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Abstract

The aim of this thesis is to verify the possibility of generating data series (tem-
perature, salinity or other) with decennial visibility starting from simulated series
in typical models of climatology, reproducing their conditional distribution. The
reason for this research is that once the network is properly trained, the generation
of the series is very fast, while the standard simulators take up a lot of machine
time. The work therefore aims to provide a fast tool for generating data that can
be used in the study of oceanography.
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Chapter 1

Introduction

1.1 Problem Description

”Oceanography: The science that studies the oceans and seas as a
whole and therefore: their chemical-physical properties, their move-
ments and the energy exchange between ocean and atmosphere (phys-
ical o.), the organisms that live there (plants and animals ) including
their ecology (biological o.) and the origin and geological structure of
ocean basins, as well as the rocks that constitute them and sediments
that settle there (geological o.) ... Physical oceanography attempts to
understand, simulate and predict the large and small scale mechanisms
of marine circulation and interaction with the atmosphere, coasts and
ocean floors.”

So says the Treccani Encyclopedia.
Oceanography was practically born with the journey of J. Cook (1772 -1775)

and then became established when at the end of the nineteenth century commu-
nication cables began to be laid on the bottom of the oceans; it was necessary to
know the configuration of the ocean floors in order to arrange a cable of suitable
length between the two shores.

These enterprises, with their rare successes and many accidents, taught a lot
about the ocean and its characteristics, but above all they made us understand
how important was the very difficult understanding of the phenomena that play a
role on the expanses of water of our planet.

Research in the field of physical oceanogarphy has developed with various pro-
grams since the 1960s: GARP (Global atmospheric research program), WCRP
(World climate research program), WOCE, (World ocean circulation experiment),
TOGA (Tropical ocean and global atmosphere), connected the oceans with the
atmosphere, highlighting the interactions and mutual influences.
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The oceans with their masses of water, currents, evaporation and interactions
with the atmosphere primarily determine the climate not only of coastal regions
but of the whole globe.

Various measurement systems are used for temperature, salinity, oxygen con-
tent, electrical conductivity, pressure ... both on the surface and in depth with
static buoys anchored on the bottom or with appropriately equipped vessels. Other
and more sophisticated instruments allow you to obtain wave height, wind speed,
current monitoring, chlorophyll concentrations, traces of oil on the surface ...

This mass of data converges to form the database necessary for the simulation
of system models useful for making more or less long-term predictions. The vision
of the future of our planet is based on these forecasts and the changes that the
climate has undergone are already sensitive today.

By now the climate change issue has become everyday, felt topical and inter-
ventions to correct the deviations are often only just good intentions and badly
managed.

We must take into account what was said by John Forbes Kerry, secretary of
state during the second term of Barack Obama:

“Climate change is real. The challenge is thrilling. And the longer we
wait, the harder it will be to solve the problem. ”

This is why climate research and its ability to provide robust and efficient fore-
casting tools are important.

1.2 Thesis Goal

At the forefront of climate research is the prediction of climate evolution over
a time horizon of a decade or so. Decadal climate variability bridges the gap
between short-term (sub-seasonal to seasonal) predictions of climate, where initial
conditions dominates, and long-term predictions of climate changes, where external
forcing (or the boundary conditions) dominates. This therefore requires accounting
for all the uncertainties that stem from the combination between external forcing
of climate and ongoing internal climate variability. Decadal climate prediction
has revitalized the interest on ocean circulation and coupled atmosphere-ocean
processes, as it has become clear that it is their understanding which provides
the key for successful decadal climate predictions. Decadal climate prediction
uses state-of-the-art coupled climate and Earth system models that are softwares
that resolve the system of fundamental physical and biogeochemical equations
that governs climate. The complexity of these tools brings an intrinsic difficulty
for decadal climate predictions, that is the contrast between the large number of
simulations required to accurately determine the probability associated to various
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possible decadal climate evolutions, and the high computational requirements of
climate models.

”The increase in resolution in MPI-ESM-HR1 results in a higher de-
mand of the computer resources compared to MPI-ESM-LR. MPI-
ESM-HR currently has a throughput of 15 model years per day and
thus makes it possible to perform climate simulations. For this, how-
ever, the model is run on 106 nodes (each with 36 cores). MPI-ESM-LR
is considerably faster and requires only 16 nodes for a throughput of
50 model years per day. The data storage increases by a factor of 5
from MPI-ESM-LR to MPI-ESM-HR considering 6-hourly model out-
put. This is mainly due to the doubling of horizontal resolution and
the number of vertical levels used form MPI-ESM-LR to MPI-ESM-
HR.”[11]

The machine used is Mistral, the high-performance computing system for re-
search on the earth system (HLRE-3), a petascale supercomputer.

The basic idea of this thesis is the use of AI with the aim of training efficient
and fast models that allow to generate ten-year climate forecasts in a short time
with distributions similar to those of the data provided as input to the neural
networks for the training.

1MPI-ESM is the Earth System Model developed by the Max Planck Institute for Meteorology.
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1.3 Contributions

• Use of a neural network to generate synthetic data relating to climatology

• Use of the Wasserstein loss function in TimeGAN

• Local normalization of the original data
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1.4 Outline

Chapter 1 Introduction
It briefly describes the context related to Oceanography and its links with Clima-
tology, the objective of the thesis and the original content of the thesis.

