
 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Master’s Degree 

in Computer Science 
Data Management and Analytics 

Curriculum 

 

Final Thesis 
 

 

Interactive 
Image 

Segmentation 
Using Graph Transduction 

Games 
 

 

 

 

 

Supervisor 

Ch. Prof. Sebastiano Vascon 

 

 

Assistant supervisor 

Ch. Prof. Marcello Pelillo 

 

 

Graduand 

Riccardo Bernardi 
864018 

 

Academic Year 

2020 / 2021 

 





iii

“Remembering that you are going to die is the best way I know to avoid the trap of thinking
you have something to lose. You are already naked. ”

Steve Jobs
(Stanford commencement speech, 2005)





v

CA’FOSCARI UNIVERSITY VENICE

Abstract
Computer Science

Department of Environmental Science, Informatics and Statistics

Master’s Degree

Interactive Image Segmentation with Graph Transduction Games

by Riccardo BERNARDI

In interactive image segmentation, a target object is annotated roughly by a user
and the expected outcome is the same image in which some parts of the image are
labelled as foreground and others as background. Since the task is interactive we
expect to constrain the result based on the a-priori informations provided by the
user. The same task can be extended into a multi-class problem laying in the field of
semantic instance segmentation. The solution to these kind of problems turns out to
be useful in particular in medical imaging analysis where the doctor wants to extract
parts of the image that are relevant(like a pack of cancer cells) leaving out others. The
problem is semi-supervised given the fact that the user provides just loose bounds
or scribbles on the objects of interest to be extracted. Common pipelines consist of
a preliminary subdivision of the image into superpixel and then into an optimiza-
tion step that performs the actual labeling. Here we are going to explain the current
state of the art of the superpixels that we used to divide roughly the image and the
game theory mechanics we run to let the pixels polarizing autonomously towards
one of the available classes(background-foreground). The decision is taken by every
superpixel based on the photometric similarity with the others and we enhance it
through Leung-Malik’s filters. We tested our model against many other approaches
considering both standard datasets and metrics. The results shown a consistent im-
provement over the state of the art when loose bounding boxes are considered.
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Chapter 1

The Problem

1.1 Introduction

In interactive image segmentation, a target object is annotated roughly by a user
and then is extracted a binary mask divided into foreground and background. The
same task can be extended into a multi-class problem lying in the field of semantic
instance segmentation. Interactive segmentation algorithms can be categorized into
box-interfaced, click-interfaced or scribble-interfaced ones. A box-interfaced one re-
ceives the mask of a target object within a given bounding box by the user, instead
a scribble-interfaced receives scribbles that can be given into one time, with a pre-
pared mask, or incrementally asking for inputs iteratively until the segmentation is
enough accurate. Click-interfaced will be done using the clicks in the regions added
incrementally by the user. An example of the click-interfaced 1.1.

FIGURE 1.1: Example from fbrs. Image from [1]

In this image above we can see that was conducted a study on how many clicks
were needed to have a quasi-perfect segmentation(>95%). But let’s not be joked
because in some cases the examples shown by some papers are only the best of the
best, in practice the ones that are so easy to score very well. In these cases we can
see that backgrounds and foregrounds were pretty different.

1.2 Statement of the problem

The Problem is about labelling correctly the foreground and the background pixels,
having a good accuracy. The problem lies in the field of semi-supervised learning
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since some pixels will be seeded with a label(clicked, scribbled, boxed) ones and the
others will be label-less. The task will be to spread the information from seeded to
unseeded in a smart way to achieve a good performance. One of the difficulties is
spreading the labels in a way to achieve the maximum score non only on the core
parts but also on the borders.

An example of borders those are difficult to be segmented here:

FIGURE 1.2: Example of bad vs good backgrounds

As the reader can note, in the first image its me and the background is un-
favourable to segment my hand saying 3 and the algorithm can be joked by my face
instead in the other case you only see the hand and the background is favourable
since the gradient of the colour is high enough for a good segmentation. The second
image is kindly offered by microsoft(www.lobe.com).

1.3 Significance of the study

Some of the practical applications of image segmentation lies in the fields of: Content-
based image retrieval, Machine vision, Medical imaging, Object detection, Recogni-
tion Tasks, Traffic control systems, Video surveillance [2]. So the use of these kind of
techniques is already broad and the significance of IIS is not in doubt. Though the
meaning of this thesis is producing an advancement and improvement in the field
through the use of the well known game theory. In particular the algorithm is so im-
portant in our life that without knowing it we use it almost everyday through photo
editors, one of the most known is Adobe MagicWand that auto segments through
our clicks, here an example:
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FIGURE 1.3: Example of Adobe Magic Wand

We can recognise the Magic Wand from the characteristical dashed line.

1.4 Scope and Delimitations

The scope of the project was to able to interactively segment images for which the
scribble was given as a mask a priori. After we also enlarged the scope since with
the first approach the accuracy of the other models was so difficult to be beaten and
we moved to the implementation of the trimaps based interactive segmentation. In
this second case what is given a priori is a map that divides the image in 3 areas:
background, undecided, foreground. It’s pretty easy to understand that the one that
is missing is the undecided part and its very difficult because the undecided part is
on the borders. The implementation of this feature was easy because of the nature
of the system we created, in fact whole of the functions are like plugins and can be
swapped between them but also we have cockpit that registers all of these change-
ments and runs the code as desired. What remains out of scope is he implementation
of the clicks version of the interface that requires some interaction from the user and
it would make a complete run not smooth because of blocking events. Another alter-
native to implement the click is through simulation based on the ground truth. this
former approach would be better but still is not of interest since the SOTA would be
difficult to be beaten. Another things that at least for now is out of scope is the use of
a smarter graph neural network to make the extraction of the features not only eas-
ier but also adaptable. The current problem in fact is that the filters that are used to
extract one feature vectore for each SP are handcrafted and they are approsimately
60, this is not a good idea since they are not adaptable to a different set of images
and they are not weighted. A GNN would give the whole framework a boost giving
the ability to learn the filters cycle after cycle and at the same time giving a weight
to the filters. One of the problem at now is that since filters are equally weighted one
bad filter can move drive others out. It works similarly to the Gresham’s Law.
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Chapter 2

Background Knowledge

2.1 Interactive Image Segmentation Models

The papers listed in this chapter are the ones we took as references and from which
we took state of the art measures, metrics, datasets and from which we borrowed
some techniques. Due to our background the main ideas are taken from the paper
[3][4].

2.1.1 Dominant Sets for “Constrained” Image Segmentation

Short Description

The dominant set model, is used to find maximal cliques (clusters) in weighted
graphs. Here the idea is to constrain a certain number of superpixels to be present
in the output cluster based on the user’s hints finding the most similar ones to the
constrained ones. This boils down in finding the set of maximal cliques in a graph,
containing the seed nodes.This model has been presented in [3][4].

Main idea

In the Constrained Dominant sets the first thing to be done is the construction of
the Adjacency matrix A. This derives from the graph of superpixels usually called G
and composed by a nodes set V and edges set called E. The graph is also provided
with a weight function w since the graph is weighted. The set of constrained nodes
that should be in the resulting cluster is called S and the method also carries an
alpha parameter that should be properly tuned to find the right cluster. The alpha
in particular we are going to see that should be a value larger than the largest of the
eigenvalues of Adjacency matrix in which are present the nodes V except the ones
constrained.

