

Master’s Degree

in Computer Science
Current Deployment and Correct

Configuration

Final Thesis

The State of
Strict Transport

Security
Current Deployment and

Correct Configuration

Supervisor
Ch. Prof. Stefano Calzavara

Graduand
Marco Busato
Matricolation number
852074

Academic Year

2020 / 2021

Abstract

Nowadays, the topic of security has become a popular issue due to the con-
temporary digital society in constant development. Thus, HTTPS only is
not enough in order to ensure a high security level (e.g. feeling protected
while surfing the net).
Therefore, a new mechanism has increased its employment: the Strict Trans-
port Security, which enhances the security between a user agent and a server.
In this thesis, it will be defined the best application of this system by observ-
ing the common settings over the internet and the reason why it is preferable
declaring some directives and carry out its current deployment among the
sites. Furthermore, the sites considered were tested in various scenarios and
their security level was assessed in a report that was drawn up.
This study, using some tools such as Puppeteer, wants to inform users about
the correct configuration and gives an overview about the current deploy-
ment of this essential security mechanism.

Keyword: strict transport security, web security, hsts

2

Acknowledgement

To my family and friends that supported me through this moment,
and still do everyday.

3

Contents

1 Introduction 6

2 Background 10
2.1 HTTP and HTTPS . 11
2.2 Transport Layer Security . 11
2.3 TLS Cryptography Protocol 13

3 Security Best Practices For HSTS 15
3.1 HSTS Preload . 17

3.1.1 Preload List Management 17
3.2 Browser Support . 18
3.3 Best Practices . 20
3.4 Inconsistencies and Limitations 20

4 Tool 22
4.1 Related Mechanisms . 23

4.1.1 Content Security Policy 24
4.1.2 Cookies . 25

4.2 Tiers . 25

5 Web Measurement 28
5.1 HSTS Settings On The First Thousand Hundred Sites 28
5.2 Overview of HSTS . 30
5.3 Are sites secure? . 32
5.4 Common Settings and Clerical Mistakes 33

5.4.1 Cookie leakage and CSP setting 37

4

6 Related Work 40
6.1 The State of HSTS Deployment: A Survey and Common Pitfalls 40
6.2 Upgrading HTTPS in Mid-Air: An Empirical Study of Strict

Transport Security and Key Pinning 43

7 Conclusion 49

5

Chapter 1

Introduction

Nowadays, in a digitalised society where everything is connected, the impor-
tance of feeling safe on the internet has a lot of meaning in our daily life. In
this sense, the HTTP protocol does not give the necessary security in avoid-
ing attacks from malicious attackers.
Thus, it has been necessary to implement a mechanism to encrypt communi-
cations over the internet in order to avoid plain communication and possible
attack by malicious users. At the beginning the SSL (secure socket layer)
protocol was used to encrypt connections between client and server. Once
it became deprecated in 2015, TLS (Transport Layer Security)[18] took its
place. However, this type of protocol does not fully protect websites from
”man-in-the-middle” attacks such as protocol downgrade or cookie hijack-
ing.
In 2009 there was a proposal from Jeff Hodges from PayPal, Collin Jack-
son, and Adam Barth of a mechanism that prevents ”Man-In-The-Middle”
(MITM) attacks and allows to improve the security over the internet. This
proposal became an IETF standard in late 2012 regulated by RFC 6797[9].
This proposal is called Strict Transport Security.
We choose to investigate on this security header and assess its current de-
ployment over the net.

In chapter 2, we give some brief introduction on the technologies used on the
web and how they evolved during the years. The HTTP which is the founda-
tion of the World Wide Web for exchanging hypermedia files. This protocol is
based on request-reply communication in the client-server computing model.
The client, which is typically a web browser, submits a request to the server.

6

The server returns a response message to the client.The HTTP protocol is
insecure, since there are no security mechanisms to encrypt the communica-
tion between client and server. The protocol for securing web traffic most
widely used is HTTPS, which includes layering HTTP traffic over TLS/SSL
[18] protected transport protocols in order to ascertain confidentiality and
integrity.
The TLS [18] is cryptographic protocol designed to ensure a secure communi-
cation over the network. The protocol prevents tampering, falsification and
interception of data by encrypting the data flow between client and server.
In order to encrypt the data flow, TLS bases its cipher suite on ”Diffie-
Hellman key exchange” (DHE) which is an encryption algorithm. This
method is used for exchanging keys securely over an insecure channel.

In chapter 3, we talk about the Strict Transport Security which is a security
policy that protects a server/client interaction by preventing any protocol
downgrade attack and cookie hijacking. Strict transport security (HSTS)
teaches browsers that particular domains must only be accessed through
HTTPS. It is the main countermeasure to HTTPS stripping. Sites may
specify this policy dynamically by HTTP header, or browsers can preload it
for ordinary domains. This information is conveyed in the HTTPS web re-
sponse header field named Strict-Transport-Security and includes a max-age
mandatory directive and other two optional directive: includeSubDomains
and preload.
Moreover, we talk about the potential inconsistencies and limitation of the
HSTS policy. These are: (1) neglecting the header or (2) setting the max-age
value to a negative number. A possible limitation is the so-called Network
Time Attack. This type of attack makes less effective the directive on those
users that rely on network protocol (such as Network Time Protocol, NTP).
The strict transport security was declared a internet standard by the Inter-
net Engineering Task Force (IETF), which is an organization that promotes
standard for internet, in the late 2012 and regulated by the Request For
Comment (RFC) number 6797 [9].

In chapter 4, we describe our automated application with NodeJs [16] and
Puppeteer [2]. Puppeteer Puppeteer is a tool that crawls the web pages in
order to retrieve the responses header to check whether HSTS is set correctly
or not. On the other hand NodeJs makes possible to run the code outside
the context of a web browser. We take the sites for our tests on Tranco[14]

7

list. The application that we built up collect as much headers as possible
from domains and subdomains in order to check the fields contained in these
headers.
We also rely on some other mechanism such as content security policy, which
prevent code injection attacks in the trusted web page and cookie, which is
a piece of data stored in the user computer used for caching stateful infor-
mations.
Then, we define a series of layers in which we place the crawled sites and
relatives subdomains in order to classify their vulnerabilities and potential
entries for an attacker. At each tier corresponds a possible scenario that an
attacker may encounter in order to exploit the site’s vulnerabilities.

In chapter 5, we illustrate the experiments conducted with the tool and the
results that came out. In particular, we replicated the experiments taken
from the articles on which this thesis is based [8] [13]. Thus, we crawl the
top n-sites of Tranco list [14] in order to carry out the state of HSTS over the
net. Then, we collect as much headers as possible from insecure and secure
version of the sites present in the list and for the latter one we crawled its
subdomains for a correct inclusion in the tables and starting from the head-
ers previously collected, we divided the sites in tiers. Finally, we show some
significant common HSTS header setting and the mistakes that we encounter
during our tests.

In chapter 6, we describe the two papers that were taken in consideration as
a starting point for this thesis. They briefly review the use of HSTS among
sites, and thus are useful in order to better understand the topic at stake.
The first paper is ”The State of HSTS Deployment”; it concerned about the
study conducted by Lucas Garron, Andrew Bortz and Dan Boneh, in 2013.
They make a scan of the top visited sites of the Alexa top 1 million list
in order to understand the correct set of the HSTS header and reveal the
common pitfalls. In particular, this case study is the first analysis on HSTS.
The second paper taken into account, ”Upgrading HTTPS in Mid-Air”, in-
troduces an in-depth study of HSTS and public key pinning.

In chapter 7, we will discuss the limitations and possible solutions for these.
A limitation of STS is the dimension of the preload list. It is reasonable to
think that every site in the net would not be part of the preload list and
consequently any conversation among the user and the site would not start

8

securely. Moreover, the most common mistakes that we encountered are from
sites’ subdomains: a clerical mistake is that there is confusion in the decla-
ration of HSTS.
A possible further work would be thinking about how to implement a mech-
anism that helps HSTS in order to avoid that every first communication to a
site begins over plain connections. To make the configuration easier to use, it
would be useful to establish a standard configuration for declaring the strict
transport security header with the possibility to be part of the preload list,
or alternatively force all server to respond over a secure channel.

9

Chapter 2

Background

The most used protocol for securing web traffic is HTTPS, which consists
of layering HTTP traffic over protected transport protocols, like TLS and
SSL [18], in order to ascertain confidentiality and integrity. Though TLS has
some minor cryptographic vulnerabilities, the most critical issue has been
HTTPS implementation that has been inconsistent and incomplete. In strip-
ping attacks, network attackers try to downgrade the connection of a victim
to untrustworthy HTTP notwithstanding support for HTTPS to both the
server and the client. These attacks are possible by browsers that flawlessly
support a combination of HTTP and HTTPS connection.