Chapter 2 Background Knowledges
The theory of the fundamental tools of this thesis is described: GAN, timeGAN,
and loss functions. The proposed model, used for the tests is then described.

Chapter 3 Experiments
It describes the origin and structure of data used for training, the program settings
and the coding of esperiments.

Chapter 4 Results
It describes the system used for testing and it describes the system used for the
tests, and reports the results of the tests performed.

Chapter 5 Conclusions and future work
It discusses the results and comparing systems used and future works the possible
developments of this work are indicated

Chapter 6 Appendix
It describes the structure of the program and the changes made to use it. As an
example, the codes of two programs used for the normalization are shown.
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Chapter 2

Background Knowledges

2.1 Generative models

Generative models represent a class of statistical models.
They differ from ”discriminatory” models in that:

• ”discriminatory” models have the task of establishing whether a certain data
belongs to a type of data instance rather than to another.

• “generative” models can generate new data instances.

The difference between the two models lies in the fact that a ”discriminatory”
model does not capture the probability of a given instance, but rather the proba-
bility that a label can be applied to that instance, while a ”generative” model seeks
the most probable: for example, in models that try to suggest the next word in a
sentence, words are assigned a probability associated with the previous sequence.

Given a set of data X and a set of labels Y, the ”discriminatory” models capture
the conditional probability P (X | Y ) hat is the probability that the label Y applies
to instance X, while in in the case of ”generative” models, the model will look for
the joint probability P (X, Y ) or P (X) if there are no labels.

The interest is aimed at generative models, as the goal is to build new instances,
in this case temperature evolutions, having distributions similar to those given as
examples during the training periods.

Among the various models of generative networks, the networks proposed by
Ian Goodfellow in 2014 are of particular interest for the greater simplicity and
adaptability [7]. Compared to other solutions, GANs (Generative Adversial Net-
works) solve intractability problems of other solutions such as restricted 1 or Deep

1Boltzman Machines (BM) are symmetric neural networks introduced in 1985 by G. Hinton
and Terry Sejnowsky [8]. Restricted Boltzman Machines (RBM) are BMs in which connection
restrictions are placed (there are no connections between neurons of the same level)
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Boltzmann machines 2

2.2 GAN

A GAN essentially consists of two parts:

• a Generator who learns to generate plausible data,

• a Discriminator who learns to distinguish fake generator data from real data.

When training begins, the generator produces random and therefore obviously
false data and the discriminator rejects the data as false.

As the training progresses the generator gets closer and closer to producing
outputs that can fool the discriminator until it begins to classify the false data as
real.

Both the generator and the discriminator are neural networks and the generator
is connected directly to the discriminator input. The discriminator classification
provides a signal that the generator, through backpropagation, uses to update the
weights of its structure. Figure 2.1 describes the scheme

Figure 2.1: Scheme off a GAN

2.2.1 Discriminator

The discriminator is a neural network that acts as a classifier. Its task is to distin-
guish real data from those created by the generator. In the training phase it uses
two data sources: real data, which are the examples that the generator will have to
try to replicate, and data from the generator. Real data is used as positive exam-
ples in training, while generator instances are used as negative examples. During
the training of the discriminator the generator remains unchanged: the weights
of its network do not change while it produces data on which the discriminator
trains.

2Deep Boltzmann Machine or Deep Belief Networks [1][8][12] are multi-layered RBM networks
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The discriminator training stages are as follows:

1. The discriminator classifies both real data and (false) generator data

2. The discriminator loss function penalizes the discriminator for errors made
(classification of a real instance as false or of a false instance as real)

3. With the backprpagation the discriminator updates the weights of its net-
work

2.2.2 Generator

The generator is trained to create fake instances that can fool the discriminator.
The network concerning the generator is composed as follows:

1. random noise generator

2. neural network of the generator that transforms the random noise received
in input into a data instance

3. neural network of the discriminator that classifies the instance

4. generator loss function

Generator: since GAN has the task of generating completely new data in-
stances, we have to supply it with noise as input. The neural network of the
generator will transform this noise into an instance with the intended meaning.
Experimentally, it has been seen that the distribution of the noise source is not
very important, therefore a uniform distribution is usually adopted.

Classification of the discriminator: the loss of the generator is produced
by the discriminator, therefore the backpropagation passes through both the dis-
criminator and the generator, it does not modify the discriminator but only the
generator in order not to change the discriminator during the training of the gen-
erator.

The generator training sequence is therefore as follows:

1. Random noise sample

2. Random noise transformation

3. Classification of the discriminator in ”true” or ”false”

4. Calculation of the loss from the discriminator classification result

5. Backpropagation through discriminator and generator to obtain gradients

6. Using gradients to change the generator network only
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2.2.3 GAN training

The Gans contain two separately trained networks and this poses some difficulties.

To solve them, an alternating training system is adopted:

1. the discriminator trains for some epochs (one or more)

2. the generator trains for a few eras (one or more)

3. phases 1 and 2 are repeated several times in order to train the discriminator
and generator networks

During the discriminator training phases the generator does not vary its weights.
Similarly, the discriminator does not vary its weights during generator training.

In this way the discriminator begins to train with simple instances: the gener-
ator provides practically random data easily distinguishable from real instances.