Constrained Domainat sets: In the case of constraints applied to certain pixels in
the shape of scribbles the general equation of DS is enriched from 2.1:

maximize f (x) = x0Ax subject to x 2 ∆ (2.1)

to 2.2:
maximize f α

S (x) = x0
�

A � α ÎS

�

x subject to x 2 ∆ (2.2)

The f α

S can be rewritten as 2.3:

f α

S (x) = x0Ax � αx0SxS (2.3)

Given the optimization problem we derive the KKT conditions. In the formulas
here above the IS is set as an NxN matrix in which the diagonal elements are set to 1
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if they are in V � S. xS is the (n k)-dimensional vector which is composed by all the
components not in S.

Contributions

The paper introduced the notion of constrained dominant set and showed usefulness
and applicability to the problems of co-segmentation and interactive image segmen-
tation.

Experiments

Experiments are made on a set of labels/scribbles that is not available online but
the images are the ones contained in GRABCUT [5]. The experiments are carried
with scribbles, points, BB. The BB area were controlled by a Looseness parameter to
identify how robust the method is.

FIGURE 2.1: Mushroom segmented through syntetic points

Datasets

The images and the ground truths are taken from GRABCUT instead the labels are
custom, generated through simulation of clicks.

Implementation details

Euclidean distance to calculate the distances and gaussian kernel to move to a sim-
ilarity matrix, the pixels are then labelled based on the clusters extracted. It is used
the Dominant Set Clustering method that given a similarity matrix as input exploits
the game theory approach to give each superpixel a strategy to be played. The pix-
els that are labelled in blue are the ones that are playing the background move and
the others are not playing. The idea is to find a cluster of one or more superpixels
in an unsupervised way that can be considered a coherent cluster. The nodes are
constrained with the scribbles over them.
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2.1.2 “GrabCut” — Interactive Foreground Extraction using Iterated Graph
Cuts

Short Description

This task is implemented for the sake of image cutting in many programs like Adobe
photoshop, paint and others under commercial names like Magic Wand or Intelli-
gent Scissors. The idea is that given just few inputs from the user you should be able
to cut the foreground out of the image. The approach involves the iterative use of
graph cut algorithm to extract a part of the foreground at each iteration. The paper
is [6].

Main idea

The idea is to create a model of intensities over some pixels of interest that have been
bounding-boxed. The way the generative model is found is through the learning of
parameters of a GMM-Gaussian Mixture Model. The idea is polarizing the pixels
into only two categories, background and foreground, to do this the pixels are put
in relation one with the others through a graph in which the weight is calculated
bases on the colour intensity. Some of the points of the graph will be part of the
foreground and other of the background, the idea is to find the minimum cut that
divides the graph in the point of minimum energy. The approach is iterative and
after that the bounding box is delimited then the user can refine the segmentation
through scribbling.

Motivations

This paper differently from the other put the point on the segmentation for the back-
ground extraction for the image modification and editing, so the focus is the state
of the art of the current software that are already segmenting images for the sake of
advertising, photoshopping etc. In the other papers you can see that the focus is the
extraction of organs or tumours from fMRI images.

Contributions

The main contribution is the idea of iterating an already well-known algorithm that
performs well and the addition of a gaussian mixture model that encircles the inten-
sities of a bunch of pixels to help the algorithm discriminate between background
and foreground.

Experiments

Experiments are carried on various images, none from known datasets, but at the
end of this paper this dataset become known as the GC50 and GC150 with the ad-
dition of images from VOC and Berkeley. The images are of various difficulty levels
and the performances are tested against the Knockout 2 and Bayes Matte. The re-
sults highlight the fact that the grabcut algorithm outperforms the others and this
can be seen from the borders precision of cutting and the smoothness of the cut. In
particular the cut of grabcut is smoother and also takes smaller area that are not
correlated with the foreground of interest.
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FIGURE 2.2: Comaparison of Grabcut vs others. Image taken from
the paper.

Datasets

Unknown initially but after some time it became a benchmark dataset known as
grabcut(50, because 50 images) and grabcut(150) after some additions of other au-
thors. The GC150 is built upon VOC and Berkeley datasets.

2.1.3 Interactive Image Segmentation using Label Propagation through
Complex Networks

Short Description

The proposed algorithm is divided into two stages: 1) input image is reduced to
one ninth of its original size using bicubic interpolation, then a network is built with
each node representing a pixel in the downsized image 2) the full input image is
used. Again, each node represents a single pixel, however the connections are made
only from the pixels not confidently labeled in the first stage to the nodes represent-
ing the adjacent pixels in the image, in a grid arrangement, which considers only
pixel location. Label information propagates iteratively again, only to the unlabeled
nodes. The paper we are talking about is [6].

Main idea

In the first part the labels are extracted from an image with the user input, the input
can be a scribble, clicks, bounding boxes in which a different color represents each
class, and another color is used for the unlabeled pixels. In the first stage, this image
is also resized to one ninth of its original size, but using the nearest-neighbor inter-
polation. This is because otherwise new colors would be introduced and mistakenly
interpreted as new classes. Nodes corresponding to labeled pixels are fully domi-
nated by their corresponding class, and their domination vectors never change. On
the other hand, nodes corresponding to unlabeled pixels have variable domination
vectors. They are initially set in balance among all classes. Then, the iterative label
propagation process takes place. At each iteration t, each unlabeled node gets con-
tributions from all its neighbors to calculate its new domination levels. The iterative
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process stops when the domination vectors converge. When the first stage finishes,
most pixels are completely dominated by a single class. The exceptions are usually
the pixels in classes that are borders since they are more difficult. In the second stage,
nodes that were not labeled in the first stage continue to receive contributions from
their neighbors. In the second stage a new graph is built, in which every pixel in the
input image becomes a node without making any resizing operation. Each node vi

corresponding to an unlabeled pixel (xi 2 XU ) is connected to the 8 nodes vj rep-
resenting the adjacent pixels in the original image. For pixels in the image borders,
which have only 3 or 5 adjacent pixels. In the second phase, neighbors are defined
only by location.

Contributions

The key contributions of this paper are: sharing annotations across regions, focusing
annotator effort on the biggest errors across the whole image, and a pixel-wise loss
for Mask-RCNN that lets regions compete on the common image canvas. The paper
have shown that on the COCO panoptic challenge dataset, the proposed technique
improves the trade-off between annotation cost and quality.

Experiments

For quantitative results, the proposed method is applied to the 50 images of the Mi-
crosoft GrabCut dataset. The dataset come with scribbles or trimaps. Black color
represents the background, ignored by the algorithm; dark gray is the labeled back-
ground; light gray is the unlabeled region, which labels are estimated by the pro-
posed method; and white is the labeled foreground, which generates the foreground
class particles. The error rates are computed as the ratio of the number of incorrectly
classified pixels to the total amount of unlabeled pixels.

Datasets

The dataset used is the GrabCut for the experients and the COCO for some tests that
didn’t ended up in the Experiments section

2.1.4 f-BRS: Rethinking Backpropagating Refinement for Interactive Seg-
mentation

Short Description

f-BRS come out from the previous approach that was based on both the solution of
an optimization problem and the use of a neural network. The new approach im-
proves both the accuracy and the computational cost due to the fact that the forward-
backward propagation are no more over the input but over synthesized features. The
paper can be found here [1].