The Strict Transport Security (often called HTTP Strict Transport Secu-
rity, shorten HSTS or STS) is a security policy that protects a server/client
interaction by preventing any protocol downgrade attack and cookie hijack-
ing [23] [3].
HSTS is conveyed in the HTTPS web response header field named Strict-
Transport-Security. In the header field it is also specified a period of time in
which the policy should be considered valid for a particular user agent. This
directive is called max-age, and it must be set to a positive value in order to
make the policy effective.
Websites that receive HSTS header over HTTP automatically redirect the
connection over HTTPS (even if the specification does not require it) or they
can reject the connection.
According to RFC [9], if for any reason a user contacts a web server through
HTTP, the server responds with a 30x code (usually 301 code, ”moved per-
manently”) and the connection is upgraded to HTTPS. However, attackers

10

can exploit the vulnerability of the first insecure connection to implement a
stripping attack.

In this chapter, we give some background informations in order to better
understand how internet technologies work. We further explain how this
technologies are related with Strict Transport Security.

2.1 HTTP and HTTPS

The HyperText Transfer Protocol, also known as HTTP, is the foun-
dation of the World Wide Web for exchanging hypermedia files [7].
This protocol is based on request-reply communication in the client-server
computing model. The client, which is typically a web browser, submits a
request to the server. The server returns a response message to the client.
The HTTP protocol is insecure, since there are no security mechanisms to
encrypt the communication between client and server. Thus, the conversa-
tion is visible by any users with malicious intent.

The secure version of HTTP, i.e., the HTTPS, relies on the TLS [18] proto-
col, or formerly SSL, which encrypts the communication between client and
server. The motivations that led to choose the adoption of a secure version
are the authentication on the web and the protection of the data while in
transit.
The HTTPS establishes a secure channel over an insecure network, ensuring
a significant level of security against eavesdroppers, those who secretly listen
to private connections and ”man-in-the-middle” attacks, in which a malicious
user is positioned between the user agent and the server and can hijacking
the communication.

2.2 Transport Layer Security

The TLS (Transport Layer Security) [18], and its predecessor SSL (Secure
Socket Layer), are cryptographic protocols designed to ensure a secure com-
munication over a network. The TLS protocol prevents tampering, which
means the intentional modification of informations in order to make them

11

harmful to the user, falsification and interception of data by encrypting the
data flow between client and server. In 2014, all block ciphers present in
SSL 3.0 were found to be vulnerable to the POODLE attack [15]. The
acronym stands for ”Padding Oracle On Downgraded Legacy Encryption”.
This type of attack takes advantage of the encryption process, which is based
on padding that expands the message in order to be compatible with low-level
cryptographic algorithms. The attackers take advantages of this vulnerabil-
ities in order to break the cypher and decrypt the connection. The SSL
protocol became deprecated in 2015.

TLS authentication is unilateral, which means that only the web-server needs
to be trusted to the client. The client validates the server’s certificate by
checking that the digital signature is acknowledged by a certificate authority
(CA) using a public key cipher. The protocol operation can be resumed in:

1. The handshake, which is the first step to begin a communication, starts
when the client presents a list of supported ciphers, then the server picks
one from the list and communicates to the client the chosen cipher

2. Client and server exchange their keys, usually using ”Diffie-Hellman
Key Exchange” (DHE) which is useful to generate a unique session key
for encryption and decryption of the messages

3. The handshake operation terminates and begins the messages exchang-
ing, that is encrypted and decrypted with the session key previously
generated by DHE.

If any of the above steps fails, the connection is not created.

However, the HTTP over TLS alone is not enough against malicious intents.
A common scenario in which a secure connection is established is the follow-
ing:

• A user sends a request to a web server via HTTP;

• The web server responds with a HTTPS redirect;

• The user sends a secure request and the secure communication begins.

In 2009, an elaborate type of attack against HTTPS called SSL stripping
was presented. This attack takes its potential from user trust, which means

12

that the user is certain that the communication starts securely. The attacker
places itself in the HTTPS redirection and intercepts the requests form client
to server. Then it acts like a bridge between the server, maintaining a secure
channel, and the client with an HTTP connection.

In order to avoid the so-called SSL stripping attack, the best practice is
enabling the strict transport security, which will be further explained in the
next chapter.

2.3 TLS Cryptography Protocol

In this section we give a briefly introduction on the ”Diffie-Hellman key ex-
change” (DHE) which is one of the most common encryption algorithm used
in the TLS protocol [18]. This algorithm is used for exchanging keys securely
over an insecure channel.
This encryption algorithm involves two or more participants and assigns them
a pair of keys, respectively called public and private.
The public key can be obtained by anyone and is used to decrypts the en-
crypted received message(s).
The private key is kept confidential to the client and is used to encrypt the
message that the client wants to send over the communication channel.
Before we explain more in detail the algorithm, we give two technical defini-
tions:

• A number is called prime if and only if it is divisible only by one and
itself. Examples of prime number are 2, 3, 5, 7, 11;

• A number in relation with another number is called coprime if and
only if the only two dividers in common are 1 and -1. Example of
coprime number are 6 and 35, but 6 and 27 are not coprime since they
have in common the number 3.

We have two entities, A and B, in which they publicly agree on a prime
number p and a coprime number g between 1 and p-1. Then, they secretly
choose a random number in which:

• A sends to B ga mod p = x;

• B sends to A gb mod p = y.

13

These computed values, x and y, are sent over the communication channel.
At receiving time, in order to compute the secret s :

• A computes: s=ya mod p;

• B computes: s=x b mod p.

Now, A and B know and share the secret s which is the same value for both
parties. The value s can be used to encrypt any message sent across the same
open communications channel.
The strength of this algorithm comes from the fact that, if any intruder E
listens to the communication between A and B and knows p, g, x, and y, will
take extremely long times to compute the secret s.

The Diffie-Hellman algorithm is used because , to generate a new key pair
at each session is fast and discards this pair at the end of the session. This
particular characteristic is called forward secrecy and is one of the protocols
used in the TLS [18] cipher suits.

14

Chapter 3

Security Best Practices For
HSTS

The first time that a web site is accessed and it receives the strict trans-
port security header, the browser records this information and knows that
any further access to that site must be only over secure connection, in other
words, using an HTTPS connection.
It is important to highlight the fact that if a browser receives an HSTS header
over an insecure connection, it will be ignored. This is due to the fact that a
malicious user can intercept the connection and inject or modify the header
(Man-In-The-Middle attack). If the connection starts over a secure channel
the directive is compliant.

When the expiration time is elapsed, the next attempt to connect the site via
HTTP proceeds as usual and the client contacts the server through insecure
channel.
In order to avoid the expiration of time specified in the max-age directive,
every access to the web server automatically refreshes the information. If the
max-age is set to 0, the strict transport security header immediately expires,
allowing access via HTTP.

There are other two additional directives that can enforce HSTS policy:

• includeSubDomain, if set, specifies that HSTS directive should be
applied to all site’s subdomain(s) as well.
For example, if example.com sets a valid HSTS policy with includeSub-

15

Domains, then all further connection to example.com as well as
foo.example.com and bar.foo.example.com must be contacted over HTTPS
only. This directive covers subdomains of the entire site regardless of
depth;

• preload, it can be set after submitting the site via the from provided
by Google [19] and if the directive is present, it enforces HSTS policy
by including the domain in a list maintained by Google. By setting
this policy, the web browser is notified that the host should only be
contacted via TLS/SSL connection in order to avoid every first at-
tempt to create a plain connection. The major browsers have their
own preloaded list based on Chrome list.

It is important to recall that:

• the directives cited before must be declared once in the header field;

• the unrecognized directive must be ignored by the user agent, and
proceed the navigation with the recognised directives;

• the order of appearance is not significant. Declaring first includeSub-
Domains or max-age is not important;

• the directives are case insensitive, which means that directives declared
uppercase have the same effectiveness of those declared lowercase or
with capital letters.

However, the preload directive is not part of HSTS specification, thus it is
not secure to enable it by default. Moreover, to join the preloaded list, the
site must be submitted via an online form[19].
In order to join the list, the site is submitted it must satisfy the following
requirements:

• Provide a valid certificate;

• If listening on port 80, there must be a redirect from HTTP to HTTPS;

• Serve all subdomains over HTTPS. In particular, the site must support
HTTPS for the www subdomain if a DNS record for that subdomain
exists;

• Serve an HSTS header on the base domain for HTTPS requests:

16

– The max-age must be at least 31.536.000 seconds (one non leap
year);

– The includeSubDomains directive must be specified;

– The preload directive must be specified.

In the next section we give more details about preload directive.

3.1 HSTS Preload

Even if it is not part of the directive mentioned in the RFC 6797 [9], aim-
ing to get on the preloaded list should be achieved by all sites. The list is
maintained by Google and used by Chrome and most of browsers base their
own preloaded list on this. We also mentioned, in the previous section, how
it can be done to be part of the list.
However, including the preload directive in the header is not recommended
by default. But, what does being preloaded mean?
The concept of being preloaded regards the fact that, the browsers are al-
ready informed about the requirement of using a secure connection by the
host before the communication begins. To be preloaded removes any mali-
cious intent from an attacker to intercept and tamper any communications
that are redirected from HTTP. The submission via registration form[19] has
permanent consequences both on the site and on the preload list.
Domains can be unsubscribed from the list, but the operation takes months
for a change to reach users with a Chrome update and cannot make any
guarantees about other browsers. Also for the removal there are some pre-
cautions, such as:

• Be preloaded or having a pending preload;

• Serve valid certificate;

• HSTS header must be set correctly. The preload directive must not be
included.

