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Abstract

The aim of the thesis is to show whether a combination of predictions from different

types of models can improve predictive capabilities compared to models taken separately.

Three different classes of models were used: ARIMA-GARCH models, neural networks

and a hybridization between these two classes. The combination of the predictions of

these different classes seeks to extract their unique capabilities in explaining a time series,

going beyond the generalization provided by a single hybrid model. An application on

the forecast of the VIX index is presented.
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Chapter 1

Introduction

Forecasting financial time series is a long-lasting problem for which is hard to find a

definitive solution. This is due to the stochastic nature of financial data, the basic com-

plexity of the underlying process and possible changes of ”rules” in time. In their paper

Abu-Mostafa and Atiya (1996) [1] considered the market as a system that takes a lot of

different information while the statistical model can access only a small portion of these

information. This makes the model unable to consistently predict the time series.

For this reason, this thesis uses as its starting point the famous aphorism made by Box

(1976) [8] about the fact that all models are wrong. We do not think to be able to build

a ”correct” model that is able to capture the variability of an entire time series, no matter

how much complexity we add. But we think that we can build some ”good” models that

are able to forecast something of the time series and then, if combined, we can obtain a

result that overcomes the individual models.

Combination is a standard practice in the forecasting process. Starting from the paper

of Bates and Granger (1969) [5] the idea of combining the results of models instead of

using only the best one, grew in time with many different proposals to combine in an opti-

mal way the forecasts. The underlying concept of this practice is that, usually, the correct

data generating process is not among our candidate models and that the combination of

incorrect models can improve our forecast ability.

Another way to combine models is to stack together the models themselves instead

of their forecasts. In this way, the models are connected in their estimation and one can

directly correct the other. In this thesis we propose a hybrid model based on two of the
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most common way to predict time series: the ARIMA-GARCH and the feedforward neu-

ral networks. The combination of ARIMA and neural network has already been explored

by Zhang (2003) [49] in its basic form and by Tseng et al. (2002) [47] using the sea-

sonal ARIMA. In this thesis we try to find the best ARIMA by accounting also for the

heteroscedasticity of the data, estimating the parameters in a correct way. The proposed

hybrid model is an ARIMA-GARCH + NN.

The forecasts obtained from the ARIMA-GARCH + NN are then combined with the

forecasts provided by a single feedforward neural network and with the forecasts of a

simple autoregressive model with a single lag. In this way we propose a combination of

very different models trying to overcome the results of the hybrid model alone.

We propose a procedure that selects almost automatically the best ARIMA-GARCH

model, the best neural network for the hybrid model and the best neural network to be

used alone. This procedure is completely data-driven and tests hundreds of possible com-

binations, evaluating them in the training set. Particular focus was given to the risk of

overfitting of the neural networks. Dropout [43] [26] and early stopping [6] regulariza-

tion strategies were implemented in the estimation of the network parameters. What we

propose is based exclusively on the past data of the series we want to forecast. No external

regressors are used. The procedure should so be enough flexible to be applied to many

kinds of univariate time series, without a single change in the code other than the input

data.

This procedure is tested on the data of the CBOE Volatility Index (VIX). It is an

implied volatility index [12] and it is interesting to study because it represents a sort of

”fear index” of the market about the next future. Several past papers proposed different

methods to forecast the VIX index. Ahoniemi (2006) [3] used ARIMA and ARIMA-

GARCH models augmented with external regressors to predict the next day direction

of the VIX index. Konstantinidi et al. (2008) [30], used different models (regressions

with economical variables, ARIMA, ARFIMA, VAR, PCA) to forecast the index. In

these two studies, the out-sample accuracy in the prediction of the sign of the change is

provided. Our approach provides significantly better accuracy than what was obtained in

the two just cited papers without using external regressors. More recently Psaradellis and
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Sermpini (2016) [40] applied a heterogeneous autoregressive process (HAR) combined

with a genetic algorithm–support vector regression(GASV) and other hybrid models. Our

hybrid model is different from what they presented. To our knowledge, this is the first

application of a hybrid ARIMA-GARCH + NN to the VIX time series.

On our data, the hybrid model performed slightly better than the ARIMA-GARCH

in every metric (mean squared error, mean absolute error, directional accuracy) both in-

sample and out-sample. It performed also better than the single neural network almost

everywhere. The combinations of the forecasts provided by the hybrid model, the sin-

gle neural network and the AR(1) presented only minimal improvements on some of

the metrics when compared to the hybrid model, while on other metrics they presented

worsenings. Moreover, we found the simple average combination to be the most robust

combination in terms of MSE being capable of minimally improving the hybrid model on

both our trials. Many papers concluded the same about this way to combining forecasts

[35] [13].

The thesis is structured as follows. In the second chapter the models, their estimation

procedure and the selection process is presented. In the third chapter, a discussion about

the combination of forecasts is provided with the different types of combinations that we

will use. In the fourth chapter, we show the results of the empirical application to the VIX

index.
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Chapter 2

Models

In this thesis, three classes of models have been considered: ARIMA-GARCH, Feed-

forward Neural Networks and a hybrid model ARIMA-GARCH + NN. The aim is to

select a single model per class that can best represent its family. We want this selection

to be as automatic as possible, driven mainly by the training data and with small human

intervention. The idea is to create a process that can adapt to many different time series.

In this chapter, the logic behind the models and the selection is presented.

2.1 ARIMA-GARCH

2.1.1 Model description

The ARIMA and GARCH models have been widely used in economic analysis and

are part of the general knowledge of every professional in the sector. The Autoregressive

Integrated Moving Average (ARIMA) models the conditional mean of the stochastic pro-

cess using past values of the process itself (AR part) and past errors (MA part) in a linear

combination of them. The ”integrated” refers to the use of differencing to make the series

stationary. ARIMA(p,d,q) stays for an ARIMA with an order p AR term, an order q MA

term and d differences done before the estimation. In this work the differencing term will

be always 0, due to the fact that we work with series that are already stationary, so our

model reduces to an ARMA model that can be written as:

yt = c+
p

∑
i=1

φi yt−i +
q

∑
j=1

θ j εt− j + εt (2.1)
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where yt is the real value of the series at time t, εt is the random error of the process at

time t and φi and θ j are the coefficients to be estimated. For a complete explanation look

at Box, Jenkins et al. (2015) [9]. For a more concise introduction look at Adhikari and

Agrawal (2013) [2]. The ARMA process can be written using the lag operator L making

explicit the two polynomials of the AR and the MA part:

(1−
p

∑
i=1

φiLi) (yt−α) = (1−
q

∑
i=1

θiLi) εt (2.2)

Notice that the constant α is different from the constant c found in the previous equation.

The characteristic polynomials in L are now explicit. We ask for three conditions for the

roots of these two polynomials [9]. Our first request is to have these two polynomials

having different roots. If common roots are present, we can simplify the equation and

the model can be reduced, so there is no sense in estimating a model with an higher

order that is exactly equal to a lower order model. Second, we want the process to be

stationary so we ask the roots of the AR polynomial to lay outside the complex unit

circle. The stationarity condition. Third, we ask for invertibility, so also the roots of the

MA polynomial should be outside the complex unit circle.

In this thesis, the estimation of the ARMA model is performed in R with the ”ru-

garch” package. We are not aware of any built-in function able to test if the roots of the

polynomials are following our conditions. So we code a custom function that extracts the

estimated parameters of the ARMA part, compute the roots of the two polynomials and

checks if there are equal roots and if the roots are all outside the unit circle. For the sake

of simplicity, the function does not perform hypothesis testing considering also the uncer-

tainty of the estimated parameters. It simply declares a model stationary and invertible if

all the roots have their module greater than 1. Moreover, if there are roots of the MA and

AR part that are too near in the complex plane (distance less than 0.1), the function label

the model as ”suspect”. If the model we selected is labelled as ”suspect”, the researcher

should check the roots plot to decide if to keep or to discard the model itself. The function

is provided with further explanations in Appendix A.

The ARMA model is estimated considering the error terms εt to be independent and

drawn from a distribution with constant variance and zero mean. Of course, it is not

always the case to consider as homoscedastic the series of error, in particular when we
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are treating financial time series that are well known to be subject to change in their

variance due to financial or economic crisis. Fitting an ARMA ignoring the heteroscedas-

ticity of the data would put more weight on the errors of the periods of high volatility

(that are higher), resulting in incorrect parameters. To solve the problem is necessary

to let the conditional variance of errors to vary in time so that the distribution of errors

at time t, conditional to all previous values is εt|t−1 ∼N (0,σt). To do this we use the

GARCH model, the generalized autoregressive conditional heteroskedasticity, which is a

non-linear model for conditional variance. Using the notation of Danielsson (2011) [14]

we can express the variance at time t conditional on all the information until time t−1 as:

σ
2
t = ω +

L1

∑
i=1

αi ε
2
t−i +

L2

∑
j=1

β j σ
2
t− j (2.3)

This is a GARCH(L1,L2). This model is able to capture volatility clustering and per-

sistence. To ensure a positive variance we need all the parameters to be positive and to

ensure covariance stationarity we need ∑i αi+∑ j β j < 1. This last constraint assure us a

defined and finite unconditional variance σ2 = ω

1−∑i αi−∑ j β j
. Given the fact that we are

not really interested in the unconditional variance we will not require this constraint (look

Danielsson (2011) page 39 [14]).

In the last decades, many generalizations of the GARCH model have been created

and used. The R package rugarch used in this work has some of them built-in and ready

for use. We select a couple of simple models to test besides the vanilla GARCH, assur-

ing us better modelling of the conditional variance and of the whole ARIMA-GARCH

model. For further details and references to the original papers, refer to ”Introduction to

the rugarch package” [19].

The first model is the Exponential GARCH (eGARCH) [37]. If we define the error

term to be εt = σtzt we can express the conditional variance as:

ln(σ2
t ) = ω +

L1

∑
j=1

[α j zt− j + γ j (|zt− j|−E|zt− j|)]+
L2

∑
i=1

βi ln(σ2
t−i) (2.4)

where the α j is for the sign effect and the γ j for the size effect.
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The second model is the asymmetric power ARCH (apARCH) [16] expressed as:

σ
δ
t = ω +

L1

∑
j=1

α j(|εt− j|− γ j εt− j)
δ +

L2

∑
i=1

βi σ
δ
t−i (2.5)

where δ ∈ N+ is the power parameter. This model is pretty general and allows for both

leverage effect (asymmetry between positive and negative values of innovations) and

power effect (taking a power of δ different from 2). It is very useful for our aims that

the apARCH, remaining relatively simple, includes other submodels for some particular

set of parameters. It is a superset of the Absolute Value GARCH, the GJRGARCH, the

Threshold GARCH, the Nonlinear GARCH and the Log GARCH. Including the apARCH

on the set of models that we use in this work allows us to have a lot of flexibility for what

concerns the modelling of the volatility. We are aware of the existence of much more

modern and general possibilities, but their added complexity is not needed in this work

due to the fact that our main interest is to predict the conditional mean. The reason for

excluding such complex models is mainly of computational nature. Our selection process

relies exclusively on the data, so it tests all possible structures. Adding additional com-

plex models for the conditional variance would imply a much higher time for selection.