Main idea

The main idea lies on the fact that the re-parametrization of the network enables
to work on a subset of the network(the last k layers) and to apply the optimization
algorithm on the reduced subset of parameters. This method permits to balance the
memory power of a neural network with the generality provided by an optimization
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FIGURE 2.3: IIS using Label Propagation through Complex Networks

algorithm. The whole framework copes well against the computational cost of the
network and the memory-less issue of an optimization algorithm.

Motivations

The field is of high interest and improving the current state of art is useful in many
applied and real problems.

Contributions

Improving the state of the art in IIS with the idea of moving the computation from
an entire net to a smaller part using synthetic features in behalf of the excluded part
of the network.

Experiments

They tested the number of misclassified images after some fixed number of clicks
that are provided by the user. They showed that their results were the smallest(the
lower the better).
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FIGURE 2.4: fbrs method with respect to the number of clicks

Datasets

GrabCut, Berkeley, DAVIS, SBD

Implementation details

2.1.5 Segmentation by transduction

Short Description

The paper deals with the segmentation of areas inside the image that should be
consistent. The regions are delimited by seeds or labels provided by the user. The
method used here exploits the transductive approach in which we can see some
pixels as decided and others to be decided and if one is decided it can pass its label
to the nearest ones. In particular this paper uses the Laplacian graph regularizer that
is tightly related to diffusion processes. The paper can be found here [7].

Main idea

The underlying assumption in graph Laplacians is that the input points are gener-
ated by a probability distribution with support on a submanifold of the Euclidean
space. In transductive inference, we are going to search for a smooth fun tion such
that the function is allowed to vary only on low-density regions of the input space.
These methods are based on a neighborhood graph in which the nodes are the in-
put points coming from both the training and test sets. The typical kernel is the
Gaussian.

Motivations

The field is of high interest and improving the current state of art is useful in many
applied and real problems.

Contributions

Firstly the introduction of the s-weighted graph Laplacian regularizer to solve the
transduction problem and secondly the illustration of the link be- tween the contin-
uous formulation of transductive inference and its discrete counterpart, introducing
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a “free” parameter λ = 1 � s
2 as a measure of the output variation on low-density

input regions.

Experiments

The experiments were conducted on the Grabcut dataset given the seeds/scribbles
and on the Grabcut with the trimaps.

FIGURE 2.5: Results of grabcut algorithm using trimaps

Datasets

GrabCut

2.2 Graph Transduction as a Non-Cooperative Game

The theoretical formulation of the Graph Transduction Game (GTG for brevity) has
been recently introduced in [8]. The idea starts from the basis of the transductive
learning on undirected graphs, the solution of the label estimation is built upon
game-theoretic notions, this is in contrast with more common solutions based on
the laplacian regularization.

Short Description

The graph transduction is formulated in terms of a multi-player non-cooperative
game where the players are the data points that take part in the game to decide their
class memberships. In this setting, while the strategies played by the labeled points
are already decided, as each of them knows which class it belongs to, the possible
strategies available to unlabeled points are the whole set of hypotheses of being a
member of one of the available classes. In this formulation the nash equilibrium
comes into play being a reasonable answer to set the strategy of the unlabelled su-
perpixels.
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Main idea

The graph transduction is formulated as a non-cooperative multiplayer game and
the labelling correspond to the Nash equilibria. The main idea is that a game is
modelled as an interaction between players where the goal of each player is to max-
imize its own payoff by choosing the best action/pure strategy to play. The easiest
example of this approach is the one in which we have an unweighted graph that has
a connection or not with other nodes. The weight is introduced at this point in a
KNN fashion so the weight of two adjacent edges is 1 instead its zero. This expands
rapidly and easily to a the weighted case as can be seen. The expansion is done
just by asking the user to provide a similarity measure between nodes and then a
decided node can ask to an undecided one to join the playing of a certain strategy
based on the similarity measure. In case a node is asked to join different strategies
by different adjacent nodes the one with the higher similarity will decide the node
strategy. In the game we have Il that are labeled players and Iu that are unlabeled
players. The transduction game is played just between undecided datapoints since
the others are already decided and the strategy, if decided, is chosen a-priori. The
payoff for each player is calculated in a polymatrix game fashion as in the formula
2.4 below:

ui(x) =
n

∑
j=1

xT
i Aijxj (2.4)

The formula can also take care in case of fixed choices and here below is the
formulation. In the formula the A is the matrix of similarities, the xi is the current
playing strategy and the xj is another playing strategy from another player. The ui is
the utility for the current player. e is the extreme mixed strategy vector in which ev-
ery strategy is 0 except for the current one that is one. The formula of the utilization
is here below 2.5.
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j2IU
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Aij
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k
(2.5)

The solution for the transduction game is a dynamic of replication in which we
tries to play for some time certain strategies until we reach the nash equilibria, the
point in which no player has any kind of advantage to move to another strategy and
the game is stuck. The solution is reported here below in its discrete time formula 2.6
since it is the one we used but it also exists the one in continuos time. In the equation
below xih denotes the probability that the player chooses to play its hth pure strategy
among all the available strategies.

xih(t + 1) = xih(t)
ui

�

eh
i

�

ui(x(t))
(2.6)

Motivations

Within this formulation, the Nash equilibrium concept for non-cooperative games
turns out to offer a principled solution to the problem of finding a “consistent” la-
beling assignment[9][10].
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Contributions

The greatest contribution is the linkage of two already known fields. The first field
is the game theory set-up for the first time by John Nash that changed the economics
studies giving new tools and the famous nash-equilibrium. The other field is the
graph theory. The linkage is provided through the replicator dynamic that evolves
the strategies of the players on a graph toward the nash equilibrium.

Experiments

In the experiments, the proposed approach (GTG) is compared against four well-
known graph-based semi supervised learning algorithms like the Spectral Graph
Transducer and Laplacian Regularized Least Squares. As it can be seen, LapRLS[11]
method gives the best results for the relatively small data sets, YaleB[12] and Scene[13]
instead for the other two, its performance is poor. In general, the proposed GTG[8]
algorithm is either the best or the second best algorithm. Its score tends to be al-
most identical to LGC method in USPS, Yale-B and Scene instead with 20-news its
accuracy is higher.

Datasets

YaleB, Scene, USPS, 20-news. Datasets composed by graphs.

2.3 SuperPixels

Superpixel techniques like [14][15] want to segment an image into regions by con-
sidering similarity measures defined using perceptual features. The motivation is to
obtain regions that represent meaningfully the image but with far less data. The tool
though can be used for compression of an image regardful of the different regions
of the image. Another case of use is when we are going to use pixels to do learning
on images and working at pixel level can be so expensive to make the problem un-
tractable. In this case the superpixels are useful to reduce the dimensionality of the
problem maintaning the region coherent. Superpixel techniques can be divided into
two main approaches: (1) graph-based methods in which the problem is formulated
as a graph cut problem and (2) region growing or clustering methods. The first ap-
proach is more difficult to be conducted and in general is preferred the second one.
In the following we introduce three common superpixel models [16][15][17].