3.1.1 Preload List Management

As we explained previously, a public list maintained by Google exists and
there can be found information about sites that have included the preload

17

directive inside HSTS header.
The Google preload list is stored in a json format, and includes:

• Name field, which is the site name, e.g, site.com/;

• Policy field, which is use for list maintenance and indicated under which
condition the site is included in the list;

• other field are optional. The fields that occur most are mode, usually set
at ”force-https” and include-subdomain which is a boolean (true/false).

Here is an example:

{ "name": "***.com", "policy": "custom", "mode": "force-https" }

All of these elements of the entry together, ends up meaning that for the site
specified in the name field that have a custom policy it is applied a force-
https mode (update an insecure connection to a secure one).
For sites that do not specify the includeSubDomain or do have HPKP1/Expect-
CT the policy is ”custom”. That means that, when the site is included in the
list, it had a HPKP/Expect-CT field in the header response. The Http Pub-
lic Key Pinning (HPKP) is a now deprecated security mechanism that allows
HTTPS websites to resist against impersonators of misused certificates.

Furthermore, also Mozilla implements its own preload list. Even if it is based
on chrome preload list, it implements a script that checks periodically the
site’s status. Every day the script attempts to connect to each site of the
list and, if the site responds with a HSTS header with at least a max-age
directive of 18 weeks expressed in seconds, the entry for that site is updated,
otherwise the host is not included.
The host is not removed by the script in case of bad connection, which means
that the script will not remove a host from the list whether there happens to
be a host disconnection. For site removal the host must not sent an HSTS
header or the directive has to be less than 18 weeks in seconds.

3.2 Browser Support

Since HSTS became a IETF standard, the most common browsers have taken
actions in order to support this security policy. Therefore, nowadays, HSTS

1Deprecated

18

is supported by all modern browsers.

Figure 3.1: HSTS, browsers support[6]

In figure 3.1, the number inside the colored box states the version of the site
that supports HSTS. The green box indicates that the version declared inside
supports HSTS. The version of the browser that does not support HSTS is
indicated by a red box. Unfortunately all versions of Opera Mini browser
does not supports HSTS.
The next figure shows the use of the browser.

Figure 3.2: Browser use (October 2020 [20])

19

3.3 Best Practices

There are some instructions to follow in order to set up an HSTS header
correctly. These best practices can be resumed as follows:

• Hosts should declare HSTS policy at their top level domain name. In
other words, the policy should be enabled for https://example.com;

• Have the max-age directive set up to 1 non leap year in seconds (31.536.000
seconds);

• includeSubDomains should be present.

The HSTS policy must never be send over plain HTTP.

Moreover, other than the best practices listed above, a subdomain should
comprehend a request from its origin domain in order to ensure that HSTS
is set for the origin itself and make sure that the user is protected from
possible cookie injection attack that may inject a reference to the parent
domain or to a non-occurring subdomain, to which the attacker at stake
would respond.

3.4 Inconsistencies and Limitations

Two potential inconsistencies in HSTS deployment exist. These have danger-
ous security implications which are: (1) neglecting the header or (2) setting
the max-age value to a negative number. In the first scenario, it is dangerous
due to the fact that it may imply that sometimes HSTS is not operative,
mainly when no HSTS-protected page (on the same host) or a parent do-
main (i.e. includeSubdomains) was visited. Worse is setting a max-age value
to a negative value, because it disables HSTS for that host. It is important
to state that the browser implements this so that a possible entry for the
host is dropped, rather than stoking the directive. Therefore, if the origin
domain sets includeSubdomains while the host itself is setting a max-age to
zero, HTTP connection to that host are permitted until the origin is once
again visited, thus implementing HTTPS for all its branches.
These inconsistencies can be exploited by an attacker to build up an attack
on the site. Moreover, in certain cases (i.e. when the communication is inse-
cure) an attacker can phishing (i.e. impersonating some trustworthy entity)

20

or sniff (i.e. watch the flow communication between entity A and B) cookies
even they are flagged Secure.

According to the RFC [9] specification, there are some vulnerabilities that
HSTS presents. A possible vulnerability is the Bootstrap MITM (Man-
In-The-Middle).
This type of vulnerability shows up when the user manually enters, or clicks
on a link to an unknown host that uses an HTTP connection instead of
HTTPS. Because of this, the user agent is subjected to various attacks, such
as cookies hijacking.
Another limitation that HSTS presents is the so-called Network Time At-
tack. This type of attack makes less effective the directive on those users
that rely on network protocol (such as Network Time Protocol, NTP). Briefly
the NTP is a protocol that synchronize the computers clock connected on
the internet. If the attacker can operate on such protocol, he/she can modify
HSTS directive in order to make it less effective or even totally ineffective.
We invite the reader to take a look at the RFC 6797 [9] in section 14.

21

Chapter 4

Tool

In order to assess the current deployment and establish the correct configu-
ration of HSTS, we identify three major tests to perform on sites:

1. Giving the state of HSTS deployment in the wild by crawling the first
thousand hundred sites. That is, how many sites responds over secure
channel and present HSTS field in the response header. Then, collect
the directives that the header carries with itself;

2. Crawling the sites in order to give a more specific overview of HSTS
security mechanism. In particular, determine which sites follow the
best practices (section 3.3) and which of these present inconsistencies
and limitations on its deployment;

3. By analysing the level of HSTS deployment, we defined a series of
tiers in which we collocate the sites after subjecting them in various
scenarios, in order to evaluate their security level.

To figure out how HSTS is implemented in practice, we built up an auto-
mated application with NodeJs[16] and Puppeteer[2].
Puppeteer is a tool that crawls the web pages in order to retrieve the re-
sponses header to check whether HSTS is set correctly or not. NodeJs makes
possible to run the code outside the context of a web browser.
We take the sites for our tests on Tranco[14] list. This list take the advan-
tages from other type of lists like Alexa[11], Cisco Umbrella[10], Majestic[12]
and Quantcast[17] and it collects the data from these lists and applies the
Dowdall rule in which at each candidate site is given a score from 1 point, to

22

the first candidate, to 1/N, to the last candidate.

The application that we built up with Puppeteer [2], collects as much head-
ers as possible in order to check the fields contained in these headers. We
start by collecting the headers from parent domain (i.e example.com, where
”example.com” is replaced by the name present in the list). Then, once
the home page responds, we collect the relative subdomains and headers of
these subdomains by retrieving all sites that belong to the domain referred
from ”href” html tags present in the page. An example of subdomain is
www.example.com or a.example.com.
Once these headers are collected, we focus on the following fields:

• Status, which tells us if there are a redirect (i.e. code 30x) in addition
to the location field or if the request has a successful response (i.e. code
200);

• Location, which tells if where we have to looking for the redirection;

• Strict-Transport-Security, which tells if there are or not the pres-
ence of the policy that we are going to state its current deployment;

• Content-Security-Policy, in particular the directive upgrade-insecure-
request if present, to check if there are the possibility to have mixed-
content in the page, we explain this in section 4.1.1;

• Set-Cookie, to check the presence of the flag Secure and if the sites
use the so called cookies prefixes, more details are given in section 4.1.2.

Moreover, Puppeteer [2] provides some function to extract some other fea-
ture from the response header puppeteer object like the security details so
as to check if provides a valid certificate or uses the last version of TLS[18].

4.1 Related Mechanisms

In order to optimise the inclusion of sites in the various scenarios proposed,
we also rely on the headers Content-Security-Policy and Set-Cookie. In
particular we focused on the directives upgrade-insecure-request and cookie
setting’s variant called ”cookie prefixes”.

23

4.1.1 Content Security Policy

The content security policy is a standard introduced to prevent code injec-
tion attacks resulting from execution of malicious content in the trusted web
page [21] [5].
Nowadays, Content Security Policy (CSP) has numerous directives to restrict
framing, content inclusion or even enforce TLS; as a matter of fact we focus
on the upgrade-insecure-request in this chapter.
The upgrade-insecure-request directive of the content security policy, in-
structs the user agent to treat all the insecure URLs of the site as if they
were secure. This replace, in part, and act like the deprecate directive block-
all-mixed-content, that is, as the name suggest, a mechanism to instruct the
browser to block any insecure reference inside the page. Every reference to
insecure URLs will be rewritten before the request is made.