This does not seem necessary if the interest is the correct estimation of the conditional

mean.

Finally, we have the ARIMA-GARCH (with the word GARCH we refer also to the

two possible generalizations we presented) where we use the first to explain the condi-

tional mean and the second for the conditional variance. This hybridization has been used

in past works (for examples look Zhou et al. (2006) [50] or Mohammadi and Su (2010)

[36]). The combination of the ARMA and standard GARCH can be written as:

yt = c+
p

∑
i=1

φi yt−i +
q

∑
j=1

θ j εt− j + εt (2.6)

where εt = zt σt and

σ
2
t = ω +

L1

∑
i=1

αi ε
2
t−i +

L2

∑
j=1

β j σ
2
t− j (2.7)

Where σt is the volatility at time t given all the information until t − 1 and zt are

the standardized residual. Another time we remember that the GARCH is only one of
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the models for the conditional variance that we try during the selection of the ARIMA-

GARCH. The most common conditional distribution for standardized residual is the nor-

mal distribution N (0,1) but other possibilities exist. We request these distributions to

have 0 mean and unit variance. As suggested by Danielsson (2011) [14] one alternative to

the normal is to use the Student-t distribution if the tails of the process are fatter than the

ones implied by the GARCH models. In this case we need to estimate another parameter

ν that describes the shape (degrees of freedom) of our conditional distribution, requiring

much more data to get enough extreme values to understand the tails. The standardized

t-distribution used in ’rugarch’ [19] is:

f (
x−µ

σ
) =

1
σ

Γ(ν+1
2 )

√
ν−2 π Γ(ν

2 )
(1+

z2

ν−2
)−(

ν+1
2 ) (2.8)

Where the Γ is the Gamma function.

Another distribution feasible is the Generalized Error Distribution (GED) that in its

standardized form is:

f (
x−µ

σ
) =

1
σ

κ e−0.5|
√

2−2/κ Γ(κ−1)
Γ(3κ−1)

z|κ√
2−2/κ Γ(κ−1)

Γ(3κ−1)
21+κ−1

Γ(κ−1)
(2.9)

Also in this case we have to estimate only one more parameter κ with respect to

the normal case. We can do a further generalization with the skewed versions of both

the Student-t and the GED. This allows for a skewness different from 0, requiring the

estimation of the skew parameter in addition to the shape parameter. In the rugarch pack-

age, skewed versions of these distributions are built-in in their standardized version. The

method used is the one of Fernandez and Steel (1998) [18] that for a symmetric distribu-

tion f introduced a way to make it skewed. For a skew parameter ξ we have:

f (z|ξ ) = 2
ξ +ξ−1 [ f (ξ z)I(−∞,0)(z)+ f (ξ−1 z)I[0,+∞)(z)] (2.10)

Estimating the full model allowing the standardized residuals to have the skewed Student-

t or the skewed Generalized Error distributions instead of restricting the possibility to the

standardized normal allow us to be more general and to compute the significance of the

estimated parameters in a more reliable way. Should be noted that the normal distribution

is a subset of the skewed Student-t, so it will anyway be included among the possibilities.
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2.1.2 Fitting and Selection

Finally, after having defined the type of the model, the orders and the conditional dis-

tribution, the estimation is executed by maximizing the log-likelihood in a single step for

both the conditional variance and the conditional mean. This guarantees greater precision

and efficiency when compared to a two-step estimation [19], assuring us the best parame-

ters for the mean modelling (in which we are mainly interested). The ”hybrid” optimizer

is used in this thesis. Following the ’rugarch’ documentation this optimizer tries in or-

der the ”solnp” optimizer, the ”nlminb”, the ”gosolnp” and finally the ”nloptr”. Refer

to the documentation for further details on the methods [19]. The first and main solver

(”solnp”) is based on an augmented Lagrange solver [48]. All the models that have errors

or warnings in the optimization process (non-convergence, non-invertible hessian etc...)

are automatically discarded.

Now we have all the elements to present the selection algorithm used in this work.

Here we do not follow strictly the classic Box-Jenkins [9] approach that identifies the or-

der of the ARMA model starting from the autocorrelation and the partial autocorrelation

functions. Instead, we perform a grid search that tries all the combinations of hyperpa-

rameters, followed by a selection of models with certain desirable characteristic and the

construction of a final ranking based on likelihood and parsimony. The word hyperparam-

eters includes everything that must be determined before proceeding to the estimation of

the actual parameters of the model. The estimation process will estimate the parameters.

In the graph 2.1 the selection procedure is visualized. Starting with a time series

stationary in mean, we try the combination of all feasible hyperparameters to find the best

one. To try all the combinations we have to define the maximum order of the AR and the

MA term that we want to try, the maximum orders of GARCH, the possible conditional

distributions and the types of possible GARCH generalizations (apARCH, egarch, etc...).

Due to computational limits, it is not easy to test all the possibilities, so it can be useful

to fix some choice. In our case, we fix the maximum order of the ARMA by analyzing

the type of series we are modelling and the computational power we can use; we fix the

order of the GARCH to (1,1) that is the most common version [14] and should be enough

for a large variety of problems; we try only the eGARCH and the apARCH with skewed

Student-t and skewed Generalized error distribution for the standardized residuals. So we
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have to estimate 4 models for every order combination of the ARMA.

From the great number of models that we fit, as previously said, we exclude all the

models that present errors or warnings during the optimization procedure. If the model

passes this test, we look at all the parameters and if there are non-significant ones (p−

value >= 0.05) we fix the parameter with the largest p-value to 0 and we refit the same

model until we have all the parameters significant. We did this for all the combinations

of hyperparameters that we choose. Look Appendix A to find the function that checks

the significance of the parameters. Then, from all the models that we have, we exclude

all of those which presents roots of the AR and MA polynomials that are inside the unit

circle (non-stationarity, non-invertibility) and all models with common roots. Finally, we

select the model looking at the AIC and BIC. The Akaike information criterion (AIC) is

expressed as:

AIC =
1
T
(−2 ln(L (θ̂ |y))+2K) (2.11)

where K is the number of estimated parameters (the parameters fixed to zero are not

counted), T is the total number of observation we are using to estimate the model and

L (θ̂ |y) is the likelihood of the estimated parameters given all the observations y, so, the

maximum likelihood obtained for the model.

The Bayesian information criterion (BIC) is instead:

BIC =
1
T
(−2 ln(L (θ̂ |y))+K ln(T )) (2.12)

For a deep understanding look at Burnham and Anderson (2002) [11]. It is clear that

both the criteria consider the likelihood as the main measure of goodness of fit of the

model, while penalizing the number of the parameters to avoid overfitting. Generally, the

BIC puts much more weight on the penalization of the number of parameters, preferring

more parsimonious models than the AIC. The ideal is to find the model with the lowest

AIC and BIC. When this is not possible, human intervention is required. While we prefer

the model with the lowest AIC, the choice should not be automatic. If the best model se-

lected by AIC is the worst for BIC, then maybe the second best for AIC is a better choice.

In general, we select models that are good for both the measures, giving more weight to

the AIC.
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Once we have our best candidate, it needs to pass the diagnosis phase [19]: ACF of

standardized residuals and squared standardized residuals, chi-squared goodness of fit of

standardized residuals with the theoretical distribution, ARCH-LM test for the adequacy

of the GARCH fit and Ljung-Box test for the adequacy of the ARMA fit. In this last part,

the analysis is left to the researcher and human interpretation. If the model does not seems

to have big problems, we have finally our best choice.

The aim of this process was to select an ARMA that models the mean without too many

simplifications about the variance or the residuals, estimating its parameters under the

right hypothesis. Of course, it is possible that our best model, while being good on the

training data, will be not suitable for forecasting. This is a real possibility given our

choice to not continuously re-estimate the model as new data became known. Moreover,

a financial time series is ruled by real-world events that can change the generating process

of the data in different periods. It is the final aim of this thesis to see if it is possible to

improve the forecasting ability of some fixed models, estimated only on a set of training

data, by means of combination. It is so necessary to go beyond the ARMA models and

present a class that works in a very different way.
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Figure 2.1: ARIMA-GARCH model selection scheme
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2.2 Neural Network

2.2.1 Structure

The second class of models that we consider are the Neural Networks (NN). The struc-

ture of the Artificial Neural Network (ANN) is inspired by the biological functioning of

the brain in the sense that they connect some units, called neurons, organized in different

layers with some sort of synapses. Here we focus on the standard form of neural network

that is the Feedforward Neural Network, specifically on densely connected Multilayer

Perceptron (MLP). This means that the connections are never cyclical and all the neurons

of one layer are connected to all the neurons of the next layer. In this section our main

reference is the book of Bishop ”Pattern Recognition and Machine Learning” (2006) [6].

In our work the notation is slightly different due to the necessary harmonization to time

series analysis. The layer zero of the network is composed of inputs and is therefore

called the input layer. The last layer is the output layer and the layers between them are

the hidden layers [44]. A graphical representation of a single hidden layer MLP with one

output is given in figure 2.2.

Figure 2.2: Graphical representation of a MLP with 5 inputs, 8 neurons on the hidden
layer and one output.

Notice in the image 2.2 that all the elements are densely connected to the elements
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of the next layer. The neurons are nothing else than a function that takes as inputs the

outputs of the previous layer and returns a single number. The connection between the

elements represents the weight that is applied to the element from which the connection

starts. Every single neuron of the first layer, namely the hidden layer because the input

layer is not counted as a layer of neurons, takes all the inputs and multiply each one by a

weight that is represented by a connection. In the image, a blue connection corresponds to

a positive weight while a red one to a negative weight. A higher colour intensity means a

higher absolute value of the weight. Each neuron, after having multiplied all the elements

of the previous layer by the corresponding weights, sums the results and add a real number

called ”bias”, obtaining a single real number. To this real number, a nonlinear function is

applied to obtain the output of the neuron, which can be used as input for the next layer.

