
Master’s Degree programme
in Computer Science

Final Thesis

A RCAT application and operational
analysis on a fetching queueing network

Supervisor
Prof. Andrea Marin

Graduand
Diletta Olliaro
Matriculation number 855957

Academic Year
2020/2021



2



To my Mum and Sisters.

3



Acknowledgements

First of all, I would like to thank, my supervisor: Professor Andrea Marin, to
whom I express my deepest sense of gratitude for having introduced me to this
fascinating research field and for guiding me throughout this thesis work with pa-
tience and dedication.

I thank my favourite women in the world, the homeland of my heart: my mother
and sisters. Firstly, I thank my mother, if it were not for her I would not even be
studying computer science so, at this point, not only she gave me life but also a
purpose and a passion to live for. Then, I thank Martina who brought me to my
bachelor open day and who always had my back and has been the best guidance
and bigger sister I could ask for. Finally, but not less important, I thank my little
one: Carola, who has never stopped cheering me up and that, when needed, has
experienced the pleasure of being my debugging rubber duck through my whole
university years.

A special thought goes to the brother I wish I had, however we were lucky enough
to find each other anyway: Davide, for the years of friendship and because he never
stopped believing in me, not even for a second.

I wish to express my sincerest appreciation to Mauro, Gianluca and Giacomo,
who have stood by me every step of the way, listening to me and being my most
honest and supportive friends.

Last, but not least, I would love to thank the amazing people I have the privilege
to call my friends: Rossana, Martina D.Z., Cecilia, Gianpietro, Lorenzo, Giulio,
Fabio, Daniele, Shadow. Thank you for being fundamental in my academic path
and the best friends I have ever had. We have met in the wonderful context I
consider Ca’ Foscari University to be and hopefully we will be part of each others
lives for the years to come.

Thank you, I love you.

4



Abstract

In queueing networks, product-form solutions are of fundamental importance to
retrieve performance metrics in complex models of multiprogrammed and time-
shared computer systems. The product-form property states that the steady-state
probabilities of the joint process can be expressed as the normalized product of the
steady-state probabilities of its interacting components. This means that product-
forms solutions allow us to factorize the system in different components, then
studying each of them as they were isolated but also parametrizing and taking
into account the effect of the whole system on each single component. Product-
form solutions often lead to a complex and time-consuming computations as they
require to verify balance equations to be proved. For this reason, researchers have
been trying to apply different methods to derive the same results. The methodol-
ogy we focused on is the one introduced by P.G. Harrison in [1] i.e., the Reversed
Compound Agent Theorem, then extended by P.G. Harrison and A. Marin in [2, 3].
In this thesis, we started from the model proposed by D. Gates and M. Westcott
in [4] for the replacement of train wheels and we transposed it in the context of
queueing networks. From a practical point of view, we designed a discrete-event
simulation representing the theoretical model, we validated the produced results
and we conducted a sensitivity analysis in order to test the robustness of the model
with respect to certain assumptions. Whereas, from a theoretical perspective we
used the Reversed Compound Agent Theorem to retrieve the same result obtained
by the authors in [4], without using the properties of dynamically reversed pro-
cesses.
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Introduction

In this thesis, we present a RCAT application and an operational analysis on a
particular queueing network model. Starting from the model designed by D. Gates
and M. Westcott in [4] for the replacement of train wheels we decided to transpose
it into the computing systems context. We aim to provide an alternative path
to prove the product-form solution of the equilibrium distribution of this model,
possibly simplifying the existing one through the use of the Reversed Compound
Agent Theorem (RCAT), introduced by P. G. Harrison in [1] and extended by P.G.
Harrison and A. Marin in [2, 3].

Queueing networks are a mathematical model used to describe a wide range of
real-world systems, for example, we can think about a car washing service, a post
office but also about those computing systems structured in several components
that communicate and coordinate in order to provide a service to a final user, these
are commonly known as distributed systems. These models find a wide application
in the analyses of computer systems since the pioneering work of L. Kleinrock [5, 6]
who used these models to study and design the first packet-switching network.

In traditional queueing network models, jobs move along a set of stations and
compete for the service resources they offer. This class of models became popu-
lar thanks to the product-form results that allow for an efficient solution of the
stochastic process underlying the model. However, in many other contexts, such
as manufacturing plants, the important goal is to maintain the servers busy and
the jobs may be moved among the stations to this aim. Those networks, namely
fetching queuing networks, are challenging to study and only few product-form
results are known.

This mathematical model can be described considering the rules underlying
the arrival of jobs or customers at a certain system, requiring a particular service.
To obtain this service, jobs or customers may have to go through one or more of
the basic units of this model: a queue. We say a customer arrives at a queue and
waits for a certain period of time, after which he obtains the desired service and
leaves that particular queue or the whole system. Processes describing arrivals
and departures are subject to uncertainty, consequently, they are defined through
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stochastic processes.

We are particularly interested in stochastic models with underlying continuous-
time Markov processes defined in a discrete state space. This is a special stochas-
tic process that enjoys the so-called Markov property, meaning that the future
behaviour of the process only depends upon the current state and not at all on the
history of the previous states of the process itself. Mathematically, this translates
into the fact that the process will change according to an exponential random
variable. Specifying processes in a discrete state space means that the set of states
i.e., the set of possible values that the random variable can assume, is finite or
enumerable.

Queueing theory gives us the mathematical means for studying this type of
systems, allowing us to retrieve some quantities of interest such as throughput,
response time, etc. in order to achieve an accurate performance evaluation of
the system itself. One of the results we are mostly interested in is given by the
product-form solution for the equilibrium distribution of our systems. Product-
form expressions are a powerful analytical tool that allows us to examine the differ-
ent components of a system in isolation with the aim of obtaining exact analytical
results for quantities of interest. Product-form solutions often lead to complex
and time-consuming computations, this happens because their proof requires to
verify global balance equations. The latter task becomes more and more difficult
to tackle as the complexity of the system grows. This is why researchers have been
trying to apply different methods to derive the same results.

As already anticipated, the approach we focused on is the one proposed by
P.G. Harrison in [1], i.e., the Reversed Compound Agent Theorem that enables
us, through the use of Stochastic Process Algebra (SPA), to model in a simpler
way the interaction in a complex system among a finite set of components. SPAs
provide several formalisms to describe in a precise and rigorous manner the be-
haviour of systems composed of interacting components. In [1], the author used
the Performance Evaluation Process Algebra (PEPA, i.e., a SPA designed for mod-
elling computer and communication systems by J. Hillston in [7]) syntax to derive
a methodology to identify reversed processes from which product-form solutions
can be immediately defined. A reversed process, as defined by F.P. Kelly in [8], is
a process in which the state space is the same as the original one but the direction
of time is reversed. Intuitively, it is as if we took a registration of the process
behaviour, and then we looked at it backwards. Constructing reversed processes
from transition graphs designed with the PEPA modelling technique, we are able
to guess possible transition rates for the reversed process, which we will call re-
versed rates. The result will be a system of non-linear equations that uniquely
determines the reversed rates. We are able to do so only if some structural con-
ditions defined in RCAT are fulfilled and, if they actually are, we know that a
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product-form exists and that it is given by the stationary distribution of the sin-
gle queues involved in which the unknown rates of the synchronizing actions1 are
replaced by the reversed rates of the corresponding synchronizing transitions.

Another important tool that we used in this thesis is the one provided by
stochastic simulations. The majority of real-world systems are too complex for
being evaluated analytically. Accordingly, we use stochastic simulations to eval-
uate models, collecting data in order to estimate the quantities of interest of the
model. Even if a simulated model has already corresponding analytical results,
by this mean we gain an in-depth view of the dynamic behaviour of the system
and we can test the robustness of the model with respect to the violation of the
assumptions required for its analytical tractability. Moreover, simulations provide
us with an insight into the scalability of a system, as a matter of fact, we can
observe the deterioration or the improvement of the system performance under
specific inputs. Briefly, a stochastic simulation simulates the entities, and their
respective behaviour, of a particular system, this is done using random variables
that can properly represent the evolution of the system under study. We are
particularly interested in simulations that are asymptotically stationary, meaning
that after some simulated time they reach a point in which the collected statistics
are independent of the time in which we collect them. In this way, the gathered
statistics and the estimates computed on them will be reliable and non-dependent
on the initial state that will almost surely cause some bias in the resulting analysis.

Contribution

In this thesis, we started from the model proposed by D. Gates and M. Westcott
in [4] for the replacement of train wheels and we transposed it in the context of
queueing networks.

Firstly, we designed a discrete-event simulation representing the above model.
In order to do so, we used the Python library SimPy v. 4.0.2 which is actually
a process-based discrete-event simulation framework. Secondly, we needed to be
sure that the produced results were not biased towards the initial state set for the
system; in order to do so we applied Welch graphical method and we detected the
so-called warm-up period. The warm-up period is the initial period of a simulation
execution, in which the collected statistics still depend upon the initial settings.
A correctly specified warm-up period helps us to eliminate the initial bias of the
gathered data; this is why, once we identified it, we performed our simulation runs
starting to collect statistics after this period. Thirdly, we have to verify that our

1Synchronizing actions are those actions causing more than one change of state in different
components of the system.
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simulation is an accurate representation of the given model, to achieve this we
computed confidence intervals on the gathered statistics and we compared them
with the theoretical results presented by D. Gates and M. Westcott in [4]. For
all the computed confidence intervals we checked that these theoretical results
did belong to the intervals and since this was true we considered our simulation
validated and reliable. Finally, we performed a sensitivity analysis to check the
robustness of the model with respect to the exponential assumptions.

After this first approach to the model, we switched on the theoretical side and
started to investigate the possibility of reproducing D. Gates and M. Westcott
product-form using the Reversed Compound Agent Theorem instead of employing
the properties of dynamically reversed processes. A dynamically reversed Markov
process is one that is statistically indistinguishable from the reversed process mod-
ulo a certain renaming of the states. To handle this type of processes is a particu-
larly challenging task as it requires to guess the rates of the reversed process and
also the renaming of the states. The principal advantages of the RCAT method-
ology are the potential for simplification of the proof of the model product-form
and of the deeper understanding of the underlying process of the model itself.

Structure of the Thesis

The thesis is organized as follows:

7 in Chapter 1 we provide to the reader the necessary concepts of statistics
which are used throughout this thesis;

7 in Chapter 2 we present some basic notion on queueing theory;

7 in Chapter 3 we illustrate the theoretical background needed to develop a
discrete event simulation;

7 in Chapter 4 we explain in detail the Reversed Compound Agent Theorem;

7 in Chapter 5 we show our work starting from our theoretical approach and
finally presenting our simulation program, its validation, and the sensitivity
analysis;

7 Conclusions completes this thesis and proposes some possible future work.



Chapter 1

Statistical background

In this chapter, we are going to analyse and describe the fundamental theoretical
concepts used as basis for this thesis, we will present some essential elements of
statistics [9] and of stochastic processes [8, 10]. We start from the concept of
random variables, after a brief introduction we will present the most important
families of discrete and continuous distributions. Then we will present in detail
the concept of confidence interval and finally, we will describe Markov processes
and the reversibility property.

1.1 Random Variables

A random variable is a function of an outcome of an experiment, meaning the
elementary result of a random phenomenon. It can be expressed as

X = f(ω).

The domain of a random variable is the sample space Ω whereas its range is given
by the numerical set of possible values that the random variable can potentially
take (e.g. real numbers R, integers Z, interval (0, 1), etc.).
A random variable can be discrete if its range is finite or countable or continuous
if it assumes a whole interval of values, this interval may be both bounded or
unbounded and it can also be a union of several intervals.
The probability distribution for a random variable describes how the probabilities
are distributed over the values of the range. For a discrete random variable, the
probability distribution is defined by the probability mass function (pmf):

P (x) = PPP{X = x}.
Then, we can also define the cumulative distribution function (cdf), defined as

F (x) = PPP{X ≤ x} =
∑
y≤x

PPP (y).

5



6 Chapter 1. Statistical background

We define the function above because in the case of a continuous random variable
it is not meaningful to talk about the probability that a random variable will take a
specific value; for this reason, we consider the probability that it will lie in a given
interval. Thus, to define the counterpart of the pmf, we talk about the probability
density function (pdf), which is defined as the derivative of the cdf, whenever it
exists, f(x) = F ′(x) and we can write:

PPP{a < X < b} =

∫ b

a

f(x)dx

as it provides the probability that the variable will take on a value within that
interval.
We are usually interested in some specific measures computed on the values that
random variables may assume. Among others, the measures we are going to use
the most are the expected value or mean, the variance and the standard deviation.
The first measure is basically a weighted average of the values the random variable
may take, in the discrete case the weights are provided by the probability mass
function while in the continuous one by the probability density function. Mean is
usually denoted by the symbols EEE(X) or µ and the formulas to compute it are as
follows:

EEE(X) =
∑
x

xP (x) EEE(X) =

∫
xf(x) dx

for the discrete and the continuous case, respectively.

The variance (indicated as Var(X) or σ2) is the expectation of the squared
deviation of a random variable from its mean, mathematically it can be expressed
as: Var(X) = EEE(X − µ)2. Variance is a very interesting measure as it indicates
the spread between numbers in a dataset, however, we should notice that because
of the squaring in the formula the variance is not in the same unit of measurement
of the original data. For this reason, statisticians usually prefer to work with the
standard deviation (denoted by σ) as it is the squared root of the variance, in this
way the original unit of measurement is restored consequently standard deviation
is easier to interpret. In fact, standard deviation is a measure of the amount of
variation in a set of values, in practice a low standard deviation indicates that the
values in the set tend to be close to the mean of the set, whereas an high one can
be interpreted as a tendency to have values distant from the mean.
In the following, we are going to introduce some families of discrete and continuous
distributions that are the ones most important for our purposes, in practice a
family of distributions is a mathematical model that can adequately describe a
wide range of different phenomena.
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1.1.1 Bernoulli distribution

This is the simplest random variable as it can assume only two values. In practice,
it describes experiments allowing only binary outcomes. The probability of success
p is the parameter of the Bernoulli distribution. The idea is that we assume a
binary outcome of an experiment and we associate a successful outcome to 1, which
will have probability p, and a failure to 0, which will have probability q, with q =
(1− p). Accordingly, we will have:

P (x) =

{
q = p− 1 if x = 0

p if x = 1
EEE(X) = p Var(X) = pq

1.1.2 Binomial distribution

Binomial distribution is used to describe the number of successes in a sequence
of independent Bernoulli experiments. Parameter are given by n, the number
of trials, and p, the probability of success. The characterising formulas of this
distribution are as follows:

P (x) =

(
n

x

)
pxqn−x EEE(X) = np Var(x) = npq

P (x) describes the probability of having exactly x success over n trials. Notice
that each Bernoulli trial is associated with a Bernoulli variable that takes on value 0
in case of failure, and 1 in case of success. Consequently, the sum of these variables
represents the number of successes; which means that any Binomial variable can
be represented as the sum of independent Bernoulli variables.

1.1.3 Poisson distribution

This discrete distribution is extremely related with the concept of rare events.
This means that two such events have an extremely low probability of occurring
simultaneously or within a short period of time. The number of rare events oc-
curring by a large population of independent individuals within a fixed period of
time has Poisson distribution. A Poisson variable can assume any non-negative
value as a matter of fact it can take value zero since there may not be any rare
event in the considered period but also any positive integer as there is no limit in
the number of rare events that there may be in that period. This distribution has
only one parameter that we denote with λ > 0 and that represents the average
number of rare events. Formulas of our measures of interest are given below:

P (x) = e−λ
λx

x!
, x = 0, 1, 2, . . . EEE(X) = λ Var(X) = λ
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1.1.4 Uniform distribution

This continuous distribution describes an experiment that has a random outcome
inside a specified interval. The extremes of this interval are the parameters of the
distribution and they are denoted by a and b, for the minimum and the maximum
values of the interval, respectively. This distribution assures equal preference to
all values as a matter of fact it presents what is called the uniform property :
the probability is only determined by the length of the interval. In fact, the
characterising formulas of the distribution are the following:

f(x) =
1

b− a
, a < x < b EEE(X) =

a+ b

2
Var(X) =

(b− a)2

12
we can notice how they only depend on the width of the interval rather than on
its location.

1.1.5 Exponential distribution

This continuous distribution is often used to model time. The parameter of the
distribution is denoted again by λ and it stands for a frequency parameter, in
practice it indicates the number of events per time unit. The formulas describing
this distribution are the following:

f(x) = λe−λx, x > 0 EEE(X) =
1

λ
Var(X) =

1

λ2
.

An appealing property of the exponential distribution is the memoryless property.
This property states that a given probability distribution is independent of its
history, for this reason if we interpret the values assumed by the random variables
as times, any time may be considered as a starting point since past history does not
help us understand present and future behaviour. Memoryless property formalise
the fact that if something has or has not already happened, this does not actually
help us to predict the future. Mathematically, consider an exponential variable T
representing waiting time and consider t as the already elapsed portion of waiting
time and x as the additional remaining time, for the memoryless property we have:

PPP{T > t+ x|T > t} = PPP{T > x} for t, x > 0.

This can be actually quite helpful since if observing a phenomenon in continuous
time we realise it is memoryless then we immediately know it is described by an
exponential random variable.

1.1.6 Normal distribution

The Normal distribution is likely the most important probability distribution in
statistics since it has been found out it fits many natural phenomena such as
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blood pressure, measurement errors, etc. The two parameters describing it are the
mean, which defines the location of the peak of the bell, and the standard deviation,
which defines the width of the bell shape. Most values aggregate around the mean,
whereas values further away from it stand on the so-called tails of the distribution.
The formula characterising its pdf is:

f(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞

and its mean and variance are given by:

EEE(X) = µ Var(X) = σ2

The importance of this distribution mostly derives from the Central Limit
Theorem (CLT). CLT states that if we have a population with mean µ and standard
deviation σ, then the distribution of the sample means will be approximately
normally distributed, provided that the sample size is sufficiently large (usually
larger or equal to 30). This holds assuming that all samples are identical in size
and regardless of the population distribution shape.

1.2 Confidence Intervals

An estimator is a sample statistic that estimates a population parameter, for ex-
ample the sample mean is an estimator of the population mean. When providing
an estimator we need to quantify its accuracy, as we know for sure we will estimate
this sample statistic up to some error. This is because an estimator is computed on
a sample, implying a certain amount of randomness in the measurements, rather
than on the entire population, since the latter option is often not possible.
Confidence intervals are needed to quantify this amount of uncertainty and play
a pivotal role in the validation of stochastic simulations. Usually, several execu-
tions of the simulation are run and from their results we estimate a population
parameter, from which we build a confidence interval. Then, if the corresponding
theoretical value is within the confidence interval computed from the simulation,
the latter is considered to be valid for the parameter under analysis.
Notice that there exists a confidence interval for every summarized quantity such
as median, mean, quartiles, standard deviation, probability of success, etc. In the
following we are going to give precisely the definition of confidence interval, then
we will present a general method to build it and finally we will describe the most
used confidence intervals i.e. the ones computed for the mean.