2.3.1 SLICs

The algorithm we are going to introduce here is the SLIC(simple linear iterative clus-
tering), which works like a k-means clustering algorithm to efficiently generate su-
perpixels. Refer here [14] to have a deeper dive.

Short Description

The SLIC algorithm computes uniform and compact superpixels, this is performed
thanks to an approach based on local clustering of pixels based on the position of
the pixels and its color in the CIELAB convention. It is created a new measure to
improve the accuracy of the superpixel and it is controlled the compactness through
a parameter to enforce a high similarity internally to each SP.
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Main idea

SLIC uses clustering to create uniform size and compact superpixels that describes
well the structure of objects in an image. The algorithm creates regions by three
main steps: 1) creates initial regions according to a parameter that defines the de-
sired number of superpixels 2) performs region clustering to aggregate pixels to the
regions according to the similarity criteria and 3) reinforces connectivity. The algo-
rithm starts pointing N centroids over a grid that is large enough to contain all the N
SPs, after that every pixel nearby the centroid is assigned to one SP or another. The
measure to assign the points is an improved euclidean in which we also take care of
the color of the pixel to increase or dicrease the distance if the gradient is too high.

FIGURE 2.6: SLIC example result [16]

Motivations

The motivation for the invention of the superpixel is pretty clear: manipulating pixel
by pixel an image can be impossible if the image is in high resolution. The SP ap-
proach leaves you the freedom of creating a much much smaller matrix. Remember
also that an image has as many pixels as the camera is powerful instead the number
of SP is a choice of the scientist. In this way you can move from an image 2000x2000
that end up in a 4.000.000x4.000.000 matrix into a much cheaper 100x100 matrix of
SPs.

Contributions

An important contribution is bringing a simple and effective method with a cheap
cost since it is linear. The method, in fact, is much much faster than many others like
watershed[18] for example. The accuracy of the SPs is not so relevant since most of
them, from the experience I gain through this thesis, are very similar in the output.
Here a table 2.7.

Experiments

A part from the previously stated good theoretical conditions we have also some ex-
periments conducted to show some qualitative results. As we can see the borders of
the parts segmented by the SPs are divided better with respect to the other methods.
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FIGURE 2.7: SLIC complexity comparison result [14]

FIGURE 2.8: SLIC experiments vs others [16]

2.3.2 SNICs

[15]
SNIC is an improved version of the SLICs created by the same authors and its

claimed to be faster and requiring less memory.

Short Description

Like SLIC, it is also utilized as initialization a method based on centroids with pixels
chosen on a regular grid in the image plane. The affinity of a pixel to a centroid is
measured using a distance in the five-dimensional space of color and spatial coor-
dinates. The algorithm uses the same distance measure as the SLICs. This distance
combines normalized spatial and color distances. The improvement though is else-
where, it is based on how the pixels are attached to a centroid.

Main idea

The innovation of the SNIC algorithm is that it uses a priority queue to choose the
next pixel to add to the cluster differently from its ancestor SLIC. The queue receives
the nearest pixels and when it is asked to pop one pixel it is extracted the nearest one
to the centroid so that the compactness is guaranteed from the principle. This allows
the method also the be more efficient with respect to the ancestor that instead asks
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many time to the nearest neighbors which one should be added. Each pixel, when
added to the queue moves the center of the centroid and this operation happens
right in that moment so that in the next addition of a pixel the movement of the
centroid already happened.

FIGURE 2.9: SNIC example result [15]

Motivations

This kind of algorithms are of large use not only for the sake of studies we are pre-
senting in this thesis but also, for example, for remote imagery from satellites. The
importance so for having good algorithms that quickly provide a compression of an
image based on similarity of some pixels can be of great use for the sake of visual-
ization of high resolution images without losing too much detail.

Contributions

The main contribution is the adding of the priority queue that speeds up the entire
algorithm permitting a faster and better choice of the destination of a pixel with
respect to a certain centroid.

Experiments

One of the experiments is here in image ?? and can be seen that the segments tend
to be better on segmenting coherent regions in a single area. This approach is able
to release more accurate superpixels that are going to require less effort of postpro-
cessing.

Datasets

The benchmarking is done on the Berkeley 300 dataset taking into consideration both
the color and grayscale groundtruth images for the range of 50 to 2000 superpixels.
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FIGURE 2.10: Experiment SNIC vs SOTA

2.3.3 SSN

[17]
SSN is a different kind of superpixels and they are added to this collection for the

sake of completeness. The SSN comes out directly from the knn principle, moving
the problem to a deep net making it differentiable.

Short Description

The SSN is introduced to make the usual superpixels differentiable and therefore in-
tegrable into deep learning frameworks to perform end to end pipelines. From the
experiments we can note that the algorithm is not only as accurate as the other com-
petitors but also it can pretty easily learn custom segmentations on custom datasets
due to its neural network fashion.

Main idea

The thing that makes the competitors like SLIC and SNIC not differentiable is the fact
that the pixel vs superpixel association, the operation in which it is matched a certain
pixel to its SP centroid, is a non differentiable nearest neighbor. The key take away
is that the NN operation is core and cannot be deleted instead it should be moved
to a differentiable fashion. Instead of computing hard pixel-superpixel associations
finding the pixel to be associated with the lower distance the authors proposed to
compute soft-associations between pixels and superpixels. In particular we can dive
deep and discover that instead of computing the pixel superpixel association we
calculate the distance and we try to search for the minimum distance pixel to the
suoerpixel optimizing a function that has the distance as exponent to the neper’s
numeber. Obviously this calculation could be very difficult to be be performed over
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the entire image and for this reason the operation is performed only on the nearest 9
SPs of the pixels, the 8 that surround the pixel and the 9th is the one that is spatially
on the same place of the pixel but can be that the gradient with the colors is so high
to not fit aso well on that SP to add the pixel.

The formula before 2.7 and 2.8:
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As can be seen we pass from a non differentiable to a differentiable operation
once the argmin is substituted by a neper’s number to the minus norm of the dis-
tance between a certain pixels and the elected superpixel.

Motivations

It’s clear that this approach brings many new features and more elasticity. If for
example a researcher wants to overfit to some images with his SPs now he is free of
doing it instead before it was not possible since the features were not learnable and
though the researcher was not able to customize superpixels over a set of images.
Apart from this now the net is end2end trainable[19] and this means that can be
easily integrated with other networks. In conclusion the paper brings a new method
that is aligned with the sota and has also a appreciable runtime.

Contributions

The main contribution for sure is the simple idea of making something that was
previously not differentiable so. It also solved the problem of the computational ex-
pensiveness explaining that just computing the 9 SPs near to the pixel was sufficient
to receive the result expected and also find a good performance.