So, a single neuron linearly combines all the elements of the previous layer and then

apply a nonlinear function to the result. Writing the output in functional form for the j-th

neuron of the first layer (remember that the input layer is not counted), we obtain:

z(1)j = h(a(1)j ) (2.13)

a(1)j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 (2.14)

where j = 1...M (M neurons on the hidden layer), the superscript ”(1)” means that

we are on the first layer and the number of inputs xi is D. w(1)
ji is the specific weight

that connects the j-th neuron of the first layer with the i-th input, while w(1)
j0 is the bias of

the j-th neuron. a(1)j is the activation of the neuron and h() is a nonlinear differentiable

function that, when applied to the activation, returns the output z(1)j . Each neuron in the

next layer does the same thing, but it receives as inputs the outputs of the first layer. A

different activation function can be chosen for each layer.

It should be clear that the number of layers can be increased indefinitely following

the same logic: every neuron of each layer is a nonlinear function of all the elements of

the previous layer that are themselves nonlinear functions of all the elements of the layer

before etc... . This greatly increases the complexity of the network and brings us into the

world of deep learning [32]. Fortunately, a great number of layers is not strictly necessary

thanks to the universal approximation theorem showed by Hornik (1991) [27] that tells
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us that a multilayer feedforward network with only one hidden layer is a universal ap-

proximator of any continuous mappings over a compact input domain, given a sufficient

number of hidden units. The result was further generalized by Leshno et al. (1993) [33]

showing that this property holds for all non-polynomial activation functions. The reason

for using a deep neural network is that it needs a much smaller number of neurons than

networks with one hidden layer, when learning complex tasks [34]. In our case, we are

interested in the forecast of a time series and in our many trials on our data we have not

been able to find any justification for using a neural network with more than a single layer.

Expanding the number of units of a single layer was enough to reach the same result of a

two or three hidden layers network. Citing the ”introduction to neural network” of Svozil

et al. (1997) [44]: ”there is no theoretical reason to use more than two hidden layers.[...]It

is strongly recommended to use one hidden layer and then, if using a large number of

hidden neurons does not solve the problem, it may be worth trying the second hidden

layer”. Given our experiments, this last recommendation and the universal approximation

theorem, in this work we use only neural networks with a single hidden layer, expanding

its number of neurons.

Once defined the number of layers we have to define what are the inputs and the

outputs. The structure of the neural network presented can be applied to time series fore-

casting giving as inputs a certain number of past values of the series and as outputs a

future value [29]. For a review of the recent literature about the application of neural

networks to financial time series, look Sezer et al. (2020) [41]. In this work we are inter-

ested only in one-step forecast so it is natural to have only one output unit in the output

layer and D previous values of the series as inputs. In the output we choose the identity

function f (x) = x as activation function because we need the output of the network to be

unbounded. Substituting the lagged series to the input our network function becomes:

ŷt =
M

∑
j=1

w(2)
j h(

D

∑
i=1

w(1)
ji yt−i +w(1)

j0 )+w(2)
0 (2.15)

We remember that M is the number of hidden units in the single hidden layer, D is the

number of inputs (the number of lags we use to model the variable y), the activation

function of the output is the identity function and h() is a nonlinear differentiable function.
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In the image 2.3 there is a representation of some weights and neurons.

Figure 2.3: A visualization of some weights and some neurons in a simple neural network

This neural network that uses the lagged series as inputs and returns the estimation for

the next time step is a nonlinear autoregressive model. The next step is to find the best

parameters of this model.

2.2.2 Fitting the network

Fitting the network means finding the combination of weights and biases that maxi-

mize the likelihood function of the data. We can give a probabilistic interpretation of a

neural network as a model that models the mean of a distribution conditional on some

inputs. Defining yt the target variable, Xt the input (that is a D×1 vector of the values of

the series before time t), ŷt the output of the neural network, W the weights (the biases

are included in the weights) and σ2 the variance of the target variable we can write [6]:

p(yt |Xn,W,σ2) = N (ŷt(Xt ,W ),σ2) (2.16)

It is made explicit as ŷ is a function of the inputs and the weights. The log-likelihood

given T observations would then be:

−N
2

ln(2π)− N
2

lnσ
2− 1

2σ2

T

∑
t=1

[ŷt(Xt ,W )− yt ]
2 (2.17)
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In a Gaussian framework, maximizing the likelihood corresponds to find W that minimize

the sum of squared errors. Once we have the estimates of the weights we can find the

variance σ2 by maximizing the likelihood. This is a two-step procedure. Of course,

given the complex nonlinearity of the network function, the optimization process of the

target function cannot be solved analytically so an iterative process is needed. Further

complexity is that multiple combinations of weights can produce the exact same result, so

there is not a single optimal solution [6].

The standard iterative process used is the gradient descent that at every step change the

weights in the direction of the negative gradient going towards a local minimum [6] [38].

The updated weights are:

W τ+1 =W τ −η∇W τ L(W τ) (2.18)

Where L is the loss function, defined as the sum of squared errors, ∇W τ is the gradient

with respect to the weights computed at the previous step and η is the learning rate that

controls the width of the change in weights at each step τ . Here we choose to use the

batch gradient descent approach that performs a single update per epoch computing the

gradient on the whole data set. The number of epochs is the number of times that our

model uses the entire data set to update its parameters. With the batch gradient descent,

only one update is performed for each epoch. This approach is generally more precise

but slower and unfeasible if the whole data set is larger than our machine memory [38].

Moreover, we do not use the basic gradient descent presented in the previous equation

that has a single fixed learning rate that does not change between parameters or in time.

Instead, we use a more recent method called Adaptive Moment Estimation (ADAM) that

uses a different adaptive learning rate for each parameter. This should converge faster to

a local minimum. We refer to the original work Kingma and Ba (2015) for details [28].

Once the optimization algorithm is defined, we need to compute the gradient of the

loss function to perform it. The standard algorithm for this purpose is called error back-

propagation [44] [6] [29]. While the term ”forward propagation” refers to the evaluation

of the output of the network starting from the inputs, the ”backpropagation” refers to the

errors of the output that are propagated back through all neurons, starting from the last

unit. Suppose that we want to update the weights using a single observation yt (online
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learning). First, the network function should be evaluated using forward propagation of

the input data that flow through the network computing the output of all neurons on the

hidden and output layer. We remind that we call a(l)j the linear combination of inputs that

the neuron j in the l-th layer receives, while we call z(l)j the respective nonlinear trans-

formation of a(l)j provided by the activation function h(). To compute the derivative of

the loss function of this single sample with respect to a specific weight w(1)
ji of the hidden

layer, we should apply the chain rule:

∂Lt

∂w(1)
ji

=
∂Lt

∂ ŷt

∂ ŷt

∂ z(1)j

∂ z(1)j

∂a(1)j

∂a(1)j

∂w(1)
ji

(2.19)

Where Lt is the loss that the network experienced for the observation at time t. In our

case it is a quadratic loss Lt =
1
2(ŷt − yt)

2, given a single neuron on the output layers. In

equation 2.19 we did an example of chain rule for a weight of the hidden layer. Computing

the derivatives we obtain:

∂Lt

∂w(1)
ji

= (ŷt− yt) w(2)
j h′(a(1)j ) yt−i (2.20)

This is only for a single observation at time t. If we want to compute the derivative of the

weight for all the T training samples, we have to sum them:

∂L

∂w(1)
ji

= ∑
t∈T

∂Lt

∂w(1)
ji

(2.21)

And this is only the derivative of a specific weight. Applying the same process to all

weights and biases, we can compute the entire gradient used by the gradient descent algo-

rithm. For details refer to Bishop (2006) [6] where the computations are slightly different

from ours but the results are the same.

2.2.3 Selection

After having had a taste of how the estimation of the parameters is done, it is necessary

to choose the best neural network. The possibilities in the choice of the hyperparameters

are incredibly large. We can choose the number of layers, the number of neurons in each
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layer, the activation function for each layer, the number of inputs, the number of outputs,

the regularization process and the optimization process. Of course, it is not feasible to test

for all the combinations, so the majority of choices are fixed a priori with a justification

based on experience and on existing literature. We want to underline that these choices

are not done with the specific aim of modelling the VIX data. The choices should be

general enough to be maintained with a large number of time series.

We have already discussed the limitations that we have decided to put on the number

of layers. These are based on the universal approximation [27] [33] theorem and on the

suggestions of Svozil et al. (1997) [44]. We will use only networks with a single hidden

layer and an output layer.

The choice of the optimizer too will be kept fixed to ADAM that should be flexible

enough for every network that we build [28].

The number of inputs will be fixed to the maximum order of AR that we try during the

ARIMA-GARCH selection process. This does not mean that the AR order of the selected

ARIMA-GARCH will be the same, but at least both the models have the opportunity to

go back in time by the same amount. In the neural network, we keep the number of inputs

fixed instead of trying a different number of inputs as we do with ARIMA-GARCH. This

is because the network can easily set the weight to zero for all the information that are not

useful, mainly thanks to the activation function that we use.

The number of output is fixed to one, exactly as in ARIMA-GARCH. We are inter-

ested in the forecast of the next time step. Moreover, given the fact that we want to do

a regression and not a classification, the activation function of the output unit will be the

identity function.

The choice of the activation function used in the hidden layer is particularly complex

given the vast amount of possibilities. In this work we will use only the Rectified Lin-

ear Unit (ReLU) activation function defined as h(x) = max(0,x) that is widely used, has

many useful mathematical properties and is biologically justified [20]. This function is

nonlinear in the entire domain but linear for positive numbers. This property makes the

computation of its derivative extremely easy, with a 0 derivative on all negative numbers

and equal to 1 for positive numbers. It is non-differentiable on 0, but this limitation can

be overcome by setting the derivative on 0 equal to 0 or 1, so using the derivative of the
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left or right point next to 0. On different tests that we have performed on our specific set

of data, the ReLU performed better than other alternatives such as the logistic sigmoid

function on both the generalization capability and the speed of optimization. The most

interesting characteristic of the ReLU is that it sets to zero all the units with a negative

activation while being linear for the others. This means that for a particular combination

of inputs, the network becomes a linear function with some neurons active while, for an-

other combination, the active neurons can be different ones. So the network becomes a

sparse network that is composed of many ”switches” that activate only for some inputs.

For a complete analysis of the advantage of this sparsity, refer to the fundamental work of

Glorot et al. (2011) [20]. In a very recent preprint by Szandała (2020) [45] all the most

common activation functions have been compared, finding the ReLu to be the first choice

overall.