Definition 1.1. An interval [a, b] is a (1−α)100% confidence interval for a certain
parameter θ if it contains the parameter with probability (1− α), i.e.

PPP{a ≤ θ ≤ b} = 1− α.
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The coverage probability (1− α) is also called a confidence level.

In practice an (1−α)100% confidence interval is a range of values that we can
be (1− α)100% confident it contains our parameter; this does not mean that the
confidence interval will contain the parameter with probability (1 − α)100%, the
parameter will either belong (with probability 1) or not to the interval. In fact,
the confidence is in the method and not in a particular confidence interval; this
indicates that if we repeat a certain sampling method several times, roughly the
(1−α)100% will cover the true population parameter, whereas the others will not.

The simplest method to construct a confidence interval requires a consistent1

estimator θ̂ with an asymptotically normal distribution. This results to be true for
sufficiently large sample sizes thanks to the central limit theorem discussed above.
Then, a confidence interval of approximate level (1− α) for θ is

[a, b] = θ̂ ± zα/2 · σ(θ̂) (1.1)

with zα/2 defined as PPP{Z > zα/2} = α/2. In the expression above Z is the standard
normal variable i.e. the normal variable with parameters µ = 0 and σ = 1. In
fact, the previous confidence interval is built from the Z statistic

Z =
θ̂ − θ
SE(θ̂)

under the assumed settings, Z is asymptotically distributed as a standard normal
variable, so we have

Pr{−zα/2 ≤ Z ≤ zα/2} ≈ 1− α.

To obtain the confidence interval showed in [1.1], we have:

1− α ≈ Pr{−zα/2 ≤ Z ≤ zα/2}

= Pr

{
− zα/2 ≤

θ̂ − θ
SE(θ̂)

≤ zα/2

}
= Pr{−zα/2SE(θ̂) ≤ θ̂ − θ ≤ zα/2SE(θ̂)}
= Pr{θ̂ − zα/2SE(θ̂) ≤ θ ≤ θ̂ + zα/2SE(θ̂)}

Hence, a confidence interval of approximate level (1− α) is [a, b] with

a = θ̂ − zα/2SE(θ̂) and b = θ̂ + zα/2SE(θ̂)

or in compact form θ̂±zα/2SE(θ̂) as we stated above. What we have just presented
will result more clear looking at figure 1.1.

1Consistency means that, as the sample size increases, the sampling distribution of the esti-
mator becomes increasingly concentrated at the the true parameter value.
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Figure 1.1: Standard normal quantiles ±zα/2 and partition of the area under the
density curve. This figure is taken from [9] page 249.

From the consideration done so far we can realize that the width of the con-
fidence interval will decrease if the sample size increases and it will increase as
standard deviation and confidence level increases.

Now, we focus in particular on confidence intervals constructed for the popula-
tion mean. We know that the sample mean (denoted by X̄) is a suitable estimator
for the population mean; sample mean is a random variable and as other random
variables it has a mean EEE(X̄) and a standard deviation σ(X̄). Suppose random
samples of size n are drawn from a population with mean µ and standard deviation
σ it can be proved that the mean and the standard deviation of the sample mean
satisfy the following relationships:

EEE(X̄) = µ and σ(X̄) =
σ√
n
.

Accordingly, following the rule given by equation 1.1 we can write a confidence
interval for the mean as:

X̄ ± zα/2 ·
σ√
n
.

Until now we have assumed the population standard deviation is known, un-
fortunately, this is rarely the case. For this reason, the standard deviation of
a population is often estimated from a random sample drawn from the original
population. This is called the sample standard deviation and it is defined as

s =

√∑n
i=0(xi − X̄)2

n− 1

where the xi, i = 0, . . . , n are the realizations of the random variable X. It is
important to underline the fact that everything we said holds if data follows a
standard normal distribution or if the sample size is big enough for the Central
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Limit Theorem to be applied. Otherwise, there are other random variables that
can be used; in particular, if the variance in the data is unknown and sample size
is smaller than 30 we can use the Student’s t-distribution. This distribution is
symmetric ans bell-shaped as the normal one, however it presents heavier tails,
meaning that it is more likely to produce values far from its mean.

1.3 Stochastic Processes

Many physical systems, such as computers and communication networks, evolve
in time. Stochastic processes provide the mathematical models for these systems,
representing the sequences of states they enter as discussed in [8]. Formally,

Definition 1.2. a stochastic process X is a collection of random variables X =
{Xt, t ∈ T}, indexed by t ∈ T (they can also be denoted by the notation X(t)).

We are particularly interested in stochastic processes indexed by time and we
distinguish between:

] Continuous-time processes, meaning that T ⊂ R and usually T = [0,∞).

] Discrete-time processes, meaning that T ⊂ Z and usually T = {0, 1, 2, . . . }.

We consider stochastic processes in which the support of the random variable Xt,
i.e., the set of possible values it can assume, is the same for all t ∈ T . This is
called the state space of the process and also here we can divide them in:

] Continuous state space, if Xt is a continuous random variable for each t ∈ T .

] Discrete state space, if Xt is a discrete random variable for each t ∈ T .

The state space of a stochastic process is usually denoted by S and each value
composing it is called a state of the process. In practice, we will say that each
X(t) is the state of some system at time t and accordingly, to this interpretation
we say that the system is in state xi if at time t if X(t) = xi. One of the properties
that a stochastic process may or may not have is the one of stationarity.

Definition 1.3. A stochastic process is said to be stationary if the properties of the
random variables remain the same over time. More precisely, a stochastic process
is stationary if X(t0), X(t1), . . . , X(tn) and X(t0+τ), X(t1+τ), . . . , X(tn+τ) have
the same distribution for all t0, t1, . . . , tn, τ ∈ T .

In practice, this means that if a process X is stationary, shifting it by τ does
not affect its distribution.
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In the following, we are going to present a particular type of stochastic processes
which is Markov processes, in particular we will focus on the simplest instances of
this kind of processes that are birth-death and Poisson processes. Finally, we will
present a property of particular interest for our work, that is reversibility.

1.3.1 Markov processes

A Markov process is a particular type of stochastic process that enjoys the memo-
ryless property. In this context, this means that given a Markov process its future
probabilities only depend upon the latest observed state and not on its previous
history. Formally,

PPP{X(tn+1) = xn+1|X(t0) = x0, X(t1) = x1, . . . , X(tn) = xn}
= PPP{X(tn+1) = xn+1|X(tn) = xn} with t0 < t1 < t2 < · · · < tn < tn+1

We distinguish between Markov processes, which definition is described above,
and Markov chains that are the discrete-space version of Markov processes.

A Markov process is said to be time-homogeneous if the observed behaviour is
independent of the epoch it is observed. Another interesting property is the one
of irreducibility, we say that a Markov chain is irreducible if from any state we
can reach any other state of the process by following a sequence of transitions.
This means that if we draw the state transition diagram of a Markov chain, i.e., a
graph where nodes represent the states of the process and the arcs stand for the
transitions among the states themselves, for the process to be irreducible we want
this graph to be strongly connected.
We say a particular state in a Markov process is recurrent if the probability that
the process will return to that state is 1. If the expected number of steps required
to return there, is less then infinity, then the state is said to be positive-recurrent.
If all the states of the process are positive-recurrent and there is no periodicity, we
say the Markov process enjoys the ergodicity property.
We now describe some quantities of interest. For a discrete time Markov chain,
we can define the transition probability pij between two states xi and xj and we
define it as

pij = PPP{X(tn + 1) = xj|X(tn) = xi}

In practice, this is the probability that given that a transition out of state xi
will occur, it will be towards state xj. For continuous time Markov chain we define
the so called instantaneous transition rates between two states xi and xj to be:

qij = lim
τ→0

PPP{X(t+ τ) = xj|X(t) = xi}
τ

i 6= j



14 Chapter 1. Statistical background

A Markov process remains in a state xi for a period of time that is exponentially
distributed with parameter the so called exit rate, defined as

qi =
∑

k∈S,k 6=i

qik.

From this we can derive another formula for the probability with which the
process will move from state xi to another state xj, that is:

pij =
qij
qi
.

Each of these probabilities is the conditional probability of transitioning from
state i into state j; each one is an element of the one-step transition probability
matrix of the so called embedded Markov chain which is a regular discrete time
Markov chain determined by the conditional probabilities defined above.
A process that satisfies the time homogeneous and irreducibility assumptions may
possess an equilibrium distribution that is a collection of positive numbers π(xi),
with xi belonging to the state space (denoted by S), summing to unity that satisfies
the so called equilibrium equations, consequently for discrete time Markov chain
we have:

π(xi) =
∑
k∈S

π(xk)pki i ∈ S

If we can find such a collection of positive numbers and the process is ergodic
then this collection can be normalised to produce an equilibrium distribution.
When an equilibrium distribution exists it is unique and if

lim
n→∞

PPP{X(tn) = xi|X(t0) = xj} = π(xi)

then π(xi) is also the limiting distribution; this means that no matter which is the
initial distribution the distribution over states converges to π as the time goes to
infinity. Moreover, the proportion of time the process spends in state xi converges
to π(xi) as time goes to infinity. For ergodic processes the limiting or equilibrium
distribution is also called steady-state distribution.
For continuous time Markov chain the equilibrium equations are given by:

π(xi)
∑
k∈S

qik =
∑
k∈S

π(xk)qki i ∈ S

and an equilibrium distribution is a collection of positive numbers π(xi), i ∈ S,
summing to unity which satisfy the equilibrium equations. As for the discrete
time case an equilibrium distribution is unique if it exists and then it is both
the limiting and the stationary distribution. Notice also that the set of equations
that characterize the equilibrium distribution of a Markov chain (when such a
distribution exists) is called global balance equations (GBE).
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1.3.2 Poisson processes

We now describe a particular type of Markov process. To deeply understand the
nature of Poisson processes we first need to define what a counting process is.

Definition 1.4. A stochastic process X(t) is said to be a counting process if:

1. X(t) ∈ N for all t ∈ T , where T stands for the time domain.

2. Given s, t ∈ T if s ≤ t then X(s) ≤ X(t)

Counting processes are actually concerned with counting the number of occur-
rences of something over time, for example the number of arrivals at a queue over
a certain time interval. In fact, given two time two time epochs t1, t2 ∈ T with
t1 < t2 we have that X(t2)−X(t1) is the number of events occurred in the interval
(t1, t2]. If the number of events occurring in disjoint time intervals is independent
then the counting process is said to possess independent intervals. Moreover, if
the distribution of the number of events depends only on the length of the time
interval then these increments are also said to be stationary increments.
Poisson processes are a special type of counting process enjoying some important
properties. Notice that from now on we will use the term Poisson processes to refer
to time-homogeneous Poisson processes, meaning that they possess independent
and stationary increments. We now give three definitions of Poisson process, these
three definitions can be proved to be equivalent but they highlight some important
aspects of this process.

Definition 1.5. A Poisson process X(t) with rate λ ∈ R is a continuous time
counting process (meaning that t ∈ R) that satisfies the following properties:

1. X(0) = 0.

2. for any pair of disjoint intervals (t1, t2] and (t3, t4] the increments X(t2) −
X(t1) and X(t4)−X(t3) are independent random variables.

3. for any t, s ≥ 0 the increment in the interval (t, t + s] has a Poisson distri-
bution with mean λs, formally:

PPP{X(t+ s)−X(t) = x} =
(λs)xe−λs

x!
which is exactly the probability distribution of a Poisson random variable
with mean λs.

Notice that there is no t in the formula above and this is because, as we
anticipated before, the number of events occurring in an interval depends only
on the length of the interval itself and not on where it starts. Accordingly, if
we observe a sufficiently large interval we will observe a probability distribution
concentrated around the mean.
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Definition 1.6. A Poisson process X(t) with rate λ ∈ R+ is a continuous time
counting process that satisfies the following properties:

1. X(0) = 0.

2. The process is stationary and has independent increments.

3. PPP{X(h) = 1} = λh + o(h), where λ is the intensity of the process, h is the
width of the interval2. This means that taking an interval of small width h
the probability of observing one event is approximately λh.

4. PPP{X(h) ≥ 2} = o(h). This means that the probability of observing two or
more events in the same small interval is very low (lower than the width of
the interval). In fact, we can consider that the probability of observing two
simultaneous events is 0.

Definition 1.7. A Poisson process X(t) with rate λ ∈ R+ is a continuous time
counting process that satisfies the following property:

1. X(0) = 0.

2. Let Si = inf{t : X(t) ≥ i} be the time epoch in which the process jumps
from i−1 to i, with i = 1, 2, 3, . . . and S0 = 0. Then Yi = Si+1−Si are inde-
pendent and identically distributed (i.i.d) exponential random variables with
rate λ. This means that the time between one increment and the following
one is described by an i.i.d exponential random variable with parameter λ.
Formally we have:

Si ≈ exp(λ).

From these definitions, we can notice some appealing properties of Poisson
processes. Firstly, we have that

EEE[X(s)] = λs

where λ is the number of events per unit of time, e.g. we can interpret it as
the number of arrivals per second and s is the length of the observed interval of
time. Secondly, it has only one parameter which means that, for example, we
only need one value to describe the workload, moreover λ is also the parameter of
the exponential distribution modelling inter-arrival time; in fact, it can be proved

2We say that a function f is o(h) if

lim
h→0

f(h)

h
= 0

and when writing o(h) we mean that this quantity can be ignored since it grows as fast as h.
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that in a sequence of rare events, when the number of events is described by a
Poisson process, the time between events is exponential. Finally, we have a linear
relationship between the number of arrivals and the length of the interval.

Other than this, we have other two very important properties of this type of
processes: superposition and splitting.

Superposition. Let X1(t) and X2(t) be two independent Poisson processes with
intensities λ1 and λ2, respectively. Then, process Y (t) = X1(t) + X2(t) defined
as the superposition of the two Poisson processes is still a Poisson process with
intensity λ1 + λ2.

Figure 1.2: Superposition property of Poisson processes.

Splitting. Let X(t) be a Poisson process and Y1(t) be the process obtained by
keeping each arrival event with probability p and by discarding it with probability
(1 − p) and Y2(t) being the counting process of the discarded arrivals. Assume
that these choices are independent of the original process. Then Y1(t) and Y2(t)
are independent Poisson processes with intensity λp and λ(1− p), respectively.

Figure 1.3: Splitting property of Poisson processes.

1.3.3 The Law of Rare Events

The following theorem basically states that when the size of the population, n, is
very large and the probability p of a certain event is very small then the binomial
random variable with parameters n and p can be approximated by a Poisson
random variable.
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Theorem 1.1 (The Law of Rare Events). For each n ≥ 1, let Bn be a Binomial
random variable with parameters n and p = λ/n. Then, for any k ≥ 0:

lim
n→∞

PPP{Xn = k} = e−λ
λk

k!

Accordingly, when n goes to infinity we have a Poisson process with parameter
λ.

For example, if we have a population of n independent individuals that generate
an arrival to our system rarely, meaning with low probability p. Thanks to the
law of rare events, we know that if n is large enough the observed arrival process
to our system is a Poisson process.

1.4 Reversibility for Markov Processes

In this section, we will study an important and very useful property of stochastic
processes: reversibility. We say that a stochastic process X(t) is reversible if,
when the direction of time is reversed, the behaviour of the reversed process XR(t)
remains the same. Formally,

Definition 1.8. A stochastic process X(t) is reversible if (X(t1), X(t2), . . . , X(tn))
has the same distribution as (X(τ−t1), X(τ−t2), . . . , X(τ−tn) for all t1, t2, . . . , tn, τ ∈
T

The first thing we can say about this type of processes is that every reversible
process is also stationary by definition of stationarity. Moreover, we can give some
necessary and sufficient conditions for reversibility in terms of equilibrium distri-
bution and transition rates. These conditions are called detailed balance conditions
and are presented in the theorem below.

Theorem 1.2. A stationary Markov process is reversible if and only if there exists
a collection of positive numbers π(xi) xi ∈ S, summing to unity that satisfies the
detailed balance conditions

π(xi)qij = π(xj)qji xi, xj ∈ S

When there exists such a collection, π(xi) is the equilibrium distribution of the
process.

In fact, a collection of positive numbers satisfying the detailed balance condi-
tions whose sum is finite can of course be normalized to produce an equilibrium
distribution. However, notice that, as we pointed out above, if the process is not



1.4. Reversibility for Markov Processes 19

stationary then it is neither reversible even if the detailed balance conditions are
satisfied.
The term π(xi)qij is called probability flux from state xi to state xj. The detailed
balance conditions presented above, in practice, require that for each pair of states
xi, xj, the probability flux out of state xi to state xj is equal to the probability
flux out of state xj to state xi. Notice that these conditions are different with
respect to the so called full balance conditions which require to satisfy the balance
equations that follow:

π(xi)
∑
xj∈S

qij =
∑
xj∈S

π(xj)qji xi ∈ S ∧ i 6= j.

These equations basically require that the probability flux out of state xi equals
the probability flux into state xi, moreover these equations are usually called global
balance equations.

1.4.1 Birth-Death Processes

Birth and Death processes are a special case of continuous-time Markov processes
and they are also the simplest instance of reversible processes. The state space
S is composed by {0, 1, . . . , K} with K possibly infinite. State transition can be
only of two types: a birth which increases the state variable by one, so have a
transition from xi to xi+1, and a death which decreases the state variable by one,
consequently we witness a transition from state xi to state xi−1. A birth-death
process can be represented by its transition diagram as follows.

Figure 1.4: Birth-Death process state transition diagram.

The detailed balance condition state that the equilibrium distribution of a
stationary birth and death process satisfies

π(xi)qi,i−1 = π(xi−1)qi−1,i

hence it is reversible. Moreover, it can be proved that if the state transition
diagram of a Markov process is a tree then the process is time reversible. From
this, it follows that all Markov processes of the birth-death type are time reversible.
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1.4.2 Kolmogorov’s Criterion

Detailed balance conditions allow us to decide whether a stationary Markov pro-
cess is reversible or not, using its equilibrium distribution and its transition rates.
As the equilibrium distribution is retrieved starting from the transition rates, one
could wonder if it is possible to say if a process is reversible or not directly from
its transition rates, without first computing the equilibrium probabilities. Kol-
mogorov’s criteria allow us to do exactly this.

