case of RandomForest and with perturbation ε = 0.10, AMEBA
produces 192 effective adversarial examples, while the best performing baseline
245. With perturbation ε = 0.15, the gap improves, since AMEBA produces only
356 effective evasion attacks and the best performing baseline 427. Surprisingly,
against logistic regression AMEBA allows to overcome the best performing base-
line even if Datk is not organized as a queue. Indeed, with perturbation ε = 0.10,
AMEBA allows to perform 210 successful adversarial attacks, while the best per-
forming baseline only 186. If the perturbation increases to ε = 0.15, AMEBA
induces to craft 377 successful advexps, while the best performing baseline only
351. However, if we compare the results obtained for Logistic Regression with Datk

organized as queue or not, it’s evident the advantage of organizing Datk as queue.
Indeed the intuition under the success of the organization as queue is that, since
the surrogate model is refined over time, instances leading to a failure at a given
round might lead to successful evasion attacks in a later round. This confirms
that adaptive attack strategies have an inherent potential to outperform tradi-
tional two-step attack strategies, where a large number of instances can never be
used to craft successful evasion attacks.
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Figure 5.10: Experimental results on the Spambase dataset (without queue)
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5.5.2 The Importance of the Adaptive Attack Strategy

The experimental evaluation points out two important observations which moti-
vate the importance of designing adaptive attack strategies like AMEBA.
Firstly, finding the optimal trade-off between surrogate model training and evasion
attack crafting is far from straightforward. The effectiveness of the black-box eva-
sion attack run adopting the static two-step strategy, evaluated using the number
of successful advexps against the target, shows the shape of a bell-curve as the
number of queries spent to initially train the surrogate model increases. The size
of the training set that allows to obtain the maximum number of successful evasion
attacks may be very difficult to predict (see Figure 5.2 and Figure 5.3), then the
attacker cannot know in advance the right time to switch from surrogate model
training to evasion attack crafting.
Secondly, the two-step adaptive strategy proposed, AMEBA, do not just approxi-
mate the best-performing baseline, but in certain scenarios can outperform it, as
we observed on the Spambase or MNIST dataset. The first key point here is that
the adaptive two step strategy allows to automatically choice when it’s better to
spend query to improve the quality of surrogate model. The second key point con-
sists in giving other chances to instances in Datk that, in previous iterations, could
not be used to craft successful evasion attacks. The static two step attack strategy
expects to discard them, since it isn’t possible to improve the quality of the surro-
gate model after the initial training phase. In the context of the adaptive strategy
is more convenient to store them and try newly the attack later, since the model is
likely to be refined soon. The adaptive alternation between the two actions allows
to enable attacks that previously were not possible, because of the changes in the
decision boundaries established by the surrogate model after training on the aug-
mented Dtrn. The reuse of previously misclassified or unusable instance impacts
a lot the effectiveness of the strategy, fact that can be appreciated by comparing,
for example, the results in Figure 5.2 against those in Figure 5.10.
Finally, AMEBA is a novel attack but also an optimization of traditional attack
strategies based on transferability. The attack strategy is a way to decide how to
choose an action depending on the setting and it’s only one of the factors that
determine the success of the overall attack. Another fundamental factor is the
white-box attack chosen to craft the adversarial examples. Then the effectiveness
of AMEBA in certain settings depends on the attack used: if the adversarial exam-
ples crafted show really bad transferability because of the white-box attack chosen,
then many Train actions will be performed consuming the entire budget. AMEBA
does not change the landscape of the research on the defenses against adversarial
examples transferability, that’s still an open problem [47], but it can be adopted
to make the security evaluation of machine learning models more meaningful in
practice.
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Chapter 6

Conclusion

Adversarial machine learning has increasingly gained popularity in the last decade,
due to the wider adoption of machine learning in very heterogeneous fields. The
security and robustness of machine learning models are essential mostly in security-
oriented applications, like anomaly based intrusion detection systems or fraud
detectors. Although many attack types exist, in this work we focused on evasion
attacks. As the word ”evasion” suggests, the objective is to induce the target
model to misclassify a carefully crafted instance ~z, called adversarial example,
which is very similar to the original one ~x ∈ X .