Experiments

An experiment that was done is about how the SSN deep compares with other state
of the art methotds. It can be seen a comparative study here below. We can note that
it tends, differently to the others, to make smoother areas that are also larger/longer
or more diluted with respect to the other SOTA methods. In some cases many SPs
are also overlapped or it seems so but the overall result is pretty good because it
seems that the overlapping is concentrated more on the difficult borders and this
means that the NN got the fact that the more difficult part to be segmented is the
one on the edge and not the core that is mainly coherent.
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FIGURE 2.11: Experiment SSN deep vs SOTA
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Chapter 3

Interactive Image Segmentation
with Graph Transduction Games

3.1 Introduction

In this chapter we are going to describe the method we are proposing, the method
is divided into sequential steps: 1) ingestion of one image 2) transformation of the
image 3) creation of the superpixels 4) creation of the similarity graph 5) initialization
of the probability assignment between nodes and labels (background/foreground)
6) running of GTG. These are explained better below since many passages are more
complex than stated here. The key difference in our pipeline and other papers like
[7][4] is that we use a game theoretic approach to move the labels from decided to
undecided pixels.

FIGURE 3.1: Diagram of the Whole method applied
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3.2 Extraction of SPs

The process of extracting the SPs encapsulates also the preprocessing part. The
whole process starts with the loading one-by-one of some tuples, each of them con-
tains (image, label or seed, ground truth, name). All of these are needed because the
image doesn’t contain the seeds that are separated and the ground truth is neces-
sary to calculate the accuracy at the end of the segmentation. The name is needed to
name the output files. Every image is then transformed with the LAB transforma-
tion, Lab is a conversion of the same information to a lightness component L*, and
two color components: a* and b*. Lightness is kept separate from color, so that you
can adjust one without affecting the other. "Lightness" is designed to approximate
human vision, which is very sensitive to green but less to blue. If you brighten in
Lab space, the result will often look more correct to the eye, color-wise.

This computation is prepared to work in parallel or serially on the images and
from the empirical results it seems that the parallel one is better performing com-
pared to the serial one. An experiment here below3.1.

/ time num images num threads
single-thread 45secs 3 3
multi-thread 23secs 3 3
single-thread 208secs 15 4
multi-thread 75secs 15 4

TABLE 3.1: Comparative of single thread vs multi thread

The label or seed is modified because in the original version the 2 classes that
are present are red seed and yellow seed instead are more meaningful in the case of
binary classification to have a red seed and a green one. This because green means
"pixels to be taken" and the inverse for the red. At the very end the superpixel
function is launched and it turns back the image divided into segments. Here an
example with 150 segments 3.2

Here an example with 3000 segments 3.3.
The superpixel function can be Slic, snic or many others and it is selected through

an "environment" module that regulates whole of the global variables of the pro-
gram. The superpixel functions in general has other parameters apart from the im-
age to be processed such as the sigma and the cohesiveness of the SPs. Some of these
parameters are going to be tuned but we already know some general rules such as
the fact that increasing the number of prospected segments is going to improve the
accuracy(fine grain). But instead increasing the number of superpixels can also mis-
lead hugely if the image gradients are grown slowly and is slower whilst having few
segments is going to give a much raw segmentation but, for sure, faster. The result
of the extraction given an n by m by 3 image is a n by m mask in which every cell
has a number [1...K] that is the segment’s number.

3.3 SuperPixel Descriptors

For each SP we extract a feature vector composed of different pieces, each one de-
scribes in a different way the single superpixel and helps to give a fair feature vector
that is going to be used for the similarity score between the superpixels.
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FIGURE 3.2: Segmentation with 150 superpixels of an image super-
imposing the superpixel segments

FIGURE 3.3: Segmentation with 3000 superpixels of a LAB image

3.3.1 RGB

The RGB component is clearly the easiest one but for sure it is helpful since an high
gradient on this can correct other filters to a more rational measure of similarity.

3.3.2 LM-Filters

After the construction of the SPs we have in our hands some segments(cluster of
pixels) that are named with a progressive number [0...K]. In the successive step the
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construction of a map between segment number and pixels is of particular interest
to simplify the access to a bunch of pixels at the same time even if they are in dis-
tributed on stretched segments. The map will be implemented as a dictionary in
python and will look like this: 0: [(0,0),...,(x,y)].

At this point we created the Leung-Malik filters[20]. These are black-white filters
made out of exponential or normal distributions with different parameters. They
can be seen here below 3.4:

FIGURE 3.4: The LM-Filters

3.3.3 Sobel Operator

Apart from the LM-filters we added also some basic sobel/roberts and other filters.
Here below an example of the use of sobel filter 3.5:

FIGURE 3.5: An example of the Sobel Filter

And how a Sobel filter is made 3.6:
All of them have the same size and are basically matrices. They are called kernels

since the principle is the same even if the field is different. The ratio of calling them
kernels is the fact that we are also going to introduce the use of convolutions to
obtain from a certain starting image a new one that is filtered the way we apply the
filter.

In particular given two matrices, in which one is the matrix of one of our images
and the other is the kernel matrix, situation like in the image here below 3.7

To calculate for example 3.1:

O57 = I57K11 + I58K12 + I59K13 + I67K21 + I68K22 + I69K23 (3.1)

We are going to exploit the formula here below 3.2:
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FIGURE 3.6: Sobel Filter components

FIGURE 3.7: Matrices for the convolution

O(i, j) =
m

∑
k=1

n

∑
l=1

I(i + k � 1, j + l � 1)K(k, l) (3.2)

The example has been taken from:
https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm

3.3.4 Feature Composition

FIGURE 3.8: Diagram of the feature composition

The final descriptor is made of a composition of the one proposed in the previous
sections (RGB, LM, Sobel). The composition is performed by simple concatenation
of vectors. An idea of the whole process can be seen in 3.8. Each SP is associated
with a feature vector f 2 R

1⇥D. Operatively we take for every SP the vector of
pixels and we take them out of the filtered image. Then the result comes taking
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the median of the vector of pixels and it is a vector of RGB colors. Applying this
technique to all of the SPs using all of the filters gives rise to our method. In terms
of computational cost it is for sure not negligible the fact of having two nested for-
loops and a convolution but actually the time per each image to be computed is
among 10-12 seconds with my pc(MacbookPro, 13inches, i7@2.4ghz, 4+4cores, 16GB
ram) and the whole program stops in 20mins with 151 images contained in GrabCut.
The output of this process is that for each image you end up with 60 features per SP.

3.4 Graph Construction

FIGURE 3.9: SuperPixels and their weights

In the image above 3.9 we can see a visualization of the SuperPixels(in green)
and their pairwise weight with the neighbors(in red). The weight in the image is
not normalized. The adjacency matrix A explained in the GTG method is built here
in this way and the similarity is calculated between features vectors using the simi-
larity/distance measures listed in the Experiments section. The Graph construction
starts with the gathering of the information about neighbours between SPs and SPs.
This information is needed because in our approach we think that the more two SPs
are nearby the more they are able to be influenced and if one has a certain label it
will be transmitted to the nearest. Albeit this is not enough because the existence of
a point of contact between two SPs is not enough to have a measure of the strength
of their relationship. For this reason the existence of a point of contact or not is en-
coded as a matrix called B(standing for borders) and it will be multiplied with the
matrix W (standing for weights) that is a n by n matrix with a pairwise similarity
coefficient between SPs. The weight matrix can be calculated in two ways: the first
is with the pairwise cosine similarity(implemented in sklearn) and the second via
euclidean distance 3.3.

d(x, y) =

s

n

∑
i=1

(yi � xi)
2 (3.3)
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At the end the euclidean distance is transformed into a similarity measure by the
mean of a gaussian kernel 3.4.

kernel(x, y) = exp

✓

�
kx � yk2

2σ2

◆

(3.4)

In the graph the nodes are the superpixels and the similarity matrix is populated
with the weights calcuated through the formulas displayed here above onto the fea-
ture vector of each superpixel. The similarities are calculated over a feature vector
of 60 features(still growing in number) that is created as explained in the previous
section of LM-Filters. The multiplication of these two matrices (B W) gives rise to a
new matrix that has zero as principal diagonal and has a weight different from zero
off-diagonal when there is a point of contact between two SPs. The adjacency matrix
is the one that is used in the replication dynamic 2.6 inside the GTG algorithm and
that determines the strategies to be used by undecided superpixels.