Theorem 1.3 (Kolmogorov’s Criterion). Given a closed cycle i1, i2, . . . , in, i1 in
the state transition diagram, stationary Markov process is reversible if and only if
its transition rates satisfy

qi1i2qi2i3 · · · qini1 = qi1inqinin−1 · · · qi2i1
for any finite sequence of states i1, . . . , in ∈ S

In practice, the product of the transition rates round the cycle needs to be
the same in both directions. It can be proved that the Kolmogorov’s criterion
is equivalent to the detailed balance conditions consequently this criterion gives
a necessary and sufficient condition for reversibility. Furthermore, since a tree-
structured transition diagram does not have any cycles, Kolmogorov’s criterion is
always satisfied and as we have already said it follows that any Markov process
represented by a tree is time reversible.

1.4.3 Reversed process and ρ-reversibility

If X(t) is a reversible Markov process then XR(t) is also a Markov process since
it is statistically indistinguishable from X(t). We now characterize more precisely
the reversed process [8, 10].

Theorem 1.4. If X(t) is a stationary Markov process with transition rates qij
with xi, xj ∈ S and equilibrium distribution π(xi) with xi ∈ S then the reversed
process XR(t) is a stationary Markov process with transition rates

qRij =
π(xj)qji
π(xi)

, xi, xj ∈ S

and the same equilibrium distribution.

The converse of the above theorem also holds.

Theorem 1.5. Let X(t) be a stationary Markov process with transition rates qij,
xi, xj ∈ S if we can find a collection of numbers qRij xi, xj ∈ S such that

qRi = qi
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and a collection of positive numbers π(xi), xi ∈ S summing to unity such that

π(xi)qij = π(xj)q
R
ji xi, xj ∈ S (1.2)

then qRij are the transition rates of the reversed process XR(t) and π(xi) is the
equilibrium distribution of both processes.

The similarity of equations [1.2] to the detailed balance conditions should be
noticed. In fact, a generalization of Kolmogorov’s criterion can also be obtained
and it states what follows.

Theorem 1.6. Let X(t) be a stationary Markov process with transition rates qij,
xi, xj ∈ S. If there exist transition rates qRij , xi, xj ∈ S such that

qi1i2qi2i3 · · · qini1 = qRi1inq
R
inin−1

· · · qRi2i1
for any finite sequence of states xi1 , xi2 , . . . , xin ∈ S and qRi = qi for every state

i ∈ S then qRij are the transition rates of the reversed Markov process XR(t).

We may encounter stationary Markov processes for which the reversed process,
even if not statistically indistinguishable from the original one, it would be if a
state renaming function ρ was applied to the state space S. The intuition behind
is that we are not able to distinguish between X(t) and XR(t) once that a state
renaming function ρ (a bijection from S to S) is applied to rename the states. In
the following, we give a formal definition of what we have just presented; notice
that given a Markov process X(t) we denote by ρ(X)(t) the same process where
the state names are changed according to ρ.

Definition 1.9. Let X(t) be a stationary Markov process with state space S and
ρ be a renaming on S. X(t) is said to be ρ−reversible if for all t1, t2, . . . , tn, τ ∈
T , (X(t1), X(t2), . . . , X(tn)) has the same stationary distribution as (ρ(X)(τ −
t1), ρ(X)(τ − t2), . . . , ρ(X)(τ − tn))

Since X(t) and XR(t) have the same stationary distribution π it follows that
if X(t) is ρ−reversible then

π(xi) = π(ρ(xi)) ∀xi ∈ S.
Necessary and sufficient conditions for ρ−reversibility can be provided in two ways:
by the solution of the linear system of ρ−detailed balance equations or by an
extended formulation of Kolmogorov’s criterion. Both alternatives are presented
below.

Theorem 1.7. Given a stationary Markov processX(t) with state space S, if there
exists a collection of positive real numbers π summing to unity and a bijection ρ
from S to S such that

qi = qρ(i) ∀xi ∈ S (1.3)
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π(xi)qij = π(ρ(xj))qρ(j)ρ(i)∀xi, xj ∈ S, xi 6= xj (1.4)

then X(t) is ρ− reversible and π(xi) is its steady-state distribution.

Equation [1.3] imposes that the residence time of a state and its renaming
must be the same. Whereas the set of equations [1.4] are the so called ρ−detailed
balance equations; in case the renaming function ρ is known they can be used,
as an alternative to the more complex global balance equations, to compute the
steady-state distribution of the process. The latter consideration is basically the
reason why reversibility is such an important property for stochastic processes.

Theorem 1.8. Given a stationary Markov process X(t) with state space S and
let ρ be a renaming on S. X(t) is ρ−reversible if and only if for any finite sequence
of states xi1 , xi2 . . . , xin ∈ S

qi1i2qi2i3 · · · qini1 = qρ(i1)ρ(in)qρ(in)ρ(in−1) · · · qρ(i2)ρ(i1)
and equation [1.2] holds for all xi ∈ S.

Notice that if ρ is the identity then X(t) is simply reversible, whereas if ρ
is an involution then we say that X(t) is dynamically reversible. An involution
is a function that is its own inverse, meaning that it returns the identity when
applied to itself. In practice, this means that even if the reversible process is not
statistically indistinguishable from the original one, it would be if some of the states
were interchanged. In particular, to make the concept of dynamic reversibility
more clear suppose that to each state xi ∈ S there corresponds a conjugate state
x+i ∈ S with (x+i )+ = xi. Then process X(t) is said to be dynamically reversible
if it is statistically indistinguishable from [XR(t)]+. Formally,

Theorem 1.9. A stationary Markov process with qi = qi+ , xi ∈ S is dynamically
reversible if and only if there exist a collection of positive numbers π(xi), xi ∈ S
summing to unity that satisfy

π(xi) = π(x+i ) xi ∈ S
and

π(xi)qij = π(x+j )qj+,i+ xi, xj ∈ S

when there exists such a collection π(xi), xi ∈ S it is the equilibrium distribution
of the process.



Chapter 2

An Overview on Queueing Theory

Queueing networks are a mathematical model used to describe a wide range of real-
world systems, these models find a wide application in the analyses of computer
systems. In traditional queueing network models, jobs move along a set of stations
and compete for the service resources they offer. To obtain this service, jobs or
customers may have to go through one or more of the basic units of this model:
a queue. We say a customer arrives at a queue and waits for a certain period of
time, after which he obtains the desired service and leaves that particular queue
or the whole system. Processes describing arrivals and departures are subject
to uncertainty, consequently they are defined through stochastic processes. We
are particularly interested in stochastic models with underlying continuous-time
Markov processes defined in a discrete state space.
Queueing theory [5, 11] gives us the mathematical means for studying this type
of systems, allowing us to retrieve some quantities of interest such as throughput,
response time, etc. in order to achieve an accurate performance evaluation of
the system itself. One of the results we are more interested in is given by the
product-form solution for the equilibrium distribution of our systems. Product-
form expressions are a powerful analytical tool that allows us to examine the
different components of a system in isolation with the aim of obtaining exact
analytical results for quantities of interest.
In this chapter, we are going to present several aspects of queuing theory necessary
to understand the model we have worked on and the project we have developed.

2.1 Queueing Theory Basics

In computer systems, jobs can compete for resources, use them, synchronize with
each other, etc. In fact, any queueing system is can be subdivided into three parts
(as represented in image 2.1): an arrival process that describes the way customers

23
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arrive at the system, a waiting room where they wait for service and a service
room where they are actually served.

Figure 2.1: Graphic representation of a generic queueing system.

In this section, we will first present queuing notation and in particular Kendall’s
notation, then we will report some fundamental results of queueing theory and fi-
nally, we will show an operational analysis and an analytical study of the stochastic
process underlying one of the simplest queueing models: the M/M/1 queue.

2.1.1 Queueing and Kendall’s Notation

In a queueing system, we serve customers or jobs. If jobs arrive at time t1, t2, . . . tn,
then the times Ti = ti−ti−1, with i ∈ {1, . . . , n} are called inter-arrivals times. We
usually assume Ti are independent and identically distributed random variables;
these form what we call the arrival process. The most common arrival process
is the Poisson arrival process so that inter-arrival times are all independent and
identically distributed exponential random variables.
We usually do not know the size of the jobs and consequently neither how long
they will be needing service. Accordingly, we model the job service times as in-
dependent random variable which will give the service time distribution. When
all the jobs are statistically identical we say that the system has a single class of
jobs; conversely, if we can cluster the jobs into classes in which the elements are
statistically identical we say the system is multi-class. When analysing a system
we are also interested in the system capacity which is the maximum number of
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jobs that the system can contain and in the population size that is the maximum
number of jobs actually willing to enter the system.
Another important aspect of queueing systems is the scheduling or queueing disci-
pline that is the policy adopted by the system to assign the resource(s) to the jobs
waiting to be served. These policies can be preemptive or non-preemptive whether
the job in service can be put again in the waiting room because of some event
or never leave the service room unless its service is finished. A preemptive policy
can either be with resume, if when the job that was preempted return in service
continuing from the point it was left, or with restart if when a job is preempted
the work done up to that moment is lost.
We usually want a queuing discipline to be work-conserving.

Definition 2.1. A queueing discipline is work-conserving if

] it never leaves idle a server that is allowed to work

] it never wastes work done on a job

Queuing systems are classified according to Kendall’s notation; it is based on
the type of arrival process, service time and other characteristics of the queueing
system. According to this approach, we describe a queueing system with the string
A/B/m/K/P/D, where:

] A and B describe the inter-arrival times of the jobs and the distribution of
the service time, respectively. They are replaced by letters describing these
distributions. The most used ones are:

M denotes the exponential distribution, notice that if A = M then the
arrival process is a Poisson process.

D denotes the deterministic distribution.

Ek denotes the Erlang distribution with k phases of service

PH indicates phase-type distributions i.e. defined in terms of the time
to absorption of a continuous-time Markov chain.

G denotes the general distribution, sometimes indicated with GI to
stress the fact that it is independent of any other process characterising
the queue and that inter-arrival times are independent.

MAP stands for Markovian Arrival Process, which allows the arrival
process to have interdependency among inter-arrival times.

] m denotes the number of identical servers available in the system.

] K is the capacity of the queue i.e. the maximum amount of jobs that can
be stored in the waiting room and in the service room.
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] P is the population size i.e. the maximum amount of jobs that can try to
enter the system.

] D is the scheduling discipline.

In general K and P are omitted, when they are they usually need to be in-
tended as ∞. Notice that when D is omitted, the queueing discipline is to be
implicitly intended as First Come First Served (FCFS). To understand better
how this notation works, we propose some examples.

M/M/1 stands for infinite capacity and population, Poisson arrival process
and exponentially distributed service times; queueing discipline is FCFS.

G/M/1 characterizes a queueing system with an arrival process with gen-
eral inter-arrival times, exponentially distributed service times and FCFS
queueing discipline; population and buffer size are infinite.

M/M/3/20/1500/FCFS denotes a queueing system with Poisson arrival pro-
cess and exponentially distributed service times, 3 servers, a maximum of 20
jobs in the system, a population size of 1500 and FCFS queueing discipline.

2.1.2 Performance indexes

Analysing the queueing system components and their behaviour we can retrieve
some performance of interest. Below, we present a list of the indexes we are more
interested in. Starting from what we have already said we can easily imagine we
will have to consider the waiting time, that is the time a customer actually spends
waiting for service, and service time, that is the time that elapses from when a
customer begins to be served to the moment the customer leaves service and the
next customer is called in for service. Moreover, we usually know or can retrieve
the arrival and service rate, the first one denotes the rate at which customers arrive
requiring service, whereas the latter is the rate at which customers are served.

] Utilization, this is the portion of time spent by a server actually serving a
customer instead of idling.

] Response time, this is the sum of the time spent by a customer waiting and
in service for one visit to a server.

] Residence time, this is the total response time for a customer if it visits a
server multiple times.

] Throughput, this is the at which customers are served, so it is basically the
speed the system can provide for serving customers.
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When designing a system it would be desirable to achieve the majority of the
following goals. We aim at minimizing waiting, service, response and residence
time and at obtaining the highest possible throughput. Furthermore, knowing the
average arrival rate can lead to an appropriate designing of a system in such a way
that it would never find itself overloaded or underloaded.
Finally, notice that we say a system is unstable if the number of jobs grows contin-
uously and becomes infinite. Otherwise, we say the system is stable. We usually
require that the maximum throughput of the system is lower than the arrival rate.
In practice, this means that defining the system load intensity as

ρ =
λ

mµ

we want this quantity to be lower than one, where m is the number of available
parallel servers. If this condition is not satisfied then the system will start to
malfunction, which will lead to a likely crash because of the fact the load exceeds
the system capacity. Conversely, if the condition is fulfilled it means the system
meets the requirement for stability i.e., the system is designed properly to maintain
the steady-state operating condition.

2.2 Queuing Systems: properties and theorems

In this section, we are going to present several important results that have im-
portant applications in the analysis of queueing systems. We will see that the
majority of the results we will talk about actually have wide applications thanks
to the loose assumptions needed for them to be applied.

2.2.1 Little’s Law

Little’s law relates the expected number of jobs, the expected response time and
the throughput of a queueing system. Assume to observe a continuous time system
in an interval [0, t], then let us define the following quantities: A(t) as the number
of arrivals and C(t) as the number of departures, both observed in the interval
[0, t].
Therefore, N(t) = A(t)−C(t) is the number of customers in the system at time t,
assuming that at time 0 the system is empty. N(t) is clearly a stochastic process
as we are not usually able to predict how many jobs there will be in the system
at time t, however we may be able to give a probabilistic characterisation of this
quantity. We are particularly interested in the random variable N that is the
distribution of N(t) when t→∞. Formally,

N = lim
t→∞

N(t),
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Figure 2.2: Example of realisation of the stochastic process associated with N(t).
At time t1we have a first arrival, followed by a second one at time t2; then at time
t3 we observe a first departure, and so on.

whenever this limit exists. In some cases, we are able to retrieve the distribution
of N but we are usually more interested in its expectation, denoted by N̄ . Now,
we define a quantity called cumulative work (W (t)), it measures the amount of
pending work that has been stored in the system in the interval [0, t]. Formally,

W (t) =

∫ t

0

N(τ)dτ =

∫ t

0

(A(t)− C(t))dτ

In figure 2.2 below we show a possible realisation of the stochastic process N(t)
The expected number of jobs in [0, t] is then given by the following formula:

N̄(t) =
W (t)

t
At this point, we use the quantities derived so far to retrieve the expected response
time of the jobs in [0, t], that we denote as R̄(t). Notice that for the moment we
assume that both at time 0 and t the system is empty. Therefore, we had C(t)
jobs completions in [0, t] and we want to find the cumulative time spent in the
system by all the jobs. This is nothing more than W (t) accordingly we can write:

R̄(t) =
W (t)

C(t)
.
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Now, let X(t) be the throughput of the system in [0, t], i.e. X(t) = C(t)/t conse-
quently we can write

N̄(t) =
W (t)

t
=
W (t)

t
· C(t)

C(t)
= R̄(t)X(t).

This relation is known as Little’s law. Notice that the reasoning that we have
shown is rather informal and relies on the assumption that the system is empty
both at time 0 and t. However, Little’s law holds also without this assumption.
So we have what follows.

Theorem 2.1 (Little’s Law). Given a queueing system without internal loss or
generation of jobs, we have that the following relations hold for any finite time
horizon t.

N̄(t) = R̄(t)X(t)

Notice that the assumptions of Little’s law are loose as a matter of fact we
require neither a specific arrival process nor a special service time distribution.
Little’s theorem can be derived from Little’s law by letting t→∞.

Theorem 2.2 (Little’s Theorem). Let us consider a queueing system without
internal loss or generation of jobs and assume that the following limits exist and
are finite:

λ = lim
t→∞

A(t)

t
(2.1)

N̄ = lim
t→∞

N̄(t) (2.2)

R̄ = lim
t→∞

C(t)∑
i=1

ri
C(t)

(2.3)

where C(t) is the number of jobs served in [0, t] and ri is the response time of the
i-th service. Then the following relation holds:

N̄ = λR̄ (2.4)

An interesting fact about the theorem above is that we are no longer using the
throughput as in Little’s law but the intensity of the arrival process, this step is
particularly relevant and it follows from the existence of the limits. In fact, if limits
[2.1] are well defined and finite then the queueing system is stable consequently
for t → ∞ the throughput is balanced with the intensity of the arrival process.
Moreover, notice that since theorem 2.2 holds for finite time horizons, then we can
apply it also to queueing systems whose arrival rates are higher than their service
rates.
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2.2.2 Utilisation Law

Consider a single server queue with a general arrival process and general service
time distribution. We assume that jobs have an expected size of µ−1 and that the
single server has a constant speed of 1 job per unit of time. For each sufficiently
large interval of time ∆t, the average work that enters in the system per unit of
time is λµ−1. In fact, µ−1 is the average job size and λ is the expected amount
of jobs that arrive at the system per unit of time. Let U be the utilisation of the
server, i.e. the fraction of time the server is busy. In the period ∆t, the server has
worked for a fraction of time U and since it has a constant speed of 1 job per unit
of time, we have that it has served U amount of work. If the system is stable, in
a sufficiently large interval of time, the amount of work that enters in the system
must be equal to the amount of work that exists in the system. Thus, we have the
following proposition.

Theorem 2.3 (Utilisation of the Single Server Queue). In a single server queue
with constant arrival rate and service rate, infinite capacity and work-conserving
queueing discipline, the utilisation of the queue is

U =
λ

µ

where λ is the intensity of the arrival process and µ−1 the expected job size or
equivalently the expected service time.

2.2.3 PASTA Property and Inspection Paradox

PASTA (Poisson Arrivals See Time Averages) property is widely used for the anal-
ysis of queueing systems, this is in particular because it allows a simple derivation
of some performance indexes.

Theorem 2.4 (PASTA property). In a queueing system with a Poisson arrival
process, the distribution seen by a job immediately before its arrival is the same
as the random observer’s one.

Now we want to characterize the residual service time seen by a customer at
its arrival epoch conditioned to the fact that a job is actually being served.

Definition 2.2 (Residual Life of a Job). The residual life of a customer in service
is the amount of remaining service time of a customer in service from the point of
view of a random observer.

By the memoryless property of the exponential distribution we know that in
queues with this particular type of service time distribution, the residual life is
identical to the original service time. However, this does not hold in general. By
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the PASTA property, if the queue has a Poisson arrival process, then the residual
life seen by a customer at the moment of its arrival has the same statistics as the
residual life of a random observer. To proceed with a formal derivation we start
with three observations:

1. The probability of finding a job of size x (i.e. with service time x) is directly
proportional to x.

2. The probability of finding a job of size x is proportional to the probability
that the job is actually requesting that service time (i.e. to the probability
it does exist).

3. We intuitively support the idea (for now) that the random observer does see
half of the residual service time (in average) of a generic job because at its
arrival time it has more probability to see a large job in service than a small
one. Notice, in fact, that sampling randomly the system to estimate the
average service time is wrong because we would not consider the fact that
it is more probable that we sample in the middle of a big job, consequently
there would be a risk of overestimating.

