
YValidator: a flexible tool for fetching

and validating Indicators of Compromise

Ca’ Foscari University of Venice

Department of Environmental Sciences, Informatics and Statistics

Computer Science Master’s Thesis

Year 2020-2021

Graduand Davide Narder

Supervisor Riccardo Focardi

Contents

1 Introduction 1

2 Malware Information Sharing Platform 3

2.1 Data model . 4

3 YValidator - Design and Implementation 7

3.1 Sources . 9

3.2 Validation . 12

3.2.1 Pre-Validation . 14

3.2.2 External Validation . 16

3.3 QRadar Validation . 24

3.4 MISP Feed Generation . 28

4 Validation Statistic and Testing 31

5 Conclusions and Future implementations 36

i

Chapter 1

Introduction

In this document we will be describe the design and development of YValidator, a

tool built in collaboration with Yarix S.r.l. This project is an attempt to automate

and speed up the collection and verification of Indicators of Compromise (IOC) and

to limit manual intervention. It is designed to regularly fetch data from selected

sources that share IOCs such as Github repositories, Twitter profiles, security

blogs, etc. The first chapter will briefly describe MISP (Malware Information

Sharing Platform), a platform to organize and share malware information, with a

focus on indicators of compromise as the main output of the program is a MISP

type feed. A feed can be seen as a stream of new indicators grouped and divided

in events to be added in a MISP instance.

Indicators are fetched and parsed with regular expressions and then have to go

through a series of verification steps where a partial score and weight is assigned

at every step and at the end a decision is made on the validity and malicious-

ness of the indicators. Then, as a final check, the last step consists of searching

the alleged malicious indicators in various QRadar servers to gather information

on the practical utility, feasibility and technical problems that can arise by the

inclusion of indicators in the MISP instance. QRadar is a Security information

and event management (SIEM) with many features but the relevant aspect to the

tool developed is that it will gather logs from all the devices of an organization

providing a complete view of application usage and network traffic. This step is

useful because all the QRadar servers will raise an alert when an indicators in the

MISP instance is found in any activity the SIEM is monitoring and by performing

a search on the most recent logs before adding the events in MISP we can get

1

an idea on the number of alerts raised based on the frequency or absence of the

searched IOC. This information is used to make a decision on whether to include

specific indicators in the feed or to directly send a notification to the company

managing the QRadar server when the search suggests a potential malware infec-

tion to avoid automatically raising unnecessary alerts on scenarios where manual

intervention is preferred.

Finally events are generated grouping indicators based on source, they are tagged

accordingly based on the tool configuration and are written in a MISP feed for

easy ingestion in MISP instances. The initial and only output designed to be

implemented was the MISP feed, but during the project creation other uses and

useful interaction were added. Such as the possibility of using to program as

a local indicator validation tool by excluding the first and last phase of online

source fetching and event generation and to output a detailed report with all the

information and related weight used to compute a final scoring. Additionally the

report can be used in situation where the scoring system becomes for any reason

ineffective and weight and score rebalancing has to be done. The forth chapter

contains a report of a series of test for the accuracy of the scoring system of

the validation phase together with the main problems and limitation the tool.

Consideration are made regarding all the possible scenarios of failure of the tool,

such as insertion of false positives and deletions of true positives with all the logic

in place to prevent those results.

2

Chapter 2

Malware Information Sharing

Platform

Malware Information Sharing Platform (MISP) is an open source threat intelli-

gence platform. The project was started by an individual malware analyst and

then picked up by NATO to become not only a malware Indicator of Compromise

platform but also including fraud and vulnerability information.

MISP is used today by many companies to gather, share and correlate indica-

tors of compromise regarding targeted attacks, threat intelligence, financial fraud

information and vulnerability information. MISP offers many useful functionali-

ties for an efficient malware analysis such as the ease of sharing data with other

MISP instances and automated exports for Intrusion Detection System (IDS) or

Security Information and Event Management (SIEM). The MISP philosophy is

centered around sharing and automation. It is designed and meant to be used

to enhance and simplify the sharing and flow of information to avoid situation in

which analysts are working on something that has already been studied and allows

user to see a more complete view and bigger picture by linking together related

malware or related malware campaigns as it is quite often the case that similar

organisations are targeted by the same threat actor or by the same malware, in

addition to the ability to create a discussion per event to enable conversations be-

tween multiple analysts. Information sharing also comes in the form of integration

with popular IDS and SIEM by generating IDS rules, text or csv exports to allow

automatic import of indicators in other security systems resulting in better and

faster detection of intrusions.

3

2.1 Data model

The core data model of MISP is the Event. Each event has a series of general

information such as event description, date, threat level and can have zero or

more attributes. Attributes contain all the indicator of compromise related to

the event they belong, but they can also contain non technical data, such as

PDF reports, text comments, externals links, etc. Events are usually created

and added manually by malware analyst, researchers or forensic teams. When

studying malware MISP allows you to store all the analysis data as attributes and

provides automatic correlation to find relationships between attributes of other

events with the option to disable correlation on desired attributes, usually keeping

it enabled by default only for technical data. Together with simple attributes more

complex MISP objects can be used to express more complex relationships, events

and connected elements. [4]

Figure 2.1: Example of event with attributes in the MISP web interface

MISP has support by default for about two hundred attribute types and sixteen

type categories. Every type can make sense in one or more categories. For example

ambiguous attribute types such as ”link” can be classified as ”Payload Delivery” or

simply ”Internal reference”. For more complex data structure MISP also provides

4

the use of Objects to organize data in events. Objects are specific data struc-

tures composed by a dictionary of key-attribute pair and are based on real cyber

security use-cases and existing practices in information sharing such as object de-

scribing bank accounts, credit cards, credential information but also social media

interactions and posts. As a mean of organization and grouping together similar

events MISP Taxonomy defines a common classification system to tag and organise

events. Taxonomy allows to express the same vocabulary among a distributed set

of users and organisations and is composed by a namespace (Required), a predi-

cate (Required) and an optional value, for example a finance related event will be

classified with a tag ”circl:topic=finance”. Users can also create and improve the

MISP taxonomy by adding additional custom classifications. MISP galaxies on

the other hand are a method to express a large object called cluster that can be

attached to MISP events or attributes. A cluster can be composed of one or more

elements and elements in the galaxy are expressed as key-values. An example of

MISP galaxy could be a simple dictionary with country information or a dictionary

containing a description of the most popular Android malware. There are a lot of

default vocabularies available in MISP and all of then can be freely overwritten,

replaced or updated. This exhaustive list of types, categories and objects can be

used to express with detail the vast majority of malware analysis scenarios with

complex relationships and detailed tags.

MISP also come with a Python library to interact with the platform via API

to fetch, add, update events or attributes, handle malware samples or search for

attributes. A use case of a MISP is to have an instance to store malware informa-

tion and to have multiple IDS and SIEM to log and detect intrusions. IDS and

SIEM instances can import malware information and indicators of compromise

from MISP periodically.