As the training proceeds, the generator becomes more and more capable of
producing instances very close to the real ones and the discriminator begins to
make mistakes more and more until it produces a completely random feedback
obtaining an accuracy of 50%: in practice the answer (true or false) is completely
random[6].

Loss Function In the original introductory document of GAN networks[7] the au-
thor proposes the following value function

min
G

max
D
V (D,G) = Ex∼pdata [logD (x) + Ez∼pz log (1−D (G (z)))] (2.1)

that the generator tries to minimize while the discriminator tries to maximize,
where:

• D (x) is the estimate of the discriminator of the probability that the real
data instance x is real

• G (z) is the expected value on all instances of generated data (false)

• D (G (z)) is the discriminator’s estimate of the probability that a false in-
stance is real

• Ez is the expected value on all random generator inputs
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It is a minimax match between D and G and derives from the cross-entropy between
the real distribution and the generated one. Actually, since the generator cannot
affect D (x), in order to minimize the loss the generator must minimize

log (1−D (G (z)))

.

”In practice, equation 1 may not provide sufficient gradient for G
to learn well. Early in learning, when G is poor, D can reject sam-
ples with high confidence because they are clearly different from the
training data. In this case, log (1−D (G (z))) saturates. Rather than
training G to minimize log (1−D (G (z))) we can train G to maximize
log (D (G (z))). This objective function results in the same fixed point
of the dynamics of G and D but provides much stronger gradients early
in learning. ”[7]

Mode collapse: it is a problem that occurs

“when the generator learns to map several different input z values to
the same output point”[6]

To avoid this inconvenience, in 2017 a Gan with a loss measured over the Wassertein
distance is proposed[2]. In this case the discriminator tries to maximize the so-
called ”critical loss”: D (x)−D (G (z)), while the generator will try to maximize
the term D (G (z)). This type of loss minimizes the problems involved in mode
collapse and also those of the ’vanishing gradient’ that can occur when a discrim-
inator become too good and does not provide enough information to generator to
improve.

Conclusions

GANs represent an interesting generative model useful for producing samples de-
rived from a data distribution:

“... many tasks intrinsically require realistic generation of samples from
some distribution.”[6]

In our case something more is needed:

“A model is not only tasked with capturing the distributions of features
within each time point, it should also capture the potentially complex
dynamics of those variables acrosstime.”[13]

To do this, the “Time-series Generative Adversarial Networks” (TimeGan) have
been introduced which we will examine in the next section.
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2.3 TimeGAN

Introduced in 2019 at the 33rd Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), Vancouver, Canada by Jinsung Yoon and others, TGANs
seek to solve the problem by capturing the potentially complex dynamics of time
variables.

”Specifically, in modeling multivariate sequential dataX1:T = (X1, ..., XT )
we wish to accurately capture the conditional distribution p(Xt|X1:t−1)
of temporal transitions as well.”[13]

The problem can be defined as follows: generally the data have a static component,
i.e. characteristics that do not vary over time, and a dynamic component, formed
by data that change over time: for example, in the case of personal data, the
Name , the Surname, the sex are static, the age, the state of health are dynamic ...
We call S the vector space containing the static characteristics and X the vector
space of the dynamic characteristics and let S ∈ S and X ∈ X two random vectors
whose specific values are denoted by s and x. In a certain time interval T we can
consider the set

(S,X1:T )

to which a joint probability p is associated, which also includes the random variable
T ; we therefore call the set of training data as

D = (sn, xn)Tn1

. What we want to achieve is to produce from the training data, the best approx-
imation

p̂ (S,X1:T )

to the original density
p (S,X1:T )

. This is difficult to achieve with a standard GAN structure.

“Therefore we additionally make use of the autoregressive decomposi-
tion of the joint

p (S,X1:T ) = p (S)
∏
t

p (Xt | S,X1:t−1)

to focus specifically on the conditionals, yielding the complementary—and
simpler—objective of learning a density

p̂ (Xt | S,X1:t−1)
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that best approximates

p(Xt|S,X1:t−1)

at any time t.”[13]

Two distinct objectives arise from this decision. The first can be expressed with:

min
p̂
D (p (S,XT−1) ‖ p̂ (S,XT−1)) (2.2)

where D is some measure of the distance between the two distributions, and is
global. The second one:

min
p̂
D (p (Xt | S,X1:t−1) ‖ p̂ (Xt | S,X1:t−1)) (2.3)

which instead locally measures the point-to-point distance between the original
sequence at the moment t and the generated one. From here we configure the
objective that combines the GAN, linked to the expression (2) which is config-
ured as the Jensen-Shannon divergence and a supervision training through the
maximum-likelihood (ML) which uses the original data and which is configure as
the divergence of Kullbach-Leiber, linked to expression (3).

2.3.1 Implementation

The TimeGAN structure consists of four network components:

“an embedding function, recovery function, sequence generator, and
sequence discriminator. The key insight is that the autoencoding com-
ponents (first two) are trained jointly with the adversarial components
(latter two), such that TimeGAN simultaneously learns to encode fea-
tures, generate representations, and iterate across time. The embed-
ding network provides the latent space, the adversarial network op-
erates within this space, and the latent dynamics of both real and
synthetic data are synchronized through a supervised loss.”[13]

Figure 2.2 shows the block diagram of TimeGAN.
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Figure 2.2: Block diagram of a TimeGAN[13]

Let’s briefly describe the four components.