Let f(x) be the probability density function the service time distribution, then
f(x)dx is the probability that a job of size x is actually requesting that service
time. Therefore, if we call g(x) the service time distribution seen by a random
observer, we have:

g(x)dx = Kf(x)dx

where K has to be determined. Since g(x) must be a probability density function
the following relation must hold:∫ ∞

0

g(x)dx = 1 i.e.

∫ ∞
0

Kf(x)dx = 1 ⇒ K = µ

where 1/µ is the first moment of the service time distribution. Let Y be the random
variable modelling the residual life and X be the random variable modelling the
service time of the job in service, then:

PPP{Y ≤ y|X = z} =
y

x
0 ≤ y ≤ x

since we have randomly chosen a point in this selected interval. Now we can derive
the probability density function of the joint distribution of X and Y (using Bayes’
rule):

PPP{y < Y ≤ y + dy ∧ x < X < x+ dx} =

(
dy

x

)
µxf(x) dx = µf(x) dy dx
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with 0 ≤ y ≤ x. Thus, we have the unconditional probability density function of
Y that is:

fY (y) = µ

∫ ∞
y

f(x)dx = µ(1− F (y))

where fY (y) is the residual service time.
As an example, consider the case in which F (x) = 1−e−µx i.e. the service time

is exponentially distributed. Then, we have

fY (y) = µ(1− (1− e−µx)) = µe−µx

that is exactly what we would be expecting in the case of exponentially distributed
service times with rate µ.
We are now able to derive the following important result:

Theorem 2.5 (Average Residual Life). The average residual life for a service with
cumulative density function F (x) is:

EEE[Y ] =
M2µ

2

whereM2 =
∫∞
0
x2f(x)dx is the second moment of the service time distribution.

In conclusion, we can highlight that the expected residual time does not depend
only on the mean but also on the variance, a high variance means high expected
residual life whereas low variance means lower expected residual life.

2.2.4 Stability of a Queue

We are usually interested in studying the behaviour of queueing systems when
t → ∞ i.e. what we call the queueing systems long run behaviour. We now try
to give a characterization of the notion of stability in a queueing system exactly
when t → ∞. We already know N(t) is the stochastic process underlying the
population of the system, for any finite t, in principle we can derive PPP{N(t) = n}
i.e.the probability that at time t the system contains exactly n jobs. However, if
t→∞, the limit

lim
t→∞

N(t) (2.5)

cannot be finite, because as t grows more and more jobs are expected to be found
in the system.

Definition 2.3 (Stability of a Queue). We say a queue is stable if and only if, in
the long run (i.e. t→∞) we have a finite expected number of jobs in the system
and the expected response time for the jobs is also finite.



2.3. M/M/1 Queue 33

The notion of stability of a queue can have several different definitions that may
vary according to the study one is going to perform. Among these, we mention
the following ones:

] The queue is stable if the stationary probability of the empty queue exists
and is strictly positive;

] The queue is stable if the expected number of jobs in the system when t→∞
is finite;

] The queue is stable when Limit [2.5] exists and has a finite mean;

] If the queue has an underlying Markov chain, then this is ergodic.

2.3 M/M/1 Queue

The M/M/1 queueing system is composed of a single server that works on jobs
with exponentially distributed size. Arrivals occur according to a Poisson process,
service times are independent of the arrival process and the queueing discipline is
First Come, First Served. The analysis of this type of queue widely exploits the
memoryless property of both inter-arrival and service times, plus of course their
independence.

2.3.1 Operational Analysis

Given the intensity of the arrival process λ and the service rate µ we assume λ < µ

for stability so we know that X = λ and U =
λ

µ
since we have one single server.

N̄ is the expected number of jobs in the system, seen by a random observer. For
the PASTA property we have that:

R̄ = N̄ · 1

µ︸ ︷︷ ︸
waiting time

+
1

µ︸︷︷︸
service time

This comes from the fact that when I arrive I see N̄ jobs in the system in aver-
age, however there is one in service, because of the memoryless property of the
exponential distribution we do not have to account for the residual service time
of the job in the service room, i.e. its expected service time is equal to its mean

consequently to
1

µ
. At this point, from Little’s law we know N̄ = λR̄, consequently
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we have

R̄ = λR̄ · 1

µ
+

1

µ

R̄

(
1− λ

µ

)
=

1

µ

R̄ =
1

µ

(
µ

µ− λ

)
=

1

µ− λ
accordingly, we can also obtain

N̄ =
λ

µ− λ

2.3.2 Study of the Underlying Stochastic Process

The states of the queue are described by the number of jobs in the queue and
can range from 0 to infinity in the natural numbers meaning that the state space
can be formally described as S = N. An M/M/1 queue can be described as a
Birth-Death process, meaning that at a certain epoch we have two possible events
that determine the change of state in the next future.

] An arrival of a new job that takes the state from i to i + 1. For every
t the distribution of the time to be waited for this event is exponentially
distributed with rate λ, which is also the intensity of the arrival process.

] A departure of a job in the system that takes the state from i to i − 1.
For every t, the distribution of the time that we must wait for this event is
exponential with rate µ.

The two delays to the next departure and to the next arrival are independent and
exponentially distributed. The minimum of the two is exponentially distributed
with rate λ + µ and this is the residual residence time in state i. We conclude
that n(t) ∈ N (i.e. the number of jobs in the system at a certain time t) is a
continuous time Markov chain (as we can see in fig.2.3(a)) and this is because for
each state i and each time epoch t ∈ R, the current state of the process contains
all the information for the probabilistic characterization of its future evolution.
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Figure 2.3: Continuous Time Markov Chain underlying the M/M/1 queue. For-
ward process (a) and Reversed process (b).

We now show that the Markov chain underlying the M/M/1 queue is reversible
which will yield a relation that can be used to compute the equilibrium distribu-
tion by induction. The Markov chain underlying the M/M/1 queue is showed in
fig. 2.3(a), we now construct the reversed process. For Kolmogorov’s generalized
criteria we have that for every state of the forward process the residence times
should be the same as the ones of the reversed process; so, for state 0 of the
reversed process we have that the transition rate of the outgoing arc will be λ.
Again, for Kolmogorov’s generalized criteria the product of the transition rates of
a cycle in the forward process should be the same of the reversed one consequently
the incoming arc of state 0 will have transition rate µ. For state 1 the reasoning is
the same: in the forward process the residence time of state 1 is given by λ ·µ con-
sequently the outgoing arc from state 1 in the reversed process will have transition
rate λ, and for the product of the transition rates rule we will have that the rate of
the incoming arc of state 1 in the reversed process will be µ. Following with this
reasoning for all the other states we obtain the reversed process in fig.2.3(b). We
observe that it is statistically indistinguishable with respect to the forward process
consequently the process is reversible. The detailed balance conditions states that
the equilibrium distribution satisfies

π(i)qi,k = π(j)qj,i i, j ∈ S
which in this particular case, as we have only transitions from state i to state i−1
(i > 0) or to state i+ 1 (i ≥ 0) for all i ∈ S, becomes

π(i)qi,i−1 = π(i− 1)qi−1,i
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and hence the equilibrium distribution is given by

π(j) = π(0)

j∏
i=1

qi−1,i
qi,i−1

(2.6)

In stability, this equation gives the stationary distribution of the queue length as
a function of π(0). In order to retrieve π(0) we impose the normalising condition
of the probability distribution, i.e.

∞∑
i=0

π(i) = 1

Consequently, in the M/M/1 case, with the given transition rates we have that
if the arrival rate λ is less than the service rate µ the process has an equilibrium
distribution which is, from equation 2.6:

π(i) = π(0)ρi

where ρ =
λ

µ
(ρ is also called the load factor) and i > 0.

In order to retrieve π(0) we impose the normalising condition of the probability
distribution and for the geometric series we have that, if ρ < 1 (i.e. λ < µ),∑∞

i=0 ρ
i converges to

1

1− ρ
, consequently we obtain

π(0) = 1− ρ
therefore

π(i) = (1− ρ)ρi with i ∈ N.

Notice that this algebraic reasoning is coherent with the stability condition for
a system with infinite capacity and without costumer rejection, i.e. the arrival rate
must be lower than the service rate. At this point we can derive the utilisation of
the queue, given by

U =
∞∑
i=1

= 1− π(0) = ρ.

Considering π(i) as the probability that the queue contains i jobs we have that
the expected number of jobs is:

N̄ =
∞∑
i=1

iπ(i) =
∞∑
i=0

i(1− ρ)ρi = (1− ρ)
∞∑
i=1

iρi =
ρ

1− ρ
and by Little’s theorem we obtain the expected response time,

R̄ =
N̄

λ
=

λ

µ

1− λ

µ

· 1

λ
=

1

µ− λ
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2.4 Queueing Networks

Queueing networks are used to model complex systems as a matter of fact queueing
networks are composed of several single queues interconnected among them thanks
to a routing network. Usually, we represent servers with circles and queues by
rectangles as we have already seen; moreover, we denote the routing network with
arrows (an example is given in fig.2.4).

Figure 2.4: Example of an open queueing network.

Notice that in this setting what happens is that jobs departing from one queue
arrive at another (or maybe the same) queue, consequently we are interested in
studying the performance of the whole system and not of a single queue.
Queueing networks can be classified in two different classes: open or closed queue-
ing networks. In the first case we have one or more inputs coming from the outside
and one or more external destinations, whereas closed queueing networks are char-
acterized by a fixed number of customers that circulate continuously among the
queues, never leaving the system.
Considering an open network we have that each queue in the system can have an
input stream coming from the outside or from another component of the system.
This is crucial to understand because it means that knowing the arrival process
to the system does not directly provide us also with the knowledge of the input
streams to each queue. In fact, feedbacks and dependencies introduced by the (de-
terministic or probabilistic) routing network can considerably change the arrival
process seen by each system component.
As before, we are interested in the steady-state behaviour of the network. This is
why we introduce the following definition.

Definition 2.4. We say an open queueing network is unstable if for some initial
state the number of jobs in the network will, with positive probability, go to infinity
as t→∞.

In fact, for an open queueing network to be stable we require each station of the
network to be stable. If we let N(t) be the total number of jobs in the queueing
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network at time t we can define the stationary expected number of jobs in the
system as

N̄ = lim
t→∞

N(t)

t

whenever this limit exists. In open queueing networks we have that in stability
the throughput is equal to the total incoming flow and independent to the single
service rates of the stations.
We are now going to present some fundamental results.

2.4.1 Burke’s Theorem

Burke’s theorem (presented in [12]) is a very well-known fundamental result in
queueing theory. The theorem states what follows.

Theorem 2.6. For an M/M/1, M/M/m or M/M/∞ queue in the steady-state

1. the departure process is Poisson with rate equal to the rate of the arrival
process.

2. at time t the number of customers in the system is independent of the se-
quence of departure time prior t.

Burke provided a first proof showing that the distance in time between a de-
parture and the following one is independent from the others time intervals and
exponentially distributed with parameter equal to the arrival rate; meaning, in
practice that from the point of view of an external observer it is impossible to
distinguish the departure process from the arrival one as they look exactly the
same.
Another interesting way to prove the same result consists of exploiting the re-
versibility property. In fact, statement 1 of theorem 2.6 follows from the fact that
the arrival process is Poisson with rate λ and its reverse is also Poisson and with
the same rate. Moreover, statement 2 of theorem 2.6 follows from the fact that
the departures prior to t in the reversed system is the same process as the arrival
process after t in the reversed process. It is clear that the number in the queue
is independent of the arrivals after that point in a Poisson system. We can state
what we have just presented above because the stochastic processes underlying
the queues cited in 2.6 can be modelled by Birth-Death processes which we have
already seen to be reversible.

This theorem forms the basis for the theory of product-form networks. It
actually allows us to study the queues in isolation which greatly simplifies analysis.
In fact, we can state that the steady-state distribution of a system in which this
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theorem can be applied is given by the product of the marginal probabilities of
the single queues i.e., of their stationary distributions. Notice that product-form
expressions provide us exact analytical results for the retrieval of the performance
indexes we are interested in.

Example. Consider the following queueing network (fig. 2.5) that we can define
as an M/M/1 tandem queue system composed of two queues.

Figure 2.5: M/M/1 tandem queue network.

Thanks to Burke’s theorem we can analyse the two queues in isolation, conse-
quently, recalling the M/M/1 results, we can write

π1(i) = (1− ρ1)ρi1 ρ1 =
λ1
µ1

π2(i) = (1− ρ2)ρi2 ρ2 =
λ1
µ2

and since the processes are independent of the number of jobs in the queue we can
write the following product-form result

π(i, j) = (1− ρ1)(1− ρ2)ρi1ρ
j
2 = π1(i)π2(j)

which gives the stationary probability of serving i jobs in Q1 and j jobs in Q2. This
result can easily be expanded by induction to an arbitrary number K of queues,
leading to the following more general result:

π(n1, . . . nK) =
K∏
i=1

πi(ni) where πi(ni) = (1− ρi)ρni
i , i = 1, . . . , K

2.4.2 Jackson’s Theorem

Jackson’s theorem (presented in [13, 14]) is one of the most significant develop-
ments in queueing theory as it extends Burke’s theorem and allows a wider range
of networks to have a product-form solution. This theorem can be applied to
Jackson’s networks i.e. open networks of K •/M/m queues where jobs arrive
from the outside according to independent Poisson processes with rate λi (with
i = 1, . . . , K) to one or more queues and are then probabilistically routed from
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one queue to another, or possibly the same, until they eventually leave the sys-
tem. Notice that departures may take place from one or more queues and the fact
we allow for feedback in the network configuration is exactly the reason why we
indicate our queues as •/M/m; as a matter of fact even if the arrival process is
Poisson, because of cycles we cannot be sure that the flow arriving at each queue
is still a Poisson process.
One of the requirements for Jackson’s networks is what we call probabilistic rout-
ing, it means that jobs travel from one station to another following a fixed routing
matrix P ; i.e., after being served at queue Qi a job moves to queue Qj (we may
have also i = j) with probability pij. We denote the probability that a job leaves
the system from queue Qi with pi0. Moreover it must always hold that

K∑
j=0

pij = 1 ∀ xi ∈ S.

Jackson empirically discovered that even if we do not know what kind of process
arrives at Qi, whatever that is it has an effect on Qi which is the same that would
have a Poisson process with the same intensity. This means that even if the arrival
process is not Poisson, it behaves as if it was Poisson.
The arrival rate at each queue can be computed through traffic equations ; in fact,
these equations describe the mean arrival rate of traffic. Let ei denote the total
intensity of the incoming traffic at each station Qi from the outside or from any
other station of the network. Moreover, suppose to have the vector (λ1, . . . , λK)
that represents the arrival rates at each station; then, we have:

ei = λi +
K∑
j=1

ejpji (2.7)

this holds in stability because we know that in an open network considered in
steady-state the throughput is equal to the total incoming traffic flow. Further-
more, if the routing of the network is irreducible then the system of traffic equations
[2.7] admits a unique solution that provides us with the throughput and the in-
coming traffic intensity at each station. Now we can formally present Jackson’s
theorem.

Theorem 2.7 (Jackson’s Theorem). Provided that the arrival rate at each queue
is such that in equilibrium exists (i.e. load factor of each queue is less than 1) the
probability of the overall system state n = (n1, . . . , nK) for K queues is given by
the product-form expression

π(n) =
K∏
i=1

πi(ni)

where πi(ni) is the steady-state distribution of station i as if it were subject to a
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Poisson arrival process with intensity ei.

Example Consider the following queueing network

where µ1 = 3 jobs/s, µ2 = 3 jobs/s, µ3 = 2.5 jobs/s, λ = 2 jobs/s and

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 =

 0 1 0
0.2 0 0.1
0 1 0

 and

p10p20
p30

 =

 0
0.7
0


Below we write the system of traffic equations for this particular network

e1 = e2p21 + λ

e2 = e1 + e3

e3 = e2p23

Accordingly we have

e1 =
λ · (1− p23)

p20
= 2.57 e2 =

λ

p20
= 2.86 e3 =

λ · p23
p20

= 0.29

By Jackson’s theorem we have

πi(ni) = (1− ρi)ρni
i with ρi =

ei
µi

If we want to know which is the expected number of jobs in the system we can
compute what follows:

N̄ = N̄1 + N̄2 + N̄3 =
3∑
i=1

ρi
1− ρi
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and if we are interested in the expected response time we can apply Little’s theo-

rem: R̄ =
N̄

λ
.



Chapter 3

Stochastic Simulations

In this chapter, we present the main aspects of stochastic simulations so that the
reader will be able to understand in detail the simulator we built and that will
be shown later. A stochastic simulation [15, 16] is nothing more than a computer
experiment where the real environment is replaced with a program execution; in
this experiment variables change stochastically with individual probabilities. Sim-
ulations are a tool that helps us to design or study complex systems. Attention
must be paid in modelling the system randomness, in the statistical analysis of
the results and also in the validation of the simulation itself. This tool offers both
advantages and drawbacks.
Drawbacks reside in the fact that, usually, simulations can be expensive and time-
consuming to develop, moreover for each run of the simulation model we only
obtain estimates of a model’s real characteristics consequently different indepen-
dent runs will be needed. Furthermore, if we do not verify carefully that the
simulation is a fair reproduction of the real system or of a model the obtained
results are completely useless.
Nevertheless, they also offer several advantages such as the possibility of approach-
ing also complex, real-world systems that we would not be able to approach ac-
curately with mathematical models, the fact that simulations allow us to estimate
performance indexes of an existing system under different experimental circum-
stances, over which we have clearly more control than in the case we were dealing
with the real system. Finally, notice that simulations are also often used to com-
pare different systems designs.

One of the first things we need to understand when talking about simulations
is the difference between real time and simulated time. In a simulation the flow
of time is controlled by a computer: it will be necessary to deal with a certain
parallelism as in real systems more actions can happen at the exact same time
whereas in the simulated program they will be serialized. This is done taking into
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account the simulated time, i.e. the time in which the event should happen in
the real system. Every action is then decomposed into instantaneous events (for
example, the arrival of a customer to the system) e and we assume that two events
cannot happen at the exact same time.
The real time of a simulation depends instead on the performance of the computer
we are using to execute the simulation (e.g. speed of the processor, amount of
memory available) and on the level of optimization of the simulation program. We
now need to define some basic concepts:

] A system is a collection of components that interact among them in order
to satisfy some requirements. At every moment in time, the system is in a
particular situation that we call state; this is determined by the instantaneous
conditions of all the system components. Notice that a system evolving in
time is described from the state history.