MISP Feeds

As an alternative to manual inserting MISP support feeds, an automatic way of

importing events. A feed can be seen as a stream of event, usually managed by a

trusted third party, that can be added to a MISP instance to allow periodic and

automatic fetch of events that are added over time in the feed. They can also be

used as a source of correlations for all events and attributes already present in the

5

instance without the need to import them directly into your system. The MISP

feed system allows for fast correlation but also a for quick comparisons of the feeds

against one another via a overlap matrix showing the percentages of indicator

found in feed pairs. There are many default feeds that are already configured in

any MISP instance and just need to be activated in the MISP feed web interface.

A schedule can be set for refreshing feeds to have an automatic stream of events

from a trusted source. The preferred feed format is the MISP standardized format

as it can benefit from all the MISP functionalities, but also CSV and freetext is

allowed, for example a simple text file containing a list of IPs can be imported

as a feed and tagged as a blocklist. Also when adding a feed via the MISP web

interface additional control is available such as feed tagging and filter rules to be

able to select or skip specific events. When the files are local and present in the

same machine the event files can be automatically deleted after ingestion. The

main goal of the tool developed and described later is the creation of a feed in the

MISP standardized format.

6

Chapter 3

YValidator - Design and

Implementation

The idea behind the creation of this tool is to have an automatic system for

fetching and validating indicators of compromise from publicly available sources

and inserting them in a organized manner in a MISP instance. The point is to use

sources that are not in any other MISP feed because of their being highly targeted

nature, that are updated fairly often or simply because they are not published by

a large and popular organizations but by smaller research groups or by individual

malware analyst so that we can have automations for as much data that is being

shared as possible.

The language used to develop the script is Python3 given that the company already

had utility libraries for parsing indicators of compromise and also because there

are Python API libraries available for all the services that we are going to need

to interact with. The main goal of the program is to output a feed of events with

information fetched from interesting sources in a MISP format for easy integration

with the destination MISP instance. The secondary output of the tool is the

validation report with information for all the validation steps for every indicator

parsed during the execution. This report can be used to understand the reasons

why an IOC was considered malicious or harmless (kept or discarded) and can

be used to fine tune the weights and scoring system for better future validation

decision.

The program is logically divided in four steps: fetching, validation, QRadar search

and event generation. Each step has at least one thread assigned to it to make

7

sure that as soon as an event is finished with a step it is put in to a queue for the

next task, if there is a thread available it can immediately continue the execution

otherwise it will wait. More specifically when the program is run with multiple

sources each source has its own thread, validation can be configured to run with

one or more threads and for last two steps one thread each is enough, considering

that the the QRadar validation just needs to send queries the QRadar server and

the last thread waits for the results then generates and writes the MISP events

to disk. Generally the script is network bound and indicator parsing will rarely

be computationally expensive. During testing files with up to a couple thousand

indicators are still processed in reasonable time and will briefly halt source fetching

for event with the same type given that fetching and parsing share a single thread

per source. There is the possibility to assign a thread specifically for the parsing

task but the number of threads already used and the average size of the data are

discouraging this choice. All the steps from fetching and parsing to validation

and generation are logged in a rotating log file. The log can obviously be used

for debugging purposes but also to gather additional information when a manual

review is required, an expected process described later in section 3.3.

Figure 3.1: Diagram of all the phases

The tool interacts with many external APIs including Twitter, GitHub, URLScan.io,

Virustotal, IBM-XForce and all the development and testing was done using the

public and free version of these services with the relative limits applied. In a pro-

duction environment these limits are too strict and services like Virustotal and

8

XForce prohibit the use of public APIs in commercial products or services and

business workflows.

Every execution of the script requires as input a configuration file in the YAML

format. This file contains logging information for debugging purposes and all the

information regarding sources to fetch, validation steps to execute and some general

information regarding the MISP feed, such as output folder, name and id of the

creating organization, threat level and status of the analysis. These information

will be added to all the event generated by the script.

The program is supposed to be run multiple times a day at a set interval with a

subset of sources. There are five available command line arguments:

• -c, Configuration file: required argument with the file name of the configu-

ration file.

• -f, Fetch options: list of online sources to fetch, the source name must be

one in the list of the implemented ones.

• -i, Input file option: Alternatively to the fetch command, the script supports

a text file as input with a list of indicators or a single indicator. This option

is useful for running the program manually as a validator.

• -o, Output report name: For every execution a CSV report file is written

with all the information gathered by the validators. A name and location

can be specified for this file, otherwise the default one will used.

• -s, Skip options: For every execution step a skip flag can be set. Mainly used

for debug purposes or when using only being interested in the validation

results skipping the feed generation phase and the QRadar searches.

3.1 Sources

For every source all the detailed information regarding the specific fetch options

are written in the configuration file and when running the script the fetch argument

allows you to decide which subset of all the sources to look at. This is done to

be able to check some sources more frequently than others while setting up the

configuration for as many options as we want. Most sources create multiple events

9

in an asynchronous way, meaning that while the fetching thread is still loading

and parsing data, event already parsed are being validated. All the classes used

to fetch events have the same common interface consisting of a fetch method that

will start the requests to load the data and a method for saving to file the date

and time of the last successful fetching. Additionally all the different source types

have a default set time frame or fixed maximum amount of events to load when

sources are loaded from a cold start in order to avoid getting events too much far

back in time. The event object is created at the fetching phase and it is used to

group together indicators from the same specific source and is purposely similar to

a MISP event with most of the required information needed to be added to a feed

set to default values. Every event will contain a dictionary with all the indicators

grouped by type and another dictionary for all the removed indicators to also keep

track of all the removed values that failed validation. Additionally the raw text

from the source that has been parsed is saved for later use.

All the additional information set in the configuration file such as tags, organi-

zation, threat level and others will be added later by the feed generation step,

the last phase of the script. The parsing of text is done via regular expressions

that match domains, URLs, IP addresses version 4, md5 and sha256 hashes. The

parsing process also does some additional checks on domains and IPs such as top

level domain verification and IP ranges checks.

Twitter

When using Twitter as a source there is the option to load tweets from a list

of specified users or search for tweets with a particular hashtag. Getting a user

timeline is fairly straightforward using the twitter-python library and by saving

the tweet id of the most recent fetch we can avoid loading already seen data from

previous executions. Unfortunately the Twitter search is less easy to work with as

is doesn’t support the last seen tweet id and it also limits the date range interval

to single days, so for example it is not possible to search for tweets in a two hour

range. To solve this problem for every search it is needed to save the timestamp

and skip the tweets created before this time if we want to check a specific hashtag

multiple times a day. Additionally for every tweet returned by the search it is

useful to also look at the entire Twitter thread looking for the replies written

10

by same user to himself, because unlike the user timeline API call these are not

included.