Embedding and Recovery Functions

The two components of Embedding and Recovery are autoencoders[9] which have
the purpose of conveniently mapping the latent space, so that the adversarial
network can learn the temporal relationships between data through dimensional
reduction. Recalling that the specific values for the static and dynamic character-
istics are s and x respectively, and calling hS and ht the components of the latent
spaces (static and temporal) the embedding network will be a (recurring) network
performs the following operations :

hS = eS (s) , ht = eX (hS, ht−1, xt) (2.4)

eS and et are two networks, the first for static functions, the second for temporal
functions. The recovery network will have to reconstruct the static s̄ and temporal
x̄1:T characteristics implemented with two networks rS and rX :

s̄ = rS (hS) , x̄t = rX (ht) (2.5)

realized through feedforward networks.
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Sequence Generator and Discriminator

Here, too, both the generator and the discriminator operate on static and dynamic
data. For the generator:

ĥS = gS (zS) ĥt = gX

(
ĥS, ĥt−1, zt

)
(2.6)

where gS is a generator network for static functions and gX a recurring network
for temporal functions.

“Random vector zS can be sampled from a distribution of choice, and
zt follows a stochastic process; here we use the Gaussian distribution
and Wiener process.”[13]

For the discriminator:

ỹS = dS

(
ĥS

)
ỹt = dX (←−u t,

−→u t) (2.7)

where −→u = −→c X
(
ĥS , ĥt,

−→u t−1

)
and←−u t = ←−c X

(
ĥS , ĥt,

←−u t+1

)
respec-

tively denote the sequences of forward and backward hidden states,
−→c X ,←−c X are recurrent functions, and dS, dX are output layer classifi-
cation functions.”[13]

Training scheme

For the training we first have the ”reconsruction loss” with which we train the
emedding and reconstuction networks for the reconstructions s̃, X̄1:T of the original
data s,X1:T from latent representations hS, h1:T

LR = Es,X1:T∼p

[
‖s− s̃‖2 +

∑∥∥∥Xt − X̃t

∥∥∥
2

]
(2.8)

Secondly, we have the unsupervised loss typical of GAN in which the probability
of giving correct classifications is maximized for the discriminator, or minimized
for the generator.

LU = Es,X1:T∼p

[
log yS +

∑
t

log yt

]
+ Es,X1:T∼p

[
log (1− ŷS) +

∑
t

log (1− ŷt)

]
(2.9)

In order to obtain a greater adherence to the conditional distributions of the data,
a further loss is introduced which trains the generative network in supervised mode
in which the generator receives sequences derived from the embedding of real data
in order to generate the next vector.
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“Gradients can now be computed on a loss that captures the discrep-
ancy between distributions p(Ht | HS, H1:t−1) and p̂ (Ht | HS, H1:t−1)
(supervised loss)”[13]

LS = Es,X1:T∼p

[∑
t

‖ht − gX (hS, ht−1, zt)‖

]
(2.10)

During training, the difference between the latent vector provided at the next step
by the embedding network and the latent vector generated synthetically by the
generator is evaluated. LU checks that the generator produces plausible sequences
for the discriminator, while LS checks the gradualness of the transactions.

Optimization

Based on fig. 2.3 consider the parameters of the four networks and are: θe the
parameters of the embedding network, θr the parameters of the recovery network,
θg the parameters of the generator and θd of the discriminator.

Figure 2.3: b) Training scheme; solid lines indicate forward propagation of data, and dashed lines indicate
backpropagation of gradients[13]

The training function for the first two networks uses both reconstruction loss
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and supervised loss via a λ ≥ 0 hyperparameter that balances the two losses.

min
θe,θr

(λLS + LR) (2.11)

The training function for the generator and discriminator networks uses both the
reversal of the loss via a hyperparameter η ≥ 0 to balance the two losses.

min
θg

(
ηLS + max

θd
LU
)

(2.12)

In practice, TimeGAN is not particularly sensitive to hyperparameters: for all
experiments the following values have been set: λ = 1 and η = 10

2.4 Proposed model

The original code found at the following link: https://bitbucket.org/
mvdschaar/mlforhealthlabpub/src/master/alg/timegan/

[13]
was used for the tests. The proposed model was created in Python 3.7 with

the following open source software libraries:

• numpy version >= 1.17.2

• tensorflow version == 1.15.0

• tqdm version >= 4.36.1

• argparse version >= 1.1

• pandas version >= 0.25.1

• scikit-learn version >= 0.21.3

• matplotlib version >= 3.1.1

with the following standard settings:
embedder:

Embedding network between original feature space to latent space.
Args: - X: input time-series features - T: input time information
Returns: - H: embeddings
hidden dim = 24
num layer = 3
activation fn = sigmoid
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module name = gru

recovery:

Recovery network from latent space to original space.

Args: - H: latent representation - T: input time information

Returns: - X tilde: recovered data

hidden dim = 24

num layer = 3

activation fn = sigmoid

module name = gru

generator:

Generator function: Generate time-series data in latent space.

Args: - Z: random variables - T: input time information

Returns: - E: generated embedding

hidden dim = 24

num layer = 3

activation fn = sigmoid

module name = gru

discriminator:

Discriminate the original and synthetic time-series data.