] A model of a system is its mathematical representation, as a matter of fact,
the model of a real system offers a certain abstraction level. It is important
to remember that the model by itself does not represent the history of the
system as a matter of fact a model state is always associated with a state of
the real system.

] A model presents different types of variables.

= Exogenous variables depend on the environment, if we can control them
we call them parameters.

= Endogenous variables depend on the model itself, in practice they are
the output results.

= State variables describe the state of the system in a certain moment and
they vary in time interacting with endogenous and exogenous variables;
remember that these interactions are defined by the characteristics of
operations.

To simulate a model means to produce the history of the states of the model and
then interpret it as the history of the states of the system. The simulated model is
said to be the simulation model whereas the simulation on the computer is called
digital simulation. The suitability of a system model is decided according to the
study goals.

3.1 Types of Simulation

There are different types of simulation, usually the following classification is used.
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Deterministic/Stochastic. A deterministic simulation does not have random
components, this type of simulation is used when we want to test some property
of a system for which the environment is completely known, for example to test
the robustness of a certain implementation. In the majority of cases however,
this type of simulation is not sufficient nor available (in fact, it is not easy to
know everything about a system) as a matter of fact random components help
us to better model the system environment; a direct consequence of stochastic
simulations is that also the output will be random and this will allow us to gather
statistics and perform data analysis.

Terminating/Non-terminating. A simulation is said to be terminating if it
terminates when a particular condition happens; for example, if we want to eval-
uate the execution time of a sequence of operations in a certain well-defined envi-
ronment, it is possible to execute the sequence with the simulator and keep record
of the simulated time. Typically, we use terminating simulations when we are
interested in the lifetime of a certain system or when the system inputs depend on
time.

Asymptotically stationary/Non-stationary. The stationary condition can
be verified only in case of non-terminating stochastic simulations as stationarity
is a property that needs to be evaluated over time. Often, the simulation state
depends on the initial conditions and it may be difficult to find favorable initial
conditions; for example, if we simulate an information server probably we would
start with an empty buffer but this hypothesis is actually too optimistic because
in a real system executed for a certain amount of time there will be data structures
that will not be empty.
Stationarity is a solution to this problem, as a matter of fact a stationary simula-
tion, i.e. that has a unique stationary regime, is such that we do not retrieve any
useful information from its initial state as its state distribution becomes indepen-
dent of the initial conditions.
Unfortunately, in practice a simulation is rarely exactly stationary however it can
be asymptotically stationary; meaning that after some simulated time, the sim-
ulation will get to a stationary state. More precisely, we have that a simulation
with time independent input can always be thought of as a Markov chain. Re-
member that a Markov chain is a generic stochastic process such that to simulate
the future after a certain time t, the only information needed is the state of the
system at time t (memoryless property). Markov chain theory states that the
simulation can converge or diverge to a stationary behaviour. If our aim is to
measure some performance indexes of the system under study we are probably
interested in its stationary behaviour. Different reasons could cause the absence
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of an asymptotically stationary regime, for example:

] Unstable models: in queueing systems where the arrival rate is greater than
the service capacity, in this case the longer the execution time of the simula-
tion, the longer will be the length of the queue, i.e. it will grow indefinitely
without reaching a stationary state,

] Freezing simulation: the simulated system does not converge to a stationary
regime and instead freezes becoming slower and slower. This behaviour is
usually caused by some rare event that drastically alters the system’s func-
tioning. The probability of observing a rare event is proportional to the
length of the simulation time. If, by chance, the simulation has some regen-
erative state (i.e. a point in which the system reaches a clean state, e.g. if
it becomes empty again) then the simulation freezes if the interval of time
between two regenerative points has an infinite average.

] Models with inputs depending on the simulation time, in this type of models
is exactly this dependence to prevent the system from the achievement of a
stationary regime; an example of this situation may be a the internet traffic
that grows every month and that in some moments of the day is more intense.

Notice, in particular, that even if the initial state does not influence the station-
ary behaviour it does influence the time required to reach the stationary regime.
Moreover, it is important to underline that in stationarity the state of the model
does not become constant but it is the probability of observing a certain state that
stabilizes.

In the majority of cases when we execute a non-terminating simulation it is
necessary to be sure that this reaches a stationary regime; otherwise, the simulation
output and the consequent analysis will depend on the initial condition and on the
length of the simulation itself.

3.1.1 Simulation Techniques

Here, we present the three main classes of simulators.

Discrete Event Simulation - DES. In this case, we model a set of entities
which state evolves in time, these entities interact in order to compete for resources
or to synchronize on some particular events. The crucial point in this type of
simulation is the maintenance of the list of events that need to be processed. In
the next section, we will describe in detail this type of simulation as it is the one
that we used for our project.
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System Dynamics - SD. With respect to the previous type, the approach is
top-down as a matter of fact we model the entire system instead of the singular
entities; to model the connection among state variables, differential equations are
used. This technique is used when the system has a big number of identical or
very similar entities and consequently it is more appropriate to consider their
multiplicity rather than their identity.

Agent Based Simulation - ABS. This technique consists of simulating the
decisional process of every single agent that is part of the system, the final goal
usually is to observe the behaviour of the system emerging as the result of agents
interaction.

3.2 Random Number Generator

A simulation of a system in which we recognize random components clearly re-
quires some method of generating numbers that are random. We know computers
are deterministic machines, exception made for some particular kind of hardware
that is able to generate only numbers that are actually pseudo-random and not
completely random. It is possible to limit the problem to the generation of ran-
dom numbers in the interval (0, 1) with uniform distribution, from which then
other distribution are generated. Random number generators (RNG) must have
the following properties:

] the generated number must belong to the interval (0, 1), they must be uni-
formly distributed and there shall be no correlation among the various ex-
tractions

] they should be fast and they should not occupy too much memory

] extractions should be reproducible

] different streams of random numbers should be available

] the random number generator should be portable

The generation of (pseudo)random numbers is a very delicate topic as a lot
of generators available in software or libraries are not adequate to be used in
simulations. Now, we give a formal definition [17] of (pseudo)random number
generator and then we will present the one we implicitly used in our simulator i.e.
the Marsenne Twister generator [18].
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Definition 3.1 (Random Number Generator). Mathematically, a (pseudo)random
number generator can be defined as a quintuple (S, µ, f, U, g), where S is a finite
set of states, µ is a probability distribution on S used to select the initial state s0,
called seed, f : S → S is the transition function, U = [0, 1] is the output set and
finally g : S → U is the output function.

The state evolves according to the following recurrence

si = f(si−1) for i ≥ 1

and the output of step i is:
ui = g(si) ∈ U

these ui are the so called pseudo(random) number produced by the generator.
Since set S is finite sooner or later the generator will come back to a previously
visited state, i.e.

sl+j = sl for some l ≥ 0 and j > 0

consequently
si+j = si and ui+j = ui ∀i ≥ l.

The smallest value of j > 0 for which this happens is called the length of the period,
denoted by the Greek letter ρ. Clearly, this value cannot be greater than S, in
particular if b bits are used to represent a state then we will have ρ ≤ 2b. The
best (pseudo)random number generators are built in such a way that the length
of their period gets as close as possible to that limit.

3.2.1 Marsenne-Twister Random Number Generator

Marsenne-Twister is a (pseudo)random number generator, is the general-purpose
generator most used. It was developed in 1997 by Makoto Matsumoto and Takuji
Nishimura. The algorithm of this generator generates an optimal set of (pseudo)random
numbers, this is because the creators tried to fix the known issues of the generators
existing at the time when they were creating their own generator.
The name of the generator derives from the fact that the length of its period is
chosen so that it is a Marsenne prime number. In mathematics, a Marsenne prime
number satisfies the following property

Mp = 2p − 1

with p that is a positive prime integer.
Among the many advantages that this generator offers we recall the following:

] it has a huge period that equals 219937−1 and this was proved by the creators
of the algorithm

] it passed different randomness statistical tests
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] it turned out to be more efficient than other algorithms that do not even get
close to it as far as quality is concerned

] it is extremely portable, as a matter of fact it is included in different pro-
gramming languages and libraries.

3.3 Discrete-Event Simulation

The majority of communications systems are simulated using discrete-event simu-
lations. To deeply comprehend this technique we must keep in mind the concepts
of entity, i.e. the elements that interact, and of event, intended as the change of
state of one or more entities. The most important aspects of this methodology
reside in keeping track of a global variable that will have the name currentTime

and in the presence of an event scheduler.
Events are objects that represent different transitions, every event has its associ-
ated time (i.e. timestamp); an event scheduler is nothing more than an ordered
list organized in ascending order according to timestamp. What happens is that
the simulation program takes the first event from this list, moves currentTime

to the timestamp of the picked event and executes the event. The execution of
this event may cause the scheduling of new events with a grater timestamp with
respect to currentTime and it may also cause the order change or the cancellation
of some events that were already in the event list. Remember that the global vari-
able currentTime should never be modified by an event except for the fact that
as events progressively take place currentTime jumps from a timestamp value to
another. This is exactly why it is called discrete event simulation as the events
that change the system states form a discrete set. Notice also that event not only
gave to simulate the logic of the system but they also have to keep updated some
counters that will be needed in order to perform output data analysis.

In practice, a simulator event oriented is realised as follows; we maintain a
calendar of events that we call Future Event List (FEL), from which the event with
the smaller timestamp is extracted. A subroutine manages the event modifying
the state of all the entities influenced by the event and eventually modifying the
value of the endogenous variables (output), the same subroutine also updates the
calendar of events. We show two diagrams in fig. 3.1 that present the functioning
of discrete event simulations intuitively.

As far as the FEL management is concerned some basic operations are required
such as: event insertion, extraction of the next event to be processed, deleting of
an arbitrary event (i.e. not necessarily the event with the smaller timestamp).
The advancement of the simulated time, as we have seen proceeds jumping from
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one timestamp event to another. This advancement can proceed

] with fixed intervals, meaning that time advances of ∆t at each step and all
the events happening in that interval of time must be simulated (these events
will be considered simultaneous), with this option some problems should be
taken care of such as how to treat the multiple events and how to choose ∆t

] with the events i.e. the time advances of a quantity equal to the time needed
for the next event in the FEL to happen.

Figure 3.1: On the left the fundamental cycle of a discrete event simulation and
on the right the processing of an event.

3.4 Output Analysis

When dealing with simulation output it is important to analyse it appropriately.
This is mainly because each run of a simulation offers us a possible realization
of the random variables underlying the simulation. Considered this, it is easy
to understand why one run of arbitrary length of the simulation program is not
enough to consider the retrieved results as the real characteristics of the system
under study. In general, we produce n independent runs, where independent means



3.4. Output Analysis 51

that for each run we change the seed for the generation of the needed random
numbers. Notice, that the initial settings and the configuration of the simulation
are identical for all the independent runs. Furthermore, as initial conditions usually
do not represent fairly the conditions we would find the system in, in an arbitrary
moment we consider, for the gathering of the statistics of interest, the steady-state
behaviour of the stochastic process underlying the simulation. In fact, we do not
want our results to be biased towards the initial settings of the simulation.

3.4.1 Validation

The main goal of validation is to produce a simulation model that represents
accurately enough the real system behaviour so that the simulation can be used
to experiment the system under different circumstances, to analyse its behaviour
and predict its performance. Validation is defined in [19] as determining whether
the model’s output behaviour has a satisfactory range of accuracy for the model’s
intended purpose over the domain of the model’s intended applicability.

The level of accuracy required is usually defined by the range within which
the difference between a model’s output variable and the corresponding system
output variable must be contained. This range is commonly known as the model
acceptable range of accuracy. When the variables of interest are random variables,
these are usually of primary interest and they are usually the quantities used to
determine the model validity.

To obtain a high degree of confidence in a simulation model and its results,
comparisons of the model’s and system’s output behaviours are usually required.
However, often the situation is such that the system is not observable consequently
it is usually not possible to obtain a high degree of confidence in the model. In this
situation, the usual approach is to carefully analyse the model output behaviour
and to make some comparisons with other valid models (also theoretical ones)
whenever possible.

One of the most known approaches used in comparing the simulation model
output behaviour to either the system output behaviour or another (validated)
model output behaviour is the use of confidence intervals as they allow us to make
an objective decision. Notice that this approach is not always available as it is
not frequent that the statistical assumptions required can be satisfied or in any
case it is not an easy approach to use as sometimes we satisfy these assumptions
only with great difficulty (required assumptions are usually data independence and
normality). Another issue may be a highly non-stationary behaviour or also the
quantity of data available, as a matter of fact it may be expensive and not efficient
at all to retrieve the desired dataset. Nevertheless, confidence intervals can be
obtained for the differences between means, variances, and distributions of different
output variables of a simulation model and a system for each set of experimental
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conditions. These intervals can be used as the model range of accuracy for model
validation, where the model range of accuracy is the confidence interval or region
around the estimated difference between some function (e.g., the mean) of the
model and system output variable being evaluated.

3.4.2 Warm-up Period and Independent Replications

As far as non-terminating simulations are concerned it is necessary to distinguish
two phases, a transient phase (initial phase or warm-up phase) and a stationary
phase that is generally reached, as explained above, for t→∞ where t represents
the simulated time.
Statistics gathered during the transient phase depend on the initial state therefore
they are of no interest for the statistical analysis of the obtained results. One of
the main issues of non-terminating simulations is exactly when to end them, this
is because in practice we cannot rely on the stationarity condition t → ∞ and it
is necessary to understand when the stationary regime was reached because it is
there that we will collect the statistics of interest. In order to identify the warm-up
period and consequently the beginning of the stationary regime i.e. the point from
which we will start to gather data, we can use Welch’s graphical method. This
method is presented below.

Welch’s Graphical Method. Suppose we want to estimate the mean of a se-
quence of observations to be intended as random variables Y1, Y2, Y3, . . . in the
stationary regime, in practice we want to estimate

ν = lim
i→∞

EEE[Yi]

consequently, we will have a finite sequence of observations Yi with i ∈ [1,m]
(where m is the number of gathered observations) and we will look for a value l
that allow us to define:

Ȳl =

∑m
i=l Yi

m− l

where Ȳl is the average of the random variables of observations from l + 1 to m,
the hope is to obtain ν ∼ Ȳl. Notice that it is important to choose l accurately
because if it is too small then Ȳl will be influenced by the initial observations that
are not stationary, whereas if it is too big (so maybe near to m) the number of
random variables used to compute Ȳl would be too small and the accuracy of ν
estimation would be too low. To choose l we do what follows.

We process n pilot executions (with n possibly greater or equal to 5), each
execution will gather m observations, so that Yji will be the random variable
associated with the i-th observation of execution j with 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Now, we define the sequence made up of the averages,

Ȳi =

∑n
j=1 Yji

n
this will reduce the variance of the process. At this point, we create a window of
width w ≤ bm/4c and we construct a sequence of m−w random variables defined
as the averages of the w previous Ȳi, the current one and the w following Ȳi:

Ȳ ′i =

∑i+w
s=i−w Ȳs

2w + 1
Notice that for random variables from 1 to w the average is computed as

Ȳ ′i =

∑2i−1
s=1 Ȳs

2i− 1
In practice we are computing a moving average on the process composed by the
random variables given by the mean of a same observation over different runs. Fi-
nally, we draw a graph of the Ȳ ′i observations for i = 1, . . . ,m− w and we choose
a value for l, beyond which the series of Ȳi seems to be more stable.

As anticipated before we know that non-terminating simulations do not have
a natural stopping point. However, it is necessary to decide when to interrupt the
simulation and with it the collection of statistics. Intuitively, what would be ideal is
to interrupt the simulation when the quality of the obtained estimates is reasonably
good. In practice, the basic idea to evaluate the quality of the estimates consists of
executing independent runs and then compare their estimates. The empirical rule
states to make the duration of a simulation lasts the time sufficient to do so that the
number of repeated execution give estimates that together approximately represent
a random Gaussian variable. But it is necessary to pay attention not to extend
excessively a simulation as this might provoke inconsistency in the obtained results
because of time and resources consumption, of numeric instability of floating-point
and also because of the periodicity of the random number generators.

Summarizing, to avoid initialization bias we use Welch’s graphical method,
then in order to produce estimates of quantities of interest and their respective
confidence intervals we can use the method of independent replications. Basically,
it consists of computing the average over the runs of the observations for each
quantity of interest, excluded the ones cut off with Welch’s graphical method, and
then we use the results to construct confidence intervals.
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Chapter 4

Deriving Product-Form Solutions

As we have already anticipated in the previous chapters, when studying a queueing
system, we are particularly interested in its product-form expression, if one exists.
Unfortunately, product-form solutions often lead to complex and time-consuming
computations. In fact, historically, in order to retrieve a product-form expression
one typically had to guess that such an expression existed and then verify that the
Kolmogorov’s equations of the underlying Markov process were satisfied. This task
becomes more and more difficult to tackle as the complexity of the system grows.
For this exact reason, researchers have been trying to apply different methods to
derive the same result.
The approach we are going to present in this chapter is the one developed by P.G.
Harrison in [1]; the approach is based on the so called Reversed Compound Agent
Theorem (RCAT). First, we are going to present what is a Stochastic Process
Algebra and in particular, we are going to present the main features of PEPA
(Performance Evaluation Process Algebra). Secondly, we are going to show RCAT
itself and one of its extensions that were useful to our aim and finally we will
propose an example of use.

4.1 Performance Evaluation Process Algebra

PEPA is a stochastic process algebra. Process algebras [20] emerged firstly as a
modelling technique for the functional analysis of concurrent systems. Stochastic
process algebra was then proposed as a tool for performance and dependability
analysis and modelling. The main attractive feature of SPA was the fact that
compositionality was explicit. Compositionality means that a complex expression
is actually determined by the meanings of its constituent expressions and the rules
used to combine them, in practice it is the ability to model a system as the in-
teraction of its subsystems. In fact, this principle was applied to systems and
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this resulted particularly useful because when a system is composed of interacting
components we are now able to model interactions and components separately.

PEPA is a stochastic process algebra designed for modelling computer and
communication systems by J. Hillston as presented in [7]. This formalism can
be used for studying quantitative and qualitative properties of the model under
analysis. In particular, it provides an elegant syntax for expressing continuous-time
Markov processes in a compositional way. In fact, PEPA was the first language
to be developed with the explicit intention of generating Markov processes that
could be solved numerically for performance evaluation. PEPA peculiarity, with
respect to other stochastic process algebras, consists in the fact that it associates
a random variable, that will represent duration, with every action. These random
variables are assumed to be exponentially distributed and this is the connection
between this process algebra and Markov processes.

4.1.1 Syntax

PEPA is based on three main ingredients: components that are the active units
within the system, activities that capture the actions of those units and cooperation
that expresses the interaction between components.