It should be clear now that a neural network large enough can fit extremely well the

training data, thanks to its flexibility and its great number of parameters. The problem is

the risk of overfitting the training data, modelling also the randomness and losing general-

ity. Here we are mainly interested in the forecasting ability of the neural network on new

data so it is particularly important to not overfit the training data. To show how easy is to

overfit the data with a neural network, we present an example in the next figure 2.4. This

is a very small portion of the data that we will use in Chapter 3. The neural network of this

example is built following everything we have said since this point. The inputs are the 5

previous values of the series and the number of hidden units is 200. The network has been

trained through 5000 epochs, so it has seen the whole training set 5000 times, updating

the weights 5000 times towards a minimum of the loss function. The period presented in

the image is a period of high volatility in the series and it is clear that the neural network

is modelling also the randomness of the data, making it difficult to distinguish the fitted

values from the real values. Of course, this network has poor performance on data that

are not in the training set.

20



Figure 2.4: Example of overfitting in training data. The actual time series is the grey line,
the values fitted by the NN are in red and the blue line are the values fitted by an AR(1)

To avoid this clear risk of overfitting, we use two compatible, very simple but powerful

regularization methods. The first is called dropout and consists of randomly considering

some neurons and all their connections equal to 0 at each step of the training with a fixed

probability. This means that at each step every neuron has a probability of being dropped

resulting in a reduced neural network with only some active neurons. At the next step, we

randomly set to zero another set of neurons and we train a new network, that it is different

from the one trained at the last step. Of course, the dropped neurons are considered equal

to zero only in that specific step. Then their previous values are restored. At the end of

the training time, we use all the neurons together instead of dropping a part of them as in

the training phase, so we have to rescale the weights, that are too big, multiplying them

by the inverse of the probability of dropping each neuron. This method trains a bunch of

different neural networks that share some parameters and then average their results when

doing prediction outside the testing data. This is equivalent to a sort of model combination

and is useful to avoid overfitting the data and losing generality. For details refer to the

original works [43] [26]. Both the works suggest using a 50% drop rate in the hidden units

and 20% on the input layer. Here we are modelling time series so every input is extremely

important. So we only randomly drop the hidden units assigning to each hidden unit a

50% probability of being dropped at each epoch.

The second regularization strategy that we use is called early stopping [6]. The aim

of the training is to minimize the loss function on the training data, but the flexibility of

the neural network permits to model also the randomness of these data, resulting in a very
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high loss on data for which it is not trained. This can be prevented in a very simple way

by randomly select some training data as validation data and check during training how

the model performs on these data that it cannot uses to update its parameters. This per-

mits checking the ability to generalize on data not visible at the moment of training. The

number of epochs describes how many times the model go through the entire training set

to adjust its weights. Of course more the epochs, more the possibilities to minimize the

loss function. If we let the network learn from data too many times the risk of overfitting

them is high. This is why we use the early stopping strategy and, instead of letting the

model reaching an extremely low loss on all the training data, we stop the training when

the loss on validation data stop decreasing. We suppose that to be the optimal point in

terms of generalization.

The last hyperparameter left to choose is the number of neurons in the hidden layer.

For this there are no fixed rules so we try all the possibilities between a minimum and a

maximum number, choosing the model with the lowest mean squared error on the valida-

tion data (that cannot be used for training). We fix the minimum number of hidden units

equal to the number of inputs while the maximum number is chosen with a rule of thumb

that requires 10 observations for each parameter. With D inputs, M hidden units and 1

output, the total number of parameters of the network is D×M +M +M + 1. Given T

training data and requiring 10 observation per parameter, the maximum number of hidden

units is M = ( T
10 −1) 1

D+2 .

The model selected as being the best on validation data is then retrained some other

times to check the stability of the network. This last phase is left to the researcher sensi-

bility. If the network passes this last step, we finally have our best neural network.

2.3 Hybrid Model

The last class of model that we want to treat is a form of hybrid models that uses

both the ARIMA-GARCH and the Neural Network model. As previously seen, the two

models are very different in their structure and in their estimation process and are good at

different things. With their work on time series forecasting with Neural Networks, Tang

and Fishwick (1993) [46] found the feedforwards nets to perform better than the Box-
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Jenkins model on series more irregular and with short-memory. The Box-Jenkins model

instead was slightly better on series with long-term memory. This is only an example of

a possible difference, but it is possible that many others exist.

The idea of merging these two types of models is based on the fact that, while being

very good and robust in forecasting linear time series, the ARIMA model is not able to

extract nonlinear dependencies. For this reason, it has already been proposed the use of a

neural network to model the residuals of the ARIMA model [49] [47]. In particular, the

idea for the model used in this thesis is based on the intuition of Zhang (2003) [49] of

considering a time series as a sum of a linear and a nonlinear components.

yt = Lineart +Nonlineart (2.22)

Where Lineart is the linear series at time t and Nonlineart is the nonlinear part at the same

time. If we fit an ARIMA that is able to model the linear component, then the residuals

can be used as inputs for the neural network that can model the nonlinear part. In this

thesis the ARIMA model is estimated considering also the heteroscedasticity, using an

ARIMA-GARCH approach and trying to found the model that is most correct from a

statistical point of view. We follow the process presented in the section about ARIMA-

GARCH. Once we have this model, we model the residuals of the ARIMA-GARCH as

a separate time series with a neural network that uses the last D residuals to predict the

next one. Then our prediction for the original time series is the sum of the predictions

of the ARIMA-GARCH and of the neural network. The number of inputs of the network

is equal to the maximum order of the AR that is tried for the ARIMA-GARCH model

during the selection. The characteristics and the selection of the neural network are the

same presented in the section about neural networks.

This hybrid model is composed of two steps both for estimation and forecast. This

can lead to a suboptimal parameter combination when compared to a joint estimation of

the two models. Unfortunately, the complexity of the neural network, combined with the

necessary regularization used for it, makes the one-step estimation difficult.
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The complete model can be written as:

yt = c+
p

∑
i=1

φi yt−i +
q

∑
j=1

θ j εt− j + εt (2.23)

εt =
M

∑
j=1

w(2)
j h(

D

∑
i=1

w(1)
ji εt−i +w(1)

j0 )+w(2)
0 +ηt (2.24)

Where ηt is a random error term. We underline again that in the two step approach,

the parameters of the ARIMA-GARCH are estimated ignoring the neural network and

considering the variance of εt time varying thanks to the GARCH. In the second step

we consider the εt as being generated by a distribution with fixed variance and the mean

determined by the output of the neural network.
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Chapter 3

Model Combination

3.1 Introduction

The idea of combining forecasts from different models to obtain a better result is today

a well-established concept. The paper of Bates and Granger in 1969 [5] explored for the

first time this possibility by discussing the decision about the optimal weights to assign

to each forecast in a linear combination of them. For a more recent discussion look [22].

They wrote that the idea of discarding all the model except the best one is not optimal

because all the models can contain independent information. In their words the two types

of information are:

• ”One forecast is based on variables or information that other forecast has not con-

sidered”

• ”The forecast makes a different assumption about the form of the relationship be-

tween the variables”

In the case treated by this thesis, the first point is not of main interest because it was

our cure to give to the models the same access to information about the past. The sec-

ond point is instead really interesting due to the fact that the models we have presented

are very different in nature. The ARIMA-GARCH model was estimated considering also

the heteroscedasticity and different possible distributions of the residuals, trying to build

a model theoretically strong. The Neural Network is instead much more a ”black box”

that trade the loss of interpretability with high flexibility to model also non-linear data.

During the estimation of the neural network the residuals are treated as homoscedastic
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and normally distributed. Besides the different hypothesis, also the optimization is done

in a very different way, with the neural network using the backpropagation algorithm.

Moreover, we introduced also a hybrid model that stacks together the ARIMA and the

Neural Network approaches considering the time series as composed by a sum of a lin-

ear and a non-linear part. Also this model behaves differently from both the previous

models. Given the notable differences in the structure of our three models, and on their

assumptions, the second type of independent information [5] should be present, opening

the possibility to further improve every single model with a combination of them.

An important point to consider is that all these model have pretty high levels of com-

plexity when compared to the most basic models. While this is very useful to fit the

training data, it can be less effective while forecasting periods that are very different from

the training data. In such cases it is possible to have a very simple model performing

better than the complex ones. The article of Green and Armstrong (2015) [24] makes a

general analysis of complexity vs simplicity based on the findings of many other papers.

They found the simplest methods to be hardly beatable by more complex ones on fore-

casting ability. For this reason, we introduced among the used models also the simple

AR(1) (with constant) fitted on the same training data of the other models.

We end up with four different models: a neural network, an ARIMA-GARCH, a hy-

brid model and an AR(1). The hybrid model is a particular one because it is based on

the ARIMA-GARCH and then uses a neural network to model the residuals. If the neural

network is built in the right way, this method should always be better than the original

ARIMA-GARCH, mainly for its ability to extract also nonlinear pattern that the ARIMA-

GARCH cannot handle. Following this logic, only three of the four models will be used

in the combination: the hybrid, the neural network and the AR(1).

After having defined the models to be used for the combination, we have to find the

best ways to actually combine them. There are several possibilities and, while the most

complex methods can be attractive, from the review of Meneze et al. (2000) [35] we

know that there are several cases where the simple average of the forecasts can be the

best choice over more complex methods. The same conclusion was found by Clemen

(1989) [13] that in his review found many studies where the simple average performed

best or almost best. It was also in the intentions of Granger and Bates (1969) [5] to

26



propose a simple and attractive method to make the combination appealing. For these

reasons we include in this work some well-established and relatively simple methods to

combine forecasts, starting from the simple average and explaining why there is the need

to try also optimal weights. The optimal weights can be found through a linear regression

[21]. From this point, we explore also the possibility to combine the forecasts through a

feedforward neural network.

3.2 Classic methods

3.2.1 Simple average

The first and most basic way to combine a number of forecasts is the simple average

of the forecasts made for a specific time. If we call yt+1 the true value of the series at time

t + 1 and ŷk
t+1|t the forecast made by the k− th model for t + 1 using all the information

until t, then our combined forecast ŷc
t+1 is:

ŷc
t+1 =

1
k

k

∑
j=1

ŷk
t+1|t (3.1)

With this method, we will give equal weight to all the forecasts without adding any

constant or external term. This means that if the individual estimators are biased, also

the combined one will be biased (if the biases do not compensate for each other). This

can be acceptable for us, given that we are mainly interested in the practical utility of

this combination method. In real-world data, more than unbiased estimators, we privilege

estimators that are able to consistently provide low errors. The main metric to evaluate the

error that we are using throughout this thesis is the mean squared error (MSE), supposing

that in a real-world application it is desirable a model that reduces the errors penalizing

the large ones, which are dangerous in every industrial or financial plan. If we consider

the real data to be generated by our estimate plus an error term ε with variance σ2, we

can rewrite the expected squared error decomposing the variance and the bias:

E[(y− ŷc)2] = σ
2 +E[V [ŷc]]+E[(y−E[ŷc])] (3.2)

The complete derivation can be found in Shakhnarovich notes (2011) [42]. So the ex-
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pected squared errors can be seen as a sum of the variance of the error term (the random-

ness that cannot be deleted by the model), the expected variance of the estimation and the

expected bias of the estimation. This result in the well-known trade-off between bias and

variance: where the optimal is the unbiased estimator with the least variance, in a real

application we can accept a biased estimation if this leads to a diminished mean squared

error thanks to the decrease of variance.