The upgrade-insecure-request of CSP instructs the tool implemented to check
if a site allows the presence of mixed content.
An HTTPS page that includes context that references HTTP pages, is called
mixed-content page. These types of pages are partially encrypted and thus
open to attacks by malicious intent. The mixed content is divided in two
categories:

• Passive mixed content: A mixed-content page contains reference that
cannot alter other portion of the page. The reference can be an image,
in which an attacker can masquerade malicious content in such image;

• Active mixed content: A mixed-content page contains reference that
can alter all or large portion of the page. This reference can be a script
or a link, in which an attacker can intercept the request to the reference,
rewrite the content and inject malicious code in the page in order to
steal sensitive data.

Without a valid HSTS header, the upgrade-insecure-request directive will
not ensure that visiting your site through third-party sites will be upgrade
to HTTPS. This because the upgrade-insecure-request will not replace HSTS
header and leaving the sites opened to the SSL stripping attack. Thus, this
can be a potential vulnerability to exploit by an attacker.

24

4.1.2 Cookies

A cookie is a piece of data stored in the user computer used for caching
stateful informations . They can also be used to remember informations pre-
viously entered into form fields, such as: names, addresses, passwords and
payment card numbers [22] [4].
Cookies use Set-cookie HTTP header which is sent as a response from the
web server. Moreover this header is sent again back to the server in the
future request. Given that the HTTP protocol is stateless, using cookies is
helpful in order to remember to users the information in the state. Notwith-
standing some mechanism useful to send them in a secure way, throughout
HSTS inconsistency these cookies can be leaked even though they are flagged
as Secure. With the stated Secure attribute, the cookies are restricted to
encrypted connection. Nevertheless, if the communication occurs in a non-
secure connection and the cookies are retained Secure, these cookies them-
selves can be waylaid by a man-in-the-middle attack.

The cookies prefixes aim to mitigate some drawbacks of the cookie imple-
mentations. This type of implementation helps to set cookies ”Secure” and
locked to a domain. An advantage of cookies prefixes is that they are related
only to the secure origin, in other words, if a non secure origin tries to set
them they will be rejected.
This mechanism helps us to check if there might be a theft of cookie domain
in case of lack of the includeSubDomains directive.
There can be two version of cookies prefixes:

• If the cookie name starts with ” Host-” ignore all cookie unless if it
not presents any ”Domain” directive, the cookie path is equals to ”/”
and is flagged ”Secure”;

• If the cookie name starts with ” Secure-” reject it unless it is flagged
”Secure” and the request URI is considered ”secure” by the user agent.

If the cookie does not match any of these cases it will be rejected.

4.2 Tiers

In this section we define a series of layers in which we place the crawled sites
and relatives subdomains in order to classify their vulnerabilities and poten-

25

tial entries for an attacker.
Each tier corresponds to a possible scenario that an attacker may encounter
in order to exploit the site’s vulnerabilities. Therefore, in order to make this
type of ranking at each scenario more readable, it is assigned an alphabetic
letter, from ”E”, the most insecure, to ”A”, that is close to be very secure.
In each tier we evaluate the correct declaration of HSTS both on parent do-
main and on its subdomains. Moreover, we check the presence of relative
mechanisms illustrated in the previous section. In particular, the upgrade-
insecure-request of CSP tells us the presence of mixed content and the Set-
cookie field tells in case of HSTS deactivate, with a max-age value lower or
equal to 0 or the lack of includeSubDomains directive, if there are cookies
flagged ”Secure”.

Before we illustrate the various tier of our study, we would like to highlight
some assumptions.
In order to make our choice consistent, there would be a ”trust on first use”,
in other words there is not any interference from any attacker on every first
connection to the site. The other assumption regards the fact that the navi-
gation of the site begins on the landing page (i.e, the home page) of the site.

• Tier A: The site complies to all requested HSTS features. It imple-
ments all HSTS best practice and moreover is preloaded.
The site placed in this tier is not subjected to any assumptions, since
it can mitigate a passive and active attack, such as a man in the mid-
dle data manipulating attacks. The navigation starts and ends over a
secure channel;

• Tier B: The site complies HSTS best practice. In this scenario a site
security can mitigate an attack from any malicious intent. The site is
subjected to the assumption of ”trust on first use”, since the navigation
starts over an insecure channel for every first time;

• Tier C: The site response over a secure connection but it has some
HSTS bad implementation, like max-age less than one year in seconds
or there is no includeSubDomains directive.
In this scenario, the site can mitigate an attack on the home page, but
could be vulnerable on its subdomains.
In this type of scenario we also check the presence of ”cookies prefixes”

26

because in case of missing includeSubDomains directive there can be
a potential cookies leakage. The site is subjected to both assumption
previously mentioned.

• Tier D: In this scenario a site responds over an insecure channel and
there is no presence of HSTS header field. Hence, a site is vulnerable
to both active and passive attacker.

There are other tier in which we insert multiple scenarios. This is because the
sites that enter in those scenarios are very vulnerable to any type of attack
either active or passive.

• Tier E: In this tier we need not to do any assumption since the entire
domain is subject to any attack. We put those site that have either max-
age directive less than or equal to zero or do not have HSTS header.

– Scenario 1: The site responds over a secure connection and has
no HSTS header. In this scenario a site is always vulnerable on
every first connection since the connection begins over HTTP and
HSTS is not presents. Thus, the successive connection cannot
start over a secure channel;

– Scenario 2: The site responds over a secure connection and has
a malformed HSTS header. With malformed header we intend an
header with multiple directive declaration or unacceptable values
like ”[...]; includeSubDomains = true”;

– Scenario 3: The site responds over a insecure connection and has
HSTS. This is probably the worst case because in case that HSTS
header is not ignored by the browser when the site is accessed
using HTTP, an attacker may intercept HTTP connections and
inject, modify or remove the header.

27

Chapter 5

Web Measurement

In this chapter we illustrate the experiments conducted with the tool and
the results that came out. In particular, we replicated the experiments taken
from the articles [8] [13] on which this thesis is based.
We start our analysis starting from:

• http://example.com;

• https://example.com.

where ”example.com” is replaced by the current domain present in the list.
Thus, we give an overview of HSTS deployment among the sites and the
current settings of this security mechanism. Moreover, we collect the number
of those site that declare the preload directive in the response header. Finally,
we divide the sites crawled into the tiers previously described (section 4.2).

5.1 HSTS Settings On The First Thousand

Hundred Sites

We crawl the top n-sites of Tranco list [14] in order to carry out the state of
HSTS over the net.
We counted the number of sites that respond over a secure channel and col-
lect headers from the home page of these sites. From the headers, we focused
on the field strict-transport-security and then collect the data of directives.
Note that we collect the data of those site that set a max-age equals to zero,

28

that is, those that deliberately deactivated it.

In the table 5.1, we correlate the incidence of sites that respond over HTTPS.
In the average, the percentage of the sites is never below the 80%. The study
conducted in 2013, registered an incident on the average of about 60%. Thus,
we can say that with respect to this study (table 5.3) we have a great im-
provement.
In the next step of this study, we registered the state of HSTS of the top
thousand hundred sites. Once again we have an improvement of the data,
mostly in the top ten sites of the list. In this level, the half of the sites set
HSTS more or less correctly, none of them deactivate it with the directive
max-age equals to zero. Moreover, two out of four declare the preload direc-
tive in the response header. This is satisfactory in terms of the fact that,
in 2013, none of the sites in the top ten had a proper HSTS setup. Notice
that, when we approach on the first thousand sites, the percentage of settings
decreases. This is due to the fact that there are sites not so visited, sites
that do not collect sensitive data or static sites and therefore, the need for
HSTS is not a requirement.

HTTPS

TOP sites # %

10 8 80%
100 92 92%

1.000 889 89%
10.000 8.417 84%

100.000 79.393 79%

Table 5.1: Number of sites that responds over secure channel

Finally, we conclude this part of the study with the evident proof that, in
these years, the deployment of strict transport security has significantly in-
creased its use. In addition, the introduction and maintenance of a preload
list helps the sites developer to aim for a correct settings of this security
mechanism.
In the next section we give a more detailed overview of HSTS.

29

HTTPS HSTS max-age = 0 includeSubDomains preload

% # % # % # % # %

8 80% 4 50% 0 0% 3 75% 2 50%
92 92% 48 52% 2 4% 29 60% 14 29%
889 89% 295 33% 9 3% 164 56% 87 29%

8.417 84% 2.057 24% 103 5% 1.156 56% 502 24%
79.393 79% 15.308 19% 824 5% 8.375 55% 2.948 19%

Table 5.2: HSTS settings on the first hundred thousand sites

top sites HTTPS HSTS incl.sub. max-age=0

10 8 1 0 1

100 76 3 0 2

1000 629 11 3 4

10000 5.402 56 11 10

100000 46.943 277 66 25

Table 5.3: HSTS deployment in 2013

5.2 Overview of HSTS

In this section, we collect as much headers as possible from insecure and
secure version of the sites present in the list and for the latter one we crawled
its subdomains for a correct inclusion in the tables.
For the first part, we collect:

• which sites do not redirect to a secure connection;

• which sites do redirect but always to an insecure connection;

• which sites sends HSTS header only through HTTP;

• which sites redirect to HTTPS.