Models are constructed from components. These components perform activities
and, as we have already said, each activity has an associated duration described
by an exponentially distributed random variable. Moreover, each activity has
an action type α and an activity rate r. Each system action is uniquely typed
and there is a countable set A of all possible types, activities with the same
action type are different instances of the same action by the system. Since an
exponential distribution is uniquely determined by its parameter, the duration
of an activity is represented by a single real number parameter, the so-called
activity rate. This rate may assume the value of any positive real number of the
distinguished symbol > that has to be read as unspecified. We now present some
notations, also summarizing the concepts presented so far.

= A is the set of all action types (τ included, that denotes the type unknown)

= R+ is the set of all positive real numbers, including >

= Act = A×R+ is the set of all activities

Therefore, an activity is denoted as

a = (α, r)

with a ∈ Act, α ∈ A and r ∈ R+. Typically, components are denoted by upper-
case letters, activities by lower-case letters and action types by Greek letters.
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The combinators of the language allow expressions, or terms, to be constructed
defining the behaviour of the components via the activities they undertake and the
interactions between them. The behaviour of each component and consequently
of the whole system is described with the following semantic.

] Prefix

C = (α, r).S

This means that component C carries out activity (α, r) and then it subse-
quently behaves as component S. A delay is thus inherent in each activity
in the model and the timing behaviour of the system is captured, moreover
since the duration is a random variable also the uncertainty on how long an
action will take is represented.

] Choice

C = S1 + S2

This means that component C represent a system which may either behave
as component S1 or as component S2. In any case, C enables all the current
activities both of S1 and of S2 but only the activity that completes first will
decide the behaviour of C and the other component of the choice will be
discarded. Two facts need to be highlighted: the first one is that the con-
tinuous nature of the probability distributions ensures that the probability
that S1 and S2 both complete an activity at the exact same time is 0; the
second one is that the choice combinator implicitly assume that S1 and S2

are competing for the same (implicit) resource therefore, the combinator +
represent the competition between components.

] Cooperation

C = C1 ./ C2

This is an indexed family of combinators, one for each possible set of action
types L ⊆ A. L is the so-called cooperation set and defines the action types
on which the components involved must synchronize. ./ assumes that each
component proceeds independently with any activities whose types do not
occur in L. Whereas, activities with action types in L require the simul-
taneous involvement of both components in an activity of that type (notice
that τ /∈ L); accordingly one component may become blocked waiting for the
other component to be ready to participate. The cooperation, in practice,
forms a new shared activity with the same action type as the two cooperat-
ing activities and with rate reflecting the rate of the slower participant. If
one of the two cooperating activities has an unspecified rate in a component,
then the component is said to be passive with respect to that action type.
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] Parallel Composition

C = C1||C2

This represents exactly cooperation when L = ∅ which means that com-
ponents are allowed to proceed concurrently without interactions between
them. It exactly as if we wrote C1 ./

∅
C2.

] Assignment

A
def
= P

This means that a constant component A behaves as component P .

A race condition governs the dynamic behaviour of a model whenever more
than one activity is enabled, this means that when many activities try to proceed
only the fastest will succeed. Consequently, the probability that a particular ac-
tivity completes will be given by the ratio of the activity rate of that activity to
the sum of the activity rates of all the enabled activities.

As already anticipated, a component may be passive with respect to an action
type; this means that all the activities of that type enabled by the component will
have an unspecified rate >. These activities must be shared with another compo-
nent so that the other component can determine the rate of this shared activity. If
more than one activity of a given passive type can be simultaneously enabled by a
component, each unspecified activity rate must be assigned a weight; weights are
natural numbers used to determine the relative probabilities of the possible out-
comes of the activities of that action type. If no weights are assigned we assume
that multiple instances have equal probabilities of occurring.

When we have P = (α, r).S we say S is a derivative of P if, as in this case,
there only one activity between the two then we say that S is a one-step derivative
of P . The derivative set of a PEPA component P , denoted ds(P ) is defined as

the smallest set of components such that if P
def
= P0 then P0 ∈ ds(P ) and if

Pi ∈ ds(P ) ∧ ∃ a ∈ Act(Pi) such that Pi = a.Pj then Pj ∈ ds(P ). In practice, the
derivative set of a component P is the set of all PEPA components representing
all the reachable states of the system by P .

Given a PEPA component and its derivative set, its derivation graph is the
labelled directed multigraph whose set of nodes is the derivative set of the com-
ponent and whose set of arcs is defined by the activities connecting the states of
the graph.
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4.2 Reversed Compound Agent Theorem

The reversed compound agent theorem enables us, through the use of PEPA, to
model and interpret in a simpler way the interactions and synchronization actions
among different components of a system model. Using this approach, we are able
to retrieve product-form solutions for the system under study without the need
of solving the, computationally heavy, global balance equations. In this section
we are going to present the first version of this theorem omitting the details of
the proof, then we are going to show some of the extensions developed for this
approach and finally we are going to show an operational example in which we
try to obtain the same product-form for a simple queueing system using Jackson’s
theorem and RCAT.

RCAT exploits an abbreviated PEPA syntax in which we consider the prefix
combinator, the cooperation between two agents (components) and the constant
agent defined by the assignment combinator. As we have seen in standard PEPA
the shared actions of a cooperation occur at the rate of the slowest component;
nevertheless, now, we require that for each action type in the cooperation set,
exactly one agent is passive and concretely its synchronising action has rate > =
∞. This, basically means that the passive agent actually waits for the other one.
The set of actions, which an agent P may next engage in, is called the set of current
actions and when the system is behaving as agent P these are the actions that
are enabled. In addition, the derivation graph, formed by syntactic PEPA terms
at the nodes, with arcs representing the transition between them, determines the
underlying Markov process of an agent P . The transition rate between two agents,
Ci and Cj, denoted q(Ci, Cj), is the sum of the action rates labelling arcs connecting
Ci and Cj.

Here, we also need to introduce relabelling, which preserves the semantic but
will be useful to define the reversed process of cooperations: P{x← y}. describes
agent P in which all occurrences of symbol y have been replaced by x; y may be
an action type or also a rate. Notice that from now on we will refer to all agents as
simple if they are defined only through prefixes and assignments, whereas we will
say an agent is compound if it contains at least one instance of the cooperation
combinator.

4.2.1 Rates of the Reversed Actions

It is rather simple to find a PEPA agent definition X̄ that has the derivation graph
with arrows in the opposite direction with respect to those of a given agent X.
What it is not trivial is to find the appropriate rates of the reversed actions to
make X̄ the actual reversed process of X as defined in section 1.4.
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For simple agents, we can directly analyse the state transition graph of the
Markov process and after determining the reversed graph Ḡ, we proceed as follows:

1. We use the conservation of outgoing rate to equate qRi = qi for all states
i ∈ S

2. We find a covering set of cycles, we may choose the set of all cycles or the
set of all minimal cycles in G. If S is infinite then the set of cycles is also
infinite but in practice cycles often repeat in a parametrised way so that the
number of cycles to be considered will be finite.

3. For each (parametrised) cycle, we apply Kolmogorov’s criteria i.e. we equate
the known product of the rates around the cycle in G with the symbolic prod-
uct of the rates around the reversed cycle in Ḡ. Some of the reversed rates
may be already known or imposed by the previous steps or from previously
considered cycles in this step, which simplifies the resulting equations.

The result will be a system of possibly non-linear equations that uniquely
determines the reversed rates in Ḡ. This must be so because of the necessity
and sufficiency of Kolmogorov’s criteria and the uniqueness of the equilibrium
state probabilities in an ergodic Markov chain. Notice that one of the reasons
for analysing simple agents is to provide base cases for a compositional analysis
of larger Markov chains. In fact, any continuous Markov chain can be described
using only simple agents, however, the fact that an agent can perform multiple
actions leading to the same derivative causes multiple arcs in the derivation graph
and consequently also between two states in the transition graph of the underlying
Markov chain. This does not create any issue as we can always determine the total
reversed rate between any two states with multiple arcs between them, using one
of the known methods. However, we need to consider multiple actions individually
in cooperations. This is because an agent may have several actions leading to the
same derivative that synchronise with different actions in a cooperating compo-
nent. For example, this can happen when a queue witnesses a departure of a job,
this job may join other queues or also leave the system.

In the reversed cooperation, the portion of the total reversed rate allocated to
each individual reversed arc is crucial therefore a rule is needed. The rule we use
is the following:

Definition 4.1. The reversed actions of multiple actions (ai, λi) for 1 ≤ i ≤ n
that an agent P can perform, which lead to the same derivative Q, are respectively(

āi,

(
λi
λ

)
λ̄

)
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where λ = λ1 + · · · + λn and λ̄ is the reversed rate of the one-step, composite
transition with rate λ in the Markov chain, corresponding to all the arcs between
P and Q.

In other words, the total reversed rate is distributed amongst the reversed arcs
in proportion to the forward transition rates.

4.2.2 Compound Agents

Under appropriate conditions, the reversed agent of a cooperation between two
agents P and Q is a cooperation between the reversed agents of P and Q, after
some reparametrisation. Before formally showing this result (4.1), we first need to
define some new notation.

Definition 4.2. The subset of actions types in a set L which are passive with
respect to a process P (i.e. are of the form (a,>) in P ) is denoted by PP (L). The
set of the corresponding active action types is denoted by AP (L) = L \ PP (L).

Last thing to do before considering the following theorem we need to syntac-
tically transform the agent under analysis so that every occurrence of a passive
action (a,>) is relabelled as (a,>a); this guarantees that every passive action rate
is uniquely identified with exactly one action type.

Theorem 4.1 (Reversed Compound Agent Theorem). Suppose that the coop-
eration P ./

L
Q has a derivation graph with an irreducible subgraph G. Given

that

1. every passive action type in PP (L) or PQ(L) is always enabled in P or Q
respectively (i.e. enabled in all states of the transition graph);

2. every reversed action of an active action type in AP (L) or AQ(L) is always
enabled in P̄ or Q̄, respectively;

3. every occurrence of a reversed action of an active action type in AP (L)
(respectively, AQ(L)) has the same rate in P̄ (respectively, Q̄)

then the reversed agent P ./
L
Q with derivation graph containing the reversed sub-

graph Ḡ, is

R̄{(ā, pa)← (ā,>)|a ∈ AP (L)} ./
L
S̄{(ā, qa)← (ā,>)|a ∈ AQ(L)},

where

R = P{>a ← xa|a ∈ PP (L)},
S = Q{>a ← xa|a ∈ PQ(L)},
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{xa} are the solutions (for {>a}) of the equations

>a = qa, a ∈ PP (L)

>a = pa, a ∈ PQ(L)

and pa (respectively, qa) is the symbolic rate of action type ā in P̄ (respectively
Q̄)

As far as conditions 1. and 2. are concerned it is rather straightforward to
check if the passive actions are enabled in every state of the two agents P and
Q and if the reversed active actions are also always enabled. Condition 3. may
require a little more work if the rates of the reversed processes are not known.
Nevertheless, we can assume that condition 3. holds and solve the equations to
find the reversed rates (which will be precisely the traffic equations for the internal
flow butt we will refer to them as rate equations because we may deal with more
general models than queueing networks) and if these equations have a solution,
we see that the condition is satisfied. The existence of a rate equations solution
ensures the product-form of the model which follows naturally once the reversed
process and its rates have been defined.

Propagation of Instantaneous Transitions. In [2] the authors have proved
that RCAT can be applied also to models that involve propagating synchroniza-
tions. To understand what we mean we briefly need to discuss the concept of
G-network. G-networks [21] are a class of product-form queueing networks in
which both positive and negative customers are allowed; the first ones behave as
we are used to in traditional queueing networks whether the negative ones at ar-
rival to a station delete a positive customer, if any is present, or vanishes otherwise.
In [22] it was shown that these negative customers may act as triggers, meaning
that they can move a customer from a non-empty queue to another one. The class
of G-networks has been then further investigated to comprehend chains of instan-
taneous state changes that can be modelled as the propagation of instantaneous
transition as shown in [23, 24]. Accordingly, we write

P = (a→ b,>).Q

to denote a passive action with type a that takes process P to Q and instanta-
neously synchronizes as active on type b. The rate at which the transition synchro-
nizes on type b is well-defined and equal to the reversed rate of the passive action
with type a. As we shall see in the next chapter, this property will be extremely
useful for the modelling of the system we studied.

Example. We now give an example of an RCAT application, showing also that
the result obtained through this alternative method is exactly the same if we were
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Figure 4.1: Queueing Network under study.

applying Jackson’s theorem. The system we are going to analyse is the queueing
network showed in fig. 4.1 and its PEPA specification is as follows.

Q1,n = (a01, λ1).Q1,n+1 n ≥ 0

Q1,n = (a13, µ1).Q1,n−1 n > 0

Q2,n = (a32,>).Q2,n+1 n ≥ 0

Q2,n = (a02, λ2).Q2,n+1 n ≥ 0

Q2,n = (a23, µ2).Q2,n−1 n > 0

Q3,n = (a23,>23).Q3,n+1 n ≥ 0

Q3,n = (a13,>13).Q3,n+1 n ≥ 0

Q3,n = (a32, µ3p).Q3,n−1 n > 0

Q3,n = (a30, µ2(1− p)).Q3,n−1 n > 0

with (W0 ./
a13

W3)||(W1 ./
a23,a32

W3).

In order to verify that our model satisfies the three structural conditions of
RCAT we draw part of the Markov chain underlying each queue, highlighting the
different transitions between states (fig. 4.2).

At this point we can state that the first two structural conditions are satisfied
as all passive actions are enabled in every state and the reversed active actions
are also enabled. In fact, by inspection of the image above we can see there is
an outgoing arc for every state for every passive action and an incoming arc for
every state for every reversed active action. To verify the third condition we need
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Figure 4.2: Graphical representation of the PEPA model of the system showed in
fig. 4.1
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to retrieve traffic conditions in order to check that the rate of each reversed active
action is constant. Considering the xi with the same subscripts as action labels as
the rates of those actions, we have the following traffic equations:

x13 = λ1

x23 = λ2 + x32

x32 = (x13 + x23)
µ3p

µ3p+ µ3(1− p)

→


x13 = λ1

x23 = λ2 + x32

x32 = (x13 + x23)p

these will give the following results:

x13 = λ1, x23 =
pλ1 + λ2
(1− p)

, x32 =
λ1 + λ2
(1− p)

Since the reversed rates have been found and they are constant, RCAT tells us
not only a product form exists but also which one it is; as a matter of fact RCAT
states that the product form is given by the stationary distribution at the queues
where all the >i have been replaced by the correspondent reversed rates. In fact,
we have:

π1(n1) =

(
λ1
µ1

)n1

π2(n2) =

(
pλ1 + λ2
(1− p)µ2

)n2

π3(n3) =

(
λ1 + λ2

(1− p)µ3

)n3

Now, to check our result is true we retrieve the product form using Jackson’s
theorem, meaning again traffic equations, so we will have:

e1 = λ1

e2 = λ2 + e3p

e3 = e1 + e2

which results will be

e1 = λ1, e2 =
pλ1 + λ2
(1− p)

, e3 =
λ1 + λ2
(1− p)

. Given that by Jackson’s theorem we would have

πππ(n1, n2, n3) =

(
e1
µ1

)n1
(
e2
µ2

)n2
(
e3
µ3

)n3
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Substituting the just obtained results we will obtain the same result as before,
meaning we did right.



Chapter 5

The model

Using the Reversed Compound Agent Theorem several well-known product-form
have been proved again in a modular and compact way. This is exactly what
we have done and we are going to present our work in this chapter. We are
going to present the model devised by D. Gates and M. Westcott in [25, 4] that
represents our starting point, then we will show our derivation of its product-form
expression. Finally, we will present the simulation we built upon this model and
how we validated it.

5.1 The Starting Point

In [25, 4], the authors devised a particular Markov process for modelling the pro-
cess of wheel replacement and restoration on the trains of Queensland Railways.
Because of continuous use trains’ wheels get worn, when the wear becomes ex-
cessive the wheel is removed and replaced from stock, whereas worn wheels get
reprofiled by grinding and go into stock so that they can be used again in trains
that need wheels with a smaller diameter. Once a wheel becomes too small it is
discarded. Notice that reprofiling leads to wheels of various sizes both on trains
and in stock. The aim of the original project was to optimize the management
of the system given the associated costs, in this section we will discuss the model
itself and its probabilistic aspects. In fact, notice that randomness resides in the
random wear process of the wheels that creates a random demand for wheels from
stock. The following assumptions were made about the problem:

1. There are M size classes of wheel, labelled 1, . . . ,M . Type 1 wheels are the
new ones,

2. Any train can have only a single class of wheel on it, so there are effectively
M types of train as well, with a type i train (i = 1, . . . ,M) having only size

67
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i wheels for all time.

3. The minimum grinding needed to reprofile a worn size i wheel reduces its
size by one size class, though we can choose to reduce it further. So size
M wheels cannot be ground down further, consequently they are discarded
once worn.

4. There is an unlimited supply of new wheels, which are not held in stock
(meaning we always have x1 > 0), and unlimited storage for the stock of
other wheels.

5. Worn wheels occur on type i trains in a Poisson process of rate qi, indepen-
dently for each type of train.

6. A train cannot be left idle (since the number of trains is just adequate for
peak hour demand), so must have its worn wheels replaced immediately.

The stock level at time t is a random process XXX(t) = (x2(t), . . . , xM(t)), where
xi(t) (i = 2, . . . ,M) is the number of size i wheels in stock at time t > 0.
Changes of state are caused by the arrival of a train with worn wheels.

] If this train is of type i, it will discard a worn size i wheel which is ground
to a size i+ 1 wheel; thus xi+1(t)→ xi+1(t) + 1.

] Provided xi(t) > 0, a size i wheel will be taken from stock and put on the
train; thus xi(t)→ xi(t)− 1.

The interesting problem in building the model is: what happens if xi(t) = 0?
The authors have chosen the following strategy. The smallest wheel in stock greater
than size i is taken and it is ground it down to a size i wheel. If there are no wheels
in stock of sizes 2, . . . , i−1 then a new wheel is taken and ground it down to size i.
Notice that there is one case in which on the arrival of a train with worn wheels no
state changes take place and this is the case in which the incoming train has worn
wheels of size M and there are no size M wheels to use for replacement so new
ones must be taken. In chapter 2 and 6 of [8] the author describes some queueing
and migration models that may resemble the process under study, nevertheless
some important differences must be underlined:

1. transition rates depend on the state of the system not only through the
number at the origin and at the destination but also through all the states
between them.

2. transition rates effectively depend on the destination rather than the origin,
unlike most queueing models. In fact, one could think of the system as one
of a series of queues, where queue k is generating its own input at rate qk−1
and taking it from customers waiting at some earlier queue.
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The authors were particularly interested in the equilibrium distribution, if any, of
XXX(t). Their strategy was to dynamically reverse X(t) and to apply a generalization
of the classical Kolmogorov cycle. Once proved that the generalized Kolmogorov
criteria held for XXX(t) i.e. the process was effectively dynamically reversible they
deduced the following result.