3.5 Scribble propagation

The scribble propagation is done via the Graph Transduction Game ([8]), a popular
class of semi-supervised learning techniques which aims to estimate a classification
function defined over a graph of labeled and unlabeled data points. The basic idea
is that every SP is a player that plays with a certain probability a move of one of the
available classes. The unlabeled players, in the easiest setup, play every move(or
class) with the same probability. In an advanced setup a prior is provided and the
unlabeled players play with that prior. The yet labeled players instead play with
100% probability only the move/class they are already assigned. The whole setup
can be represented by a vector of sizes #classes on the rows and #SPs on the columns.
In the paper[8] the X vector is transposed with respect to the description provided
here, this is a slight modification that does not affect how the algorithm works be-
cause the code runs respecting the paper description. This is a probability matrix
therefore the summation by columns adds up to 1. The probability matrix will be
called X. The players who already took a decision (have 100% on 1 class) will ev-
erytime remain the same during this process instead the ones who bet indifferently
on all the available move/classes will change their strategy based on the similarity
of other players. During this process the similarity will lead to a reinforcement of a
certain strategy and at the end all of the players will be decided.

Example of propagation with scribbles 3.10:

FIGURE 3.10: GTG propagation with scribbles

Example of propagation with trimaps 3.11:

The reference image and its ground truth can be seen here below 3.12
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FIGURE 3.11: GTG propagation with trimaps

FIGURE 3.12: Image and its GT of person8.png
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Chapter 4

The Experiments

In this section we are going to list the experiments we did through the time we
worked on this project, extensions to these experiments are in the section of the
ablation studies where the reader will find optimization of the parameters that gave
better results. The tests are run over two datasets but we plan to expand in a future
version.

4.1 Datasets

We used the so-called GC50 that comes out from the paper [5] and its improved
version that we called in this paper GC151 but actually is named Grabcut as its
predecessor, the difference is in the number of images. The first grabcut dataset
was composed of 50images [5] instead the new one has also images from VOC and
Berkeley datasets.

4.1.1 GC50

It contains 49 images plus the last one, the sunflower that is present only as a trimap
but the scribbles are not provided so we decided to exclude this image from the set to
keep the dataset coherent with the different experiments. In Figure 4.1 are reported
an image and its annotations from the G50 dataset.

FIGURE 4.1: Example of images format of the BC51 dataset

In the example 4.1 the image called "21077" in which the task is segmenting only
the car that is more in the foreground. The trimap has 4 bands of black that is back-
ground, white is foreground, and the last two types pf grays that are up to our mod-
elling "undecided". In the third figure the reader can see the scribbles superimposed
over the original image, the yellow scribble over the car (difficult to be seen but be-
lieve me, it exists) enlights the object to be extracted and the red scribbles are the
things to be excluded. In the dataset the subject to be segmented, in most of the
cases, appears in the center or nearby.
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4.1.2 GC151

This dataset was created after the first one, in the 2007 and it was enlarged with
other 100 images to make more difficult the challenge and to put the focus on the
robustness of the algorithms that should make the new state-of-the-art. The dataset
consists of 151 images. 49 images are taken from the GrabCut dataset, 99 from the
PASCAL VOC datasetand 3 images from the Alpha matting dataset . The dataset
is available through the oxford VGG lab website. This dataset was used in some
preliminary tests and it is listed here because it was used for qualitative tests in
some papers but it has not been used to evaluate our quantitative results.

4.2 Metrics

Metrics are designed, in this project, with a plug-in architecture, in practice they are
in a separate dedicated file and are used as plugins in the sense that they can be
pushed into some code and easily swapped with another metric that fits the same
kind of data. This design pattern allows to have a cockpit (called ENV) in which you
can simply state which kind of measure you want to explore in words like "cosine"
and that one is used. At the time I’m writing only two measures are implemented,
the one listed before and the euclidean, these two measures are used to calculate the
distance of two superpixels given the feature vectors in a pairwise fashion.

4.2.1 J-Index

The Jaccard Index as guessable gives a score about the magnitude of cells correctly
labelled by the algorithm over the total number of cells. The advantage of this mea-
sure is that it is the simplest one, instead the drawback is the fact that uncorrectly
labelled pixels are submerged by the greatest number of the other pixels. The prob-
lem thus is that 99% of correctly labelled pixels can hide the fact that the more diffi-
cult pixels were mislabelled. For this reason this measure is not the best one and it
preferred accuracy or error rate. The measure here below 4.1.

J(A, B) =
|A \ B|

|A [ B|
(4.1)

4.2.2 F1-Index

The F-score is often used in the field of information retrieval and it is appreciated
because differently from the JIndex it is the harmonic mean of precision and recall.
It deals better with not only the huge number of correctably guessed TP but it also
enlights if there is a great number, in proportion, of FPs or FNs 4.2.

F1 =
2

recall �1 + precision �1
= 2 ·

precision · recall

precision + recall
=

tp

tp + 1
2 (fp + fn)

(4.2)

4.2.3 Error Rate

The error rate is the inverse of the accuracy that is written just below this one 4.3.

err_rate = 1 � accuracy (4.3)
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4.2.4 Accuracy

The accuracy is calculated as the number of correctly labelled points. In the example
below we can see that the code performs an incremental verification of how much
the accuracy increases at each iteration of the algorithm.

4.3 Competitors

We compare our model with the following methods (CDS [21], Segmented By Tran-
suction[7], ecc). These models have been chosen because they are graph-based as
our.

4.4 Annotations

We used two types of user annotations: scribbles and trimaps. These are used to
indentify the pixels that have already been labeled by the user and cannot change,
we are going to call these pixels Decided. The pixels though are not of interest so
after the segmentation done via superpixels we extend the label to a pixel(if present)
to the whole superimposed superpixel. The superpixel so will enjoy the fact of being
Decided also if it has just one pixel Decided. We can see that this could be a problem
but instead if the number of superpixel is high this is going to be a fair approxima-
tion since for example the Decided pixel is going to be one Decided over 10 pixels
undecided in the same segment. The ratio between Decided and undecided inside
the same superpixel should not be high obviously. After this operation the super-
pixels classified as Decided are going to have 1 in the probability vector of playing
their color (RED = background, GREEN = foreground) instead the ones that are un-
decided have the same opportunity to be both red or green for this reason they are
50% GREEN and 50% RED in the probability vector. The algorithm will converge
for sure also if the probability is odd because the similarity between the pixels will
convince undecided superpixels to play the role that his closest superpixel advices.