For the sites that responds over secure version of HTTP, we focused on:

• sites that do not have HSTS or deactivated it by setting a max-age
value to zero;

30

• sites that have bad implementation of HSTS such as lack of the presence
of includeSubDomains directive;

• sites that follow the best practices described in chapter 3;

• sites that follow the best practices and declare the preload directive in
the header.

Let’s focus for a moment only on the sites that rely on HTTP. Even if there
are some sites that still declare the policy header only over HTTP, we have
a comfortable scenario in which the number of insecure sites has decreased
over the years.
Moreover, we notice that there are a high percentage of sites that redirect
correctly to the HTTPS. This is a comfortable data since there is a secure
approach in sites development, however, on the other hand these sites are
subjected to the man-in-the-middle attack on every first visit from the users
since the first contact to the site happens through an insecure channel.

In the second part of the test, we focused on possible HSTS settings scenar-
ios. A point of particular concern is the number of sites that have HSTS not
present, deactivated or with a max-age directive less than or equal to zero,
which is equivalent to deactivate it. This is due to the fact that probably the
crawled sites are static, that is, those sites that do not collect user’s sensitive
data or do not have a private area for the user. In this cases the only HTTPS
is sufficient.

A particular assumption is that we cannot do a strict comparison between
our study and the study conducted in 2015, reported in the table 5.5 because
of the number of headers collected, the difference between the lists used and
the type of study conducted. In conclusion, observing the fields of sites that
follow the best practices in the table 5.4 we can state that about 10% of the
sites scanned set correctly HSTS but this is not sufficient to assume that the
sites are secure to both a passive or active attack.
In the next section, we try to provide an overview of the security of the
scanned sites.

31

Tranco Top 1M

Domains %

Total sites 164.747 -
total HTTP site 86.354 52,42%
Doesn’t redirect HTTP->HTTPS 14.069 16,29%
Redirect to HTTP 11.729 13,58%
Set STS only over HTTP 3.189 3,69%
Redirect to HTTPS 57.130 66,16%
total HTTPS site 78.393 47,58%
HSTS not present or max-age<=0 63.074 80,46%
HSTS with malformed header 7.608 9,70%
HSTS Best Practice 4.752 6,06%
HSTS Best Practice + Preload 2.948 3,76%

Table 5.4: Overview of HSTS

Alexa top 1M

Domains %

Attempts to set dynamic HSTS 12,593 -

Doesn’t redirect HTTP ->HTTPS 85,554 44.1%
Sets HSTS header only via HTTP 517 4.1%
Redirects to HTTP domain 774 6.1%
HSTS Redirects to non-HSTS 74 0.6%
Malformed HSTS header 322 2.6%
max-age = 0 665 5.3%
0 <max-age <= 1 day 2,213 17.6%

Sets HSTS securely w/o errors 5,099 40.3%

Table 5.5: HSTS deployment in 2015

5.3 Are sites secure?

In this section, starting from the previously headers collected, we divided the
sites in tiers. The tiers which we refer to are described in section 4.2,
A worrying fact is that, in each subdivision, the tier E is populated by about

32

50% of the sites. We remind that we do not make any distinction from
dynamic and static site and furthermore, the latter falls into this scenario.
However, this is not a valid excuse to those sites that respond over an insecure
channel, do not redirect to a secure version of the site or set HSTS only
through HTTP.
Viceversa, tier A is the less populated with respect to the lower tiers. A
possible explanation is that even if the home page of the site sets correctly
HSTS, probably its subdomains do not require a reference to the parent
and due to this the policy is not enforced. Thus these sites that have the
requirements to enter in the higher tiers, unfortunately, are placed to the
lower tiers.
Finally, we observe that the tier B is the least populated. This can be in part
to the fact previously described for tier A and in part that the subdomains
collected do not present the policy in the response header even if the parent
declares in the policy the includeSubDomains directive.

TIER

A B C D E

top n-sites # % # % # % # % # %

8 0 0,00% 0 0,00% 3 37,50% 1 12,50% 4 50,00%
96 4 4,17% 1 1,04% 24 25,00% 22 22,92% 45 46,88%

912 26 2,85% 1 0,11% 131 14,36% 159 17,43% 595 65,24%
8.861 107 1,21% 6 0,07% 989 11,16% 1.376 15,53% 6.383 72,03%

90.038 563 0,63% 49 0,05% 7.088 7,87% 19.019 21,12% 63.319 70,32%

Table 5.6: Sites divided in tiers

Overall, we can say that the developers assume that the navigation starts
from the home page when actually the user can access the site from any of
its subdomains. It is clear that in table 5.6, that the sites protect only their
home page and only few sites are fully protected thanks to correct HSTS
configuration.

5.4 Common Settings and Clerical Mistakes

In this section, we show some significant common HSTS header setting and
the mistakes that we encountered during our tests. In addition, we also

33

collect the Set-cookie and CSP directives in order to point out possible vul-
nerabilities from HSTS inconsistencies.
Once again, we collect about thousand hundred headers from parent domains
and about five times as many headers from subdomains and count the fre-
quency of these occurrences. For study reason we illustrate in the tables
below significant values of the headers collected.

The most encountered value during our test is the ”undefined” value, which
means that the sites do not present the field in the response header, with
a frequency of 62.260 times. Moreover, another fact is the number of those
headers that deactivate the policy by setting the max-age value equals to
0. The sites that presents only max-age occur 409 times, those which set
the includeSubDomains occur 98 times and those which declare the preload
directive occur 113 times. We expect this data since in the previous sections
we have an high number of sites that are placed in tier E in table 5.6 (last
row) or in table 5.4 were the number of sites with a HSTS deactivated is over
the 80%. These data are highlighted in red in the table 5.7.
Moreover, we present an HSTS header value which is borderline, which means
that is accepted by the UA, but not compliant the best practice for be in-
cluded in the preload list.
Finally, the parent domains that present a valid header has a frequency of
occurrence of approximately 6.500 times. Thus, we have a consistency of
data concerning what did in the previous sections and what we present here
in the table 5.7.

The value that recurs the most for max-age directive is 31.536.000 seconds
(1 year in seconds). This value confirms what described in chapter 6 where
in their tests, they recorder this value as the most recurrent. Additionally,
we refer this value in order to follow the best practices in chapter 3. We also
registered 832 occurrences of value equals to 0. This data can also be seen
in table 5.2 (last row) under the max-age heading.
An interesting fact is the number of different value for max age, in the table
5.8 we present the first 10 occurrences, but with our tool we collect about
170 different values.

Now we focus on the collected subdomains HSTS header.
Also here, we collect with a frequency of 122.659 times the value ”undefined”
which we remind that means that there are not the field in the response

34

HSTS header value # of occurrences

undefined 62.260
max-age=31536000 2.800
max-age=31536000; includeSubDomains; preload 1.683
max-age=31536000; includeSubDomains 1.488
max-age=63072000; includeSubDomains; preload 547
max-age=0 409
max-age=31536000; preload 215
max-age=0; includeSubDomains; preload 113
max-age=0; includeSubDomains 98

Table 5.7: Most occurring values of HSTS header on parent domains

max-age value # of occurrences

31.536.000 7.216
63.072.000 1.931
15.768.000 1.135
15.552.000 1.049

0 832
300 622

2.592.000 423
7.889.238 416
15.724.800 328

86.400 308

Table 5.8: Common max-age value on parent domains

header. Furthermore, we registered two cases in which the directive is de-
activated and in one case defines also the includeSubDomains and preload
directives.
We also recorded two borderline cases with two different max-age values
which is accepted by the UA, but not compliant with being included in the
preload list as we described in chapter 3.
Finally, in the most significant HSTS header presented in the previous ta-
bles, we have four cases of correct setting of this policy, all of them with an
expiration time of over 1 year in seconds.

35

For what concerns the max-age value here too we registered as the most com-
mon value 1 year with a frequency of over 33.500 times. The most significant
data is the max-age value equal to 0, which is more frequent respect to the
parent domains, which means that the subdomains are more vulnerable to
an attack.
The other values range from few minutes to about six months in seconds
with an occurrence of over thousands times.

HSTS Header value # of occurrences

undefined 122.659
max-age=631138519 18.662
max-age=31536000 12.573
max-age=31536000; includeSubDomains 8.063
max-age=31536000; includeSubDomains; preload 7.989
max-age=15552000; preload 6.133
max-age=0 1.738
max-age=31536000; preload 538
max-age=0; includeSubDomains; preload 186

Table 5.9: Most occurring values of HSTS header on subdomains

max-age value # of occurrences

31.536.000 33.580
631.138.519 18.691
15.552.000 10.517
63.072.000 5.174
15.768.000 3.723

0 2.360
7.889.238 1.363
259.200 1.253

15.724.800 1.209
300 1.123

Table 5.10: Common max-age value on subdomains

36

In conclusion, we present in the tables only significant values of HSTS setting
but, for what concern the parent domains, we registered about 650 different
headers and over 170 different values for max-age directive. Furthermore
for subdomains we collect over thousands different setting for HSTS policy
and about 250 different max-age values. This means that there are a lot of
confusion for declaring the policy at its best.
Moreover, the RFC [9] gives some loose guidelines to declare this policy, and
in particular states two guidelines that gives to the user the possibility to
declare the same policy in various way:

• The order of appearance of directives is not significant;

• The names of directives are case-insensitive.