Theorem 5.1. The Markov process XXX(t) on ZM−1 with infinitesimal transition
rates defined as follows1:

qjk = qk−1 · I(xj > 0, xj+1 = · · · = xk−1 = 0)

has an equilibrium distribution if ans only if ρi ≡ qi/qM < 1 (i = 1, . . . ,M − 1),
given by

πX(xxx) =
M∏
i=2

(1− ρi−1)ρxii−1 (5.1)

The derivation of this product-form is rather complicated, it is enough to con-
sider the fact one should exploit and prove to fulfill the detailed balance conditions
and Kolmogorov criteria. This is the reason why in the following section we pro-
pose an alternative approach.

5.2 An Alternative Approach

In this section, we revise the model of Westcott and Gates and provide an alter-
native proof of its product-form solution. First, we give an alternative and more
general description of the model, basically changing only some notation. We can
think of this model as if it was implementing a sender-based policy for migration
strategy in a distributed system. The model is defined as follows.
We consider a system with K warehouses numbered from 1 to K and an always
full warehouse denoted by the number 0. The space state of the warehouses is
SK = NK , with K ∈ N, K ≥ 1 and the state of the system can be described
by vector nnn = (n1, . . . , nK) ∈ SK . With an abuse of notation we define vector
ei, i = 1, . . . , K as the vector filled with zeros except for a 1 in position i. Each
warehouse is associated with a server that behaves as follows:

] If warehouse i is non-empty then, after an exponentially distributed time
with rate µi, it sends to another warehouse, say warehouse j, the object it
is using with a probability pij specified by the routing probabilities. After
the disposal of the object, it retrieves a new one from its own warehouse.
Therefore, the state changes from nnn to nnn−ei+ej unless the object is disposed
instead of being sent to warehouse j; in this case state changes from nnn to

1Notice that I(A) is the indicator function of event A.
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nnn− ei. Notice that we say server i is a provider of server j if pij > 0 and the

probability of disposal is given by 1−
∑K

j=1 pij.

] If warehouse i is empty (notice that this can never be the case of warehouse
0) then after disposing the object it is using to say warehouse j, the server
contacts one of its providers and tries to fetch a new object from it. If
the contacted warehouse is empty, then its server applies again the same
policy to its provider, this process terminates when a non-empty provider is
found (eventually warehouse 0). If k > 0 is the provider with the non-empty
warehouse then the state changes from nnn to nnn− ek + ej, whereas if the non-
empty warehouse is the never empty one then the state changes from nnn to
nnn + ej. In both cases, warehouse j is chosen as above.

Notice that there may be no state change if the object from server i is disposed and
the new one is taken from warehouse 0. Server 0 fetches objects from its always
full warehouse and sends the one that has received the service needed to one of
the other K warehouses with rate µ0.
In figure5.1 we show the network configuration we started from, then we will give
its PEPA specification and we will also show the graphical representation of the
PEPA model underlying the processes in figure 5.2 so that we will be ready to apply
RCAT. Notice that, for the moment, we consider the case of three warehouses but
the reasoning can be extended to a tandem of queues with arbitrary finite length.

Figure 5.1: Representation of the system under study.

The PEPA specification of the system in fig.5.1 is as follows.
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W0 = (a01,>01).W0

W1,n = (a01, µ0).W1,n+1

W1,n = (a12,>12).W1,n−1

W1,0 = (a12,>12).W1,0 → (a01, x12).W1,0

W2,n = (a12, µ1).W2,n+1

W2,n = (a20, µ2).W2,n−1

W2,0 = (a12, µ2).W2,0

with W0 ./
{a01}

W1 ./
{a12}

W2. The graphical representation of the PEPA model

underlying this system is shown in figure 5.2.

Figure 5.2: Graphical representation of the PEPA model underlying the queues of
the system shown in fig. 5.1

By inspection of the diagrams in fig.5.2 we can state that the structural con-
ditions of RCAT are satisfied as

] a01 is passive in W0 so we need that every state of the process has an outgoing
arc labelled a01 and this is true for W0.
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] a01 is active in W1 so we need that every state of the process has an incoming
arc labelled a01 and this is true for W1 thanks to the transition propagating
from state 0 into state 0.

] a12 is passive in W1 so we need that every state of the process has an outgoing
arc labelled a12 and this is true for W1.

] a12 is active in W2 so we need that every state of the process has an incoming
arc labelled a01 and this is true for W2.

Accordingly, we have that every passive action type in the cooperation set is
always enabled in the processes Wi and every reversed action of an active action
type in the cooperation set is always enabled in the reversed processes W i, as
requested by the structural conditions. Now, we need to find exactly the reversed
rates in order to verify the rate condition, i.e., we want every occurrence of a
reversed action of an active action type in the cooperation set to have constant
rate. First, we focus on x12 the reversed rate of action type a12, remember that
for Kolmogorov’s criteria the product of the rates for every cycle in the reversed
process must be the same of the product of the rates for every cycle in the forward
process. Accordingly, if we consider the reversed process of W2 we can state
x12 = µ2; moreover since the reverse rate of a self-loop is equal to the forward rate
we can safely replace the occurrences of >12 in process W1 with the rate x12. We
notice that every occurrence of active transition labelled a12 has the same reversed
rate. Then, to determine x01, the reversed rate of action type a01, we follow the
same reasoning as above, so if we consider the reversed process of W1 we can
state x01 = x12 and we replace >01 by x12. Consequently, we obtain the graphical
representation shown in figure 5.3.

From which we can derive the following product form

π(n1, n2) ∝
(
µ0

x12

)n1
(
µ1

x12

)n2

=

(
µ0

µ2

)n1
(
µ1

µ2

)n2

=
K∏
i=1

ρni
i−1

with K = 2 and where ρi = µi/µK . Adding the normalising constant we obtain
exactly product-form 5.1, i.e.

π(nnn) = π(n1, n2) =
2∏
i=1

(1− ρi−1)ρni
i−1.

To show the product-form holds true also for K ≥ 2 we prove it by induction
in the following.

Proof. We prove by induction that for all K ∈ N

π(n1, . . . , nK) =
K∏
i=1

(1− ρi−1)ρni
i−1 (5.2)
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Figure 5.3: Graphical representation of the PEPA specification underlying the
queues of the system shown in fig. 5.1, after the application of RCAT
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Base case. When K = 1 we have π(n1) = (1 − ρ0)ρn1
0 and when K = 2

we have π(n1, n2) = (1−ρ0)ρn1
0 (1−ρ1)ρn2

1 and we proved this above through
the use of the Reversed Compound Agent Theorem.

Induction hypothesis. Let k ≥ 2 be given and suppose 5.2 is true for
K = k, then by definition of product form we have what follows.

Induction step.

π(n1, . . . , nk+1) = π(n1, . . . , nk)(1− ρk)ρnk+1

k

=
k∏
i=1

(1− ρi−1)ρni
i−1 · (1− ρk)ρ

nk+1

k by induction hypothesis

=
k+1∏
i=1

(1− ρi−1)ρni
i−1

Thus, 5.2 holds for K = k+1 and the proof of the induction step is complete.

The conclusion is that the product-form solution proposed in 5.2 holds true for all
K ∈ N, with K ≥ 1.

Proof. We apply induction also from a modelling perspective.

Base case. When K = 2 RCAT holds as we have showed before.

Induction hypothesis. Let k > 2 be given and suppose RCAT holds for
K = k and we show the graphical representation of the PEPA specification
underlying the k queues in fig.5.4.

Induction step. In order to show that RCAT still holds true for K = k+1, we
add the station Wk+1, modify the diagram of Wk to allow the synchronization
between the two queues and verify that structural conditions and the rate
condition still hold. The graphical representation of k+ 1 queues is given in
fig. 5.5.

Now considering the graphical representation of Wk+1 we observe that ak,k+1

is active so we need that every state of the process has an incoming arc
labelled ak,k+1 and this is true; as ak,k+1 is the only synchronizing action in
Wk+1 we state structural conditions hold. As far as the rate condition is
concerned, we want every occurrence of a reversed action of an active action
type in the cooperation set to have constant rate. For Kolmogorov’s criteria
the product of the rates for every cycle in the reversed process must be
the same of the product of the rates for every cycle in the forward process.
Considering the reversed process underlying Wk+1 we can state

xk,k+1 = µk+1
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Figure 5.4: Graphical representation of the PEPA specification underlying the
queues of the model under study with k stations.
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Figure 5.5: Graphical representation of the PEPA specification underlying the
queues of the model under study with k + 1 stations.
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and since the reverse rate of a self loop is equal to the forward rate we can
replace all the occurrences of >k,k+1 in the diagram of Wk with rate xk,k+1.
Consequently, also the rate condition still holds true. Thus, RCAT holds
also for K = k + 1 and the proof of the induction step is complete.

The conclusion is that RCAT holds true for all K ∈ N, with K ≥ 1, from which
the product form showed before follows.

5.3 The Simulation

The implemented project is an event-oriented simulation. We choose to develop
the simulation program with the Python programming language. In particular,
we used the SimPy library (version 4.0.1) [26] that is a process-based discrete-
event simulation framework based on standard Python. The simulation is designed
to be adaptable to different tests, in order to achieve this we devised a good
parametrization of the input parameters. In fact, the system configuration can be
completely defined by the user. This means we can arbitrarily specify the number
of warehouses and corresponding servers, the rate of the exponentially distributed
service times at each station and the probability routing matrix. In addition, we
can specify the number of runs to be executed (by adding or subtracting seeds
from the seeds vector) and also the run time (meaning simulated time) of the
program. Finally, we can also choose if terminate the simulation after a certain
amount of simulated time or after a certain number of events have been processed.

5.3.1 Implementation Details

The code has three main components.

• In the name == ’ main ’ block we iterate over the list of seeds we de-
fined as global variable. In the loop that represents the block of code in
which we set and launch the replicated independent runs of the simulation
we do what follows.

] We create the array state representing the state of the warehouses,
notice that the first position is always initialized to 100 and we will see
later that it never decreases.

] We define two important variables that we use for gathering statistics:
lastChange, a list where we record the time of the last change of state
for each warehouse and timings, a list of dictionaries (one for every
warehouse) in which we record for how long each warehouse contains a
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certain number of objects; for each one of these dictionaries the number
of objects the is the key and the time is the value).

] We set a seed for this particular simulation.

] In the variable env we create the environment that will manage the
simulation time as well as the scheduling and processing of events.

] We create a list of server objects (entities) that will be initialised with
their own parameters (index and routing probabilities towards different
servers).

] env.process(stats collector(. . . )) schedules the event represented
by the function in input stats collector that records the instanta-
neous value of the state variable. Notice that through the use of the
keyword yield this event will be scheduled every second.

] Through the iteration of function
start delayed(env, servers[i].behaviour(), delay) for each server
an event behaviour is scheduled in the environment env with an expo-
nentially distributed delay 2.

] env.run(until=end) starts the simulation environment until a vari-
able end that can be either an integer representing the units of time or
an event.

] Finally we call the function times collector(. . . ) that deals with pro-
ducing (for each run) a number of .csv files and plots (.png files) con-
taining the comparison of the simulation results with the theoretical
ones as far as the proportion of time spent in each state is concerned.

• The block concerning the definition of class Server which presents the fol-
lowing functions:

] behaviour(self) that is the process execution method of each entity
i.e. of each server. It has an infinite while loop, that can be changed,
if needed, to stop the simulation after a certain amount of events. In
the loop two methods are called dispatch() and fetch() and then
through the use of the yield keyword another behaviour(self) event
is scheduled after an exponentially distributed time.

] functionfetch(self) is the method in which the server picks its provider
(its warehouse or another one) with the policy previously presented and
then if the warehouse is not warehouse 0 its state is decreased by one

2previously computed with random.expovariate(mean), where mean is the frequency param-
eter previously defined among the global variables.
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and if the simulation time has passed the warmup interval it starts
updating statistics.

] function dispatch() dispatch an object to another warehouse according
to the routing probability consequently the state of the destination gets
increased by 1, unless the object was not disposed.

] function find provider() is called in fetch() to find a provider in
case its own warehouse is empty. This is a recursive function that goes
backwards on the warehouses until it finds a non-empty one (eventually
warehouse 0)

• Among the global variables we can set we have:

] means, the list of frequency parameter for each server.

] routing probs, the list of lists containing a list for each server that
represents the routing probability from itself towards the other stations.

] warmup, the variable representing the time after which the warm-up
interval ended.

] seeds, the list of seeds.

The topology of the simulated system is shown in figure 5.6.

Figure 5.6: Tandem Configuration

with µ0 = 1.0, µ1 = 2.0, µ2 = 3.0 and µ3 = 4.0.

5.3.2 Warm-up Detection

In order to perform a steady-state analysis, we need to determine the warm-up
phase of our simulation, as anticipated before, this is done to be able to gather
statistics independent from the initialization bias.
The kind of data we are collecting up to now allows the simulation to step through
events using simulated time, meaning we perform the simulation as fast as possi-
ble, not considering the wall-clock time.
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To detect the warm-up period we used Welch graphical method. During the sim-
ulation we gather the state of the system, i.e. the number of objects present in
each warehouse. A snapshot of the system is taken every second. On these output
data we performed Welch graphical method.
Since we know that the initial state does not influence the existence of a steady-
state for the simulation, but it does influence the time employed to reach it we
decided to perform Welch method on the data gathered when starting from state

] [100, 0, 0, 0] meaning W0 has some jobs in it (by model definition we al-
ways have at least one job in W0 and its state never actually changes) and
W1,W2,W3 are empty. For simplicity we will call this starting point ”empty
initial state”.

] [100, 100, 100, 100] meaning at the beginning of the simulation all the ware-
houses have some objects stored. For simplicity we will call this starting
point ”full initial state”.

To briefly recap, Welch’s graphical method consists of:

1. making n replications with run length m

2. determining the ensemble averages over replications for each observation

3. defining a Moving Average to smooth oscillations with high frequency; choose
a window approx w = bm/4c

4. plotting the moving average and choosing L to be the value beyond which
our distribution seems to be in steady-state

We decided to perform 20 independent runs (n = 20), each run during a sim-
ulated hour (m = 3600 s), meaning that the size of the window to define the
moving averages was chosen to be w = 900. In case of empty initial state the
resulting plot is the one of figure 5.7 and we identified the warm-up period in the
first 800s; whereas in case of full initial state the plot is presented in figure 5.8 and
the warm-up period was identified in the first 1000s.
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Figure 5.7: Empty Initial State, warm-up interval: first 800s.

Figure 5.8: Full Initial State, warm-up interval: first 1000s.

After this brief analysis we decided to proceed using the initial state that caused
the shorter warm-up phase and consequently to modify our simulation code so that
it collected statistics only after the end of the warm-up interval.

5.3.3 Confidence Interval For Mean Number of Jobs

We know that from a theoretical point of view computing the mean number of
jobs in each station can be done using the formula:

N i =
ρi−1

1− ρi−1
i = 1, . . . , K
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where K is the number of warehouses. What we will show in this section is the
theoretical results for each station, the results retrieved from the simulation and
the corresponding confidence intervals. To obtain an average of the number of jobs
in each station for each run we took a photograph of the system every second and
we then computed the mean over the overall number of observations. To construct
the confidence intervals we used the classical method for confidence intervals for
the mean, using as estimate the mean over all the runs of our simulation. To show
this data we will use some tables3 for simplicity and because often plots were not
clear enough, being the values so small.

Station Analytical Res. Sim. Estimate Conf. Int. Check
1 0.3333 0.3331 [0.3329, 0.3334] IN
2 1.0 0.9993 [0.9982, 1.0005] IN
3 3.0 2.9988 [2.9940, 3.0036] IN

Table 5.1: Confidence Intervals for the mean number of jobs in each station.

5.3.4 Confidence Interval For Probability of being in a Cer-
tain State

We use the product form retrieved from this model as theoretical result and we
use our simulation to retrieve the proportion of time spent in a certain state and
construct on this data a confidence interval.
To retrieve data from the simulator we counted how much time a station was in a
certain state and then we computed the ratio on the overall simulation time (minus
the warm-up time). Then in order to construct confidence intervals we used the
formula for confidence interval for the mean.

State Analytical Res. Sim. Estimate Confidence Interval Check
0 7.5e-01 7.500746e-01 [7.499319e-01, 7.502172e-01] IN
1 1.875e-01 1.874754e-01 [1.873589e-01, 1.875919e-01] IN
2 4.6875e-02 4.683089e-02 [4.677716e-02, 4.688463e-02] IN
3 1.171875e-02 1.172061e-02 [1.168234e-02, 1.175888e-02] IN
4 2.929688e-03 2.9248e-03 [2.906185e-03, 2.943415e-03] IN
5 7.324219e-04 7.306659e-04 [7.232551e-04, 7.380766e-04] IN
6 1.831055e-04 1.826603e-04 [1.779957e-04, 1.873248e-04] IN
7 4.577637e-05 4.564159e-05 [4.392343e-05, 4.735975e-05] IN

3In the tables headers we use the following abbreviations to make them fit into the page:
”Analytical Res.” for analytical result, ”Sim. Estimate” for simulation estimate, ”Conf. Int.”.)
for confidence interval
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8 1.144409e-05 1.124516e-05 [1.019574e-05, 1.229458e-05] IN
9 2.861023e-06 2.531976e-06 [2.021230e-06, 3.042721e-06] IN
10 7.152557e-07 6.162049e-07 [3.874343e-07, 8.449755e-07] IN
11 1.788139e-07 1.818219e-07 [4.135830e-08, 3.222856e-07] IN
12 4.470348e-08 4.79766e-08 [-2.066563e-09, 9.801976e-08] IN
13 1.117587e-08 6.50212e-08 [-4.986180e-08, 1.799042e-07] IN
14 2.793968e-09 1.308815e-08 [-1.256463e-08, 3.874093e-08] IN
15 6.984919E-10 9.416356E-09 [-9.039702e-09, 2.787241e-08] IN

Table 5.2: Confidence intervals for the mean probability of station 1 being in a
particular state

State Analytical Res. Sim. Estimate Confidence Interval Check
0 5e-01 5.000796e-01 [4.998506e-01, 5.003086e-01] IN
1 2.5e-01 2.500617e-01 [2.499668e-01, 2.501566e-01] IN
2 1.25e-01 1.249862e-01 [1.248986e-01, 1.250739e-01] IN
3 6.25e-02 6.246857e-02 [6.238527e-02, 6.255188e-02] IN
4 3.125e-02 3.121386e-02 [3.115366e-02, 3.127407e-02] IN
5 1.5625e-02 1.561345e-02 [1.557336e-02, 1.565354e-02] IN
6 7.8125e-03 7.791495e-03 [7.752171e-03, 7.830819e-03] IN
7 3.90625e-03 3.890731e-03 [3.862091e-03, 3.919371e-03] IN
8 1.953125e-03 1.944338e-03 [1.924479e-03, 1.964197e-03] IN
9 9.765625e-04 9.784595e-04 [9.666310e-04, 9.902881e-04] IN
10 4.882812e-04 4.870465e-04 [4.800364e-04, 4.940566e-04] IN
11 2.441406e-04 2.446756e-04 [2.393640e-04, 2.499872e-04] IN
12 1.220703e-04 1.198068e-04 [1.163265e-04, 1.232872e-04] IN
13 6.103516e-05 5.848656e-05 [5.582695e-05, 6.114616e-05] IN
14 3.051758e-05 2.988362e-05 [2.835481e-05, 3.141243e-05] IN
15 1.525879e-05 1.500602e-05 [1.336080e-05, 1.665125e-05] IN
16 7.629395e-06 8.331384e-06 [7.300057e-06, 9.362711e-06] IN
17 3.814697e-06 4.318951e-06 [3.570253e-06, 5.067649e-06] IN
18 1.907349e-06 2.111977e-06 [1.544334e-06, 2.679621e-06] IN
19 9.536743e-07 1.125475e-06 [6.725728e-07, 1.578378e-06] IN
20 4.768372e-07 5.271561e-07 [3.021374e-07, 7.521747e-07] IN
21 2.384186e-07 1.262716e-07 [6.618201e-09, 2.459251e-07] IN
22 1.192093e-07 5.300295e-08 [-1.230042e-09, 1.072360e-07] NOT IN
23 5.960464e-08 5.975658e-09 [-3.568474e-09, 1.551979e-08] NOT IN
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Table 5.3: Confidence intervals for the mean probability of station 2 being in a
particular state.