Before passing the full tweet text to the parser, uninteresting links, such as links

to images and articles, are removed and white-listed links are opened and added to

text to parse. It is common due to the character limit to post a link to Pastebin or

GitHub containing all the indicators and the whitelist is added to avoid following

URLs that may be completely unrelated and that could add a lot of noise and

useless data to parse and validate. Twitter is the only source that waits for all

tweets to be loaded because there can be overlap between the two types of searches

as a Tweet from a followed user could be also found in a hashtag search.

GitHub

GitHub Sources consist of a list of repositories, and target filenames to fetch. For

every repository, commit information is accessed using the GitHub API. With all

the commits data for the desired date range all the files found as modified or added

that are also present in the target list of files to fetch will be saved and only the

most recent commit version of these files will be accessed. With the list of the

most recent files a request is made for the raw text version.

URLScan.io

URLScan is a popular URL scanning service that also provides interrogation APIs

to search for past and completed scans meaning it can be used as a source by

fetching the most recent scan results. Given the the very high volume of result

produced each hour, about six thousand to seven thousand on average, and of

number of harmless URLs submitted to the service, all the results with a unknown

or non malicious verdicts are filtered and ignored, only the results with a malicious

verdict will proceed to the validation step.

Blogs

Generic web pages can be used as a source by adding the page URL to the list of

manual sources, but when we want for example to load recent articles from a blog

or website we need an ad hoc solution for every case. With a library like Beautiful

Soup the job becomes definitely easier but given the different structure of different

11

websites this is by far the less generic type of information source to use, in fact

during development only one specific website publishing IOCs was added to the

tool.

MISP

One of the goals of this project was to write a program that could validate events

and attributes already present in a MISP instance, so that when new events are

added automatically for example using the sharing functionality from other exter-

nal MISP instances, they can also be fetched by the tool for additional validation.

Using a MISP instance as a source can cause problems especially when the desti-

nation MISP instance and the source are the same. Events created by the tool are

not directly added with the MISP API but are instead written to files which are

then added as MISP feed to the desired instance. This means that before deciding

what attributes to keep or remove we need to make sure to only allow duplicate

events and attributes for events added automatically, to avoid validating events

added manually by a team internal to the company.

Manual Sources

Lastly there is the possibility of providing a list of URLs to fetch, the script will

simple make an HTTP Get request for every URL and give the parser the entire

text response. Useful when wanting to add manually found URLs like Pastebin and

similar services. The difference between this type of source and file in a GitHub

repository is that using GitHub APIs to ask for commit information, we can be

more efficient in fetching and parsing only when there are changes to the files we

are interested in while for this type of source it is expected to be more static and

rarely change. Also using the –input argument a file name can be provided and,

if it exists it’s read as text and parsed, otherwise the string provided is considered

as a single indicator and parsed accordingly.

3.2 Validation

The validation phase is an attempt to simulate and automate a manual validation

process consisting of analyzing all the information available for a specific indicator

12

Figure 3.2: Example of Sources: Tweet and Blog article

to make a classification decision while also providing a high level of configurability

through categories weights and scoring parameters.

A MISP extension already exists, called ”MISP-IOC-Validator” published on the

MISP Project website [7], for validating indicators in a MISP instance. The checks

that are done by the extension are mostly on format, such as usage of invalid

characters for domains or checks on private IP addresses, with the option to set

a list of known false positives to remove. The limitations of this extension are

that only values already present in a MISP instance are used as a source and

the short list of basic checks done during validation. Another tool extending

MISP functionality, called BTG [8], will simply search information online when

provided input with a single or list of indicators while letting the user make the

decisions based on all the information provided. This tool was designed to speed

up the validation process but it is not completely automated as it will need user

interaction with the advantage of producing a more desirable classification result.

The validation approach of this tool can be seen as the sum of the two described

MISP extensions: it will search for information online and then perform a series

of checks to automatically determine the validity of the indicators processed. This

phase can be considered the core of the program, it is the most configurable phase

and the one that outputs the most amount of information. Every indicator will

have a score assigned at the end of this step and decision will be made depending

on the score value and indicator type. The final score is the result of the sum

of partial scores, each with it’s own weight. Validation is divided pre-validation

13

where local information is used to keep or remove indicators and external validation

where the information is gathered from Virustotal and IBM XForce.

Scoring for indicator x is computed by summing all the partial scoring pi as follows:

S(x) =
∑
i

wipi(x) (3.1)

The weights wi for each partial score are positive values and can be seen as the

amount of trust given to a certain type of information and are fixed for every

execution. Scoring on the other hand can be positive, negative or zero: a positive

score suggest that the indicator is malicious, a negative score indicates an harmless

indicator and a zero score means a decision can’t be made for reasons like the

absence of information or partial lack of. Together with the final score a simple

indication of confidence is provided based on resulting score and the number of

partial score collected to compute the final score: when only two or less non zero

partial score are used to produce the final score or when the resulting score is very

close to zero then the validation confidence is considered low. The confidence value

is computed as additional information but it is also used by the last validation step,

during the validation with QRadar.

3.2.1 Pre-Validation

The first steps in the validation are used to answer some basic questions about an

indicator and to prevent validation in cases when is not needed, keeping in mind

the API quotas of external validation services. The pre-validation phase is used

to check:

• If the indicator is already present in the destination MISP instance.

• If the indicators has already been validated by the tool recently

• If the indicator is present on a local blacklist or whitelist.

Essentially the pre-validation uses all the local information available to make a

decision regarding the discarding of a indicator before proceeding to querying

external validation services, to avoid making superfluous requests to Virustotal

and IBM XForce with daily or monthly quotas.

14

Blacklisting and Whitelisting

The very first step is to look in the local blacklist and whitelist. There are four file

containing respectively whitelisted domains, whitelisted IP addresses, blacklisted

domains and blacklisted IP addresses. If an indicator is found in a whitelist it is

instantly removed from the event, if it’s found in a blacklist the indicator is kept

and will continue the validation but with an added negative score of significant

weight. Support for regular expression in not present but will be implemented at

a later time.

Indicator History

The second pre-validation step is to look at the recent history of seen indicators.

This means that every unique indicator fetched will be saved in a file for at least

seven days with information about the source of the data, the type of source, the

final validation score, whether it was added or not to the feed and the fetching

timestamp. All of this information can be used to make decision of what to do

with indicators that are found multiple times especially from different sources. For

example when an indicator is found in the history, meaning it’s not the first time

it is seen, and it was not added because of the resulting negative score of the vali-

dation it is checked again. This is done because it is possible that a fresh indicator

may not be instantly found on any external validation services an therefore may

be considered harmless at first but if checked again a couple of days later return a

different verdict.

These are all the current logical rules of this step:

a) If an indicator is very recent (around 24 hours old) it is not validated again

b) If it is saved as already added it is not validated again.

c) If it found in history and comes from the same exact source it is not validated

again.

d) When all of the above are not true it is validated again only if the score is

lower than a threshold.

At the start of each execution when the indicator history is loaded all the entries

with an insertion timestamp older that seven days are removed, to prevent the

15

history to grow too big, and all the indicator not found in the history will be

treated as new.