Args: - H: latent representation - T: input time information

Returns: - Y hat: classification results between original and synthetic
time-series

hidden dim = 24

num layer = 3

activation fn = sigmoid

module name = gru

2.5 Loss functions

In general, a loss function measures the degree of accuracy with which a certain
statistical model describes a set of empirical data about a certain phenomenon.
The goal of a machine learning process is to create an accurate model of a reality.
To evaluate its effectiveness and performance, we use a loss function. When work-
ing on a Machine Learning or Deep Learning problem, the loss functions are used
to optimize the model during training. The goal is almost always to minimize the
loss function. The smaller the loss, the better the model.
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2.5.1 Cross-entropy

[5] Since in a classification problem we get a value that indicates the probability
that a given sample belongs to a specific class or not, we want to increase the
degree of accuracy of the model as much as possible. Considering the discrete
case, the cross-entropy loss function is:

LCE = −
∑
i=1

p (x) log q (x) (2.13)

where p (x) e q (x) are two probability distributions. Cross-entropy is used to
correct model weights during training. In this case the formula (13) becomes:

LCE =
∑n

i=1
ti log (pi) (2.14)

in cui ti is the truth value relative to the i-th class (0,1) and pi the probability value
that leaves the network for the i-th class. For each epoch the value of LCE must
decrease and the weights are adjusted with the backpropagation. The optimization
process (adjusting the weights so that the output is close to real values) continues
until the training is finished.

2.5.2 Wasserstein loss function

The Wasserstein loss function solves the problem of low or zero gradients. It is
based on the Wasserstein distance or Earth mover’s distance metric between two
probability distributions. Interpreting the two probability distributions as piles of
earth, the Wasserstein distance is the minimum cost necessary to transform one
pile into another. The two piles must have the same amount of land and the cost is
the amount of land to be moved to turn one pile into the other. WGANs are GANs
where the loss function is the Wasserstein loss function[2]. Wasserstein GANs are
less vulnerable to freezing than minimax-based GANs and avoid problems with null
gradients. Earthmoving distance also has the advantage of being a true metric:
a measure of distance in a space of probability distributions. Cross-entropy is
not a metric in this sense. The loss function can be implemented by multiplying
the expected label for each sample by the predicted score (element-wise), then
calculating the mean.

Below is the python code related to the Wasserstein loss function.

1 from keras import backend
2 def wasserstein_loss(y_true, y_pred):
3 return backend.mean(y_true * y_pred)
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Chapter 3

Experiments

3.1 Datasets

The data are taken from the preoperational MiKlip system for decadal climate
predictions.

The first phase of MiKlip was funded by the Federal Ministry of Education
and Research of Germany ( https://www.fona-miklip.de/research/miklip-i-miklip-
first-phase/ )

The MiKlip system[10] is based on the high-resolution version of the Max
Planck Institute - Earth System Model (MPI-ESM1.2-HR)[11]. MPI-ESM1.2-HR
is a conglomerate of a coupled general circulation model and subsystem models for
land and vegetation, and biogeochemistry. In MPI-ESM1.2-HR, the atmospheric
general circulation model ECHAM6.3 uses a T127/ 100 km horizontal resolution
and 95 hybrid sigma pressure levels that extend up to 0.01hPa; the ocean-sea ice
model MPIOM[9] features a tripolar grid with an eddy-permitting global resolution
of 0.4° with 40 z-levels. MPI-ESM-HR and similar configurations of MPI-ESM have
been widely tested and used in studies of climate dynamics and variability.

We use the MiKlip simulations contributing to the dcppA experiment of the
Decadal Climate Prediction Panel (DCPP)[3] . The simulations include an histor-
ical assimilation run covering the period 1958/11-2018/11 and hindcasts initial-
ized on November 1st of each year between 1960 and 2018 and using historical
forcing. Each hindcast1 consist of five ensemble members differing in the initial
state (r1,. . . ,r5). The data are available from the Earth System Grid Federation
An AMV index is calculated from monthly MPIOM output as spatially-averaged
North Atlantic sea-surface temperature data over the domain spanning 0–60°N

1n oceanography and meteorology, backtesting is also known as hindcasting: a hindcast is a
way of testing a mathematical model; researchers enter known or closely estimated inputs for
past events into the model to see how well the output matches the known results.[]
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latitude and 0°–80°W longitude. Before the index calculation, systematic model
errors including drift and biases are removed from grid-point data according to the
DCPP guidelines.

3.1.1 Data structure

The data provided is presented as fifty-nine 122x5 matrices as can be seen in the
following figure ??:

Figure 3.1: Input data structure

Each matrix consists of 5 simulations of North Atlantic sea temperatures. Each
column carries the average monthly temperatures starting from November of the
year indicated for 10 years: the first matrix carries 5 simulations from November
1960 to December 1970, the second from November 1961 to December 1971 and
so on up to the last one covering the period from 2018 to 2028.
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Temperatures range from 17,857 ° C (minimum) to 24,271 ° C (maximum).
The average temperatures are: 20,881 ° C with a standard deviation of 1,615 ° C.
The data, before being given as input to the program, have been normalized. Two
different normalizations were initially tested:

1. Scaling or unity-based feature applied to the entire data set: x̄ = x−min
max−min

2. Standard score applied to the entire set of data: x̄ = x−µ
σ

The two normalizations produced unsatisfactory results: the shape of the curves
was correct, but did not allow to capture the growth dynamics of the input data,
providing results with completely flat averages.