State Analytical Res. Sim. Estimate Confidence Interval Check
0 2.5e-01 2.501416e-01 [2.499188e-01, 2.503645e-01] IN
1 1.875e-01 1.876205e-01 [1.874508e-01, 1.877901e-01] IN
2 1.40625e-01 1.40628e-01 [1.405299e-01, 1.407262e-01] IN
3 1.054688e-01 1.054363e-01 [1.053705e-01, 1.055022e-01] IN
4 7.910156e-02 7.905655e-02 [7.898594e-02, 7.912716e-02] IN
5 5.932617e-02 5.929747e-02 [5.920879e-02, 5.938615e-02] IN
6 4.449463e-02 4.446399e-02 [4.437527e-02, 4.455271e-02] IN
7 3.337097e-02 3.334719e-02 [3.326754e-02, 3.342684e-02] IN
8 2.502823e-02 2.498615e-02 [2.491311e-02, 2.505920e-02] IN
9 1.877117e-02 1.874255e-02 [1.867688e-02, 1.880822e-02] IN
10 1.407838e-02 1.406218e-02 [1.401332e-02, 1.411104e-02] IN
11 1.055878e-02 1.053843e-02 [1.050180e-02, 1.057505e-02] IN
12 7.919088e-03 7.888453e-03 [7.852407e-03, 7.924500e-03] IN
13 5.939316e-03 5.921576e-03 [5.883531e-03, 5.959620e-03] IN
14 4.454487e-03 4.442649e-03 [4.416016e-03, 4.469282e-03] IN
15 3.340865e-03 3.335884e-03 [3.308099e-03, 3.363670e-03] IN
16 2.505649e-03 2.513033e-03 [2.490875e-03, 2.535190e-03] IN
17 1.879237e-03 1.883832e-03 [1.863443e-03, 1.904220e-03] IN
18 1.409428e-03 1.419882e-03 [1.404671e-03, 1.435092e-03] IN
19 1.057071e-03 1.063748e-03 [1.048375e-03, 1.079121e-03] IN
20 7.92803e-04 8.013267e-04 [7.870798e-04, 8.155736e-04] IN
21 5.946022e-04 6.076284e-04 [5.945254e-04, 6.207314e-04] IN
22 4.459517e-04 4.525175e-04 [4.418390e-04, 4.631960e-04] IN
23 3.344638e-04 3.367014e-04 [3.268752e-04, 3.465276e-04] IN
24 2.508478e-04 2.527254e-04 [2.427817e-04, 2.626692e-04] IN
25 1.881359e-04 1.927272e-04 [1.850548e-04, 2.003996e-04] IN
26 1.411019e-04 1.441917e-04 [1.374834e-04, 1.509001e-04] IN
27 1.058264e-04 1.08553e-04 [1.033015e-04, 1.138045e-04] IN
28 7.936982e-05 8.122699e-05 [7.701107e-05, 8.544291e-05] IN
29 5.952736e-05 5.96537e-05 [5.599948e-05, 6.330793e-05] IN
30 4.464552e-05 4.442939e-05 [4.133876e-05, 4.752002e-05] IN
31 3.348414e-05 3.304209e-05 [3.025337e-05, 3.583081e-05] IN
32 2.511311e-05 2.438208e-05 [2.182315e-05, 2.694100e-05] IN
33 1.883483e-05 1.75217e-05 [1.515439e-05, 1.988900e-05] IN
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34 1.412612e-05 1.344964e-05 [1.157648e-05, 1.532281e-05] IN
35 1.059459e-05 1.017461e-05 [8.630080e-06, 1.171914e-05] IN
36 7.945944e-06 7.517311e-06 [6.139295e-06, 8.895328e-06] IN
37 5.959458e-06 5.923425e-06 [4.623264e-06, 7.223586e-06] IN
38 4.469593e-06 4.397712e-06 [3.174556e-06, 5.620867e-06] IN
39 3.352195e-06 3.125398e-06 [2.152052e-06, 4.098744e-06] IN
40 2.514146e-06 2.267176e-06 [1.344097e-06, 3.190256e-06] IN
41 1.88561e-06 1.581048e-06 [9.216680e-07, 2.240428e-06] IN
42 1.414207e-06 1.15398e-06 [6.158855e-07, 1.692074e-06] IN
43 1.060655e-06 8.967196e-07 [5.039647e-07, 1.289475e-06] IN
44 7.954916e-07 5.634597e-07 [2.558737e-07, 8.710457e-07] IN
45 5.966187e-07 5.276168e-07 [1.950425e-07, 8.601911e-07] IN
46 4.47464e-07 4.161931e-07 [1.233407e-07, 7.090454e-07] IN
47 3.35598e-07 3.968342e-07 [1.056640e-07, 6.880045e-07] IN
48 2.516985e-07 2.885574e-07 [6.617765e-08, 5.109371e-07] IN
49 1.887739e-07 1.729103e-07 [2.494236e-08, 3.208781e-07] IN
50 1.415804e-07 2.252675e-07 [1.183776e-08, 4.386973e-07] IN
51 1.061853e-07 1.788831e-07 [1.958468e-08, 3.381814e-07] IN
52 7.963898e-08 5.769006e-08 [-2.868590e-08, 1.440660e-07] IN
53 5.972924e-08 2.681123e-08 [-2.573878e-08, 7.936125e-08] IN
54 4.479693e-08 8.054352e-09 [-7.732178e-09, 2.384088e-08] NOT IN

Table 5.4: Confidence intervals for the mean probability of station 3 being in a
particular state

For all the computed confidence intervals we computationally checked that
our theoretical results do belong to the intervals and this result is shown in the
column we called ”check”. The fact that three theoretical values do not belong to
the computed confidence intervals is caused by the smaller and smaller probability
of being in a certain state. Notice also that for the construction of confidence
intervals we executed 30 runs, processing 8 million events for each run, this was
done in order to try to satisfy the normal approximation assumption. By this set of
simulations, we have shown that the analytical model accurately approximates the
performance obtained with the simulation, consequently we consider the simulation
program validated.
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5.4 Sensitivity Analysis

Sensitivity analysis is used to determine how output variables (i.e. the results of
a simulation) are affected by changes applied to the input random variables. In
practice, we violate some model assumptions to see how much these assumptions
influence the outcomes. We will state that the model is robust with respect to the
assumptions we will violate if the obtained results will be not so distant from the
original output. Notice that, in this case we do not expect theoretical results to
be inside the confidence intervals built from the simulation results but we hope to
observe a similar behaviour in the distributions and similar values as far as mean
indexes are concerned. On the contrary, if the results are completely different we
will say that the model is not robust with respect to the violation of the assump-
tions.
We are particularly interested in testing the sensitivity of the model under study
with respect to a departure from the classical exponential assumption of the ser-
vice times. In order to do this, we repeated the experiments described in the
previous section for two other distinctive distributions describing service times;
we used the lognormal and the uniform distributions. For both of them, we kept
the same means we used for the exponential one. Then, we applied a variation
coefficient of approximately 0.58 to the uniform distribution, meaning we have a
smaller variance with respect to the exponential one4. In order to do so, we set
0 and 2X as the parameters of the uniform distribution, where X̄ is the mean of
the exponential distribution. As far as the lognormal distribution is concerned,
we applied a variation coefficient of approximately 1.22 using a standard devia-

tion parameter defined by the following formula:

√
1

2X
+

1

X
, meaning we added

half of the variance to the variance of the exponential distribution to obtain the
variance of the lognormal one, then we retrieved the standard deviation squaring
the obtained values. We performed the experiments both in case of low load and
of high load (in this case we have µ0 = 1.9, µ1 = 2.0, µ2 = 2.1, µ3 = 2.2). Below
we show the obtained results.

First we present three plots, corresponding to the three warehouses, showing
the proportion of time spent in each state for each distribution and according to
the theoretical result. Then, we present a table containing the mean number of
jobs in a warehouse, for each warehouse and for each distribution. These plots and
the table are shown first in the low load case and then in the high load case.

4The variation coefficient is given by the standard deviation divided by the mean; notice that
the exponential distribution has variation coefficient equal to 1. A bigger variation coefficient
means we have a greater variance and conversely a variation coefficient smaller than 1 means we
have a lower variance
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Low load.

Figure 5.9: Warehouse 1.

Figure 5.10: Warehouse 2.
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Figure 5.11: Warehouse 3.

Station Analytical Res. Exponential Uniform Lognormal
1 0.3333 0.3331 0.2340 0.2239
2 1.0 0.9993 0.5382 0.7014
3 3.0 2.9988 1.2319 1.3391

Table 5.5: Mean number of jobs in each station according to the analytical results
and according to the simulation estimates provided respectively by the exponential,
uniform and lognormal distribution.
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High load

Figure 5.12: Warehouse 1.

Figure 5.13: Warehouse 2.
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Figure 5.14: Warehouse 3.

Station Analytical Res. Exponential Uniform Lognormal
1 6.3333 6.3388 2.2212 3.2738
2 10.0 10.0182 3.3338 5.0855
3 21.0 20.9659 5.2288 8.5578

Table 5.6: Mean number of jobs in each station according to the analytical results
and according to the simulation estimates provided respectively by the exponential,
uniform and lognormal distribution.

From the results produced above we can state that in low load, violating the
exponential assumption of service times, the system does not behave exactly as
predicted by the analytical solution. Nevertheless, the mean number of jobs for
each warehouse does not exhibit a huge effect caused by the changing of the dis-
tributions. As we can see through a quick inspection of the results in the high
load case, the values obtained using the lognormal or the uniform distribution get
more and more distant from our original outcomes.



Conclusions and Future Works

In this thesis, we have presented the theoretical background needed to understand
the different steps of our work. We showed the model at the basis of our study,
then we approached to it from a theoretical point of view in order to simplify
the proof of its product-form solution. This, in fact, was initially proved by the
authors of [4] employing the properties of dynamically reversed processes, which
can result complicated and computationally heavy. The main problem with this
kind of proof is that we have to guess both the reversed process and the renaming
function of the states, this can certainly be very difficult to achieve, as a matter
of fact the literature has few example of models whose product-form solution was
derived in this way.
Using the Reversed Compound Agent Theorem we were able to prove the same
result; this theorem enabled us, through the use of the PEPA stochastic process al-
gebra, to model and interpret in a simpler way the interactions and synchronization
actions among different components of a system model. In fact, RCAT offers an
alternative approach to derive the equilibrium state probabilities without the need
of solving balance equations. Moreover, it allows us to mechanise the methodology
used for generating reversed process using only the instantaneous transition rates
and then a product-form solution follows from specifications. Thus, the related
effort for the computation of product form solutions is drastically reduced.
We approached the model also from a more practical perspective; as a matter of
fact we built and validated a simulation program simulating our model, this was
done to gain an in-depth knowledge of the model, to carry out a performance as-
sessment and also a comparison with the obtained analytical results; moreover, we
also used it to test if the obtained results are invariant also in case of violation of
the model assumptions.

In conclusion we underline that until this moment the model is assumed to have
only tandem configuration, meaning we are considering a system composed of a
certain number of queues where a departure from one of them means an arrival to
the following queue. This is valid unless the departure is taking place in the last
queue of this tandem, in this case the departure is to be intended as a departure
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from the system. An implied property of this configuration is that it does not
admit feedback. However, in other real-world applications we could think of a
scenario in which feedback is needed, this is why we would like to expand this
model to admit them and in general to extend it to other topologies. To do so we
intend to use the presented tools in order to give a theoretical proof on a possible
reliable product-form and also an empirical validation of these results.



Bibliography

[1] P. G. Harrison, “Turning back time in markovian process algebra,” Theoretical
Computer Science, vol. 290, pp. 1947–1986, 2003.

[2] P. G. Harrison and A. Marin, “Deriving the rate equations characterising
product-form models and application to propagating synchronisations,” 6th
International ICST Conference on Performance Evaluation Methodologies
and Tools, pp. 107–116, 2012.

[3] P. Harrison and A. Marin, “Product-forms in multi-way synchronizations,”
The Computer Journal, vol. 57, pp. 1693–1710, 2013.

[4] D. Gates and M. Westcott, “Replacement of train wheels: An application of
dynamic reversal of a markov process,” Journal of Applied Probability, vol. 31,
pp. 1–8, 1994.

[5] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley-Interscience, 1975.

[6] L. Kleinrock, Queueing Systems, Volume II: Computer Applications. Wiley-
Interscience, 1976.

[7] J. Hillston, A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[8] F. Kelly, Reversibility and Stochastic Networks. Probability and Statistics
Series, J. Wiley, 1979.

[9] M. Baron, Probability and Statistics for Computer Scientists. 5 ed., 2018.

[10] A. Marin and S. Rossi, “On discrete time reversibility modulo state renam-
ing and its applications,” Proceedings of the 8th International Conference
on Performance Evaluation Methodologies and Tools, VALUETOOLS 2014,
p. 225–232, 2014.

[11] H. H. Liu, Software Performance and Scalability: A Quantitative Approach.
Wiley, 2008.

93



94 BIBLIOGRAPHY

[12] P. J. Burke, “The output of a queuing system,” Operations Research, vol. 4,
pp. 699–704, 1956.

[13] J. R. Jackson, “Networks of waiting lines,” Operations Research, vol. 5,
pp. 518–521, 1957.

[14] J. R. Jackson, “Jobshop-like queueing systems,” Management Science, vol. 10,
pp. 131–142, 1963.

[15] J. Y. L. Boudec, Performance Evaluation of Computer and Communication
Systems. EPFL Press, 2011.

[16] A. M. Law, Simulation Modeling & Analysis. McGraw-Hill, 5 ed., 2015.

[17] P. L’Ecuyer, “Software for uniform random number generation: Distinguish-
ing the good and the bad,” Winter Simulation Conference Proceedings, vol. 1,
pp. 95 – 105, 2001.

[18] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans.
Model. Comput. Simul., vol. 8, p. 3–30, 1998.

[19] R. G. Sargent, D. M. Goldsman, and T. Yaacoub, “A tutorial on the op-
erational validation of simulation models,” Proceedings of the 2016 Winter
Simulation Conference, p. 163–177, 2016.

[20] A. Clark, S. Gilmore, J. Hillston, and M. Tribastone, “Stochastic process
algebras,” The Computer Journal, vol. 55, pp. 132–179, 2007.

[21] E. Gelenbe, “Product-form queueing networks with negative and positive cus-
tomers,” Journal of Applied Probability, vol. 28, pp. 656–663, 1991.

[22] E. Gelenbe, “G-networks with triggered customer movement,” Journal of Ap-
plied Probability, vol. 30, p. 742–748, 1993.

[23] S. Balsamo, P. G. Harrison, and A. Marin, “A unifying approach to product-
forms in networks with finite capacity constraints,” SIGMETRICS Perform.
Eval. Rev., vol. 38, p. 25–36, 2010.

[24] P. Harrison, “Compositional reversed markov processes, with applications to
g-networks,” Performance Evaluation, vol. 57, pp. 379–408, 2004.

[25] M. Westcott, “Modelling and Analysis of Wheel Replacement and Restora-
tion,” Proceedings of the 1990 Mathematics-in-Industry Study Group, pp. 30–
44, 1990.



BIBLIOGRAPHY 95

[26] S. Team, “Simpy v. 4.0.1 documentation.” https://simpy.readthedocs.io/

en/4.0.1/.

https://simpy.readthedocs.io/en/4.0.1/
https://simpy.readthedocs.io/en/4.0.1/

	Introduction
	Statistical background
	Random Variables
	Bernoulli distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution
	Exponential distribution
	Normal distribution

	Confidence Intervals
	Stochastic Processes
	Markov processes
	Poisson processes
	The Law of Rare Events

	Reversibility for Markov Processes
	Birth-Death Processes
	Kolmogorov's Criterion
	Reversed process and -reversibility


	An Overview on Queueing Theory
	Queueing Theory Basics
	Queueing and Kendall's Notation
	Performance indexes

	Queuing Systems: properties and theorems
	Little's Law
	Utilisation Law
	PASTA Property and Inspection Paradox
	Stability of a Queue

	M/M/1 Queue
	Operational Analysis
	Study of the Underlying Stochastic Process

	Queueing Networks
	Burke's Theorem
	Jackson's Theorem


	Stochastic Simulations
	Types of Simulation
	Simulation Techniques

	Random Number Generator
	Marsenne-Twister Random Number Generator

	Discrete-Event Simulation
	Output Analysis
	Validation
	Warm-up Period and Independent Replications


	Deriving Product-Form Solutions
	Performance Evaluation Process Algebra
	Syntax

	Reversed Compound Agent Theorem
	Rates of the Reversed Actions
	Compound Agents


	The model
	The Starting Point
	An Alternative Approach
	The Simulation
	Implementation Details
	Warm-up Detection
	Confidence Interval For Mean Number of Jobs
	Confidence Interval For Probability of being in a Certain State

	Sensitivity Analysis

	Conclusions
	Bibliography