MISP Search

The last and final step of pre-validation is to search all the remaining indicators in

the attributes of the destination MISP instance. This search will not simply look

at all the events but at events with at least one of a list of specific tags. There are

essentially two types of events: event created and added by the company operating

the MISP instance, and events added automatically through the sharing process

or through other feeds. In the configuration file a list of tags to be searched can be

specified and if the searched attribute is found in an event with one of those tags

then it is considered already in the MISP instance otherwise it will be kept and

will continue with the rest of the execution. Simply, the purpose of this search is

to avoid checking attributes that were already manually reviewed and added by

the operating company. The ordering of the checks has to goal to make as few

requests as possible to the MISP instance even if these kinds of searches are not

particularly expensive.

3.2.2 External Validation

External validation refers to the use of online services that share threat information

along with additional data when provided an indicator. The external validation

services used in this tool are Virustotal [9] and IBM XForce [1] and all the data

provided will produce a series of partial score that summed together will result in a

final score used make decisions on the validity and maliciousness of the input. The

scoring categories used by the tool are composed of two main categories and eight

secondary categories. The difference between the two is that the main categories

produce a score from information that can be considered a summary of all the data

provided by a service and, in the absence of errors, there is very low probability

that this information is missing. As a consequence the main categories have a

higher default weight than the others. The main categories are the Virustotal

Statistics and the XForce Threat Score and are present for all indicator while the

secondary categories vary depending on indicator type.

The rest of section 3.2.2 will describe all the categories information used to produce

16

a partial score and how to compute it. The formulas described were created

with the idea that every information category can be the deciding factor on the

classification decision and the formulas scoring try to reflect the amount of trust

and importance given to each information.

Virustotal Analysis Statistics

Virustotal is a popular malware analysis service that also provides access to scan

results through any programming language using the HTTP-based public API.

The service supports URLs, domains, IPs and hashes. Every indicator scanned

by Virustotal will be analyzed by a large number of security vendors and every

response will include a detailed list of all the individual results as well as statistics

regarding the last analysis run. The statistics are simply the cumulative number

of security vendors that returned a certain verdict.

Listing 3.1: Example of Virustotal Analysis Stats

Last Ana lys i s S ta t s :

− harmless : 0 ,

− mal i c i ou s : 4 ,

− s u s p i c i o u s : 1 ,

− t imeout : 0 ,

− type−unsupported : 8 ,

− undetected : 54

These statistics are use to compute the first score of the validation step and more

specifically the number of harmless, malicious, suspicious and the total number of

analysis are used.

Sb(stat) =

b +

stat[m]

N
+

1

2
∗ stat[s]

N
if stat[m] > 0 OR stat[s] > 0

−stat[h]

N
∗ 1

2
Otherwise

(3.2)

The expressions in 3.2 include b, the baseline parameter set by 0.5 by default

and N the total number of analysis run by Virustotal. This scoring ranges from

-0.5 when 100% of the result are harmless to +1.5 when 100% of the results are

17

malicious. The only parameter that can be configured is the baseline and can be

described as the amount of positive bias included when at least one of the analysis

concludes that the input is malicious or suspicious. Realistically and during testing

the scoring ranged from -0.5 to 1.2 and scores greater than 1.2 are very rare. As an

improvement is reasonable to exclude the results returning an error removing ”type

unsupported” and ”timeouts” from the total. On specific and often popular items

(example: ”cmd.exe” hash), there is the possibility of the inclusion together with

all the other stats an additional object called ”trusted result”, a manually produced

report including a final verdict (Malware of Goodware). When this specific field is

encountered all the other analysis field are ignored and the successive checks and

scoring produced by Virustotal is skipped and a significant high or low score is

added depending on the verdict.

Popularity Ranks

Popularity ranks are another tool that can be used to gather some information

towards the harmlessness of a domain, it is not reasonable to use them as whitelist

but ranking can certainly be used to tell the difference between a potential false

positive and a true negative. Fortunately when querying Virustotal with a domain

popularity ranks are also returned. There are many companies that create and

manage these ranking like Cisco Umbrella, Alexa, Majestic, Statvoo, Quantcast,

etc and Virustotal will return a list of all the ranking where the input domain

is present and the respective positions. The ranking score is computed by first

getting the average rank position of all the ranking and then is score is assigned

based on tiers. If the domains is not in any top 1 million rank is it assigned a

small positive score.

The tier proposed are:

1. rank greater than 100’000

2. rank between than 100’000 and 10’000

3. rank lower than 10’000

4. Not in any ranking

With the first three cases having a negative score inversely proportional to rank

position and the last case having a fixed small positive score.

18

Country

Country is a field returned on indicators of type IP in the ISO 3166 format, for this

information a simple blacklist and whitelist is used with a default small weight.

This validation category can be configured to give negative scores to a set of

countries and give a positive score to another set of countries.

Autonomous System Numbers

It is possible to set a whitelist of Autonomous System Numbers (ASN) to be

considered harmless to avoid adding in the feed very frequently used IP addresses

by giving a significant negative score to indicators with specific ASN.

Referrer Files and Communicating Files

Virustotal automatically creates relationships with the data that is submitted for

analysis, a simple relationship can be a domain with its resolving address or sub-

domains. The two most interesting relationship available for domains and IPs

consist of Referrer Files and Communicating Files. The meaning of the term re-

ferrer files is simply a file that has the related domain or IP found in its strings,

on the other hand communicating files are files presenting any sort of traffic to

the related domain or IP. This kind of information can sometime be very useful,

especially with Command and Control servers because if the related malware has

been analyzed by Virustotal the communicating file list for a C2 will have one or

few entries with a malicious analysis result and it will be a strong sign against the

harmlessness of the indicator. There are some particular cases to be considered,

for example popular domains will have a very long list of both communicating

and referrer files, some of those files will be malicious, considering that files in the

Virustotal relationships are file uploaded and scanned by users so it is normal for

a unusual number of those to be malicious. In conclusion we cannot say that the

indicator is malicious just because the files in those relationships are. Since the

files relationship endpoints always return a list of files and require the maximum

number of files returned as a query parameter we can use these value to balance

the score computed using this information. First for every file a score is computed

using the formula 3.2, then if all the files in the relation are not malicious then

a small negative score is returned. If at least one of the file is malicious then an

19

additional parameter called volume is computed. The purpose of this parameter is

to reduce the final scoring when the file list size is close to the maximum number

of file requested and to increase the final scoring when the file list is small and

mostly containing malware. By doing so all the popular domains will have a much

lower numeric value proportional to the file present in these relationships. The

final score will simply be the average file score times the volume parameter.

avg =

∑
i stats(fi)

N
(3.3)

v =

1− N

MAX
∗ 4

5
if N >= MAX/2

1 +
malicious

N
∗ 1

2
if N < MAX/2

(3.4)

S =

−0.25 if avg = 0

avg ∗ v Otherwise

(3.5)

The volume parameter will range from 0.2 when the maximum number of file is

returned, suggesting a popular indicator, to 1.5 when the amount of file returned

is low and are mostly considered malicious. The scoring is used for both referrer

files and communicating files and only these two endpoints are available in the

public API. There exists a lot more relation information but is locked behind the

enterprise version of the service and because development and testing was dune

using the former only these two types of relationships were included.