In this thesis we discussed the problem of maximizing the number of successful eva-
sion attacks in the black-box setting. In particular, the details of the target model
are hidden and only the label predicted for a given query is returned. Moreover,
a typical constraint in the black-box settings concern the budget of the attacker,
i.e., the maximum number of queries to the target model. A traditional and prac-
tical strategy to perform black-box evasion attacks in the black-box setting is the
two-steps attack strategy presented by Papernot et. al. [34]. It’s articulated in two
steps: (i) query the target model to collect predictions for the surrogate training
set and train the surrogate model that has to approximate the target, (ii) craft
evasion attacks against the surrogate model and try to transfer them to the target.
Given the constraint about the maximum number of queries, an inherent tension
emerges between the two steps of the attack strategy. Indeed the attacker would
like to obtain the best approximation of the target model and the highest number
of successful evasion attacks as possible, but improving the surrogate model needs
to retrieve predictions from the target model, i.e., spending queries for the training
step. The traditional two-step attack strategy is suboptimal, since it assumes the
two steps as strictly separated and requires to define before the attack execution
the number of queries spent for the first step to perform the attack. It doesn’t
allow the attacker to exploit all the possible actions available, such as dynamically
intertwining the two steps in order to adapt the number of queries used for each
step during the execution of the attack.

The solution proposed in this work is AMEBA, the first adaptive approach to the
black-box evasion of ML models. The strategy allows to learn the best alterna-
tion of the two actions for surrogate model training and evasion attack crafting
during the execution of the attack. AMEBA exploits the formal reduction from
the two-step evasion attack problem to the Bernoulli MAB problem that allows to
implement AMEBA using one of the solving algorithms for the MAB problem. In
this work, we used the Thompson sampling algorithm. For each possible query of
the attacker’s budget B, the attacker exploits a Beta prior to adaptively choose
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whether to use the query to retrieve a prediction and improve the target model
or to submit an advexp. We experimentally showed that AMEBA can outperform
the traditional two-step attack strategy at least in terms of number of successful
evasion attack crafted. In particular, we tested AMEBA in the context of binary
classification tasks and an image classification task with a variety of supervised
learning algorithms, like deep neural networks. Moreover, the time required to
AMEBA to perform a complete attack with budget T = 1000 is at least 10 min-
utes, so it’s perfectly applicable in practice. The success of AMEBA is mainly
due to two key points: the ability of learning the most convenient action to take,
thanks to the good heuristic used, and the choice of not discarding instances that
a certain point cannot be used to craft an advexp.

To the best of our knowledge, our work is the first to propose an adaptive two-step
attack strategy to perform evasion attacks in the black-box setting exploiting trans-
ferability. In literature there are plenty of proposed attack algorithms and strate-
gies, as described in Chapter 3. The practical black-box evasion attack against ML
proposed by Papernot et. al. [34] achieved an important success and influenced
other notable work in the area [33, 32]. However, none of this paper examines the
inherent trade-off between the two steps during the attack and propose a way to
switch from one to the other in an optimal way. The other prominent category of
black-box attacks, the query-based, includes attacks that perform multiple queries
to the target model in order to estimate its gradient [13]. Although recent papers
focused on how to reduce the number of queries required by the query-based at-
tacks [25, 31, 24], they continue to require a number of queries that’s still order
of magnitudes higher than the one obtained by transfer-based approaches. The
two strategies are complementary: transfer-based attacks presents a relatively low
success rate, although they are extremely efficient since they require only to query
the target model to perform an evasion attack; query-based attacks guarantee a
nearly perfect success rate, but they require a lot of more queries to evade a sin-
gle instance. Moreover, the same surrogate model can be used to attack different
targets (as non-differentiable models) and can be used to attack all the instances
of interests, which makes the attack efficient and harder to be detected. For these
reasons, the research community continues to have still interest in transferability.
The complementarity guided prior work that proposed hybrid strategies that com-
bine the two strategy in order to take the best from the two worlds [44, 15, 28].
Since hybrid attacks exploits concepts from the transfer-based attacks, they can
take advantage from the adaptive approach proposed by AMEBA.

We highlight that the attack strategy proposed is not focused on the evasion attack
crafting, but in how to deal with the inherent tension between surrogate model
training and evasion attack crafting in a query-limited setting. We expect our
results to immediately generalize to other evasion attacking crafting algorithm
besides the FGV algorithm which we used, like FGS, CW [11] and any other
new attack algorithm designed to evade specific defense techniques like adversarial
training [47].

We foresee several avenues for future work. In the immediate feature, we will
attempt the reduction of the two-step evasion attack problem to other suitable
Reinforcement Learning problems, so we will exploit other solving algorithms like
Q-learning. Also, we would like to test different rewards for the Train action in our
reduction to MAB, since the cross-validation score is just one of different plausible
measures to explore. Secondly, other specific attacks to generate adversarial exam-
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ples may be tested, like CW [11] or iterative methods [18]. Then, we would like to
extend our experimental evaluation to more sophisticated attack strategies, where
instances for surrogate model training are not randomly chosen, but rather crafted
to maximize the similarity between the surrogate and the target [34]. Moreover, we
plan to generalize our approach to the case where the output of the target model
is not just a class label, but rather a confidence score or a probability vector. This
additional amount of information might support the design of more sophisticated
heuristics to assign the rewards of the two actions in our reduction to MAB.
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