This creates a lot of confusion and moreover, the includeSubdomains directive
is declared in it as a optional field than a required field leaving the subdomains
open to attacks from malicious users.
What we expected is that RFC [9] gives some stakes to declaring the policy
with the possibility to add or not other directives without compromising its
effectiveness.

5.4.1 Cookie leakage and CSP setting

To better understand the security implications of inconsistent HSTS deploy-
ment, we performed an analysis to estimate the number of cookies which
can be exposed in the clear against network attackers. Thus, we focus on
cookies, that rely on HSTS to protect their cookies rather than setting the
Secure attribute. Specifically, we replicated the tests performed in ”Reining
in the web’s inconsistencies with site policy” [1] and identify three categories
of cookies at danger on sites that have HSTS enabled:

1. Cookies set by a page that correctly deploys HSTS, but another page
on the same origin (i.e. example.com/foo) has configured max-age to
a non-positive value. The attacker can retrieve these cookies after dis-
abling HSTS;

2. Cookies bound to domains such that includeSubDomain is not declared
in HSTS response header, nor at least one of its parents. The attacker
can steal these cookies by forcing HTTP requests to a non-existing
subdomain (of the set ”Domain” value);

37

3. Cookies bound to domains such that any of their subdomains deacti-
vates HSTS by setting max-age directive to a non-positive value. After
HSTS deactivation, these cookies can be leaked by forcing the victim
to visit the now downgraded HTTP subdomain.

For the first case, we find out that 2.084 cookies out of 5.552 collected can
be retrieved by deactivating HSTS in the same domain.
Then, for the second category 12 cookies bounded to those sites that do not
extends HSTS to their subdomains, can be leaked through referring to a
non-existing subdomain.
Finally, for the last case, 7.064 collected cookie are vulnerable because an
attacker can contact the site over the now downgrade HTTP protocol.
Overall, sites risk exposing cookies in the clear due to inconsistencies in their
HSTS configuration. It is clear that the cookie leakage comes from the sub-
domains, highlighting the fact that those are left unprotected.

For what concern upgrade-insecure-request of CSP almost the totality of the
collected headers set this directive both on domains and relative subdomains
that have HSTS disabled. Therefore, the sites rely on this directive rather
than choose HSTS that protect their site from third party visits.

Summarizing what we did in our study, in the tables 5.1 and 5.2 we have a
significant increment on sites that respond over HTTPS and in declaring of
HSTS. Thus, we can imagine that alike the security on those sites increase
as well. Unfortunately, table 5.4 shows that a low number of sites declare
HSTS without errors. A particular observation is that we cannot do a strict
comparison between our table 5.4 and the table 5.5 of the study conducted
in 2015. This observation arise from the fact that the number of headers
collected, the difference between the lists (Tranco list versus Alexa list) used
and the type of study conducted are different. So, we cannot infer nothing
about HSTS configuration over HTTPS, but what can we say is that there is a
drastic decrease on non-redirecting sites, 16,29% registered on our study and
44,1% on the study of 2015, and on those site that declare HSTS only over
HTTP, 3,69% against 4.1% in 2015. This might means that sites developer
pay much more attention setting up HSTS policy.
Although this data can be comfortable, in the table 5.6 we show that the
sites still have to face with some HSTS inconsistencies, in particular, with
policy declaration on subdomains. Given the low number of sites in the first

38

two tiers, it is clear that the policy declaration presents some inconsistencies
and leave the sites open to attacks that HSTS is meant to mitigate.
Finally, in the section 5.4, we collect the headers and define the common
mistakes encountered during the tests. The last four tables [5.7, 5.8, 5.9,
5.10] indicates the significant values for HSTS declaration and the common
values for max-age bot on parent domains and their relatives subdomains.
The data are inline on what did in the previous tests. Thus, we have that
the common HSTS value is ”undefined” which means that the policy is not
declared. Other significant mistakes came from the subdomains crawled.
The number of inconsistencies are much more large respect to the parent
domains, thus the sites that presents these mistakes are more vulnerable on
subdomains rather than to their parent domains.
We collect also cookies that are at risk due to HSTS inconsistencies. We find
out that the major chance to cookie leakage is from sites’ subdomains. Once
again we have confirmation that the potential entries for an attacker are the
left vulnerable and unprotected subdomains.

39

Chapter 6

Related Work

The next two sections describe the two papers that were taken in considera-
tion as a starting point for this thesis. They briefly review the use of HSTS
among sites, and thus are useful in order to better understand the topic at
stake.
The first paper is ”The State of HSTS Deployment”; it concerned about the
study conducted by Lucas Garron, Andrew Bortz and Dan Boneh, in 2013.
They make a scan of the top visited sites of the Alexa top 1 million list in
order to understand the correct set of HSTS header and reveal the common
pitfalls. In particular, this case study is the first analysis on HSTS.
The second paper taken into account, ”Upgrading HTTPS in Mid-Air”, in-
troduces an in-depth study of HSTS and public key pinning. The study was
conducted by Michael Kranch and Joseph Bonneau from Princeton Univer-
sity.

6.1 The State of HSTS Deployment: A Sur-

vey and Common Pitfalls

As briefly introduced, the authors of this paper focus on HSTS (HTTP Strict
Transport Security). They present the state of deployment and explain the
common mistakes and drawbacks with HSTS configuration. As a matter of
fact, the describe it in the IETF specification and browser implementation,
which was the basis for their survey on top sites.

As it is specified in the article, HSTS mechanism is effective enough against

40

both active and passive attacks, it can help ensuring the security avoiding
plain HTTP, which instead is still accepted by some sites. Indeed, three out
of five of the major browsers have improved their security, such as Google,
Twitter, iCloud, etc. The main advantage of HSTS is that it permits to spec-
ify a Strict-Transport-Security header, thus creating and entry that induces
all future loads to be sent over HTTPS. These entries ease a wide range of
attacks, such as the eavesdropping, injection/redirection, etc...
Later, they consider “example.com” to be typed and to be redirected to the
“https://www.example.com” domain: if the site only sends HTTPS header
over the latter, the future requests without www will not be secure, and
therefore it is possible to state that parts of the domain are still vulnerable.
They also propose some countermeasures in order to improve HSTS, such as
the includeSubDomains directive in order to increase the subdomains pro-
tection.

Now, it will be presented the general overview that they present of HSTS.
It is a mechanism introduced as ForceHTTPS in 2008 and later accepted by
the IETF Standards. It is known to be an HTTP header that may be sent
to browsers in order to require improved security for the domain at stake.
HSTS is commonly described as a mechanism “to transform insecure URI
references. . . into secure URI references”. That means, it improves strict
security in the mechanisms.
They present three ways to send HSTS header and these are:

• Strict-Transport-Security: max-age=31536000
It defines the effect of the HSTS Policy for one year and it is applicable
only to the domain of HSTS Host issuing it;

• Strict-Transport-Security: max-age=15768000 ; includeSub-
Domains
It defines the effect of HSTS Policy for approximately six months and
that it applies to the domain of the issuing HSTS Host and all of its
subdomains;

• Strict-Transport-Security: max-age=0
It specifies that the UA must delete the entire HSTS Policy associated
with HSTS Host that sent the header.

Moreover, HSTS has to only be accepted and sent over HTTPS, and in-
cludeSubDomains is ignored for max-age=0.

41

HSTS is supported by: (1) Chrome, (2) Opera and (3) Firefox; but not by
Internet Explorer and Safari. (1) Chrome: considers HSTS to be part of the
cache and employs the following list directly, so that it enforces the security
measures.

• force-https - permits HTTPS for a site by default (without expiration);

• includeSubDomains;

• pins - particular pinned certificates.

(2) Opera: has the same behaviour as Chrome above. It is closed-source,
and thus does not provide documentation on HSTS. (3) Firefox: performs
its straining in order to maintain the list fresh and to notice the latest host
settings. A site is in the Firefox preload list if:

• it is present in the Chromium list;

• it sends an HSTS header;

• and the max-age is at leas 18 weeks.

As a matter of fact Firefox implements HSTS for all the sites in the preload
list. The latter, includes also a boolean flag for includeSubDomains and this
flag is se to TRUE when the includeSubDomains in HSTS header of the site.
Moreover, it has an expiration time of 18 weeks from the time it is run the
script, after that time Firefox will ignore it. Indeed, Firefox refers to HSTS
as a part of “Site Preferences” in its “Clear Recent History” attribute.