HTTPS Certificate Issuer

Virustotal returns a complete description of the HTTPS certificate including issuer,

signature and subject. The only field that is considered is the Certificate Issuer

and it’s checked against a list of organizations that issue free HTTPS certificates

like Let’s Encrypt, ZeroSSL and others providing a small positive score.

Domain Resolution

An additional information that is computed and added to the final IOC report is

if a certain domain will return a valid DNS record when trying to resolve it. This

20

success or failure of this step will not influence in any way the numeric final score

as it has by default a weight of zero, but it is useful data to have when manually

reviewing an execution result. The DNS hostnames to use for the resolution can

be edited in the configuration file.

Domain Creation

For domains only, a field containing the domain registration date is checked and

domains created in recent date will have a small positive score. The date range

to be considered recent is editable in the tool configuration file and is by default

thirty days. This score can be useful to spot, for example, phishing sites as they

will mostly be newly registered domains.

IBM XForce

IBM XForce Exchange is a service by IBM proving a wide array of threat in-

formation from collection of reports published by the IBM XForce research team

to anonymization services, botnets information, phishing sites, vulnerability in-

formation, etc. In the use case of validation we are only interest in information

regarding IP addresses, domains, URLs, and file hashes. All this information is

publicly available and free of charge thorough a REST API with a monthly quota

of 5000 requests.

When queried with an indicator the API response will include a report containing,

among other information, a score ranging from one to ten described as Threat

Score. There is not much available documentation detailing the meaning of this

number or how is it computed so an initial period of testing is needed to gain

familiarity and to understand what scoring is assigned in different scenarios.

XForce IP, Domain and URLs Scoring

Reports for IP, domains and URL all have the same response structure and similar

information gathered. For IP addressed IP Reputation is defined as the entire

history of instances when the IP scoring was changed and updated. XForce lets you

decide if you want the entire reputation history without their final threat scoring

or just the recent reputation history with their current threat score and reasoning

behind it. Specifically reasons are briefly described in the reason description field

21

and the most common are the following: Content analysis, Early Warning and

Statistical Analysis of previous history. Other information included in the response

is country, categories of the IP and a list of tags applied.

Domains and URLs are treated in the same way by single endpoint called URL

report. Similar to the IP reports it contains a reputation history with a list of

all the previous scoring and related reasons. The difference with IP addresses

is the additional information regarding the possible company associated with the

domain and more detailed descriptions on eventual categories and tags associated

with the service provided. The partial scoring produced by the XForce reports

for IPs, domains and URLs is only dependent on the Threat Score, no difference

in made regarding the reasoning provided or the reputation history as it seemed

reasonable to put trust in the final and most recent score computed by the XForce

system.

St(ts) =

ts

10
∗ 1.5 if ts ≥ t

−t− ts

10
if ts < t

(3.6)

The scoring formula is modifiable through a single parameter t called threshold.

The threshold will determine the lowest possible score for the indicator to be

considered malicious and all the Threat Scores below that number will have a

negative score that is linearly related with its value. The default threshold value

is equal to 3 to have a similar range to the scoring computed using the Virustotal

Stats in (3.2) given that these are the two main scoring with equal weight, it makes

sense to have the same or similar scoring value range as well.

XForce File Scoring

Files are treated in different way that the rest of the indicators as the response is

much simpler. It always contains a risk field with values equals to ”low”, ”medium”

or ”high” and it can contain some malware origins such as a list of download

servers, email sender and CnC Servers. In most cases the only usable information

is risk as all the other fields are very rarely present. File scoring is somewhat hard

to define as it only depends from three possible values. The proposed scoring is,

like the previous, biased towards higher numerical values, just the fact that there is

22

an entry in the XForce Database is considered a small sign of maliciousness. This

is not a light assumption to make because there are harmless file hashes in the

XForce database all assigned with a ”low” risk score. These edge cases combined

with the very basic and limited risk classification can cause some incorrect scoring.

For example it occurred many times during testing that hashes of a popular false

positive files was reported by XForce as malware with ”low” risk.

In conclusion XForce is very useful service for confirming indicators as malicious

while not being very useful for proving the contrary. It’s less intuitive and takes

some time to understand the meaning of the scoring and is overall less reliable,

for example it is not uncommon to receive a valid response to an indicator search

with all the response fields empty or ”Null” meaning that the queried data is in

the XForce database but has no scoring assigned yet. It is also very important

to have as a parallel source of information to Virustotal, even if in relation to the

latter does not have comparable indicator database size as it will respond about

20% of the time with a error indicating nothing was found.

Validation Results

As a result of the validation phase each indicator of every event will have a list

of partial scores assigned to it. For every partial score the relative fixed weight

will be the one present in the configuration file before execution and a short text

comment will briefly describe the information and the reason behind the produced

score. All the indicators removed during the pre-validation phase will not have

any validation data and will not be present in the indicators report, as they are

considered already validated or there is a certain confidence that the result will

not change if the validation is run again. At this point for indicators of type hash

or URL the validation is over and a decision is made based on the final score: any

negative value is considered harmless and discarded, positive or zero values are

instead kept as attributes for the last step of event generation. For indicators of

type domain or IP there is an additional check and event having at least one value

of these types are passed to the last validation step of the program, the QRadar

Validation. More specifically given that IPs and domains are the most important

in terms of impact, all indicators of these types that have a validation result with

a low confidence flag, meaning that the final score was the result of the sum of

23

two or less categories of information or the verdict is negative but still significantly

close to zero, will also proceed to the QRadar validation to hopefully get a more

clear result.

3.3 QRadar Validation

IBM QRadar is a security information and event management or SIEM product

designed for enterprises. The software collects events and network flow data from

hosts operating systems, endpoints and applications. QRadar correlates all this

different information and aggregates related events into single alerts to accelerates

incident analysis. It is also used to perform analysis of the log data and the network

flows in real-time so that malicious activities can be identified and stopped as soon

as possible. Queries can be sent to search for data in the logs with a QL called Ariel

[2]. In a production environment YValidator is expected to query around twenty

or thirty QRadar instances but during testing only three to five different instances

where used in order to avoid long responses waits. The purpose of searching in

the QRadar logs is multiple: it can easily detect false positives that the validation

phase wrongly classified, it can add evidence to the maliciousness of the indicator

and can raise attention at potentially infected networks or machines.