To see if it is possible to shrink the variance with a simple average, think of a combi-

nation of only two unbiased forecasts series. The variance of the errors of the combination

would be (we drop the time subscript):

V [y− ŷc] =
1
4
(V [y− ŷ1]+V [y− ŷ2]+2COV [y− ŷ1,y− ŷ2]) (3.3)

Rewriting using the correlation ρ:

V [y− ŷc] =
1
4
(V [y− ŷ1]+V [y− ŷ2])+

1
2

ρ

√
V [y− ŷ1]V [y− ŷ2] (3.4)

If we fix the two variances, we can see that this becomes a linear function of the cor-

relation, where the minimum variance of the combination errors is reached when the

correlation is −1, while the maximum is reached when the correlation is +1. If now we

fix the correlation and we consider the variance of the combination errors as a function

of the two individual variances that we call σ2
1 and σ2

2 , we can analyze what would hap-

pen in the best and worst-case scenario. In the best case, when the correlation is −1,

the error variance of the simple combination is less than both the individual variances if
1
9σ2

1 < σ2
2 < 9σ2

1 . This solution can be found by solving the system with ρ =−1:


1
4σ2

1 +
1
4σ2

2 +
1
2ρσ1σ1 < σ2

1

1
4σ2

1 +
1
4σ2

2 +
1
2ρσ1σ1 < σ2

2

(3.5)

As an example imagine having two individual variances equal to 1 and 9. In this

case, the error variance of the combination will be exactly equal to the lowest individual

variance. If the variances are 1 and 10, then the simple combination is not able to reduce

the variance below the one of the best model.
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In the worst-case scenario, with a correlation equal to 1, the error variance of the combined

estimator is never lower than the best individual variance. To check this result, solve the

system with ρ = 1.

This was to show that the simple average combination, while suffering from biased

individual forecasters, it also does not assure always the reduction of variance and of the

mean squared error. In the case of a high positive correlation, this kind of combination

is worse than the best of the two single models. Also in an ideal scenario with a large

negative correlation, is not always true that the simple average will be better than the best

single forecaster. We said that we can accept a biased combination in exchange for a

diminished variance and this is the case only in some specific situations. Anyway, our

reasoning is limited to the in-sample variance. In many cases, the simple average has

shown to beat other methods on the out-sample performance [35] [13] [24]. See the work

of Blanc and Setzer (2016) [7] for a complete analysis about when to choose the simple

average. In general, while not optimal in sample, this method does not need the estima-

tion of any parameter, so it does not need a minimum amount of data and it is stable in

time and robust also in situations where there is a change of the state of the world (e.g.

periods of high volatility).

3.2.2 Constrained regression

The second method that we use is a consequence of one of the problems of the simple

average. Instead of using a simple average that diminishes the variance of the combination

only in some cases, we lose some simplicity and introduce a vector of weights chosen to

minimize the variance of the combination errors. If our series is y′ = (y1, ...,yT ) and we

have K competing forecaster, then our forecast matrix is a T ×K where each column is

the forecasted series for each model. We call it F . Then we want to minimize the variance

of the errors of the combined model using a weight vector w that is k× 1. As with the

simple average, we require the weights to sum to 1. Then:

V [εc] = E[ε ′cεc] = E[(y−Fw)′(y−Fw)] (3.6)
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Of course we don’t know the real variance, so we estimate it on our data. So to minimize

the variance we have to minimize the sum of squared errors of the combined forecasts,

with a constraint on the weights which should sum to one. Granger and Ramanathan [21]

shows that the estimation of these weights can be performed with an ordinary least squares

regression without constant that regresses (y− fk) on all the ( f j− fk) with j 6= k where

f j is the series of forecasts made by the j− th model (the j− th column of F). The OLS

regression assures us that the weights are chosen to minimize the sum of squared errors,

and this corresponds to minimize the variance of the errors. Moreover, the constraint that

requires the sum of weights to be equal to 1 is simply done by assigning to the forecasts

fk a weight equal to 1−∑ j 6=k w j. Of course the regression for the optimal weights is not

possible prior to the observation of all the real data we want to predict. We follow two

approaches to overcome this problem. With the first we find the optimal weights on the

training set, performing the regression on the fitted values and doing the strong hypothesis

that the behaviour of the forecasts errors will be the same of the residuals, so we fix the

computed weights to use throughout the test data. With the second approach instead, we

relax the constraint of constant weights and we perform a rolling regression on a moving

window of length m of test data. Since we use the previous m forecasts and actual data

to estimate the optimal weight for the next period, then for the first m forecasts of the test

series we will use some data and fitted values that are in the training set. The length of

the window is hard to fix a priori without looking at the testing data. In general, given the

high number of testing data and the variability of data in different periods, we will prefer

stability of the weights so the window should be long.

3.2.3 Unrestricted regression

As it is clear from the computation of the variance 3.6, we are assuming all the fore-

casters to be unbiased. Of course, this is not always the case. As we said before, obtaining

a biased combination of forecasts that is able to reduce the squared errors is not a big deal

for us who are interested in practical applications. It is anyway the case to add in the poll

of our candidates combination methods also an unbiased one. The idea comes again from

the work of Granger and Ramanathan (1989) [21], where they proposed the use of a con-

stant term in the regression to correct the possible bias present in the individual forecasts.
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In this case, the sum of the weights should not be constrained to sum to one. This time

again, minimizing the variance of the errors of the combination is obtained by minimizing

the sum of squared errors. Defining as w0 the constant term and 1 as a vector of ones of

appropriate dimension, the optimization problem becomes:

min (y−w01−Fw)′(y−w01−Fw) (3.7)

We can simplify the notation by adding a column of 1 as first column of the matrix F

and adding the constant w0 as first element of the weight vector w. So we can rewrite the

optimization problem:

min (y−Fw)′(y−Fw) (3.8)

The solution is straightforward and we obtain the OLS estimator w = (F ′F)−1F ′y. In

the paper of Granger and Ramanathan (1989) [21] is it shown that this regression gives

smaller errors of the regression without constant (with or without weight constraints) and

it is unbiased. In this way we have relaxed the request of unbiased individual estimators.

As previously done, we apply this methodology both in a static and dynamic way. In the

first case, we make the strong assumption that the behaviour of the fitted residuals on the

training set is the same of the forecast errors, so we perform the regression on the training

data and keep the weights fixed. With the second approach, we do a rolling regression

in a window of fixed length. This length is again chosen intuitively privileging stability

of weights over fast changes. For the first forecasts, where we do not have enough test

samples for the regression, we will use the last training samples.

We end up with 5 different methods whose performance will be compared on test data:

the simple average (SA), the regression with weight constraint and without constant both

with static and dynamic weights (respectively SREG and DREG) and the unconstrained

regression with constant in both its static and dynamic version (SUREG and DUREG).

3.3 Combination Using Neural Network

Since this point, we have considered only the possibility of a linear combination of

the forecast. Now we can extend our horizon further by using a general nonlinear ap-

31



proximator as a neural network of the same type of the one described in Chapter 1. The

use of neural networks to combine forecasts of other models has already been explored.

Kamstra and Donaldson (1996) [17] found their combination done with Neural networks

to beat the classical linear models in terms of errors. The same results have been shown

in Harrald and Kamstra (1997) [25] and, more recently, in Aladag et al. (2010) [4].

The last method that we proposed in the previous section was based on a linear re-

gression of the real values on the different forecasts. This OLS regression can be viewed

as a neural network that uses only linear activation function. Starting from this concept of

regression, we can generalize it by using a nonlinear function as activation in the hidden

layer and performing so, a sort of nonlinear regression. So we follow the logic proposed

by Granger and Ramanathan (1984) [21] but using a nonlinear regression that, again, min-

imize the mean squared error.

The neural network for the combination follows the same rules presented in Chapter

1 for the other neural networks used in this thesis. The difference is that now we use

as inputs the forecasts of the three models we are combining. At time t the network

receives as inputs the three forecasts for that time and tries to combine them to better

approximate the real value yt . This is the same done by Aladag et al. [4]. The number of

hidden neurons will be fixed to six with a dropout rate of 50%. This means that at each

step in the training of the network, we will train a neural network with 3 active neurons.

The network will be trained on the training set a single time. Then the same network,

with fixed weights and biases, is used in the test set to combine the forecasts of the three

models.
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Chapter 4

Empirical Results

4.1 VIX and data description

4.1.1 Introduction

The VIX (CBOE Volatility Index) is an index provided by the Chicago Board Options

Exchange about the expected volatility of the S&P 500 for the next 30 days. Based on the

idea of a volatility index proposed by Brenner and Galai (1989) [10], the VIX estimates

the 30 days expected volatility using the implied volatility derived from the market price

of put and call options on the S&P 500, with more than 26 days and less than 37 days

to expiration. The price of the options represents the market expectation about future

volatility. The details and the computation of the index can be found on the CBOE white

paper about the VIX [12].

The interest in this index is given by its ability to explain how the market ”feels” about

the near future. For this reason, it is also called the ”fear index”. Ahoniemi (2006) [3]

used ARIMA and ARIMA-GARCH models augmented with external regressors to pre-

dict the next day direction of the VIX index. Using no external regressor he reached a

55.3% precision maximum. In another work on the one-day forecast of the VIX index,

Stavros (2008) [15] showed as using the realized and the conditional volatility was not

useful to improve the VIX forecast, concluding that the VIX is hard to forecast. Kon-

stantinidi et al. (2008) [30] used different models to forecast the day on day difference of

different implied volatility indexes (VIX included). They found the models to be pretty

similar on the out-sample forecasting ability of the VIX index, at least following the MSE
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metrics. The directional accuracy (share of correct prediction of the sign of the first differ-

ence of the series) for the VIX has been found to be the highest (54.71%) using external

economic regressors, while, using only the past values of the series, the ARFIMA per-

formed the best (53.41%). More recently Psaradellis and Sermpini (2016) [40] applied a

heterogeneous autoregressive process (HAR) combined with a genetic algorithm–support

vector regression(GASV) and other hybrid models. Osterrieder et al. (2020) [39] used an

LSTM neural network to predict the intraday value of the VIX using only a fraction of

the options used to compute the original index.