As we introduced at the beginning of this section, the study of these authors
was on the top sites. In particular, they surveyed the top 100k sites in the
Alexa global rankings, requesting four root URL’s each:

• http://example.com;

• http://www.example.com;

• https://example.com;

• https://www.example.com.

42

They assumed that the front pages were sufficiently of HSTS behaviour and
then recorded how many sites: used HSTS with max-age > 0; used in-
cludeSubDomain; used HSTS with max-age = 0; and which sites responded
over HSTS at all.
They only considered well-formed HSTS header and sent over HTTPS, how-
ever they did not categorize which site uses HSTS. All of the data collected
were found using python script and were taken in October 2013. They only
considered initial responses, being their goal about securing initial landing.
(Tabelle)
What is enhanced is that the use of HSTS is to secure a domain, at least and
thus it is usually preferable to secure all the visited (sub)domains; secure both
“example.com” and “www.example.com”; and secure all the (sub)domain of
“example.com”.
They observed that a significant number of them sent an HSTS header, while
others do not secure as many of their (sub)domains as they should.

Sites, moreover, should be aware of the issues connect to the use of in-
cludeSubDomain because it is present at least one subdomain that can break
over the HSTS.
Therefore, to improve HSTS deployment, a site should operate considering
that an attacker can run a MITM attack over HTTP and the strongest way
to be protected is to redirect to HTTPS and have well-formed HSTS header
with: every HTTPS request; a long max-age; includeSubDomains. It should
also never send a HSTS header over HTTP, and once the site is engaged with
HSTS then it should also be into the preload list of the browser. All of this
is centred on the selection of the most safe options available and on making
sure that the browser receives them. Sites must be aware of HSTS details,
because it can only secure the current domain and the survey described in
this section shows that, indeed, sites may expire weaknesses.

6.2 Upgrading HTTPS in Mid-Air: An Em-

pirical Study of Strict Transport Security

and Key Pinning

HTTPS is a stratification of HTTP traffic over the TLS/SSL encrypted trans-
port protocols in order to achieve confidentiality and integrity; and it is the

43

dominant protocol used to ensure web traffic. The most considerable is-
sue has been inconsistent and incomplete deployment of HTTPS: indeed,
browsers must sustain both HTTPS and HTTPS connections.

Firstly, the main countermeasure to HTTPS stripping is strict transport se-
curity (HSTS), which is useful to browsers to ascertain a particular domain
that can only be accessed by HTTPS.
Other that this, there are also concerns about certificate authority (CA)
system weaknesses. Many protocols have been developed in order to keep
the security against an attacker with a certificate signed by a trusted CA,
and one of them is the key pinning. The latter is actually distributed as a
preloaded policy with Chrome and Firefox.

Now then, we shall describe these two protocols in depth.
HTTPS: it is also known as “HTTP over TLS” and combines HTTP traffic
with TLS (Transport Layer Security) indeed. TLS aims are confidentiality,
integrity and authenticity, respectively against eavesdropper, manipulation
by a network adversary, and by identifying the certificates. As a matter of
fact one of its famous attackers is the Man-In-The-Middle attack (MITM).
Strict Transport Security: due to the fact that many web sites sup-
port only insecure HTTP, many domains serve traffic over both HTTP and
HTTPS. Doing so, it enables a possible attack to take place and downgrading
the security to plain HTTP by, for example, rewriting URLs to change the
protocol. This type of attack is known as stripping attack. To contrast this
attack it was proposed the “ForceHTTPS” to permit servers to request clients
only communicate over HTTPS. This proposal was then called “HTTP strict
transport security”.

1. HSTS security model: HSTS works as a binary security policy; indeed
by default it is claimed for a particular domain name, even if there is the
optional includeSubDomain directive that applies to all subdomains of
the policy;

2. HSTS headers: the main method o establish HSTS is setting HTTP
header Strict-Transport-Security; in addition to the includeSubDomain
explained before, there must be specified the max-age directive;

3. HSTS preload: to acknowledge the vulnerability of HTTPS stripping,
both Chrome and Firefox are provided with a hard-coded list of do-

44

main which receive a preloaded HSTS policy. This reduced security for
preloaded domains in order to maintain the authenticity of the browser
installation;

4. HTTPS Everywhere: it is a browser extension that provides analogous
protection but for a greater list.

Key Pinning: it is useful in order to force traffic to use HTTPS. Neverthe-
less, it has no effect with an attacker that can obtain a signed certificate and
use it in a MitM attack. These issues show that requiring HTTPS via HSTS
is not enough due to the rogue certificate threat.

1. Pinning security model: Key pinning indicates a limited set of public
keys which a domain can use when it is creating a TLS connection;

2. Pinning preloads: Chrome has deployed preloaded pinning policies
since 2011, despite only a handful of non-Google domains currently
participate;

3. Pinning headers (HPKP): By HTTP Public Key Pinning (HPKP), sites
may proclaim pinning policies via the Public-Key-Pins HTTP header.
The syntax is very much like to HSTS, with an optional directive and
includeSubDomains max-age directive.

Therefore, as the authors of this study explain, HSTS is still in early stages
and pinning is too. Both of them already gained security for a lot of websites.
Their research to observe how HSTS and pinning are deployed was developed
through an automated web measurement platform. They used OpenWPM
for their testing and performed a HTTP and HTTPS header-only crawl of
the domain in the www subdomain of all the top million scale of Alexa sites.

Firstly, they present an overview of the current deployment of HSTS and
pinning; they crawled and inspected the preload lists of Chrome and Firefox
and they report:

a) Preload implementations;

b) Preloaded HSTS;

c) Preloaded pinning;

45

d) Dynamic HSTS;

e) HSTS errors;

f) Dynamic pinning (HPKP) deployment.

They then introduce the topic of mixed content: they explain that when an
HTTP page loads sources from an HTTP origin, we talk about mixed con-
tent. It is considered dangerous due to the fact that an attacker may change
the source delivered over HTTP and thus undermining both confidentiality
and integrity of HTTPS, consequently undermining also the advantages of
deploying HTTPS. Anyway, not all mixed content is dangerous in the same
way and those that they take in consideration are:

• Pinning and mixed content;

• HSTS Mixed Content.

Despite the terminology is not standardized, mixed content is actually widely
split into: active content (i.e. scripts, stylesheets, iframes, and Flash objects)
that can totally change the content of the page’s DOM or resupply data; and
passive/display content (i.e. images, audio, or video) that can only change
a constrained portion of the provided page and can not steal data. As said
before for the terminology, this distinction between active and passive con-
tent is not standardized.

For what concern cookies, we explain them in depth in section 4.1.2, however
the authors briefly explain this topic connected with cookie theft.
In particular, they state that an enduring issue with the web has been the
inconsistency that there is between the same-origin policy that s defined for
the majority of the web content and the one specified for cookies. In fact,
for the latter, cookies are isolated bu the host and not by port or scheme.
Consequently, cookies sent by HTTPS domain will be sent back to the same
HTTP domain. Mainly, they are concerned with:

• secure cookies;

• interaction of secure cookies and HSTS;

• and, interaction of cookies and pinning.

46

Moving on, a reasonable amount of researchers focused on empirical mistakes
with HTTPS and TLS. The most common works regard: cryptographic vul-
nerabilities including key revocation; factorable RSA keys; elliptic curve de-
ployment errors in TLS; forged TLS certificates, etc.
In the paper though, they propose two new features of HTTPS: pinning and
transport security, which are weaknesses at the HTTPS level more than the
TLS level.
In order to improve HTTPS, they also propose some suggestions mainly re-
garding limiting the risk of rogue certificates:

1. DANE (DNS-based Authentication of Named Entities): it is a
proposal that concerns the inclusion of the corresponding of public key
pins in DNS records. DANE does not have any support for declaring
policies applicable to all subdomains;

2. Out-of-chain key pinning: it is a good alternative to define a sepa-
rate self-managed public key that has to sign all end-entity public keys.
This is added to the request of a certificate chain that leads to a trusted
CA;

3. Public logging: this proposal aims to demand that all valid certifi-
cates are publicly registered to assure rogue certificates are detected.
Certificate Transparency (CT) is the most outstanding of these endeav-
ours and it would avoid the majority of issues in which the strain on
web developers is very low.

To conclude, the paper at stake explains that HSTS is still in its early stages
of both adoption and pinning, even though both technologies already im-
proved security for many websites. Pinning in particular is to account for
the detection of CA arrangements since 2010; indeed the research shows that
amounts of mistakes are undermining the potential security. Moreover, their
paper is useful to spread that plainness is an important feature for develop-
ers: looking at some of the errors they studied, it is possible to state that
better defaults might have helped. This is the example they report: “we
would advocate for a default value of perhaps 30 days for HSTS policies set
without an explicit max-age. Forcing all developers to choose this value has
probably led to unwise choices on both ends of the spectrum in addition to
malformed headers. Setting sensible defaults for pinning is far more chal-
lenging—there is no clear way to choose a default “backup pin” besides the

47

values currently being used”.