There are two threads that handle QRadar searches and event generation. This

is done for multiple reasons: the first one is to be able to write and save to disk

an event as soon as it is done and the second one is that Ariel queries are by

design asynchronous. Asynchronous means that once a query has been sent the

response will only include the result of the parsing and successful start of the

search, the status of the search and the results need to checked and retrieved later

with another request. The tool will query all the QRadar servers with the same

queries and wait for results. When all responses have arrived for all indicators of

an event then the thread waiting for the replies will also execute the code for event

creation. The QRadar search API reference can be found in [3]

Starting searches

To start a search the only parameter needed is an AQL query to be sent in the

query string of a POST request to the Ariel searches endpoint. A query is formed

24

with a group of indicators and the same request will be sent to all of the QRadar

servers. Given that events with indicators are popped from a queue, there is no

information on the amount of events to validate or even the remaining amount

and in order to make sure that most of the searches are balanced in terms of size

and consequent waiting time, two search parameters are enforced: a minimum

search size and a maximum search size. Considering an example event with very

few indicator of type IP (lower than the minimum) and a lot of indicators of type

domain (greater than maximum), the domains will generate multiple searches per

server in order to split the indicators in smaller queries and the few indicator of

type IP will be put in a waiting list to be integrated with other few indicators

from other events, as soon as the waiting queue will have a cumulative number of

indicators greater than the minimum allowed the search will be initiated.

The query format is the following:

Listing 3.2: Example of IP Query Search in AQL

s e l e c t des t inat ionIP , UNIQUECOUNT(sou r c e ip) , count (∗)

from events

where de s t i na t i on IP = . . . GROUP BY des t i na t i on IP l a s t 3 days

The goal of the search is to determine how many hosts of a certain monitored

system are interacting with the searched indicator and in what volume. The more

significant value is the unique count of the hosts found having any kind of traffic

with it and it’s the value that decisions are based on regarding the insertion in the

feed of the related indicator, in part because the number of unique hosts is also

equal to the number of alerts generated if the attribute is present in the MISP

instance. The cumulative number of log entries containing the searched indicator

is not used for any decision because it can be in most cases not relevant or not

helpful and overall less significant than the unique count of hosts involved, it is

saved anyway for a potential manual review of the search results.

Another possibility for searching a large amount of indicator is using reference sets.

QRadar allows the managing of lists of values to be stored in the database and

then used for searching. It is possible to create and populate a custom reference

sets with all the indicator of all the events and then request one single search with

25

the created reference set as a target. This approach has the drawback of adding

logical overhead to the validation and the need to create and delete the sets for

every execution but simplifies the query creation and eliminates the need to split

searches in multiple requests. In conclusion the use of reference sets was considered

but ultimately not implemented to avoid adding additional logic to the code and

to not having to manually deal with non deleted reference sets in the database in

the case of any kind of software failure. Additionally one set for each server needs

to be created, populated and deleted for every single QRadar instance adding a

considerable amount of HTTP requests and additional points of failure.

Waiting Results

After every search start whether is was successful or it encountered errors the

search is added to a list of pending searched because is going to be accessed by

the second thread assigned with the task of checking for search statuses and for

results retrieval. Specifically the thread will, after waiting for a fixed time period,

look at the status of every pending search in the list and depending on the value

will remove them from the pending list. If the search is completed but the results

have not been fetched yet, the result request and parsing will be queued, if the

results have already been fetched without errors or an error occurred in any stage

the search is removed from the pending list, in any other case the search status is

requested again to the server to update the status and current progress percentage.

When a search is removed from the pending list in order for the events related to

the search to be generated all the searches on all the indicator types on all instances

need to completed with the results fetched, so the tool needs to keep track of all

the searches started for every event.

There are many configurable parameters for QRadar searches:

• Minimum and maximum amount of indicators per query: event with a lower

number than minimum will be put in a waiting list and grouped together,

event with a greater number than maximum will be split in multiple searches

• Minimum waiting time for responses and of rate of status polling: a lower

rate will result in a faster program execution with the downside of making

more server requests

26

• Number of maximum concurrent ongoing queries per server

• Search timeout in minutes

As a brief note on performance, every QRadar instance can approximately handle

4000 indicator searches per hour on indexed fields. During testing the domain

property on logs was not indexed and queries would take up to thirty minutes

compared to the two minutes needed for IP addresses queries, an indexed property.

QRadar Verdict

Decisions for every indicator made depending on the numbers found in the QRadar

logs are the following:

a) Remove it when the indicator is found in a number of different QRadar

servers greater than a threshold

b) Remove and add the indicator to notification list when the indicator is found

in a lower number of instances (lower than case a) but in a significant number

of hosts.

c) Keep it when an indicator in found in a small number of servers and in low

quantity of hosts

All the limits and parameters are configurable, default parameters are: at least

found in 20% of instances to remove, 50% error limit to make a ”Keep” decision

and 100 unique sources to save the indicator for notification.

The choice made for the implementation of the notifications of indicators where

a decision can’t be made on whether to add or remove it to the feed was to send

uncertain indicators via email. The content of the email will include for every

indicator a report on all the searches results for every QRadar instance with the

number of errors or timeouts occurred. At this point manual intervention is needed

to verify the situation, if it is the case of a false positive no further action is needed

as the indicator is not in the feed, on the contrary if it is a case of malware infection

the indicator in question will need to be added manually later. In this case the

validation report and the execution log will contain all the information used by

the tool from all the partial scores and data used to compute them and all the

complete QRadar search responses.

27

Figure 3.3: Validation Decisions Flowchart

3.4 MISP Feed Generation

There are essentially two ways of creating and adding events to a MISP instance:

the first one involves being authenticated to the MISP server and making requests

using the MISP APIs to add events and attributes directly, the second one involves

creating an event feed in the MISP format. The main advantage and difference

between the two is the independence from the destination server, the tool will still

produce events even if the MISP instance is down or for some reason unreachable

while this is not true if events are added using the MISP API. Creating a feed

just means writing events on files and when the feed is made reachable or publicly

available then not just one but multiple instances could use it as it just needs to

be added in the desired MISP web interface. A scenario of implementation is to

have two different machines: one running MISP and the other being a web server

with the tool running at scheduled times. A completely independent case as each

machine can run without problems when the other fails. A second scenario could

be having a single machine with both MISP and the tool: a web server is not

28

needed if we are only interested of inserting the feed in a single instance and this

setup has the advantage of being a local feed, meaning that MISP will automati-

cally delete events after insertion while the first scenario might need an additional

simple cleanup script to prevent the feed to grow to an unnecessarily large number

of event files.

Feed generation was done with the help of the PyMISP library[6]. The GitHub

repository provides examples of a feed generation script creating daily events [5].

That example was modified to be able to create arbitrary events while keeping the

functionality needed to create a feed in the MISP format. There three types of files

are created in a feed: the manifest file, the attribute hashes file and event files. The

manifest is a JSON file containing a dictionary with all the events UUID as keys

and events basic information without attributes as data. The attributes hashes

file is as CSV file containing a row for every attribute of every event with the pair

of MD5 hash of the attribute value and UUID of the corresponding event, this

file is used by the MISP instance to perform a quick attribute search in the entire

feed. The last type files are event files, every event has its own JSON file named

”〈UUID〉.JSON” that contains the MISP event dictionary. The event dictionary

always contains the event info or description field, the event creation date, threat

level, analysis phase, information about the organization creating the event and

whether the event is in a published state. All of this information apart from the

date and event description can be set at a general level in the configuration file.