4.1.2 Data

In this thesis, we use the daily data of the VIX index from January 2, 1990 to June 9,

2021. From 1992 the VIX is computed intraday, so we use only the closing values. The

data are split into a training set for the selection and estimation of models and a test set

for the out-sample validation. The last day in the training set is February 25, 2015. From

that point to the end of the series, all data are used only to test the models. The training

set is composed of 6333 observations and the test by 1583. The series is pictured in the

plot 4.1.

Figure 4.1: The complete time series used in this thesis, from January 2, 1990 to June 9,
2021. The red dotted line is the last day used for training

The huge spikes of the ”fear index” are clearly visible for the 2008 financial crisis
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and the 2020 SARS-CoV-2 pandemic. It is worth noting that one of these two extreme

periods is in the training set and the other in the test set. This can create problems in

the training process of models that reduce the mean squared error of the sample data

uniformly because, in these extreme events, the MSE is so high that the model will give

too much weight on these short periods of time, ignoring the rest. It is worth to try

diminishing the magnitude of these events. For this reason, all the empirical analysis will

be done in parallel for two different transformations of the VIX index. The index cannot

be modelled directly due to its clear non-stationarity, so these two transformations are

used to make it stationary.

The first way to do this is to compute the day on day difference of the series as done

in [30]. While generally making the data stationary, this does not solve the problem of

the extreme values. The second way is to compute the logarithmic return of the index to

make the data stationary while diminishing the magnitude of big spikes and helping the

models with data that are more similar to a normal distribution, with less extreme events

characteristics of fat tails distributions. We will use both the series to compare the results

between them. Calling yt the value of the VIX CLOSE value at time t, we define:

∆t = yt− yt−1 (4.1)

rt = loge(
yt

yt−1
) (4.2)

Histograms of the ∆t and rt are provided in the plot 4.2 and some general characteris-

tics of the series are provided in table 4.1.

mean median sd min max skewness excess kurtosis

∆t 0.000 -0.060 1.648 -17.64 24.86 1.493 31.12

rt 0.000 -0.004 0.067 -0.351 0.769 0.967 9.57

Table 4.1: Selected statistics of the two series ∆t and rt

Both the series are centered around zero and have the median that is less than the

mean. This means that there are more extreme values on the positive side. This is con-

firmed by the skewness that is positive and generally implies a longer right tail. So the

market expectations about future volatility are more prone to fast increases rather than fast

decreases. The kurtosis is higher than the normal one as in the vast majority of financial

35



time series that are susceptible to crisis or non-predictable events in general. The excess

kurtosis is much higher in the series of first difference denoting fatter tails and a greater

deviation from the normal distribution. As expected the logarithmic return makes the

distribution more similar to a normal one. The Augmented Dickey–Fuller test confirmed

the stationarity for both the series (in both cases p− value < 0.01, so we reject the null

hypothesis of the presence of unit root). The Jarque–Bera test has been performed and in

both cases the normality of the data is rejected with an extremely low p-value.

Figure 4.2: The two unconditional distributions compared with a normal (red line) with
the same mean and standard deviation of the data. ∆t on the right and rt on the left

4.2 Model Selection and In-Sample Performance

We select the best ARIMA-GARCH model on the training data following the process

described in the ARIMA-GARCH chapter and summarised in figure 2.1. The maximum

order of the ARMA that we try is (5,5). All the combinations until this order are tried

starting from (1,0). Our choice is justified by the fact that, during a normal week, the

VIX index is computed 5 days per week (from Monday to Friday). So we expect the
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value at time t to be influenced mainly by the last 5 days, so from the same week-day

on the previous week until the day before the one we want to predict. Moreover, due

to computational limitations, it is hard for us to increase the number of trials. The best

model selected for the logarithmic returns rt is an ARMA(1,5)-apARCH(1,1) that uses

a skewed Student-t distribution as conditional distribution for the standardized residuals

and has 3 parameters fixed to zero due to non-significance (the constant for the condi-

tional mean and the parameters for the second and fourth order of MA). The best model

selected for the first difference series ∆t is an ARMA(2,1)-apARCH(1,1) with a skewed

Student-t for standardized residuals and no parameters fixed to zero. For both the series,

the apARCH(1,1) with the same conditional distribution has been selected. Instead, it is

interesting to see that the selected ARIMA orders are completely different for the two

series. Both the models were the lowest AIC models and on the top five when consider-

ing BIC. This makes us think that the choice is pretty robust. The estimated parameters

with further explanations and the diagnostic of the two ARIMA-GARCH can be found in

Appendix B.

Next, the two neural networks are selected, one to model directly the series and the

other to predict the residuals of the ARIMA just fitted. At this point, following the sugges-

tions found in the work of LeCun et al. (2012) [31] about the efficient backpropagation,

we normalize all the training and test data by subtracting the mean of the training data and

dividing by the standard deviation of the training data again. The network will be trained

and tested on this normalized data. The output is then rescaled back.

Every sample that is used to train these networks is composed of one value that acts

as output and the 5 preceding values as inputs. So every sample is a vector of 6 elements

where the first is the output and the others the inputs. We randomly select 5% of these

training data as validation data giving equal probability to every sample. The networks

are trained only on the samples that are not on the validation set while the latter is used to

select the best network. This results in 6016 actual samples used for training and 316 for

validation purposes. To clarify what a sample is, we give a representation of 3 samples:
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yt yt−1 yt−2 yt−3 yt−4 yt−5

yt+1 yt yt−1 yt−2 yt−3 yt−4

yt+2 yt+1 yt yt−1 yt−2 yt−3

Table 4.2: Example of three samples. Every line is a sample. The first column is the
independent variable we want to predict. The other five are the inputs.

The first column is the target of the network while the other 5 are the inputs. Once we

have this matrix, we select some of the lines to validate how well the network is able to

perform on new data. Given the variety of behaviours on the data (normal periods, crisis

etc..) it is possible that we select as validation data only data from normal periods, and

this will make us select the network architecture that performs better only on that types of

data.

The number of actual training data is 6016 so, using the formula provided in the neural

network chapter, the maximum number of hidden units is 85. The minimum is 5 and we

try all the combinations with an increment of 5 units. Then we select the architecture with

the lowest mean squared error on validation data.

The estimation is done in R using Keras.

The best neural network selected to model the rt series has 5 inputs, 25 units in the

hidden layer and one output. The best network for the hybrid model (the network trained

on the residuals of the ARIMA-GARCH) for the same series rt has 65 hidden units.

The best neural network for the ∆t is the network with 25 hidden units, so a similar

structure to the one for the rt series. The large difference is for the network used in the

hybrid model. In the case of ∆t the best one is the network with 45 hidden units. It is

interesting to notice that, with both series, the optimal number of hidden units is much

higher when modelling the residuals of the ARIMA-GARCH. This can be explained by

the fact that the series of residuals has already be cleaned by the linear dependencies. So

the network, to obtain better results on validation data, needs a more complex structure.

Also a simple AR(1) model is fitted on all training data (validation data included), one

for ∆t and one for rt .

The three metrics we will use in this work are the mean squared error (MSE), the

mean absolute error (MAE) and directional accuracy (DA). The directional accuracy is
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the share of observations for which the actual sign is the same of the predicted sign. For

both our series, rt and ∆t , a positive sign means that the VIX has grown while a negative

sign means that the VIX has diminished. Predicting correctly the sign means knowing if

the VIX will increase or decrease on the next day.

We now present these three metrics for the in-sample data (training and validation

data). For the series of logarithmic returns rt :

MSE MAE DA

ARIMA-GARCH 0.00372 0.0444 54.1%

Neural Network 0.00372 0.0444 53.4%

Hybrid 0.00369 0.0442 54.2%

AR(1) 0.00379 0.0448 51.1%

Table 4.3: rt in-sample metrics for the selected models

The difference between the models is little but not minimal with the worst model

that has a mean squared error about 3% larger than the best model. A difference that

is practically significant is the directional accuracy that is 2.1 points higher for the best

model with respect to the worst. On training data, the result is not unexpected, with the

hybrid model as the best model on all metrics and the AR(1) as the worst. In this case, the

complexity of the model seems to repay. It is interesting to note that the neural network

alone performs worse than the ARIMA-GARCH.

For the series of first differences ∆t :

MSE MAE DA

ARIMA-GARCH 2.25 0.946 53.1%

Neural Network 2.22 0.949 52.1%

Hybrid 2.18 0.935 53.4%

AR(1) 2.29 0.948 51.1%

Table 4.4: ∆t in-sample metrics for the selected models

Using the series of simple differences, the worst model is about 5% worse in term

of MSE than the best model. This means that with a series less normal and with more

extreme values, the complexity of a model helps to model the training data. Another time,
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the hybrid model is the best on all the metrics, in particular on the directional accuracy

that is again 2.3 points higher than the accuracy of the AR(1). Surprisingly, the AR(1)

has a mean absolute error that is slightly better than the one of the neural network. The

difference is minimal, but show us a possible weak point of the single neural network.

4.3 Forecasts and Combination

On test data, a rolling forecast is performed to create the series of forecasts. At each

time step, we use all the information until that time to predict the value of the next day.

This means that we use the past values of the series as inputs of the ARIMA-GARCH and

the neural network and the past forecast errors of the ARIMA-GARCH as inputs for the

neural network of the hybrid model. The models are never re-estimated so we are using

the same parameters in all the test period. This is not optimal if the interest is only the

forecasting performance and the simple re-estimation of the models can be found useful.

In this case, we want to test the generality in time of our models and see if it can be im-

proved by a combination of forecasts.

The results of the one-day forecast on test data of rt is presented:

MSE MAE DA

ARIMA-GARCH 0.00697 0.0572 56.0%

Neural Network 0.00701 0.0573 54.2%

Hybrid 0.00697 0.0570 56.3%

AR(1) 0.00703 0.0581 50.8%

Table 4.5: rt out-sample metrics for the selected models

On the test data, the models are again pretty similar for what concerns the errors while

on the directional accuracy the ARIMA-GARCH and the hybrid model performs much

better than the other two. The hybrid model is the best model among all metrics. It lowers

the errors while keeping a directional accuracy much higher than the AR(1) and the neural

network and a bit higher than the ARIMA. The worst model is the AR(1). The neural net-

work is not able to overcome the ARIMA-GARCH in these logarithmically transformed

data. It is worth notice that besides the fact that the neural network alone is overcome
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by the ARIMA-GARCH on all metrics, the subsequent application of a neural network

after the ARIMA-GARCH to create the hybrid model works best. So the neural network

approach seems to work better on the already filtered residuals tahn on the raw data.