Therefore, the same normalizations applied not to the whole data set but locally
to each single column of the matrices were applied. Section 4.3 Settings describes
the abbreviations relating to normalizations.

3.2 Evaluation Protocols

3.2.1 Settings

The program was set as follows:

• module: gru (original)

• num layer: 3 (original)

• hidden dim: 24 (original) or 50

• Loss function (for discriminator): Cross entropy loss (original) (CE) or
Wasserstein loss (W)

The training data was normalized a priori with four types of normalization func-
tions:

• Normalization functions:

– none (original)

– Unity-based (G) =⇒ x̄ = x−min
max−min

– Unity-based local (S) =⇒ x̄loc = xloc−minloc

maxloc−minloc
(we calculate the values

on each column)

– Standard score (Ss) =⇒ x̄ = x−µ
σ

– Standard score local (SsL) =⇒ x̄loc = xloc−µloc
σloc

(we calculate the values

on each column)
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3.2.2 Experiment coding

Experiments are performed with the following settings.

Normalization N Ss SsL S G N Ss SsL S G
Loss CE CE CE CE CE W W W W W

hidden dim 24 24 24 24 24 50 50 50 50 50

Table 3.1: Coding experiments

The generated file has the name created as follows: Dgen X Y xxHD where
X the type of loss (CE or W), Y represents the normalization type (Ss, SsL, G
or S), and xx (24 or 50) a digit representing the number of hidden dimensions
(HD). The folder that stores the trained model will have the name created as fol-
lows: str X Y xxHD with the same conventions already described. For example
the name of a file generated with loss = Cross-entropy, Normalization = Standard
score and with hidden dim = 24 is:
Dgen CE Ss 24HD.npy
and the folder where the structure of model is saved is called:
str CE Ss 24HD.
From each trained model 100 samples were created in an array of size 100x59x122x5,
stored in a file that is named as the originally originated file with the addition of
the digit 100 before the extension .npy. In order to then compare the results with
the original, the array is renormalized, applying the inverse function used to nor-
malize using the previously stored scale values.

• Re-normalization:

– none (original)

– Unity-based (G):x = x̄ · (max−min) + min

– Unity-based local (S): xloc = x̄loc · (maxloc−minloc) + minloc

– Standard score (Ss): x = x̄ · σ + µ

– Standard score local (SsL): xloc = x̄loc · σloc + µloc
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Chapter 4

Results

The tests were carried out with the code described and, in the first instance, the
original settings were kept (see section 4.3.1 Settings).

The code also provided for being able to change modules.Gru, lstm and lstmLN
were available.

Once the model had been trained, it was necessary to produce a series of
samples on the basis of the saved parameters, on which statistical analysis could
be carried out. Unfortunately, with the two modules lstm and lstmLN the restore
program gave serious system errors (probably due to a tensorflow bug); therefore
the tests were made only with the gru module.

A Gated Recurent Unit (gru) is a recurrent neural network introduced in
2014[4] that solves the vanishing gradient problem. To solve the vanishing gradient
problem, GRU uses two vectors called ”update gate” and ”reset gate” which have
the task of establishing which information must be passed to the output.

4.1 Test environment

The tests were performed on a MacBook pro laptop with macOS High Sierra
version 10.13.6 operating system and 8 GB of ram.

For each test, 1000 iterations were performed to train the model. Initially,
tests were carried out with more than 1000 epochs (2000, 5000), without obtaining
particular improvements in the results.

The time it took to train each model was just over an hour, while it took
less than a minute to generate 100 samples from the trained model. Initially the
program was tested with the original data proposed by the author. Having verified
the functioning of the code, we started with the original datasets, the real tests
started.
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4.1.1 Without external standardization

The program foresees a pre-treatment of the data, for which the original data and
with all the original settings were used as a first test.

It is interesting to see how the generated data develop over time. In the follow-
ing figure 4.1 you can see the result of the data generated as the training periods
increase. In the upper part there is the trend (annual for ten years) of a simulation
(the first of the year 1960), in the lower part there is the evolution of the generated
curve.

Figure 4.1: Development of the generated data

The following figure 4.2 shows the result of the processing. The red curves
represent the average values per year of the original data, the black curves the
average values per year of the generated data (500), the green curves the average
values per column of the original data and the blue curves the same values for the
generated data.
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Figure 4.2: Results for CE N 24HD

As you can see, the result does not copy the trend of the red curves: the
averages of the generated data are flat and the growth dynamics are not captured.

4.1.2 Without external normalization with Wasserstein loss

The previous result suggested that the system had entered collapse mode, that is,
that the generator is stuck in a local minimum. To avoid this it is suggested to
use the Wasserstein distance as the loss function. For this reason the program has
been modified to allow the use of the standard function loss (cross entropy: ce) or
the Wasserstein loss (w). The python library, keras, gives the possibility to build
this function with a few lines of code. The results can be seen in the following
figure 4.3.
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Figure 4.3: Results for W N 24HD

Also in this case the growth dynamics are not captured.

4.1.3 With external global normalization

This result suggested that the type of normalization adopted was not useful for
capturing the temporal dynamics of the data.