4.5 Experimental setup

We are using python PyCharm IDE, no particular testing suite. We are testing on a
macbook pro 13in. 2019 with i7@2.8ghz and 16GB of ram.

4.5.1 Experiment with GrabCut50 and trimaps

The experiment was run using the GC50 dataset that differently from its name has
just 49 images, this happens because the dataset was archived from microsoft that
hosted it. In this archival process all the images came to us except for one containing
two flowers that came without the scribbles making impossible to use it because
it wouldn’t be comparable with the rest of the dataset. It wouldn’t be fair. Apart
from this we used the trimaps as mask over the images to make the segmentation.
Trimaps are matrices with the same size of the image they are going to mask but
have just 3 colors: black/white/gray. In case it is black it represents the background
and should be excluded, in case it is white it is foreground and should be included.
The most important part is the gray because it is on the edge between foreground
and background image and though it has to be guessed which is the best separation
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line between them. The gray part is the one over which we operate. We put the mask
over the image and we try to guess the perfect border between fore and back.

In Figure 4.2 and 4.3 we reported some qualitative result.

FIGURE 4.2: Person1 image using 3000 segments and SNIC

Here below we can visualize also the mask relative to the image:

FIGURE 4.3: Person1 trimap

As we can see the image is segmented very well but we can get that the task
is not so difficult since there is a very good background knowledge offered by the
trimap itself that guides a lot the algorithm. Nonetheless there is a branch of research
around the interactive segmentation using the trimaps and we are going to see that
other papers, like the ones in the Background section, bring results based on trimaps.

4.5.2 Experiment with GrabCut50 and scribbles

This experiment is very similar to the one above in which we used trimaps, also the
infrastructure that permits to run the masks is the same despite the evident differ-
ence between the two masks. This comes from the rule "never reinvent the rule" so
we just adapted the code to run agnostically on any image just taking care of the
colors and at most checking the tyoe of colors. This is also part of the plugin archi-
tecture landscape since the rapid prototipation of these results came directly out of
a good infrastrure. For a qualitative result we can check here below 4.4.
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FIGURE 4.4: Person1 image using 3000 segments and SNIC

FIGURE 4.5: Person1 scribble

Here 4.5 we can visualize also the mask relative to the image.
As we can see the image is segmented in a poor way and for sure it is not going

to score 100% of accuracy but as we can see while the ground truth is still the same
as the trimap the quantity of informations we have through the scribbles is very
very low.This inevitably brought to a bad quantitative and qualitative result. In this
case the problem is so heavy that also the fact of increasing the number of segments
used cannot improve the overall score and instead can bring a collateral effect that is
substantial. Increasing, in fact, the number of segments brings a higher time to run:
more iterations of the GTG algorithm and also more time for the computation of the
SPs.
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Chapter 5

The Results

The results shown here below are for the GC50 dataset, we run the algorithm alsdo
on the GC151 but it takes quite a lot of time and for this reason we decided to drop
on that side moving that task in the future works.

5.1 Trimaps

For what concerns the trimaps results we made the state of the art with this thesis.
The task is intrinsinsically easy since the information provided is a lot and in fact
other scientists made really good scores but we achieved a result that is better than
the competitors, 0.23% of error against the lowest between the competitors that is
3.10%, here below a table 5.1.

The error rate we have on this task is 0.13, less than 1 pixel of error instead the
reader can note from this table are between 3 and 5 pixels of error.

5.2 Scribbles

Here below 5.2 the comparison of some methods that use the scribbles, in this case
we are not making the state of the art. Our method doesn’t work well with the
scribbles and makes too many errors, in fact our score is about 9 pixels of error while
the others stay between a 8 - 9%.
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Method Error Rate

sDPMNL (boundary) [22] 11.43 %
GMMVL (location + color + boundary) 10.45 %
SVM (location + color + boundary) [23] 9.21 %

GM-MRF [24] 7.90 %
sDPMNL (color) [22] 7.65 %

Superpixels Hypergraph 7.30 %
Lazy Snapping [25] 6.65 %

Graph Cuts [26] 6.60 %
Cost volume filtering 6.20 %

Directed Image Neighborhood Hypergraph [27] 6.15 %
RobustPn 6.08 %

Grabcut [28] 5.46 %
Regularized Laplacian [7] 5.40 %

Grady’s random walker [29] 5.40 %
Probabilistic Hypergraph 5.33 %

DPMVL (color + boundary) 5.19 %
Laplacian Coordinates 5.04 %

sDPMVL (color + boundary) 4.78 %
Sub-Markov Random Walk 4.61 %

Normalized Lazy Random Walker 4.37 %
Normalized Random Walker 4.35 %
Nonparametric Higher-Order 4.25 %
IISLPCN (default parameters) 4.15 %

Constrained Random Walks [30] 4.08 %
Lazy Randow Walks 3.89 %

Robust Multilayer Graph Constraints [31] 3.79 %
Texture Aware Model [32] 3.64 %

Pairwise Likelihood Learning 3.49 %
Multi-layer Graph Constraints 3.44 %

IISLPCN (optimized k) 3.21 %
Random Walks with Restart 3.11 %

Normalized Sub-Markov Random Walk 3.10 %
Difusive Likelihood 3.08 %

Our Method 0.23 %

TABLE 5.1: Comparative of our trimap model vs the others

Method Error Rate

Segmentation model Error rate
GMMRF [24] 7.9 %

Random Walker[29] (s=2) 5.4 %
Segmentation by Transduction [7] without AT 5.4 %

Square Laplacian regularizer 4.6 %
Random Walker (s=2) 3.3 %

Segmentation by Transduction [7] with AT 3.3 %
Our method 8.0 %

TABLE 5.2: Comparative of our scribble model vs the others
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Chapter 6

The Ablation Studies

6.1 Finding the Performances upper bound

FIGURE 6.1: Maximum precision 99%

Finding the best possible performance ever is important to get a general idea of
which is the best performance ever we can achieve through the methods we build
up. To calculate it we segmented every image with 10’000 segments using the SLIC
method and a compactness value of 10(default and prescribed as a good value).
Given this we coloured automatically segments based on the ground truth. In prac-
tice we put the mask of segments over the GT and we coloured every segment based
on the majority of the GT’s colors underneath the segment. The result was that the
best result ever is over the 99% of accuracy ??. This is important because it means
that we can really make a lot, in case the best ever result would have been 80%, by
example, we should have defeated at that point taking everything over as an error.

6.2 SNIC vs SLIC performances

This can be seen with a plot here below and it is intereserting because it is not pre-
dictable which method is the best one.

Exactly as it can be seen the two are not stable and can be interleaved in a state
of the art method to achieve the best performance since they tend to work better in
different situations. Overall the best scoring when the number of segments is fixed
is the SLIC method but on the long run the SNIC beats the SLIC. The main take away
is that if it is mandatory to have a lot of segments for a certain image, for example in
case the images are in hi-res, then use SNIC. In the other cases use SLIC.
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FIGURE 6.2: Comparison SLIC vs SNIC

6.3 Stability of GTG iterations

We have already seen the images below but now we should take care of the number
of iterations of the GTG method. The linkage between the images below and the
algorithm is that they are part of a GIF image that has 1 frame for every GTG itera-
tion. In this case the GIF had 250 frames representing 250 GTG iterations. The fact is
that in the image below I brought the first frame, the tenth and the last one. You can
clearly get the point, from 10 to 250 we have 240 frames that basically are identical.
In some cases watching carefully the GIF the reader can note that the partitions of
background and foreground can move with small movements, this is because of the
inability of GTG to decide difficult regions like borders but overall the algorithm is
really stable. We have discovered though that 100 GTG iterations as upper bound is
a pretty fair limit that doesn’t put a road block to the capability of the algorithm to
perform well, in practice it will converge after few tens of iterations and after those
it will just start floating around noise.