The results for ∆t are:

MSE MAE DA

ARIMA-GARCH 4.28 1.142 53.4%

Neural Network 4.13 1.130 51.3%

Hybrid 4.14 1.124 53.4%

AR(1) 4.16 1.138 50.8%

Table 4.6: ∆t out-sample metrics for the selected models

When modelling the less normal series, the situation changes. In this case, the worst

model for mean squared error and mean absolute error is the ARIMA-GARCH that has

larger errors than the one of the basic AR(1). This is surprising given that the selection

process used for this ARIMA-GARCH is exactly the same used for the ARIMA-GARCH

applied on rt . This less normal series seems to be much harder to handle for the ARIMA-

GARCH. The best is once again the hybrid model. This time the neural network beat the

hybrid model on MSE but this is easily compensated by lower MAE and higher directional

accuracy of the hybrid model. It is interesting to see that the models have much lower

performances on forecasting the direction of the VIX for the next day when modelling the

first difference series. Probably the presence of extreme values in some specific periods

makes the models focus on modelling only these periods that are the greatest source of

squared errors. The cost of a smaller squared error in these extreme moments is a loss on

the general ability to understand the direction of the series. With this series, the hybrid

model diminishes the errors of the ARIMA-GARCH. It can be interesting to understand

how the hybrid model is acting to obtain this result. In the figure 4.3 the forecasting

errors yt − ŷt of the ARIMA-GARCH model are plotted in the period right before the

2020 pandemic and in the first phase of the pandemic. As expected, the errors of the

model increase greatly when the pandemic starts. The other line represents the correction

applied by the neural network used in the hybrid model. This neural network tries to

predict the errors of the ARIMA-GARCH. It is really interesting to see that the network
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apply almost no correction in the tranquil period before the pandemic. This suggests

that the network is not able to improve further the forecasts of the ARIMA-GARCH in

that period. When the pandemic starts, the neural networks ”activates” and start to apply

correction to the forecasts of the ARIMA-GARCH. As a matter of fact, the MSE in the

months of February and March 2020 is 55.6 for the ARIMA-GARCH and 51.2 for the

hybrid model. Again, the difference is not huge, but the neural network attached to the

ARIMA-GARCH improve by about 10% the MSE in a period of very high volatility. At

the same time, the directional accuracy of the hybrid model in the same period is 46.3%

while the one of the ARIMA-GARCH alone is 43.9%. A notable result for the hybrid

model.

We do not provide the same plot for the series rt because in that case the ARIMA-

GARCH and the hybrid model do not show any difference in terms of MSE. In that case,

with a series more normalized, they behave in a much similar way.

Figure 4.3: Plot of the forecasting errors of the ARIMA-GARCH model (blue) and the
correction applied by the neural network used in the hybrid model (red) in the period
10/19 - 03/20

A comparison of the behaviour of the forecasts of the neural network and of the hybrid

model can be found in Appendix C.

Once all the forecasts series have been built, we try the different combination methods
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we presented in Chapter 2. For the dynamic methods, a moving window of 500 observa-

tions is used to compute the optimal weight for the next time step. We present the results.

In the combination are included the hybrid model, the neural network and the AR(1). For

the logarithmic returns:

MSE MAE DA

SA 0.00696 0.0573 56.0%

SREG 0.00699 0.0571 56.3%

DREG 0.00704 0.0577 54.8%

SUREG 0.00700 0.0570 56.5%

DUREG 0.00708 0.0579 53.3%

NN 0.00704 0.0576 53.4%

Table 4.7: rt out-sample metrics of the combinations of forecasts

No combination seems to beat their single components on all metrics. The simple

average combination is able to diminish the mean squared errors to a level slightly lower

than the one of the best single component (hybrid model), but on the MAE and the DA is

worse. An interesting result is obtained by the static unconstrained regression (SUREG)

that was able to push a bit further the directional accuracy of the hybrid model keeping the

same MAE and a very similar MSE. The DA is the metric most useful in real world and in

real financial application, so a combination of models that increases it can be useful also

if the increase is really small. In this case, the combination does not seems to be able to

overcome the single hybrid model, but if we consider that the hybrid model is combined

with worse models, it is notable how the combinations obtained results similar (or slightly

better on some metrics) than the best model.

For the simple difference day on day:
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MSE MAE DA

SA 4.11 1.127 53.1%

SREG 4.17 1.127 53.2%

DREG 4.30 1.141 52.7%

SUREG 4.18 1.127 53.2%

DUREG 4.38 1.158 51.7%

NN 4.12 1.119 51.7%

Table 4.8: ∆t out-sample metrics of the combinations of forecasts

Again we see that the simple average is able to give a minimal decrease to the MSE of

all the models in the combination. The mean absolute error of the SA, the SREG and the

SUREG is lower than the MAE of all the models except the hybrid model. Unfortunately,

no combination was able to beat the hybrid model on directional accuracy, but the combi-

nation done with the neural network obtained lower MSE and MAE, resulting better than

all the single models on error performance.

With both series does not seem that the combination of forecasts is able to give big

advantages with respect to the hybrid model. In the plot 4.4 we show a 30 days rolling

average of the MSE of the SA combination minus the MSE of the hybrid model for the ∆t

series. If the line is positive, the MSE of the SA combination has been higher than the one

of the hybrid model in the previous 30 days. We clearly see that, even if the difference

on the whole test data is very small, there are at least two periods where the MSE of the

SA combination is visibly smaller. The first period is during the financial turbulence that

started in August 2015 and the second is during the 2020 pandemic.

The simple average combination is then able to diminish the MSE during periods of

high volatility, but this comes to the cost of a slightly reduced MAE and DA on the whole

test dataset. Here we show only the results for the simple average combination because it

proved to be the best combination for what concerns MSE on both rt and ∆t .
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Figure 4.4: 30 days rolling mean of the difference between MSE of the SA combination
and MSE of the hybrid model for ∆t series
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Chapter 5

Conclusions

The aim of this thesis was to propose a flexible procedure to extract the best character-

istics of the ARIMA and of the feedforward neural network approach to time series. Our

empirical results on the one-day forecast of the VIX shows that the hybrid model was con-

sistently the best model in-sample and out-sample both on the first-difference series and

on the log-returns series. The directional accuracy shown by the hybrid model is much

larger than the one obtained by the neural network or the simple AR(1) model. The max-

imum directional accuracy was obtained in the series of logarithmic returns by the hybrid

model. With a 56.3% accuracy, it is an improvement with respect to the previous works

of Ahoniemi (2006) [3] and Konstantinidi et al. (2008) [30] (at least where no external

regressors were used). If interested in predicting the direction of the VIX index, it seems

advisable to help the models by normalizing the data by computing logarithmic returns.

With respect to the ARIMA-GARCH, the hybrid models showed small improvements on

all metrics, in particular, it was more able to handle very volatile data such as the ones of

the 2020 pandemic crisis. It would not be a surprise to see the hybrid model to give larger

improvements on a different set of data. The VIX seems to be pretty hard to predict and

improvements over the ARIMA-GARCH were always present but not very large.

The combination of forecasts was not able to improve the results of the hybrid model

on all metrics. This does not mean that it is useless to use combination in the real world.

On both the series the simple average provided a little improvement of the mean squared

error. Moreover, we have done some tests using ARIMA-GARCH models that were not

the best according to our selection process. In these cases, the simple average was able
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to improve all three metrics with respect to the hybrid model done with a non-optimal

ARIMA-GARCH. It is so our advice to keep using the simple average also when handling

hybrid models. We showed that using the simple average can also partially protect from

a sudden change of behaviour on the time series.

For what concerns the other combinations strategies, none of them was able to beat

the simple average on mean squared error. While some shows improvements in some

aspects with respect to the hybrid model, these improvements were limited to only one

of the two series (rt or ∆t). So we do not find them to be very reliable. Moreover, the

dynamic methods performed always worse than their static counterparts. Maybe this is

due to the dimension of the moving window. We have tried different possibilities, from

short to long windows, but we were not able to obtain good results. Of course, choosing

the best window after having seen the data is not possible in real world application. It

seems that in the VIX series, the past performances of a model are not very indicative of

future performance.

Finally, even if the empirical results are not astonishing when compared to the classic

ARIMA-GARCH, we hope that this thesis was useful to show a procedure applicable to

a vast amount of different univariate time series to merge ARIMA and neural networks.

We found the hybrid model to be the best overall, and this is in line with the findings of

Zhang (2003) [49] and Tseng et al. (2002) [47]. These promising results suggest that

the use of the hybrid approach should become standard as an alternative to the separate

ARIMA or neural network models. We hope that the framework proposed by this thesis

can be enough general to be useful also with other time series.
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Appendix A

Appendix - R functions ARIMA

selection

A.1 Roots check

The first function is used during the selection of the ARIMA-GARCH to check if

the roots of the ARMA part have any clear problem. It receives as input an uGARCHfit

object. Then it extracts from the coefficients vector all the parameters that correspond to

the names ”ar” and ”ma”. It computes the roots of the characteristic polynomial both for

AR and MA parameters. Then the plot of the inverse roots is drawn. Then, if the module

of any root is less or equal to one, the boolean variable ”stationarity” is set to false. If there

are roots of the MA part that are too near to the roots of the AR polynomial, a warning

is given as output. All models with False stationarity are automatically discarded. All

models with a warning should be analyzed by looking at the plot of the roots.

u r o o t s = f u n c t i o n ( x ) {

c o e f = x@fi t $ c o e f

#Remove a l l a p a r a m t e r s wi th ’gamma ’

i f ( ’gamma ’ %>% g r e p l ( names ( c o e f ) ) %>% any ( ) ) {

c o e f = c o e f [ − g rep ( ’gamma ’ , names ( c o e f ) ) ]

}

#Now we compute t h e r o o t s

a r = c o e f [ g r ep ( ’ a r ’ , names ( c o e f ) ) ]

a r . r o o t s = p o l y r o o t ( c (1 , − a r ) )

48



ma= c o e f [ g rep ( ’ma ’ , names ( c o e f ) ) ]

ma . r o o t s = p o l y r o o t ( c (1 , −ma ) )

#The p l o t o f t h e i n v e r s e r o o t s .

p l o t ( a r . r o o t s ˆ ( − 1 ) , x l im =c ( − 1 . 5 , 1 . 5 ) , y l im =c ( − 1 . 5 , 1 . 5 ) ,

a sp =1 , main= ’ I n v e r s e Roots ’ )

p o i n t s ( ma . r o o t s ˆ ( − 1 ) , c o l = ’ r e d ’ , pch =2)

l e g e n d ( ” t o p l e f t ” , c o l =c ( ” b l a c k ” , ” r e d ” ) , l e g e n d =c ( ”AR

i n v e r s e Roots ” , ”MA i n v e r s e Roots ” ) , pch=c ( 1 , 2 ) )

draw . c i r c l e ( 0 , 0 , r a d i u s = 1 , l t y =3)

p l o t = r e c o r d P l o t ( )