This problem implies that pinning will probably never be an easy, as they
say, “on switch” for developers. It may be, though, if TLS certificate man-
agement can be totally extracted.
Moreover, if both HSTS and pinning had policies that apply to subdomains
by default and an option for disabling or turning it off for particular sub-
domains, they would be more secure. Even expanding cookies’ attribute to
require pinning as secure as HTTPS, seems to be a step closer to the tech-
nology matching developer expectations.
Indeed, in their paper the authors promote simplifying HTTPS security fea-
tures in order to have an easier configuration. HSTS and pinning are surely
not the last improvement, as a matter of fact there are two structures that
are being standardized to be set in HTTP headers.
Combining dynamic HSTS and pinning declaring in a more flexible and ex-
tendable structure may be beneficial in order to permit developers to declare
once, rather than expect them to learn new syntaxes each time a new patch
is employed.

48

Chapter 7

Conclusion

Nowadays, the topic of security has become a popular issue due to the con-
temporary digital society in constant development. The HTTP protocol
does not give the necessary security avoiding attacks from malicious attack-
ers. There were many security mechanism implemented for internet security
like SSL, TLS and later HSTS.
The TLS (Transport Layer Security), and its predecessor SSL (Secure Socket
Layer), are cryptographic protocols designed to ensure a secure communica-
tion over the network. These protocols prevent tampering, falsification and
interception of data. However, the HTTP over TLS used alone is not enough
against malicious intent. In 2009, was presented an elaborate type of attack
against HTTPS called SSL stripping.

In order to avoid SSL stripping, websites that receive HSTS header over
HTTP automatically redirect the connection over HTTPS (even if the spec-
ification does not require it) or they can reject the connection. These best
practices can be resumed as follows:

• Hosts should declare HSTS policy at their top level domain name. In
other words, the policy should be enabled for https://example.com;

• Have the max-age directive set up to 1 non leap year in seconds (31.536.000
seconds);

• includeSubDomains should be present.

The HSTS policy must never be send over plain HTTP.

49

HSTS also can have the preload directive. Being preloaded means that the
browsers are already informed that before the communication begins, the
host requires the use of a secure connection (over SSL/TLS or other encryp-
tion protocol). Being preloaded also removes any malicious intent from an
attacker to intercept and tamper any communications that are redirected
from HTTP.
A possible vulnerability is the Bootstrap MITM (Man-In-The-Middle). This
type of vulnerability shows up when the user manually enters, or clicks on a
link to an unknown host that uses an HTTP connection instead of HTTPS.
Because of this, the user agent is subjected to various attacks

In order to study HSTS, we used NodeJS and Puppeteer and collect as much
headers as possible both from insecure and secure request to the sites present
in the Tranco[14] list and with our study we aimed to inform users about the
correct configuration and gave an overview about the current deployment of
this essential security mechanism. Then we defined tiers, from A to E, that
corresponds to a possible scenario that an attacker may encounter in order
to exploit the site’s vulnerabilities. In some scenarios we integrated other
mechanism in order to verify the integrity of the scenario such as upgrade-
insecure-request and cookies prefix.

First of all, we replicated the experiments taken from the articles on which
this thesis is based. We added some extra control, like the preload condition
of the sites. In our study we take into consideration the first hundred thou-
sand sites of Tranco list [14]. In the first test we illustrate the incidence of
HSTS over HTTPS sites. Then, we divide the sites into insecure and secure
version and, for the first ones, we test ”worst practices” and for the latter
we show the current deployment of HSTS among the HTTPS version of the
sites. Finally, we show the percentage of sites able to mitigate an attack
more or less elaborate from an attacker.

The purpose of this study is to inform the final user about the risk that it
may encounter while surfing the net and assert the state of HSTS. Extending
the previous researches, we can state that the current deployment of this se-
curity mechanism has increase its adoption over the years, and the number of
sites that implemented it incorrectly has significantly decreased on the their
parent domains.

50

Due to both legal and ethical reasons we have not tested the effective vulner-
abilities of the crawled sites. The proposed scenarios, came out from analysis
of most common situations in the wild and not from our technical analysis.
Thus, our study must be considered as a possibility of attacks by evil users.
A limitation of STS is the dimension of the preload list. It is reasonable to
think that every site in the net could not be part of the preload list and con-
sequently any conversation among the user and the site cannot start securely.
A further work could be thinking about how to implement a mechanism that
helps HSTS in order to avoid that every first communication to a site begins
over plain connections.

Finally, we encountered many possible configuration for HSTS, from those
that set a lower max-age directive to those that are present in the preload
list. Moreover, the most common mistakes that we encountered are from sites
subdomains: a clerical mistake is that there is confusion in the declaration
of HSTS. To make the configuration easier to use, it might be useful to
establish a standard configuration for declaring the strict transport security
header with the possibility of being part of the preload list, or alternatively
force all server to respond over a secure channel.

51

Bibliography

[1] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and
Ben Stock. Reining in the web’s inconsistencies with site policy. In
The 2021 Network and Distributed System Security Symposium, NDSS
’21, 2021.

[2] Google Developers.
https://developers.google.com/web/tools/puppeteer.

[3] Mozilla Developers. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Strict-Transport-Security.

[4] Mozilla Developers.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies.

[5] Mozilla Developers.
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP.

[6] Alexis Deveria. https://caniuse.com/stricttransportsecurity.

[7] Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231, June 2014.

[8] Lucas Garron, Andrew Bortz, and Dan Boneh. The state of hsts
deployment:a survey and common pitfalls.
https://garron.net/crypto/hsts/hsts-2013.pdf.

[9] Jeff Hodges, Collin Jackson, and Adam Barth. HTTP Strict Transport
Security (HSTS). RFC 6797, November 2012.

[10] D. Hubbard. Cisco Umbrella 1 million. [Online]. https://umbrella.
cisco.com/blog/2016/12/14/cisco-umbrella-1-million/,
December 2016.

52

https://developers.google.com/web/tools/puppeteer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://caniuse.com/stricttransportsecurity
https://garron.net/crypto/hsts/hsts-2013.pdf
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/

[11] Amazon Web Services. Inc. Alexa Top Sites.
https://aws.amazon.com/alexa-top-sites/, March 2018.

[12] D. Jones. Majestic Million CSV now free for all, daily. [Online].
https://blog.majestic.com/development/

majestic-million-csv-daily/, October 2012.

[13] Michael Kranch and Joseph Bonneau. Upgrading https in mid-air: An
empirical study of strict transport security and key pinning. In The
2015 Network and Distributed System Security Symposium, NDSS ’15,
February 2015.

[14] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczyński, and Wouter Joosen. Tranco: A research-oriented
top sites ranking hardened against manipulation. In Proceedings of the
26th Annual Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[15] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE
Bites: Exploiting The SSL 3.0 Fallback [PDF].
https://https://www.openssl.org/~bodo/ssl-poodle.pdf,
September 2014.

[16] NodeJs. https://nodejs.org/it/.

[17] Quantcast. Open internet ratings service.
https://web.archive.org/web/20070705200342/http:

//www.quantcast.com/, July 2017.

[18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446, August 2018.

[19] Preload submission form. https://hstspreload.org/.

[20] w3counter. https://www.w3counter.com/globalstats.php.

[21] Wikipedia. Content security policy.
https://en.wikipedia.org/wiki/Content_Security_Policy.

[22] Wikipedia. Http cookie.
https://en.wikipedia.org/wiki/HTTP_cookie.

53

 https://aws.amazon.com/alexa-top-sites/
 https://blog.majestic.com/development/ majestic-million-csv-daily/
 https://blog.majestic.com/development/ majestic-million-csv-daily/
https://https://www.openssl.org/~bodo/ssl-poodle.pdf
https://nodejs.org/it/
 https://web.archive.org/web/20070705200342/http: //www.quantcast.com/
 https://web.archive.org/web/20070705200342/http: //www.quantcast.com/
https://hstspreload.org/
https://www.w3counter.com/globalstats.php
https://en.wikipedia.org/wiki/Content_Security_Policy
https://en.wikipedia.org/wiki/HTTP_cookie

[23] Wikipedia. Http strict transport security. https:
//en.wikipedia.org/wiki/HTTP_Strict_Transport_Security.

54

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

	Introduction
	Background
	HTTP and HTTPS
	Transport Layer Security
	TLS Cryptography Protocol

	Security Best Practices For HSTS
	HSTS Preload
	Preload List Management

	Browser Support
	Best Practices
	Inconsistencies and Limitations

	Tool
	Related Mechanisms
	Content Security Policy
	Cookies

	Tiers

	Web Measurement
	HSTS Settings On The First Thousand Hundred Sites
	Overview of HSTS
	Are sites secure?
	Common Settings and Clerical Mistakes
	Cookie leakage and CSP setting

	Related Work
	The State of HSTS Deployment: A Survey and Common Pitfalls
	Upgrading HTTPS in Mid-Air: An Empirical Study of Strict Transport Security and Key Pinning

	Conclusion