Another configurable parameters are tags: tags are used in MISP to categorize

and aggregate similar events, in this tool tags are handled in a basic way. There is

the option to set a list of general tags in order to classify events added and created

by the tool and the option to set specific tags for every type of source.

The feed generation phase also handles the difference between sources of type

MISP and other sources. When fetching events from a MISP instance the event

data and attributes are already in the output format and the only action to take

is the optional removal of attributes failing the validation phase, also all the other

information regarding the event such as tags and organization must not be over-

written, the output event will be at most with a lower number of attributes and

will have additional tags indicating the event was validated by the tool. MISP

attribute types considered for validation are: hostname, domain, URL, link, md5,

29

sha, ip-dst and ip-src. An improvement over the current implementation would be

to also validate more complex data such as MISP objects considering the feed gen-

erator class also support objects generation. Another simplification implemented

that could be improved is the different handling of source IPs and destination IPs,

as of now all IP addresses are added in MISP as ”ip-dst” type attribute so it can

only be used to block outgoing connections and is not in any way helping block

incoming undesired traffic. For example it can’t be used to import IPs related to

email spam or the list of hosts belonging to a botnet as the tool is not context

aware with regard to IP addresses.

Lastly all non MISP sources will have an additional attributes of type ”comment”

with the URL to the specific source used to create the event to be able to look at

the original raw data to get all of the context that cannot be explained with just

attributes when viewing the event in the MISP web interface.

Table 3.1: Mapping YValidator type to MISP type

Indicator Type MISP Type
IPV4 ip-dst

Domain domain
URL url

Hash md5 md5
Hash sha256 sha256

Table 3.2: Mapping MISP type to YValidator type

MISP Type Indicator Type
ip-dst IPV4
ip-src IPV4
link URL
url URL

domain Domain
hostname Domain

md5 Hash md5
sha256 Hash sha256

30

Chapter 4

Validation Statistic and Testing

In this chapter we will briefly describe the testing done to compute some measures

on the accuracy of the validation scoring system. As a first step is it useful to

understand the maximum amount of information used to compute the final score

for every indicator as not all of types handled by the tool have access to the same

amount of data, as it easier to find more information related to a domains or

IP address than it is for file hashes and URLs. Luckily the latter types are also

the one that are generally less impactful when a erroneous verdict is made. This

information is available in table ??

The accuracy score were computed by executing the validation phase on about

1500 known indicators across all types and with around 25 % of indicators being

harmless. The accuracy values are computed using a list known harmless indicator

and a list of known malicious indicators and by inspecting the result and confidence

columns in the validation report.

These test showed that even with a correct final resulting score the validation

report showed that every single validation category can output a convincingly

opposite partial score compared to the final sum and for this reason all the scoring

with same or similar weight have also a similar range of output values to enable

every single potentially wrong partial score to be outweighed by a single or multiple

other scores of opposite sign. Testing was done on limited number of indicators

also due the daily quotas of external validation services, as it was possible using

the free versions of these services, to get information for about 120 indicators per

day. The main problem and limit with the validation is the potential low amount

or complete lack of information for a specific indicator. This problem can be

31

attributed to many reasons, ranging from all the generic or network error that will

fail to gather validation data and will contribute with a zero score to more critical

situations like the higher probability of not finding data on indicators published

very recently that will also contribute with a zero score. For recent indicators

a solution might be to re validate all the indicator with a negative score before

the deletion from the history, by default after seven days, a step described in the

pre-validation section 3.2.1. The lack of data can cause problems especially for

non malicious false positive IPs and domains that can be added to the feed and

could not cause problems in the immediate future but reemerge later after weeks

or months. For example a rarely visited domain could be classified as malicious

and also not found in any QRadar search resulting in the addition the feed and

consequently in the MISP instance. This a probable and expected case as false

positive are inevitable, and if any legitimate future traffic is generated, it will cause

inconvenience and will eventually need to be manually reviewed and removed. The

reasoning behind the decision to add indicators of type domain and IP even when

the score is slightly lower or when the amount of information is low is that the cost

of not adding a malicious indicator cannot really be evaluated and considering the

necessary outcome of QRadar searches giving zero or few hits and the generally low

impact of adding a rarely used false positive to MISP, this decision will outweigh in

most cases the potential damage done by all the low confidence or low information

true positives. Another limit of validation is that while it is true that weight

are easily changed, editing weight cannot solve all the erroneous validation scores

and verdicts. Modifying the scoring system ideally requires knowledge of the entire

scoring variables and categories and requires altering the code of the script, which is

not ideal, even considering all the scoring logic is not very complex and centralized

in a small Python file. In the accuracy tables the notation used for the possible

validation result is ”Keep” or ”Remove” and not ”Malware” or ”Harmless”. The

distinction is made to avoid adding more complexity to the tables by having to add

all the combinations of positive and negative scoring with high or low confidence

given that it is possible that an indicator with a harmless validation result is still

kept as valid and would also only make sense for IPs and domains as all the other

indicators simply rely on the numeric final score for decisions.

32

Table 4.1: Accuracy for Domains

Expected Result
N = 647 Malware Harmless

Decision Keep 429 12
Remove 37 169

7.9% FN Rate 6.6% FP Rate 92.4% Accuracy

Table 4.2: Accuracy for IP addresses

Expected Result
N = 613 Malware Harmless

Decision Keep 467 17
Remove 25 104

5.1% FN Rate 14.0% FP Rate 93.1% Accuracy

Table 4.3: Accuracy for URLs

Expected Result
N = 116 Malware Harmless

Decision Keep 62 20
Remove 4 30

6.0% FN Rate 20.0% FP Rate 79.3% Accuracy

-

Table 4.4: Accuracy for Hashes

Expected Result
N = 118 Malware Harmless

Decision Keep 93 15
Remove 0 10

0 % FN Rate 6.6% FP Rate 87.2% Accuracy

Table 4.5: Combined Accuracy

Expected Result
N = 1494 Malware Harmless

Decision Keep 1051 64
Remove 66 313

5.9% FN Rate 16.9% FP Rate 91.2% Accuracy

Tests were particulary focused on domains and IPs given the amount of possible

information used is greater that the rest as URLs and Hashes only rely on at most

two partial scores to get the final score. The most important statistic to consider is

the false negative rate. The scoring system is inherently biased towards classifying

indicators as malware and therefore deciding to keep them. When a wrong negative

result is produced the indicator is removed without additional checks and these

cases are the ones that have the most potential negative impact in real threat

monitoring scenarios. A solution to this problem, described previously, could be

33

to re-validate not added indicator before removing them from the history.