FIGURE 6.3: GTG propagation with trimaps

6.4 Number of SPs

Here we tested the performances of XXX when the number of SP changes. More-
over, we stressed the performances considering different values of compatcness (see
Sec YYY), a very important hyperparameter of SP. The tests conducted gave rise to
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the two plots (see Figure 6.4 and 6.5). here below that are very useful for future
benchmarks and optimizations since they perfectly give a simple interpretation of
the situation: at the very start with a lower number of segments in the case of Scrib-
bles the result is pretty similar but contrarily from what can be tought enforcing a
lower compactness gives rise to a better result and on the long run having the default
parameter(10) of compactness gives the best result. In practice it seems that enforc-
ing too much the compactness of the clusters instead of finding very homogeneus
clusters it ends up making wrong clusters.
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FIGURE 6.4: Comparison of segments vs compactness x err_rate for
the scribbles

In the second plot here below about the trimaps we can see that overall the result
is fine and under the 1 except in principle with a high number of compactness. It
is interesting to note that inversely from the previous case in this a high level of
compactness enforcement gives rise to a better performance on the long run.

FIGURE 6.5: Comparison of segments vs compactness x error rate for
the trimaps
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6.5 Distance Measures

From what we studied during the experiments there is no difference between the
two measures from the point of view of the accuracy but instead there is a difference
from the point of view of the timing. In fact while the cosine distance is hand-crafted
by me the euclidean is made by the sklearn developers that for sure are better than
me and develop using criteria of high efficiency and caching paradigms. For this
reason I think that if it is not mandatory to choose the cosine distance, the euclidean
distance should be the default choice.

6.5.1 Euclidean

The euclidean measure is described here below in the formula and then it is imple-
mented as is in the system. The formula 6.1 as is obviously doesn’t work and so it is
embeddded in other higher order functions that use it.

d(p, q) =

q

(q1 � p1)
2 + (q2 � p2)

2 (6.1)

6.5.2 Cosine

The cosine measure is described in the formula 6.2 and then it is implemented as is
in the system.

similarity = cos(θ) =
A · B

kAkkBk
=

∑
n
i=1 AiBi

q

∑
n
i=1 A2

i

q

∑
n
i=1 B2

i

(6.2)
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Chapter 7

Future Work

1. GC151 implementation, its easy but requires more time or more computational
power, this was the obstacle.

2. Experiment with GrabCut50 and clicks

The part of the experiment that involves the clicks were not developed at all
since it is still part of the future advancements of the project but still merits to
stay inside this thesis since we have a clear and detailed plan of how to imple-
ment it. In fact dealing with the blocking interactive input of a real human can
be a mess and can require to build a user interface. For this reason this solu-
tion is to be avoided, instead a better fit solution for us is to simulate a series of
points starting from the ground truth. The solution is as simple aas presented
here and can be read more about it in the paper [4]. The Pros of this approach
is to have results very rapidly instead retrieving real touches on a screen from
a real user can require not only the time for the labelling of each image but also
some time to create a proper UI, the contra is that the simulation algorithm can
end up with behaviours that are not so human to be valid. An example is the
fact that probably the simulation can end up with a lot of points that in the
reality no one would have made because it should require too much time, the
clicks can be too nearby one with the others but we know that our fingertip is
not so small.

3. Improving the performance with the scribbles could be interesting since we
achieved an encouraging result over the trimaps.

4. GNN

In the node classification problem setup, each node v is characterized by its
feature x_v and associated with a ground-truth label t_v. Given a partially la-
beled graph G, the goal is to leverage these labeled nodes to predict the labels
of the unlabeled. It learns to represent each node with a d dimensional vec-
tor (state) h_v which contains the information of its neighborhood. The GNN
setup is not yet implemented in this thesis but is a future improvement that
should be out soon connecting the SSN that leverages the differentiability of
SPs with the power of the GNN to effectively classify nodes.
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Chapter 8

Conclusions

In the end we presented in the first chapter some of the most inspiring previous
papers that helped us during the writing of this thesis. We started in particular from
the paper of prof. Pelillo Constrained dominant sets that we studied in deep, both
from the point of view of the general idea but also inthe implementation details. For
example the sigma that is needed to be calculated while using the gaussian kernel
as described here is taken from that paper. After this we read a lot of other papers.
Another focal point was the selection of the grabcut that takes its name from the
method proposed by the author of the paper grabcut. The selection of this dataset
was absolutely easy because it is widely used but finding it was a bit difficult because
the page that provided the dataset is no more maintained and the dataset itself came
in two different fashions. The grabcut dataset was in the first approach composed by
50 images but only 49 came nowadays because one image does not have its relative
scribble and therefore is unusable. An idea can be to make the scribble but this
wouldn’t be fair and would make the comparison with other papers impossible.
The paper was also enlarged in 2007 and 101 images were added but the dataset
kept its original name so we can find nowadays the same name for different flavours
of datasets. The core part of the whole transduction method is obviously the GTG
method that is quite easy and straightforward to be implemented since it is just
some matrix multiplications and theoretically strong. What it took quite a lot of time
was the entire pipeline to be developed. Finding the right transformations over the
images, calculating the filters and how calulating the formers, these were just few
of the decision we had to take and each one required extensive experiments but this
helped making the whole pipeline more robust. A key role was played during the
testing of the pipeline by the decision of visualizing every step. This was completely
game changing since we were able, at the end of the development, to be able to
visualize almost all the blocks of the process. One clear example is that even if GTG
is an iterative process we found a way to visualize the result as a GIF image. This
permitted to have better results and as a byproduct we got some fancy images to
be put here in the thesis. One of the most difficult parts of the thesis, for sure, was
the development of the feature vectors coupled to each superpixel. This involved a
large amount of creativity since the filters we are using are different and can still be
enlarged the number of them, they can be tuned to have bigger kernels and other
hyperparameters are available. Other little decisions we made around the filters
topic were about how to aggregate the value of a superpixel that was filtered. This
is necessary because each superpixel is composed by pixels and though you have
to summarize to just one value that represents the filter applied to the superpixel
in the feature vector. We came up with the median that seemed the best one since
does not introduces new colors, instead chooses one that is already present. The last
important consideration is about the superpixel algorithms, we adopted and tested
them(SLIC SNIC) because of their speed and accuracy. We can see that on my pc the
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time required to elaborate each image is about 20 seconds and is a long time if you
think having thousands of images. The superpixel algorithm takes 80% of this time
and so it is important to rely on something as fast as possible and seemed that SLIC
and SNIC were the best ones, others didn’t even arrive to an end. In conclusion the
result is really positive since we achieved a result that is state of the art in the trimap
image segmentation over the grabcut dataset.
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