#Check s t a t i o n a r i t y

i f ( any (Mod( ma . r o o t s ) <=1) | any (Mod( a r . r o o t s ) <=1) ) {

s t a t i o n a r i t y =F} e l s e { s t a t i o n a r i t y =T}

#Check e q u a l r o o t s

warn=NA

f o r ( i i n a r . r o o t s ˆ ( − 1 ) ) {

i f ( any ( n e a r ( Re ( i ) , Re ( ma . r o o t s ˆ ( − 1 ) ) , t o l = 0 . 1 ) & n e a r (

Im ( i ) , Im ( ma . r o o t s ˆ ( − 1 ) ) , t o l = 0 . 1 ) ) ) {

warn= ’ Risk o f e q u a l r o o t / s ! Check t h e p l o t . ’

}

}

r e t u r n ( l i s t (AR= a r . r o o t s , MA=ma . r o o t s , S t a t i o n a r i t y =

s t a t i o n a r i t y , warn=warn , p l o t = p l o t ) )

}

A.2 Significance check

The second function we wrote is used to automatically check the significance of all the

parameters estimated in the ARIMA-GARCH. The function takes as inputs an uGARCH-
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fit model and a level of significance (in the thesis we use 0.05). If any p-value is higher

than the requested level, the function takes the parameter with the highest p-value and

adds it to the list of the already fixed parameters of the model, if any. The updated list is

then given as output. The code will estimate again the same model using the new list of

fixed parameters. The process is repeated until the function returns the boolean variable

”sign” equal to True. This means that all the parameters are significant.

u s i g n i f i c a n c e = f u n c t i o n ( x , a l p h a ) {

p . v a l u e = x@fi t $ ma tcoe f [ , 4 ] # compute p v a l u e

# i f any non s i g n i f i c a n t c o e f f i c i e n t , f i x i t t o 0

i f ( any ( p . va lue >=a lpha , na . rm=T ) ) {

non . s i g n =which ( p . va lue >=a l p h a )

w o r s t =p . v a l u e [ non . s i g n ] [ o r d e r ( p . v a l u e [ non . s i g n ] ,

d e c r e a s i n g = T ) ] %>% head ( 1 )

name=names ( w o r s t )

f i x e d =x@model$ f i x e d . p a r s

f i x e d $ temp=0

names ( f i x e d ) [ l e n g t h ( f i x e d ) ]= name

s i g n =F

} e l s e {

f i x e d =x@model$ f i x e d . p a r s

s i g n =T

}

r e t u r n ( l i s t ( s i g n = s ign , f i x e d = f i x e d ) )

}
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Appendix B

Appendix - ARIMA-GARCH

parameters and diagnostics

B.1 Logarithmic returns series

The model selected for the rt series is an ARMA(1,5)-apARCH(1,1) that uses a skewed

Student-t distribution as conditional distribution for the standardized residuals and has 3

parameters fixed to zero due to non-significance (the constant for the conditional mean

and the parameters for the second and fourth order of MA). Here we present the estima-

tion of parameters:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E s t i m a t e S td . E r r o r t v a l u e Pr (> | t | )

mu 0 .000000 NA NA NA

a r 1 0 .971998 0 .002550 3 .8117 e +02 0 .000000

ma1 −1.068845 0 .000000 −2.2668 e +06 0 .000000

ma2 0 .000000 NA NA NA

ma3 0 .026633 0 .005230 5 .0926 e +00 0 .000000

ma4 0 .000000 NA NA NA

ma5 0 .049417 0 .005285 9 .3506 e +00 0 .000000

omega 0 .003382 0 .001011 3 .3448 e +00 0 .000823

a l p h a 1 0 .070875 0 .006252 1 .1336 e +01 0 .000000

b e t a 1 0 .859670 0 .013775 6 .2407 e +01 0 .000000

gamma1 −1.000000 0 .000352 −2.8408 e +03 0 .000000
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d e l t a 1 .121562 0 .102515 1 .0940 e +01 0 .000000

skew 1.268864 0 .022100 5 .7414 e +01 0 .000000

shape 6 .409764 0 .488347 1 .3125 e +01 0 .000000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

All non-restricted parameters are highly significant. ω , α1 and β1 are positive, as

requested for a correct GARCH specification. The γ of the apARCH model is equal to

−1. This means that the conditional volatility is influenced only by positive εt . The

negative ones are deleted. δ is different from the standard 2 used in the vanilla GARCH.

The skew parameter is different from 1, so the conditional distribution of the standardized

residuals is skewed.

The diagnostics plots are shown:

Figure B.1: Left: Inverse roots of the ARMA polynomials. Right: fitted conditional SD
compared with actual absolute values of the series

The roots of the AR and the MA characteristics polynomials have all module greater

than 1. In the plot of the inverse roots, we see that two roots are very near to module 1,

while staying anyway inside the unit circle. The conditional standard deviation does not

seem to be able to catch all the spikes in the absolute values series.
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Figure B.2: Left: Theoretical distribution (orange) compared with empirical desnity of
standardized residuals. Right: Theoretical quantiles compared with empirical ones

The theoretical distribution seems to be pretty good in approximating the distribution

of the standardized residuals. We can see that the distribution is not much different from

the standard normal. This is because the logarithmic transformation helps the data to be

more similar to a normal. The Adjusted Pearson Goodness-of-Fit test confirms with very

high p-values the right choice of the skewed Student-t distribution.
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Figure B.3: Left: ACF standardized residuals. Right: ACF squared standardized residuals

The standardized residuals do not show any residuals autocorrelation for the first 5

lags. This is the most important thing for our selection that tests all models with a maxi-

mum order of 5. With a greater number of lags, some correlation is significant. It would

be optimal to try all the models until a very high order and then choose the best. Of course

this is much more heavy from a computational point of view. The same facts are true for

the autocorrelation of the standardized residuals.

B.2 First difference series

The model selected for the first difference series ∆t is an ARMA(2,1)-apARCH(1,1)

with a skewed Student-t for standardized residuals and no parameters fixed to zero. Here

we provide the estimation of the parameters:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E s t i m a t e S td . E r r o r t v a l u e Pr (> | t | )

mu 0 .027918 0 .005009 5 .5731 0 .000000

a r 1 0 .615849 0 .087898 7 .0064 0 .000000

a r 2 −0.039707 0 .016437 −2.4157 0 .015706

ma1 −0.719266 0 .078592 −9.1519 0 .000000
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omega 0 .014727 0 .004523 3 .2561 0 .001130

a l p h a 1 0 .083087 0 .009234 8 .9982 0 .000000

b e t a 1 0 .937622 0 .013264 70 .6866 0 .000000

gamma1 −0.999999 0 .000067 −15027.8763 0 .000000

d e l t a 0 .826143 0 .100635 8 .2093 0 .000000

skew 1.332560 0 .021598 61 .6982 0 .000000

shape 5 .143769 0 .332990 15 .4472 0 .000000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

All the parameters are significant for a level of 0.05. ω , α1 and β1 are positive, as

we expect for a correct GARCH model. The γ parameter is different from zero and the

δ is different from 2, so the apARCH does not reduce to a standard GARCH model. The

leverage parameter γ is extremely near to −1. This means that the conditional volatility

is increased only by positive errors. The negative errors account zero to the increase of

conditional volatility. The skew parameter is different from 1, so the distribution of the

standardized residuals is skewed.

The plots used for diagnosis are presented:

Figure B.4: Left: Inverse roots of the ARMA polynomials. Right: fitted conditional SD
compared with actual absolute values of the series

From figure B.4 we see that the inverse roots of the MA and AR characteristic poly-

nomials are inside the unit circle. So the roots not inverted are outside the unit circle
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confirming the stationarity and invertibility of the process. The conditional standard de-

viation is able to model pretty well the spikes in the absolute value series.

Figure B.5: Left: Theoretical distribution (orange) compared with empirical desnity of
standardized residuals. Right: Theoretical quantiles compared with empirical ones

The chosen distribution (skewed Student-t) seems to describe well the distribution of

the residuals of the model. This is confirmed by an Adjusted Pearson Goodness-of-Fit

Test that results in very high p-values with different numbers of bins.

Figure B.6: Left: ACF standardized residuals. Right: ACF squared standardized residuals
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The model is able to capture the linear correlation of the first five lags. This is of

course the most important thing given that we selected the best models testing all models

until a maximum ARMA order of (5,5). So the selected model is effectively able to handle

the correlation with the first 5 lags, using only an ARMA(2,1). Increasing the lag, we see

that some correlation is present. It would be optimal to test all the models until a higher

order. This is much more computationally heavy but should improve our model. The

squared standardized residuals do not show any residual autocorrelation.
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Appendix C

Appendix - Comparison Hybrid model

and Neural Network

C.1 Logarithmic returns series

Now we show a comparison of the performance of the neural network and of the

hybrid model on the series rt :

Figure C.1: Actual data, forecasts of the hybrid model (red) and forecasts of the neural
network (green) for the rt series. January 2017 - April 2017

In the plot C.1 we see that the two series of forecasts have very similar behaviour.
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The example provided is in a tranquil period. The only difference stays in the fact that

the hybrid models shows a bit more variance than the neural network. This fast change

of direction can be the basis for the ability of the hybrid model to predict the direction of

the series better than the neural network. This suspect is confirmed by the next plot that

shows how the forecasts provided by the hybrid model are much more spread than what

is obtained by the neural network alone. The standard deviation of the forecasts of the

neural network is 0.014 while the one of the hybrid model is 0.016.

Figure C.2: Kernel density of the forecasts of the neural network (black) and of the hybrid
model (red)

C.2 First difference series

We compare the neural network and the hybrid model on the series ∆t . In the plot

C.3 we show the two series of forecasts of the hybrid model and of the neural network

for an example subset of test data. The period shown is a tranquil period. It is clear that

the hybrid model has a higher variance while the Neural Network is much more stable

around the mean. This can explain why the neural hybrid model is able to achieve a

much better directional accuracy than the single neural network. In plot C.4 we provide

the kernel density estimation of the forecasts of both models. The forecasts of the neural

network are much more concentrated than the forecasts of the hybrid model. The standard
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deviation of the forecasts of the neural network is 0.36 while for the hybrid model is 0.47.

Figure C.3: Actual data, forecasts of the hybrid model (red) and forecasts of the neural
network (green) for the ∆t series. January 2017 - April 2017

Figure C.4: Kernel density of the forecasts of the neural network (black) and of the hybrid
model (red)
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