The following programs have therefore been created to perform the proposed
normalizations (see section 4.3.1 Settings):

• rescaler g.py: for Unity-based normalization on all data. The values neces-
sary for the renormalization are stored in the two-dimensional MaMi array
in which MaMi [0] = min (date) and MaMi [1] = max (data) and saved in
the MaMi.npy file

• rescaler Ss.py: for Standard-score normalization on all data. The values
necessary for the renormalization are stored in the two-dimensional Stat
array in which Stat [0] = mean (data) and Stat [1] = std (data) and saved
in the Stat.npy file

The appendix shows the rescaler g.py code as an example.

“Global” normalizations, ie on all data were therefore tested, . The figure
shows 4.4 the result of one of the tests carried out which, however, always show
the same unsatisfactory trend.
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Figure 4.4: Results for CE G 24HD

4.1.4 With local external normalization

Since even the ”global” normalizations did not give acceptable results, it was
thought that the choice of parameters referring to the whole data set could some-
how mask the dynamics of the original data by flattening the results around the
values used in the normalization. Two other programs were then created to locally
normalize the data (see section 7 Settings):

• rescaler.py: for Unity-based normalization on each column. The values nec-
essary for the renormalization are stored in the mmsMat array of dimensions
(59x2x5) where mmsMat [x, 0, y] = min (dataMat [x,:, y]) and mmsMat [x,
1, y] = max ( dataMat [x,:, y]) and saved in the mmsMat.npy file

• rescaler ls.py: for Standard-score normalization on each column. The val-
ues necessary for the renormalization are stored in the meanStd array of
dimensions (59x2x5) where meanStd [x, 0, y] = mean (dataMat [x,:, y]) and
meanStd [x, 1, y] = std ( dataMat [x,:, y]) and saved in the meanStd.npy file

The appendix shows the rescaler.py code as an example. Trials with locally nor-
malized data immediately yielded encouraging results.

The following figure 4.5 shows the result of a test performed with the Wasser-
stein loss function and Unity-based normalization.
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Figure 4.5: Results for W S 24HD

As it is easy to see, compared to the previous results, in this case the gener-
ated data try to adapt to the dynamics of the original data while having a much
larger variation on the average values. In the next figure 4.6 we see a different
representation: in red there are the average values calculated by column, of the
original data, in black there are the generated ones. Each column shows 10 years.
The first box shows the column averages of the first 5 years, the second box shows
the averages of the second 5 years.
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Figure 4.6: Differences for W S 24HD

Here we can clearly see the greater amplitude of the averages of the generated
data. We then proceeded to try the Standard-score normalization with cross-
entropy as a loss function. The results are those in the figure 4.7.

Figure 4.7: Results for CE SsL 24HD
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As you can see, the generated values have significantly smaller averages than
the original values. In the representation ”by differences” it is much clearer (figure
4.8.

Figure 4.8: Differences for CE S 24HD

In all likelihood, the system has gone into collappse mode. The Wassesrstein
loss function was then applied, obtaining the following result (figure 4.9).
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Figure 4.9: Results for W SsL 24HD

The result is much more interesting, despite the fact that in some cases the
averages of the generated values are still a little too low. To better evaluate this
result, a so-called ”violin plot” was made. The diagram is divided into two parts
for clarity: in the first part for each year there is the distribution of the average
values of the first five years of each simulation (column), on the left that of the
original data (5 elements) in blue, on the right that summary data (500 elements)
in red; in the second part, again for each year, there is the distribution of the
average values of the second five years. The central year of each processing is
indicated on the abscissa; for example in the first column of the first diagram
(years 1960-1964) the year 1962 is indicated, in the first column of the second
diagram (years 1965-1969) the year 1967 is indicated. (figures 4.10) and 4.11))
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Figure 4.10: Violin plot for W SsL 24HD part one

Figure 4.11: Violin plot for W SsL 24HD part two

Finally, a further experiment was done with the localized Standard-score ex-
ternal normalization, the Wasserstein loss function and hidden dimension = 50.
The results are shown in the following figure 4.12):

32



Figure 4.12: Results for W SsL 50HD

The following two violin plots clearly illustrate the result, showing how the
synthetic data conforms to the dynamics of the original data and maintain average
values similar to the original ones. (figures 4.13 and 4.14)
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Figure 4.13: Violin-plot for W SsL 50HD part one

Figure 4.14: Violin-plot for W SsL 50HD part two
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Chapter 5

Conclusions and future works

5.1 Conclusions

The work aimed to quickly create synthetic data using a neural network. The
TimeGAN network introduced by Jinsung Yoon in 2019 was chosen, which tries
to mimic the temporal dynamics.

The network consists of four modules, embedder, recovery, generator and dis-
criminator as described above. The cross-entropy loss function was originally
adopted for each module.

It was thought useful to avoid collapse mode, and in fact it was found to be, to
insert the possibility of choosing the Wasserstein loss function for the discriminator
module instead of the cross-entropy loss function.

Furthermore, it was decided to normalize the training data locally, ie on each
single simulation, rather than globally, ie on the whole data set.

The best realizations were precisely those that used the local Standard-score
external normalization and the Wasserstein loss function.

Since the purpose of the thesis was to obtain synthetic data with the same trend
as the original data, in a short time, the following table compares the computer
resources used to generate the simulations between MPI-ESM and this work:

Machine Nodes Cores/node years/time
MPI-ESM Mistral 16 36 50/day
this thesis Mac Book pro 13’ 1 2 30x5x100/hour

Table 5.1: Resource comparison

As you can see, the savings in computer resources are considerable. On a small
machine it is possible to produce about 500 simulations over 30 years in just over
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an hour of machine work.