Accuracy for URL and Hash is acceptable, not a lot of indicators were tested due

to the limited categories involved in the final scoring and no major inconsistency

or mistakes were found. For IPs and domains the most problematic cases are indi-

cators related to C2s as an high percentage of them will have a negative Virustotal

and XForce scoring that can be outweighed by the very high positive scoring in the

relating file category when present, showing a correct output of the scoring system

even when multiple partial scoring are in disagreement.The overwhelming majority

of false negatives for domains and IPs is the case when there is no information on

related files and the numeric scoring was negative enough to be considered high

confidence.

As a reminder these results are not the final decision for inserting the data in the

MISP feed because IPs and domains also need to pass the checks on the QRadar

servers a step that has the task of removing a portion of false positives produced.

For this reason the false positives rates being high is not particulary a problem but

consist of cases when a search in the SIEM is preferred. The test results should

be used to adjust the scoring and weights of the scoring system but the quotas of

the free version of external validation services prevented the changes from being

tested and validated in a reasonable time.

34

Table 4.6: Score Ranges with default weights and parameters

Virustotal
Stats

XForce
Scoring

Popularity
Ranks

Domain
Creation
Date

Country ASN Certificate
Issuer

Communicating
Files

Referrer
Files

Domain
Resolv-
able

Weight 1 1 0.5 0.1 0.1 1 0.1 0.5 0.5 0
IP Score Range -0.5,+1.5 -0.5,+1.5 NA NA -1,+0 -1,+0 -0,+1 -0.25,+2.25 -0.25,+2.25 NA
Domain Score Range -0.5,+1.5 -0.5,+1.5 -1.75,+0.25 -0,+1 NA NA -0,+1 -0.25,+2.25 -0.25,+2.25 0
URL Score Range -0.5,+1.5 -0.5,+1.5 NA NA NA NA NA NA NA NA
Hash Score Range -0.5,+1.5 -0.5,+1.5 NA NA NA NA NA NA NA NA

35

Chapter 5

Conclusions and Future

implementations

After a couple of weeks in a testing environment the program did not present any

major problems apart from the expected minor bugs and unaccounted for cases.

Considering the script configurability, there are in total 32 parameters ranging from

scoring weights, formulas parameters and general validation configuration that

allow a wide range of modifications without accessing the code script. Additionally

all the scoring logic and formulas are contained in a small Python file of less than

100 lines to facilitate even the more important and sizable changes but with a

required knowledge of the validation phase much more complete than just the

configuration file.

As far as sources implemented we believe we covered a wide amount of possible

malware information data available online considering all the default feeds already

present in every MISP instance. The advantages are that the tool can be configured

by hand picking the sources with the more relevant and coherent information with

the system that a company has to monitor and to ingest it in a daily or hourly

updated MISP feed to also help prevent against smaller and more targeted malware

campaigns given that all the more popular, critical and high threats events are

already covered by other feeds. Additionally simply implementing a new type of

source can be done in a reasonably short time. Performance wise the various tests

show an average execution time of 50 to 70 minutes every 1000 indicators with

the longest phase being the external validation considering it has to make up to

36

five HTTP requests per indicator. An acceptable result considering that the tool

is intended be run multiple times a day in order to fetch all the sources that are

updated very frequently as soon as possible. Regarding the QRadar performance it

is marginally dependent on the tool ability to merge as much indicators as possible

in single query but mostly on the server configuration and hardware, testing showed

a significant performance penalty when querying, for example, unindexed logs

properties. On the contrary query that use indexes take at most a couple of

minutes to complete a waiting time and always lower than execution time of pre-

validation and validation combined.

The accuracy, false positive and false negative rates are reasonable and the overall

system works fairly well. There are some known issues and types of indicator that

have a higher probability of returning an erroneous results but in general these

problem involve a small subset of all the data fetched. Testing gave a lot of insight

on the causes of results errors but with a limited quota for verification it is not

feasible in short time to apply and verify changes as the data took a couple of

weeks to produce.

In conclusions the predisposed goals are accomplished but the long term use will

possibly highlight the major concerns and limitation that tool has and a more

flexible and easier to modify scoring system solution can easily be an area of

great improvement. Another section that was largely simplified is the MISP event

generation. All the event parameter apart from the description and attribute

and tags are statically assigned and a more intelligent event tagging system, event

groping or dynamic event parameter assignment can greatly improve the usefulness

and usability of the events generated when they are imported and visualized in a

MISP instance while also even possibly reducing the total number of events.

37

Bibliography

[1] IBM. XForce API Reference. https://api.xforce.ibmcloud.com/doc/, .

[2] IBM. QRadar AQL Reference. https://www.ibm.com/docs/en/SS42VS_7.3.2/

com.ibm.qradar.doc/b_qradar_aql.pdf, .

[3] IBM. QRadar Search API. https://www.ibm.com/docs/en/qsip/7.3.2?topic=

endpoints-post-arielsearches, .

[4] MISP Project. MISP Data Models. https://www.misp-project.org/datamodels/,

.

[5] MISP Project. Generic MISP Feed Generator. https://github.com/MISP/PyMISP/

tree/main/examples/feed-generator-from-redis, .

[6] MISP Project. PyMISP, official Python library for MISP Rest API. https://github.

com/MISP/PyMISP, .

[7] MISP Project. MISP-IOC-Validator Extension. https://github.com/tom8941/

MISP-IOC-Validator/, .

[8] Conix Security. BTG IOC Search Tool. https://github.com/conix-security/BTG.

[9] Virustotal. Virustotal API Reference. https://developers.virustotal.com/v3.0/

reference/.

38

https://api.xforce.ibmcloud.com/doc/
https://www.ibm.com/docs/en/SS42VS_7.3.2/com.ibm.qradar.doc/b_qradar_aql.pdf
https://www.ibm.com/docs/en/SS42VS_7.3.2/com.ibm.qradar.doc/b_qradar_aql.pdf
https://www.ibm.com/docs/en/qsip/7.3.2?topic=endpoints-post-arielsearches
https://www.ibm.com/docs/en/qsip/7.3.2?topic=endpoints-post-arielsearches
https://www.misp-project.org/datamodels/
https://github.com/MISP/PyMISP/tree/main/examples/feed-generator-from-redis
https://github.com/MISP/PyMISP/tree/main/examples/feed-generator-from-redis
https://github.com/MISP/PyMISP
https://github.com/MISP/PyMISP
https://github.com/tom8941/MISP-IOC-Validator/
https://github.com/tom8941/MISP-IOC-Validator/
https://github.com/conix-security/BTG
https://developers.virustotal.com/v3.0/reference/
https://developers.virustotal.com/v3.0/reference/

	Introduction
	Malware Information Sharing Platform
	Data model

	YValidator - Design and Implementation
	Sources
	Validation
	Pre-Validation
	External Validation

	QRadar Validation
	MISP Feed Generation

	Validation Statistic and Testing
	Conclusions and Future implementations