5.2 Future Works

The continuation of this work requires studying the application for the generation
of synthetic data starting from original multivariate data including several types
of physical quantities (temperature, salinity ...).

To this we could add the geolocation in order to generate maps that illustrate
the situation of the climate dynamically over time.

Another topic to be addressed is that of assimilation with regard to certain
unpredictable events, such as a volcanic eruption or other that introduce even
considerable variations to the values of the quantities. It should be made possible
to introduce fixed points in correspondence with these phenomena whose date and
influence on the parameters is known. The network should take these facts into
account by forcing the curves to pass through fixed points and then take them into
account in the subsequent development of the synthetic data.

These variants could require much higher computer resources than those used
in this thesis, but still within the reach of a computer with an adequate GPU.
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Chapter 6

Appendix

6.1 Structure of the program

The program consists of the following modules in python:

• data loading.py: program that pre-processes the original data provided as an
example by the author [9] which are a series of sine wave segments of stock
market sales data (https://finance.yahoo.com/quote/ GOOG / history? P
= GOOG) and energy consumption data

(http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction). In
our case this program was not used, since the data were transformed into
a format compatible with phython and subsequently normalized in various
ways.

• main timegan.py: startup program and network preparation. Initially, all
model parameters were defined internally in the code. The definition of
the original data file name, the hidden dim and the num layer have been
kept internal and changed little. All the other parameters have been made
available to the user who, when starting the program, must define them
appropriately. The next figure shows the startup screen with some choices.
In particular, note the choice of mode, which allows you to establish whether
or not to save the trained model in order to be able to reload it by taking
the data from the structure folder and to be able to create any number of
simulations in a few seconds. Details on the tensorflow save and restore
function will be seen in the timeganM.py program
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Figure 6.1: Home screen of main timegan.py

• timeganM.py: is the heart of the network. The following changes have been
made to the original code (timegan.py):

– added the possibility to choose for the discriminator between the cross-
entropy function loss and the Wesserstain function loss

– added the possibility to save the trained model and then be able to
retrieve and reuse it without having to retrain it. To do this, the session
must be saved with the construct:

saver.save(sess, ’s_fname’, global_step = 1000)

and to restore:

new_saver = tf.train.import_meta_graph(’s_fname.meta’)
new_saver.restore(sess2, tf.train.latest_checkpoint(’./’))

• utils.py: program that contains the following service modules:

– train test divide: Divide train and test data for both original and syn-
thetic data.

– extract time: Returns Maximum sequence length and each sequence
length.

– rnn cell: Basic RNN Cell.

– random generator: random vector generator

– batch generator: mini-batch generator

• metrics: in the metrics folder there are three programs for the calculation
of discriminatve metrics and predictiive metrics as well as a program for
displaying the PCA plot and the t-SNE plot.

The following programs necessary for carrying out the tests have been added:

• programs for external standardization

– rescaler g.py
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– rescaler Ss.py

– rescaler.py

– rescaler Ssl.py Each of these programs takes as input an array of numpy
and performs a nomalization or a renormalization. For details see sec-
tion 7 Settings.

• ExportData.py: this program transforms an array of numpy into a file with
the extension .mat which is needed by Matlab to produce the plots illustrat-
ing the result.

6.2 rescaler g.py

1 def scaler(dataMat):
2 dim = dataMat.shape
3 nFolder = dim[0]
4 nData = dim[1]
5 nSim = dim[2]
6 nelem = nFolder*nData*nSim
7 data = np.reshape(dataMat, nelem)
8 dataMatS = np.zeros(dim)
9 MaMi = np.zeros(2)

10 MaMi[0] = min(data)
11 MaMi[1] = max(data)
12 # np.save(’data/mmsMat.npy’, mmsMat)
13 np.save(’data/MaMi.npy’, MaMi)
14 delta = MaMi[1] - MaMi[0]
15 for i in range(nFolder):
16 for j in range(nData):
17 for n in range(nSim):
18 dataMatS[i,j,n] = (dataMat[i,j,n] - MaMi[0])/delta
19 return dataMatS

6.3 rescaler ls.py

1 def scaler_ls(dataMat):
2 # format of data matrix
3 dim = dataMat.shape
4 nFolder = dim[0]
5 nData = dim[1]
6 nSim = dim[2]
7 dataMatS = np.zeros(dim)
8 # create the meanStd matrix: (_,0,_)=mean, (_,1,_)=std
9 dimS = (nFolder, 2, nSim)
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10 meanStd = np.zeros(dimS)
11 # popolate mmsMat with min and max of each data coloumn
12 for i in range(nFolder):
13 for j in range(nSim):
14 meanStd[i, 0, j] = np.mean(dataMat[i, :, j])
15 meanStd[i, 1, j] = np.std(dataMat[i, :, j])
16 np.save(’data/meanStd.npy’, meanStd)
17 # scale the dataMat with the function: val = (val - mean)/std
18 for i in range(nFolder):
19 for j in range(nSim):
20 for n in range(nData):
21 dataMatS[i,n,j] = (dataMat[i,n,j] - meanStd[i,0,j]) /

meanStd[i,1,j]
22 return (dataMatS)
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